Cylinders and quadratic surfaces (Sect. 12.6)

- Cylinders.
- Quadratic surfaces:
- Spheres, $\quad \frac{x^{2}}{r^{2}}+\frac{y^{2}}{r^{2}}+\frac{z^{2}}{r^{2}}=1$.
- Ellipsoids, $\quad \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.
- Cones,

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=0 .
$$

- Hyperboloids, $\quad \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1, \quad-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.
- Paraboloids, $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z}{c}=0$.
- Saddles,

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}-\frac{z}{c}=0
$$

Cylinders

Definition

Given a curve on a plane, called the generating curve, a cylinder is a surface in space generating by moving along the generating curve a straight line perpendicular to the plane containing the generating curve.

Example

A circular cylinder is the particular case when the generating curve is a circle. In the picture, the generating curve lies on the $x y$-plane.

Cylinders

Example

Find the equation of the cylinder given in the picture.

Solution:

The intersection of the cylinder with the $z=0$ plane is a circle with radius r, hence points of the form $(x, y, 0)$ belong to the cylinder iff $x^{2}+y^{2}=r^{2}$ and $z=0$.

For $z \neq 0$, the intersection of horizontal planes of constant z with the cylinder again are circles of radius r, hence points of the form (x, y, z) belong to the cylinder iff $x^{2}+y^{2}=r^{2}$ and z constant. Summarizing, the equation of the cylinder is $x^{2}+y^{2}=r^{2}$. The coordinate z does not appear in the equation. The equation holds for every value of $z \in \mathbb{R}$.

Cylinders

Example

Find the equation of the cylinder given in the picture.

Solution:

The generating curve is a circle, but this time on the plane $y=0$. Hence point of the form $(x, 0, z)$ belong to the cylinder iff $x^{2}+z^{2}=r^{2}$.

We conclude that the equation of the cylinder above is

$$
x^{2}+z^{2}=r^{2}, \quad y \in \mathbb{R}
$$

The coordinate y does not appear in the equation. The equation holds for every value of $y \in \mathbb{R}$.

Cylinders

Example

Find the equation of the cylinder given in the picture.

Solution:

The generating curve is a parabola on planes with constant y.
This parabola contains the points $(0,0,0),(1,0,1)$, and $(2,0,4)$.
Since three points determine a unique parabola and $z=x^{2}$ contains these points, then at $y=0$ the generating curve is $z=x^{2}$.

The cylinder equation does not contain the coordinate y. Hence,

$$
z=x^{2}, \quad y \in \mathbb{R}
$$

Cylinders and quadratic surfaces (Sect. 12.6)

- Cylinders.
- Quadratic surfaces:
- Spheres.
- Ellipsoids.
- Cones.
- Hyperboloids.
- Paraboloids.
- Saddles.

Quadratic surfaces

Definition

Given constants a_{i}, b_{i} and c_{1}, with $i=1,2,3$, a quadratic surface in space is the set of points (x, y, z) solutions of the equation

$$
a_{1} x^{2}+a_{2} y^{2}+a_{3} z^{2}+b_{1} x+b_{2} y+b_{3} z+c_{1}=0
$$

Remarks:

- There are several types of quadratic surfaces.
- We study only quadratic surfaces given by

$$
\begin{equation*}
a_{1} x^{2}+a_{2} y^{2}+a_{3} z^{2}+b_{3} z=c_{2} . \tag{1}
\end{equation*}
$$

- The surfaces below are rotations of the one in Eq. (1),

$$
\begin{aligned}
& a_{1} z^{2}+a_{2} x^{2}+a_{3} y^{2}+b_{3} y=c_{2}, \\
& a_{1} y^{2}+a_{2} x^{2}+a_{3} x^{2}+b_{3} x=c_{2} .
\end{aligned}
$$

Cylinders and quadratic surfaces (Sect. 12.6)

- Cylinders.
- Quadratic surfaces:
- Spheres.

$$
\frac{x^{2}}{r^{2}}+\frac{y^{2}}{r^{2}}+\frac{z^{2}}{r^{2}}=1 .
$$

- Ellipsoids.
- Cones.
- Hyperboloids.
- Paraboloids.
- Saddles.

Spheres

Recall: We study only quadratic equations of the form:

$$
a_{1} x^{2}+a_{2} y^{2}+a_{3} z^{2}+b_{3} z=c_{2} .
$$

Example

A sphere is a simple quadratic surface, the one in the picture has the equation

$$
\begin{gathered}
\frac{x^{2}}{r^{2}}+\frac{y^{2}}{r^{2}}+\frac{z^{2}}{r^{2}}=1 . \\
\left(a_{1}=a_{2}=a_{3}=1 / r^{2}, b_{3}=0 \text { and } c_{2}=1 .\right)
\end{gathered}
$$

Equivalently, $\quad x^{2}+y^{2}+z^{2}=r^{2}$.

Spheres

Remark: Linear terms move the sphere around in space.

Example

Graph the surface given by the equation $x^{2}+y^{2}+z^{2}+4 y=0$.
Solution: Complete the square:

$$
x^{2}+\left[y^{2}+2\left(\frac{4}{2}\right) y+\left(\frac{4}{2}\right)^{2}\right]-\left(\frac{4}{2}\right)^{2}+z^{2}=0
$$

Therefore, $x^{2}+\left(y+\frac{4}{2}\right)^{2}+z^{2}=4$. This is the equation of a sphere centered at $P_{0}=(0,-2,0)$ and with radius $r=2 . \quad \triangleleft$

Cylinders and quadratic surfaces (Sect. 12.6)

- Cylinders.
- Quadratic surfaces:
- Spheres, $\frac{x^{2}}{r^{2}}+\frac{y^{2}}{r^{2}}+\frac{z^{2}}{r^{2}}=1$.
- Ellipsoids, $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.
- Paraboloids.
- Cones.
- Hyperboloids.
- Saddles.

Ellipsoids

Definition

Given positive constants a, b, c, an ellipsoid centered at the origin is the set of point solution to the equation

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

Example

Graph the ellipsoid,
$x^{2}+\frac{y^{2}}{3^{2}}+\frac{z^{2}}{2^{2}}=1$.

Ellipsoids

Example

Graph the ellipsoid, $x^{2}+\frac{y^{2}}{3^{2}}+\frac{z^{2}}{2^{2}}=1$.
Solution:
On the plane $z=0$ we have the ellipse $x^{2}+\frac{y^{2}}{3^{2}}=1$.

On the plane $z=z_{0}$, with $-2<z_{0}<2$
we have the ellipse $x^{2}+\frac{y^{2}}{3^{2}}=\left(1-\frac{z_{0}^{2}}{2^{2}}\right)$.
Denoting $c=1-\left(z_{0}^{2} / 4\right)$, then
$0<c<1$, and $\frac{x^{2}}{c}+\frac{y^{2}}{3^{2} c}=1$.

Cylinders and quadratic surfaces (Sect. 12.6)

- Cylinders.
- Quadratic surfaces:
- Spheres,

$$
\frac{x^{2}}{r^{2}}+\frac{y^{2}}{r^{2}}+\frac{z^{2}}{r^{2}}=1 .
$$

- Ellipsoids,
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.
- Cones, $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=0$.
- Hyperboloids.
- Paraboloids.
- Saddles.

Cones

Definition

Given positive constants a, b, a cone centered at the origin is the set of point solution to the equation

$$
z= \pm \sqrt{\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}}
$$

Example

Graph the cone,
$z=\sqrt{x^{2}+\frac{y^{2}}{3^{2}}}$.

Cones

Example

Graph the cone, $z=+\sqrt{\frac{x^{2}}{2^{2}}+y^{2}}$.

Solution:

On the plane $z=1$ we have the ellipse $\frac{x^{2}}{2^{2}}+y^{2}=1$.

On the plane $z=z_{0}>0$ we have the ellipse $\frac{x^{2}}{2^{2}}+y^{2}=z_{0}^{2}$, that is, $\frac{x^{2}}{2^{2} z_{0}^{2}}+\frac{y^{2}}{z_{0}^{2}}=1$.

Cylinders and quadratic surfaces (Sect. 12.6)

- Cylinders.
- Quadratic surfaces:
- Spheres, $\quad \frac{x^{2}}{r^{2}}+\frac{y^{2}}{r^{2}}+\frac{z^{2}}{r^{2}}=1$.
- Ellipsoids, $\quad \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.
- Cones, $\quad \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=0$.
- Hyperboloids, $\quad \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1, \quad-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.
- Paraboloids.
- Saddles.

Hyperboloids

Definition

Given positive constants a, b, c, a one sheet hyperboloid centered at the origin is the set of point solution to the equation

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1
$$

(One negative sign, one sheet.)

Example

Graph the hyperboloid,
$x^{2}+\frac{y^{2}}{2^{2}}-z^{2}=1$.

Hyperboloids

Example

Graph the hyperboloid $\quad x^{2}+\frac{y^{2}}{2^{2}}-z^{2}=1$.

Solution: Find the intersection of the surface with horizontal and vertical planes. Then combine them into a qualitative graph.

- On horizontal planes, $z=z_{0}$, we obtain ellipses

$$
x^{2}+\frac{y^{2}}{2^{2}}=1+z_{0}^{2}
$$

- On vertical planes, $y=y_{0}$, we obtain hyperbolas

$$
x^{2}-z^{2}=1-\frac{y_{0}^{2}}{2^{2}}
$$

- On vertical planes, $x=x_{0}$, we obtain hyperbolas

$$
\frac{y^{2}}{2^{2}}-z^{2}=1-x_{0}^{2}
$$

Hyperboloids

Definition

Given positive constants a, b, c, a two sheet hyperboloid centered at the origin is the set of point solution to the equation

$$
-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1 .
$$

(Two negative signs, two sheets.)

Example

Graph the hyperboloid,
$-x^{2}-\frac{y^{2}}{2^{2}}+z^{2}=1$.

Hyperboloids

Example

Graph the hyperboloid $-x^{2}-\frac{y^{2}}{2^{2}}+z^{2}=1$.

Solution:

Find the intersection of the surface with horizontal and vertical planes. Then combine all these results into a qualitative graph.

- On horizontal planes, $z=z_{0}$, with $\left|z_{0}\right|>1$, we obtain ellipses $x^{2}+\frac{y^{2}}{2^{2}}=-1+z_{0}^{2}$.
- On vertical planes, $y=y_{0}$, we obtain hyperbolas

$$
-x^{2}+z^{2}=1+\frac{y_{0}^{2}}{2^{2}}
$$

- On vertical planes, $x=x_{0}$, we obtain hyperbolas

$$
-\frac{y^{2}}{2^{2}}+z^{2}=1+x_{0}^{2}
$$

Cylinders and quadratic surfaces (Sect. 12.6)

- Cylinders.
- Quadratic surfaces:
- Spheres,
$\frac{x^{2}}{r^{2}}+\frac{y^{2}}{r^{2}}+\frac{z^{2}}{r^{2}}=1$.
- Ellipsoids,
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.
- Cones,
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=0$.
- Hyperboloids,
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1, \quad-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.
- Paraboloids, $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z}{c}=0$.
- Saddles.

Paraboloids

Definition

Given positive constants a, b, a paraboloid centered at the origin is the set of point solution to the equation

$$
z=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} .
$$

Example

Graph the paraboloid,
$z=x^{2}+\frac{y^{2}}{2^{2}}$.

Paraboloids.

Example

Graph the paraboloid $\quad z=x^{2}+\frac{y^{2}}{2^{2}}$.

Solution:

Find the intersection of the surface with horizontal and vertical planes. Then combine all these results into a qualitative graph.

- On horizontal planes, $z=z_{0}$, with $z_{0}>0$, we obtain ellipses $x^{2}+\frac{y^{2}}{2^{2}}=z_{0}$.
- On vertical planes, $y=y_{0}$, we obtain parabolas $z=x^{2}+\frac{y_{0}^{2}}{2^{2}}$.
- On vertical planes, $x=x_{0}$, we obtain parabolas $z=x_{0}^{2}+\frac{y^{2}}{2^{2}}$.

Cylinders and quadratic surfaces (Sect. 12.6)

- Cylinders.
- Quadratic surfaces:
- Spheres, $\quad \frac{x^{2}}{r^{2}}+\frac{y^{2}}{r^{2}}+\frac{z^{2}}{r^{2}}=1$.
- Ellipsoids, $\quad \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.
- Cones, $\quad \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=0$.
- Hyperboloids, $\quad \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1, \quad-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.
- Paraboloids, $\quad \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z}{c}=0$.
- Saddles,
$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}-\frac{z}{c}=0$.

Saddles, or hyperbolic paraboloids

Definition

Given positive constants a, b, c, a saddle centered the origin is the set of point solution to the equation

$$
z=\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}} .
$$

Example

Graph the paraboloid,
$z=-x^{2}+\frac{y^{2}}{2^{2}}$.

Saddles

Example

Graph the saddle
$z=-x^{2}+\frac{y^{2}}{2^{2}}$.

Solution:

Find the intersection of the surface with horizontal and vertical planes. Then combine all these results into a qualitative graph.

- On planes, $z=z_{0}$, we obtain hyperbolas $-x^{2}+\frac{y^{2}}{2^{2}}=z_{0}$.
- On planes, $y=y_{0}$, we obtain parabolas $z=-x^{2}+\frac{y_{0}^{2}}{2^{2}}$.
- On planes, $x=x_{0}$, we obtain parabolas $z=-x_{0}^{2}+\frac{y^{2}}{2^{2}}$.

