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Abstract
For speech recognition, deep neural networks (DNNs) have sig-
nificantly improved the recognition accuracy in most of bench-
mark datasets and application domains. However, compared to
the conventional Gaussian mixture models, DNN-based acous-
tic models usually have much larger number of model param-
eters, making it challenging for their applications in resource
constrained platforms, e.g., mobile devices. In this paper, we
study the application of the recently proposed highway net-
work to train small-footprint DNNs, which are thinner and
deeper, and have significantly smaller number of model param-
eters compared to conventional DNNs. We investigated this ap-
proach on the AMI meeting speech transcription corpus which
has around 80 hours of audio data. The highway neural net-
works constantly outperformed their plain DNN counterparts,
and the number of model parameters can be reduced signifi-
cantly without sacrificing the recognition accuracy.
Index Terms: speech recognition, highway network, small-
footprint deep learning.

1. Introduction
Modern state-of-the-art speech recognition systems are based
on neural network acoustic models [1, 2, 3, 4, 5]. A typical ar-
chitecture is the deep neural network (DNN) [1, 2], which is a
feedforward neural network with multiple hidden layers (e.g., 4
∼ 9), and each layer has a large number of hidden units (e.g.,
512 ∼ 2048). Compared to the conventional Gaussian mixture
models, DNN acoustic models usually have much larger num-
ber of model parameters, which explains their large statistical
modelling capacities and high recognition accuracies. How-
ever, it becomes challenging for the applications of DNN-based
speech recognition systems in resource constrained scenarios.
For instance, it is highly desirable that the speech recognition
system can still function in wearable computing and mobile de-
vices when the internet connection is unavailable. This requires
that smaller size of acoustic models can still achieve high recog-
nition accuracy.

There have been a number of works on small footprint
DNNs for this purpose. For instance, Xue et al. [6] and Sainath
et al. [7] approximate the weight matrix between two hidden
layers by a product of two low-rank matrices, which may be
equivalent to insert a bottleneck layer in between without the
nonlinear activation. Another branch of studies are based on the
teacher-student architecture [8, 9, 10], which is also referred to
as model compression [11] and knowledge distillation [12]. In
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this approach, the teacher may be a large-size network or an en-
semble of several different models, which is used to predict the
soft targets for training the student model that is much smaller.
As discussed in [12], the soft targets provided by the teacher
encode the generalisation power of the teacher, and the student
model trained using these labels is observed to perform better
than a small model trained in the usual way [8, 9, 10]. Recently,
[13] investigated the use of low rank displacement of structured
matrices (e.g., Teoplitz matrix) for small-footprint neural net-
works. This work is in line with the argument that neural net-
works with dense connections are over-parameterised, and the
linear layer may be replaced by structured efficient linear layers
(SELLs) [14, 15, 16].

In this paper, we investigate the thin and deep architectures
for small-footprint neural network acoustic models. However,
as the depth increases, training DNNs by stochastic gradient
decent (SGD) becomes increasingly difficult due to the highly
non-convexity of the error surface. One approach is to pre-train
the neural network by unsupervised [17] or greedy layer-wise
fashion [18]. However, this approach cannot circumvent the
difficulty arises in the fine tuning stage. Another approach is
to rely on the teacher-student architecture, e.g. the FitNet [10],
but it requires the additional effort to train the teacher model
beforehand. Our work in this paper builds on the recently pro-
posed highway networks [19], where the transform gate is used
to scale the output of a hidden layer and the carry gate is used
to pass through the input directly after elementwise rescaling.
Similar idea has also been studied on long short-term memory
recurrent neural networks (LSTM-RNN) for speech recogni-
tion [20]. In this work, we observe that the highway connec-
tions can be successfully applied to training thinner and deeper
networks, while still retraining the recognition accuracy. Our
experiments were performed on the AMI meeting speech tran-
scription corpus, which contains around 70 hours of training
data. Using highway neural networks, we managed to cut down
the number of model parameters by over 80% with marginal
accuracy loss compared to our baseline DNN acoustic models.

2. Highway Deep Neural Network
2.1. Deep neural networks

A DNN is a feed-forward neural network with multiple hid-
den layers that performs cascaded layer-wise nonlinear trans-
formations of the input. For a network with L hidden layers,
the model may be represented as

h1 = f(x, θ1) (1)
hl = f(hl−1, θl), for l = 2, . . . , L (2)
y = g(hL, ϕ) (3)
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where x is an input vector to the network; f(hl−1, θl) denotes
the transformation of the input hl−1 with the parameter θl fol-
lowed by a nonlinear activation function (e.g., sigmoid or
tanh); g(·, ϕ) is the output function(e.g. softmax) which
is parameterised by ϕ in the output layer. Given the ground
truth target ŷ, the network is usually trained by gradient decent
to minimise a loss function L(y, ŷ) (e.g. cross-entropy). How-
ever, as the number of hidden layers increases, the error sur-
face becomes increasingly non-convex, and it is more possible
to find a poor local minima using gradient-based optimisation
algorithms with random initialisation [21]. Furthermore, [22]
showed that the variance of the back-propagated gradients may
become small in the lower layers if the model parameters are
not initialised properly.

2.2. Highway networks

There have been numerous studies on overcoming the dif-
ficulties in training very deep neural networks, including
pre-training [17, 18], normalised initialisation [22], deeply-
supervised networks [23], etc. Recently, Srivastav et al. [19]
proposed the highway network and demonstrated good results
to train very deep networks (e.g., up to 100 hidden layers). In
the highway network, the hidden layers are augmented with two
gating functions, which can be represented as

hl = f(hl−1, θl) ◦ T (hl−1,WT )

+hl−1 ◦ C(hl−1,Wc) (4)

where T (·) is the transform gate that scales the original hid-
den activations; C(·) is the carry gate, which scales the input
before passing it directly to the next hidden layer; ◦ denotes el-
ementwise (Hadamad) product; The outputs of T (·) and C(·)
are constrained to be [0, 1], and we use sigmoid functions for
both gates parameterised by WT and Wc respectively. Un-
like [19], in this work, we do not use any bias vector in the
two gate functions. In [19], the carry gate is constrained to be
C(·) = 1 − T (·), while in this work, we evaluate the gen-
eralisation ability of highway networks with and without this
constraint.

Without the transform gate, i.e. T (·) = 1, the highway
network is similar to a network with skip connections – the main
difference is that the input is firstly scaled by the carry gate.
Without the carry gate, i.e. C(·) = 0, the hidden layer is

hl = f(hl−1, θl) ◦ T (hl−1,WT ). (5)

At first glance, it looks similar to the dropout regularisation for
neural networks [24], which may be represented as

hl = f(hl−1, θl) ◦ εεε, εi ∼ p(εi), (6)

where p(εi) is a Bernoulli distribution for each element in εεε as
originally proposed in [24], while it was shown later that using
a continuous distribution with well designed mean and variance
works as well or better [25]. From this perspective, the trans-
form gate may work as a regulariser, but with the key difference
that T (·) is a deterministic function, while εi is drawn stochas-
tically from a predefined distribution in dropout. Nevertheless,
our empirical results (cf. Section 3.3) indicate that the trans-
form gate and the carry gate can speed up the convergence rate.
In addition, the highway networks also generalise better when
measured in terms of recognition accuracy, which is presumably
due to the regularisation effect of the two gating functions.

weight layer

weight layer

⊕

activationf(h)

f(h) + h

h

activation

Figure 1: The building block of residual networks [26]

2.3. Small-footprint networks

The aim of this paper is to train small-footprint neural networks
for resource constrained speech recognition. From Eq. (4), the
highway network is not directly suitable for this purpose, be-
cause it introduces additional computational cost and model pa-
rameters in the two gating functions. The rationale is that the
computational complexity and the number of model parameters
for each layer in a densely connected network are in the order
of O(n2), where n is the size of hidden units. Increasing the
depth of the network only linearly increases the computational
cost and the model size, while reducing the width can yield the
quadratic reduction in the two metrics. Highway connections
make it feasible to train very thin and deep networks, and there-
fore the overall model sizes are much smaller. To further save
the model parameters, in this work, we shared the two gates for
all hidden layers so that the additional number of model param-
eters for T (·) and C(·) is relatively small.

2.4. Comparison to residual networks

Residual network is a type of very deep network using skip con-
nections, which has achieved state-of-the-art results in image
recognition [26]. The building block for residual networks is
shown in Figure 1. In fact, residual networks are similar to
highway networks without the two additional gate functions,
which can significantly reduce the computational cost. It also
reduces the number of model parameters, albeit the reduction
is marginal because the two gating functions are tied for all the
hidden layers in our configuration. However, without the gat-
ing functions, training residual networks may be more difficult
compared to highway networks, which will be empirically stud-
ied in the following experimental section.

3. Experiments
3.1. System setup

Our experiments were performed on the individual headset mi-
crophone (IHM) subset of the AMI meeting speech transcrip-
tion corpus [27]. The amount of training data is around 80
hours, corresponding to roughly 28 million frames. This dataset
is much larger than most of the datasets (e.g. MNIST, CI-
FAR, etc.) where other types of thin and deep networks were
evaluated [10, 19]. We used 40-dimensional fMLLR adapted
features vectors normalised on per-speaker level, which were
then spliced by a context window of 15 frames (i.e. ±7) for
all the systems. The number of tied HMM states is 3972,



Table 1: Comparison of depth and width between plain DNNs
and HDNNs. ∗indicates that the models were trained using
the Kaldi toolkit, where the networks were initialised with re-
stricted Boltzmann machine (RBM) based pre-training because
random initialisation did not yield convergence.

System #Layer Dim #Parm (M) WER
GMM+SAT+bMMI - - 6.48 31.7
DNN 6 2048 30.3 26.8
DNN 6 1024 9.9 27.2
DNN 10 2048 47.1 27.7
DNN 10 1024 14.1 27.9
DNN∗ 10 512 4.7 28.8
DNN∗ 10 256 1.8 31.5
DNN∗ 15 1024 19.4 27.6
DNN∗ 15 512 6.0 29.1
DNN∗ 15 256 2.1 31.5
HDNN 10 2048 55.5 26.8
HDNN 10 1024 16.2 26.8
HDNN 10 512 5.2 27.2
HDNN 10 256 1.9 28.8
HDNN 10 128 0.77 32.0
HDNN 15 1024 21.5 26.8
HDNN 15 512 6.5 27.1
HDNN 15 256 2.2 28.5
HDNN 15 128 0.85 31.4

and all the DNN systems were trained with the same align-
ment. The results reported in this paper were obtained using
the CNTK toolkit [28] with the Kaldi decoder [29], and the
networks were trained using the cross-entropy (CE) criterion
without pre-training unless specified otherwise. We set the mo-
mentum to be 0.9 after the 1st epoch, and we used the sigmoid
activation for the hidden layers. The weights in each hidden
layer were randomly initialised with a uniform distribution in
the range of [−0.5, 0.5] and the bias parameters were initialised
to be 0 for CNTK systems. We used a trigram language model
for decoding.

3.2. Depth vs. Width

Table 1 shows the word error rates (WERs) of plain DNNs and
highway networks (HDNNs) with different configurations. As
the number of hidden units decreases, the accuracy of plain
DNNs degrade rapidly, and the accuracy loss cannot be com-
pensated by increasing the depth of the network. We faced
the difficulty to train thin and deep networks directly without
RBM pre-training (the CE loss did not decrease at all after many
epochs). However, with highway connections we did not have
this difficulty. The HDNNs achieved consistent lower WERs
compared to the plain DNN counterparts, and the margin of
the gain also increases as the number of hidden units becomes
smaller as shown in Figure 2. With highway connections, we
can cut down the number of model parameters by around 80%
with marginal accuracy loss, and with less than 1 million model
parameters, the CE trained HDNN can achieve comparable or
slight higher accuracy compared to a strong GMM baseline with
speaker adaptive training (SAT) and bMMI-based discrimina-
tive training. The accuracy of smaller-size HDNN models may
be further improved by the teacher-student style training, which
will be investigated in the future.

number of hidden units
2048 1024 512 256 128

W
or

d 
Er

ro
r R

at
e 

(%
)

25

26

27

28

29

30

31

32

33

34
DNN L = 10
HDNN, L=10

number of hidden units
1024 512 256 128

W
or

d 
Er

ro
r R

at
e 

(%
)

25

26

27

28

29

30

31

32

33

34
DNN L = 15
HDNN, L=15

a)

b)

Figure 2: Comparison between plain DNNs and HDNNs
with different number of hidden units. Thin and deep HDNNs
achieved consistent lower WERs than their plain DNN counter-
parts.

3.3. Transform gate vs. Carry gate

We then evaluated the specific role of the transform and carry
gate in the highway architectures. The results are shown in
Table 2, where we disabled one of both of the gates. We ob-
served that using only one of the two gates, the HDNN can still
achieved lower WER compared to the plain DNN, but the best
results were obtained when both of the gates were active, which
indicates that the two gating functions are complementary to
each other. Figure 3 shows the convergence curve of training
HDNNs with and without the transform and carry gate. We
observed that it converged faster when both of the gates were
turned on. With only the transform gate, the convergence rate
was much slower. As discussed before, the carry gate can be
viewed as a particular type of skip connection, and it was more
important to speed up the convergence compared to the trans-
form gate in our experiments.

3.4. Constrained carry gate

We also evaluated using the constrained carry gate in our ex-
periments, where C(·) = 1 − T (·) as studied in [19]. In this
approach, the computational cost is reduced since the matrix-
vector multiplication for the carry gate is not required. We eval-



Table 2: Results of highway networks with and without the
transform and carry gate.

System #Layer Dim Transform Carry WER
DNN∗ 10 512 × × 28.8
HDNN 10 512

√ √
27.2

HDNN 10 512
√

× 27.6
HDNN 10 512 ×

√
27.5

Table 3: Results of using constrained carry gate, where C(·) =
1− T (·).

System #Layer Dim Constrained WER
DNN 10 1024 - 27.9
HDNN 10 1024 × 26.8
HDNN 10 1024

√
28.0

DNN∗ 10 512 - 28.8
HDNN 10 512 × 27.2
HDNN 10 512

√
27.4

DNN∗ 10 256 - 31.5
HDNN 10 256 × 28.8
HDNN 10 256

√
29.6

uated this configuration with 10-layer neural networks, and the
results are shown in Table 3. Contrary to our expectations, with
the constrained carry gate only we obtained worse results when
the networks were relatively wide, while the accuracy gap was
reduced when the number of hidden units was smaller. The rea-
son may be that in the constrained setting, the transform gate
T (·) learns the scaling function for both the input and output
at the same time. As regularisation is expected to be more im-
portant for training wide and deep networks, this may not be
achieved by using a single gating function. For instance, both
the input and output of one hidden layer may require larger or
smaller scaling weights at the same time, which is impossible
in the constrained setting. In the future, we shall look into the
regularisation and generalisation properties of the two gating
functions more closely.

3.5. Comparison to residual networks

Finally, we compare highway networks to residual networks,
and the results are given in Table 4. Our experiments showed
that without the two gating functions, training the residual net-
works was comparably more challenging. For instance, with
10 hidden layers and using sigmoid activations, residual net-
works achieved higher WER compared to highway networks.
However, the differences in terms of the accuracy were smaller
when using ReLU (rectified linear unit) activations for residual
networks, because training ReLU networks are relatively less
difficult. Furthermore, we experienced difficulty to train resid-
ual networks with 15 hidden layers using sigmoid activations
instead of ReLU (The CE cost did not come down after over
20 epochs), although with ReLU activations, residual networks
slightly outperformed highway networks in this case. Note that,
residual networks still performed better compared to the plain
networks with RBM pre-training, e.g., when the depth was 10.
From our experiments, we may draw the conclusion that resid-
ual networks are more powerful to train deeper networks com-
pared to plain DNNs, particular with ReLU activation functions
which reduce the optimisation difficulty. However, highway
networks are more flexible with the activation functions due to
the two gating functions that control the follow of information.
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Figure 3: The convergence curve of training HDNNs with and
without the transform and carry gate. The Frame Error Rates
(FERs) were obtained from the validation dataset.

Table 4: Comparison to residual networks (ResNets).

System #Layer Dim Activation WER
DNN∗ 10 1024 Sigmoid 27.9
DNN∗ 10 512 Sigmoid 28.8
DNN∗ 10 256 Sigmoid 31.5
ResNet 10 1024 Sigmoid 27.6
ResNet 10 512 Sigmoid 27.8
ResNet 10 256 Sigmoid 29.5
HDNN 10 1024 Sigmoid 26.8
HDNN 10 512 Sigmoid 27.2
HDNN 10 256 Sigmoid 28.8
ResNet 10 1024 ReLU 27.2
ResNet 10 512 ReLU 27.3
ResNet 10 256 ReLU 28.6
ResNet 15 1024 ReLU 26.9
ResNet 15 512 ReLU 27.0
ResNet 15 256 ReLU 28.2
HDNN 15 1024 ReLU 27.1
HDNN 15 512 ReLU 27.3
HDNN 15 256 ReLU 28.7

4. Conclusions
In this paper, we investigate thin and deep neural networks for
small-footprint acoustic models. Our study is build on the re-
cently proposed highway neural network, which introduces an
additional transform and carry gate for each hidden layer. Our
experiments indicate that the highway connections can facilitate
the information flow and mitigate the difficulty in training very
deep feedforward networks. The thin and deep architecture with
highway connections achieved consistently lower WERs com-
pared to plain DNNs, and by reducing the number of hidden
units, we can significantly cut down the total number of model
parameters with negligible accuracy loss. We also evaluated the
specific role of the transform and carry gate, and we found that
the carry gate was more important to speed up the convergence
in our experiment. The small-footprint highway networks may
be further improved by the teacher-student style training, which
will be investigated in our future work.
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