
1

Modular Programming using AF/SCL

Kevin Graham, Montura, San Francisco, California

 ABSTRACT

How to build modular SAS/Frame applications, separating decision-logic from task-logic without
separating your brain from your sanity. Effectively accommodate changing program specifications.

INTRODUCTION

This paper provides an introduction to object-oriented programming with SAS/Frame. The traditional
problems of coordinating behaviors and data content between a large number of SAS/Frame widgets, such
the combobox and SCL List Model, have been swept away.

Program structure

• Widgets (Frame, combobox, etc.) exist in a catalog separated from all other programming.
• Non-visual programs are organized into different catalogs, according to function or behavior.
• Every SAS program in the non-visual layer can be connected to every Frame widget in the visual

layer, and vice versa.

EXAMPLE APPLICATION

Widgets include seven combobox, four text field, two pushbutton, one scl list model, one table viewer are
visible. Non-visual programs include SAS and SQL programs running in the background.

2

PROGRAMMING THE FRAME

Frame.scl is usually the program where most of
the SCL program methods are located.
Using this programming approach frame.scl
contains the following two statements.

init:
return;

Where’s the Code? All SAS and SQL statements
used to drive this application can be found within
SCL programs that are compiled as objects.

Add Two Attributes

Two classes [a.k.a. programs] need to be
attached directly to the Frame.

The program named framecontroller manages
things like the object-oriented “include
statements”, while workspace is a container for
macro-level data used by multiple programs.

Add Two Events

The first event identifies the point after the frame
has appeared on-screen. This is used to trigger
initialization routines.

The second event identifies the point before the
frame disappears from the screen. This is used to
trigger termination routines.

APPLICATION ASSEMBLY & MAIN
DRIVER

Framecontroller acts as the applications main
driver (for a limited timeframe) right after the
frame appears on-screen. In the previous step
framecontroller and workspace attached to the
Frame as object attributes.

3

Object attributes are automatically instantiated
during Frame startup, which is a very attractive
undocumented feature. The main driver has
three functions.

1.) Accept the FRAME SETUP event from
the Frame and “%include” our object
oriented programs. In this example,
programs are found in catalogs named
NAVIGATE501 and NAVIGATE401.
See method runInterface().

2.) Accept the FRAME CLEANUP event
from the Frame and terminate our object
oriented programs when the application
shuts down. See method cleanup().

3.) Kick start the application. Indicate the
sequence of program execution that
results in the initial data presentation for
the user. See method task().

APPLICATION OVERVIEW

The framecontroller program is intended to
emulate the autocall facility, commonly used in
SAS/Macro programming.

Repository400 series [SOURCE]

Contains SAS programs that pull data into
the application, using PROC SQL and
SCL functions.

This paper includes source code from only
two programs in this repository.

Repository900 series [UI]

Contains Frame and visual widget
programming.

This paper includes only program
fragments from this repository.

4

class framecontroller;
 public list component / (sendEvent='N');
 public list objectName / (sendEvent='N');

 eventhandler runInterface / (sender='*', event='frame setup');
 eventhandler cleanup / (sender='*', event='frame cleanup');

 runInterface: method;
 call send(_self_, 'loadService1');
 call send(_self_, 'loadService2');
 call send(_self_, 'loadService3');
 call send(_self_, 'task');
 endmethod;

 loadService1: method;
 submit continue sql;
 create table work.temp as
 select * from sashelp.vcatalg
 where libname='MENU' and memname in('NAVIGATE901','NAVIGATE401') objtype='CLASS';
 endsubmit;
 endmethod;

 loadService2: method;
 dcl num rc dset;
 dcl char arg1 arg2 arg3 arg4;
 dset=open('work.temp', 'i');
 do while (fetch(dset)=0);
 arg1=getvarc(dset, varnum(dset, 'libname'));
 arg2=getvarc(dset, varnum(dset, 'memname'));
 arg3=getvarc(dset, varnum(dset, 'objname'));
 arg4=getvarc(dset, varnum(dset, 'objtype'));

 rc=insertc(objectName, compress(arg1||'.'||arg2||'.'||arg3||'.'||arg4), -1);
 end;
 rc=close(dset);
 rc=delete('work.temp');
 endmethod;

 loadService3: method;
 dcl num rc i;
 dcl object thisProgram;
 do i=1 to listlen(objectName);
 thisProgram=instance(loadclass(getitemc(objectName, i)));
 rc=inserto(component, thisProgram, -1);
 end;
 rc=clearlist(objectName);
 endmethod;

 task: method;
 _sendEvent('network');
 _sendEvent('source primary');
 endmethod;

 cleanup: method;
 dcl num i;
 dcl object thisProgram;

 do i=1 to listlen(component);
 thisProgram=getitemo(component, i);
 thisProgram._term();
 end;

 _term();
 endmethod;
endclass;

5

The Communications Model

MC Hammer says “Java … can’t touch this”

Requesting the Global Program Pool

Use a LIST attribute as the event parameter, which doubles as a container to be filled with the object
identifiers of other programs. The object identifier provides complete access to data and functions for the
related program instance. Works just like a remote control for its related TV.

class standardselector;
 public list beans / (sendEvent='N');

 eventhandler network / (sender='*', event='network');

 network: method;
 _sendEvent('screen beans', beans);
 endmethod;
endclass;

class scllistmodel1 extends sashelp.classes.scllistmodel_c.class;
 public char widgetName / (initialValue='list model');
 public list beans / (sendEvent='N');

 eventhandler network / (sender='*', event='network');

 network: method;
 _sendEvent('screen beans', beans);
 endmethod;
endclass;

Filling the Global Program Pool

Program(s) responding to event “screen bean” inserts its own object identifier into the event parameter.
Repeat for each widget and non-visual program, if and when needed.

class combobox1 extends sashelp.classes.combobox_c.class;
 public char widgetName / (initialValue='corp');
 public num cursorPosition / (state='o', initialValue=1);

 eventhandler screenBeans / (sender='*', event='screen beans');

 screenBeans: method arg:list;
 dcl num rc=inserto(arg, _self_, -1, widgetName);
 endmethod;
endclass;

class combobox4 extends sashelp.classes.combobox_c.class;
 public char widgetName / (initialValue='color');
 public num cursorPosition / (state='o', initialValue=1);

 eventhandler screenBeans / (sender='*', event='screen beans');

 screenBeans: method arg:list;
 dcl num rc=inserto(arg, _self_, -1, widgetName);
 endmethod;
endclass;

6

The Modular Programming Model

The Need for… Organization

A programmer needs to be able to locate a
specific section of source code -- without hunting
through thousands of lines of source code.

Properly organized code removes the need for
hunting.

Picture in your mind a Klingon battle cruiser
attacking your server. His phasers knock a bug
into one of your SAS programs on a Friday,
around 4:45 pm. It should be so obvious that you
need to find and fix that program in a 15 minute
timeframe.

Making it Happen by 5:00 pm

A LOT of program organization is required to
make a fixit happen in 15 minutes. In fact,
programs will need to be so organized they
actually tell the programmer where they are
located, what they are supposed to do, not to
mention – how to fix the error. Yeah!

Separation of Concerns

The most important aspect of organized
programming is the ability to separate logic by
category, sequence, and dependency.

Make sure that each logical step is a physically
separate program. To make this happen, SAS
catalogs are named to indicate a general category
of logic, and sometimes a series of similar logic.

SCL program names indicate specific logic.

Programs that pull data into the application from
another source would be located in a catalog
named REPOSITORY401. If a sql JOIN’s or data
step MERGE’s are needed to subset information
from multiple tables, additional programs would
be located in a catalog named REPOSITORY402.

The concept to keep in mind that we need to
visually indicate multiple steps are necessary to
carry out a multiple-step operation.

Extending this concept to include every category
of logic possible in SAS programming, it
becomes easy to create a physical program layout
that can be read like an automobile dashboard.

I really want to be able to read my source code
dashboard like Captain Kirk reads gauges and
dials on the bridge of Star Trek Enterprise.
Everything should be self-indicating, as to
purpose and status, at a single glace.

SDLC Documentation

Who on this planet has time to read hardcopy
documentation that is likely to be out of date, or
is simply flat wrong? Especially when you’re in a
hurry to get something done – preserving your
job is usually job #1, right?

7

Logical Program Layout

The Programmers Dashboard

This sample dashboard is intended to provide a starting point for source code organization.

8

Physical Program Layout

Physical program layout is all about organization.
The idea is to factor source code into small task
oriented steps, where each category of task may
be located in a different SAS catalog.

Program assembly across SAS catalogs and
implementing the communication model across
so many programs takes about 5 nanoseconds, so
we can feel free to get our programs very
organized.

Repository Task Program [SOURCE]

For each iteration, within the SAS program
named standardselector (following page), SQL
is used to obtain distinct values from within one
column of a relational table.

The distinct values are pulled from a SAS table
named work.temp and pushed into a SAS/Frame
combobox.

runInterface is “main driver” and the program
has a several internal functions, called methods,
which are executed in sequence.

The specific sequence of method execution can
be found hard-coded in the attribute named
activeMethods.

Critical Point #1

This non-visual program controls the data content
and multiple widgets. The ability to perform this
trick is in the method named network. The
attribute named beans contains the object
identifiers of many programs after the
_sendEvent() operation.

Critical Point #2

The data “load” operation is performed in method
named loadWidget(), which is programmed to
operate on a variable number of widgets. The
names of each widget can be found in the
attribute named widgetName.

9

class standardselector;
 public list messages / (sendEvent='N');
 public list dataVector / (sendEvent='N');
 public list beans / (sendEvent='N');
 public list activeMethods / (initialValue={
 'distinctValues',
 'getData',
 'loadWidget',
 'iterationCleanup'
 });

 public list widgetName / (sendEvent='N', initialValue={
 'corp',
 'style',
 'color',
 'distro'
 });

 eventhandler network / (sender='*', event='network');
 eventhandler runInterface / (sender='*', event='source primary');

 network: method;
 _sendEvent('screen beans', beans);
 endmethod;

 runInterface: method / (description=’the main driver’);
 dcl num xMethod xWidget rc;

 do xWidget=1 to listlen(widgetName) while (listlen(messages)=0);
 do xMethod=1 to listlen(activeMethods) while (listlen(messages)=0);
 call send(_self_, getitemc(activeMethods, xMethod));
 end;

 rc=rotlist(widgetName);
 end;
 endmethod;

 distinctValues: method;
 dcl num rc;
 dcl char columnName=getitemc(widgetName);

 submit continue sql;
 create table work.temp as
 select distinct &columnName
 from sysdata.ipl
 where &columnName is not null;
 quit;
 endsubmit;

 if symgetn('sqlrc') then
 rc=insertc(messages, 'Unable access central database', -1);

 if symgetn('sqlobs')=0 then
 rc=insertc(messages, 'Unexpected absent values in database', -1);
 endmethod;

 getData: method;
 dcl num dset rc;

 dset=open('work.temp', 'i');
 do while (fetch(dset)=0);
 rc=insertc(dataVector, getvarc(dset, varnum(dset, getitemc(widgetName))), -1);

10

 end;
 rc=close(dset);
 endmethod;

 loadWidget: method;
 dcl object thisProgram=getnitemo(beans, getitemc(widgetName));
 thisProgram.runInterface(dataVector);
 endmethod;

 iterationCleanup: method;
 dcl num rc;

 rc=clearlist(dataVector);
 rc=delete('work.temp');
 endmethod;
endclass;

Frame widgets and non-visual programs respond to the screen beans event using the method named
screenBeans(). This operation removes the need for traditional parent-child relationships between
programs, which is created during program instantiation.

There is no equivalent for this operation in Base/SAS. It permits every program in the application to
recursively call every other program in the application, run functions, examine widget status, change widget
status, etc. etc.

class combobox3 extends sashelp.classes.combobox_c.class;
 public char widgetName / (initialValue='style');
 public char widgetType / (initialValue='selector');
 public num cursorPosition / (state='o', initialValue=3);

 eventhandler screenBeans / (sender='*', event='screen beans');

 _onSelect: method arg:num / (state='o');
 _super(arg);

 _sendEvent('source criteria change');
 endmethod;

 screenBeans: method arg:list;
 dcl num rc=inserto(arg, _self_, -1, widgetName);
 endmethod;

 runInterface: method arg:list;
 dcl num rc;

 rc=clearlist(items);
 copylist(arg, 'N', items);

 if listlen(items)=1 then
 selectedItem=getitemc(items);

 if listlen(items) in (0,1) then
 enabled='No';

 _refresh();
 endmethod;
endclass;

11

BONUS SECTION
Extending the Concept: Global Program Pool

This program fragment demonstrates the concept of a non-visual program using Frame widget(s) as a source
of information. It’s actually the full text of a production program, with repeating sections chopped out. The
intent is to build and execute a complete PROC SQL statement. The tokenizing approach used to build the
PROC SQL statement across multiple steps is something that should be familiar to advanced-level
SAS/Macro programmers.

The Frame combobox provide information to build a complex SQL where clause. All of combobox
selections are optional. It’s possible there will not be a single selected item across six combobox.

class viewindex;
 public list messages / (sendEvent='N');
 public list beans / (sendEvent='N');
 public char clauseToken / (sendEvent='N', initialValue='where');
 public char delimiter / (sendEvent='N');

 public list activeMethods / (initialValue={'step1',
 -- cut --
 'step8'});

 eventhandler network / (sender='*', event='network');
 eventhandler runInterface / (sender='*', event='present data segment');

 network: method;
 _sendEvent('screen beans', beans);
 _sendEvent('application beans', beans);
 endmethod;

 runInterface: method;
 dcl num i;

 do i=1 to listlen(activeMethods) while (listlen(messages)=0);
 call send(_self_, getitemc(activeMethods, i));
 end;

 call send(_self_, 'cleanup');
 endmethod;

 step1: method;
 submit;
 proc sql undo_policy=none;
 create table work.selectedindex as
 select key_id
 from sysdata.ipl
 endsubmit;
 endmethod;

 step2: method;
 dcl object thisProgram;
 dcl char distinctValue;

 thisProgram=getnitemo(beans, 'corp');
 if thisProgram.selectedIndex=0 then return;

 distinctValue=getitemc(thisProgram.items, thisProgram.selectedIndex);

 submit;

12

 &clauseToken &delimiter corp = '&distinctValue'
 endsubmit;

 delimiter='and';
 clauseToken='';
 endmethod;

 * repeat the concept of STEP2 for each combobox providing data for the WHERE clause ;

 step8: method;
 dcl num rc;
 submit continue;
 ;
 quit;
 endsubmit;

 if symgetn('sqlrc') then
 rc=insertc(messages, 'Unable access CC information', -1);

 if symgetn('sqlobs')=0 then
 rc=insertc(messages, 'Zero observations selected', -1);
 endmethod;

 cleanup: method;
 dcl num rc;

 delimiter='';
 clauseToken='where';

 rc=clearlist(messages);
 rc=delete('work.temp');
 endmethod;
endclass;

CONCLUSION

A physical program layout is used to benefit the human programmers, during program development and
during production support. Programs that are EASY to trace and flowchart are EASY to fix, and that
provides a major benefit the corporate budget during secondary development efforts and when trouble-
shooting another programmer’s code during an “emergency” production-support call.

REFERENCES

Repository Relationship Programming, www.uspto.gov

AUTHOR CONTACT INFORMATION

Kevin Graham,
Montura Inc.
(510) 798-8367
Kevin@montura.com

