
1

TECH
Computer Science

Parallel Algorithms

several operations can be executed at the same time
many problems are most naturally modeled with
parallelism

• A Simple Model for Parallel Processing
• Approaches to the design of parallel algorithms
• Speedup and Efficiency of parallel algorithms
• A class of problems NC
• Parallel algorithms, e.g.

A Simple Model for Parallel Processing
• Parallel Random Access Machine (PRAM) model

a number of processors all can access
a large share memory
all processors are synchronized
all processor running the same program
f each processor has an unique id, pid. and
f may instruct to do different things depending on their pid

PRAM models
• PRAM models vary according

how they handle write conflicts
The models differ in how fast they can solve various
problems.

• Concurrent Read Exclusive Write (CREW)
only one processor are allow to write to
one particular memory cell at any one step

• Concurrent Read Concurrent Write (CRCW)
• Algorithm works correctly for CREW

will also works correctly for CRCW
but not vice versa

Approaches to
the design of parallel algorithms
• Modify an existing sequential algorithm

exploiting those parts of the algorithm that are
naturally parallelizable.

• Design a completely new parallel algorithm that
may have no natural sequential analog.

• Brute force Methods for parallel processing:
Using an existing sequential algorithm but
f each processor using differential initial conditions

Using compiler to optimize sequential algorithm
Using advanced CPU to optimize code

Speedup and Efficiency of parallel algorithms
Let T*(n) be the time complexity of a sequential
algorithm to solve a problem P of input size n
Let Tp(n) be the time complexity of a parallel algorithm
to solves P on a parallel computer with p processors

• Speedup
Sp(n) = T*(n) / Tp(n)
Sp(n) <= p
Best possible, Sp(n) = p
f when Tp(n) = T*(n)/p

• Efficiency
Ep(n) = T1(n) / (p Tp(n))
f where T1(n) is when the parallel algorithm run in 1 processor

Best possible, Ep(n) = 1

A class of problems NC
• The class NC consists of problems that

can be solved by parallel algorithm using
f polynomially bounded number of processors p(n)
f p(n) ∈ O(nk) for problem size n and some constant k

the number of time steps bounded by a polynomial in
the logarithm of the problem size n
f T(n) ∈ O((log n)m) for some constant m

• Theorem:
NC ⊆ P

2

Parallel algorithms, e.g.
Binary Fan-In Technique Algorithm: Parallel Tournament for Max

• Algorithm:Parallel Tournament for Maximum
• Input: Keys x[0],x[1],....x[n-1],
• initially in memory cells M[0] ,...,M[n-1], and integer n.
• Output:The largest key will be left in M[0].
• parTournamentMax(M,n)
• int incr
• Write -(some very small value) into M[n+pid]
• incr=1;
• while(incr<n)
• key big, temp0,temp1;
• Read M[pid] into temp0
• Read M[pid+incr] into temp1
• big=max(temp0,temp1);
• Write big into M[pid].
• incr=2*incr;

• Analysis: Use n processor and θ(log n) time

Algorithm: Finding Max in Constant Time
• CRCW method

Algorithm: Common-Write Max of n Keys
• Uses n2 processors, does only three read/write steps!

