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A method is presented for using a small number of bandpass filters and banks of parallel comb filters
to analyze the tempo of, and extract the beat from, musical signals of arbitrary polyphonic
complexity and containing arbitrary timbres. This analysis is performed causally, and can be used
predictively to guess when beats will occur in the future. Results in a short validation experiment
demonstrate that the performance of the algorithm is similar to the performance of human listeners
in a variety of musical situations. Aspects of the algorithm are discussed in relation to previous
high-level cognitive models of beat tracking. ©1998 Acoustical Society of America.
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INTRODUCTION

Automatic extraction of rhythmic pulse from music
excerpts has been a topic of active research in recent y
Also called beat-trackingand foot-tapping, the goal is to
construct a computational algorithm capable of extractin
symbolic representation which corresponds to the phen
enal experience of ‘‘beat’’ or ‘‘pulse’’ in a human listener

‘‘Rhythm’’ as a musical concept is intuitive to unde
stand, but somewhat difficult to define. Handel writes ‘‘T
experience of rhythm involves movement, regularity, grou
ing, and yet accentuation and differentiation’’~Handel, 1989,
p. 384! and also stresses the importance of the phenomen
point of view—there is no ‘‘ground truth’’ for rhythm to be
found in simple measurements of an acoustic signal.
only ground truth is what human listeners agree to be
rhythmic aspects of the musical content of that signal.

As contrasted with ‘‘rhythm’’ in general, ‘‘beat’’ and
‘‘pulse’’ correspond only to ‘‘the sense of equally spac
temporal units’’ ~Handel, 1989!. Where ‘‘meter’’ and
‘‘rhythm’’ associate with qualities of grouping, hierarch
and a strong/weak dichotomy, ‘‘pulses’’ in a piece of mus
are only periodic at a simple level. For our purposes, thebeat
of a piece of music is the sequence of equally spaced p
nomenal impulses which define a tempo for the music. T
paper is only concerned with beat and tempo. The group
and strong/weak relationships which define rhythm a
meter are not considered.

It is important to note that there is no simple relationsh
between polyphonic complexity—the number and timbres
notes played at a single time—in a piece of music, and
rhythmic complexity or pulse complexity. There are piec
and styles of music which are texturally and timbrally co
plex, but have straightforward, perceptually simple rhythm
and there also exist musics which deal in less complex
tures but are more difficult to rhythmically understand a
describe.

The former sorts of musical pieces, as contrasted w
the latter sorts, have a ‘‘strong beat,’’ and it is with them th
this paper is predominantly concerned. For these kinds

a!Electronic mail; eds@media.mit.edu
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music, the rhythmic response of listeners is simple, imme
ate, and unambiguous, and every listener will agree on
rhythmic content. Rhythmically complex music is discuss
toward the end of the paper.

Previous approaches

There is a large body of work originating in the musi
psychology community which attempts to group musicalon-
setstogether into a rhythmic context; that is to say, to co
struct a model which subsumes multiple onsets separate
time into a rhythmic clock, ‘‘hierarchy,’’ grouping, or oscil
latory model.

Povel and Essens presented research~Povel and Essens
1985! on the association of ‘‘internal clocks’’ with tempora
onset signals. They described an algorithm which cou
given a set of inter-onset intervals as input, identify the clo
which a listener would associate with such a sequence
intervals. Their research was particularly interested in
way that perceived accents lead to the internal clock.
though obviously related to music, their research purport
examine time intervals in general rather than being restric
to musical stimuli. Parncutt’s recent work~Parncutt, 1994!
extends this type of model to include a great deal of str
tural information about duration and phenomenal accent.

Desain and Honing have contributed many results to
computational modeling of beat-tracking. Their models~De-
sain and Honing, 1992; Desain, 1995! typically also begin
with inter-onset intervals and associate a rhythmic pulse w
the interval stream. However, unlike the Povel/Essens
Parncutt models, these models areprocess models—they
process the input sequentially rather than all-at-once—a n
essary aspect of a model of human rhythmic perception.
sain’s ‘‘~de!composable’’ model calculates rhythmic expe
tations due to each of the possible inter-onset times i
rhythmic stream, and sums them to create an overall rh
mic expectation.

Large and Kolen have described a beat-tracking mo
~Large and Kolen, 1994! based on nonlinear oscillators. Th
model takes a stream of onsets as input, and uses a grad
descent method to continually update the period and phas
an oscillator. In this manner, the oscillator is matched w
5883(1)/588/14/$10.00 © 1998 Acoustical Society of America
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the input stream, and the resulting oscillation process se
to be a good match for the human perception of beat.

Longuet-Higgens and Lee have written many papers~for
example, Longuet-Higgens and Lee, 1984! on the induction
of rhythmic hierarchies from monophonic time sequenc
They are more interested in the development of theo
which describe the relationship of rhythm, meter, and phr
ing than on the boot-strapping process which creates a te
and beat percept. Tempo perception may be viewed as ‘
derlying’’ their models.

These approaches, and others such as Rosenthal~1993!
and Brown~1993!, require that robust onset detection pr
cede beat analysis, which entails an important restriction
their applicability. The models do not operate on acous
signals, but on symbolic data such as event lists or MIDI.
the extraction of onsets from multitimbral, polyphonic mus
is itself a difficult problem, this is a serious restriction of a
model which claims to treat human rhythm perception. Th
has been little attempt to merge these sorts of models
real-time acoustic pattern recognition to allow them to wo
with acoustic data.

More recently, there has been some research attemp
to extract rhythm and/or pulse information directly fro
acoustic signals. Goto has demonstrated a system w
combines both low-level ‘‘bottom-up’’ signal processing a
high-level pattern matching and ‘‘agent-based’’ represen
tions to beat-track and do simple rhythmic grouping
popular music~Goto, in press!. His method extracts drum
patterns from a signal and uses a template-matching mod
determine the beat from the drum track. This system run
real time on a parallel-processing computer and has b
used to control interactive-graphics displays from ecolog
music signals. His description does not directly address
equivalent processing of signals without drums, but it see
that the required musical knowledge base would be m
more difficult to acquire.

N. P. Todd’s work~Todd, 1994! has described algo
rithms which detect onsets in monophonic music under c
tain timbral constraints, and then group these onsets
rhythmic framework using a multi-scale smoothing mod
The onset model used is a simple one based on leaky
gration. The resulting ‘‘rhythmogram’’ representation co
ceives of pulse, and in some cases, meter and phrase,
ception as a very low-level process arising directly from
time- and loudness-integration properties of the auditory
riphery. The model as presented can be implemented in
incremental manner, but was only tested using toy exam
~although, interestingly, a speech example was included!.

All of the abovementioned research uses what has b
described as atranscriptivemetaphor for analysis~Scheirer,
1996!. That is, the music is first segmented, or assumed
already be segmented, into notes, onsets, timbres, an
forth. Post-processing algorithms are then used to gr
rhythms and track beats. As high-quality polyphonic mu
transcription algorithms are still years in the future—t
state-of-the-art systems cannot transcribe pieces more c
plex than four-voice piano music~Martin, 1996!—it seems
logical for practical reasons to attempt to construct syste
which can arrive at a musical understanding of a piece
589 J. Acoust. Soc. Am., Vol. 103, No. 1, January 1998
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music without going through a transcription step. Further,
the validity of the transcriptive metaphor as a framework
music perception has been challenged~Scheirer, 1996!, it is
scientifically appropriate as well.

In the body of this paper, the following topics are di
cussed: psychoacoustic demonstrations which lead to
cessing simplifications for beat-tracking, the construction
the algorithms themselves, example results from test sig
and ecological signals, a validation experiment which co
pares the behavior of the algorithm to that of human subje
the relationship of this model to previous models of rhyth
perception, and finally, conclusions about beat-tracking
rhythmic grouping and a description of future work to b
pursued in these directions.

I. PSYCHOACOUSTIC SIMPLIFICATION

One of the key difficulties with the transcriptive mode
of rhythmic perception described above is the complexity
grouping harmonic partials together to form notes, and
termining the onset times of those notes. Even if simplifyi
assumptions about the pitch and timbral content are ma
identifying attack and release times is no easy task~Scheirer,
in press!.

However, it seems from a psychoacoustic demonstra
on beat perception that certain kinds of signal manipulati
and simplifications can be performed without affecting t
perceived pulse content of a musical signal. Consider
signal flow network shown in Fig. 1.

An ‘‘amplitude-modulated noise’’ is constructed by sig
nal by vocoding a white noise signal with the subband en
lopes of a musical signal. This is accomplished by perfor
ing a frequency analysis of the music~processing through a
filterbank of bandpass filters, perhaps, or grouping out
from FFT bins together!, and also of a white-noise signa
from a pseudo-random generator. The amplitude of e
band of the noise signal is modulated with the amplitu
envelope of the corresponding band of the musical filterb
output, and the resulting noise signals are summed toge
to form an output signal.

FIG. 1. Creating a ‘‘modulated noise’’ signal from a music signal. T
output signal, for many sorts of frequency filterbanks, will have the sa
rhythmic percept as the input music signal, indicating that the amplit
envelopes of the bands are a sufficient representation for rhythmic ana
589Eric Scheirer: Beat-tracking acoustic signals
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For many kinds of frequency filterbanks, the resulti
noise signal has a rhythmic percept which is significantly
same as that of the original music signal. Even if there
very few, very broad bands~for example, four three-octav
bands covering the audible spectrum!, the pulse and mete
characteristics of the original signal are instantly recogn
able ~sound example #1a! @Audio examples for this pape
can be found on the author’s WWW site at http
sound.media.mit.edu/eds/beat/#.

Since the only thing preserved in this transformation
the amplitude envelopes of the filterbank outputs, it stand
reason that only this much information is necessary to ext
pulse and meter from a musical signal; that is, algorithms
pulse extraction can be created which operate only on
much input data, and ‘‘notes’’ are not a necessary com
nent for hearing rhythm. This is a vast reduction of inp
data size from the original signal. Shannon has reporte
similar effect for the perception of speech~Shannon, 1995!.

Certain other kinds of simplifications are not possib
For example, if only one band is used, or equivalently,
subband envelopes are linearly combined before modula
the noise~Fig. 2! ~Vercoe, 1994! a listener can no longe
perceive the rhythmic content of many signals~sound ex-
ample #1b!. Thus it seems that separating the signal in
subbands and maintaining the subband envelopes sepa
is necessary to do accurate rhythmic processing.

Stated another way, the algorithm in Fig. 2 is a meth
for generating new signals whose representation unde
filterbank-envelope-and-sum process is the same as a g
piece of music. However, since these new signals often
not bear a perceptual equivalency with the originals,
filter-envelope-sum framework must beinadequateto repre-
sent data in the musical signal which is important for rhy
mic understanding. This fact immediately leads to a psych
coustic hypothesis regarding rhythmic perception: some
of cross-band rhythmic integration, not simply summati
across frequency bands, is performed by the auditory sys

A psychoacoustic experiment to examine the exact pr

FIG. 2. A noise signal which does not have the same rhythmic charact
tics as the musical input, indicating that the sum of the amplitude envelo
is not a sufficient representation for rhythm analysis. Certain types of n
linear combination by frequency channel are evidently present in the
perception facility.
590 J. Acoust. Soc. Am., Vol. 103, No. 1, January 1998
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erties of filterbank-and-envelope manipulations which do
disturb rhythm perception is underway; in the meantime
seems important that a rhythmic processing algorithm sho
treat frequency bands separately, combining results at
end, rather than attempting to perform beat-tracking on
sum of filterbank outputs.

II. DESCRIPTION OF ALGORITHM

The beat-tracking algorithm to be presented here be
most resemblance to the method of Large and Kolen~Large
and Kolen, 1994! in that it uses a network of resonators
phase-lock with the beat of the signal and determine the
quency of the pulse. However, the particular method u
here is somewhat different; the resonators are analytic
much simpler than theirs, a bank of resonators is used ra
than gradient descent, and more pre- and post-processin
the signal is necessary in order to accurately extract the
sired information, as the present model operates on acou
data rather than an event stream.

A rhythmic pulse is described in terms of a frequen
and phase component, just as for a periodic sound wavefo
the frequency of the pulse in a rhythmic musical signal is
tempo or rate of the rhythm, and the phase of the pu
indicates where the ‘‘downbeat’’ of the rhythm occurs. Th
is, the times at which a pulse occurs can be defined to h
zero phase, and thus the points in time exactly in-betw
pulses have phase ofp radians, etc. It is important to not
that while human pitch recognition is only sensitive to sign
phase under certain unusual conditions, rhythmic respons
crucially a phased phenomenon—tapping on the beat is
at all the same as tapping against the beat, or slightly ah
of or behind the beat, even if the frequency of tapping
accurate.

Figure 3 shows an overall view of the tempo-analy
algorithm as a signal flow network. The functionality will b
briefly described, and then more details given piece-by-pi
in the following sections. The algorithms here were dev
oped empirically; however, in Sec. V their relationship
existing models of rhythm perception is discussed.

As the signal comes in, a filterbank is used to divide
into six bands. For each of these subbands, the ampli
envelope is calculated and the derivative taken. Each of
envelope derivatives is passed on to another filterbank
tuned resonators; in each resonator filterbank, one of th
resonators will phase-lock, the one for which the reson
frequency matches the rate of periodic modulation of
envelope derivative.

The outputs of the resonators are examined to see w
ones are exhibiting phase-locked behavior, and this inform
tion is tabulated for each of the bandpass channels. Th
tabulations are summed across the frequency filterban
arrive at the frequency~tempo! estimate for the signal, and
reference back to the peak phase points in the phase-lo
resonators determines the phase of the signal.

A. Frequency analysis and envelope extraction

As discussed in Sec. I, envelopes extracted from a sm
number of broad frequency channels are sufficient inform
tion to rhythmically analyze a musical signal, at least f

is-
es
n-
at
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human listeners. Further, empirical studies of the use of va
ous filterbanks with this algorithm have demonstrated th
the algorithm is not particularly sensitive to the particula
bands or implementations used; it is expected that psycho
coustic investigation into rhythmic perception of amplitude
modulated noise signals created with the various vocod
filterbanks would confirm that the same is true of huma
rhythmic perception.

The filterbank implementation in the algorithm has six
bands; each band has sharp cutoffs and covers roughly
one-octave range. The lowest band is a low-pass filter wi
cutoff at 200 Hz; the next four bands are bandpass, wi
cutoffs at 200 and 400 Hz, 400 and 800 Hz, 800 and 160
Hz, and 1600 and 3200 Hz. The highest band is high pas
with cutoff frequency at 3200 Hz. Each filter is implemented
using a sixth-order elliptic filter, with 3 dB of ripple in the
passband and 40 dB of rejection in the stopband. Figure
shows the magnitude responses of these filters.

The envelope is extracted from each band of the filtere
signal through a rectify-and-smooth method. The rectifie
filterbank outputs are convolved with a 200-ms half-Hannin
~raised cosine! window. This window has a discontinuity at
time t50, then slopes smoothly away to 0 at 200 ms. It ha
a low-pass characteristic, with a cutoff frequency at about 1
Hz ~‘‘frequency’’ in this case referring to envelope spectra
not waveform spectra!, where it has a215 dB response, and
6-dB/octave smooth rolloff thereafter.

The window’s discontinuity in time means that it has
nonlinear phase response; it passes slow envelope frequ
cies with much more delay than rapid ones. High frequen
cies, above 20 Hz, are passed with approximately zero dela

FIG. 3. Schematic view of the processing algorithm. See text for details
591 J. Acoust. Soc. Am., Vol. 103, No. 1, January 1998
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0 Hz is delayed about 59 ms and 7 Hz advanced about 14
ms. Thus there is a maximum blur of about 73 ms between
these envelope frequencies.

This window performs energy integration in a way simi-
lar to that in the auditory system, emphasizing the most re-
cent inputs but masking rapid modulation; Todd~1992! ex-
amines the use of temporal integration filters which are
directly constructed from known psychoacoustic properties.
After this smoothing, the envelope can be decimated for fur-
ther analysis; the next stages of processing operate on th
decimated band envelopes sampled at 200 Hz. There is littl
energy left in the envelope spectra at this frequency, but it
aids the phase-estimation process~see below! to maintain a
certain precision of oversampled envelope resolution.

After calculating the envelope, the first-order difference
function is calculated and half-wave rectified; this rectified
difference signal will be examined for periodic modulation.
The derivative-of-envelope function performs a type of onset
filtering process ~see, for example, Smith’s work on
difference-of-Gaussian functions for onset segmentations
Smith, 1994! but the explicit segmentation, thresholding, or
peak-peaking of the differenced envelope is not attempted
The subsequent modulation detectors in the algorithm are
sensitive, similar to the sensitivity of autocorrelation, to
‘‘imperfections’’ in an onset track. The half-wave rectified
envelope difference avoids this pitfall by having broader~in
time! response to perceptual attacks in the input signal. This
process might be considered similar to detecting onset point
in the signal bands, and then broadening them via low-pas
filtering.

.

FIG. 4. Magnitude response of the frequency filterbank used in the system
plotted in two pieces for clarity. The upper plot shows the first, third, and
fifth bands; the lower, the second, fourth, and sixth. Each filter is a sixth-
order elliptic filter, with 3 dB of passband ripple and 40 dB of stopband
rejection.
591Eric Scheirer: Beat-tracking acoustic signals



he
track, the
FIG. 5. Envelope extraction process, for a 2-Hz click track~left! and a polyphonic music example~right!. The top panels show the audio waveforms; t
middle panels, the envelopes; and the bottom, the half-wave rectified difference of envelopes. The lowest filterbank band is shown for the click
second-highest for the music. See text for details on algorithms.
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Figure 5 shows the envelope extraction process for
frequency band in each of two signals, a 2-Hz click track a
a polyphonic music example. The lowest band is shown
the click track, and the second highest for the music trac

B. Resonators and tempo analysis

After the envelope has been extracted and processe
each channel, a filterbank of comb filter resonators is use
determine the tempo of the signal. While comb filters a
often used in reverberators and other sorts of audio sig
processing, they also have properties which make them
able for acting as resonators in the phase-locking pulse
traction process.

In particular, if we stimulate a comb filter with delayT
and gaina with a right-sided pulse train of heightA and
592 J. Acoust. Soc. Am., Vol. 103, No. 1, January 1998
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period k, we get reinforcement~resonance! if T5k. Let xt

andyt be the input and output signals at timet; the equation
of the filter is thenyt5ayt2T1(12a)xt , and

y05~12a!A

yk5a~12a!A1~12a!A5~12a!A~11a!

y2k5~12a!A~a21a11!

A

ynk5~12a!AS (
i 50

n

a i D .

And so limn→` ynk5@(12a)A#/(12a)5A.
On the other hand, ifTÞk, the convergence is to a

smaller value. Letl be the least common multiple~common
592Eric Scheirer: Beat-tracking acoustic signals
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period! of T and k; there is only reinforcement everyT/l
periods, and by a similar logic as the above,

lim
n→`

ynl5
~12a!A

12aT/l ,

and sinceuau,1 if the filter is to be stable, andT/l>1,

12aT/l>12a.

So a filter with delay matching~or evenly dividing! the pe-
riod of a pulse train will have larger~more energetic! output
than a filter with mismatched delay.

We can see that this is true for any periodic signal
doing the analysis in the frequency domain. The comb fi
with delayT and gaina has magnitude response

uH~ej v!u5U 12a

12ae2 j vTU,
which has local maxima whereverae2 j vT gets close to 1,
i.e., at theTth roots of unity, which can be expressed as

e2 j 2pn/T, 0<n,T.

Using Fourier’s theorem we know that these frequen
domain points are exactly those at which a periodic signa
periodT has energy. Thus the comb filter with delayT will
respond more strongly to a signal with periodT than any
other, since the response peaks in the filter line up with
frequency distribution of energy in the signal.

For each envelope channel of the frequency filterban
filterbank of comb filters is implemented, in which the dela
vary by channel and cover the range of possible pulse
quencies to track. The output of these resonator filterbank
summed across frequency subbands. By examining the
ergy output from each resonance channel of the sum
resonator filterbanks, the strongest periodic component o
signal may be determined. The frequency of the reson
with the maximum energy output is selected as the temp
the signal.

The a parameter for each comb filter is set different
so that each filter has equivalent half-energy time. That i
comb filter of periodT has an exponential curve shaping
impulse response. This curve reaches half-energy outpu
the timet whenaT/t50.5. Thusa is set separately for eac
resonator, ata50.5t/T. A half-energy time of 1500–2000 m
seems to give results most like human perception.

Figure 6 shows the summed filterbank output for a 2-
pulse train and for a polyphonic music example. The ho
zontal axis is labeled with ‘‘metronome marking’’ in bea
per minute; this is a direct mapping of the delay of the c
responding comb filter. That is, for the 2-Hz power envelo
signal, a feedback delay of 100 samples corresponds
500-ms resonance period, or a tempo of 120 bpm.

In the pulse train plot in Fig. 6, a clear, large peak occ
at 120 bpm, and additional smaller peaks at tempi which b
a simple harmonic relationship~3::2 or 4::5, for example! to
the main peak. In the music plot, there are two peaks, wh
correspond to the tempi of the quarter note and half not
this piece. If the width of the upper plot were extended
similar peak at 60 bpm would be visible.
593 J. Acoust. Soc. Am., Vol. 103, No. 1, January 1998
y
r

-
f

e

a

e-
is
n-

ed
he
or
of

a

at

z
i-

-
e

a

s
ar

h
in
a

C. Phase determination

It is relatively simple to extract the phase of the sign
once its tempo is known, by examining the output of t
resonators directly, or even better, by examining the inter
state of the delays of these filters. The implementations
the comb filters for the resonator filterbank have lattices
delay-and-hold stages. The vectorw of delays can be inter-
preted at a particular point in time as the ‘‘predicted outpu
of that resonator; that is, the nextn samples of envelope
output which the filter would generate in response to z
input.

The sum of the delay vectors over the frequency ch
nels for the resonators corresponding to the tempo de
mined in the frequency extraction process are examined.
peak of this prediction vector is the estimate of when
next beat will arrive in the input, and the ratiov52p(tn

2t)/T, wheretn is the time of the next predicted beat,t the
current time, andT the period of the resonator, is the phasev
of the tempo being tracked. The phase and period may
be used to estimate beat times as far into the future as
sired.

The implementation of the model performs the pha
analysis every 25 ms and integrates evidence between fra
in order to predict beats. Since re-estimation occurs mult
times between beats, the results from each phase analysi
be used to confirm the current prediction and adjust it

FIG. 6. Tempo estimates, after tracking 5 s of a2-Hz click track~top! and
of a polyphonic music example~bottom!. Thex-axes are labeled in beats pe
minute, that is, 120 MM52 Hz. The polyphonic music shows more overa
energy, but the tempo is still seen clearly as peaks in the curve.
593Eric Scheirer: Beat-tracking acoustic signals
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needed. Currently, this prediction/adjustment is done in
ad hocmanner, requiring only that several successive fram
make the same beat prediction within a certain tolerance,
average all of these estimates to arrive at the final predict
This stage is the appropriate one for the inclusion of hi
level information, nondeterministic elements, or more
phisticated rhythmic modeling; see Sec. VI.

Figure 7 shows the phase peaks for a 2-Hz pulse tr
and for a polyphonic music example. In the upper plot, as
tempo is 120 bpm, thex-axis covers the next half-second
time; and for the lower plot, the estimated tempo is 149 b
~see Fig. 6!, so one period is approximately 400 ms.

D. Comparison with autocorrelation methods

There is a certain analytical similarity between th
bank-of-comb-filters approach and previous autocorrela
methods for finding tempo. Insofar as both are ways of
tecting periodic energy modulations in a signal, they are p
forming similar calculations. However, there are several
vantages to expressing these operations as multiple c
filters over expressing them as autocorrelation.

Predominantly, comb filtering implicitly encodes aspe
of rhythmic hierarchy, where autocorrelation does not. T
is, a comb filter tuned to a certain tempot has peak respons
to stimuli at tempot, but also lesser response to stimuli wi
tempi at multiples~2t,3t!, fractions (t/2,t/3), and simple

FIG. 7. Phase estimates, after tracking 5 s of a2-Hz click track~top! and a
polyphonic music example~bottom!. Thex-axis in each case covers the ne
full period of the resonator tracking the tempo, and the peak of the cu
shows where the next beat is predicted to occur: about 210 ms in the f
for the upper case, and 290 ms for the lower.
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rational relationships~3/2t,3/4t, etc!. The autocorrelation
only has this shared response for fractional tempi, not m
tiples or rationally related tempi. An autocorrelation mod
asserts that a click track at 60 bpm gives no sense of te
at 120 bpm, which seems intuitively wrong. The comb filt
model asserts instead, that there is such a sense, but
duced one when compared to a click track to 120 bpm.

These responses can be understood if we imagine bu
ing an autocorrelation filter at some lag, versus a comb fi
at that same delay, in an FIR manner~that is, to unroll the
usual IIR expression of the comb filter into an infinitely lon
‘‘FIR’’ filter !. The autocorrelation requires only a single t
on a delay line, since it only compares ‘‘one cycle back’’
time. The comb filter requires an infinite number of tap
since it compares~with less and less weight! infinitely far
back in time.

Autocorrelation methods are zero phase, which me
that some other method of determining signal phase mus
used. The comb filtering method shown here is phase
serving, and so provides a way of simultaneously extract
tempo and phase, as discussed in the previous section.
fact that the tempo and phase representations arise tog
gives us additional advantages in constructing higher-le
processing algorithms treating the output of the beat-trac

One advantage of autocorrelation schemes is that t
are more efficient in memory usage than banks of comb
ters, as the various lags can all access the same delay li
which is why the autocorrelation is zero phase—wher
each comb filter must maintain a delay line of its own.
return for the extra memory usage, the comb filters prov
estimates of output energy at each phase angle of each
where the autocorrelation accumulates it and only pres
the summary.

Ultimately, it is representationally satisfying to have th
frequency and phase of the signal explicitly encoded in
processing units of the algorithm. In an autocorrelation me
odology, the rhythmic oscillations of the signal are only re
resented as post-processed summary results; whereas i
comb filtering method, the filter states themselves explic
represent the rhythmic content—that is, there is an elem
of the processing network which phase-locks to and os
lates in synchrony with the signal.

III. IMPLEMENTATION AND COMPLEXITY

The algorithms described above have been implemen
in C11 code; the resulting program causally processes
dio files captured from compact disks or other audio reco
ings, or coming in via a live microphone input. In this se
tion, the parameters available for controlling the speed
accuracy of the program are described.

A. Program parameters

The current implementation of the system has a num
of parameters which can be used to control the accura
speed relationship of the algorithms. The program will run
real time on a very fast desktop workstation such as a D
Alpha, depending on the settings of these parameters and
sampling rate of the incoming audio stream. It is also cle
due to the highly parallel structure of Fig. 3, that the alg

e
re
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rithm could efficiently make use of a multiple-processor
chitecture. This has not yet been accomplished, howeve

There are four major areas where the performance
accuracy of the system can be tuned, and control over t
of them has been implemented. The algorithm has b
tested for audio at sampling rates from 8 KHz to 44.1 K
and gives roughly equivalent qualitative performance in
of these.

1. Frequency filterbank

As discussed in Sec. II, there is a fair amount of latitu
in choosing a frequency filterbank for decomposing the
coming audio stream without affecting human rhythmic p
ception, and the speed of the system will vary a great d
with the complexity of these filters~since there is a fair CPU
load for implementing high-order filters in real time on hig
bandwidth audio!, and their number~since for each of the
frequency channels, a full resonator filterbank structure
implemented!.

The performance of the beat-tracking program using
terbanks other than the six-channel sixth-order IIR filterba
described above has not been tested.

2. Envelope sampling rate

The decimation rate of the channel envelopes affects
speed and performance of the system. There are two m
implications for using a slow envelope sampling rate:~1!
there are many resonator frequencies which cannot be re
sented accurately with integer delays in the comb filters;
~2! the phase extraction can only be performed with accur
equal to the envelope sampling rate, since the vector of
lays has the same sampling rate.

In tradeoff to this, using a fast sampling rate for t
envelopes entails a lot of work in the comb filtering, sin
the number of multiplies in each comb filter varies prop
tionately to this rate. Empirical testing over a variety of m
sical examples suggests that the envelopes should
sampled at least 100 Hz or so for best performance.

3. Number of resonators per frequency channel

The amount of computing incorporated in tracking a
analysis of the comb filter resonators varies directly w
their number. If too few resonators are used, howeve
problem develops with sampling the tempo spectrum
sparsely. That is, since each resonator is attempting to ph
lock to one particular frequency~not to a range of frequen
cies!, if there is no resonator tuned close to the tempo o
particular signal, that signal cannot be accurately tracked

Also affecting this sparsity consideration is the range
resonator frequencies to be tracked. The wider the rang
tempi to track, the sparser a fixed number of resonators
spread over that range.

Good results have been generated using a bank of
resonators for each channel, covering a logarithmica
spaced range of frequencies from 60 bpm~1 Hz! to 240 bpm
~3 Hz!.
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4. Analysis frame rate

In this particular implementation, a higher-level avera
ing scheme is used to decide where~at what times! to deduce
beats in the input signal. That is, for each analysis frame,
phases of the resonators are examined; the evidence
suggests future beat locations. These suggestions are
bined over multiple analysis frames; when several frame
a row point to the same future beat location, evidence ac
mulates for that time, and a beat is actually assigned the

Thus the frequency with which the procedure of exa
ining and summing the outputs and internal states of
resonators is executed has a strong effect upon the pe
mance and speed of the program. Good results can be
tained if the analysis frame rate is at least 15 Hz.

Real-time performance cannot be obtained with the
rameter values shown above; on an Alpha 3000 using hig
optimized filtering and analysis code, with the envelope r
set to 75 Hz, 50 resonators per subband, and frames of
predictions analyzed every 10 Hz, the required performa
for real-time operation on 22-KHz input is reached. Th
real-time performance includes reading the sound file fr
disk and playing it back with short noise bursts added
highlight the beats. At this level of accuracy, the algorith
still performs acceptably well on some, but not all, music
examples.

B. Behavior tuning

In addition to controlling the tradeoff between progra
speed and accuracy, the behavior of the algorithm can
tuned with thea parameters in the comb filters. These p
rameters can be viewed as controlling whether to value
information ~the beat signal extracted so far! or new infor-
mation ~the incoming envelopes! more highly. Thus ifa is
large~close to unity!, the algorithm tends to ‘‘lock on’’ to a
beat, and follow that tempo regardless of the new envel
information. On the other hand, ifa is small, the beat-track
can be easily perturbed by changes in the periodicity of
incoming signal. Manipulating these parameters for
comb filter structure is computationally similar to manipula
ing the windowing function of a narrowed autocorrelation

Higher-level or domain-specific knowledge could b
used to set this parameter based on previous information.
example, in rock or pop music, the beat is usually qu
steady, so a high value fora would be appropriate; while for
classical music, particularly styles including many tem
changes, a smaller value would be more optimal.

IV. VALIDATION

It is somewhat of a difficult proposition to evaluate th
construction of an ecological beat-tracking model, for the
are few results in the literature dealing with listeners’ tem
responses to actual musical excerpts. Most psychophys
research has dealt primarily with special cases consistin
simple tones in unusual temporal relationships, which w
typically be more difficult to track than ‘‘real music’’ for a
listener. Conversely, most beat-tracking systems have b
595Eric Scheirer: Beat-tracking acoustic signals
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evaluated intuitively, by using a small number of test ca
~whether acoustic or MIDI-based! and checking that the al
gorithm ‘‘works right.’’

In this section, the performance of the algorithm
evaluated in both qualitative and quantitative manners.
sults are provided on the qualitative performance for 60 e
logical music excerpts, with sound examples publicly ava
able for listening. Results are also provided from a sh
validation pilot experiment which was conducted to confi
that the performance of the algorithm is like the performan
of human listeners.

A. Qualitative performance

Examples of many different types of music have be
tested with the implemented algorithm, using a short ap
cation which reads a sound sample off of disk, causally b
tracks it, and writes a new sound file with clicks~short noise
bursts! added to the signal where beats are predicted to
cur. A selection of these sound files is available for listen
via the World Wide Web~‘‘results’’ page!, and the results
are summarized below. The wide set of input data conta
60 examples, each 15 s long, of a number of different m
cal genres. Rock, jazz, funk, reggae, classical, ‘‘ea
listening,’’ dance, and various non-Western music are rep
sented in the data set and can be tracked properly. Som
the examples have drums, some do not; some have vo
some do not. Five of the examples would be judged by
man listeners to have no ‘‘beat.’’ Table I summarizes t
results by musical genre, and some qualitative descript
of typical results are provided below.

Forty-one of 60 samples~68%! have been qualitatively
classified as being tracked accurately, and another 11~18%!
as being tracked somewhat accurately. This accuracy
centage is not directly comparable to that reported for ot
systems, because the data set used here is more difficul
of the ‘‘easy’’ cases of rock-and-roll with drums keeping
straightforward beat were tracked correctly; and five of

TABLE I. Performance of the beat-tracking algorithm, summarized by m
sical genre. Results were auditioned and classified into groups by qualit
success level. ‘‘Urban’’ styles include rap, funk, and R & B music; ‘‘Quiet’’
includes muzak and an ‘‘easy-listening’’ example. All sounds are availa
via the WWW.

Genre No. of cases Correct Partial Wrong

Rock 17 13 3 1

Country 3 3 0 0

Urban 9 7 1 1

Latin 5 3 2 0

Classical 9 4 4 1

Jazz 8 3 1 4

Quiet 3 2 0 1

Reggae 2 2 0 0

Non-Western 4 4 0 0

Total 60 41 11 8
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eight examples not tracked accurately are said by hum
listeners to have no ‘‘beat’’ to begin with. It is premature
interpret these results as indicative of consistent genre
genre differences in accuracy; there are too few exam
and the within-genre differences in accuracy too great.

For the cases which track correctly, there is a star
period between 2 and 8 s long during which the resonan
filters have not yet built up an accurate picture of the sign
After this period, for most signals, the algorithm has sett
down and begun to track the signal accurately, placing
clicks in the same locations a human listener would. Exa
ining some of the other, incorrectly tracked examples, is
structive and highlights some of the deficiencies of t
method.

Examples #1, #2, and #57 are all up-tempo jazz case
which human listeners do perceive a strong beat, but no
is ever extracted by the system. In these three cases, the
is described by syncopated instrumental lines and comp
drum patterns. That is, there is not actually very much
ergy modulating at the frequency which is the percept
beat tempo for humans. Human listeners have a great ab
to induce ‘‘apparent’’ frequencies from complicated mod
lation sequences. For these examples, the algorithm is
able to find a pulse frequency, and so the beat outpu
more-or-less random.

The same is apparent in example #37, which is a p
tune that has a ‘‘mixed’’ or ‘‘clave’’ beat—the beat is no
even, but subdivided into oddly spaced groups. Each
measures, containing 16 eighth notes between them, ar
vided into a 3-3-3-3-2-2 pattern. A human listener has
trouble understanding the relationship between this pat
and a more common 4-4-4-4 pattern, but the algorithm se
to assume that the groups of three are the basic beat, and
get confused when the pattern doesn’t come out right.

Among the examples judged as being tracked with so
accuracy, but not entirely correctly, the most common pr
lem is phase shifting. For example, in example #16, a j
piano trio, the beat estimate is correct on the frequency,
switches back and forth between assigning beats to the ‘
beat’’ or the ‘‘downbeat.’’ Although this behavior is not un
like some human jazz listeners, a human would likely
more consistent in deciding where to place the beat. T
behavior could be easily corrected by adding a small amo
of high-level knowledge to the beat-tracking system.

Similar to this, in example #7, a rhythm and blues tun
the algorithm is uncertain about assigning the beat to
quarter-note pulse or to the eighth-note pulse, and
switches back and forth between them. A human liste
might also suffer from similar confusion, but would likel
make an arbitrary decision and then stay with it unless
music changed radically.

Other than these two sorts of confusions for cert
rhythmically complex musics, the algorithm seems to p
form quite successfully at tracking the musical beats.

1. Tempo modulation

As Todd correctly points out~Todd, 1994!, to be an
accurate model of human rhythm perception~and, of course,
to be maximally useful as a music analysis tool!, a beat-
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tracking system must be robust under expressive tem
modulation. The algorithm described here is able to foll
many types of tempo modulations; this is effected in
signal processing network by simply examining, over tim
the resonator producing the most energetic output. Tha
when the tempo of a signal modulates, the response of
resonator corresponding to the old tempo will die away, a
that of the resonator corresponding to the new tempo
gain.

Figure 8 shows ‘‘tempo curves’’~Desain and Honing,
1992! for two expressively modulated performances of
piece of music~Keith Jarrett and Andras Schiff perfor
mances, of the beginning of the G-minor fugue from boo
of Bach’s Bach’sWell-Tempered Clavier@sound example
3#!. The algorithm is quite sensitive to the variations
tempo over time.

B. Validation experiment

A short validation experiment has been conducted
confirm the qualitative results given in the previous secti
This experiment was not intended to highlight important p
choacoustic effects in beat perception, but only to t
whether the beat-tracking algorithm performs generally l
a human listener.

1. Subjects

Five adult listeners, all graduate students and staff m
bers at the MIT Media Laboratory, participated in the expe
ment. All were experienced musicians with normal hearin

2. Overview of procedure

Subjects listened to seven musical examples, dra
from different musical genres, through headphones. They
dicated their understanding of the beat in the music by t
ping along with the music on a computer keyboard.

FIG. 8. ‘‘Tempo curve’’ for two performances of the same piece of mus
Each tempo track has a short startup period during which the tempo es
tion is unstable; after that there are clear differences in the two pe
mances. The timescales are slightly different to make the performance s
align ~the same musical excerpt is used in both cases!.
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3. Materials

Seven musical excerpts from the above set were u
Each was digitally sampled from an FM radio tuner to pr
duce a monophonic 22-KHz sound file, 15 s long. A co
puter interface was created on a DEC Alpha workstat
with which the musical excerpts were presented to subje
at a comfortable listening level over AKG-K240M hea
phones.

The musical excerpts were as follows: a Latin-pop so
at moderately fast tempo~#10!, a jazz piano trio at fast
tempo ~#17!, a ‘‘classic rock’’ song at moderately slow
tempo~#20!, an excerpt from a Mozart symphony at mode
ate tempo~#40!, an ‘‘alternative rock’’ song at moderatel
slow tempo~#45!, and a piano etude with varying temp
~#56!.

A click track ‘‘step function’’ was also created for th
experiment, in which 10-ms white noise bursts were p
sented at a tempo of 120 bpm~interonset time of 500 ms! for
6 s, then at a tempo of 144 bpm~interonset time of 417 ms!
for 4.6 s, then again at 120 bpm for 6 more s. This stimu
is used to evaluate the response of human listeners and
beat-tracking algorithm to sudden changes in tempo.

A musical expert~the author! assigned exact beat time
to each excerpt by listening repeatedly and placing ‘‘clic
sounds in the perceptually appropriate positions. This t
was different than the tapping task in which the subje
participated; the expert listened repeatedly to each stimu
placing beats, listening to results, and adjusting the beat
sition if necessary. It is considered to be more accurate
robust than the real-time tapping task, although there is li
literature on humans performing either of these sorts of ju
ments@see Drakeet al. ~1997! and Parncutt~1994! for two
other ‘‘tapping tasks’’#. The expert labeling was conducte
separately from the tapping experiment, the expert did
know the results of the experiment or the algorithm exe
tion, and the subjects were not presented with the ex
data. The resulting ‘‘ground truth’’ beat times are used
the evaluation of results, below.

4. Detailed procedure

Subjects were seated in front of the computer termi
and instructed in the task: they were to listen to short mus
examples and tap along with them using the space bar on
keyboard. They were instructed to tap at whatever tempo
appropriate to the musical excerpt, but to attempt to tap
equal intervals~a pilot experiment revealed that some su
jects like to ‘‘drum along’’ in rhythmic or even syncopate
patterns with the music if they are not instructed otherwis!.
They listened to a 120-bpm click-track as a training sam
to indicate they understood the procedure, and then p
ceeded with each of the seven experimental trials.

All seven trials were run in the same sequence for e
listener, in a single block. The experiment was not coun
balanced based on an assumption that there is little train
effect in this task. After each trial, the subject was instruc
by the interface to press a key different than the space ba
continue to the next trial. The entire experiment took a
proximately 5 min per subject. The computer interface

.
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corded the time of each tap, accurate to approximately
ms, and saved the times to a disk file for analysis.

Finally, the beat-tracking algorithm was executed
each of these seven stimuli to produce beat times as
mated by the model described in the previous sections. Th
beat times were saved to a disk file and analyzed for c
parison with the human beat times. The algorithm parame
were adjusted to give optimum performance for this set
trials, but not changed from trial-to-trial.

5. Dependent measures

The human and algorithmic beat-tracks were analyze
two ways. First, the beat placements were compared to
ideal placements as judged by the expert listener; then,
regularity of tapping was assessed by examining the varia
of interonset times.

To compare the beat placements, a matching compar
was conducted. Each beat placed by a human subject o
the beat-tracking model was matched with the closest~in
time! comparison beat in the expert beat-track. Initially, on
the beats actually placed by the expert were used, but s
some subjects and the algorithm tapped twice as fast as
expert on some examples, beats were allowed to be mat
to the midpoint between expert beats. The root-mean-sq
deviations of the subject’s taps from the expert’s taps w
collected for each subject and trial, averaging across
within a trial.

This rms deviation is a measure of how close the tap
came to the ‘‘ideal’’ beat locations. If it is very low, all o
the tapper’s placements were very close to expert judgme
if high, the tapper’s placements were randomly distribu
compared to the expert judgments.

This measure leaves open an important aspect of b
tracking, which is regularity. As described in the qualitati
results, the algorithm sometimes demonstrates unusua
havior by switching from one tempo to another, or fro
off-the-beat to on-the-beat, in the middle of a trial. To eva
ate the regularity of tapping, the variance of interonset in
val was calculated for each trial-by-subject, each trial by
model, and each trial by the expert. Note that, as descr
above, the human subjects were explicitly encouraged to
regularly.

Again, the expert’s behavior is taken as ideal; if t
variance is larger for some tapper than for the expert, it
dicates that the tapping was irregular relative to the exper
the variance is smaller, it indicates that the tapping was m
regular than the expert~not necessarily a positive aspect
the case of changing tempi!. Irregularity generally arises in
this data from leaving out beats, each occurrence of wh
adds an inter-onset interval twice as large as the rest, incr
ing the variance.

6. Results and discussion

The beat-placement comparison is shown in Fig. 9.
sults indicate that the performance of the algorithm in pl
ing beats in logical locations was at least comparable to
human subjects tested for all the musical cases; in four of
seven cases, the model was the most or second-most acc
598 J. Acoust. Soc. Am., Vol. 103, No. 1, January 1998
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tapper. This indicates that whenever a beat position was c
sen by the algorithm, the position was very close to the id
beat position as determined by the expert judgment.

The regularity comparison is shown in Fig. 10. Resu
here indicate that the algorithm was as regular as a hu
listener for five of the seven trials, and less consistent for t
of the trials. In one case, it and several of the human subj
were more consistent than the expert. Morepost hocanalysis
is necessary to understand why the algorithm performanc
irregular in these trials; preliminary results suggest that th
two stimuli have relatively slow onsets carrying the be
~violins in one case, electronically gated drum sounds in
other!.

These two results are consistent with the qualitative

FIG. 9. Scatter plot of human~subj. number! and model~O! beat position
accuracy for each of the seven experimental trials. Trial ‘0’ correspond
the click-track step function. Each point measures how accurate that su
was, relative to the expert, in placing beats in time. The expert judgm
are at zero variance for each column. For each trial, the algorithm
position was at least comparable to the performance of the human sub
Overall, the algorithm performance showed a highly significant posit
correlation with the human subject performance@r 50.814; p(df55)
,0.015#.

FIG. 10. Scatter plot of human~subj. number!, model ~O!, and expert~* !
IOI variances for each of the seven experimental trials. Trial ‘‘0’’ corr
sponds to the click-track step function. Each point shows the regularit
tapping of a subject for one trial; large values represent less regular tap
For trials #40 and #45, the algorithm was not as consistent in tapping
human listener. Overall, the algorithm performance showed a highly sig
cant positive correlation with the human subject performance, and both
algorithm and the human subjects showed highly significant positive co
lations with the expert judgement@r 50.889, r 50.863, r 50.995, respec-
tively; p(df55),0.01 in each case#.
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sults described above. When the algorithm chooses to pla
beat, it does so with great accuracy and musical releva
however, for certain musical excerpts, it is somewhat inc
sistent in its tapping regularity. That is, for these example
drops beats or shifts phase more often than a human liste
This is not a bad result, because it is exactly this incon
tency which could best be addressed by including high-le
information in the model~such as simply including instruc
tions to ‘‘try to tap regularly’’!.

V. DISCUSSION

In previous sections, the construction of a beat-track
system has been approached from a largely empirical
spective. However, it is also valuable to compare the res
ing algorithm to previous work on pulse perception in h
mans.

A. Processing level

Perhaps the most obvious difference between
method presented here and much of the previous work
beat-tracking is that this algorithm knows almost nothi
about musical timbre, genres, or even notes or onsets.
approach to tempo analysis might be called a ‘‘percep
model’’ of tempo, to contrast it with cognitive structurali
models.

That is to say, in models such as Povel and Ess
~1985!, Desain ~1995!, or Goto ~in press!, there are two
stages of processing represented~the first is implicit in the
Povel/Essen and Desain models!. The first stage processe
the acoustic stream, classifying the various pieces of so
into onsets and time intervals, separating the streams
sound, and understanding the accent structure and timb
various components. Then, the second stage places
events in relationship to each other in order to determine
tempo and phase of the signal.

In contrast to this, the model presented here agrees
the viewpoint of Todd~1994!, in which tempo and rhythm
are low-level ‘‘perceptual judgments’’ about sound, wi
little cognition or memory required for processing. Th
viewpoint is intuitively appealing for at least one major re
son, which is that certain features of tempo and beat
processed in non-attended auditory streams. Music listen
even nonmusicians, often have the experience of conduc
a conversation and suddenly realizing that they have b
tapping their foot to background music. If the foot-tappi
process requires cognitive structuring of the input data
seems likely that other cognitive hearing tasks such
speech-understanding would interfere.

The finding of Levitin and Cook~1996! that there is a
great ability for listeners to learn and remember abso
musical tempo implies that tempo is a simple, low-level p
ceptual quality. The body of initial work on rhythm perce
tion in non-human animals~for example, Hulseet al., 1984!
would seem to imply similar conclusions.

The resemblance between the algorithm as drawn in
3 and modern models of pitch hearing is striking. Both mo
els contain frequency-decomposition front ends followed
temporal integration. This comparison is explored in depth
599 J. Acoust. Soc. Am., Vol. 103, No. 1, January 1998
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Scheirer~1997! and leads to the question of whether pit
and tempo perception might be related auditory phenome

Studies such as that of Povel and Essens~1985! have
demonstrated convincingly that beat perception may be
plained with a model in which a perceptual clock is align
with the accent structure of the input. A clock model is ful
compatible with the method proposed here; it seems nat
and intuitive to posit such an internal clock. However, t
Povel and Essens model of clock induction, and similarly
Parncutt model, relies heavily on structural qualities of t
input, such as a sophisticated model of temporal accen
function.

Todd has argued that such phenomena do not need t
modeled cognitively, but rather can be explained as nat
emergent qualities of known psychoacoustic properties
masking and temporal integration. This model agrees her
well, for it has demonstrated empirically that musical sign
can be accurately beat-tracked without any such factors
plicitly taken into account. However, a more thorough eva
ation of this model would include testing it on the unusu
and difficult sequences tested in the course of develop
accent models, to determine if changes to weighting fac
or integration constants need to be made in order to repli
these psychophysical effects.

B. Prediction and retrospection

Desain’s recent work on beat-tracking has includ
valuable discussion of the role of prediction and retrosp
tion in rhythmic understanding. Clearly, prediction is a cr
cial factor in an accurate model of human rhythm percepti
as simply to synchronize motor motion~like foot-tapping!
with an auditory stream requires prediction. There is a ple
ing symmetry between Desain’s ‘‘complex expectanc
curves and the phase-prediction vectors extracted here
the comb filter delay lines~as in Fig. 7!.

Desain, citing Jones and Boltz~1989!, draws attention to
the utility of considering prediction and retrospection to
similar aspects of a single process. ‘‘Retrospection’’ refers
the manner in which new stimulus material affects t
memory of previous events. Although there is no retrosp
tion included in the model—remembrance would seem to
an inherently cognitive process—the phase-prediction cur
could be used as input for this process as well.

When evaluating this model, it is important to keep
mind the complexity of introspection on musical phenome
Although after-the-fact, listeners have made a rhythm
model of the very beginning of a musical phrase, it is cle
that this model must have arisen via retrospection, for th
is not enough information in the signal alone to form it pr
gressively. Simply because a listener feels that he ‘‘und
stands’’ the rhythm of the beginning of a musical segm
does not mean that the beginning itself contains suffici
information to allow such understanding.

C. Tempo versus rhythm

The effects which are not explained with this model a
those related to grouping of stimuli into a rhythmic hiera
chy. There are many known effects in this area, ranging fr
599Eric Scheirer: Beat-tracking acoustic signals



e

ic
o

to
um
th
an
tio
bu

k
p
e

ep

ul
en
an
an
kin
kt

d
b

r-
h
te
lly
p
te

to
u

th
n

rt
a
o-
p

m
h
io
th
p
o
o
tr
u

ve
a

for
da
ing
he
lis-
im-
As
ing
an
h

y

c

t

o

ings

o

-

hys.

’

al

’

n

ry
on

dio

e
-

the low-level, such as Povel and Okkerman’s work on p
ceived accents in nonaccented sequences~Povel and Okker-
man, 1981! to very broad theories of generative rhythm
modeling such as the well-known Lerdahl and Jackend
work ~Lerdahl and Jackendoff, 1983!.

This model is compatible with and complementary
the bulk of this research, since most of the theories ass
that a temporal framework has already been created. Syn
sis of a model which operates from an acoustic source
one which includes musical assumptions and explana
should be possible, and would then represent a very ro
theory of rhythmic understanding.

However, the model presented here should not be ta
as attempting to explain rhythm perception as well as tem
the viewpoint is rather that these processes are to some
tent separable and may be addressed and modeled ind
dently.

VI. CONCLUSION AND FUTURE WORK

An algorithm has been described which can successf
beat-track digital audio representing music of many differ
types. The music does not have to contain drums or
other specific timbres, and it does not have to conform to
predetermined set of musical templates. The beat-trac
procedure can be run in real-time on an advanced des
workstation.

There are still aspects of the algorithm which are ina
equately tested and understood. For example, would it
equally accurate but more efficient with a different filte
bank, or could it be made more accurate in this way? W
would be the implications of using a different temporal in
gration function, with different or more psychoacoustica
accurate properties? What about using an entirely perce
ally motived front end? These questions are unfortuna
still unaddressed.

Errors still made by the algorithm are typically due
the inability to understand beat relationships at vario
tempi; that is, a human listener intuitively understands
way eighth-note patterns group to form quarter-note a
half-note patterns, and while some processing of this so
done implicitly in the resonators due to phase-locking at h
monic ratios, it would clearly make the algorithm more r
bust to have an explicit model of this sort of rhythmic grou
ing.

Perhaps the way to build a system that can track co
plicated beat patterns is to construct it in two layers. T
lower layer would be a simple perceptual beat extract
system as described here, which finds the level at which
pulse is evenly divided in time. Then, a higher-level grou
ing model selects and processes the beats to form an m
of the rhythmic hierarchy present in the signal, based
pattern-recognition detection of accent structures and ins
mental beat patterns. Building a system in this manner wo
allow us to leverage much of the existing work in cogniti
rhythm models to apply to the analysis of digital audio
well as symbolically represented music.
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