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Most contributions on Tomlinson-Harashima precoding (THP) consider

the THP design based on perfect channel state information (CSI) at the

transmitter. The perfect CSI is not available in many wireless systems

owing to channel estimator error. Traditionally, the channel is estimated

by a specified channel estimator and is applied to the THP optimisation

function as if it is error-free. This separate optimisation causes some

performance degradation, especially in the erroneous estimated channel.

Derived is a new robust solution for the THP MIMO system, which

optimises jointly the channel estimation and THP filters. The proposed

method provides significant improvement with respect to conventional

separate optimisation. Simulation results show the performance advan-

tage obtained by the joint optimisation.

Introduction: The Tomlinson-Harashima precoding (THP) solution

based on minimum mean square error (MMSE) criterion is one of the

most useful pre-equalisation techniques to achieve near multiple input

multiple output (MIMO) channel capacity with reasonable complex-

ity. Traditionally, channel estimation and pre-equalisation are opti-

mised separately and independently, which results in performance

degradation. This loss may cause poor performance, especially, in

erroneous conditions. In [1] Dietrich et al. proposed a new method for

joint pilot symbol assisted channel estimation and equalisation and

applied it to the design of the space-time decision feedback equaliser.

Their research was developed in [2] for the THP MIMO system

employing the known error covariance matrix of the channel (due to

time variation of the channel or imperfect channel estimation). In this

Letter, their work is extended as joint optimisation in which the THP

filters are optimised together with the channel estimation conditioned

on observation data (with approximately the same order of complexity

as a separate design). In other words, in joint optimisation, in contrast

to separate optimisation, the average cost function should be opti-

mised with respect to THP filters and channel estimation, i.e. the

expectation is taken with respect to the unknown channel parameters

conditioned on the available observation data. It means that, in

contrast to conventional optimisation in which different channel

estimation methods have to be investigated for a given optimised

THP to find the best combination, the best channel estimation can be

chosen directly by the MMSE criterion. As a result, it will be shown

that the joint optimisation leads to a linear MMSE (LMMSE) channel

estimator and a new structure for THP filters based on the error

covariance matrix of the channel estimator.

Fig. 1 THP model in MIMO system

System overview: The base station (BS) with nT transmit antennas and

nR users with a single antenna can be considered as a MIMO broadcast

system. The system is assumed to be time division duplex (TDD) where

the channel state information (CSI) is measured in the uplink channel

and used to optimise THP filters in the downlink channel. A block

diagram of this MIMO system together with THP is illustrated in Fig. 1

and is briefly explained here. The nT dimensional input symbol vector a

passes through lower triangular feedback filter B, which is added to the

intended transmit vector to pre-eliminate interference from previous

users. The resultant signal is then fed to the modulo-operator, which

serves to limit the transmit power. The output signal of modulo-operator

x is then passed through a unitary feed forward filter F to further

remove interference from future users. Finally, the precoded signal x̃ is

sent through the MIMO channel. As all interferences are taken care of at

the transmitter side, the receivers at the mobile user side are left with

some simple operations including power scaling (diagonal matrix G),

reverse modulo-operation, and single user detection.
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The matrices B, F, and G can be found by zero forcing (ZF) or

MMSE criteria as in [3]. The received signal before modulo reduction,

in a fixed time stand, can be modelled as:

y ¼ Gr ¼ GðHFB�1vþ nÞ ð1Þ

where x̃¼FB�1v [x̃1, . . . , x̃nT]
T, r [r1, . . . , rnR]

T y [y1, . . . , ynR]
T, and n

[n1, . . . , nnR]
T are transmitted, received before and after the scaling

matrix and noise vectors, respectively. H¼ [hjl]nR� nT is the channel

matrix, v¼ aþ d is the effective input data vector, and d is the

precoding vector used to constrain the value of x̃ [2, 3]. The elements

of the noise vector are assumed independent complex Gaussian random

variables with zero mean and variance s2, i.e. n �CN(0, s2 InR). In
addition, the elements of matrix H are considered as complex Gaussian

random variables (i.e. flat fading case) with zero mean and unit

variance. In the rest of the Letter, for the sake of simplicity and without

loss of generality, it is assumed that the number of transmit and receive

antennas are the same, i.e. nT¼ nR¼K.

The received signal at the BS during the training period (uplink), at

time stand i, can be modelled as:

yðiÞ ¼ HTpðiÞ þ nðiÞ ð2Þ

where y(i)¼ [y1(i), . . . , yK(i)]
T, p(i)¼ [p1(i, . . . , pK(i))]

T, n(i)¼ [n1(i), . . . ,
nK(i)]

T and HT
¼ [h1

T, . . . , hK
T]T; yk(i) is the received signal at the kth

receive antenna, pk (i) is kth user’s known symbol (pilot) to train the

channel, hj¼ [hjl], and hjl is the tap gain from transmit antenna l to

receive antenna j.

During the training period (N symbols) in the uplink transmission,

the received signal can be considered as [4]:

ys ¼ shs þ n ð3Þ

where ys¼ [y(0), . . . , y(N� 1)]T, hs¼ vec[HT], s¼ [A(0), . . . , A(N �

1)]T, n¼ [n(0), . . . , n(N� 1)]T and A(i) can be constructed as the block

diagonal matrix with elements of p(i).

By using the Bayesian Gauss-Markov theorem, the Bayesian

LMMSE estimator can be obtained for the linear model of (3) as [5]:

ĥs ¼ E½hsjys� ¼ Chs
sH ðsChs

sH þ s2nIÞ
�1ys ¼ Ws ys ð4Þ

and

Chjys
¼ Chs

�WssChs
ð5Þ

where ĥ indicates the estimation of h and:

Chs
¼ E½hsh

H
s �

Ws ¼ Chs
sH ðsChs

sH þ s2nIÞ
�1

ð6Þ

Joint optimisation: In conventional THP optimisation the error that

needs to be considered for the system illustrated in Fig. 1 should be

the difference between the effective data vector v and the data vector

entering the decision module y [3], i.e.

e ¼ y� v ¼ ½GHF � B� xþ ~n ð7Þ

where ñ¼Gn, y¼Gr and r is the received vector. The MMSE solution

should minimise the error signal as:

argmin
B;F;G

Ek½GHF � B�xþ ~nk2

s:t:Ek~xk2 � PT

(
ð8Þ

where PT is the total available power at the transmitter. Instead of

solving (8), it is easier to use the orthogonality principle. In this case,

the MMSE solution should satisfy [3]:

E½erH � ¼ 0 ð9Þ

By solving (9), the THP can be optimised in perfect CSI as [3] or in

imperfect CSI as [2] in which a specific channel estimator is assumed and

THP is optimised according to error covariance matrix of the channel.

From a general aspect, separate optimisation is not a desired method

because it is necessary to select different channel estimators and optimise

the THP filters to find the best combination (which is cumbersome work).

Nevertheless, in the joint optimisation the best channel estimator is

determined in a method in which the THP filters and channel estimation

can be optimised jointly without any trial method. In this case, since the

training sequence and ys are given, the channel can be modelled as a
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random variable from the point of view of the receiver. Thus, the cost

function in (9) is a random variable and should be considered as:

E½erH jys� ¼ 0 ð10Þ

where the expectation is taken with respect to the unknown channel

parameters. The above equation can be written more simply as:

GFrrjys
¼ BFxrjys

ð11Þ

where the matrices Frrjys
and Fxrjys

can be computed using (1) as:

Frrjys
¼ E½rrH jys� ¼ E½ðHFxþ nÞðHFxþ nÞH jys�

¼ V þ zI ð12aÞ

Frrjys
¼ E½xrH jys� ¼ E½xðHFxþ nÞH jys�

¼ s2xF
H ĤH ð12bÞ

where z¼ sn
2=sx

2 and V ¼E[HHH
jys]. To find a closed form solution for

THP filters, it is necessary to calculate the conditional mean estimate of

T¼HHH over observed data, i.e. ys. The matrix T is well known as the

Gramian matrix where its probability distribution is a Wishart distribu-

tion [6]. To calculate V, consider the cost function as:

J ¼ kT̂ � Tk2F ð13Þ

where the lower index stands for the Frobenius norm and T̂ is a

nonlinear function of ys which should be determined. The minimisation

of (13) leads to a nonlinear conditional mean estimator as [7]:

T̂ ¼ E½T jys� ¼ E½HHH jys� ¼
PK
k¼1

E½hkh
H
k j ys� ð14Þ

where H ¼ [h1, . . . ,hK]. It is possible to consider each expression in the
summation as [8]:

E½hkh
H
k jys� ¼ E½hk jys�E½hk j ys�

H
þ Chk jys

¼ ĥk ĥ
H
k þ Chk jys

ð15Þ

where

Chk jys
¼ E½ðhk � ĥk Þðhk � ĥk Þ

H
j ys� ð16Þ

Since the error hk� ĥk is statistically independent from the observation

data, we have:

Chk jys
¼ E½ðhk � ĥk Þðhk � ĥk Þ

H
� ð17Þ

By substituting the relations (15) and (17) in (14) and rearranging the

resultant sub-matrices in original matrix form, we have,

T̂ ¼ ĤĤH þ CH jys
ð18Þ

where

CH jys
¼ Chs

�WsSChs
ð19Þ

The matrices Ws and Chs
are the same as in (6) which is used for the

Bayesian LMMSE channel estimator. On the other hand, it is possible to

show that ĥs¼E[hs j ys] ¼Ws ys [5], i.e. this joint optimisation leads to

a Bayesian LMMSE channel estimator. Note that, in the joint optimisa-

tion, the explicit channel estimation, i.e. ĥ¼Ws ys, is not needed. In this

case, the matrices Frrjys
in (12a) can be obtained as:

Frrjys
¼ ĤĤH þ CH jys

þ zI ð20Þ

Substituting relations (12b) and (20) in (11) and by some manipulating,

the lower triangular matrix R (the matrix R should be a lower triangular

form in which the feed back matrix B can be attained from R after

normalising its diagonal elements by the scaling matrix G as B¼BR)

can be found through the Cholesky factorisation of:

RRH ¼ ðĤĤH þ zI þ CH jys
ÞĤ�H Ĥ�1ðĤĤH þ zI þ CH jys

Þ ð21Þ

and matrices G, B and F can be found as:

G ¼ diag½r�1
11 ; . . . ; r

�1
kk �

B ¼ GR

FH ¼ Ĥ�1ðĤĤH þ zI þ CH jys
ÞR�H ð22Þ
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In this case, the error covariance matrix can be computed as:

Fee ¼ s2xGðz
2Ĥ�H Ĥ�1zI þ CH jys

ÞGH ð23Þ

Note that if the perfect CSI is assumed, i.e. CHjys
¼ 0, the relations (21)–

(23) are the same as conventional THP optimisation (denoted in [3])

and here it is referred to as conventional optimisation.

Fig. 2 Joint optimisation performance with different N

Simulation results: For simulation purposes, K¼ 4 users with

4-QAM signalling are assumed. The entries of H are assumed to be

zero mean IID complex Gaussian random variables, i.e. H�CN(0,1).

Fig. 2 compares the performance of the proposed joint optimisation

with conventional optimisation. As can be realised, the proposed joint

optimisation algorithm substantially outperforms the conventional

optimisation, over the whole observation data length (N). In fact,

the performance is noticeable for smaller Ns, where the channel

estimator estimates the channel erroneously, especially for high

SNR values.
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