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Abstract

I treat Riemann hypothesis as a series and proved it.
Up to now, I have tried to expand this equation and prove Riemann hypothesis with the

equation of cos, sin, but the proof was impossible.
However, I realized that a simple formula before expansion can prove it.
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1 introduction

s=c+ix, 0 ≤ c ≤ 1, x is non-trivial zero value.
If it is ζ(s) = 0, the Eq.(2) holds.
If it is ζ(s) 6= 0, the Eq.(2) does not hold.
This is an obvious matter.

ζ(s) = 2sπs−1 sin
(sπ

2

)
Γ(1− s)ζ(1− s) (1)

which satisfies:
ζ(s) = ζ(1− s) (2)

Eq.(2) holds only for non-trivial zeros.
Even if the real value of s is 1/2, if the imaginary value is not a non-trivial zero value, the plus
and minus of the imaginary value are switched.
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The formula below is Riemann’s formula, and the formula above is Euler’s formula.

ξ(s) =
1

2
s(s− 1)π−s/2Γ

(s
2

)
ζ(s) (3)

which satisfies:
ξ(s) = ξ(1− s) (4)

For example:
{1/2s(s− 1)π−s/2Γ(s/2)ζ(s)}, {s = 0.49 + i14.1347} = −3.71631...× 10−11 + 8.08549...× 10−11i
{1/2s(s− 1)π−s/2Γ(s/2)ζ(s)}, {s = 0.5 + i14.1347} = 3.47645...× 10−8 + 3.11925...× 10−18i
{1/2s(s− 1)π−s/2Γ(s/2)ζ(s)}, {s = 0.5− i14.1347} = 3.47645...× 10−8 − 3.11925...× 10−18i
{1/2s(s− 1)π−s/2Γ(s/2)ζ(s)}, {s = 0.51 + i14.1347} = 4.03079...× 10−11 − 8.27127...× 10−11i

If it is ξ(s) = 0, the Eq.(4) holds.
If it is ξ(s) 6= 0, the Eq.(4) does not hold.

2 Discussion

0 ≤ <(s) ≤ 1

Define

ω(s) =
∞∑
n=1

(−1)n−1

ns
=

1

1s
− 1

2s
+

1

3s
− 1

4s
.... (5)

ζ(s) =
2s

2s − 2

∞∑
n=1

(−1)n−1

ns
=

2s − 2 + 2

2s − 2

∞∑
n=1

(−1)n−1

ns
=
∞∑
n=1

(−1)n−1

ns
+

2

2s − 2

∞∑
n=1

(−1)n−1

ns
(6)

= ω(s) +
2

2s − 2
ω(s) = ω(s) +

2

2s

2s

2s − 2
ω(s) = ω(s) +

2

2s
ζ(s) (7)

6= ω(s) +
2

2s
[ω(s) +

2

2s
[ω(s) +

2

2s
[ω(s) +

2

2s
ζ(s)]]] (8)

= [1 + (
2

2s
) + (

2

2s
)2 + (

2

2s
)3]ω(s) + (

2

2s
)4ζ(s) (9)

The following is the sum of n+1 terms in the series.

6= [1 +
2

2s
+ (

2

2s
)2 + (

2

2s
)3 + ...+ (

2

2s
)n]ω(s) + (

2

2s
)n+1ζ(s) (10)
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= ω(s)
1− ( 2

2s
)n

1− 2
2s

+ (
2

2s
)n+1ζ(s) = ω(s)

1− 2(1−s)n

1− 21−s + 2(1−s)(n+1)ζ(s) (11)

And from Eq.(11)

ζ(1− s) 6= ω(1− s)1− 2sn

1− 2s
+ 2s(n+1)ζ(1− s) (12)

ω(1− s) =
21−s − 2

21−s ζ(1− s) (13)

2s 6= 0, 2s − 2 6= 0, 1− 21−s 6= 0, 21−s 6= 0

If s is non-trivial zeros.
Eq.(11) = Eq.(12) (14)

This formula ζ(s) = ζ(1− s) is not valid except when the real value is 1/2.
When the real value is 1/2, the real value is the same, but the imaginary value is the opposite of
plus or minus.
This formula ζ(s) = ζ(1− s) is valid only for non-trivial zeros.

ω(s)
1− ( 2

2s
)n

1− 2
2s

+ (
2

2s
)n+1ζ(s) 6= ω(1− s)1− (2s)n

1− 2s
+ (2s)n+1ζ(1− s) (15)

(1− 2

2s
)ζ(s)

1− ( 2
2s

)n

1− 2
2s

+ (
2

2s
)n+1ζ(s) 6= 21−s − 2

21−s ζ(1− s)1− (2s)n

1− 2s
+ (2s)n+1ζ(1− s) (16)

ζ(s)[1− (
2

2s
)n] + (

2

2s
)n+1ζ(s) 6= ζ(1− s)[1− 2sn] + (2s)n+1ζ(1− s) (17)

ζ(s)[1− (
2

2s
)n + (

2

2s
)n+1] 6= ζ(1− s)[1− 2sn + 2s(n+1)] (18)

ζ(s)[1− 2(1−s)n + 2(1−s)(n+1)] 6= ζ(1− s)[1− 2sn + 2s(n+1)] (19)

Calculation was performed here.
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Example:

ζ(s)[1− 2(1−s)n + 2(1−s)(n+1)], {s = 0.5 + i14.1347} = 3.13536...× 10−6 − 0.0000196934...i

ζ(1− s)[1− 2sn + 2s(n+1)], {s = 0.5 + i14.1347} = 3.13536...× 10−6 + 0.0000196934...i

ζ(s)[1− 2(1−s)n + 2(1−s)(n+1)], {s = 0.4 + i14.1347} = −0.0814778...− 0.0136953...i

ζ(1− s)[1− 2sn + 2s(n+1)], {s = 0.4 + i14.1347} = 0.0753372...− 0.0113547...i

ζ(s)[1− 2(1−s)n + 2(1−s)(n+1)], {s = 0.6 + i14.1347} = 0.0753372...+ 0.0113547...i

ζ(1− s)[1− 2sn + 2s(n+1)], {s = 0.6 + i14.1347} = −0.0814778...+ 0.0136953...i

ζ(s)[1− 2(1−s)n + 2(1−s)(n+1)], {s = 0.5 + i15} = 0.14711...+ 0.704752...i

ζ(1− s)[1− 2sn + 2s(n+1)], {s = 0.5 + i15} = 0.14711...− 0.704752...i

If the real value of s is 1/2 even if s is not a non-trivial zero imaginary value, the real value
will match, and the imaginary value will be the opposite of plus or minus.

As above, in Eq.(19), if s is 1/2+it(t is not non-trivial imaginary value), both sides have the
same real value, the imaginary value is the opposite of plus or minus.

If s=1/2. The left and right values are the same in Eq.(19).
However, what happens when it is a complex number is a problem.

ζ(s) = ζ(1− s) holds only when s is non-trivial zeros.
If s is not non-trivial zero, the left and right expressions are never equal.

The calculations so far are based on the assumption that ζ(s) = ζ(1− s) holds.
In other words, the above formula holds only when s is non-trivial zero.
If s=1/2+it(t is not non-trivial imaginary value), the real value are equal. The plus and minus of
the imaginary value are switched.

To be precise, ζ(s) = ζ(1− s) is valid only for non-trivial zeros.
This is because the value of ζ at a non-trivial zero value is zero.
This is an expression showing the possibility that there are non-trivial zero values at equal intervals
from 1/2 to the same imaginary value on both sides of <(1/2).

Riemann hypothesis asks whether all non-trivial zeros are real parts 1/2.
It was shown that the non-trivial zero of Riemann hypothesis is not possible except for the real
part 1/2.

The above indicates that the value of s when ζ(s) = ζ(1− s) is 1/2.
That is, when the value of s is other than 1/2, a non-trivial zero value cannot be obtained.
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<(s) =
1

2
(20)

Proof complete.

3 Postscript

These calculations were performed with WolframAlpha.
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Please raise the prize money to my little son and daughter who are still young.
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