
1

Principles of Parallel Algorithm
Design

Why is Parallel Computing Hard?

• Amdahl’s law – insufficient available
parallelism –

– Speedup = 1/(fraction_enhanced/speedup_enhanced + (1-fraction_enhanced))

• Overhead of communication and
coordination

• Portability – knowledge of underlying
architecture often required

Parallel Programming Models

• Data parallel – HPF, Fortran-D, Power
C/Fortran

• Shared memory - pthreads
• Message passing – MPI, PVM
• Global address space

Steps in the Parallelization

• Decomposition into tasks
– Expose concurrency

• Assignment to processes
– Balancing load and maximizing locality

• Orchestration
– Name and access data
– Communicate (exchange) data
– synchronization among processes

• Mapping
– Assignment of processes to processors

2

Basics of Parallelization

• Dependence analysis
• Synchronization

– Events
– Mutual exclusion

• Parallelism patterns

When can 2 statements execute in parallel?

S1 and S2 can execute in parallel
iff

there are no dependences between S1 and S2
– true dependences
– anti-dependences
– output dependences

Some dependences can be removed.

Types of Dependences

• True (flow) dependence – RAW
• Anti-dependence – WAR
• Output dependence – WAW

Loop-Carried Dependence

• A loop-carried dependence is a dependence
that is present only if the statements occur
in two different instances of a loop

• Otherwise, we call it a loop-independent
dependence

• Loop-carried dependences limit loop
iteration parallelization

3

Synchronization

• Used to enforce dependences
• Control the ordering of events on different

processors
– Events – signal(x) and wait(x)
– Fork-Join or barrier synchronization (global)
– Mutual exclusion/critical sections

Example 1: Creating Parallelism
by Enforcing Dependences

for(i=1; i<100; i++) {
a[i] = …;
…;
… = a[i-1];

}

• Loop-carried dependence, not parallelizable

Synchronization Facility

• Suppose we had a set of primitives,
signal(x) and wait(x).

• wait(x) blocks unless a signal(x) has
occurred.

• signal(x) does not block, but causes a
wait(x) to unblock, or causes a future
wait(x) not to block.

Example 1: Enforcing
Dependencies (continued)

for(i=...; i<...; i++) {
a[i] = …;
signal(e_a[i]);
…;
wait(e_a[i-1]);
… = a[i-1];

}

4

Example 1 (continued)

• Note that here it matters which iterations are
assigned to which processor.

• It does not matter for correctness, but it
matters for performance.

• Cyclic assignment is probably best.

Example 2: Enforcing
Dependences

for(i=0; i<100; i++) a[i] = f(i);
x = g(a);
for(i=0; i<100; i++) b[i] = x + h(a[i]);

• First loop can be run in parallel.
• Middle statement is sequential.
• Second loop can be run in parallel.

Example 2 (contimued)

• We will need to make parallel execution
stop after first loop and resume at the
beginning of the second loop.

• Two (standard) ways of doing that:
– fork() - join()
– barrier synchronization

Fork-Join Synchronization

• fork() causes a number of processes to be
created and to be run in parallel.

• join() causes all these processes to wait until
all of them have executed a join().

5

Example 2 (continued)

fork();
for(i=...; i<...; i++) a[i] = f(i);
join();
x = g(a);
fork();
for(i=...; i<...; i++) b[i] = x + h(a[i]);
join();

Eliminating Dependences

• Privatization or scalar expansion
• Reduction (common pattern)

Example: Scalar Expansion or
Privatization

for (I = 0; I < 100; I++)
T = A[I];
A[I] = B[I];
B[I] = T;

Loop-carried anti-dependence on T
Eliminate by converting T into an array or by
making T private to each loop iteration

Example: Scalar Expansion

for (I = 0; I < 100; I++)
T [I]= A[I];
A[I] = B[I];
B[I] = T[I];

Loop-carried anti-dependence eliminated

6

Removing Dependences:
Reduction

sum = 0.0;
for(i=0; i<100; i++) sum += a[i];

• Loop-carried dependence on sum.
• Cannot be parallelized, but ...

Reduction (continued)
for(i=0; i<...; i++) sum[i] = 0.0;
fork();
for(j=…; j<…; j++) sum[i] += a[j];
join();
sum = 0.0;
for(i=0; i<...; i++) sum += sum[i];

Common pattern often with explicit support
e.g., sum = reduce (+, a, 0, 100)
CAVEAT: Operator must be commutative and associative

Decomposition Techniques

• Recursive
• Data
• Exploratory
• Speculative

Patterns of Parallelism

• Data parallelism: all processors do the same thing
on different data
– Regular
– Irregular

• Task parallelism: processors do different tasks
– Task graph vs. master-slave
– Task queue
– Pipelines

7

Data Parallelism

• Essential idea: each processor works on a
different part of the data (usually in one or
more arrays).

• Regular or irregular data parallelism: using
linear or non-linear indexing.

• Examples: MM (regular), SOR (regular),
MD (irregular).

Matrix Multiplication

• Multiplication of two n by n matrices A and
B into a third n by n matrix C

Matrix Multiply

for(i=0; i<n; i++)
for(j=0; j<n; j++)

c[i][j] = 0.0;
for(i=0; i<n; i++)

for(j=0; j<n; j++)
for(k=0; k<n; k++)

c[i][j] += a[i][k]*b[k][j];

Parallel Matrix Multiply

• No loop-carried dependences in i- or j-loop.
• Loop-carried dependence on k-loop.
• All i- and j-iterations can be run in parallel.

8

Parallel Matrix Multiply (contd.)

• If we have P processors, we can give n/P
rows or columns to each processor.

• Or, we can divide the matrix in P squares,
and give each processor one square.

SOR

• SOR implements a mathematical model for
many natural phenomena, e.g., heat
dissipation in a metal sheet.

• Model is a partial differential equation.
• Focus is on algorithm, not on derivation.
• Discretized problem as in first lecture

Relaxation Algorithm

• For some number of iterations
for each internal grid point

compute average of its four neighbors
• Termination condition:

values at grid points change very little
(we will ignore this part in our example)

Discretized Problem Statement

/* Initialization */
for(i=0; i<n+1; i++) grid[i][0] = 0.0;
for(i=0; i<n+1; i++) grid[i][n+1] = 0.0;
for(j=0; j<n+1; j++) grid[0][j] = 1.0;
for(j=0; j<n+1; j++) grid[n+1][j] = 0.0;

for(i=1; i<n; i++)
for(j=1; j<n; j++)

grid[i][j] = 0.0;

9

Discretized Problem Statement

for some number of timesteps/iterations {
for (i=1; i<n; i++)

for(j=1, j<n, j++)
temp[i][j] = 0.25 *

(grid[i-1][j] + grid[i+1][j]
grid[i][j-1] + grid[i][j+1]);

for(i=1; i<n; i++)
for(j=1; j<n; j++)

grid[i][j] = temp[i][j];
}

Parallel SOR

• No dependences between iterations of first
(i,j) loop nest.

• No dependences between iterations of
second (i,j) loop nest.

• Anti-dependence between first and second
loop nest in the same timestep.

• True dependence between second loop nest
and first loop nest of next timestep.

Parallel SOR (continued)

• First (i,j) loop nest can be parallelized.
• Second (i,j) loop nest can be parallelized.
• We must make processors wait at the end of

each (i,j) loop nest.
• Natural synchronization: fork-join.

Parallel SOR (continued)

• If we have P processors, we can give n/P
rows or columns to each processor.

• Or, we can divide the array in P squares,
and give each processor a square to
compute.

