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Remark 

This is not an official paper, rather a brief report. I am now trying to prove the Riemann hypothesis 

in a simple way and I intend writing a full paper when I finish or fail to prove it. Because of lack of 

time, I wrote this report in a hurry, but I tried to explain all the theorems as clear as possible. 

Therefore, I think there is any problem to understand. 

 

 

1. The bilateral Laplace transform 

Definition: The bilateral Laplace transform 

For a real function f(t), the bilateral Laplace transform is defined as follows: 

F(z) ≡ ∫ 𝑓(𝑡) ∙ 𝑒−𝑧𝑡𝑑𝑡
∞

−∞

 

and the inverse transform: 

f(t) =
1

𝑖2𝜋
∫ 𝐹(𝑧) ∙ 𝑒𝑧𝑡𝑑𝑧

𝑥+𝑖∞

𝑥−𝑖∞

 

where 𝑧 = 𝑥 + 𝑖𝑦. 

If f(t) is even, then 

F(z) = ∫ 𝑓(𝑡) ∙ 𝑒−𝑧𝑡𝑑𝑡
∞

−∞
= ∫ 𝑓(𝑡) ∙ 𝑒𝑧𝑡𝑑𝑡

∞

−∞
= 2∫ 𝑓(𝑡) ∙ cosh(𝑧𝑡)𝑑𝑡

∞

0
= ∫ 𝑓(𝑡) ∙ cosh(𝑧𝑡)𝑑𝑡

∞

−∞
      (1) 

Since F(−z) = F(z), F(𝑖𝑦) is real-valued for all y. 

  Now, we consider a function f(t), which is even and positive for all t. 

 

Theorem: 

If f(t) is even and positive for all t, then its bilateral Laplace transform F(z) is transcendental. 

 

It is not always easy to find the bilateral Laplace transform of a function in the closed form, but we 

can get the series using the definition of the Laplace transform. Consider the series: 

F(z) = ∑𝑎𝑛 ∙ 𝑧
𝑛

∞

𝑛=0

= 𝑎0 + 𝑎1𝑧 + 𝑎2𝑧
2 +⋯ 

The coefficients can be found using the definition, that is 
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𝑎𝑛 =
1

𝑛!
∫ 𝑡𝑛𝑓(𝑡)𝑑𝑡

∞

−∞

 

Moreover, if the function f(t) is even and positive, all odd terms are vanished and all coefficients 

are positive. Hence the series will be like that: 

F(z) = ∑𝑎2𝑛 ∙ 𝑧
2𝑛

∞

𝑛=0

= 𝑎0 + 𝑎2𝑧
2 + 𝑎4𝑧

4 +⋯ 

where 𝑎2𝑛 =
1

(2𝑛)!
∫ 𝑡2𝑛𝑓(𝑡)𝑑𝑡
∞

−∞
 

To converse the series, the sequence of coefficients should be rapidly decreased and therefore 𝑓(𝑡) 

as well. Also, we can note from the series that F(𝑧̅) = �̅�(𝑧), where the bar denotes the conjugate. 

Since 𝑓(𝑡)  is even and positive, F(z)  is also even, that is, F(−z) = F(z) . Moreover, F(−𝑧̅) =

F(𝑧̅) = �̅�(𝑧)  because F(z)  is even and the property of F(𝑧̅) = �̅�(𝑧).  Hence we have |F(z)| =
|F(−z)| = |F(𝑧̅)| = |F(−𝑧̅)|. This means |F(z)| is even at iy-axis as well as x-axis. 

 

2. Convex functions 

Definition: 

For a real function f(x) and 𝑥1, 𝑥2 ∈ ℛ and λ ∈ [0,1], then f(x) is convex if and only if 

𝑓[λ𝑥1 + (1 − λ)𝑥2] ≤ λ𝑓(𝑥1) + (1 − λ)𝑓(𝑥2). 

Similarly, f(x) is strictly convex if and only if 

𝑓[λ𝑥1 + (1 − λ)𝑥2] < λ𝑓(𝑥1) + (1 − λ)𝑓(𝑥2). 

Definition. 

f(x) is a midpoint convex if 

𝑓 (
𝑥1 + 𝑥2

2
) ≤

𝑓(𝑥1) + 𝑓(𝑥2)

2
 

Definition:  

A continuous function𝑓(𝑥) is multiplicatively convex if and only if 

𝑓(√𝑥1𝑥2) ≤ √𝑓(𝑥1)𝑓(𝑥2) 

A multiplicatively convex function is which is increasing convex. 

 

Theorem: Hardy-Littlewood 

Every polynomial 𝑓(𝑥) = ∑ 𝑐𝑘𝑥
𝑘𝑛

𝑘=0   with non-negative coefficients is multiplicatively convex on 

(0,∞) . Moreover 𝑓(𝑥) = ∑ 𝑐𝑘𝑥
𝑘∞

𝑘=0   for 𝑐𝑘 ≥ 0  is strictly multiplicatively convex which is also 

increasing and strictly convex. 

 

By the theorem 2, F(z) is increasing and strictly convex on the real line and since F(−x) = F(x), 
F(x) is symmetric at iy-axis. 
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3. The positive definite functions 

Definition: 

A function 𝑓(𝑥) is positive-definite if and only if 

∑∑𝑐𝑛𝑐�̅�𝑓(𝑥𝑛 − 𝑥𝑘) ≥ 0

𝑁

𝑘=1

𝑁

𝑛=1

 

for any 𝑐𝑛 ∈ ℂ and 𝑥𝑛 ∈ ℛ. 

Similarly, 𝑓(𝑥) is strictly positive-definite if and only if 

∑∑𝑐𝑛𝑐�̅�𝑓(𝑥𝑛 − 𝑥𝑘) > 0

𝑁

𝑘=1

𝑁

𝑛=1

 

Theorem: Bochner 

For any function 𝑓(𝑡) ≥ 0 for all t, then its Fourier transform 𝐹(𝑖𝜔) is strictly positive-definite. 

 

Definition: 

A complex function 𝑓(𝑧) if complex-valued positive definite if 

∑∑𝑐𝑛𝑐�̅�𝑓(𝑧𝑛 − 𝑧𝑘̅̅̅) ≥ 0

𝑁

𝑘=1

𝑁

𝑛=1

 

 

4. The co-positive definite functions 

Definition: 

A complex function 𝑓(𝑧) if complex-valued co-positive definite if 

∑∑𝑐𝑛𝑐�̅�𝑓(𝑧𝑛 + 𝑧𝑘̅̅̅) ≥ 0

𝑁

𝑘=1

𝑁

𝑛=1

 

Similarly, 𝑓(𝑧) is strictly complex-valued co-positive definite if 

∑ ∑ 𝑐𝑛𝑐�̅�𝑓(𝑧𝑛 + 𝑧𝑘̅̅̅) > 0𝑁
𝑘=1

𝑁
𝑛=1                          

 

Theorem: 

If a complex function 𝑓(𝑧)  is (strictly) complex-valued co-positive definite, then the real-valued 

function 𝑓(𝑥) is also (strictly) complex-valued co-positive definite. 

 

Theorem: 

A real function 𝑓(𝑡) ≥ 0 for all t, then its bilateral Laplace transform is strictly complex-valued co-

positive definite. 
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Proof: 

From the definition F(z) = ∫ 𝑓(𝑡) ∙ 𝑒−𝑧𝑡𝑑𝑡
∞

−∞
 

∑∑𝑐𝑛𝑐�̅�𝐹(𝑧𝑛 + 𝑧𝑘̅̅̅) =

𝑁

𝑘=1

𝑁

𝑛=1

∑∑𝑐𝑛𝑐�̅�∫ 𝑓(𝑡) ∙ 𝑒−(𝑧𝑛+𝑧𝑘̅̅̅̅ )𝑡𝑑𝑡
∞

−∞

𝑁

𝑘=1

𝑁

𝑛=1

= ∫ 𝑓(𝑡) ∙ ∑∑𝑐𝑛𝑐�̅�

𝑁

𝑘=1

𝑁

𝑛=1

𝑒−(𝑧𝑛+𝑧𝑘̅̅̅̅ )𝑡𝑑𝑡 = ∫ 𝑓(𝑡) ∙ ∑ 𝑐𝑛

𝑁

𝑛=1

𝑒−𝑧𝑛𝑡 ∑𝑐𝑘

𝑁

𝑘=1

𝑒−𝑧𝑘̅̅̅̅ 𝑡𝑑𝑡
∞

−∞

∞

−∞

= ∫ 𝑓(𝑡) ∙ |∑ 𝑐𝑛

𝑁

𝑛=1

𝑒−𝑧𝑛𝑡|

2

𝑑𝑡 > 0
∞

−∞

 

Theorem: 

Let F(z) be the bilateral Laplace transform of 𝑓(𝑡) ≥ 0, then |F(z)|2 is strictly complex-valued co-

positive definite. 

Proof: 

From the definition 𝐺(𝑧) ≡ |F(z)|2 = F(z) ∙ F(𝑧̅) = [∫ 𝑓(𝑡) ∙ 𝑒−𝑧𝑡𝑑𝑡
∞

−∞
] ∙ [∫ 𝑓(𝑡) ∙ 𝑒−�̅�𝑡𝑑𝑡

∞

−∞
]  and , 

∑ ∑ 𝑐𝑛𝑐�̅�𝐺(𝑧𝑛 + 𝑧𝑘̅̅̅)
𝑁
𝑘=1

𝑁
𝑛=1 : 

∑∑𝑐𝑛𝑐�̅�𝐹(𝑧𝑛 + 𝑧𝑘̅̅̅) ∙ 𝐹(𝑧𝑛 + 𝑧𝑘̅̅̅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =

𝑁

𝑘=1

𝑁

𝑛=1

∑∑[∫ 𝑓(𝑡) ∙ 𝑒−(𝑧𝑛+𝑧𝑘̅̅̅̅ )𝑡𝑑𝑡
∞

−∞

] ∙ [∫ 𝑓(𝑡) ∙ 𝑒−(𝑧𝑛+𝑧𝑘̅̅̅̅ )
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑡𝑑𝑡

∞

−∞

]

𝑁

𝑘=1

𝑁

𝑛=1

= ∑∑∫ ∫ 𝑓(𝑡) ∙ 𝑓(𝜏) ∙ 𝑒−(𝑧𝑛+𝑧𝑘̅̅̅̅ )𝑡
∞

−∞

∙ 𝑒−(𝑧𝑛+𝑧𝑘̅̅̅̅ )
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝜏𝑑𝜏𝑑𝑡

∞

−∞

𝑁

𝑘=1

𝑁

𝑛=1

= ∫ ∫ 𝑓(𝑡) ∙ 𝑓(𝜏) ∙∑ ∑ 𝑐𝑛𝑐�̅�
𝑁

𝑘=1

𝑁

𝑛=1
𝑒−(𝑧𝑛𝑡+𝑧𝑛̅̅̅̅ 𝜏)

∞

−∞

∙ 𝑒−(𝑧𝑘̅̅̅̅ 𝑡+𝑧𝑘𝜏)𝑑𝜏𝑑𝑡
∞

−∞

= ∫ ∫ 𝑓(𝑡) ∙ 𝑓(𝜏) ∙ |∑ 𝑐𝑛𝑐�̅�
𝑁

𝑛=1
𝑒−(𝑧𝑛𝑡+𝑧𝑛̅̅̅̅ 𝜏)|

2∞

−∞

𝑑𝜏𝑑𝑡
∞

−∞

> 0 

 

Theorem: 

If 𝐹(𝑧) is co-positive definite, then 𝐹(0) is real and 𝐹(0) > 0. 

Proof: 

From Eq. (2), let N to 1, then 𝑐1𝑐1̅𝐹(𝑥1 + 𝑥1) > 0 . Let x = 𝑥1 + 𝑥1  and we have |𝑐1|
2𝐹(𝑥) > 0 . 

Hence 𝐹(𝑥) is real and 𝐹(𝑥) > 0 for all real 𝑥 and therefore 𝐹(0) is real and 𝐹(0) > 0. 

 

Theorem: 

If 𝐹(𝑧) is co-positive definite, then 𝐹(2𝑛)(𝑧) is also co-positive definite for positive integer n. 

Proof: 

From the definition of the bilateral Laplace transform, we differentiate 2𝑛 times: 

∫ 𝑡𝑛𝑓(𝑡) ∙ 𝑒−𝑧𝑡𝑑𝑡
∞

−∞
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Since 𝑓(𝑡) > 0 for all t and even, and therefore 𝑡𝑛𝑓(𝑡) > 0 and 𝑡𝑛𝑓(𝑡) is even. Hence co-positive 

definte. 

 

Theorem: 

If y  is fixed, say y = 𝑦0  and z = x + i𝑦0 , then any complex-valued co-positive definite function 

𝐹(𝑧) is co-positive definite for x. 

Proof: 

∑∑𝑐𝑛𝑐�̅�𝐹(𝑧𝑛 + 𝑧𝑘̅̅̅) =

𝑁

𝑘=1

𝑁

𝑛=1

= ∫ 𝑓(𝑡) ∙ ∑∑𝑐𝑛𝑐�̅�

𝑁

𝑘=1

𝑁

𝑛=1

𝑒−(𝑧𝑛+𝑧𝑘̅̅̅̅ )𝑡𝑑𝑡
∞

−∞

= ∫ 𝑓(𝑡) ∙ ∑∑𝑐𝑛𝑐�̅�

𝑁

𝑘=1

𝑁

𝑛=1

𝑒−(𝑥𝑛+𝑖𝑦0+𝑥𝑘−𝑖𝑦0)𝑡𝑑𝑡 =
∞

−∞

∫ 𝑓(𝑡) ∙∑∑𝑐𝑛𝑐�̅�

𝑁

𝑘=1

𝑁

𝑛=1

𝑒−(𝑥𝑛+𝑥𝑘)𝑡𝑑𝑡
∞

−∞

=∫ 𝑓(𝑡) ∙ |∑ 𝑐𝑛

𝑁

𝑛=1

𝑒−𝑥𝑛𝑡|

2

𝑑𝑡 > 0
∞

−∞

 

This is clear since  

∑∑𝑐𝑛𝑐�̅�𝐹(𝑧𝑛 + 𝑧𝑘̅̅̅) =

𝑁

𝑘=1

𝑁

𝑛=1

∑∑𝑐𝑛𝑐�̅�𝐹(𝑥𝑛 + 𝑥𝑘) > 0

𝑁

𝑘=1

𝑁

𝑛=1

 

All the 𝑦0 are cancelled out. 

 

We can show that |F(z)|2 has the same property: 

  

∑∑𝑐𝑛𝑐�̅�𝐹(𝑧𝑛 + 𝑧𝑘̅̅̅) ∙ 𝐹(𝑧𝑛 + 𝑧𝑘̅̅̅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =

𝑁

𝑘=1

𝑁

𝑛=1

∑∑[∫ 𝑓(𝑡) ∙ 𝑒−(𝑧𝑛+𝑧𝑘̅̅̅̅ )𝑡𝑑𝑡
∞

−∞

] ∙ [∫ 𝑓(𝑡) ∙ 𝑒−(𝑧𝑛+𝑧𝑘̅̅̅̅ )
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑡𝑑𝑡

∞

−∞

]

𝑁

𝑘=1

𝑁

𝑛=1

= ∫ ∫ 𝑓(𝑡) ∙ 𝑓(𝜏) ∙∑ ∑ 𝑐𝑛𝑐�̅�
𝑁

𝑘=1

𝑁

𝑛=1
𝑒−(𝑥𝑛𝑡+𝑥𝑛𝜏)

∞

−∞

∙ 𝑒−(𝑥𝑘𝑡+𝑥𝑘𝜏)𝑑𝜏𝑑𝑡
∞

−∞

= ∫ ∫ 𝑓(𝑡) ∙ 𝑓(𝜏) ∙ |∑ 𝑐𝑛𝑐�̅�
𝑁

𝑛=1
𝑒−(𝑥𝑛𝑡+𝑥𝑛𝜏)|

2∞

−∞

𝑑𝜏𝑑𝑡 > 0
∞

−∞

 

 

Now, we consider the series expansion of the bilateral Laplace transform of a positive even function 

𝑓(𝑡). 

F(z) = ∫ 𝑓(𝑡) ∙ 𝑒−𝑧𝑡𝑑𝑡
∞

−∞

= ∑𝑎2𝑛 ∙ 𝑧
2𝑛

∞

𝑛=0

 

Let G(z) = |𝐹(𝑧)|2 = 𝐹(𝑧) ∙ 𝐹(𝑧)̅̅ ̅̅ ̅̅ = 𝐹(𝑧) ∙ 𝐹(𝑧̅) = [∑ 𝑎2𝑛 ∙ 𝑧
2𝑛∞

𝑛=0 ] ∙ [∑ 𝑎2𝑛 ∙ 𝑧̅
2𝑛∞

𝑛=0 ] . Expanding the 

the multiplication of two series, we have 
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G(z) = |𝐹(𝑧)|2 = 𝐶0 +∑𝐶2𝑛 ∙ (𝑧
2𝑛 + 𝑧̅2𝑛)

∞

𝑛=1

 

where 𝐶0 = ∑ 𝑎2𝑘
2∞

𝑘=0 |𝑧|4𝑘, 𝐶2𝑛 = ∑ 𝑎2𝑘 ∙ 𝑎2𝑘+2𝑛
∞
𝑘=0 |𝑧|4𝑘 

Since 

|𝑧|4𝑘 = (𝑥2 + 𝑦2)2𝑘 = ∑ (
2𝑘
𝑗
) 𝑦4𝑘−2𝑗𝑥2𝑗

𝑘

𝑗=0
 

and 

𝑧2𝑛 + 𝑧̅2𝑛 = 2∑ (−1)𝑛−𝑚 (
2𝑛
2𝑚

)𝑦2𝑛−2𝑚𝑥2𝑚𝑛
𝑚=0 , 

we arrange them in the terms of x: 

G(z) = |𝐹(𝑧)|2 = ∑𝐴𝑗 ∙ 𝑥
2𝑗

∞

𝑗=0

+∑𝐵𝑗,𝑚 ∙ 𝑥2𝑗+2𝑚
∞

𝑗=0

 

where 

𝐴𝑗 =∑𝑎2𝑘
2

∞

𝑘=𝑗

(
2𝑘
𝑗
) 𝑦4𝑘−2𝑗 + 2∑(−1)𝑛

∞

𝑛=1

∑𝑎2𝑘𝑎2𝑘+2𝑛 (
2𝑘
𝑗
) 𝑦2𝑛+4𝑘−2𝑗

∞

𝑘=𝑗

 

𝐵𝑗,𝑚 =∑ ∑(−1)𝑛−𝑚𝑎2𝑘𝑎2𝑘+2𝑛 (
2𝑛

2𝑛 − 2𝑚
)(

2𝑘
𝑗
) 𝑦2𝑛−2𝑚𝑦4𝑘−2𝑗

∞

𝑛=𝑚

∞

𝑘=𝑗

 

By arranging in the terms of 𝑥2𝑝 

G(z) = |𝐹(𝑧)|2 = 𝐴0 +∑𝐴𝑝 ∙ 𝑥
2𝑝

∞

𝑝=1

 

where 

𝐴0 = ∑𝑎2𝑘
2 𝑦4𝑘

∞

𝑘=0

+∑∑(−1)𝑛𝑎2𝑘𝑎2𝑘+2𝑛𝑦
2𝑛+4𝑘

∞

𝑘=0

∞

𝑛=1

 

𝐴𝑝 = ∑[𝑎2𝑘
2 + 2∑(−1)𝑛𝑎2𝑘𝑎2𝑘+2𝑛𝑦

2𝑛

∞

𝑛=1

] (
2𝑘
𝑝
) 𝑦4𝑘−2𝑝

∞

𝑘=𝑝

+ 2∑ ∑ ∑ ∑(−1)𝑛−𝑚𝑎2𝑘𝑎2𝑘+2𝑛

∞

𝑛=𝑚

∞

𝑘=𝑗

𝑝−𝑗

𝑚=1

𝑝−1

𝑗=0

(
2𝑛

2𝑛 − 2𝑚
) (

2𝑘
𝑗
) 𝑦2𝑛−2𝑚𝑦4𝑘−2𝑗 

 

When y is fixed, 𝐴0 and 𝐴𝑝 are constants and G(z) = |𝐹(𝑧)|2 are a function of only x, that is, 

we have a function G(x) which is lying on the horizontal line at y = 𝑦0. We showed that if y is fixed, 

G(z) is co-positive definite for x. Therefore G(x) is more accurate than G(z) if y is fixed. 

We also showed that if G(x) is co-positive definite, then G(2𝑛)(x), that is, even-time derivative of 

G(x) is also co-positive definite and G(0) > 0. 

Now we look at the relationship: 
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G(z) = |𝐹(𝑧)|2 = 𝐴0 +∑𝐴𝑝 ∙ 𝑥
2𝑝

∞

𝑝=1

 

Since we assume that y is fixed and G(x) = |𝐹(𝑥)|2 is co-positive definite and therefore G(0) > 0. 

Hence 𝐴0 > 0.  We differentiate G(x)  twice, that is, G′′(x) . We know G′′(x)  is still co-positive 

definite. Letting x = 0, we have 2 ∙ 3𝐴2 > 0 and 𝐴2 > 0. By deviating four times and letting x = 0, 

we have 𝐴4 > 0, and so on, which means that all 𝐴𝑝 are positive. By Hardy-Littlewood, G(x) is a 

strictly multiplicatively convex function on (0,∞), which is strictly increasing convex. Since all the 

orders of 𝑥 are even, G(x) is an even function as expected, that is, symmetric at iy-axis and has a 

unique minimum at x = 0. 

 

Conclusion 

1. Let 𝐹(𝑧) be the bilateral Laplace transform of a positive and even function, then if y is fixed, 

|𝐹(𝑧)|2  is strictly multiplicatively convex for 0 ≤ 𝑥 < ∞  on the line 𝑥 + 𝑖y0 . If 𝐹(𝑧)  is not 

entire, |𝐹(𝑧)|2 is multiplicatively convex in ROC. 

2. |𝐹(𝑧)|2 is symmetric by 𝑖y0 and therefore |𝐹(𝑧)|2 has a unique minimum at 𝑥 = 0. 

3. Since |𝐹(𝑧)|2 has a unique minimum at 𝑥 = 0, all zeros of |𝐹(𝑧)|2 locate at iy-axis and so 

|𝐹(𝑧)|. 

4. Since the zeros of |𝐹(𝑧)| locate at iy-axis, the zeros of 𝐹(𝑧) locate only at iy-axis, if 𝐹(𝑧) 
has any zeros. 

 

  Replacing z = 𝑖𝑧, we have 

F(z) = ∫ 𝑓(𝑡) ∙ 𝑒−𝑖𝑧𝑡𝑑𝑡
∞

−∞

 

It can be shown that if 𝑓(𝑡) ≥ 0 for all t, F(z) is complex-valued positive definite, meaning 

∑∑𝑐𝑛𝑐�̅�𝐹(𝑧𝑛 − 𝑧𝑘̅̅̅)

𝑁

𝑘=1

𝑁

𝑛=1

≥ 0 

It is the generalized Bochner’s theorem. The positive definite functions have similar properties, 

which the co-positive definite functions have. For example, if F(z)  is positive definite, 

(−1)𝑛𝐹(2𝑛)(𝑧) is also positive definite and F(0) ≥ 0 and therefore F(0) is real. 

If 𝑓(𝑡) is positive and even, we have: 

F(z) = ∫ 𝑓(𝑡) ∙ 𝑒−𝑖𝑧𝑡𝑑𝑡
∞

−∞

= F(z) = 2∫ 𝑓(𝑡) ∙ cos(𝑧𝑡)𝑑𝑡
∞

0

= ∫ 𝑓(𝑡) ∙ cos(𝑧𝑡)𝑑𝑡
∞

−∞

 

 

Like the Laplace transform of 𝑓(𝑡), we can expand it as a series. 

F(z) = ∫ 𝑓(𝑡) ∙ cos(𝑧𝑡)𝑑𝑡
∞

−∞

= ∑(−1)𝑛 ∙ 𝑎2𝑛 ∙ 𝑧
2𝑛

∞

𝑛=0

= 𝑎0 − 𝑎2𝑧
2 + 𝑎4𝑧

4 −⋯ 

With the series and the properties of the positive definite functions, we can derive similar properties 

like the Laplace transform that we have proved. The differences are that for the fixed x, F(z) has a 
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unique minimum at x=0 and only real zeros. 

 

5. The Riemann hypothesis 

The Riemann zeta function (s) is defined as follows: 

(s) = ∑
1

𝑛𝑠

∞

𝑛=1

= 1 +
1

2𝑠
+

1

3𝑠
+⋯ 

where s = + i 

The Riemann zeta function has only one pole at s = 1 and infinitely many zeros. It can be shown 

that all the zeros are located on the stripe of 0 <  < 1. Riemann conjectured that all zeros of zeta 

function would be located at  =
1

2
, so called Riemann hypothesis. 

Riemann proved the functional equation 

(s) = 2𝑠𝜋𝑠−1sin(
𝜋𝑠

2
) Γ(1 − 𝑠)(1 − s) 

Using the functional equation, he derived xi function ξ(s) which is symmetric at  =
1

2
, defined 

ξ(s) =
1

2
𝜋−

𝑠
2𝑠(𝑠 − 1)Γ(𝑠/2)(s) 

The unique pole of the zeta function at 𝑠 = 1 is cancelled out because of (𝑠 − 1). Hence ξ(s) is 

an entire function but the zeros of ξ(s) locate at the same position of the zeta function, that is, on 

the stripe of 0 <  < 1 and since ξ(s) is symmetric at  =
1

2
, ξ (

1

2
+ iω) is real. As mentioned, the 

zeros of ξ(s) locate at the same position of the zeta function (s). Hence, if we can prove that all 

zeros of ξ(s) locate only at  =
1

2
, then the Riemann hypothesis is true. 

Using the Hankel contour, Poisson summation formula and Mellin transform, the inverse Fourier 

transform at  =
1

2
 can be derived which is: 

φ(t) = 2∑𝑒−𝜋𝑛
2𝑒2𝑡(2𝜋2𝑛4𝑒

9
2
𝑡 − 3𝜋𝑛2𝑒

5
2
𝑡)

∞

𝑛=1

 

Since φ(t) is the inverse Fourier transform of ξ (
1

2
+ iω), φ(t) is even and positive for all t. and 

the relationship between ξ(s) and φ(t) is as follows 

ξ(s) = ∫ φ(t) ∙ 𝑒(𝑠−
1
2
)𝑡𝑑𝑡

∞

−∞

=∑ ℎ2𝑛 (𝑠 −
1

2
)
2𝑛∞

𝑛=0
 

Letting z = 𝑠 −
1

2
, that is, shifted by 

1

2
 and therefore the zeros now locate on the stripe of −

1

2
<

x <
1

2
 and we have 

Φ(z) = ∫ φ(t) ∙ 𝑒𝑧𝑡𝑑𝑡
∞

−∞

 

Moreover, since φ(t) is an even function 

Φ(z) = ∫ φ(t) ∙ 𝑒−𝑧𝑡𝑑𝑡
∞

−∞
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which is the bilateral Laplace transform of the positive and even function φ(t). We know that all 

zeros of the bilateral Laplace transform of a positive and even functions locate at x = 0. Hence all 

the zeros of ξ(s)  must locate at  =
1

2
  and therefore (s)  too, which means the Riemann 

hypothesis is true. 

 

Riemann also defined a function named “big xi-function” Ξ(z), which is: 

Ξ(z) = 2∫ φ(t) ∙ cos(𝑧𝑡) ∙ 𝑑𝑡
∞

0

= ∫ φ(t) ∙ cos(𝑧𝑡) ∙ 𝑑𝑡
∞

−∞

 

If the Riemann hypothesis is true, Ξ(z) has only real zeros. 

As mentioned, this function is nothing but a positive definite function and by the similar way, we can 

prove that all the zeros of Ξ(z) are real and therefore the Riemann hypothesis is true. 
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