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1 Simulation results

Each simulation draws 1000 independent samples of size n = 250.1 As in section 4 of the paper,

the true data-generating process is

Yi = β1X1i + β2X2i + εi, (1)

for each observation i, where β1 and β2 are parameters. The subjects are i.i.d., and E(εi) = E(X1i) =

E(X2i) = 0. In addition, (X1i, X2i, εi) is trivariate normal and has the following variance-covariance

matrix: 
1.0 d c

d 1.0 0.0

c 0.0 1.0

 (2)

For instance, Var(X1i) = Var(X2i) = Var(εi) = 1.0. The parameters c and d represent Cov(X1i, εi)

and Cov(X1i, X2i), respectively, with −1≤ c, d ≤ 1. Finally, note that

X2i y εi, (3)

so X2i is exogenous; the independence of X2i and εi follows from Cov(X2i, εi) = 0 and joint normal-

ity.

Suppose we assume that data were generated according to

Yi = β(XTi) + εi, (4)

where XTi ≡ X1i + X2i. The tables below report what IVLS estimates under different assumptions

about the correlation between X1i and X2i. I consider two different cases: (i) β1 , β2, so equation

1All reported simulations were conducted in Intercooled Stata 9.2. The .do files are available upon request from
the author.
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(4) is misspecified, as in section 4 of the text; and (ii) β1 = β2, so the assumed model is correct.

It may be instructive to compare IVLS estimates of equation (4) to OLS estimates, so I report the

latter as well.

1.1 Case 1: X1i and X2i are Independent

In the two simulations reported in Table 1, β1 is held constant at 1.0; β2 = 1.0 in one simulation,

and β2 = 2.0 in the other. Here, c = 0.3, so X1i is endogenous. Also, d = 0, so X1i and X2i are

independent. Thus, the structure of the simulation is like the example on political attitudes and

lottery winnings in the paper.

The first two columns of Table 1 report β̄IVLS (the average of β̂IVLS over the 1000 replica-

tions) and sdIVLS (the standard deviation of β̂IVLS over the 1000 replicates) for each of the two true

values of β2. The final two columns report the analogous quantities for the OLS estimator, β̄OLS

and sdOLS.

There are two key results of interest. First, as shown analytically in section 4 of the text,

IVLS estimates β2 (and not β1 or some mixture of β1 and β2). For instance, when β2 is set at 2.0 (first

row), β̄IVLS = 2.0028 (and sdIVLS = 0.0749). When β2 is set at 1.0 (second row), β̄IVLS = 1.0010

(and sdIVLS is 0.0650).

Second, OLS estimates an average of β1 and β2, weighted by the correlation between X1i

and the error term. In the first simulation, with β1 = 1.0 and β2 = 2.0, β̄OLS = 1.6518, with

sdOLS = 0.0478 (first row, Table 1). Notice that OLS here comes closer to the true value of β1

than IVLS, since it gives an estimate that lies between the true values of β1 and β2. However, the

estimate is pulled above the average of the true coefficients (that is, above β1+β2
2 = 1.5), due to the

positive correlation between XTi and the error term. In the second simulation, with β1 = β2 = 1,

β̄OLS = 1.1501 and sdOLS = 0.0437; here, the endogeneity bias pulls OLS away from the true value

of β1 (as well as away from β2).
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Table 1: Simulation results. Investigating the IVLS and OLS estimators when X1i and X2i are
independent. Here, β1 = 1.0, d = 0.3, and c = 0.

β̄IVLS sdIVLS β̄OLS sdOLS

β2 = 2.0 2.0028 0.0749 1.6518 0.0478
β2 = 1.0 1.0010 0.0650 1.1501 0.0437

1.2 Case 2: X1i and X2i Are Correlated

I now investigate the performance of the estimators when the components of XTi are correlated,

rather than independent as in the simulations above. Here, Corr(X1i, X2i)=0.4. Other parameters

are as in Table 1.

As per the analytic results, Table 2 suggests that when the components of XTi are correlated,

β̂IVLS estimates a mixture of β1 and β2. For instance, in the first simulation, β̄IVLS = 1.7150. So

does OLS, though the positive relationship between X1i and the error term induces an upward bias

in the estimates. Other simulations were run, with similar results.

In short, the simulations give the same message as the analytic results in Section 4. When

the true data-generating process involves different coefficients for different components of the treat-

ment variable Xi, and we have assume that these components have the same coefficients, IVLS and

OLS both estimate a data-dependent mixture of the structural parameters. This mixture may not

be the quantity of interest. The simulation results, like the analytic discussion in the text, therefore

underscore the key role played by model specification: exogeneity of the instruments, given the

model, is necessary but not sufficient for valid application of IVLS or any other estimation strategy.

The underlying model must be correct.
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Table 2: Simulation results. Investigating the IVLS and OLS estimators when X1i and X2i are
correlated at 0.4. As in Table 1, β1 = 1.0, d = 0.3, and c = 0.

β̄IVLS sdIVLS β̄OLS sdOLS

β2 = 2.0 1.7150 0.0497 1.5761 0.0493
β2 = 1.0 0.9998 0.0456 1.0765 0.0436
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