
THE INVERSE OPTIMAL VALUE PROBLEM∗

SHABBIR AHMED† AND YONGPEI GUAN

Abstract. This paper considers the following inverse optimization problem:

given a linear program, a desired optimal objective value, and a set of feasible
cost vectors, determine a cost vector such that the corresponding optimal ob-
jective value of the linear program is closest to the desired value. The above

problem, referred here as the inverse optimal value problem, is significantly
different from standard inverse optimization problems that involve determin-
ing a cost vector for a linear program such that a pre-specified solution vector
is optimal. In this paper, we show that the inverse optimal value problem is

NP-hard in general. We identify conditions under which the problem reduces
to a concave maximization or a concave minimization problem. We provide
sufficient conditions under which the associated concave minimization prob-
lem and, correspondingly, the inverse optimal value problem is polynomially

solvable. For the case when the set of feasible cost vectors is polyhedral, we
describe an algorithm for the inverse optimal value problem based on solving
linear and bilinear programming problems. Some preliminary computational

experience is reported.

Keywords. Inverse optimization, Complexity, Linear programming, Bilinear

programming.

1. Introduction

Inverse optimization consists of inferring the parameters – such as objective func-
tion and constraint coefficients – of an optimization problem from a pre-specified
optimal solution to the problem. A standard inverse optimization problem that
has often been studied is as follows: given an optimization problem with a linear
objective P : minx{cT x | x ∈ X} and a desired optimal solution x? ∈ X, find a
cost vector c? such that x? is an optimal solution of P . Typically, c? is required
to satisfy some additional conditions. For example, given a preferred cost vector ĉ,
the deviation ||c? − ĉ||p is to be minimum under some `p-norm. The above class of
problems were introduced by Burton and Toint [7, 8] in the context of identifying
edge lengths to induce a set of pre-specified paths to be the set of shortest paths
in a graph. The authors proposed a convex quadratic programming approach for
a model in which the deviation is measured in the `2-norm. When the underly-
ing optimization problem P is a general linear program, Zhang and Liu [18, 19]
discussed linear programming approaches for the `1 and `∞ case. Recently, Ahuja
and Orlin [1] proved that if the underlying optimization problem P is polynomially
solvable, then the standard inverse optimization problem under the `1 or the `∞

Date: Submitted July 24, 2002. Revised June 9, 2003 and February 7, 2004.
∗ This research has been supported in part by the National Science Foundation under CAREER

Award DMII-0133943. The authors thank two anonymous reviewers for valuable comments.
† Corresponding author, E-mail: sahmed@isye.gatech.edu.

1

2 S. AHMED AND Y. GUAN

norm is also polynomially solvable. For a comprehensive survey of the literature on
inverse optimization, the reader is referred to Heuberger [10].

In this paper, we consider the following generalization of the above standard
inverse optimization problem: given the optimization problem P , a desired optimal
objective value z?, and a set of feasible cost vectors C, determine a cost vector
c? ∈ C such that the corresponding optimal objective value of P is closest to
z?. Note that here the optimal objective value rather than the optimal solution
is specified. We refer to this problem as the inverse optimal value problem to
distinguish it from standard inverse optimization problems.

Unlike standard inverse optimization, the inverse optimal value problem has re-
ceived little attention in the literature. One of the earliest works that allude to this
class of problems is a minimax (center) location model due to Berman et al. [5].
Here the authors considered a problem of determining edge lengths in a graph
such that the induced minimax distance from a given vertex to all other vertices is
within prescribed bounds. The authors showed that the problem is NP-complete
for general graphs and described a mixed-integer programming formulation. For
tree graphs, the authors described a linear programming formulation. Zhang et
al. [20] suggested a strongly polynomial time algorithm for the above inverse lo-
cation problem on tree graphs. Burton et al. [6] considered a generalization of
the standard inverse optimization problems described in [7, 8]. Here, instead of
exactly specifying the shortest paths, desired upper bounds on the shortest path
lengths are specified. The goal is to identify edge lengths in the graph such that
the induced shortest path lengths satisfy the pre-specified upper bounds. The au-
thors proved that obtaining a global solution to this problem is NP-complete, and
provided an algorithm for obtaining local solutions. Fekete et al. [9] discussed a
similar problem of determining edge lengths such that these lengths exactly induce
pre-specified shortest path lengths between vertex pairs. The authors cite an appli-
cation in determining travel times in a road network from the observed travel times
between some source-destination pairs. Fekete et al. [9] proved that this problem
is NP-complete, and identified some polynomially solvable cases.

This paper is motivated in part by an application in telecommunication band-
width pricing as proposed by Paleologo and Takriti [13]. Consider a bandwidth
provider trying to price out city-to-city links on its bandwidth network. Suppose
the observed traded price of a bandwidth link between two cities s and t in this
network is zst. Then the link prices should be such that the total price of the
links on the cheapest path between s and t should be close to zst. Otherwise an
arbitrage opportunity opens up where a prudent trader can buy the cheaper of the
two options – buying the links on the cheapest path or the traded link between
city s and t – and sell the expensive option. Paleologo and Takriti [13] suggested a
mixed-integer programming formulation for this bandwidth pricing problem. Note
that this problem is an optimization version of the feasibility problem considered
by Fekete et al. [9]. It should be pointed out that the bandwidth pricing problem
in [13] is essentially an inverse multi optimal value problem – one wishes to find
link prices such that the price of the cheapest path between city s and t, i.e., the
optimal value of the shortest s − t path problem, is close to zst for all such s − t
pairs. On the other, the problem considered in this paper is an inverse single opti-
mal value problem where we are seeking an objective coefficient vector that matches
a single optimal value function to a desired optimal value. Our study of inverse

THE INVERSE OPTIMAL VALUE PROBLEM 3

single optimal value problems constitutes a first step towards the understanding of
more general inverse multi optimal value problems.

To our knowledge, apart from the above mentioned context of shortest paths
on graphs, the inverse optimal value problem in a general setting has not been
addressed previously. In this paper, we address an inverse optimal value problem
where the underlying optimization problem is a linear program, and the set of cost
vectors is restricted to a convex compact set. We show that the problem is NP-hard.
Under very general assumptions, we provide structural characterization under which
the problem reduces to a concave maximization or a concave minimization problem.
We provide sufficient conditions under which the associated concave minimization
problem and, correspondingly, the inverse optimal value problem is polynomially
solvable. For the case when the set of feasible cost vectors is polyhedral, we describe
an algorithm for the problem based on solving linear and bilinear programming
problems. Finally, we report on some preliminary computational experience.

2. Problem Statement, Notation, and Assumptions

In this section, we formally state the inverse optimal value problem under study,
introduce the notation, and state some assumptions used throughout the paper.

Consider the optimal value function of a linear program in terms of its cost vector

(1) Q(c) := min
x
{cT x | Ax = b, x ≥ 0},

where x ∈ Rn. Given a set C ⊆ Rn of the objective cost vectors and a real number
z?, this paper is concerned with the inverse optimization problem of finding a cost
vector from the set C such that the optimal objective value of the linear program
(1) is “close” to z?. The problem can be formulated as

(2) min
c
{f(c) | c ∈ C},

where f(c) := |Q(c) − z?| if Q(c) ∈ R and f(c) := +∞ if Q(c) ∈ {−∞,+∞}. We
refer to (2) as the inverse optimal value problem. Note that an instance of (2) is
given by specifying the linear programming value function Q, the set of feasible
cost vectors C, and the desired optimal objective value z?. We shall denote such
an instance by P(Q, C, z?).

Let us define the sets Cz? := {c | Q(c) ≥ z?} and C∞ := {c | Q(c) > −∞}. We
shall frequently refer to the set C := C ∩ Cz? . Given a compact set C, let cL be a
point such that cL

j = min{cj | c ∈ C} for all j = 1, . . . , n, and cL be a point such
that cL

j = min{cj | c ∈ C} for all j = 1, . . . , n. Similarly, we let cU be a point such
that cU

j := max{cj | c ∈ C} for all j = 1, . . . , n. Given a point c ∈ C, we let [cL, c]
denote the line-segment joining cL to c. We denote the “lower boundary” of C as
∂LC :=

{
c ∈ C | [cL, c] ∩ C = {c}

}
. It is easily verified that ∂LC ⊆ ∂C, where

∂C denotes the relative boundary of C. We let Ω(C) denote the set of extreme
points of the convex set C. Similar definitions hold for the set C. Finally, we define
the notion of non-decreasing functions. Given two vectors a and b in Rn, we write
a < b if aj ≤ bj for all j = 1, . . . , n and aj′ < bj′ for some index j′. A function
g : Rn 7→ [−∞,+∞] is non-decreasing if for a, b ∈ Rn such that a < b, we have
g(a) ≤ g(b).

Throughout the rest of this paper, we make the following assumptions:
(A1) The feasible region of the linear program {x | Ax = b, x ≥ 0} is non-empty.

4 S. AHMED AND Y. GUAN

(A2) The set of cost vectors C is non-empty, compact, and convex.
(A3) C ∩ C∞ 6= ∅.

By assumption (A1), we have that Q : Rn 7→ [−∞,+∞). Using strong duality, we
can then write

(3) Q(c) = max
π
{πT b | πT A ≤ c},

and also Cz? = {c | ∃ π s.t. πT A ≤ c, πT b ≥ z?} and C∞ = {c | ∃ π s.t. πT A ≤ c}.
The following properties are easily verified.

Proposition 2.1. (i) Q(·) is upper-semi-continuous over Rn. (ii) Q(·) is piece-wise
linear, concave and continuous over C∞. (iii) The sets Cz? and C∞ are closed and
convex.

Furthermore, the non-negativity restriction in the linear program (1) implies that

Proposition 2.2. Q(·) is non-decreasing over Rn.

Finally, since f(·) is continuous over the non-empty compact set C ∩ C∞, we have
that

Proposition 2.3. The inverse optimal value problem (2) has a finite optimal so-
lution.

3. Complexity

In this section, we prove that the inverse optimal value problem (2) is NP-hard.
Our complexity proof relies on establishing equivalence between the inverse optimal
value problem and the binary integer feasibility problem. Given an integer matrix
B ∈ Zm×n, and an integer vector d ∈ Zm, the binary integer feasibility problem
can be stated as follows

Is there a vector x ∈ {0, 1}n such that Bx ≤ d?
An instance of the binary integer feasibility problem is specified by the matrix-
vector pair (B, d). We shall denote such an instance by B(B, d).

Lemma 3.1. Given an instance B(B, d), we can construct an instance P(Q̂, Ĉ, ẑ∗)
of the inverse optimal value problem, such that B(B, d) has an answer “yes” if and
only if the optimal objective value of P(Q̂, Ĉ, ẑ∗) is zero.

Proof. Given an instance B(B, d) with B ∈ Zm×n, and d ∈ Zm, let us define the
compact polyhedral set

Ĉ :=
{

(c1, c2, c3)T ∈ R3n | c1 ∈ Rn, c2 ∈ Rn, c3 ∈ Rn,

Bc1 ≤ d, c1 = c2, c3 = e,

0 ≤ c1 ≤ e, 0 ≤ c2 ≤ e
}

,

and the linear programming value function Q̂ : R3n 7→ R as:

Q̂(c) := min cT
1 u− cT

2 v + cT
3 v

s.t. u + v ≥ e, u ∈ Rn
+, v ∈ Rn

+,

where e ∈ Rn is a vector of ones. Finally, letting ẑ∗ = 0, we have an instance
P(Q̂, Ĉ, ẑ∗) of the inverse optimal value problem.

THE INVERSE OPTIMAL VALUE PROBLEM 5

Suppose B(B, d) has an answer “yes,” i.e., there exists x̂ ∈ {0, 1}n such that Bx̂ ≤
d. Consider a cost vector ĉ = (c1, c2, c3)T such that c1 = c2 = x̂ and c3 = e. Clearly
ĉ ∈ Ĉ. Now, note that

Q̂(ĉ) :=
∑n

j=1

(
min x̂juj + (1− x̂j)vj

s.t. uj + vj ≥ 1, uj , vj ≥ 0
)
.

Since x̂j ∈ {0, 1}, we have x̂j = 0 implies vj = 0, and x̂j = 1 implies uj = 0. Thus
Q̂(ĉ) = 0 = ẑ∗ and the optimal objective function in P(Q̂, Ĉ, ẑ∗) is zero.

Now suppose the optimal objective value in P(Q̂, Ĉ, ẑ∗) is zero, i.e., there exists
c ∈ Ĉ such that Q̂(c) = 0. Let c := (ĉ, ĉ, e)T , where ĉ ∈ Rn. Note that

Q̂(c) =
n∑

j=1

Q̂j(ĉ),

where

Q̂j(ĉ) = min ĉjuj + (1− ĉj)vj

s.t. uj + vj ≥ 1, uj , vj ≥ 0.

Since 0 ≤ ĉj ≤ 1, the optimal value of the above linear program will satisfy
Q̂j(ĉ) = min{ĉj , 1 − ĉj} for all j. Furthermore, Q̂(c) = 0 implies Q̂j(ĉ) = 0 for all
j. It then follows that ĉj ∈ {0, 1} for all j. Then, from the fact that (ĉ, ĉ, e)T ∈ Ĉ,
we have that the binary vector x = ĉ provides an affirmative answer for B(B, d). 2

Theorem 3.1. The inverse optimal value problem is NP-hard.

Proof. Lemma 3.1 shows that we can provide an answer to any binary integer fea-
sibility question by constructing and solving an equivalent instance of the inverse
optimal value problem. The claim follows from the fact that the binary integer fea-
sibility problem is NP-complete, and that the construction in Lemma 3.1 is clearly
polynomial. 2

4. Structural results

In this section, we describe some structural conditions to reduce the inverse
optimal value problem to well-known optimization problems. Our analysis centers
on whether the set C is empty or non-empty.

Proposition 4.1. Suppose C = ∅. Let c? be an optimal solution of

(4) max{Q(c) | c ∈ C},

then c? is an optimal solution of the inverse optimal value problem (2).

Proof: Since Q(c) is upper-semi-continuous over the non-empty, convex, and com-
pact feasible region C, problem (4) has a well-defined optimal solution. Since C = ∅,
it follows that Q(c) < z? for all c ∈ C. Problem (2) then reduces to (4). 2

6 S. AHMED AND Y. GUAN

Using the dual representation (3) of Q(c), we can state problem (4) in the above
proposition as:

(5)
maxc,π bT π,
s.t. c ∈ C,

πT A− c ≤ 0.

The above problem involves maximizing a linear function over a convex set for
which a variety of efficient algorithms exist. If C is polyhedral, problem (5) is
simply a linear program.

Proposition 4.2. Suppose C 6= ∅. Let c? be an optimal solution to

(6) min{Q(c) | c ∈ C},

then c? is an optimal solution of the inverse optimal value problem (2).

Proof: We first argue that there exists a solution c? to the inverse optimal value
problem (2) such that c? ∈ C. Suppose the claim is not true. Then there exists
c? ∈ C\C such that f(c?) ≤ f(c) for all c ∈ C. Note that c? ∈ C∞, otherwise
it is not an optimal solution. Since c? 6∈ C, we have Q(c?) < z?. Now, consider
a point c′ ∈ C. Note that Q(c′) ≥ z? > Q(c?). Define cλ := λc? + (1 − λ)c′ for
any λ ∈ (0, 1). Since both c? and c′ are in the convex set C ∩ C∞, so is cλ for
any λ ∈ (0, 1). Also, by Proposition 2.1(ii), Q(·) is concave and continuous over
[c?, c′]. By concavity of Q(·) we have Q(cλ) ≥ λQ(c?)+(1−λ)Q(c′) > Q(c?) for any
λ ∈ (0, 1). By continuity of Q(·) we can choose λ sufficiently close to 1 such that
Q(cλ) ≤ z?. Thus f(cλ) = z?−Q(cλ) < z?−Q(c?) = f(c?). Therefore c? cannot be
an optimal solution to problem (2). Thus, if C 6= ∅ there exists an optimal solution
c? to (2) such that c? ∈ C. Note that Q(c) ≥ z? for all c ∈ C, thus problem (2)
reduces to problem (6), and the claim follows. 2

Problem (6) in the above proposition amounts to minimizing a concave function over
a convex set. Using the primal representation of Q(c) and the dual representation of
C, it can be easily verified that problem (6) is equivalent to the following problem:

(7)

minc,x,π cT x,
s.t. c ∈ C,

πT A− c ≤ 0, πT b ≥ z?

Ax = b, x ≥ 0.

The above problem involves minimizing a bilinear objective function over a convex
constraint set. When the constraint set is polyhedral, this class of non-convex
programs are known as bilinear programs (cf. [2, 11]). Since the variables c and
x are not coupled through any constraints, such bilinear problems are referred to
as uncoupled or disjoint. A wide variety of optimization techniques have been
proposed for solving disjoint bilinear programming problems. In Section 6, we use
one such technique in the context of the inverse optimal value problem.

We conclude this section by exploiting the monotonicity property of Q(c) to
show that, in case C 6= ∅, there exists a global solution to the inverse optimal value
problem that is an extreme point on the “lower boundary” of C. In Section 5, this
characterization will suggest sufficient conditions under which the inverse optimal
value problem is polynomially solvable.

The following lemma follows from the fact that C is a compact convex set.

THE INVERSE OPTIMAL VALUE PROBLEM 7

Lemma 4.1. Given any point c? ∈ C, there exists c′ ∈ [cL, c?] such that c′ ∈ ∂LC.

Proposition 4.3. If C 6= ∅, then there exists an optimal solution c? of the inverse
optimal value problem (2) such that c? ∈ ∂LC ∩ Ω(C).

Proof: We first argue that the set ∂LC∩Ω(C) is non-empty. Let S = argmin{eT c | c ∈
C}. We claim that S ⊆ ∂LC. Suppose not. Consider c′ ∈ S \ ∂LC. Since c′ ∈ C,
by Lemma 4.1, there exists c′′ ∈ ∂LC such that c′′ < c′, thus eT c′′ < eT c′, and c′

cannot be in S. Since S ∩ Ω(C) 6= ∅, we have ∂LC ∩ Ω(C) 6= ∅.
Now note that by Proposition 4.2, problem (2) is equivalent to problem (6).

Consider an optimal solution c? to problem (6) such that c? 6∈ ∂LC ∩ Ω(C). By
Lemma 4.1, there exists c′ < c? such that c′ ∈ ∂LC. By the non-decreasing property
of Q(·), we have Q(c′) ≤ Q(c?), therefore c′ is also an optimal solution. By convex-
ity of C, we can write c′ =

∑
i∈I λici + (1 −

∑
i∈I λi)c0 where I is an appropriate

index set, ci ∈ Ω(C) and λi ≥ 0 for i ∈ I,
∑

i∈I λi ≤ 1, and c0 ∈ ∂LC ∩ Ω(C).
Using concavity of Q we have that Q(c′) ≥

∑
i∈I λiQ(ci) + (1 −

∑
i∈I λi)Q(c0).

Since Q(c′) ≤ Q(ci) for all i ∈ I, we have that Q(c0) ≤ Q(c′), thus c0 ∈ ∂LC∩Ω(C)
is also an optimal solution for the problem. 2

5. Conditions for polynomial solvability

From the analysis of the previous section, it is clear that the difficulty in solving
the inverse optimal value problem arises in case C 6= ∅. In this case, we are required
to solve the concave minimization problem (6). Recall that Proposition 4.3 suggests
that there exists a global optimal solution to problem (6) that lies on an extreme
point on the “lower boundary” of C. If we have that cL ∈ C then it is easily verified
that ∂LC ∩Ω(C) = {cL}. Consequently, cL is an optimal solution of (6), and hence
of the inverse optimal value problem (2).

In this section we state more general conditions guaranteeing easy solvability of
the inverse optimal value problem. In addition to assumptions (A1)-(A3), we shall
also require the following assumption

(A4) C ⊆ C∞.
Assumption (A4) guarantees that the underlying linear program is bounded for all
cost vectors in C. The assumption is trivially satisfied when the feasible region
{x | Ax = b, x ≥ 0} of the underlying LP is bounded.

Proposition 5.1. Suppose C 6= ∅ and cL ∈ C. Let c? be an optimal solution to
the following problem

(8) min{eT c | c ∈ C}.
Then c? is an optimal solution to problem (6) and, hence, is an optimal solution to
the inverse optimal value problem (2).

Proof: Consider first the case when cL ∈ C. Then from Proposition 4.3, it follows
that cL is an optimal solution to problem (6) (since ∂LC ∩ Ω(C) = {cL}) and,
hence, is an optimal solution to the inverse optimal value problem (2). The claim
then follows from noting that in this case c? = cL is the unique optimal solution of
(8).

Now consider the case that cL 6∈ C. Suppose that the claim is not true. Then
z? < Q(c?). Since cL 6∈ C, we have −∞ < Q(cL) < z? < Q(c?) where the first

8 S. AHMED AND Y. GUAN

inequality is a consequence of Assumption (A4). Since cL ∈ C, we have that
[cL, c?] ∈ C ∩ C∞. By Proposition 2.1(ii) Q(·) is continuous over [cL, c?], so there
exists c′ ∈ (cL, c?) such that Q(c′) = z?. Then c′ ∈ C and, since clearly c′ < c?, we
have eT c′ < eT c?. Therefore c? cannot be an optimal solution to (8). 2

Problem (8) above is equivalent to

(9)
minc,π eT c,
s.t. c ∈ C,

πT A− c ≤ 0, πT b ≥ z?,

and is a convex program with a linear objective, and can be solved quite efficiently.
In particular, when C is polyhedral, problem (9) is simply a linear program.

Theorem 5.1. If cL ∈ C, and the convex programs (4) and (8) can be solved
in polynomial time, then the inverse optimal value problem (2) can be solved in
polynomial time.

Proof: If (8) can be solved in polynomial time, then we can verify whether the con-
vex set C = ∅ in polynomial time. If C 6= ∅, then by Proposition 5.1, an optimal
solution of (8) is an optimal solution of (2). If C = ∅, Proposition 4.1 implies that
an optimal solution to (2) can be found in polynomial time by solving the convex
program (4). 2

Theorem 5.2. If cL ∈ C, and the convex programs (4) and (8) can be solved
in polynomial time, then the inverse optimal value problem (2) can be solved in
polynomial time.

Proof: As discussed in the proof of Theorem 5.1, we can recognize and deal with
the case C = ∅ in polynomial time. Therefore, suppose C 6= ∅. If Q(cL) ≥ z?,
then it immediately follows that cL = cL and cL is an optimal solution. Suppose
Q(cL) < z?. Consider any solution c′ ∈ C, for example a solution of (8). Then
−∞ < Q(cL) < z? ≤ Q(c′), where the first inequality follows from Assumption
(A4) and the third inequality follows from the definition of c′. From the continuity
of Q(·), we can find (in polynomial time) an optimal solution c? ∈ [cL, c′] such that
Q(c?) = z? by line search. 2

The line search strategy mentioned in the above proof can be efficiently executed
through parametric linear programming as outlined in the next section.

6. Solving the polyhedral case

The analysis in Section 4 suggests that we can solve the inverse optimal value
problem by first checking whether C = ∅, and then solving the corresponding
convex problem (5) or the non-convex problem (7). Furthermore, in case C 6= ∅, we
can refine this scheme by verifying the condition cL ∈ C, and accordingly solving
the convex program (8). In this section, we develop linear programming based
procedures to identify and deal with each of the above situations when the set C is
polyhedral, i.e., in addition to assumptions (A1)-(A4), we shall assume henceforth
that

(A5) The set C is polyhedral, i.e., C = {c | Bc ≤ d}.

THE INVERSE OPTIMAL VALUE PROBLEM 9

The Solution Strategy

The first step in our solution procedure is to check if the polyhedral set C = ∅.
This can be accomplished by solving problem (9) which, under assumption (A5),
reduces to the linear program:

(10)
minc,π eT c,
s.t. Bc ≤ d,

πT A− c ≤ 0, πT b ≥ z?.

If the above LP is infeasible, we conclude C = ∅. Otherwise, C 6= ∅, and we denote
an optimal solution of (10) by c0.

If C = ∅, we obtain an optimal solution of the inverse optimal value problem
by computing an optimal solution of problem (5) which, under assumption (A5),
reduces to the linear program:

(11)
maxc,π bT π,
s.t. Bc ≤ d,

πT A− c ≤ 0.

Consider now the case C 6= ∅. We first compute the vector cL by solving the
linear program

(12)
cL
j = minc,π eT

j c,
s.t. Bc ≤ d,

πT A− c ≤ 0, πT b ≥ z?

for each j = 1, . . . , n. In the above problem, ej is the j-th unit vector. If cL ∈ C,
then we conclude that c0 (the optimal solution of problem (10)) is an optimal
solution for the inverse optimal value problem.

If cL 6∈ C, then we need to solve the non-convex program (7), which under
assumption (A5), reduces to the disjoint bilinear program:

(13)

minc,x,π cT x,
s.t. Bc ≤ d,

πT A− c ≤ 0, πT b ≥ z?

Ax = b, x ≥ 0.

Note that the above problem is stated in terms of the variables c, x, and π. Assump-
tion (A4) allows for substantial simplification of (13). Recall that problem (13) is
equivalent to min{Q(c) | c ∈ C}. Instead, let us consider the problem

(14) min{Q(c) | c ∈ C}.

Assumption (A4) guarantees that Q(c) is continuous over C, hence problem (14) is
well-defined. We can now re-state this problem as

(15)
minc,x cT x,
s.t. Bc ≤ d,

Ax = b, x ≥ 0.

Problem (15) avoids inclusion of the π variables in the bilinear formulation and is
significantly easier to solve than (13). Note, however, that a solution of (15) is no
longer guaranteed to satisfy Q(c) ≥ z?, and is, therefore, not necessarily an optimal
solution of the inverse optimal value problem. Let (c′, x′) be a global optimal
solution of problem (15). If c′T x′ ≥ z?, then clearly c′ ∈ C and is, therefore, a global

10 S. AHMED AND Y. GUAN

optimal solution of the inverse optimal value problem. Otherwise if c′T x′ < z?, then
we have Q(c′) < z? ≤ Q(c0), where c0 is an optimal solution of problem (10). By
the continuity of Q(c) over C we know that there exists c? ∈ [c′, c0] such that
Q(c?) = z?, hence c? is an optimal solution of the inverse optimal value problem.
Such a c? is easily computed by parametric linear programming as follows. Let x0

be an optimal basic solution of the LP corresponding to Q(c0). Starting from basis
of x0, solve the parametric linear program

(16) F (λ) = min{(c0 + λ∆)T x | Ax = b, x ≥ 0},
with ∆ = c′−c0, for λ ∈ [0, 1] to find λ? such that F (λ?) = z?. Then c? = c0 +λ?∆
is an optimal solution to the inverse optimal value problem.

Algorithm 1 summarizes the above mentioned solution strategy for solving the
inverse optimal value problem when the set C is polyhedral.

Algorithm 1 Solution strategy for the inverse optimal value problem (2)

solve the linear program (10).
if problem (10) is infeasible, i.e., C = ∅ then

solve the linear program (11), and let c? be its optimal solution.
else {problem (10) is feasible, i.e., C 6= ∅}

let c0 be an optimal solution of (10).
compute cL by solving the linear programs (12) for j = 1, . . . , n.
if cL ∈ C then

set c? ← c0.
else {cL 6∈ C}

solve the bilinear program (15) and let (c′, x′) be an optimal solution.
if c′T x′ ≥ z? then

set c? ← c′.
else {c′T x′ < z?}

solve the parametric linear program (16) to find c? ∈ [c′, c0] such that
Q(c?) = z?.

end if
end if

end if
return c? as the optimal solution.

Disjoint Bilinear Programming

A key step in the solution strategy outlined above is solving the disjoint bilinear
program (15). A wide variety of solution strategies have been proposed in the
literature – see, for example, [2, 3, 11, 14, 15, 16, 17] and references therein. In this
paper we use a particularly simple linear programming based strategy proposed
by Bennett and Mangasarian [4]. This scheme starts out with an initial feasible
solution to the disjoint bilinear program, and iterates by solving two linear programs
– one in terms of the x variables and the other in terms of the c variables– to improve
the bilinear objective cT x. The procedure is summarized in Algorithm 2. Note that
“arg vertex partial min” denotes an extreme point solution whose objective value
is no bigger than that corresponding to the previous iterate. The following result
establishes the convergence of the algorithm.

THE INVERSE OPTIMAL VALUE PROBLEM 11

Algorithm 2 Solving the disjoint bilinear program (15)

start with an initial feasible solution (x0, c0).
set i = 0.
while there is an improvement do

compute (xi+1, ci+1) from (xi, ci) such that
xi+1 ∈ arg vertex partial minx{ciT x | Ax = b, x ≥ 0},
ci+1 ∈ arg vertex partial minc{xi+1T

c | Bc ≤ d},
and ci+1T

xi+1 < ciT xi.
set i← i + 1.

end while
return ci as the solution.

Proposition 6.1. Algorithm 2 terminates in a finite number of steps at either a
global solution of (15) or a solution (xi+1, ci) satisfying the necessary optimality
condition: ciT (x − xi+1) + xi+1T (c − ci) ≥ 0 for all x ∈ {x | Ax = b, x ≥ 0} and
all c ∈ {c | Bc ≤ d}.

Proof: See [4]. 2

Although Algorithm 2 is not guaranteed to terminate at a global solution, our
computational results in Section 7 indicate that its performance is quite satisfactory
in the context of the inverse optimal value problem.

Remarks on the Proposed Strategy

Unless available a priori, computing cL in Algorithm 1 by solving the n lin-
ear programs (12) can be quite expensive. We can defer (and sometimes may be
able to avoid) this computation by initializing the bilinear programming algorithm
(Algorithm 2) appropriately.

Proposition 6.2. If cL ∈ C and Algorithm 2 is initialized with the solution (x0, c0)
where c0 is an optimal solution of problem (10) and x0 ∈ argminx{c0T

x | Ax =
b, x ≥ 0}, then Algorithm 2 will terminate with a solution c′ such that Q(c′) =
Q(c0) or Q(c′) < z?.

Proof: Clearly Algorithm 2 will terminate with a solution c′ ∈ C satisfying Q(c′) ≤
Q(c0). Let us suppose that z? ≤ Q(c′) < Q(c0). This implies that c′ ∈ C. Since
cL ∈ C, by Proposition 5.1 we have that c0 is a global optimal solution of prob-
lem (6), i.e., Q(c0) ≤ Q(c′). Hence we have a contradiction. 2

The above result suggests that if Algorithm 2 is initialized with the solution (x0, c0),
then we need to check the condition cL ∈ C only if Q(c′) > z? and Q(c′) = Q(c0).
If Algorithm 2 terminates at a point c′ such that Q(c0) > Q(c′) > z?, then Propo-
sition 6.2 implies cL /∈ C, and consequently, we do not need to calculate cL. In
this case, we cannot guarantee a global optimal solution and conclude that c′ is an
approximate optimal solution with an optimality gap of no more than (Q(c′)− z?).
If, on the other hand, Q(c0) = Q(c′) > z?, then we calculate cL to see if cL ∈ C.
If this condition is satisfied then we are guaranteed that c′ is a global optimal so-
lution. If cL 6∈ C, then we conclude that c′ is an approximate optimal solution

12 S. AHMED AND Y. GUAN

with an optimality gap of no more than (Q(c′)−max{z?, Q(cL)}). This bound on
the optimality gap follows from the fact that if c? is an optimal solution, then we
know that Q(c?) ≥ z? and Q(c?) ≥ Q(cL) (since c? ∈ C). Following the preceding
discussion, we can modify Algorithm 1 to Algorithm 3.

Algorithm 3 Modified Algorithm

solve the linear program (10).
if problem (10) is infeasible, i.e., C = ∅ then

solve the linear program (11), and let c? be its optimal solution (c? is a global
optimal solution to (2)).

else {problem (10) is feasible, i.e., C 6= ∅}
let c0 be an optimal solution of (10) and x0 ∈ argminx{c0T

x | Ax = b, x ≥ 0}.
solve the bilinear program (15) using Algorithm 2 with (x0, c0) as the initial
solution. Let (c′, x′) be the solution returned by Algorithm 2.
if c′T x′ = z? then

set c? ← c′ (c? is a global optimal solution of (2)).
else if c′T x′ > z? then

if c′T x′ = c0T
x0 then

compute cL by solving the linear programs (12) for j = 1, . . . , n.
if cL ∈ C then

set c? ← c′ (c? is a global optimal solution of (2)).
else {cL 6∈ C}

set c? ← c′ (c? is an approximate solution of (2) with an optimality gap
≤ (c′T x′ −max{z?, Q(cL)}).

end if
else {c′T x′ < c0T

x0}
set c? ← c′ (c? is an approximate solution of (2) with an optimality gap
≤ (c′T x′ − z?).

end if
else if c′T x′ < z? then

solve the parametric linear program (16) to find c? ∈ [c′, c0] such that
Q(c?) = z? (c? is a global optimal solution of (2)).

end if
end if
return c?.

Finally, note that it is not always necessary to execute Algorithm 2, the bilinear
programming subroutine, to termination. If at any point in this subroutine we
obtain a solution (x′, c′) satisfying c′T x′ ≤ z?, we can terminate and return.

7. Computational Results

The proposed solution strategy was implemented in C++ using the CPLEX7.0
linear programming library routines. All computations were carried out on a Pen-
tium II 450MHz processor PC with 256 MB RAM running Windows 2000. The
proposed strategy was tested on several instances of the inverse optimal value prob-
lem wherein the underlying linear programs were either generated randomly or
taken from the NETLIB [12] standard test set. Next, we describe the details of the
computational experiments for each of these two cases.

THE INVERSE OPTIMAL VALUE PROBLEM 13

Randomly generated LPs

Here we describe experiments with instances of the inverse optimal value problem
for randomly generated linear programs of the form min{cT x | x ∈ X}. The feasible
region of the LP is restricted to a polytope of the form X = {x | Ax ≤ b, 0 ≤
x ≤ xU} to guarantee boundedness. We consider several different problem sizes in
terms of the number of columns n and the number of rows m in A. In each case,
we choose xU = 100e, where e ∈ Rn is a vector of ones. The elements of A and
b are uniformly generated in the interval [−50, 50]. Only feasible instances of the
LPs are considered. Furthermore, we also ensure that 0 6∈ X to avoid generating
redundant instances. The set of cost vectors C is also restricted to be a polytope
of the form C = {c | Bc ≤ d, l ≤ c ≤ u}. The number of rows and columns in B
are the same as that in A. We choose l = −100e and u = 100e, and the elements
of B and d are uniformly generated in the interval [−50, 50]. Only feasible sets of
cost vectors are considered.

First, we consider instances of the inverse optimal value problem satisfying C =
∅. Such instances are generated by setting z? = min{c?T x | x ∈ X} where c? =
u + εe, with ε being a small positive scalar. This guarantees that Q(c) < z? for
all c ∈ C, and therefore C = ∅. Recall that in this case, the algorithmic procedure
is guaranteed to find a global optimal solution, and reduces to solving two linear
programs – first problem (10) is solved to check C = ∅, and then problem (11)
produces an optimal solution to the inverse optimal value problem. Table 1 presents
the computational times for various problem sizes. For each problem size, we report
the minimum, average, and maximum CPU time over 20 feasible instances.

Next we consider problem instances where C 6= ∅ but C ⊂ C. Such instances are
generated by setting z? = min{c?T x | x ∈ X} where c? is a vector in C. Thus c? is a
global optimal solution to the generated instance. For these instances, Algorithm 1
first solves problem (10) to resolve that C 6= ∅, then it computes cL to check if
cL ∈ C, and finally invokes the bilinear programming algorithm if cL 6∈ C. We also
consider Algorithm 3 where we defer computing cL by initializing the bilinear algo-
rithm with the solution of problem (10). Tables 2 and 3 present the computational
results for various problem sizes. Here T1 is the time required by Algorithm 1, T2

is the time to compute cL, and T3 is the time required by Algorithm 3. Once again
the minimum, average, and maximum time over 20 instances is reported. Although
the bilinear algorithm is not guaranteed to converge to a global optimal solution,
in our experiments both algorithms converges to the known global solution c? for
each generated instance. Furthermore, Algorithm 3 never requires to check cL ∈ C
thereby avoiding a computationally expensive step. The CPU advantage in avoid-
ing the cL computation is clear from the tabulated results. Algorithm 3 is able to
solve instances of the inverse optimal value problem of size 100 × 100 in less than
8 seconds to global optimality.

Finally, we consider instances where C 6= ∅ and C = C. Such instances are
generated by setting z? = min{c?T x | x ∈ X} where c? = l − εe. In this case
the global optimal solution to the generated instance is not known a priori. We
compare the performance of the proposed algorithms to a straightforward mixed-
integer programming (MIP) model for computing a global optimal solution to the
inverse optimal value problem. The MIP formulation is described in the Appendix.
Similar MIP reformulations are suggested in [5, 13]. Tables 4 and 5 present the
computational results. The first two columns of the tables indicate the problem

14 S. AHMED AND Y. GUAN

sizes considered. We consider problem sizes of up to 28 columns and 16 rows, since
the MIP approach requires an excessive amount of computational time for larger
instances. For each problem size, we generate 10 instances. Column 4 of each
table presents the minimum, average, and maximum objective function optimality
gap of the proposed strategy with respect to the MIP solution. Columns labelled
T1, T2, and T3 present the minimum, average and maximum time required by
Algorithm 1, to compute cL, and Algorithm 3, respectively. In Algorithm 3 we
avoid computing cL altogether, and return c′ as an approximate solution. The
column labelled Tm reports the minimum, average, and maximum time required to
solve the MIP formulation using the CPLEX7.0 MIP solver. Finally, the last column
indicates the average number of iterations required by the bilinear algorithm. The
computational results indicate that the proposed algorithms are significantly faster
than the MIP approach. Although the optimality gap can be as high as 29%, the
proposed approaches appear to perform quite satisfactorily - returning solutions to
within 12% of optimality on average.

Standard LPs

In this section, we consider instances of the inverse optimal value problem gen-
erated from five standard LP test problems from the NETLIB repository [12]. The
specifications of these test problems are presented in Table 6. For each LP test
problem, let c? be its cost vector. We then generate an instance of the inverse opti-
mal value problem with c? as its global optimal solution as follows. The set of cost
vectors C is restricted to be a polytope of the form C = {c | Bc ≤ d, c? − 1000e ≤
c ≤ c? +1000e}. The number of columns in B are the same as that in LP test prob-
lem. The number of rows are varied to generate problems of different sizes. The
elements of B and d are uniformly generated in the interval [−50, 50]. To ensure
that c? ∈ C, if we find that the ith constraint satisfies Bic

? ≥ di, then we replace
the constraint with −Bic ≤ −di. Only feasible instances of C are considered. We
set z? equal to the optimal value of the test LP.

First we attempt to solve these five problems using the MIP approach described
in the Appendix. Table 7 presents the computational times for the case when the
set C is defined by just 10 constraints. Clearly the MIP approach is impractical.
Next, we test Algorithm 3 for the five problems with the number of rows defining
C to vary from 10 to 100. Table 8 presents the computational results. For each test
problem, we present the minimum, average, and maximum computational time over
10 instances. The percent of problems for which the proposed strategy converged
to the global optimal solution c? is also presented. The proposed strategy is able
to solve each of the problem instances to global optimality in less than 3 minutes.

THE INVERSE OPTIMAL VALUE PROBLEM 15

Table 1. Computational results for the case C̄ = ∅

Columns
Rows CPU s 10 20 30 40 50 60 70 80 90 100
10 Min 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1

Ave 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2
Max 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2

20 Min 0.0 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3
Ave 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.4 0.4
Max 0.5 0.1 0.1 0.1 0.2 0.2 0.3 0.4 0.5 0.6

30 Min 0.0 0.1 0.1 0.1 0.2 0.2 0.2 0.4 0.5 0.6
Ave 0.1 0.1 0.1 0.2 0.2 0.3 0.4 0.6 0.6 0.7
Max 0.1 0.2 0.3 0.2 0.3 0.4 0.6 0.7 0.9 0.9

40 Min 0.1 0.1 0.1 0.2 0.2 0.3 0.4 0.5 0.7 1.0
Ave 0.1 0.1 0.2 0.2 0.3 0.4 0.6 0.7 0.9 1.2
Max 0.4 0.2 0.3 0.3 0.3 0.5 0.7 0.9 1.1 1.5

50 Min 0.1 0.1 0.2 0.2 0.3 0.4 0.5 0.7 0.9 1.2
Ave 0.1 0.1 0.2 0.2 0.3 0.5 0.6 0.8 1.2 1.5
Max 0.2 0.2 0.3 0.3 0.5 0.5 0.7 1.0 1.4 1.7

60 Min 0.1 0.1 0.2 0.3 0.3 0.4 0.7 0.8 1.0 1.2
Ave 0.1 0.2 0.2 0.3 0.4 0.5 0.8 1.0 1.3 1.6
Max 0.3 0.6 0.5 0.4 0.4 0.7 0.9 1.1 1.7 2.1

70 Min 0.1 0.1 0.2 0.3 0.4 0.4 0.5 1.1 1.1 1.4
Ave 0.1 0.2 0.2 0.3 0.4 0.5 0.9 1.2 1.4 1.7
Max 0.5 0.3 0.4 0.5 0.7 0.9 1.8 1.3 1.6 2.0

80 Min 0.1 0.2 0.2 0.3 0.4 0.5 0.6 0.7 1.2 1.8
Ave 0.1 0.2 0.3 0.4 0.5 0.6 0.9 1.2 1.5 2.1
Max 0.2 0.5 1.0 0.8 1.0 0.8 1.1 1.4 2.1 2.3

90 Min 0.1 0.2 0.2 0.3 0.5 0.5 0.7 0.8 0.9 2.1
Ave 0.1 0.2 0.3 0.4 0.5 0.7 0.9 1.3 1.5 2.4
Max 0.5 0.3 0.4 0.7 0.7 1.0 1.4 2.5 1.7 2.8

100 Min 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.9 1.0 2.9
Ave 0.1 0.2 0.3 0.4 0.6 0.8 1.0 1.3 1.8 2.9
Max 0.3 0.3 0.5 0.7 1.1 1.1 1.2 1.4 2.3 2.9

16 S. AHMED AND Y. GUAN

Table 2. Computational results for the case ∅ ⊂ C̄ ⊂ C

Columns
10 20 30 40 50

Rows T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3
Min 0.3 0.1 0.2 0.5 0.3 0.2 1.0 0.7 0.2 1.2 0.9 0.3 1.6 1.3 0.3

10 Ave 0.4 0.2 0.2 0.7 0.4 0.3 1.4 1.1 0.3 1.7 1.3 0.3 2.4 2.0 0.4
Max 0.6 0.4 0.4 1.1 0.8 0.4 2.8 2.5 0.6 2.2 1.8 0.7 3.6 3.3 0.5

Min 0.8 0.3 0.5 1.4 0.9 0.5 2.1 1.5 0.6 2.9 2.2 0.7 4.3 3.5 0.8
20 Ave 0.9 0.4 0.6 1.8 1.2 0.6 2.8 2 0.7 3.7 2.9 0.8 5.2 4.4 0.8

Max 1.2 0.6 0.7 2.2 1.6 0.9 3.6 2.7 1.0 4.9 4.0 1.0 6.6 5.8 1.0

Min 1.0 0.4 0.5 1.6 1.0 0.5 2.5 1.7 0.7 3.7 2.8 0.8 5.0 4.0 0.9
30 Ave 1.1 0.5 0.6 2.1 1.4 0.7 3.1 2.3 0.8 4.4 3.5 0.9 6.0 4.9 1.1

Max 1.5 0.9 0.8 2.7 1.7 1.0 4.2 3.4 1.0 5.1 4.2 1.7 6.8 5.7 1.7

Min 1.0 0.4 0.5 2.0 1.3 0.7 3.0 2.1 0.8 4.0 3.0 0.9 5.7 4.6 1.1
40 Ave 1.1 0.5 0.6 2.3 1.6 0.7 3.9 3.1 0.9 5.5 4.5 1.0 7.0 5.8 1.2

Max 1.5 0.8 0.8 2.7 2.0 0.9 4.7 3.9 1.2 7.3 6.3 1.3 9.4 8.2 1.6

Min 1.0 0.5 0.5 2.2 1.5 0.7 4.0 2.9 0.9 4.4 3.3 1.0 6.1 4.5 1.2
50 Ave 1.2 0.6 0.6 2.5 1.8 0.8 4.6 3.6 1.0 6.9 5.7 1.2 9.3 7.9 1.5

Max 1.5 0.9 0.8 3.1 2.0 1.1 5.6 4.6 1.2 10.0 8.9 1.6 14.0 12.0 2.0

Min 1.0 0.5 0.6 2.3 1.5 0.7 4.6 3.6 1.0 5.4 4.1 1.2 7.3 5.6 1.5
60 Ave 1.3 0.6 0.7 2.7 1.9 0.8 5.3 4.1 1.1 9.0 7.6 1.3 12.0 10.4 1.9

Max 1.7 1.0 0.8 3.3 2.5 0.9 6.4 5.2 1.8 11.0 9.3 1.6 16.0 14.0 2.5

Min 1.1 0.5 0.6 2.3 1.5 0.8 5.2 4.0 1.1 9.0 7.3 1.3 12.0 10.1 1.7
70 Ave 1.3 0.6 0.7 2.8 1.9 1.0 5.8 4.5 1.2 10.0 8.4 1.7 16.0 14.2 1.9

Max 1.7 1.1 1.1 3.5 2.3 1.5 6.8 5.4 1.5 12.0 9.5 2.5 19.0 17.3 2.5

Min 1.2 0.5 0.6 2.4 1.5 0.9 5.3 4.1 1.1 10.0 8.7 1.4 12.0 9.5 1.9
80 Ave 1.4 0.6 0.7 3.0 2.1 1.0 6.3 5.0 1.4 12.0 9.8 1.9 18.0 15.9 2.3

Max 1.8 0.8 1.1 3.5 2.6 1.1 7.1 5.9 1.8 13.0 11.0 2.7 20.0 17.4 3.1

Min 1.2 0.5 0.7 2.8 1.7 0.9 5.9 4.7 1.2 11.0 9.3 1.6 18.0 16.0 2.0
90 Ave 1.5 0.7 0.8 3.2 2.2 1.0 6.7 5.3 1.4 12.0 11.0 1.8 21.0 18.5 2.3

Max 2.0 1.1 1.0 4.6 3.1 1.6 8.3 6.4 1.9 14.0 12.0 2.2 23.0 21.2 3.3

Min 1.2 0.5 0.7 2.9 1.8 1.0 6.3 4.9 1.2 12.0 10.0 1.8 21.0 19.2 2.2
100 Ave 1.4 0.7 0.8 3.4 2.3 1.1 7.2 5.6 1.6 14.0 12.0 2.1 23.0 20.5 2.6

Max 1.9 1.1 1.0 4.1 3.0 1.4 8.1 6.6 2.1 16.0 14.0 2.8 26.0 23.0 3.5

THE INVERSE OPTIMAL VALUE PROBLEM 17

Table 3. Computational results for the case ∅ ⊂ C̄ ⊂ C (contd.)

Columns
60 70 80 90 100

Rows T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3
Min 2.7 2.4 0.4 2.8 2.4 0.4 4.6 4.1 0.5 5.6 5.0 0.5 5.1 4.4 0.5

10 Ave 3.7 3.3 0.4 3.8 3.4 0.5 5.9 5.3 0.6 7.2 6.6 0.6 6.5 5.7 0.7
Max 4.9 4.5 0.7 5.3 4.9 0.6 7.9 7.2 0.8 9.0 8.5 0.8 8.5 7.5 1.1

Min 5.2 4.4 0.8 6.5 5.3 0.9 9.0 7.9 1.0 10.4 8.9 1.1 8.2 7.2 0.9
20 Ave 6.3 5.4 1.0 7.7 6.6 1.1 11.0 9.4 1.1 11.7 10.4 1.3 10.5 9.4 1.1

Max 7.4 6.3 1.3 9.2 7.8 1.4 12.0 11.0 1.8 13.1 11.6 2.0 13.5 12.6 1.6

Min 6.7 5.6 1.0 8.6 7.4 1.2 11.0 9.8 1.3 12.8 11.4 1.4 12.6 11.1 1.2
30 Ave 7.9 6.7 1.2 10.2 8.9 1.3 14.0 12.4 1.6 15.5 13.8 1.7 14.8 13.3 1.4

Max 9.5 7.9 1.7 11.7 10.4 1.7 17.0 15.3 2.4 18.3 16.4 2.7 16.6 15.2 2.1

Min 7.9 6.3 1.2 10.8 9.1 1.4 13.0 11.1 1.7 16.2 14.4 1.7 16.5 14.8 1.6
40 Ave 9.6 8.2 1.4 12.9 11.2 1.7 17.0 14.9 2.1 19.9 17.7 2.2 20.0 18.0 2.0

Max 11.7 10.1 1.8 17.5 15.3 2.7 21.0 18.1 2.8 24.8 22.0 2.8 24.8 22.3 2.8

Min 8.3 6.5 1.4 11.0 9.4 1.6 15.0 12.7 1.9 21.0 18.7 2.3 21.9 18.8 2.1
50 Ave 11.1 9.3 1.8 14.8 12.8 2.0 20.0 17.5 2.4 26.0 23.3 2.7 26.3 23.6 2.6

Max 14.8 13.2 2.6 19.1 17.3 3.5 26.0 23.4 3.3 31.5 29.2 4.1 32.3 29.7 4.2

Min 10.1 8.1 1.7 12.3 10.4 1.9 18.0 15.3 2.4 21.8 18.9 2.6 24.6 21.5 2.5
60 Ave 16.0 13.9 2.1 17.8 15.5 2.3 23.0 20.1 2.8 31.6 28.2 3.3 31.6 28.5 3.1

Max 24.7 22.8 3.2 33.0 30.3 3.2 30.0 27.6 3.6 37.9 34.7 4.5 37.9 34.9 4.6

Min 10.5 8.6 1.8 12.6 10.2 2.1 18.0 14.9 2.6 25.8 22.5 3.0 21.2 18.6 2.6
70 Ave 20.1 17.8 2.3 21.5 18.9 2.6 27.0 23.9 3.3 33.9 30.4 3.5 35.4 32.0 3.4

Max 27.8 25.1 2.9 36.5 33.6 3.4 52.0 49.1 4.4 44.3 39.0 5.3 43.8 40.1 4.4

Min 13.0 10.4 2.2 16.8 14.2 2.4 18.0 15.0 2.9 27.7 23.3 3.1 26.5 22.6 3.5
80 Ave 26.3 23.6 2.7 32.3 29.3 3.0 34.0 30.6 3.5 41.8 37.5 4.3 41.7 37.5 4.2

Max 32.3 28.8 3.6 46.0 43.4 3.6 61.0 57.1 4.5 54.3 48.5 5.8 56.3 52.1 5.7

Min 13.4 10.8 2.4 18.1 15.3 2.8 25.0 21.3 3.3 28.4 23.5 3.4 29.5 25.7 3.8
90 Ave 30.5 27.5 3.0 40.2 36.6 3.6 54.0 50.3 4.0 47.8 43.4 4.4 52.9 48.5 4.4

Max 35.8 33.3 4.5 50.3 46.4 4.8 79.0 74.8 5.2 97.6 93.8 5.5 119.0 114.0 5.2

Min 33.1 29.6 2.8 26.9 23.3 3.4 26.0 22.2 4.0 27.1 22.0 3.7 27.8 23.8 3.8
100 Ave 36.5 33.3 3.3 52.2 48.1 4.1 67.0 62.3 4.9 62.2 57.5 4.7 53.2 48.2 5.0

Max 39.8 36.0 4.5 60.3 56.2 6.0 84.0 78.6 7.1 113.1 108.0 6.3 116.0 111.0 7.3

18 S. AHMED AND Y. GUAN

Table 4. Computational results for the case C̄ = C

Columns Rows gap % T1 T2 T3 Tm Iterations
Min 0.0 0.10 0.00 0.10 0.00

4 4 Ave 0.0 0.20 0.00 0.10 0.00 3
Max 0.0 0.20 0.00 0.10 0.10

Min 0.0 0.20 0.10 0.10 0.00
8 4 Ave 3.0 0.20 0.10 0.10 0.10 7

Max 23.0 0.30 0.10 0.20 0.10

Min 0.0 0.20 0.10 0.10 0.10
12 4 Ave 8.0 0.30 0.20 0.10 0.20 8

Max 23.0 0.40 0.30 0.20 0.40

Min 0.0 0.40 0.10 0.10 0.10
12 8 Ave 5.0 0.40 0.20 0.30 0.10 6

Max 29.0 0.50 0.30 0.40 0.10

Min 0.0 0.30 0.20 0.10 0.10
16 4 Ave 0.0 0.40 0.20 0.20 1.90 9

Max 0.0 0.50 0.30 0.30 4.50

Min 0.0 0.40 0.20 0.20 0.10
16 8 Ave 1.0 0.50 0.30 0.20 0.30 5

Max 3.0 0.70 0.40 0.30 0.50

Min 0.0 0.30 0.20 0.10 0.90
20 4 Ave 0.0 0.30 0.20 0.10 11.30 6

Max 0.0 0.40 0.30 0.10 25.10

Min 0.0 0.40 0.20 0.10 0.20
20 8 Ave 12.0 0.40 0.20 0.20 1.90 8

Max 20.0 0.50 0.30 0.20 4.80

THE INVERSE OPTIMAL VALUE PROBLEM 19

Table 5. Computational results for the case C̄ = C (contd.)

Columns Rows gap % T1 T2 T3 Tm Iterations
Min 0.0 0.40 0.20 0.20 0.20

20 12 Ave 9.0 0.50 0.30 0.20 0.40 5
Max 25.0 0.60 0.30 0.30 0.60

Min 0.0 0.30 0.30 0.10 45.40
24 4 Ave 0.0 0.40 0.30 0.10 115.70 7

Max 0.0 0.50 0.30 0.20 167.10

Min 0.0 0.30 0.20 0.10 0.90
24 8 Ave 1.0 0.40 0.30 0.20 33.80 10

Max 5.0 0.60 0.30 0.30 124.40

Min 0.0 0.40 0.30 0.20 0.30
24 12 Ave 5.0 0.50 0.30 0.20 5.50 6

Max 24.0 0.80 0.40 0.50 17.20

Min 0.0 0.40 0.30 0.10 38.30
28 4 Ave 0.0 0.50 0.30 0.20 577.20 7

Max 0.0 0.60 0.40 0.30 1032.50

Min 0.0 0.40 0.30 0.10 2.30
28 8 Ave 0.0 0.50 0.30 0.20 237.70 10

Max 0.0 0.60 0.40 0.30 1055.30

Min 0.0 0.40 0.30 0.10 0.90
28 12 Ave 0.0 0.50 0.40 0.20 44.40 9

Max 0.0 0.70 0.40 0.30 169.60

Min 0.0 0.50 0.30 0.20 0.60
28 16 Ave 6.0 0.60 0.40 0.20 4.00 5

Max 19.0 0.80 0.50 0.40 5.70

20 S. AHMED AND Y. GUAN

Table 6. Standard linear programming problems

Samples Rows of X Columns Nonzeros
Brandy 221 249 2150
Degen2 445 534 4449

Bnl1 644 1175 6129
25fv47 822 1571 11127
Ganges 1310 1681 7021

Table 7. The MIP approach

Samples Rows of C MIP time
Brandy 10 3569 secs
Degen2 10 74825 secs

Bnl1 10 > 24 hrs
25fv47 10 > 24 hrs
Ganges 10 > 24 hrs

Table 8. Standard test problems

Brandy Degen2 Bnl1 25fv47 Ganges

Rows Time %† Time % Time % Time % Time %
10 Min 1.4 6.4 13.4 34.5 42.0

Ave 1.5 100 6.9 100 14.5 100 37.1 100 46.0 100
Max 1.8 7.7 16.7 40.5 48.6

20 Min 1.7 7.4 14.9 38.0 51.4
Ave 1.9 100 7.8 100 17.1 100 41.6 100 53.4 100
Max 2.1 8.4 19.3 48.0 56.9

30 Min 1.9 8.3 17.4 42.8 59.3
Ave 2.3 100 8.6 100 18.9 100 48.0 100 62.2 100
Max 3.0 8.9 20.6 53.5 66.8

40 Min 2.3 9.3 19.7 46.7 65.3
Ave 2.6 100 10.6 100 21.3 100 51.8 100 72.5 100
Max 3.0 12.7 22.8 58.5 85.6

50 Min 2.4 10.3 20.7 50.9 73.2
Ave 2.6 100 11.0 100 22.6 100 56.0 100 83.3 100
Max 3.0 12.3 24.0 63.1 92.0

60 Min 2.6 11.4 23.9 52.0 85.1
Ave 3.1 100 12.2 100 26.3 100 60.5 100 98.6 100
Max 4.9 13.5 28.1 69.8 105.6

70 Min 2.9 12.2 26.8 59.4 95.5
Ave 3.7 100 13.4 100 28.6 100 65.9 100 107.8 100
Max 4.6 14.2 31.8 72.6 129.7

80 Min 3.3 13.7 30.5 65.0 109.0
Ave 3.8 100 14.4 100 32.4 100 69.1 100 118.0 100
Max 4.3 15.9 34.8 73.1 128.5

90 Min 3.5 14.8 34.2 67.5 114.4
Ave 3.8 100 15.7 100 36.6 100 73.4 100 134.4 100
Max 4.4 16.3 41.2 78.2 153.1

100 Min 4.0 15.1 34.6 70.0 137.7
Ave 4.8 100 16.7 100 38.2 100 77.6 100 147.0 100
Max 5.9 18.7 40.1 85.5 161.9

† Percentage of samples that converged to global optimal solutions.

THE INVERSE OPTIMAL VALUE PROBLEM 21

Appendix: A mixed-integer programming formulation

It is easily verified that an instance of the inverse optimal value problem (2) can
be restated as the following mixed-integer program

min
u+,u−,c,x,y

u+ + u−,

s.t. u+ − u− = πT b− z?,

c ∈ C,

Ax = b,

0 ≤ x ≤My,

M(y − e) ≤ πT A− c ≤ 0,

y ∈ {0, 1}n,

where M is a sufficiently large number and e ∈ Rn is a vector of ones. The auxiliary
variables u+ and u− are used to model the absolute value function, and the binary
variables y along with the big-M are used to model the complementary slackness
condition between the primal and dual representations of Q(c).

References

[1] R. K. Ahuja and J. B. Orlin. Inverse optimization. Operations Research, 49:771–783, 2001.

[2] F. A. Al-Khayyal. Generalized bilinear programming. Part I: Models, applications and linear

programming relaxation. European Journal of Operational Research, 60:306–314, 1992.
[3] C. Audet, P. Hansen, B. Jaumard, and G. Savard. A symmetrical linear maxmin approach

to disjoint bilinear programming. Mathematical Programming, 85:573–572, 1999.
[4] K. P. Bennett and O. L. Mangasarian. Bilinear separation of two sets in n-space. Computa-

tional Optimization and Applications, 2:207–227, 1993.

[5] O. Berman, Z. Ganz, and J. M. Wagner. A stochastic optimization model for planning ca-
pacity expansion in a service industry under uncertian demand. Naval Research Logistics,

41:545–564, 1994.

[6] D. Burton, W. R. Pulleyblank, and Ph. L. Toint. The inverse shortest paths problem with
upper bounds on shortest path costs. In Network Optimization, Pardalos et al. (eds.), Springer

Verlag, Lecture Notes in Economics and Mathematical Systems, 450:156–171, 1997.

[7] D. Burton and Ph. L. Toint. On an instance of the inverse shortest paths problem. Mathe-
matical Programming, 53:45–61, 1992.

[8] D. Burton and Ph. L. Toint. On the use of an inverse shortest paths algorithm for recovering

linearly correlated costs. Mathematical Programming, 63:1–22, 1994.
[9] S. P. Fekete, W. Hochstättler, S. Kromberg, and C. Moll. The complexity of an inverse

shortest paths problem. In Contemporary Trends in Discrete Mathematics: From DIMACS
and DIMATIA to the Future, Graham et. al. (eds), DIMACS: Series in Discrete Mathematics

and Theoretical Computer Science, 49:113–128, 1999.

[10] C. Heuberger. Inverse combinatorial optimization: A survey on problems, methods, and
results. To appear in Journal of Combinatorial Optimization, 2003.

[11] H. Konno. A cutting plane algorithm for solving bilinear programs. Mathematical Program-

ming, 11:14–27, 1976.
[12] NETLIB. LP Test Problems. www-fp.mcs.anl.gov/otc/Guide/TestProblems/LPtest/.
[13] G. Paleologo and S. Takriti. Bandwidth trading: A new market looking for help from the OR

community. AIRO News, VI(3):1–4, 2001.
[14] H. D. Sherali and C. M. Shetty. A finitely convergent algorithm for bilinear programming

problem using polar cuts and disjunctive face cuts. Mathematical Programming, 19:14–31,

1980.
[15] T. V. Thieu. A note on the solution of bilinear problems by reduction to concave minimization.

Mathematical Programming, 41:249–260, 1988.
[16] H. Vaish and C. M. Shetty. A cutting plane algorithm for the bilinear programming problem.

Naval Research Logistics Quarterly, 24:83–94, 1977.

22 S. AHMED AND Y. GUAN

[17] D. J. White. A linear programming approach to solving bilinear programs. Mathematical

Programming, 56:45–50, 1992.

[18] J. Zhang and Z. Liu. Calculating some inverse linear programming problems. Journal of
Computational and Applied Mathematics, 72:261–273, 1996.

[19] J. Zhang and Z. Liu. A further study on inverse linear programming problems. Journal of

Computational and Applied Mathematics, 106:345–359, 1999.
[20] J. Zhang, Z. Liu, and Z. Ma. Some reverse location problems. European Journal of Operational

Research, 124:77–88, 2000.

School of Industrial & Systems Engineering, Georgia Institute of Technology, 765
Ferst Drive, Atlanta, GA 30332.

