- ► Cylinders.
- ► Quadratic surfaces:

► Spheres,
$$\frac{x^2}{r^2} + \frac{y^2}{r^2} + \frac{z^2}{r^2} = 1$$
.

$$Ellipsoids, \qquad \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$$

► Cones,
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0.$$

► Hyperboloids,
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$
, $-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.

Paraboloids,
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z}{c} = 0.$$

Saddles,
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} - \frac{z}{c} = 0.$$

Cylinders

Definition

Given a curve on a plane, called the *generating curve*, a *cylinder* is a surface in space generating by moving along the generating curve a straight line perpendicular to the plane containing the generating curve.

Example

A *circular cylinder* is the particular case when the generating curve is a circle. In the picture, the generating curve lies on the *xy*-plane.

Cylinders

Example

Find the equation of the cylinder given in the picture.

Solution:

The intersection of the cylinder with the z=0 plane is a circle with radius r, hence points of the form (x,y,0) belong to the cylinder iff $x^2+y^2=r^2$ and z=0.

For $z \neq 0$, the intersection of horizontal planes of constant z with the cylinder again are circles of radius r, hence points of the form (x, y, z) belong to the cylinder iff $x^2 + y^2 = r^2$ and z constant.

Summarizing, the equation of the cylinder is $x^2 + y^2 = r^2$. The coordinate z does not appear in the equation. The equation holds for every value of $z \in \mathbb{R}$.

Cylinders

Example

Find the equation of the cylinder given in the picture.

Solution:

The generating curve is a circle, but this time on the plane y=0. Hence point of the form (x,0,z) belong to the cylinder iff $x^2+z^2=r^2$.

We conclude that the equation of the cylinder above is

$$x^2 + z^2 = r^2, \qquad y \in \mathbb{R}.$$

The coordinate y does not appear in the equation. The equation holds for every value of $y \in \mathbb{R}$.

Cylinders

Example

Find the equation of the cylinder given in the picture.

Solution:

The generating curve is a parabola on planes with constant y.

This parabola contains the points (0,0,0), (1,0,1), and (2,0,4).

Since three points determine a unique parabola and $z = x^2$ contains these points, then at y = 0 the generating curve is $z = x^2$.

The cylinder equation does not contain the coordinate y. Hence,

$$z = x^2, \qquad y \in \mathbb{R}.$$

 \triangleleft

Cylinders and quadratic surfaces (Sect. 12.6)

- ► Cylinders.
- **▶** Quadratic surfaces:
 - ► Spheres.
 - Ellipsoids.
 - Cones.
 - Hyperboloids.
 - Paraboloids.
 - Saddles.

Quadratic surfaces

Definition

Given constants a_i , b_i and c_1 , with i = 1, 2, 3, a *quadratic surface* in space is the set of points (x, y, z) solutions of the equation

$$a_1 x^2 + a_2 y^2 + a_3 z^2 + b_1 x + b_2 y + b_3 z + c_1 = 0.$$

Remarks:

- ▶ There are several types of quadratic surfaces.
- ▶ We study only quadratic surfaces given by

$$a_1 x^2 + a_2 y^2 + a_3 z^2 + b_3 z = c_2.$$
 (1)

▶ The surfaces below are rotations of the one in Eq. (1),

$$a_1 z^2 + a_2 x^2 + a_3 y^2 + b_3 y = c_2,$$

 $a_1 y^2 + a_2 x^2 + a_3 x^2 + b_3 x = c_2.$

Cylinders and quadratic surfaces (Sect. 12.6)

- Cylinders.
- Quadratic surfaces:

► Spheres.
$$\frac{x^2}{r^2} + \frac{y^2}{r^2} + \frac{z^2}{r^2} = 1.$$

- ► Ellipsoids.
- Cones.
- ► Hyperboloids.
- Paraboloids.
- Saddles.

Spheres

Recall: We study only quadratic equations of the form:

$$a_1 x^2 + a_2 y^2 + a_3 z^2 + b_3 z = c_2$$
.

Example

A *sphere* is a simple quadratic surface, the one in the picture has the equation

$$\frac{x^2}{r^2} + \frac{y^2}{r^2} + \frac{z^2}{r^2} = 1.$$

$$(a_1 = a_2 = a_3 = 1/r^2, b_3 = 0 \text{ and } c_2 = 1.)$$

Equivalently,
$$x^2 + y^2 + z^2 = r^2$$
.

Spheres

Remark: Linear terms move the sphere around in space.

Example

Graph the surface given by the equation $x^2 + y^2 + z^2 + 4y = 0$.

Solution: Complete the square:

$$x^{2} + \left[y^{2} + 2\left(\frac{4}{2}\right)y + \left(\frac{4}{2}\right)^{2}\right] - \left(\frac{4}{2}\right)^{2} + z^{2} = 0.$$

Therefore,
$$x^2 + \left(y + \frac{4}{2}\right)^2 + z^2 = 4$$
. This is the equation of a sphere centered at $P_0 = (0, -2, 0)$ and with radius $r = 2$.

- ► Cylinders.
- Quadratic surfaces:
 - Spheres,

$$\frac{x^2}{r^2} + \frac{y^2}{r^2} + \frac{z^2}{r^2} = 1.$$

- ► Ellipsoids,
- $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$
- ► Paraboloids.
- ► Cones.
- ► Hyperboloids.
- ► Saddles.

Ellipsoids

Definition

Given positive constants a, b, c, an *ellipsoid* centered at the origin is the set of point solution to the equation

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$$

Example

Graph the ellipsoid,

$$x^2 + \frac{y^2}{3^2} + \frac{z^2}{2^2} = 1.$$

Ellipsoids

Example

Graph the ellipsoid,
$$x^{2} + \frac{y^{2}}{3^{2}} + \frac{z^{2}}{2^{2}} = 1$$
.

Solution:

On the plane z=0 we have the ellipse $x^2 + \frac{y^2}{3^2} = 1$.

On the plane $z = z_0$, with $-2 < z_0 < 2$ we have the ellipse $x^2 + \frac{y^2}{3^2} = \left(1 - \frac{z_0^2}{2^2}\right)$.

Denoting
$$c=1-(z_0^2/4)$$
, then $0< c<1$, and $\frac{x^2}{c}+\frac{y^2}{3^2c}=1$.

Cylinders and quadratic surfaces (Sect. 12.6)

- Cylinders.
- Quadratic surfaces:

$$\frac{x^2}{r^2} + \frac{y^2}{r^2} + \frac{z^2}{r^2} = 1.$$

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$$

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0.$$

- Hyperboloids.
- Paraboloids.
- Saddles.

Cones

Definition

Given positive constants a, b, a cone centered at the origin is the set of point solution to the equation

$$z=\pm\sqrt{\frac{x^2}{a^2}+\frac{y^2}{b^2}}.$$

Example

Graph the cone,

$$z=\sqrt{x^2+\frac{y^2}{3^2}}.$$

 \triangleleft

Cones

Example

Graph the cone, $z = +\sqrt{\frac{x^2}{2^2} + y^2}$.

Solution:

On the plane z=1 we have the ellipse $\frac{x^2}{2^2}+y^2=1$.

On the plane $z=z_0>0$ we have the ellipse $\frac{x^2}{2^2}+y^2=z_0^2$, that is,

$$\frac{x^2}{2^2 z_0^2} + \frac{y^2}{z_0^2} = 1.$$

- Cylinders.
- Quadratic surfaces:

• Spheres,
$$\frac{x^2}{r^2} + \frac{y^2}{r^2} + \frac{z^2}{r^2} = 1$$
.

• Ellipsoids,
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
.

► Cones,
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$$
.

► Hyperboloids,
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$
, $-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.

- Paraboloids.
- ► Saddles.

Hyperboloids

Definition

Given positive constants a, b, c, a one sheet hyperboloid centered at the origin is the set of point solution to the equation

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1.$$

(One negative sign, one sheet.)

Example

Graph the hyperboloid,

$$x^2 + \frac{y^2}{2^2} - z^2 = 1.$$

Hyperboloids

Example

Graph the hyperboloid
$$x^2 + \frac{y^2}{2^2} - z^2 = 1$$
.

 \triangleleft

Solution: Find the intersection of the surface with horizontal and vertical planes. Then combine them into a qualitative graph.

- ▶ On horizontal planes, $z = z_0$, we obtain ellipses $x^2 + \frac{y^2}{2^2} = 1 + z_0^2$.
- ▶ On vertical planes, $y = y_0$, we obtain hyperbolas $x^2 z^2 = 1 \frac{y_0^2}{2^2}$.
- On vertical planes, $x = x_0$, we obtain hyperbolas $\frac{y^2}{2^2} z^2 = 1 x_0^2$.

Hyperboloids

Definition

Given positive constants a, b, c, a two sheet hyperboloid centered at the origin is the set of point solution to the equation

$$-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$$

(Two negative signs, two sheets.)

Example

Graph the hyperboloid,

$$-x^2 - \frac{y^2}{2^2} + z^2 = 1. \quad \triangleleft$$

Hyperboloids

Example

Graph the hyperboloid
$$-x^2 - \frac{y^2}{2^2} + z^2 = 1$$
.

 \triangleleft

Solution:

Find the intersection of the surface with horizontal and vertical planes. Then combine all these results into a qualitative graph.

- ▶ On horizontal planes, $z = z_0$, with $|z_0| > 1$, we obtain ellipses $x^2 + \frac{y^2}{2^2} = -1 + z_0^2$.
- ▶ On vertical planes, $y = y_0$, we obtain hyperbolas $-x^2 + z^2 = 1 + \frac{y_0^2}{2^2}$.
- On vertical planes, $x = x_0$, we obtain hyperbolas $-\frac{y^2}{2^2} + z^2 = 1 + x_0^2.$

Cylinders and quadratic surfaces (Sect. 12.6)

- Cylinders.
- Quadratic surfaces:

• Spheres,
$$\frac{x^2}{r^2} + \frac{y^2}{r^2} + \frac{z^2}{r^2} = 1$$
.

► Ellipsoids,
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
.

• Cones,
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0.$$

► Hyperboloids,
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$
, $-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.

Paraboloids,
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z}{c} = 0.$$

Saddles.

Paraboloids

Definition

Given positive constants a, b, a paraboloid centered at the origin is the set of point solution to the equation

$$z = \frac{x^2}{a^2} + \frac{y^2}{b^2}.$$

Example

Graph the paraboloid,

$$z=x^2+\frac{y^2}{2^2}.$$

Paraboloids.

Example

Graph the paraboloid $z = x^2 + \frac{y^2}{2^2}$.

 \triangleleft

Solution:

Find the intersection of the surface with horizontal and vertical planes. Then combine all these results into a qualitative graph.

- ▶ On horizontal planes, $z = z_0$, with $z_0 > 0$, we obtain ellipses $x^2 + \frac{y^2}{2^2} = z_0$.
- ▶ On vertical planes, $y = y_0$, we obtain parabolas $z = x^2 + \frac{y_0^2}{2^2}$.
- ▶ On vertical planes, $x = x_0$, we obtain parabolas $z = x_0^2 + \frac{y^2}{2^2}$.

- Cylinders.
- ► Quadratic surfaces:

• Spheres,
$$\frac{x^2}{r^2} + \frac{y^2}{r^2} + \frac{z^2}{r^2} = 1$$
.

► Ellipsoids,
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
.

• Cones,
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0.$$

▶ Hyperboloids,
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$
, $-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.

Paraboloids,
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z}{c} = 0.$$

► Saddles,
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} - \frac{z}{c} = 0.$$

Saddles, or hyperbolic paraboloids

Definition

Given positive constants a, b, c, a saddle centered at the origin is the set of point solution to the equation

$$z = \frac{x^2}{a^2} - \frac{y^2}{b^2}.$$

Example

Graph the paraboloid,

$$z = -x^2 + \frac{y^2}{2^2}$$
.

Saddles

Example

Graph the saddle

$$z = -x^2 + \frac{y^2}{2^2}.$$

Solution:

Find the intersection of the surface with horizontal and vertical planes. Then combine all these results into a qualitative graph.

- ▶ On planes, $z = z_0$, we obtain hyperbolas $-x^2 + \frac{y^2}{2^2} = z_0$.
- ▶ On planes, $y = y_0$, we obtain parabolas $z = -x^2 + \frac{y_0^2}{2^2}$.
- ▶ On planes, $x = x_0$, we obtain parabolas $z = -x_0^2 + \frac{y^2}{2^2}$.