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Preface

The monograph is intended to provide an overview of the basic concepts and
methods in the emerging area of quantum plasmas. In the near future, quantum
effects in plasmas tend to be unavoidable, specially in high density scenarios
such as in the next-generation intense laser-solid density plasma experiment or in
compact astrophysics objects. Moreover, quantum plasmas are in the forefront of
many intriguing questions around the transition from microscopic to macroscopic
modeling of charged particle systems in general. In addition, the methods used
for quantum plasmas can be readily translated to related areas which are currently
pushing forward the frontiers of plasma science. This is valid, in particular, when
using Wigner function tools for strongly coupled ultra-cold and Rydberg plasmas.

In recent years, the quantum hydrodynamic model became popular as a simplified
but not simplistic approach for quantum plasmas. In particular, the nonlinear
aspects of quantum plasmas are much more accessible using a fluid description,
in comparison with kinetic theory. The aim of this book is to give an account of the
basic developments on the hydrodynamic paradigm for quantum plasma problems,
readable by a broad audience. Therefore, the proofs and mathematical calculations
are given with some detail, usually not shown in the papers of the literature, due to
brevity needs. Hence, some “tricks” needed to achieve most mathematical results
are discussed here and there. This is the case, for instance, in the derivation in
Chap. 2 of the evolution equation for the reduced one-particle Wigner function.
Further examples, as well as new developments, appear in the exercises at the end
of each chapter.

In the same context, in the Introduction, a very brief account on classical and
quantum plasmas is offered. Here, the differences and similarities of the classical
and quantum cases are stressed. We hope that in this way the book can become
valuable for readers not necessarily fully acquainted with theoretical plasma physics
and quantum mechanics. However, some level of knowledge is presumed: basic
statistical mechanics and nonrelativistic quantum mechanics. Some familiarity with
plasma methods is also advisable, although not mandatory.
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viii Preface

The monograph is not intended to be encyclopedic. Rather, the chosen topics
reflect the particular experience of the author. Nevertheless, there is a scientifically
arguable reason for the sequence of contents, so as to make the book as self-
contained as possible. Hence, the first chapter is an overview of classical and quan-
tum plasmas. Chapter 2 is dedicated to the basic kinetic model for quantum plasmas,
namely the Wigner–Poisson system. Here, the essentials on Wigner functions and
electrostatic quantum plasmas are discussed. Chapter 3 dealt with the first attempt to
a fluid model for quantum plasmas, based on the quantum Dawson (or multistream)
model. The nontrivial peculiarities of the stability problem of streaming equilibria
in quantum plasmas are analyzed. In Chap. 4, the quantum hydrodynamic model
for plasmas is derived. The merits and intrinsic approximations of this approach are
addressed. Chapter 5 is dedicated to the quantum ion-acoustic waves as described by
the quantum hydrodynamic model. Chapter 6 generalize the quantum hydrodynamic
model to include magnetic fields. The associated magnetohydrodynamic equations
are then derived. Chapters 7 and 8 apply the quantum hydrodynamic equations to
the nonlinear interaction between Langmuir and ion-acoustic waves in a quantum
plasma. The corresponding quantum Zakharov system is considered in one (Chap. 7)
and three (Chap. 8) spatial dimensions. In Chap. 9, a moment method approach
provides an alternative macroscopic description for quantum plasmas, in the
electrostatic and electromagnetic cases. The above sequence of topics goes in the
sense of increasing complexity.

Along the history of plasma physics, most nature and laboratory plasmas fit
in density and temperature regimes so that classical descriptions can be safely
employed. With the ongoing miniaturization and the experimental assessment of
new parameter regimes, however, the need to take into account quantum effects
in many-body charged particle systems is becoming a reality. Hopefully, this
monograph can be useful against the prejudice according to which plasma science is
necessarily classical. In this manner, we expect to encourage researchers to work in
this basically unexplored emerging field, whose consequences are for the moment
largely unknown.

I want to express my gratitude (in alphabetic order) to Serge Bouquet
(Paris), Antoine-Claude Bret (Ciudad Real), Gert Brodin (Umeå), Bengt Eliasson
(Bochum), Leonardo Garcia (Porto Alegre), João Goedert (Porto Alegre), Paul-
Antoine Hervieux (Strasbourg), Giovanni Manfredi (Strasbourg), Mattias Marklund
(Umeå), Waleed Moslem (Port Said), Refaat Sabry (Mansoura), Padma Kant Shukla
(Bochum) and Jens Zamanian (Umeå) for the collaboration and support over the
years, without which this book would not be possible. However, of course they are
not responsible for the mistakes in it.

Curitiba, Brazil Fernando Haas
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Chapter 1
Introduction

Abstract We compare the essential physical parameters of classical and quantum
plasmas. The screening properties in degenerate and nondegenerate plasmas are
discussed, in terms of Thomas–Fermi and Debye lengths, respectively. The coupling
parameters associated with particle correlations are considered for classical and
quantum plasmas. For classical plasmas, the average kinetic energy per particle is
of the order of the thermal energy, while for dense systems it is of the order of
the Fermi energy. A general approach toward fluid models deduced from kinetic
descriptions of charged particle systems is proposed. This chapter is finished with
brief historical notes on quantum plasma physics.

1.1 Classical and Quantum Plasmas

A plasma is generally understood as a many-body system composed by a large
number of charged particles whose behavior is dominated by collective effects
mediated by the electromagnetic force. Here, the word “collective” designate
phenomena determined by the whole ensemble of particles in the system. For
instance, wave motion in plasmas has a collective character. The self-consistent,
electromagnetic mean field in a plasma is also a result from the collective properties
of the system, and so on. In an opposite manner, the behavior of neutral gases is
much more influenced by short-range interactions, or collisions.

The collective aspects of plasma physics are due to the long-range of the
electromagnetic force. In this regard, binary collisions where the velocity vectors
of each particle dramatically changes orientation in a small spatial volume and
in a short time are unlikely in a plasma. Instead, the cumulative effect resulting
from many small scattering angle collisions gives the more significant trajectory
deviations in plasmas.

One of the basic plasma parameters is the temperature. According to Big Bang
theory, in the origin of everything the temperature was so high that no atoms or

F. Haas, Quantum Plasmas: An Hydrodynamic Approach, Springer Series on Atomic,
Optical, and Plasma Physics 65, DOI 10.1007/978-1-4419-8201-8 1,
© Springer Science+Business Media, LLC 2011

1



2 1 Introduction

molecules could have existed. Hence, the corresponding fully ionized gas was in
the plasma state, so that 100% of the Universe was a plasma, the so-called quark-
gluon plasma. Later, as the temperature cooled down, the matter was able to assume
its other well-known states. Namely, the gaseous, liquid, and solid states appeared.
However, today most matter is still in the plasma state. Sometime people assigns a
definite fraction like 99% of the Universe to be made of plasma, but such estimates
are obviously hard to verify.

The ability of the particles of a system to associate with themselves increase
in the same measure as the temperature becomes smaller. In this context, with the
cooling of a fully ionized gas, some fraction of positive and negative charges can
combine to form atoms. In this case, we would have a partially ionized plasma. As
the temperature decrease, eventually the degree of ionization is so negligible that the
system can be treated as a neutral gas, composed by weakly interacting atoms and
molecules. There is no sudden transformation from the plasma state to the neutral
gas state. Unlike the phase transitions from gas to liquid and from liquid to the
solid state, what happens is more in the form of a gradual change of the degree of
ionization. The gas–liquid and liquid–solid transformations are also produced by a
cooling of the temperature. In particular, in the phase transition from liquid to solid
the temperature is so small that a periodic lattice can appear, with the ions occupying
a more or less fixed position in space.

To associate a meaning to the expression “small temperature,” it is necessary to
compare the thermal and interaction energies of the system. In this way, a coupling
parameter can be defined, as the ratio between thermal and binding energies. Indeed,
in the transformation from plasma to neutral gas, and then to liquid, and then to
solid, the particles of the system became more and more attached specially due to
the organizing character of the Coulomb force. Hence, in our definition of a plasma,
we can add the requirement of a sufficiently high thermal energy, in comparison
to the binding energy. However, this choice of nomenclature exclude the so-called
strongly coupled plasmas, where collective effects are also decisive.

Actually, strongly coupled plasmas have more in common with a liquid than with
a standard weakly coupled plasma [12]. As examples of strongly coupled plasmas,
we have the interior of giant planets like Jupiter, solid-laser ablation plasmas,
plasmas in high pressure arc discharges where the thermal and ionization energies
are similar, and cold dusty plasmas. On the other hand, the systems found in space
plasma physics, astrophysics, controlled nuclear fusion, and ionospheric physics are
all weakly coupled.

Besides temperature, the density (number of particles per unit volume) is a
fundamental parameter of a plasma. In a first guess, we would imagine that
extremely dense plasmas should be necessarily strongly coupled. This would be
the case, for instance, for the plasma in massive compact astrophysical objects like
white dwarfs, where the density is as high as 1036 m−3. However, this is not the
case due to the Pauli exclusion principle, which significantly inhibit collisions. As a
rule, the more collisional a system is, the larger is its associated coupling parameter.
In the opposite way, extremely dense plasmas behave in an even more ideal way as
the density increases because the occupation of the same quantum state by two spin
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1/2 fermions is forbidden. Here, for the first time, we mention a quantum effect
(the Pauli principle) having a rôle in plasma systems, namely yielding a smaller
electron–electron collision frequency in comparison to a purely classical plasma.
Moreover, since its beginning in the 1920s plasma physics has dealt basically with
systems dilute enough so that quantum effects can be safely ignored. For this reason,
plasma physics is generally considered to be almost classical. Sometimes quantum
mechanics is necessary in limited instances of the usual plasma theory, as for the
calculation of nuclear fusion cross sections. However, such are subsidiary quantum
mechanical results, more related to nuclear physics than plasma physics, to be
plugged in completely classical frameworks [22].

When are quantum effects relevant for plasmas? As mentioned, extremely dense
plasmas behave like a quantum ideal gas, due to the exclusion principle. However,
also dilute charged particle systems can exhibited quantum features, provided the
dimensions of the system are small enough. Small enough here means dimensions
comparable to the de Broglie wavelength

λB =
h̄

mvT
, (1.1)

where h̄ = h/(2π) is Planck’s constant divided by 2π , m is the mass of the charge
carriers and

vT =
(

κBT
m

)1/2

(1.2)

is the thermal velocity. In this later expression, κB is Boltzmann’s constant and
T the thermodynamic temperature. Hence, if L0 is a typical length scale of the
plasma, quantum effects should be taken into account whenever λD ∼ L0. This can
be the case, for instance, in charged particle systems like semiconductor quantum
wells, thin metal films, and nanoscale electronic devices in general [9, 18, 22].
If the de Broglie wavelength is comparable to the size of the system, the well-
known quantum wave-like effects similar to those of physical optics (diffraction,
interference, superposition) may take place in a decisive way. Such effects, for
instance, show up in the resonant tunneling of electrons through a potential barrier
in quantum devices, which in turn is decisive for the negative differential resistances
of these systems [18, 26].

The de Broglie wavelength is a characteristic quantum length appropriate to
weakly coupled systems where the charge carriers are not confined to a limited
region of space. In the case of strongly coupled systems, able to form bound states
as atoms, molecules and dense clusters, the de Broglie wavelength is replaced by
the spatial extent of the particle’s wavefunction [5].

Another relevant plasma parameter is the ambient magnetic field. Here, we have
another instance where quantum effects can play a rôle, for instance, in the pro-
pagation of electron Bernstein modes in a degenerate plasma [11]. Moreover, the
interconnection between spin dynamics, magnetic fields and ferromagnetic behavior



4 1 Introduction

has a pronounced influence [6,24], with importance, for example, in the propagation
of spin oriented soliton structures in pair plasmas [7]. However, for simplicity in this
chapter, magnetic fields are not included in the discussion.

One of the more basic collective properties of a plasma, be it classical or
quantum, is a tendency for quasi-neutrality due to the shielding of any excess
charge in the system. However, the way this shielding effect take place is different
according to the classical or quantum nature of the plasma, as seen in the next
section.

1.2 Debye Shielding in Degenerate and Nondegenerate Plasmas

Consider a test charge of magnitude qt > 0 inserted into a plasma. For definiteness,
assume the plasma to be composed by mobile electrons with number density n
and a fixed ionic background with number density n0. In a dynamic situation, the
trajectories of the electrons would be deviated toward the test charge due to the
Coulomb force. Therefore, a cloud of negative charge would form around the test
charge, a phenomena known as shielding or screening. Hence, instead of the value
qt the test charge would acquire a smaller, effective shielded charge as seen from an
observer outside the electron cloud. Assuming a quasi-equilibrium situation so that
the electron number density n = n(r) is a function of position only, the electrostatic
field φ = φ(r) is described by Poisson’s equation

∇2φ =
e
ε0

(n(r)−n0)− qt

ε0
δ (r). (1.3)

Here −e is the electron charge, ε0 is vacuum’s permittivity, and the test charge was
conveniently placed at the origin. Moreover, the test charge was taken as sufficiently
massive so that it can be regarded as motionless.

In this whole quiescent, quasi-static context, it is reasonable to assume that
the electrons are in a local thermodynamic equilibrium. However, the nature of
the equilibrium depends on the quantum or classical statistics obeyed by the
electron gas. For sufficiently dilute systems [29,32], the indistinguishability between
electrons need not to be taken into account. In this case, a local Maxwell–Boltzmann
equilibrium can be assumed, so that

n = n0 exp

(
eφ

κBT

)
, (1.4)

Actually, the number density comes from the one-particle distribution function
f (r,v) defined in such a way that (1/N) f (r,v)drdv gives the probability of
finding one electron in an element drdv centered at position r with velocity v. The
normalization factor 1/N, where N is the total number of electrons, is chosen so that

n =
∫

dv f (r,v). (1.5)
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Equation (1.4) is then consistent with the local Maxwell–Boltzmann equilibrium

f = n0

(
m

2πκBT

)3/2

exp

[
− 1

κBT

(
mv2

2
− eφ

)]
. (1.6)

Even if collisions are not being explicitly discussed, it is reasonable, although not
rigorous, to assume that collisions eventually produce the equilibrium (1.6).

We can suppose that before the introduction of the test charge, the ambient
electrostatic field was zero. In this case, immediately after inserting qt a sufficiently
small scalar potential can be assumed, in a first approximation. In this case, we can
Taylor expand (1.4) to first-order in the perturbation φ and substitute in (1.3) to get

∇2φ =
n0e2

ε0κBT
φ − qt

ε0
δ (r). (1.7)

As discussed in textbooks [28], the solution to (1.7) with appropriate boundary
conditions is the screened Coulomb potential

φ =
qt

4πε0r
e−r/λD , (1.8)

where

λD =
(

ε0κBT
n0e2

)1/2

(1.9)

is the electron Debye length. As apparent from (1.8), for distances larger than the
Debye length the potential is very small. Hence, for all practical purposes λD is
the effective range of the Coulomb interaction in a classical, Maxwellian plasma.
Moreover, from the argument, it is evident that the shielding is a collective effect
due to a large number of particles surrounding the test charge.

Now that we have a reasonable understanding about the shielding process in a
dilute plasma, we can ask what happens in a nondilute, dense plasma. It follows from
elementary quantum mechanics that we are not allowed to put all electrons in the
same quantum state, since they are fermions satisfying Pauli’s exclusion principle.
An intuitive approach to this problem would assume an homogeneous one-particle
probability distribution function in a sphere of radius vF in velocity space, where vF

is the Fermi velocity [29, 32]. Therefore,

f =
3n0

4πv3
F

if
mv2

2
− eφ < EF (1.10)

and f = 0 otherwise. In (1.10), the Fermi energy EF = mv2
F/2 was introduced.

Shortly, we will provide a recipe for expressing the Fermi energy as a function of
the density. Moreover, in (1.10) the energy was shifted to allow for a nonzero scalar
potential, in the same spirit of the energy-shifted Maxwell–Boltzmann equilibrium
in (1.6).
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The Thomas–Fermi [14] equilibrium (1.10) shows equal occupation probabilities
for energies smaller than Fermi’s energy, and zero occupation probabilities beyond.
It is equivalent to a zero-temperature, local Fermi–Dirac distribution function
[29, 32]. In addition, implicitly if we are using the statistical mechanical language of
one-particle distribution functions, we are somehow neglecting quantum diffraction
effects. Indeed, as will be seen in the next chapter, if we replace the (classical)
one-particle distribution function by the equivalent quantum mechanical tool, the
Wigner function, one cannot strictly assign occupation probabilities in phase space,
since the Wigner function can assume negative values. This point will be discussed
at length in Chap. 2.

With the above remarks, we can use (1.5) and the Thomas–Fermi equilibrium
(1.10) to compute the number density. The result is

n =
∫

dv f = n0

(
1 +

eφ
EF

)3/2

. (1.11)

Poisson’s equation as well as the Maxwell equations in general are valid for either
classical or quantum systems. Hence, (1.11) can be linearized for small perturbation
fields after inserted in Poisson’s equation, to give

∇2φ =
3n0e2

2ε0EF
φ − qt

ε0
δ (r). (1.12)

Comparison of (1.7) and (1.12) shows that the classical screening effect still holds
in the quantum (degenerate) case, but with the replacement κBT → EF, apart from
a numerical factor of order 1. Correspondingly, the quantum screening distance, or
Thomas–Fermi length λF, can be defined [36] as

λF =
(

2ε0EF

3n0e2

)1/2

. (1.13)

Notice that the thermodynamic temperature was assumed to be zero, so that λD = 0
while λF �= 0. This is because in a zero-temperature classical electron gas the
electron cloud around the test charge will have effectively zero radius. In the
quantum realm, however, due to the exclusion principle the same electron cloud
cannot collapse to a point in space (except with an infinite velocities dispersion
which is absurd in view of the T = 0 assumption).

In an alternative version, each particle in the system can be interpreted as the
test charge. Hence, the shielding effect hold for all particles, a manifestation of the
charge neutrality tendency. Instead of its actual charge, for the Coulomb force what
remains is a residual, screened charge. Moreover, for sufficiently large distances a
charged particle in a plasma becomes invisible to the remaining of the system. In
this context, notice that for the concept of screening length to be reasonable we need
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either L0 � λD or L0 � λF in the classical and quantum cases, respectively, where
L0 is the characteristic size of the system. Otherwise, each charge would be able to
be “seen” by all remaining charges.

We have talked about Fermi energy and Fermi velocity. How to assign them a
definite physical meaning? As described in statistical mechanics textbooks [29,32],
the question is how to accommodate a certain number N of fermions in a region
of volume V . It is not allowed to put all fermions in the ground state, since at
most two electrons can occupy the same orbital because of the spin number 1/2.
In this manner, the higher energy levels are filled up until the highest energy level
is reached. The corresponding energy quantum number is the Fermi energy EF. We
omit here the details, but it can be shown [29, 32] that

EF =
h̄2

2m
(3π2n0)2/3 , n0 = N/V. (1.14)

It is clear that for a sufficiently dilute electron gas EF → 0. Other quantities of
interest are the Fermi temperature TF = EF/κB, the Fermi wavenumber kF = mvF/h̄,
and the Fermi momentum h̄kF.

1.3 Plasma Frequency

In the treatment of screening no temporal scales were involved. A dynamical,
nonequilibrium situation arises if an electron charge depletion appears in the plasma.
In this case, the Coulomb force tend to restore the charge neutrality. However, the
displaced electrons are pushed back but due to the inertia they did not stay in the
original equilibrium positions. Hence, a new charge depletion form, which again
tend to be filled up by the restoring electric field. This is the mechanism for plasma
oscillations, as described in textbooks [12, 28]. The characteristic time scale for
plasma oscillations is given by ω−1

p , where

ωp =
(

n0e2

mε0

)1/2

(1.15)

is the plasma frequency. From the plasma frequency and the classical and quantum
screening lengths, we obtain

ωpλD =
(

κBT
m

)1/2

= vT, (1.16)

ωpλF =
(

2EF

3m

)1/2

= vF/
√

3. (1.17)
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1.4 Energy Coupling Parameter

Classical weakly coupled plasmas tend to be hot and tenuous, while classical
strongly coupled plasmas tend to be cold and dense. On the other hand, quantum
plasmas are weakly coupled for sufficiently large densities, irrespective of the
temperatures. Indeed, a many-body system will behave in a more ideal way provided
its average potential energy is far less than its average kinetic energy. For both
classical and quantum Coulomb systems, the mean interaction energy Upot of one
particle is

Upot ∼ e2n1/3
0

ε0
, (1.18)

since the mean inter-particle distance scales as n−1/3
0 and taking into account only

the electrostatic field. Hence, Upot increases with the density, as expected.
However, the mean kinetic energies are different for classical and quantum

systems. For a nondegenerate gas, one has [29,32] the average kinetic energy KC of
a particle to be proportional to the temperature. On the other hand, in the degenerate
case, one has the typical kinetic energy KQ of a particle to be of the order of the
Fermi energy, which increases with the density. Indeed, the more electrons are
accommodated in a fixed region of space, the more their wavefunctions would
significantly overlap, implying the enhancement of the Pauli pressure due to the
exclusion principle. This increases the Fermi energy, as can be seen also from (1.14).

Hence, we can define the classical ΓC and quantum ΓQ coupling parameters as:

ΓC =
Upot

KC
=

Upot

κBT
=

e2n1/3
0

ε0κBT
= 2.1×10−4× n1/3

0

T
, (1.19)

ΓQ =
Upot

KQ
=

Upot

κBTF
=

2me2

(3π2)2/3ε0h̄2n1/3
0

= 5.0×1010 n−1/3
0 . (1.20)

From the above expressions, we verify that classical weakly coupled plasmas tend
to be dilute and cold, while quantum weakly coupled plasmas tend to be dense. The
numerical values are for SI units.

Using the definition of Debye and Thomas–Fermi lengths, it can be proven that a
system will not be strongly coupled provided the number of particles in a Debye or
Fermi sphere is large. By definition, a Debye (Fermi) sphere has a radius λD (λF).

A more detailed survey on the implications of the quantum weak coupling
assumption ΓQ � 1 will be postponed to Sect. 2.5, where the validity conditions
of the mean field approximation for quantum plasmas are discussed.

A fundamental dimensionless parameter remain to be introduced. It is the
degeneracy parameter χ = TF/T , according to which the Fermi–Dirac statistics is
unavoidable or not [29, 32]. Using the de Broglie wavelength λB = h̄/(mvT), one
find

χ =
TF

T
=

1
2
(3π2n0λ 3

B)2/3 � 1 (1.21)
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as the condition according to which the Maxwell–Boltzmann statistics can be used.
Therefore, if the mean inter-particle distance is of the order of the de Broglie
wavelength, the Fermi–Dirac statistics becomes necessary.

We have identified the more relevant scales in a many-body electrostatic charged
particle system. These are: a quantum length scale, which for weakly coupled
systems is the de Broglie wavelength according to which quantum diffraction effects
are important or not; energy scales, namely the typical kinetic energies (∼κBT
for a nondegenerate system, ∼κBTF for a degenerate system) and the interaction

energy ∼q2n1/3
0 /ε0. Weakly coupled systems (the theme of this monograph) are

characterized by a small interaction energy in comparison to the average kinetic
energy; temperature scales, namely the thermodynamic and Fermi temperatures,
respectively, T and TF. With them we can form the degeneracy parameter TF/T
which needs to be small for the Maxwell–Boltzmann statistics to be applicable.
Otherwise, the Fermi–Dirac statistics should be employed, since the essential charge
carriers in plasmas (the electrons) are fermions. In a minimal setting, we can,
therefore, conclude that for electrostatic plasmas the fundamental nondimensional
parameters can all be formed from the number density (or densities in the case of
many species) and the temperature (temperatures), besides the characteristic size of
the system when treating with nanometric systems.

1.5 Kinetic and Fluid Descriptions

In this section, some different levels of approximation for plasma modeling are
discussed. As stressed, for example, in [3], there is a large number of combinations
and permutations of the various descriptions in plasma physics. For instance, colli-
sional or collisionless kinetic theory, two-fluid equations, magnetohydrodynamics,
direct solving of the Newton equations of motion and so on. Choosing one or
another method depends very much on the nature of the problem at hand. Here, a
definite route is followed, so that a brief introduction to some of the most important
plasma models can be sketched. In this route, we go from theories aiming at a more
detailed knowledge of the state of the system, to theories focusing only on averaged
properties of the plasma. Namely, we discuss first collisionless kinetic theory, then
two-fluid equation modeling, and then magnetohydrodynamics, from the classical
physics perspective. In this way, a model hierarchy for quantum plasma systems
becomes self-evident, once the analog quantum tools can be found, by comparison
with the classical methods.

In a Newtonian setting, the most fundamental point of view is to follow the
trajectory of each charge in the plasma, as influenced by the electromagnetic
force due to the remaining charges. Clearly, such approach is prohibitive, both
numerically and computationally, due to the very large number of Newton’s
equations, which are coupled and nonlinear. Hence, a statistical, or kinetic approach
seems appropriate. One can introduce the 1-particle distribution f (r,v,t) defined in
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such a way that f (r,v,t)drdv gives the number of particles with position between
r and r + dr and velocity between v and v + dv at the time t. Ignoring collisions
and relativistic effects [3, 12, 28], the evolution equation solved by f is the Vlasov
equation,

∂ f
∂ t

+ v · ∂ f
∂r

− e
m

(E+ v×B) · ∂ f
∂v

= 0. (1.22)

For definiteness, it was assumed a plasma composed by electrons (charge −e,
mass m) in an immobile neutralizing ionic background. The electric field E and
magnetic field B need to be found self-consistently solving the Maxwell equations,
where the charge and current densities are found from f . In this way, one arrives at
the Vlasov–Maxwell system, determining f ,E and B under appropriate initial and
boundary conditions. For instance, in the electrostatic case, the Maxwell equations
reduce to Poisson’s equation for the scalar potential φ ,

∇2φ =
e
ε0

(∫
dv f −n0

)
. (1.23)

Equations (1.22) and (1.23) constitute the Vlasov–Poisson system, to be supple-
mented by initial and boundary conditions.

If collisions need to be taken into account, some appropriate collision operator
is inserted in the right-hand side of (1.22). Such collision operators may take
for instance Lenard–Balescu [2, 20], Fokker–Planck [13, 31] or Bhatnagar–Gross–
Krook [4] forms. However, collisional effects are outside the scope of the present
book.

In the above statistical mechanics setting, we have a less detailed knowledge than
following each particle’s trajectory. Rather, we keep track of the flow of a bunch of
particles starting in a small phase-space region centered at some initial position r
and velocity v. Nevertheless, the kinetic theory formulated in terms of the Vlasov–
Maxwell system is frequently too complicated and some simplification advisable.
Moreover the one-particle distribution function f often provide more knowledge
than what is really needed. In this way, it is helpful to consider the moments, or

weighted averages of f . By definition, an kth-order moment M(k)
i... j(r,t) of f is given

by the integral

M(k)
i... j(r,t) =

∫
dvvi . . .v j f (r,v,t), (1.24)

where the number of velocity components in the right-hand side of (1.24) is k.
For instance, one can consider the zeroth-order moment given by (1.5), which

yields the number density n(r,t), and correspondingly the charge density −en(r,t).
Moreover, since f is proportional to the probability to find a random particle at a
point r and with velocity v, a global velocity u(r,t) can be introduced so that

n(r,t)u(r,t) =
∫

dvv f (r,v,t). (1.25)
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Hence, the first-order moment of f fives the global current density n(r,t)u(r,t) and
correspondingly the global electric current density −en(r,t)u(r,t). Similarly from
the higher-order moments, one can obtain information about the energy density and
the heat transport vector of the plasma [28].

One can be tempted to study the evolution equations solved by the moments.
In this way, we can find a set of macroscopic, or fluid equations. However, the
equation of continuity solved by the zeroth-order moment, the number density n,
involves the fluid velocity u, which is a higher-order moment. In the same way,
the momentum transport equation solved by u contain a higher-order moment,
namely the pressure dyad. In general, the equation satisfied by the kth-order moment
contains the (k + 1)th-order moment, so that an infinite chain of equations is found
[3, 12, 28]. Hence, one is faced with a closure problem, frequently solved by means
of some ad hoc quasi-equilibrium hypothesis, which is equivalent to postulate an
appropriate equation of state. Underlying the closure assumption, there is some
knowledge about the phenomena under analysis. For instance, for fast processes,
an adiabatic equation of state can be used to specify the form of the scalar pressure.
On the other hand, for slow processes allowing for thermalization, an isothermal
equation of state can be used to define the scalar pressure entering the momentum
transport equation. The choice of equation of state will be detailed in Sect. 4.4.

Allowing for mobile ions or other species in general, there will be a reduced one-
particle distribution function for each specie. This in turn would imply one kinetic
(Vlasov) equation for each specie. Repeating then the average procedure, in the
case of a two-species, or electron–ion plasma, we would obtain a two-fluid model.
Implicitly, in this model charge separation is relevant enough so as to deserve some
attention. However, for high conductivity plasmas and slow-time scale phenomena,
one can somehow merge the electronic and ionic fluids, appropriately assigning
global charge and current densities. In this way, one find the magnetohydrodynamic
modeling for plasmas, which is the less detailed description among all discussed in
this section. Nevertheless, in classical plasma physics, this is one of the most useful
models, applied to a huge variety of laboratory and natural plasmas [3, 12, 28]. We
postpone a more proper account on magnetohydrodynamic theory to Chap. 6.

In summary, we have commented on the following plasma physics descriptions,
going from the more detailed to the more simplified approaches: collisionless kinetic
(Vlasov–Maxwell system) → macroscopic multi-fluid (or one fluid in the case of
an electron gas in a fixed ionic background) → magnetohydrodynamics. While
obviously this is not the only possible route trough the jungle of plasma models,
it provides a logic perspective to be followed also in the quantum realm. Indeed,
in spite of the many neglected phenomena, the fluid approaches have the merit
of simplicity in comparison to kinetic theory. The nonlinear aspects of quantum
plasmas can hardly be accessed with microscopic, not macroscopic settings, except
perhaps through expensive numerical or painful analytic calculations. Thanks to the
quantum hydrodynamic approach, besides practical advances in the manipulation
of nanoscale systems or in laser ablation experiences, we observe today a fast
development in quantum plasma physics.
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1.6 Historical Notes

The most immediate example of a quantum plasma is provided by the quantum
electron gas in a metal. For this reason, the analysis of the ground state and
correlation energies of an electron gas has been the subject of many works in the
1950s, in particular for high densities where the Fermi–Dirac statistics is necessary
[10, 15, 33]. This approach usually considered the application of quantum field-
theoretic techniques in many-body perturbation theory.

On the other hand, dynamic properties have been investigated by the pioneers
in view of the propagation of linear waves in dense plasmas. The main tool in
this approach was the self-consistent, kinetic modeling in terms of the collisionless
quantum Boltzmann equation [19, 21, 30].

The main drawback of the field-theoretic and/or kinetic treatments is the analytic
complexity. Only recently, with the introduction of macroscopic theories [16,17,23],
the interest on quantum plasmas has gained a new impulse, see [22,36] for reviews.

We also remark on two of the main basically missing topics of this monograph:
relativistic and spin quantum plasmas. Quantum plasmas where the spin dynamics
is taken into account not only through quasi-equilibrium properties (e.g., assuming
an equation of state appropriated for a degenerate electron gas) have been subject to
intense research in the last years [6–8, 24, 35, 37]. More recently, the joint spin and
relativistic effects have started to be incorporated in terms of macroscopic models
[1,34], in contrast to kinetic approaches [27]. In an energy ordering, the macroscopic
models for quantum plasmas have been already constructed: (a) in the nonrelativistic
quantum mechanics context (tunneling, wave packet spreading); (b) in the lowest-
order relativistic mechanics context (magnetization, spin–orbit coupling). To go for
macroscopic quantum plasma models in the fully relativistic and quantum field the-
oretical aspects (zitterbewegung, pair production, etc.) is currently a challenge [25].

Here, we finish our brief introduction on the physics of classical and quantum
plasmas. In the next chapter, we consider the Wigner–Poisson system, which is
the natural kinetic model for collisionless quantum plasmas. We discuss some
applications as well as the validity conditions for such modeling.

Problems

1.1. Consult the literature, find typical temperatures and densities and classify
the following systems as degenerate/nondegenerate and strongly/weakly coupled:
semiconductor quantum well; gas discharge; solar corona; thin metal film; white
dwarf; electron gas in metals.

1.2. Repeat the last problem checking which of the listed charged particle systems
can be taken as nonrelativistic, computing vT/c and vF/c, where vT and vF are the
thermal and Fermi velocities and c is the speed of light.
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1.3. Use (1.4) and (1.8) to check the global charge neutrality to first-order in the
interaction strength. In other words, show that e

∫
(n−n0)dr = qt to first-order.

1.4. Show that a system will be not strongly coupled provided the number of
particles in a Debye or Fermi sphere is large, according to the classical or quantum
nature of it.
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Chapter 2
The Wigner–Poisson System

Abstract In electrostatic quantum plasmas, the Wigner–Poisson system plays the
same rôle as the Vlasov–Poisson system in classical plasmas. This chapter considers
the basic properties of the Wigner–Poisson system, including the essentials on
the Wigner function method and the derivation of the Wigner–Poisson system in
the context of a mean field theory. This chapter also contains a discussion on
the Schrödinger–Poisson system as well as extensions to include correlation and
collisional effects. The Wigner–Poisson system is shown to imply, in the high-
frequency limit, the Bohm–Pines dispersion relation for linear waves, which is the
quantum analog of the Bohm–Gross dispersion relation for classical plasmas.

2.1 The Wigner Function

To maintain the closest resemblance to the familiar methods of classical plasma
physics, the Wigner function approach is the natural choice. Indeed, using the
Wigner function, one can proceed in almost total analogy with the standard phase-
space distribution function method to compute macroscopic quantities like number
and current densities. Hence, it is useful to review some of the properties of
the Wigner (pseudo) distribution function approach. In addition, the differences
between classical and quantum formalisms will be highlighted. The treatment is by
no means exhaustive, being intentionally restricted to the bare necessary minimum.
More complete reviews on Wigner function methods can be found, for example, in
[8, 18, 26, 36].

For simplicity, let us start with a one-dimensional, one-particle pure state
quantum system, represented by a wavefunction ψ(x,t). In this case, the Wigner
function f = f (x,v,t) is defined [38] as

f =
m

2π h̄

∫
ds exp

(
imvs

h̄

)
ψ∗

(
x +

s
2
,t

)
ψ

(
x− s

2
,t

)
, (2.1)
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16 2 The Wigner–Poisson System

where x is the position, v the velocity, t the time, m the particle’s mass and
h̄ = h/(2π), where h is Planck’s constant. In the above equation, the integration
limits goes from minus to plus infinity, a convention followed except otherwise
stated. The Wigner function provides a phase-space description of the quantum
system where all physical quantities can be found from the kth-order moments∫

dvvk f (x,v,t). For instance, both the probability density

n(x,t) = |ψ(x,t)|2 =
∫

dv f (x,v,t) (2.2)

and the probability current

J(x,t) =
i h̄
2m

(
ψ

∂ψ∗

∂ x
−ψ∗ ∂ψ

∂ x

)
=

∫
dvv f (x,v,t) (2.3)

can be readily obtained, respectively, from the zeroth and first order moments of the
Wigner function. Here, we assume ψ normalized to unity. Moreover, the Wigner
function is always real, differently from the wavefunction which is complex.

In the more general case of a mixed state, the one-dimensional, one-particle sys-
tem is represented by a quantum statistical mixture {ψα(x,t) , pα},α = 1,2, . . . ,M,
where each wavefunction ψα(x,t) occurs with a probability pα such that pα ≥ 0 ,

∑M
α=1 pα = 1. In such a situation, the Wigner function is given by the superposition

f =
m

2π h̄

M

∑
α=1

pα

∫
ds exp

(
imvs

h̄

)
ψ∗

α

(
x +

s
2
,t

)
ψα

(
x− s

2
,t

)
. (2.4)

The corresponding generalization of (2.2) and (2.3) is then

n(x,t) =
M

∑
α=1

pα |ψα(x,t)|2 =
∫

dv f (x,v,t), (2.5)

J(x,t) =
i h̄
2m

M

∑
α=1

pα

(
ψα

∂ψ∗
α

∂ x
−ψ∗

α
∂ψα

∂ x

)
=

∫
dvv f (x,v,t). (2.6)

Notice that the quantum fluid probability n(x,t) and the current density J(x,t) are
still given in terms of the zeroth- and first-order moments of f (x,v,t).

The Wigner formalism can be rephrased in the density matrix ρ(x,y,t) language,
since

ρ(x,y,t) ≡
M

∑
α=1

pα ψα(x,t)ψ∗
α (y,t) =

∫
dv exp

(
imv(x− y)

h̄

)
f

(
x + y

2
,v,t

)
,

(2.7)
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with the inverse transformation being

f (x,v,t) =
m

2π h̄

∫
ds exp

(
imvs

h̄

)
ρ

(
x +

s
2
,x− s

2
,t

)
. (2.8)

In the sense of the equivalence implied by (2.7) and (2.8), the use of the Wigner
function or the density matrix is just a question of taste.

From the Wigner function, we can readily derive the marginal probability
distributions in coordinate and momentum space. Indeed, from (2.8), it follows that

∫
dv f = ρ(x,x,t) (2.9)

and ∫
dx f = mρ̃(p, p′,t), (2.10)

where

ρ̃(p, p′,t) =
1

2π h̄

∫
dxdx′ exp

(
i
h̄
(p′x′ − px)

)
ρ(x,x′,t) (2.11)

denotes the matrix components of the density operator in the momentum represen-
tation, with p = mv, p′ = mv′.

Going one step further, consider now a N-particle statistical mixture described by
the set {ψN

α (x1,x2, . . . ,xN ,t) , pα}, where the normalized N-particle ensemble wave-
functions ψN

α (x1,x2, . . . ,xN ,t) are distributed with probabilities pα ,α = 1,2, . . . ,M
satisfying pα ≥ 0,∑M

α=1 pα = 1 as before. Here, xi represents the position of the ith-
particle, i = 1,2, . . . ,N. For simplicity, assume all particles to have the same mass m.
In analogy with (2.4) the N-particle Wigner function is then defined as

f N(x1,v1, . . . ,xN ,vN ,t) = N
( m

2π h̄

)N M

∑
α=1

pα

∫
ds1, . . . ,dsN exp

(
im ∑N

i=1 visi

h̄

)

×ψN∗
α

(
x1 +

s1

2
, . . . ,xN +

sN

2
,t

)

×ψN
α

(
x1 − s1

2
, . . . ,xN − sN

2
,t

)
. (2.12)

The factor N in (2.12) is inserted so that

∫
dx1 dv1, . . . ,dxN dvN f N(x1,v1, . . . ,xN ,vN ,t) = N. (2.13)

In this manner, the integral of f N over all the velocities gives a number density. For
simplicity, at this stage we are not taking into account the usually fermionic charac-
ter of the charged particles in plasma, so that the N-body ensemble wavefunctions
are not necessarily antisymmetrized.
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From the N-particle Wigner function, the expectation value of any observable
can be computed in the same way as in classical statistical mechanics. In other
words, f (x1,v1, . . . ,xN ,vN ,t) act as a weight in the same sense of the classical
N-body particle distribution function f N

cl (x1,v1, . . . ,xN ,vN ,t). In this context, we
have that (1/N) f N

cl (x1,v1, . . . ,xN ,vN ,t)dx1 dv1, . . . ,dxN dvN gives the probability of
the particle 1 being in an area dx1 dv1 in phase space centered at position x1 and
velocity v1, the particle 2 being in an area dx2 dv2 centered at position x2 and velocity
v2 and so on. However, the Wigner function is not positive definite, so that it is not
a probability but a pseudo-probability distribution.

More exactly, suppose a classical phase-space function A(x1,v1, . . . ,xN ,vN ,t)
corresponding to a self-adjoint quantum mechanical operator Â(x̂1, v̂1, . . . , x̂N , v̂N ,t).
Here, the hats denote operators and everything could be rewritten in terms of
momenta and not velocities. We prefer to use velocities instead of momenta to assure
a manifestly gauge invariant formalism. In addition, the transition from functions
to operators is by no means unique: a well-defined correspondence rule should be
employed [18, 26]. Special care should be paid with more complicated phase space
observables involving noncommuting objects like products of functions of position
and momenta. Indeed, to calculate expectation values using the Wigner formalism,
we need first to map the observable into a phase-space function using the Weyl
correspondence [37]. In practice, this is equivalent to ordering operators into a
symmetric product of the position and momenta operators, using the commutation
relations and then making the replacements x̂i → xi and p̂i → pi, where x̂i, p̂i are the
position and momentum operators of the ith-particle and xi, pi the corresponding
classical position and momentum functions.

Given a classical function A(x1,v1, . . . ,xN ,vN ,t) the phase-space average 〈A〉cl is

〈A〉cl =
1
N

∫
dx1dv1, . . . ,dxNdvN f N

cl (x1,v1, . . . ,xN ,vN ,t)A(x1,v1, . . . ,xN ,vN ,t),

(2.14)

while the expectation value 〈Â〉 of the associated Weyl ordered self-adjoint operator
Â(x̂1, v̂1, . . . , x̂N , v̂N ,t) is

〈Â〉 =
1
N

∫
dx1dv1, . . . ,dxNdvN f N(x1,v1, . . . ,xN ,vN ,t)A(x1,v1, . . . ,xN ,vN ,t).

(2.15)

We have an explicit resemblance between classical and quantum formalisms.
As an example, one can be interested in the expectation value of the total

energy of an interacting system with potential energy V (x1, . . . ,xN). This average
is given by

1
N

∫
dx1dv1, . . . ,dxNdvN f N(x1,v1, . . . ,xN ,vN ,t)

(
N

∑
i=1

mv2
i

2
+V(x1, . . . ,xN)

)
,

(2.16)

which is the same expression used in classical statistical mechanics, with the
replacement f N

cl → f N .
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As already remarked, to obtain nonerroneous expectation values of operators
involving noncommuting observables using the Wigner formalism, the Weyl order-
ing should be employed. To see an illustrative example, consider the operator

x̂i p̂ j =
1
2
(x̂i p̂ j + p̂ jx̂i)+

1
2
[x̂i, p̂ j]

=
1
2
(x̂i p̂ j + p̂ jx̂i)+

ih̄δi j

2

→ xi p j +
ih̄δi j

2
(Weyl rule), (2.17)

using the commutation relation [x̂i, p̂ j] = ih̄δi j and where in the last equality the
Weyl correspondence was applied. Hence, the required expectation value is

〈x̂i p̂ j〉 =
m
N

∫
dx1dv1, . . . ,dxNdvN f N(x1,v1, . . . ,xN ,vN ,t)xiv j +

ih̄δi j

2
, (2.18)

taking into account p j = mvj. Indeed, after some integrations by parts the right-hand
side of (2.18) is found to be

m
N

∫
dx1dv1, . . . ,dxNdvN f N(x1,v1, . . . ,xN ,vN ,t)xiv j +

ih̄δi j

2

= −ih̄
M

∑
α=1

pα

∫
dx1, . . . ,dxN ψN ∗

α (x1, . . . ,xN ,t)xi
∂

∂x j
ψN

α (x1, . . . ,xN ,t) , (2.19)

in line with the coordinate representation p̂ j → −ih̄∂/∂x j of the momentum
operator p̂ j (not to confound with the ensemble probabilities pα).

In addition to the Wigner function, alternative quantum probability distribution
functions can be constructed. Among them, we can cite at least the Glauber–
Sudarshan function [11, 34], the Q-function [12], the Husimi function [19], the
Kirkwood distribution function [22] and the standard-ordered distribution func-
tion [32]. For these alternative functions, the underlying quantum-classical cor-
respondence is given by specific methods other than the Weyl rule [8, 26]. The
relevance of the non-Wigner probability distributions is recognized for specific
purposes. For instance, the Q-functions and the Husimi functions can be shown
to be everywhere nonnegative [26]. However, the Wigner function has a number
of simultaneous attractive properties which makes it more popular than the other
distribution functions. For example, the Q and Husimi functions does not provide
the marginal probability distributions in coordinate and momentum space in the
sense of (2.9) and (2.10), besides not satisfying certain closure properties [8, 26].

We note that in some places in the literature the Q-function and Husimi’s function
are considered as synonymous, as a brief survey reveal. However, although their
expressions are the same, their correspondence rules are not, see [26].
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2.2 Mean Field Approximation

In analogy to classical statistical mechanics, it is useful to introduce the reduced
one-particle Wigner function f (x1,v1,t),

f (x1,v1,t) =
∫

dx2dv2, . . . ,dxNdvN f N(x1,v1, . . . ,xN ,vN ,t), (2.20)

the reduced two-particle Wigner function f (2)(x1,v1,x2,v2,t) with a convenient
normalization factor N,

f (2)(x1,v1,x2,v2,t) = N
∫

dx3dv3, . . . ,dxNdvN f N(x1,v1, . . . ,xN ,vN ,t), (2.21)

as well as the remaining reduced i-particle Wigner functions, i = 3, . . . ,N. If the
Wigner function were a true probability distribution, (1/N) f (x1,v1,t)dx1dv1 would
give the probability of finding the particle 1 in an area dx1dv1 centered at (x1,v1),
irrespective of the “position” and “velocity” of the ith-particles, i = 2, . . . ,N. The
other partial, or reduced Wigner functions would have a similar interpretation.

What is the evolution equation satisfied by the N-body Wigner function? To
answer the question, we follow the philosophy of [24]. Let us start from the
Schrödinger equation satisfied by the N-body ensemble wavefunctions,

ih̄
∂ψN

α
∂ t

= − h̄2

2m

N

∑
i=1

∂ 2ψN
α

∂ x2
i

+V (x1, . . . ,xN)ψN
α (2.22)

for a potential energy V (x1, . . . ,xN).
From (2.12) and (2.22),

∂ f N

∂ t
= N

( m
2π h̄

)N M

∑
α=1

pα

∫
ds1, . . . ,dsN exp

(
im ∑N

i=1 visi

h̄

)

×
[

ih̄
2m

N

∑
j=1

(
ψN ∗

α (x+,t)
∂ 2ψN

α (x−,t)
∂ x2

j

− ∂ 2ψN ∗
α (x+,t)
∂ x2

j

ψN
α (x−,t)

)

+
i
h̄

(V (x+)−V(x−)) ψN ∗
α (x+,t)ψN

α (x−,t)

]
. (2.23)

Above, we introduced the displaced collective coordinates

x+ = (x1 + s1/2, . . . ,xN + sN/2), (2.24)

x− = (x1 − s1/2, . . . ,xN − sN/2). (2.25)
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To deal with (2.23) and similar equations, the following two identities are useful,

ψN ∗
α (x+,t)

∂ 2ψN
α (x−,t)
∂ x2

i

− ∂ 2ψN ∗
α (x+,t)
∂x2

i

ψN
α (x−,t)

= −2
∂ 2

∂ xi∂ si

[
ψN ∗

α (x+,t)ψN
α (x−,t)

]
, (2.26)

N
M

∑
α=1

pα ψN∗
α (x+,t)ψN

α (x−,t)

=
∫

dv1, . . . ,dvN exp

(
− im∑N

i=1 visi

h̄

)
f N(x1,v1, . . . ,xN ,vN ,t). (2.27)

From these identities and after integration by parts, (2.23) is converted into

∂ f N

∂ t
+

N

∑
i=1

vi
∂ f N

∂ xi

=
∫

dv′1, . . . ,dv′N ×KN [V |v′1 − v1,x1, . . . ,v
′
N − vN,xN ,t] f N(x1,v

′
1, . . . ,xN ,v′N ,t),

(2.28)

introducing the functional

KN [V |v′1 − v1,x1, . . . ,v
′
N − vN,xN ,t]

= − i
h̄

( m
2π h̄

)N ∫
ds1, . . . ,dsN exp

(
− im∑N

i=1(v
′
i − vi)si

h̄

)
(V (x+)−V(x−)) .

(2.29)

In principle for a given interaction potential solving (2.28) amounts to a complete
description of the N-body quantum problem. However, the development of analytic
and numerical techniques for the N-body problem is of course a tremendous task.
Moreover, for practical reasons, it is more effective to deal with the reduced Wigner
functions, since f N contain far more information than what is needed. In this regard,
the one-particle Wigner function f (x,v,t) plays a privileged rôle. Indeed, most
macroscopic objects like number n(x,t) and current J(x,t) densities can be derived
from the moments of f (x,v,t),

n(x,t) =
∫

dv f (x,v,t), (2.30)

J(x,t) =
∫

dv f (x,v,t)v, (2.31)

much in the same way as in the classical formalism, in the transition from kinetic to
fluid models. We also observe that (2.5) and (2.6) hold for a one-particle quantum
fluid system, differently than (2.30) and (2.31) which apply to the N-body problem.
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From the above reasoning, it is clearly relevant to obtain the evolution equation
for the one-body reduced function f (x,v,t). We are specially concerned with the
case where the system components interact through some two-body potential W ,

V (x1, . . . ,xN) = ∑
i< j

W (|xi − x j|). (2.32)

The importance of such a situation is evident due to the Coulomb forces present in
charged particle systems.

Integrating (2.28) in the (x2,v2, . . . ,xN ,vN) variables, it follows that

∂ f

∂ t
+ v1

∂ f

∂ x1
= − im

2π h̄2

∫
ds1 dx2 . . . ,dxN dv′1, . . . ,dv′N exp

(
− im(v′1 − v1)s1

h̄

)

×
N

∑
i=1

(
W

(∣∣x1 − xi +
s1

2

∣∣)−W
(∣∣x1 − xi− s1

2

∣∣)
)

× f N(x1,v
′
1, . . . ,xN ,v′N ,t). (2.33)

A change of variables shows that the latter can be written as

∂ f

∂ t
+ v1

∂ f

∂ x1
= − im

2π h̄2

∫
ds1 dv′1 dx2 dv′2 exp

(
− im(v′1 − v1)s1

h̄

)

×
(

W
(∣∣x1 − x2 +

s1

2

∣∣)−W
(∣∣x1 − x2 − s1

2

∣∣)
)

× f (2)(x1,v
′
1,x2,v

′
2,t). (2.34)

in terms of the reduced two-particle Wigner function f (2) defined in (2.21). In the
derivation N 	 1 was taken into account. Actually, a more detailed argument in-
volving the higher-order Wigner functions yield a quantum BBGKY (Bogoliubov–
Born–Green–Kirkwood–Yvon) hierarchy [3, 6, 23, 39], where the dynamics of the
(N −1)-body reduced Wigner function is shown to depend on the N-body reduced
Wigner function. Hence, in both the classical infinite BBGKY set of equations and
its quantum analogue, we are faced with a closure problem.

The simpler way to deal with the truncation problem is by ignoring correlations,
assuming that the distribution of particles at (xi,vi) is not affected by particles at a
distinct phase space point (x j,v j). In this mean field (or Hartree) approximation, the
N-body Wigner function factorizes so that in a first approximation

f (2)(x1,v1,x2,v2,t) = f (x1,v1,t) f (x2,v2,t). (2.35)
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Now (2.34) simplifies to

∂ f
∂ t

+ v1
∂ f
∂ x1

=
∫

dv′1 K[Wsc |v′1 − v1,x1,t] f (x1,v
′
1,t), (2.36)

with the mean field explicitly time-dependent self-consistent potential

Wsc(x,t) =
∫

dx′dv f (x′,v,t)W (|x− x′|). (2.37)

The functional K[Wsc |v′1 − v1,x1,t] is given by

K[Wsc |v′1 − v1,x1,t] = − im

2π h̄2

∫
ds1 exp

(
− im(v′1 − v1)s1

h̄

)

×
(

Wsc

(
x1 +

s1

2
,t

)
−Wsc

(
x1 − s1

2
,t

))
. (2.38)

In many cases, it is necessary to take into consideration an external, possibly
time-dependent potential Vext(x1, . . . ,xN ,t). For instance, such a circumstance arises
in solid state devices, when considering the electronic motion in a fixed ionic lattice
or under a confining field like in quantum wires or quantum wells [10, 20, 30].
Or even we can simply incorporate the field due to an homogeneous ionic
background. In these cases, the external potential is of the form

Vext(x1, . . . ,xN ,t) =
N

∑
i=1

Wext(xi,t) (2.39)

for some one-particle potential Wext(xi,t). Implicitly in (2.39), the functional form
of Wext is the same irrespective of xi, implying that the external field impose
the same effect in all particles, which are supposed indistinguishable. Hence, for
completeness, we indicate the changes for a potential

V (x1, . . . ,xN) = ∑
i< j

W (|xi − x j|)+
N

∑
i=1

Wext(xi,t). (2.40)

Repeating the steps in the derivation involving a self-consistent potential only, the
time-evolution for the one-body reduced Wigner function f (x1,v1,t) can then be
shown to be governed by

∂ f
∂ t

+ v1
∂ f
∂ x1

=
∫

dv′1 K[Wsc +Wext |v′1 − v1,x1,t] f (x1,v
′
1,t), (2.41)
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where

K[Wsc +Wext |v′1 − v1,x1,t] = − im

2π h̄2

∫
ds1 exp

(
− im(v′1 − v1)s1

h̄

)

×
(

Wsc

(
x1 +

s1

2
,t

)
+Wext

(
x1 +

s1

2
,t

)

−Wsc

(
x1 − s1

2
,t

)
−Wext

(
x1 − s1

2
,t

))
(2.42)

and the averaged self-consistent potential Wsc is as in (2.37).

2.3 Electrostatic Quantum Plasmas

Consider now three-dimensional charged particle motion, with the Coulomb inter-
action

W (|r− r′|) =
e2

4πε0 |r− r′| , (2.43)

where −e is the electron charge and ε0 is the vacuum permittivity constant. In terms
of the self-consistent Wsc and some external Wext potentials, it is convenient to define
the total electrostatic potential φ(r,t) so that

φ(r,t) = φsc(r,t)+ φext(r,t), (2.44)

where
Wsc(r,t) = −eφsc(r,t) , Wext(r,t) = −eφext(r,t). (2.45)

It follows from the three-dimensional version of (2.37) that

∇2φsc = − e
ε0

∫
dr′dv f (r′,v,t)∇2

(
1

4π |r− r′|
)

=
e
ε0

∫
dr′ dv f (r′,v,t)δ (r− r′)

=
e
ε0

∫
dv f (r,v,t). (2.46)

Moreover,

∇2φext = −1
e

∇2Wext ≡−n0e
ε0

(2.47)

if the external potential is caused by an immobile fixed homogeneous ionic
background of density n0 and ion charge e. Appropriate changes are needed in
the case of a nonhomogeneous background, for example, as in the case of doped
semiconductors, or in presence of a dispersive medium with a permittivity constant
ε 
= ε0 [10, 20, 30].
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Combining (2.46) and (2.47), it is immediate to obtain

∇2φ =
e
ε0

(∫
dv f (r,v,t)−n0

)
, (2.48)

which is the Poisson equation in this case.
Just for notational simplicity, it is better to restrict again to the one-dimensional

case. In this way the expressions look nicer, and the transition to three spatial
dimensions can be easily done if necessary. In terms of the electrostatic potential
φ , (2.41) is rephrased as

∂ f
∂ t

+ v
∂ f
∂ x

=
∫

dv′ Kφ [φ |v′ − v,x,t] f (x,v′,t), (2.49)

where Kφ [φ |v′ − v,x,t] is the following functional,

Kφ [φ |v′ − v,x,t] =
iem
h̄

∫
ds

2π h̄
exp

(
im(v′ − v)s

h̄

)

×
(

φ
(

x +
s
2
,t

)
−φ

(
x− s

2
,t

))
. (2.50)

Equation (2.49) can be termed the quantum Vlasov equation (in the electrostatic
case), since it is the quantum analog of the Vlasov equation satisfied by the reduced
one-particle distribution function. The quantum Vlasov equation for the Wigner
function should be coupled to the Poisson equation for the scalar potential,

∂ 2φ
∂ x2 =

e
ε0

(∫
dv f (x,v,t)−n0

)
. (2.51)

Equations (2.49) and (2.51) constitute the Wigner–Poisson system, which is the
fundamental model for electrostatic quantum plasmas. It determines in a self-
consistent way both the Wigner function, associated with how the particles distribute
in phase space, and the scalar potential, which in turn describe the forces acting on
the particles.

Equations (2.49) and (2.51) need to be supplemented with suitable boundary and
initial conditions. For plasmas, frequently decaying or periodic boundary conditions
are sufficient. For nano-devices, the choice of boundary conditions is subtler due
to the finite size of the system and the nonlocal character of the Wigner function.
Indeed, to compute the integral defining the Wigner function, we need to specify
f (x,v,0) in the whole space even when dealing with finite size systems. We refer to
the specialized literature for more details [10, 20, 30].

Before seeking some of the consequences of the Wigner–Poisson system, let
us recapitulate the steps toward its derivation. First, it is a mean field model with
the N-body ensemble Wigner function supposed to be factorisable. Thanks to this
property, we achieved the simplest solution to the closure problem of the quantum



26 2 The Wigner–Poisson System

BBGKY hierarchy. In particular, it follows a notable advantage over the N-body
Schrödinger equation (or equivalently over the Liouville–von Neumann equation
for the N-body ensemble density matrix): the tremendous reduction of the number
of independent variables. For N 	 1 electrons in three-dimensional space, we can
compare the 3N + 1 coordinates entering the wavefunction, the 6N + 1 coordinates
of the density matrix, and the 6 + 1 = 7 independent variables of the reduced one-
body Wigner function, taking into account time. In particular, the mean field theory
is much less numerically demanding, since it requires the discretization of a space
with fewer dimensions. However, since correlations are disregarded, the Wigner–
Poisson system does not incorporate collisions. Moreover, no spin or relativistic
effects are taken into account in our presentation. Finally, no magnetic fields were
introduced yet.

Once the Wigner–Poisson system has been derived, it becomes the natural tool
in quantum kinetic theory for plasmas, since it is exactly analog to the Vlasov–
Poisson system. Hence, the methods applied to the Vlasov–Poisson system can with
some optimism be directly translated to quantum plasmas. Other quantum kinetic
treatments for assemblies of charged particle systems are obviously important,
but cannot compete with the Wigner formalism in the quantum plasma context.
For instance, the density functional [10] and Green’s function [17, 21] approaches
are popular tools for the modeling of quantum transport in the condensed matter
community. However, presently the majority of the plasma physics researchers feels
more comfortable with the particle distribution function method where the Vlasov
equation plays a central rôle and for which a number of analytical and numerical
methods are already available. Nevertheless, the simplifications underlying the
Wigner–Poisson model points to the relevance of the alternative approaches toward
a more sophisticated modeling. For instance, using Green’s function techniques
to describe collisions associated with short range particle–particle interactions one
finds [17,21] a nonlocal Boltzmann type collision operator which has to be included
in (2.49). However, these developments are outside the scope of the present text.

It is instructive to analyze the semiclassical limit of the quantum Vlasov equation
(2.49). By means of the change of variable s = h̄τ/m and Taylor expanding, the
result is

∂ f
∂ t

+ v
∂ f
∂ x

− eE
m

∂ f
∂ v

= − eh̄2

24m3

∂ 2E
∂ x2

∂ 3 f
∂v3 + O(H4), (2.52)

where the electric field is E = E(x,t) = −∂φ/∂ x. Implicitly, the semiclassical
approximation assumes the smallness of a nondimensional quantum parameter
H = h̄/(mv0L0), where v0 and L0 are, respectively, typical velocity and length scales.

If no quantum effects were present, (2.52) reduces to Vlasov’s equation,

∂ f
∂ t

+ v
∂ f
∂ x

− eE
m

∂ f
∂ v

= 0, (2.53)

to be coupled to Poisson’s equation to compose the Vlasov–Poisson system.
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As an intermediate step in the derivation of (2.52), one need to calculate integrals
like

∫
dv′ dτ

2π
τ ei(v′−v)τ f (x,v′,t) = i

∂
∂ v

∫
dv′dτ

2π
ei(v′−v)τ f (x,v′,t)

= i
∂

∂ v

∫
dv′δ (v′ − v) f (x,v′,t) = i

∂ f
∂ v

. (2.54)

It is immediate to recognize (2.52) as a semiclassical Vlasov equation, with f
playing the rôle of one-particle distribution function. From the Wigner function,
one can compute macroscopic quantities like particle, current and energy densities,
very much like in classical physics. Hence, it is a natural trend, to investigate to
which extent the methods applied to the Vlasov–Poisson system can be useful in the
Wigner–Poisson context. However, unlike in the classical limit, in general neither f
nor phase space volume are preserved by the quantum Vlasov equation, since

d f

dt
= − eh̄2

24m3

∂ 2E

∂ x2

∂ 3 f

∂v3 + O(H4) 
= 0 (2.55)

along the (classical) characteristic equations ẋ = v, v̇ = −eE/m. Moreover the
positive definiteness of the Wigner function is not preserved by (2.49). The
exception is for linear electric fields, for which the quantum corrections vanishes
in (2.52). In this case, the Wigner and Vlasov equations coincide to all orders in the
nondimensional quantum parameter H.

Even in the harmonic oscillator case, when the Wigner and Vlasov equations
coincide, f (x,v,t) cannot be considered as an ordinary probability distribution
function. Indeed, not all functions on phase space can be taken as Wigner functions,
since a genuine Wigner function should correspond to a positive definite density
matrix. Therefore, at least the following necessary conditions [18] must hold,

∫
dxdv f = N, (2.56)

∫
dv f ≥ 0, (2.57)

∫
dx f ≥ 0, (2.58)

∫
dxdv f 2 ≤ mN2

2π h̄
. (2.59)

Equation (2.56) is just a normalization condition, while (2.57) and (2.58) arise
because the spatial and velocity marginal probability densities should be everywhere
nonnegative. Finally, (2.59) is needed to avoid violation of the uncertainty principle,
eliminating too spiky functions f (x,v,t).
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2.4 The Schrödinger–Poisson System

The equivalence between the Wigner–Poisson and a system of countably many
Schrödinger equations coupled to the Poisson equation has been mathematically
demonstrated [29]. More exactly, any Wigner function can be written as

f (x,v,t) =
Nm
2π h̄

M

∑
α=1

pα

∫
ds exp

(
imvs

h̄

)
ψ∗

α

(
x +

s
2
,t

)
ψα

(
x− s

2
,t

)
, (2.60)

with ensemble probabilities pα ≥ 0 so that ∑M
α=1 pα = 1, for each one-particle

ensemble wavefunctions ψα(x,t) satisfying

ih̄
∂ψα

∂ t
= − h̄2

2m
∂ 2ψα

∂x2 − eφψα , α = 1, . . . ,M, (2.61)

which is the Schrödinger equation for a particle under the action of the mean field
potential φ(x,t). In addition, the Poisson equation (2.51) is rewritten as

∂ 2φ
∂x2 =

e
ε0

(
N

M

∑
α=1

pα |ψα(x,t)|2 −n0

)
. (2.62)

Equations (2.61) and (2.62) constitute the so-called Schrödinger–Poisson system,
which has to be supplemented with suitable initial and boundary conditions. It
provides a way of replacing the original N-body problem by a collection of one-
body problems, coupled by Poisson’s equation. From a methodological point of
view, the Schrödinger–Poisson modeling corresponds to put the emphasis again on
the wavefunction and not on the (phase space) Wigner function. Collective effects
are mediated by the self-consistent potential φ .

A rigorous proof [29] of the equivalence of (2.61) and (2.62) and the Wigner–
Poisson system (2.49)–(2.51) is beyond the present text. However, we can obtain
some insight on the interpretation of the ensemble wavefunctions. From (2.12)–
(2.20),

f (x1,v1,t) =
∫

dx2dv2, . . . ,dxNdvN f N(x1,v1, . . . ,xN ,vN ,t)

= N
( m

2π h̄

) M

∑
α=1

pα

∫
ds1 dx2, . . . ,dxN exp

(
imv1s1

h̄

)

×ψN ∗
α

(
x1 +

s1

2
,x2, . . . ,xN ,t

)
ψN

α

(
x1 − s1

2
,x2, . . . ,xN,t

)
. (2.63)

To follow the mean field approximation, we are tempted to assume the factorized
form

ψN
α (x1,x2, . . . ,xN ,t) = ψα(x1,t)×·· ·×ψα(xN ,t), (2.64)
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for the N-body wavefunction, fully neglecting the correlations due to the interaction
potential. Quantum statistics effects are not taken into account in the Ansatz
(2.64), which does not respect the Pauli principle. However, for simplicity spin
considerations will be not included at this moment. Inserting (2.64) into (2.63), the
result is precisely (2.60), with the same statistical weights pα . Hence we can view
the one-body ensemble wavefunctions ψα(x,t) as the result of splitting the N-body
ensemble wavefunction into the product of identical factors.

Equation (2.60) shows that the reduced one-body Wigner function is always in
the form of the sum

f (x,v,t) =
M

∑
α=1

pα fα(x,v,t), (2.65)

where

fα (x,v,t) =
Nm
2π h̄

∫
ds exp

(
imvs

h̄

)
ψ∗

α

(
x +

s
2
,t

)
ψα

(
x− s

2
,t

)
. (2.66)

The case where only one ensemble wavefunction is needed so that pα = δαβ for
some β corresponds to a pure state. Otherwise, we have a mixed state.

Using the map (2.7) from the Wigner function to the density matrix ρ(x,y,t), we
can derive a condition for a pure state. Supposing

f (x,v,t) =
Nm
2π h̄

∫
dse

imvs
h̄ ψ∗

(
x +

s
2
,t

)
ψ

(
x− s

2
,t

)
(2.67)

in terms of a single wavefunction ψ(x,t) and inserting in (2.7), we obtain

ρ(x,y,t) = Nψ(x,t)ψ∗(y,t). (2.68)

Hence,

∂ 2 lnρ(x,y,t)
∂x∂y

= 0 (2.69)

is a necessary condition for a pure state, where ρ(x,y,t) is given by (2.7). In addition
to (2.69), a real Wigner function is required to qualify a pure state, which means
ρ∗(x,y,t) = ρ(y,x,t). Moreover, it can be shown that a pure state at t = 0 remains a
pure state along the time-evolution of the quantum Vlasov equation (2.49).

While the direct construction using (2.60) of the Wigner function from the
wavefunctions and the statistical weights is a trivial task, the reverse problem of
how to choose ψα , pα to reproduce a given Wigner function is more obscure. In
particular, when we know we are dealing with a mixed state, what is the minimal
number M of ensemble wavefunctions needed? Or, for a fixed M, what could be
the natural way to define the wavefunctions ψα and the corresponding probabilities
pα so as to reproduce f (x,v,t), possibly in some approximate sense? There is no
universal answer to these questions in the current literature.
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2.5 Validity of the Wigner–Poisson System

The Wigner–Poisson system is collisionless, in the same sense as is the Vlasov–
Poisson system of classical plasma physics. In both models, the long-range interac-
tions due to the self-consistent electrostatic potential are assumed to dominate over
short-range collisional interactions between two or more particles. This statement
can be made more precise [31]. Correlations between particles or equivalently
collisions cannot be neglected if the average potential energy between two electrons
become comparable to the average kinetic energy. As have been seen in the
discussion on the classical and quantum energy coupling parameters of Sect. 1.4,
we know the validity conditions for the collisionless approximation. For classical
plasmas, it reads

ΓC =
Upot

KC
=

e2n1/3
0

ε0κBT
� 1, (2.70)

in terms of the classical coupling parameter ΓC. On the other hand, for plasmas
where the Fermi–Dirac statistics is unavoidable, collisions can be ignored provided

ΓQ =
Upot

KQ
=

e2n1/3
0

ε0κBTF
∼ me2

ε0h̄2n1/3
0

� 1, (2.71)

in terms of the quantum coupling parameter ΓQ. As a consequence, for quantum
plasmas (TF > T ) the collisionless approximation becomes better as the density
increases.

When the condition ΓC � 1 holds, the N-particle distribution can be factorized as
a product of one-particle distribution functions satisfying Vlasov’s equation. Hence
the Vlasov–Poisson system is the standard model to describe classical electrostatic
plasmas in the collisionless approximation.

When the condition ΓQ � 1 holds, a quantum electron gas can be described by
the Wigner–Poisson system. In this case, the N-body Wigner function is expressed
as a product of one-particle Wigner functions so that the Wigner–Poisson system is
the natural model for collisionless quantum plasmas.

The previous results were derived in the limiting cases T 	 TF (classical) and
T � TF (quantum degenerate). For intermediate temperatures, simple expressions
for the coupling parameters are not available, but one must expect a smooth
transition between the two regimes.

For electrons in metal, we have typically

n0 � 1029 m−3, vF � 106 ms−1, ωp � 1016 s−1, λF � 10−10 m. (2.72)

These values yield a quantum coupling parameter of order unity. Allowing for the
dimensionless constants, we have neglected and the different properties of metals,
we realize that ΓQ can be both smaller and larger than unity for typical metallic
electrons [31].
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Since ΓQ ∼ 1, apparently a collisionless model such as the Wigner–Poisson
system could not be employed for metals. However, fortunately, the average rate of
electron–electron collisions in such system is drastically reduced due to the Fermi–
Dirac statistics. Indeed, in most cases of interest, for relatively low temperatures the
vast majority of electrons is well below the Fermi energy. Since all lower levels are
occupied, the exclusion principle forbids transitions except for the small electron
population in a shell of thickness ∼κBT around the Fermi surface, a phenomena
know as Pauli blocking [2]. The e–e collision rate (inverse of the lifetime τee)
for such electrons is proportional to κBT/h̄, as a consequence of the uncertainty
principle energy × time ∼ h̄. Since the fraction of electrons available to collisions
is ∼ T/TF, one obtains

1
τee

∼ 1
h̄

κBT 2

TF
. (2.73)

At room temperature, τee � 10−10 s, which is much larger than the typical collision-
less time scale τp = ω−1

p � 10−16 s. Therefore, for times smaller than τee, the effect
of e–e collisions can be safely neglected. In addition, it turns out that the typical
relaxation time scale is τr � 10−14 s, which is again significantly larger than τp. In
summary, the ordering

τp � τr � τee, (2.74)

implies that a collisionless (Wigner) model is appropriate for relatively short time
scales [31].

Notice that not only very dense charged particle systems deserve quantum kinetic
equations for their description. For instance, due to the ongoing miniaturization,
even scarcely populated electronic systems such as resonant tunneling diodes [30]
should be described in terms of quantum models. Indeed, the behavior of these
ultra-small electronic devices relies on quantum diffraction effects as tunneling,
making purely classical methods inappropriate. The nonlocal integro-differential
potential term in (2.49) in the Wigner–Poisson system has been shown to be capable
of the modeling of negative differential resistance, associated with tunneling [25].
Moreover, the collisionless approximation become more reasonable in view of the
nanometric scale of the devices, simply because the mean free-path exceeds the sys-
tem size. In the same manner, the usually extreme high operating frequencies makes
the collisionless approximation more accurate because ωτ � 1 for an operating
frequency ω and a average time τ between collisions. For example, in resonant tun-
neling diodes one can find [30] potential barriers of the order 0.3 eV∼ h̄ω , implying
an operating frequency ω ∼ 1015 s−1. Therefore, the Wigner–Poisson system is well
suited for ballistic, collisionless processes in nanometric solid state devices, even at
relatively low densities of order n0 ∼ 1024m−3. Correspondingly, one finds a Fermi
temperature TF ∼ 40 K much smaller than a typical room temperature T ∼ 300 K,
justifying the nondegeneracy assumption and Maxwell–Boltzmann’s statistics.
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2.6 Extensions to Include Correlation and Spin Effects

In spite of d f/dt 
= 0, neither (2.49) nor (2.52) include collisions. Instead, the mean
field (or Hartree) approximation is implicit in the Wigner–Poisson model, since
its derivation assumed the factorization of the N-particle Wigner function f N =
f N(x1,v1, . . . ,xN ,vN ,t) as a product of N identical one-particle Wigner functions,
f N = f (x1,v1,t) × ·· · × f (xN ,vN ,t). In this context, the scalar potential φ(x,t)
comes from the collective field of the N electrons, just as in the classical theory.
Allowing for correlations would result in a quantum BBGKY hierarchy.

In principle, a more detailed factorization taking into account the Pauli ex-
clusion principle could have been employed. In this case, a Hartree–Fock term
would be present in (2.49), see [24] for more details. However, frequently it
is expedite to replace the complicated, nonlocal exchange-correlation terms by
local phenomenological expressions, using the so-called adiabatic local density
approximation (ALDA) [13, 33].

As remarked, quantum effects in a plasma (and in N-body systems in general)
are unavoidable when the particle density is high enough. This can also be seen
through the expansion parameter H in (2.52), which increase with density. To verify

this, assume L0 of the order of the mean inter-particle distance n−1/3
0 and v0 of

the order of the thermal velocity vT. Hence, H ∼ h̄n1/3
0 /(mvT), which is of order

unity when the de Broglie wavelength λB = h̄/(mvT) is comparable to the mean
inter-particle separation. In this case, there will be a significant overlap of the wave
packets associated with each electron, so that the Newtonian approximation breaks
down. On the other hand, a collisionless model for quantum plasmas becomes more
accurate for higher densities, see the quantum coupling parameter ΓQ in (2.71).
We use this conclusion as a methodological argument in favor of the Wigner–
Poisson system, even if the underlying Fermi–Dirac statistics is not included in
(2.49) and (2.51). We also note that the classical energy coupling parameter usually
ΓC in (2.70) plays a marginal rôle in quantum plasmas.

On the other hand, it is worth to say that the Wigner–Poisson system is employed
in the semiconductor literature where typically the particle densities are not so
high. Except for short-time ballistic phenomena, in such cases, it is crucial to
improve the model by means of adequate collision operators [30]. For instance, in a
resonant tunneling diode quantum effects are noticeable thanks to the smallness of
the system, so that the basic characteristic length is the size of the device rather than
the average inter-particle distance. Mathematically, the size of the system manifests,
for example, through the boundary conditions.

In recent years [1,9,28], much attention has been devoted to the Wigner–Fokker–
Planck equation

∂ f
∂ t

+ v
∂ f
∂ x

−
∫

dv′ Kφ [φ |v′ − v,x,t] f (v′,x,t) = LQFP[ f ], (2.75)

for the modeling of quantum dissipation, with

LQFP[ f ] =
Dpp

m2

∂ 2 f
∂v2 +

η
m

∂
∂ v

(v f )+
2
m

Dpq
∂ 2 f

∂ v∂x
+ Dqq

∂ 2 f
∂ x2 (2.76)
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acting as a collision term. In this case, it is assumed an open quantum system
interacting with a heat bath of harmonic oscillators. Here,

Dpp = η κB T , Dpq =
η Ω h̄2

12π mκB T
, Dqq =

η h̄2

12m2κB T
(2.77)

are phenomenological constants related to the interactions, where η is the damping
coefficient of the bath, T is the bath temperature and Ω is the cut-off frequency
of the reservoir oscillators. Physically, the heat bath of harmonic oscillators can be
realized, for example, in terms of the phonons propagating in a crystal lattice.

Notice that for homogeneous equilibrium (∂ f/∂x = 0) or for vanishing quantum
effects, the Maxwellian f = fM ∼ exp(−v2/2v2

T),v2
T = κB T/m belongs to the kernel

of the collision operator (2.76), or

LQFP[ fM] = 0. (2.78)

Actually this comes with no surprise since the Wigner–Fokker–Planck model is
derived [1, 9] on the assumption of classical statistics, that is, no spin degrees of
freedom. In addition, if Dpq and Dqq are set to zero the Caldeira–Legget [7] model
is recovered. However, importantly the Wigner–Fokker–Planck collision operator
can be put in the Lindblad form [27] provided

Dpp Dqq ≥ D2
pq +

h̄2η2

16m2 or h̄Ω ≤
√

3π κB T, (2.79)

the last inequality holding for η 
= 0. Accordingly, it can be shown that the associa-
ted density matrix operator preserves positivity under time-evolution, a feature not
satisfied by the Caldeira–Legget model.

Promising as it is, the Wigner–Fokker–Planck model did not apply to dense
quantum plasma astrophysical environments, where the fermion statistics play a
significant rôle. Therefore, the inclusion of suitable dissipation mechanisms is a
challenge in quantum plasma physics.

2.7 High Frequency Longitudinal Waves

For any plasma, the propagation of linear waves is an essential issue. Assuming a
wave with wave number k and frequency ω propagating in a plasma described by
the Wigner–Poisson system (2.49) and (2.51), set

f (x,v,t) = f0(v)+ f1(v)exp(i[kx−ωt]), (2.80)

φ = φ1 exp(i[kx−ωt]), (2.81)

for first-order disturbances f1,φ1. It is supposed an equilibrium Wigner function
f = f0(v) such that

∫
dv f0(v) = n0 and a zero equilibrium electrostatic potential.
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Linearizing (2.49) and (2.51) it follows

−i(ω − kv) f1(v) =
(

f0

(
v +

h̄k
2m

)
− f0

(
v− h̄k

2m

))
φ1, (2.82)

−k2φ1 =
e
ε0

∫
dv f1(v). (2.83)

This linear homogeneous system for f1,φ1 admit nontrivial solutions if and only if

ε ≡ 1− mω2
p

n0h̄ k2

∫
dv

f0[v + h̄k/(2m)]− f0[v− h̄k/(2m)]
k v−ω

= 0. (2.84)

Here ωp = (n0 e2/mε0)1/2 is the plasma frequency.
For the dispersion properties only, (2.84) can be understood in the principal value

sense. In addition, it is convenient to change integration variables so as to rewrite
the permittivity ε as

ε = 1− ω2
p

n0

∫
dv

f0(v)
(ω − k v)2 − h̄2 k4/(4m2)

. (2.85)

Further, it is useful [14] to introduce the rescaling

F =
ωp f0

n0k
, u =

kv
ωp

, Ω =
ω
ωp

, (2.86)

so that

ε = 1− 1
Ω 2

∫
duF(u)

(1−u/Ω)2 −Ω2
q/Ω 2 = 0, (2.87)

where
∫

duF(u) = 1 and it was defined

Ω2
q =

h̄2 k4

4m2 ω2
p
. (2.88)

For high frequency oscillations, we can consider expanding the integrand retaining
up to O

(
Ω 2

q /Ω 2,〈u2〉/Ω2
)

terms, (2.87) becomes

ε � 1− 1
Ω2

(
1 +

3〈u2〉+ Ω2
q

Ω2

)
= 0. (2.89)

In (2.89), 〈u2〉 =
∫

duF(u)u2. For simplicity,
∫

duF(u)u = 0 was assumed, which
holds for instance for symmetric equilibria.
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Solving (2.89) by successive approximations, the result is

Ω2 = 1 + 3〈u2〉+ Ω 2
q (2.90)

or

ω2 = ω2
p + 3k2 〈v2〉+ h̄2k4

4m2 , (2.91)

where 〈v2〉 =
∫

dv f0(v)v2/n0. Equation (2.91) is the Bohm–Pines dispersion
relation [5], the quantum counterpart of the Bohm–Gross dispersion relation of
classical high frequency longitudinal plasma waves [4].

Equation (2.91) describes quantum Langmuir waves and is correct no matter the
form of the equilibrium Wigner function, as far as the high frequency hypothesis is
valid. In the case [24] of zero velocity dispersion ( f0(v) = n0 δ (v)) one has

ω2 = ω2
p +

h̄2k4

4m2 . (2.92)

Here, it is referred to “zero velocity dispersion” rather than to “zero-temperature”
to not confound with, for instance, a zero-temperature Fermi gas, where 〈v2〉 
= 0 in
consequence of the exclusion principle.

For the imaginary part of the frequency, it is useful to rewrite (2.84) according to

ε = 1− mω2
p

n0 h̄ k2

(∫
L+

dv f0(v)
k[v− h̄k/(2m)]−ω

−
∫

L−

dv f0(v)
k[v + h̄k/(2m)]−ω

)
= 0,

(2.93)

where the velocity integrals are performed with Landau contours L± passing under
the poles at v = ω/k± h̄k/(2m). Equation (2.93) can be used [24,35] as the starting
point for the discussion of the quantum Landau damping, the quantum counterpart
of the collisionless damping present in classical plasmas.

From (2.93), assuming that the damping or growth rate γ is small and repeating
the procedure for classical plasmas (see Problem 2.7), we get

γ =
π ω3

p

4n0 k2

(
f0 [ω/k + h̄k/(2m)]− f0 [ω/k− h̄k/(2m)]

h̄ k/(2m)

)
, (2.94)

where ω follows from (2.90). Hence, the damping (or growth) rate of quantum
Langmuir waves is a finite-difference version of the classical growth rate γcl, which
is obtained from (2.94) in the formal limit h̄ → 0,

γcl =
π ω3

p

2n0 k2

d f0

dv

(
v =

ω
k

)
. (2.95)

It is relevant to remark that from (2.94), a particular class of stationary solutions
such that γ = 0 is given by any function f0(v) which is a periodic in velocity space,
with period h̄ k/m:
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f0

(
v + h̄k

2m

)
− f0

(
v− h̄k

2m

)
= 0. (2.96)

Assuming f0(v) ∼ exp(iαv) in (2.96), with α to be determined, we obtain the cha-
racteristic equation sin(αh̄ k/(2m)) = 0. Hence, an exact equilibrium solution is the
linear combination, or Fourier series

f0(v) = a0 +
∞

∑
n=1

an cos

(
2πnv

λv

)
+

∞

∑
n=1

bn sin

(
2πnv

λv

)
, (2.97)

where an,bn are arbitrary real constants and λv = h̄ k/m. Notice the singular
character of the quantum oscillations, whose “wavelength” of the fundamental mode
(n = 1) in velocity space tends to zero as h̄ → 0. The solution given by (2.97)
represents periodic oscillations in velocity space. This is in sharp contrast to the
classical stationary solution which points to the formation of a plateau (d f0/dv = 0)
at the resonance, see (2.95). The oscillating character of quantum plasma equilibria
has been predicted in terms of a quantum quasilinear theory and numerically
verified [16].

The treatment of nonlinear phenomena in the Wigner–Poisson framework is
rather involved, with few known analytic results. For instance, a few classes of
exact nonlinear stationary solution is available [15]. The most expedite route toward
nonlinear quantum plasmas is by means of hydrodynamic formulations, as we start
to verify in the next chapter.

Problems

2.1. Use v exp(−imvs/h̄) = (i h̄/m)(∂/∂s) exp(−imvs/h̄) and integration by
parts assuming decaying or periodic boundary conditions to check (2.3).

2.2. Check the last equality in (2.7) as well as (2.8).

2.3. Derive (2.52) starting from (2.49).

2.4. Work out (2.56) and (2.59) for a Gaussian shaped Wigner function
f =Aexp(−v2/δv2 − x2/δ x2), A = cte. Show that mδvδx ≥ h̄.

2.5. Expand the equation of motion for the one-particle Wigner function in one
spatial dimension up to fourth-order in the dimensionless quantum parameter H.
Discuss the properties of quantum robust solutions, defined as the Wigner functions
for which the quantum effects vanish up to O(H5).

2.6. Show that the Maxwellian belongs to the kernel of the Wigner–Fokker–Planck
collision operator.

2.7. Consult a standard plasma textbook where the damping rate of Langmuir
waves is derived and repeat the procedure in the quantum case, to get (2.94) using
(2.93).
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Chapter 3
The Quantum Two-Stream Instability

Abstract The quantum equivalent of the Dawson multistream model is constructed
in terms of the fluid variables representation of the Schrödinger–Poisson system.
This Madelung-type hydrodynamic formulation is a first step toward a quantum
hydrodynamic model for plasmas. The linear dispersion relation as well as the non-
linear stationary states are discussed, in the one- and two-stream cases. The quantum
two-stream instability is analyzed in terms of the coupling of approximate fast and
slow waves carrying positive and negative energies.

3.1 Streaming Instabilities in Quantum Plasmas

Since it has been discussed for the first time in the framework of a quantum hydrody-
namical model [12], the quantum two-stream instability has attracted considerable
attention in the literature. The reason for this is that it is a benchmark displaying
many of the particularities of quantum plasmas, including a new unstable branch of
the dispersion relation for large wavenumber and almost stationary, quasineutral,
nonlinear oscillations [12] without analog in classical plasmas. Furthermore, it
has been found [3] that temperature effects can suppress the purely quantum
instabilities, as described by a kinetic (Wigner–Poisson) treatment. Similarly, the
thermal spread is responsible for a smaller classical two-stream instability treated by
the Vlasov–Poisson system. In addition, the quantum fluid equations have been used
for several quantum streaming instability problems, like in quantum dusty plasmas
[2], in three-stream quantum plasmas [13] or in electron–positron–ion quantum
plasmas [16]. The hydrodynamic formalism has also been applied to the quantum
filamentation instability, with or without magnetization [8, 9].

F. Haas, Quantum Plasmas: An Hydrodynamic Approach, Springer Series on Atomic,
Optical, and Plasma Physics 65, DOI 10.1007/978-1-4419-8201-8 3,
© Springer Science+Business Media, LLC 2011
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3.2 Quantum Dawson Model

In the present chapter, we consider a one-dimensional quantum plasma, where
the electrons are described by a statistical mixture of M pure states, each with
wavefunction ψα ,α = 1, ...,M obeying the Schrödinger–Poisson system

ih̄
∂ψα

∂ t
= − h̄2

2m
∂ 2ψα

∂x2 − eφψα , α = 1, ...,M, (3.1)

∂ 2φ
∂x2 =

e
ε0

(
M

∑
α=1

|ψα |2 −n0

)
, (3.2)

where φ(x,t) is the electrostatic potential. Electrons have mass m and charge −e,
and are globally neutralized by a fixed ion background with density n0. We assume
periodic boundary conditions, with spatial period L. Finally, in the context of this
chapter, it is convenient to adopt the normalization

∫
dx|ψα |2 = N/M, (3.3)

where N is the number of particles in a length L so that n0 = N/L and global charge
neutrality is assured.

The system of (3.1) and (3.2) takes into account diffraction, which is the most
evident quantum effect, but neglects dissipation, spin and relativistic corrections.
Nevertheless, it is useful to consider simplified models that capture the main features
of quantum plasmas. Indeed, (3.1) and (3.2) are sufficiently rich to display a wide
variety of behaviors, as will be seen soon. At the same time, the model is still
amenable to analytic and numerical treatment.

As discussed in Chap. 2, a physically equivalent approach would consist
in considering a Wigner function describing the same mixture. However, for
analytic and numeric purposes, the Schrödinger–Poisson model reveal to be more
convenient. In particular, for the numerical simulations the Wigner formalism is
cast into a two-dimensional phase space, whilst the Schrödinger–Poisson model
only requires the discretization of an one-dimensional configuration space. Of
course, if the number M of streams is large, the numerical cost for the description of
the system of (3.1) and (3.2) is also considerable. Nevertheless, interesting physical
phenomena (such as instabilities, for M = 2) can take place even with a few streams.

For the analytical study, the hydrodynamic formulation of the Schrödinger–
Poisson system is particularly convenient, since it makes direct use of macroscopic
plasma quantities, such as density and average velocity. Moreover, it enables one
to perform straightforward perturbation calculations in the same fashion as in the
classical case. Hence, let us introduce the amplitude Aα = Aα(x,t) and the phase
Sα = Sα(x,t) associated with the pure state ψα = ψα(x,t) according to

ψα = Aα exp(iSα/h̄). (3.4)
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Both Aα and Sα are defined as real quantities. The density nα and the velocity uα of
the αth stream of the plasma are given by

nα = A2
α , uα =

1
m

∂ Sα

∂ x
. (3.5)

Introducing (3.4) and (3.5) into (3.1) and (3.2) and separating the real and imaginary
parts of the equations, we find

∂ nα
∂ t

+
∂

∂ x
(nαuα) = 0, (3.6)

∂ uα
∂ t

+ uα
∂ uα
∂x

=
e
m

∂φ
∂ x

+
h̄2

2m2

∂
∂ x

(
∂ 2(

√
nα)/∂ x2

√
nα

)
, (3.7)

∂ 2φ
∂ x2 =

e
ε0

(
M

∑
α=1

nα −n0

)
. (3.8)

The continuity equation (3.6) and the quantum Euler equation (3.7) are the fluid
dynamics representation of the Schrödinger equation, as introduced by Madelung
[15]. In this context, (3.4) can be termed the Madelung decomposition of the
wavefunction.

In the resulting set of equations, quantum effects are contained in the pressure-
like, h̄-dependent term in (3.7). If we set h̄ = 0, we simply obtain the classical
multistream model introduced by Dawson [10]. Therefore, we shall refer to (3.6)–
(3.8) as the quantum multistream, or quantum Dawson model [12]. Let us examine
the consequences of the quantum Dawson model.

3.3 One-Stream Plasma

To introduce the basic ideas, we first consider the one-stream case and take M = 1,
that is, a single pure quantum state. For brevity, we write n1 ≡ n, u1 ≡ u. We obtain

∂ n
∂ t

+
∂

∂ x
(nu) = 0, (3.9)

∂ u
∂ t

+ u
∂ u
∂ x

=
e
m

∂φ
∂ x

+
h̄2

2m2

∂
∂ x

(
∂ 2(

√
n)/∂ x2
√

n

)
, (3.10)

∂ 2φ
∂ x2 =

e

ε0
(n−n0). (3.11)

The homogeneous solution for (3.9)–(3.11) is given by

n = n0, u = u0, φ = 0, (3.12)
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where u0 is a constant representing the equilibrium velocity of the stream. The linear
stability of this solution is obtained by Fourier analyzing (3.9)–(3.11),

n = n0 + n′ exp(i(kx−ω t)), (3.13)

u = u0 + u′ exp(i(kx−ω t)), (3.14)

φ = φ ′ exp(i(kx−ω t)) (3.15)

Retaining only terms up to first-order in n′, u′, and φ ′ a linear homogeneous system
for the perturbations is found. Nontrivial solutions exist provided the dispersion
relation

(ω − ku0)2 = ω2
p +

h̄2k4

4m2 , (3.16)

holds, where ωp = (n0e2/mε0)1/2 is the plasma frequency. The zero-temperature
Bohm–Pines dispersion relation [7] is recovered, the term ku0 just representing
a Doppler shift. Since the frequency ω is always real, we have undamped stable
oscillations of the plasma.

The classical analog of this system is the “cold plasma” model because there’s
no pressure term in the momentum equation. However, in the quantum realm the
Bohm potential term plays a rôle similar to a pressure, even if in mathematical terms
it does not correspond to the gradient of a function of the density only. The Bohm
term arises directly from the Schrödinger equation, and is responsible for typical
quantum-like behavior involving tunneling and wave packet spreading. Formally, it
contribute to extra dispersion of the small wavelengths, as apparent from (3.16). This
is relevant when we compare the propagation of nonlinear waves in the classical
and quantum cases. The classical cold plasma model is known to sustain nonlinear
oscillations when the amplitude of the initial perturbation is smaller than a certain
value. Beyond this value, the solution becomes singular in a finite time, which is a
sign that the model is no longer valid. This phenomenon corresponds to the breaking
of the plasma wave, due to particle overtaking in the phase space. On the other hand,
due the Bohm pressure-like term in (3.10), the quantum solution never becomes
singular, as confirmed by computer simulations [6].

Unlike in the kinetic formalism, the stationary solutions of the fluid equations are
fairly amenable to analyze. Defining all quantities to depend only on position, (3.9)
and (3.10) reduces to

d
dx

(nu) = 0, (3.17)

u
du
dx

=
e
m

dφ
dx

+
h̄2

2m2

d
dx

(
d2(

√
n)/dx2
√

n

)
. (3.18)

Equations (3.17) and (3.18) have the first integrals

J = nu, (3.19)

Ξ =
mu2

2
− eφ − h̄2

2m

(
d2(

√
n)/dx2
√

n

)
, (3.20)
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or

dJ
dx

= 0,
dΞ
dx

= 0, (3.21)

corresponding to charge and energy conservation. The constant H can be elimi-
nated by the global shift φ → φ + Ξ/e, and therefore we assume Ξ = 0. Then,
eliminating u, introducing A =

√
n and using Poisson’s equation, we obtain

h̄2 d2A
dx2 = m

(
mJ2

A3 −2eAφ
)

, (3.22)

d2φ
dx2 =

e
ε0

(A2 −n0). (3.23)

It can be verified that the J = 0 case cannot sustain small-amplitude, periodic
solutions. Hence, we assume J = n0u0 with u0 �= 0 and introduce the following
rescaling

x∗ =
ωpx

u0
, A∗ =

A√
n0

,

φ∗ =
eφ

mu2
0

, H =
h̄ωp

mu2
0

. (3.24)

We obtain, in the transformed variables (omitting the stars for simplicity of
notation),

H2 d2A
dx2 = −2φ A +

1
A3 , (3.25)

d2φ
dx2 = A2 −1, (3.26)

a system depending only on the rescaled parameter H, which is the proper measure
of the importance of quantum effects. Physically, H is the ratio between the plasmon
energy h̄ωp and the kinetic energy mu2

0 of a particle in the beam.
Let us consider the classical limit of (3.25) and (3.26). This classical limit

is singular, because when H = 0, (3.25) degenerates into an algebraic equation,
yielding A2 = ±1/

√
2φ . Since the amplitude A is supposed real, we need to choose

the positive solution so that the equation for the electrostatic potential becomes

d2φ
dx2 =

1√
2φ

−1. (3.27)
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Fig. 3.1 Potential function V (φ) at (3.28)

Equation (3.27) corresponds to an autonomous, one degree of freedom Hamilto-
nian problem, for a “particle” moving in a potential V (φ) = φ −√

2φ :

d2φ
dx2 = −dV(φ)

dφ
= − d

dφ

[
φ −

√
2φ

]
. (3.28)

Using this analogy, one can see that (3.27) has periodic solutions around the
equilibrium φ = 1/2, with the necessary condition that the initial condition satisfies
0 < φ(x = 0) < 2. This can be seen in Fig. 3.1 showing the potential V (φ). The
fact that linear oscillations around φ = 1/2 are sustained is apparent. For nonlinear
oscillations with an energy bigger than zero one sees that eventually the oscillation
will come back toward φ = 0, implying a complex V (φ) in a finite time.

The fact that no solution exists for sufficiently large values of the potential is
easily understood. A large potential fluctuation induces a velocity fluctuation, which
can drive u(x) far from its nominal value u0. If the potential is sufficiently strong,
u(x) can even vanish, but in that case the relation nu = J = constant implies an
infinite density. This is the well-known effect of particle overtaking that occurs in
the cold plasma model.

Going back to the quantum mechanical case, we have shown that (3.25) and
(3.26) describe a quantum fluid version of the Bernstein–Greene–Kruskal (BGK)
inhomogeneous equilibria of the one-component plasma. In classical plasma [5] the
BGK solution refers to exact nonlinear stationary solutions for the Vlasov–Poisson
system where the distribution function is expressed in terms of the energy of a
particle under a time-independent scalar potential.
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In a nutshell, the BGK method consider the stationary Vlasov’s equation

v
∂ f
∂x

− eφ(x)
m

∂ f
∂ v

= 0 (3.29)

in the one degree of freedom case, for the particle distribution function f (x,v). From
the method of characteristics, we know the general solution for (3.29) to be in the
form f = F(H ), where F is an arbitrary function of the energy

H =
mv2

2
− eφ(x). (3.30)

For a specific form of F(H ) one transform Poisson’s equation into an autonomous
one-dimensional Hamiltonian system for φ(x), which is known to be integrable by
quadrature. However, it is hard to extend the BGK approach to the Wigner–Poisson
realm since a general function of the constants of motion is not a solution for the
quantum Vlasov equation. However, in the fluid formulation, some analytical results
can be obtained for (3.25) and (3.26), shown below.

Equations (3.25) and (3.26) can be put into Hamiltonian form using the variables

Ā = iA, φ̄ = φ/H. (3.31)

Notice that the rescaled amplitude Ā is a purely imaginary quantity. We have

d2Ā
dx2 = −∂ U

∂ Ā
,

d2φ̄
dx2 = −∂ U

∂ φ̄
, (3.32)

where U ≡U(Ā, φ̄ ) is the pseudo-potential

U(Ā, φ̄) =
1
H

(1 + Ā2)φ̄ +
1

2H2Ā2
. (3.33)

Since the equations of motion are autonomous with respect to the independent
variable x, the Hamiltonian formulation immediately gives the first integral

I =
1
2

[(
dĀ
dx

)2

+
(

dφ̄
dx2

)2
]

+U(Ā, φ̄), (3.34)

or

dI
dx

= 0. (3.35)

which is the Hamiltonian function in transformed coordinates. Transforming back
to the original variables, one obtains the first integral for (3.25) and (3.26)

I =
1
2

[
−

(
dA
dx

)2

+
1

H2

(
dφ
dx

)2
]

+
1

H2 (1−A2)φ − 1
2H2A2 . (3.36)
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According to the Liouville–Arnold theorem [4], an autonomous two degrees of
freedom Hamiltonian system is completely integrable if it possesses two first
integrals in involution (null mutual Poisson bracket) and with compact level
surfaces. Even if I has not compact level surfaces, a second constant of motion
would be an indicative of integrability of the stationary spatial dynamics, restricting
the motion to a lower-dimensional manifold. However, no second constant of motion
seems to be available for (3.25) and (3.26). Nevertheless, numerical integration for
a wide-range of values of H, and different initial conditions, strongly suggest that
bounded solutions are always regular. Therefore, an additional hidden first integral
probably exist.

It is interesting to perform a linear stability analysis to see in what conditions the
system supports small amplitude spatially periodic solutions. Writing

A = 1 + A′exp(ikx), φ = 1/2 +φ ′exp(ikx), (3.37)

and retaining in (3.25) and (3.26) only terms up to first-order in the primed variables,
we obtain the relation

H2k4 −4k2 + 4 = 0. (3.38)

Again, we point out the singular character of the classical limit: for H = 0, (3.38)
degenerates into a quadratic equation, with solutions k = ±1. The wavenumber
always being real, this corresponds to spatially periodic solutions. When H �= 0,
we obtain

k2 =
2±2

√
1−H2

H2 . (3.39)

For H < 1 (semiclassical regime), both wavenumbers are real, and therefore the
system can sustain spatially periodic oscillations. For H > 1 (strong quantum
effects), the solutions are spatially unstable, and grow exponentially. For H = 1,
the spectrum is degenerate, since then the quartic equation (3.38) has only two
double solutions, k = ±√

2/H. The corresponding secular terms imply spatially
unstable perturbations, growing linearly with x. In conclusion, small-amplitude
stationary solutions of the one-stream Schrödinger–Poisson system can only exist
in the semiclassical regime, H < 1.

3.4 Two-Stream Plasma

3.4.1 Two Counter Propagating Beams

Classically, the case of two counter propagating beams can have unstable electro-
static oscillations. For the quantum case [12], we consider (3.6)–(3.8) with M = 2.
Linearizing around the equilibrium

n1 = n2 = n0/2, u1 = −u2 = u0, φ = 0, (3.40)
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where u0 �= 0 is the beam speed, and Fourier transform as in the one-stream case. It
is convenient to use the dimensionless variables

Ω = ω/ωp, K = ku0/ωp, H = h̄ωp/mu2
0, (3.41)

so that the dispersion relation becomes

Ω 4 −
(

1 + 2K2 +
H2K4

2

)
Ω2 −K2

(
1− H2K2

4

)(
1−K2 +

H2K4

4

)
= 0. (3.42)

This is just a quadratic equation for Ω 2, which can be readily solved as

Ω 2 =
1
2

+ K2 +
H2K4

4
± 1

2
(1 + 8K2 + 4H2K6)1/2. (3.43)

Choosing the positive sign, one always has a positive branch associated with give
stable oscillations. Choosing the negative sign in (3.43), one has Ω 2 < 0 provided

(H2K2 −4)([HK2 −2]2 + 4K2[H −1]) < 0 , (3.44)

The unstable waves arises through the marginal mode (Ω = 0), since the frequency
is either real or purely imaginary. In the classical case (H = 0), (3.44) reproduces
K2 < 1, which is the classical instability criterion. In the quantum case, (3.44)
bifurcates for H = 1. If H > 1, the second factor is always positive, and the plasma
is unstable if HK < 2. However, for the semiclassical situation when H < 1, there
is instability if either

0 < H2K2 < 2−2
√

1−H2 , (3.45)

or

2 + 2
√

1−H2 < H2K2 < 4 , (3.46)

as a simple analysis shows. This yields the stability diagram on Fig. 3.2. The lower
instability zone is the semiclassical deformation of the classical instability region.
We see an increase of the unstable zone as quantum effects are enhanced. The upper
instability zone, on the other hand, has no classical analog. The two zones coincide
when H = 1.

We define KA,KB, and KC as the wavenumbers for which the growth rate
vanishes. From (3.45) and (3.46), these wavenumbers are given by

H2K2
A,B = 2±2

√
1−H2, (3.47)

H2K2
C = 4, (3.48)

with KA,B associated with the minus (plus) sign, respectively. The following property
holds,

K2
A + K2

B = K2
C . (3.49)
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Fig. 3.2 Stability diagram for the two-stream plasma according to [12]. The filled zone is unstable.
The dashed line corresponds to HK = 1, shown for reference. The lower and middle solid curves
correspond to K2

A and K2
B as defined in (3.47). Upper solid curve: K2

C as given in (3.48)

These wavelengths are directly related to the stationary solutions of the
Schrödinger–Poisson system, as will be verified.

The analysis shows that quantum mechanics has a destabilizing effect in the
semiclassical regime, where the unstable zone is bigger than in the classical case. On
the other hand, when H > 2, fewer modes turn out to be unstable in comparison to
the classical plasma case. The results are unexpected, since the quantum mechanics
nonlocality can in principle produce stabilization. However, this feature was verified
[19] only for large enough H. As will become clear, the stable or unstable character
of quantum plasmas depends on subtle properties, with a modified energy transfer
between wave modes.

Not only the unstable zone, but also the corresponding growth rate should be
determined. In particular, one need to search for the maximum growth rate for a
fixed value of H and varying K. Therefore, we define Ω = iγ for the unstable cases
with real γ , and plot γ2 as a function of wavenumber in Fig. 3.3. We see a tendency
for the maximum classical growth rate to be larger than the maximum quantum
growth rate. By definition, in Fig. 3.3 the intersections with the K axis correspond to
wavenumbers KA, KB, and KC as given in (3.47) and (3.48). Notice that the secon-
dary maximum (between wavenumbers KB and KC) existent for large wavenumbers
is considerably smaller than the first maximum (between K = 0 and KA).

For a truly infinite plasma, the wavenumber (or dimensionless momentum HK) is
continuous. However, in a finite system where periodic boundary conditions apply,
K is a multiple of the fundamental wavenumber K0 = 2π/L, where L correspond
to the periodicity length. From an intricate analysis [12], one can show that it is
not possible to excite an harmonic in the unstable upper zone of Fig. 3.2, without
also exciting the fundamental mode K0 in the lower unstable region, when H < 1.
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Fig. 3.3 Squared growth rate γ as a function of the wavenumber K, for different values of H,
according to [12]. H = 0.5, solid line; H = 1, dashed line; H = 2, dotted line. The intersections of
these curves with the K axis correspond to wavenumbers KA , KB and KC as defined in (3.47) and
(3.48). For H = 0.5, only the intersection at KA � 1.035 is shown; the intersections at KB � 3.864
and KC = 4 are outside the K axis range. For H = 1, the intersections are at KA = KB =

√
2 and

KC = 2. For H = 2, there is only one intersection at KC = 1

However, from the same developments, it is found that the fundamental mode is
unstable for sufficiently large quantum effects. These results follows from the use
of periodic boundary conditions, as for example, in numerical simulations.

3.4.2 Stationary Solutions

After investigating the time-dependent case, it is useful to consider the nonlinear
stationary states of (3.6) and (3.7) for M = 2. Setting ∂/∂ t = 0, one found that the
system possess the first integrals

J1 = n1u1, J2 = n2u2, (3.50)

E1 =
mu2

1

2
− eφ − h̄2

2m

d2(
√

n1)/dx2

√
n1

, (3.51)

E2 =
mu2

2

2
− eφ − h̄2

2m

d2(
√

n2)/dx2

√
n2

, (3.52)

in the sense that dJi/dx = 0,dEi/dx = 0, i = 1,2. Since we are particularly interested
in the case of two symmetric streams, we can write

J1 = −J2 =
n0u0

2
, E1 = E2 =

mu2
0

2
, (3.53)
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where u0 �= 0 is the beams speed. Defining n1 ≡ A2
1 and n2 ≡ A2

2 and the
dimensionless variables

x∗ =
ωpx

u0
, A∗1,2 =

A1,2√
n0

, (3.54)

φ∗ =
(eφ + E1)

mu2
0

, H =
h̄ωp

mu2
0

, (3.55)

and eliminating the velocities from (3.50), we found a dynamical system for the
densities and the electrostatic potential. Taking into account Poisson’s law (3.8) we
have (we omit the stars)

H2 d2A1

dx2 =
1

4A3
1

−2φ A1, (3.56)

H2 d2A2

dx2 =
1

4A3
2

−2φ A2, (3.57)

d2φ
dx2 = A2

1 + A2
2 −1. (3.58)

Equations (3.56)–(3.58) constitute a coupled, nonlinear system of three second-
order ordinary differential equations, depending on the control parameter H. Notice
the singular character of the classical limit H = 0, for which (3.56) and (3.57)
degenerate to algebraic equations. The nonlinear system for A1,A2, and φ can be cast
into a Hamiltonian form, after a procedure similar to the one employed for the one-
stream stationary state equations (3.25) and (3.26). However, the actual expression
of the Hamiltonian is rather involved, and not particularly illuminating, so it will
be omitted here. Nevertheless, numerical simulations suggest that (3.56)–(3.58) are
integrable.

At first, we can expand (3.56)–(3.58) in the vicinity of the spatially homogeneous
equilibrium

A1 = A2 =
1√
2
, φ =

1
2
. (3.59)

Supposing perturbations A′
i, φ ′ ∼ exp(iKx), the following system is obtained,

(4−H2K2)A′
i +

√
2φ ′ = 0, i = 1,2 (3.60)

√
2(A′

1 + A′
2)+ K2φ ′ = 0. (3.61)

Nontrivial solutions can exist provided

(H2K2 −4)(H2K4 −4K2 + 4) = 0, (3.62)
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This is the same (with an equality sign) as (3.44). Solutions of (3.62) represent
wavenumbers for which both the real and the imaginary part of the frequency vanish,
and can be considered as the homogeneous limit of generally inhomogeneous
stationary states. If H < 1 there are three such solutions, which are the wavenumbers
KA,KB, and KC defined in (3.47) and (3.48). If H > 1, only the solution KC survives.
The other two solutions become complex, so that spatially periodic stationary modes
can no longer exist.

Numerical integration of (3.56)–(3.58) confirms the previous results. For in-
stance, it was verified that periodic solutions only exist for H < 1. We take H = 0.7
and initialize the amplitudes and the potential (at x = 0) with their equilibrium
value, plus a small perturbation ε, that is, φ(0) = 1/2 + εφ , Ai(0) = (1 + εi)/

√
2.

In agreement with the discussion of the previous paragraph, if we choose εφ = 0
and ε1 = −ε2, the wavenumber KC � 2.857 is linearly excited and thus dominates
(Fig. 3.4), while the potential remains very small. On the other hand, if ε1 = ε2 and
εφ is arbitrary, the modes KA � 1.08 and KB � 2.645 are linearly excited (Fig. 3.5).
For generic perturbations, all three wavenumbers are excited. Of course these results
are strictly valid only for infinitesimally small perturbations. For moderate values,
other modes appear (visible on Figs. 3.4 and 3.5, for which ε = 0.02), although
the linear wavenumbers are still dominant. For even larger perturbations, bounded
solutions no longer exist.

As apparent from the quantum Dawson model, the hydrodynamic formulation
of quantum mechanics makes direct use of the physical objects of classical physics
(density, velocity, and pressure). Moreover, the stability analysis and perturbation
calculations become straightforward in the hydrodynamic formulation. On the other
hand, the Schrödinger–Poisson representation is more convenient for the time-
dependent simulations, since accurate numerical techniques for the Schrödinger
equation are well known from the computational literature. In particular, extensive
numerical simulations have shown that quasi-neutral, spatially periodic, stationary
states can be created in the two-stream plasma, and can survive over long times
[12]. At this point, we remark the easy way to access nonlinear regimes using
fluid models, in comparison with kinetic theory, as expressed through the dynamical
system (3.56)–(3.58).

The presence of streaming instabilities in quantum plasmas originates from a free
energy source and mode coupling, as detailed in the next section.

3.5 Physical Interpretation of the Quantum Two-Stream
Instability

We shall provide an intuitive explanation of the quantum two-stream instability, in
terms of the coupling of electrostatic modes with distinct energy contents. With
this, we offer a physical (“with the hands”) understanding of the quantum streaming
instabilities. In particular, what is the origin of the quantum unstable modes for large
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Fig. 3.4 Stationary solution of the two-stream Schrödinger–Poisson system according to [12],
with H = 0.7, εφ = 0, ε1 = −ε2 = 0.02. (a) Spatial variation of the density fluctuations A′

1 (solid
line), A′

2 (dashed line), and potential fluctuations φ ′ (dotted line). Notice that the potential remains
small. (b) Fourier transform of A′

1: the linear wavenumber KC � 2.857 is dominant

wavenumbers, as depicted in Fig. 3.3? In the following, we show how approximate
positive and negative energy modes can be identified. The interaction between these
waves is the clue for the stability analysis in such systems, as demonstrated in [11].

In classical systems, negative energy modes are a well-known tool for the
analysis of streaming instabilities [1, 18]. The heuristic concept of negative energy
wave is as follows. Consider, for definiteness, an electromagnetic wave in a
dispersive medium into which a beam of particles is also present. When the phase
velocity of the wave is slightly smaller than the beam’s velocity, on average there
can be an energy transfer from the beam to the wave, driving the instability. In this
context, the oscillation mode is referred to as a negative energy wave (since it has
less energy than the beam). Such simple idea apply to wave propagation in any kind
of system, be it classical or quantum.
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Fig. 3.5 Stationary solution of the two-stream Schrödinger–Poisson system according to [12],
with H = 0.7, εφ = 0, ε1 = ε2 = 0.02. (a) Spatial variation of the density fluctuations A′

1 (solid
line), A′

2 (dashed line), and potential fluctuations φ ′ (dotted line). The solid and dashed lines are
superposed, since A′

1 � A′
2. (b) Fourier transform of A′

1: the linear wavenumbers KA � 1.080 and
KB � 2.645 are dominant

3.5.1 Time-Averaged Energy Density of Electrostatic Oscillations

The dispersion relation in (3.43) can be rewritten according to Ω2 = Ω 2±(K), where

Ω+ =
1
2

[
2 + 4K2 + H2 K4 + 2

√
1 + 8K2 + 4H2 K6

]1/2
, (3.63)

Ω− =
1
2

[
2 + 4K2 + H2 K4 −2

√
1 + 8K2 + 4H2 K6

]1/2
, (3.64)

associated with four possible branches for the eigen-frequency Ω as a function of
the wavenumber K. We use parity properties to restrict the analysis to positive K and
Ω values. As detailed in Sect. 3.4.1, when 0 < H < 1, there is instability provided
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K < KA (semiclassical branch) or KB < K < KC (quantum branch), where KA <
KB < KC are given by (3.47), or

KA =

[
2−2

√
1−H2

]1/2

H
, KB =

[
2 + 2

√
1−H2

]1/2

H
, KC =

2
H

. (3.65)

On the other hand, when H ≥ 1 the instability condition is just K < KC (see Fig. 3.2).
To evaluate the energy content of a wave mode, it is necessary to consider the

time-averaged energy density 〈We〉 of electrostatic oscillations [17], which turns out
to be

〈We〉 =
ε0

4
∂ (Ω εh)

∂Ω
|E1|2, (3.66)

where ε0 is the vacuum permittivity, εh is the Hermitian part of the dielectric
function and E1 is the amplitude of the perturbation electric field. The dielectric
function ε is defined so that after linearizing the fluid equations one has

εE1 = 0. (3.67)

For the symmetric two-stream case it is

ε = 1− 1
2

[
1

(Ω + K)2 −H2 K4/4
+

1
(Ω −K)2 −H2 K4/4

]
. (3.68)

Since there is no dissipation mechanism in the present model, one has ε = εh, as is
evident since the dielectric function is real.

Also notice that the derivation of (3.66) relies on Maxwell’s equations only [17],
so that it apply to quantum plasmas too. The difference to classical physics is that
quantum effects are present in the modified dielectric function. In addition, (3.66)
can be alternatively found from a generalized Poynting theorem, in a similar way as
for the classical two-stream instability [14].

Proceeding from (3.66) and (3.68), one get

∂ (Ω εh)/∂Ω ∼ ψ(Ω), (3.69)

omitting a complicated positive factor, where

ψ(Ω) ≡−6K4 + H2 K6 +
H2 K8

8
+ K2 (4−H2K2)Ω 2 + 2Ω4. (3.70)

Evaluating for the wave mode Ω = Ω+(K) using (3.63), the result is

ψ(Ω+) = 1 + 8K2 + 4H2 K6 +(1 + 4K2)
√

1 + 8K2 + 4H2 K6 > 0, (3.71)

so that this is always a positive energy wave.
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On the other hand, evaluating for the wave mode Ω = Ω−(K) using (3.64), the
result is

ψ(Ω−) = 1 + 8K2 + 4H2 K6 − (1 + 4K2)
√

1 + 8K2 + 4H2 K6. (3.72)

which has a negative contribution. From (3.65) and (3.72), it can be shown that
ψ(Ω−) < 0 if and only if K < KC . Therefore, if K > KC, the mode Ω = Ω−(K)
is a stable positive energy mode; if K < KC, the unstable modes described before
(3.65) and by Ω = Ω−(K) are negative energy waves. Actually, they correspond to
absolute instability in the sense that they are of the form Ω = iγ , for real γ > 0.
In addition, notice that the stable mode Ω = Ω−(K) for KA < K < KB, existing
only for H < 1, carry negative energy. Finally, ψ(Ω−) = 0 for the marginal stable
wavenumber K = KC , so that this wave carry zero energy.

Further insight can be gained analyzing the characteristic function F(Ω) such
that the dispersion relation for (3.6)–(3.8) in the symmetric two-stream case is
expressed as

ε = 1−F(Ω) = 0. (3.73)

Here, the dielectric function ε is given in terms of

F(Ω) =
1
2

[
1

(Ω + K)2 −H2 K4/4
+

1
(Ω −K)2 −H2 K4/4

]
. (3.74)

The characteristic function has vertical asymptotes at Ω = ±Ω> and Ω = ±Ω<,
where

Ω> = K +
H K2

2
, Ω< = K − H K2

2
. (3.75)

Since the dispersion relation (3.42) is a quadratic equation with real coefficients for
Ω 2, stability is assured when the graph of F(Ω) intercept four times the horizontal
line F = 1. Actually, the case K = KC is special because the quartic equation for Ω
degenerate into a quadratic one, which can be shown to correspond always to stable
oscillations. Figure 3.6 shows a typical unstable case when K < KC , for K = 1,
H = 0.8.

On the other hand, Fig. 3.7 gives insight into why the wavenumbers satisfying
K > KC are stable, since the graph of the characteristic function always intercept the
horizontal line F = 1 four times.

3.5.2 Fast and Slow Approximate Modes in Electrostatic
Two-Stream Quantum Plasmas

Figure 3.8 shows the dispersion curves for H < 1. We take only real wavenum-
bers, so that the amplification problem is not considered. In other words, the
alternative possibility of spatially growing solutions for imaginary K is not analyzed.
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Fig. 3.6 Characteristic function for K < KC according to [11]. In the example, K = 1, H = 0.8. It
corresponds to instability, since F(0) > 1
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Fig. 3.7 Characteristic function for the stable wavenumbers K > KC according to [11]. In the
example, K = 1, H = 2.5

In Fig. 3.8, the curve 1 is a positive energy mode parametrized by Ω = Ω+(K)
given by (3.63). Curves 2 and 3 are both described by Ω = Ω−(K) given by (3.64).
However, curve 2 carry negative energy while curve 3 is a positive energy mode.
The coupling of these waves gives rise to the purely quantum (absolute) instability
for large wavenumbers, KB < K < KC in Fig. 3.8.
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Fig. 3.8 Dispersion curves for H = 0.8 according to [11]. Curve 1 is a positive energy mode
parametrized by Ω = Ω+(K). Curve 2 is a negative energy mode, while curve 3 is a positive
energy mode. Both curves 2 and 3 are described by Ω = Ω−(K), see (3.63) and (3.64)

However, the referred coupling is not exact since curves 2 and 3 did not touch in
Fig. 3.8. To give support to the interpretation, we follow the style of [14] and write
the dispersion relation in the factorized form

[
Ω − K − 1√

2

(
1 +

H2K4

2

)1/2
][

Ω −K +
1√
2

(
1 +

H2K4

2

)1/2
]

×
[

Ω + K − 1√
2

(
1 +

H2K4

2

)1/2
][

Ω + K +
1√
2

(
1 +

H2K4

2

)1/2
]

=
1
4
.

(3.76)

Hence, two fast

Ω � Ωf ≡±K +
1√
2

(
1 +

H2K4

2

)1/2

(3.77)

and two slow

Ω � Ωs ≡±K − 1√
2

(
1 +

H2K4

2

)1/2

(3.78)

approximate space-charge modes can be identified. The sign of the linear in K
term correspond to Doppler-shifted quantum Langmuir waves associated with the
positive or negative propagating electron beams. Paying attention to the beam
propagating in the positive direction and using (3.63) and (3.64), it can be seen
that

Ω+ � Ωf � K +
H K2

2
, Ω− � Ωs � K − H K2

2
(3.79)
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√

2 and slow Ωs = K − (1 + H2K4/2)1/2/
√

2
asymptotic modes for H = 0.8 and H = 2 according to [11]

for large K, so that the fast and slow waves in (3.77) and (3.78) are the asymptotic
forms of the four exact branches of the dispersion relation.

Calculating the time-averaged energy density 〈We〉 of electrostatic oscillations
using (3.66), it can be directly verified that the fast space-charge waves in (3.77)
always have positive energy. On the other hand, it is found that the slow modes in
(3.78) are negative energy waves provided K < KC, since they correspond to the
exact waves Ω = Ω−(K).

Instability is expected when the fast positive energy wave of the beam propagat-
ing in the negative direction couples to the slow negative energy wave propagating
in the positive direction, or vice versa. For positive (Ω ,K), one then need to put
Ωf = Ωs, choosing the negative sign in (3.77) and the positive sign in (3.78).
Proceeding in a similar way allowing also for negative wavenumbers gives the
coupling condition

1√
2

(
1 +

H2 K4

2

)1/2

= ±K, (3.80)

as illustrated in Fig. 3.9 showing the intersection of the fast and slow modes for
H = 0.8. The coupling occurs for Ωf,s = 0, in accordance with the fact that instability
occurs for zero real part of the frequency. Hence, ignoring the factor 1/4 on the
right-hand side of (3.76), we discover an interaction between a fast positive wave
and a slow negative wave, as apparent from the crossing of the curves.

In the context of this interpretation, the wavenumbers Km satisfying the coupling
condition (3.80) correspond to maximal instability growth rate. Solving for K2 for
H �= 0, these wavenumbers are found to be given by
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K2
m =

2
H2

[
1±

√
1− H2

2

]
. (3.81)

Notice that in the classical case, where H = 0, one would have from (3.80) only the
solution K2

m = 1/2.
Taking the plus sign in (3.81), one has

Km ≡ Km,q =
√

2
H

[
1 +

√
1− H2

2

]1/2

. (3.82)

Assuming H < 1, we get, to leading order,

Km,q = KC − H
8

+ O(H3) > KB � KC − H
4

+ O(H3), (3.83)

where KB and KC are defined in (3.65). Therefore, KB < Km,q < KC , which is
exactly what should be expected about an instability arising from the coupling of the
positive energy mode shown in curve 3 and the negative energy mode shown in curve
2 of Fig. 3.8. This explains the physical origin of the purely quantum instability
which can occur for large wavenumbers, when H < 1. Comparison between the
exact wavenumber for maximal quantum instability and Km,q also shows satisfactory
agreement, for a fixed value of H < 1. The discrepancy follows since, after all, Km,s

are just approximate modes.
On the other hand, taking the minus sign in (3.81), one has

Km ≡ Km,c =
√

2
H

[
1−

√
1− H2

2

]1/2

. (3.84)

We get, to leading order,

Km,c =
1√
2

+
H2

16
√

2
+ O(H4) < KA � 1 +

H2

8
+ O(H4), (3.85)

where KA is defined in (3.65). Properly, the wavenumber Km,c can be referred as
the semiclassical branch, since it corresponds to the exact classical wavenumber for
maximal instability, Kc = 1/

√
2. Moreover, Km,c < KA corresponds to the coupling

of the positive (curve 1) and negative energy (curve 2) branches in Fig. 3.8. Finally,
we found a satisfactory agreement between the exact and approximate values of the
wavenumber for maximal growth rate, at a fixed H.

When H ≥ 1, the elliptic-like branch of Fig. 3.8 disappears and one has the
dispersion curves shown in Fig. 3.10, where H = 1. As shown from (3.72), both
exact branches 1 (described by Ω = Ω+(K)) and 2 (described by Ω = Ω−(K)) in
Fig. 3.10 are positive energy modes. This is a signature of a stabilizing influence of
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Fig. 3.10 Dispersion curves for H = 1 according to [11]. The elliptic-like branch of Fig. 3.8
disappears. Both exact branches 1 (described by Ω = Ω+(K)) and 2 (described by Ω = Ω−(K))
are positive energy modes

the quantum effects. However, in spite of the existence of only exact positive energy
waves, there is an instability for H ≥ 1, K < KC = 2/H. The situation becomes even
more puzzling for large quantum parameters H >

√
2 in (3.82), implying a complex

Km. It happens since the fast Ωf and slow Ωs curves have not intersection points for
large quantum effects, as seen in Fig. 3.9 for H = 2.

To physically understand the origin of the two-stream instability for large
quantum parameter, assume a power-law dependence K = 1/H < KC. The linear
dispersion relation predicts instability. Calculating the electrostatic energy density
We from (3.66) for the approximate slow space-charge wave Ωs = K − (1/2)(1 +
H2K4/2)1/2 defined in (3.78), one has We → −∞ as H → 2, and We → +∞ as
H → 3.46 as shown in Fig. 3.11. The divergences are due to the inexact nature
of the slow wave. Nevertheless, the relevant point is that this somewhat hidden
approximate mode carry negative energy. Moreover, when H = 2, corresponding
to the maximal negative electrostatic energy density, one has 1/H = 0.50. This is
near the wavenumber K = 0.52 for maximal instability growth rate, for the chosen
quantum parameter, as seen in Fig. 3.12. Repeating the procedure considering the
fast space-charge modes, one always find a positive energy. Hence, once again there
is the coupling between positive and negative waves, giving rise to instability, also
for large H.

Assuming a different power-law expression, K = α/H, where the parameter α
is not necessarily unity, the results are as follows. For 0 < α < 2, one always has
We → ±∞ for the slow space-charge mode, as H → H± > 1. Hence, there is the
possibility of a negative energy wave, for some parameter H � H− > 1. On the
other hand, when α ≥ 2, it can be verified that the slow space-charge mode always
carry positive energy. Actually, it diverges to plus infinity, for some value H → H+.
This is not surprising, since the wavenumbers K > KC are known to be stable.
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Fig. 3.11 Time-averaged electric energy density 〈We〉 defined in (3.66), evaluated for the slow
mode Ω = Ωs = K − (1/2)(1+H2K4/2)1/2 and the unstable wavenumbers K = 1/H, apart from
the positive factor ε0|E1|2/4 according to [11]
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Fig. 3.12 Exact growth rate γ in units of ωp for H = 2, corresponding to the maximal negative
energy density waves (〈WE〉→−∞) of Fig. 3.11 for K = 1/H according to [11]. One has instability
for K < KC = 1 in this case, and maximal growth rate for K = 0.52, close to K = 1/2 of Fig. 3.11

The above analysis can in principle be carried on in similar problems, like for
the quantum beam-plasma instability or the case of parallel propagating quantum
beams.

Problems

3.1. Derive the linear dispersion relation (3.16).

3.2. Perform the numerical simulation of (3.25) and (3.26), analyzing the integrable
or nonintegrable features of the system.
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3.3. Prove that the current and energy-like quantities in (3.19) and (3.20) are
constants of motion along the trajectories of (3.17) and (3.18), or dJ/dx = 0,
dE/dx = 0.

3.4. Verify that (3.17) and (3.18) can not sustain small-amplitude periodic solution
in the zero-current J = 0 case.

3.5. Directly prove that I in (3.36) is a first integral for the one-stream dynamical
system shown in (3.25) and (3.26).

3.6. Derive the dispersion relation (3.39).

3.7. Prove the instability conditions (3.45) and (3.46) for the quantum two-stream
instability.

3.8. Find a Hamiltonian formulation (and hence an energy first integral) for
(3.56)–(3.58).

3.9. Find the missing positive factor in (3.70) for the function ψ(Ω) deciding on
the energy content of electrostatic waves in the quantum two-stream instability.

3.10. Check (3.71) and (3.72).

3.11. Prove the factorization in (3.76), allowing for the identification of fast and
slow approximate space-charge waves in the quantum two-stream problem.
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Chapter 4
A Fluid Model for Quantum Plasmas

Abstract A quantum fluid model is derived from the Wigner–Poisson system.
Quantum statistical effects can be incorporated using a convenient equation of state.
Quantum diffraction effects manifest through a Bohm potential term. The derivation
is based on the Madelung representation of the ensemble wavefunctions, so that
the second-order moment of the Wigner function appear as the sum of kinetic and
osmotic pressures and the Bohm potential. The case of an one-dimensional zero-
temperature Fermi gas is treated, for both one and two-stream plasmas. The validity
conditions for the quantum hydrodynamic model for plasmas are discussed. The
derivation of the equation of state for a zero-temperature Fermi gas is detailed
for one, two, and three spatial dimensions. The long wavelength condition to
avoid kinetic effects is treated in the case of a degenerate plasma. The question
of the representation of a given Wigner function in terms of a set of ensemble
wavefunctions is worked out.

4.1 The Convenience of Macroscopic Models
for Quantum Plasmas

Understanding the dynamics of a quantum electron gas is an important issue for
a variety of physical systems, such as ordinary metals, semiconductors, and even
astrophysical systems under extreme conditions (e.g., white dwarfs). Although some
level of understanding can be achieved by considering independent electrons, a more
accurate description requires the use of self-consistent models, where electron–
electron interactions are taken into account. As the treatment of the full N-body
problem is clearly out of reach, mean field models are usually adopted, of which the
Wigner–Poisson and Schrödinger–Poisson systems are examples.

Despite its considerable interest, the Wigner–Poisson formulation presents some
intrinsic drawbacks: (a) it is a nonlocal, integro-differential system; and (b) its
numerical treatment requires the discretization of the whole phase space. Moreover,
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as is often the case with kinetic models, the Wigner–Poisson system gives more
information than one is really interested in.

In a similar way, the use of the Schrödinger–Poisson or multistream model is not
free of ambiguities. Indeed, the physical interpretation of each wavefunction in the
quantum statistical ensemble is not always clear, except in the case of a collection of
beams streaming along the plasma. In addition, how to efficiently decompose more
general equilibrium distribution functions in terms of a given set of wavefunctions
can be a delicate question.

For these reasons, it would be useful to obtain an accurate reduced model which,
though not providing the same detailed information as the kinetic Wigner–Poisson
system or the equivalent Schrödinger–Poisson system, is still able to reproduce the
salient features of quantum plasma systems.

To obtain a set of macroscopic equations for quantum plasmas, we will first
derive a system of reduced “fluid” equations by taking moments of the Wigner–
Poisson system. Using a Madelung (or eikonal) decomposition, it will be shown
that the pressure term appearing in the fluid equations can be separated into a
classical and a quantum part. With a working hypothesis about the pressure term,
the fluid system can be closed. Moreover, in the quasi-neutral limit, we will derive
an effective Schrödinger–Poisson system, which in an appropriate limit, reproduces
the results of the kinetic Wigner–Poisson formulation. In this effective Schrödinger–
Poisson model, the Schrödinger equation is nonlinear, as it includes an effective
potential depending on the modulus of the wavefunction. The exact form of this
effective potential depends on the specific physical system being studied. The theory
will be applied to a degenerate Fermi gas, including linear wave propagation,
nonlinear stationary solutions, and the two-stream instability.

The quantum hydrodynamic model for plasmas was introduced in [20]. Later, the
same methodology has been applied to a multitude of problems involving charged
particle systems, for instance, the excitation of electrostatic wake fields in nanowires
[1], the nonlinear electron dynamics in thin metal films [8], parametric amplification
characteristics in piezoelectric semiconductors [12], breather waves in semicon-
ductor quantum wells [15], multidimensional dissipation-based Schrodinger models
from quantum Fokker–Planck dynamics [17], the description of quantum diodes in
degenerate plasmas [22] and quantum ion-acoustic waves in single-walled carbon
nanotubes [24].

4.2 Quantum Fluid Model

For convenience, we rewrite the Wigner–Poisson system given by (2.49) and (2.51),

∂ f
∂ t

+ v
∂ f
∂x

− iem

2π h̄2

∫
ds dv′eim(v′−v)s/h̄

[
φ

(
x +

s
2

)
−φ

(
x− s

2

)]
f (x,v′,t) = 0,

(4.1)
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∂ 2φ
∂ x2 =

e
ε0

(∫
f dv−n0

)
, (4.2)

where f (x,v,t) is the Wigner distribution function, φ(x,t) the electrostatic potential,
−e and m the electron charge and mass, ε0 the vacuum dielectric constant and
n0 a background ionic charge. For simplicity of notation, at first only one-
dimensional problems will be treated, but the results can be readily extended to
higher dimensions.

To derive a fluid model [20], we take moments of (4.1) by integrating over
velocity space. Introducing the standard definitions of density, mean velocity and
pressure

n(x,t) =
∫

f dv, u(x,t) =
1
n

∫
f vdv, P(x,t) = m

(∫
f v2dv−nu2

)
, (4.3)

it is obtained

∂ n
∂ t

+
∂ (nu)

∂ x
= 0, (4.4)

∂ u
∂ t

+ u
∂ u
∂ x

=
e
m

∂ φ
∂ x

− 1
mn

∂ P
∂ x

. (4.5)

The continuity equation follows immediately because integrating (4.1) on v elim-
inate the nonlocal term. For the derivation of (4.5), we multiply (4.1) by v and
integrate over velocities using the identity

v exp

(
− imvs

h̄

)
=

ih̄
m

∂
∂ s

exp

(
−−imvs

h̄

)
, (4.6)

taking into account the continuity equation to eliminate ∂ n/∂ t. A more detailed
theory would include the energy transport equation obtained after taking the second-
order moment of the Wigner function and the associated time-derivative. However,
intriguing new results can be discovered already if we content ourselves with the
continuity and force equations.

We immediately notice that (4.4) and (4.5) do not differ from the ordinary
evolution equations for a classical fluid. This may seem surprising, but in the
following it will appear that the quantum nature of this system is in fact hidden
in the pressure term. Contributions where h̄ explicitly appear can be found only in
the higher-order moments.

The pressure term may be decomposed into a classical and a quantum part, as
follows. The Wigner distribution for a quantum mixture of states ψα(x,t), each
characterized by an occupation probability pα ,α = 1, ...,M, is written as

f (x,v,t) =
Nm
2π h̄

M

∑
α=1

pα

∫
dse

imvs
h̄ ψ∗

α

(
x +

s
2

)
ψα

(
x− s

2
,t

)
, (4.7)
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where the sum extends over all possible states. The numbers pα , representing
probabilities, satisfy the relations pα ≥ 0, ∑M

α=1 pα = 1. In terms of the ensemble
wavefunctions, from (4.3) one obtains

n = N
M

∑
α=1

pα |ψα |2, (4.8)

nu =
ih̄N
2m

M

∑
α=1

pα

(
ψα

∂ψ∗
α

∂x
−ψ∗

α
∂ψα
∂x

)
, (4.9)

and, after some algebra,

P =
Nh̄2

4m

M

∑
α=1

pα

(
2

∣∣∣∣∂ψα
∂x

∣∣∣∣
2

−ψ∗
α

∂ 2ψα
∂x2 −ψα

∂ 2ψ∗
α

∂x2

)

+
N2h̄2

4mn

[
M

∑
α=1

pα

(
ψ∗

α
∂ψα
∂x

−ψα
∂ψ∗

α
∂x

)]2

. (4.10)

If we represent each state according to the Madelung [18] decomposition

ψα(x,t) = Aα(x,t)exp(iSα(x,t)/h̄), (4.11)

where Aα (amplitude) and Sα (phase) are real functions, we get

n = N
M

∑
α=1

pα A2
α , (4.12)

nu =
N
m

M

∑
α=1

pαA2
α

∂Sα
∂x

(4.13)

and also

P =
N2

2mn

M

∑
α ,β=1

pα pβ A2
αA2

β

(
∂Sα
∂x

− ∂Sβ

∂x

)2

+
Nh̄2

2m

M

∑
α=1

pα

[(
∂ Aα

∂ x

)2

−Aα
∂ 2Aα

∂ x2

]
. (4.14)

In the pressure, there is now the explicit presence of h̄. However, since the ensemble
wavefunctions satisfy the one-body Schrödinger equation (2.61) both the amplitude
and phase implicitly depend on Planck’s constant.

At this point, it is useful to define the kinetic uα and osmotic uo
α velocities

associated with the wavefunction ψα ,

uα =
1
m

∂Sα
∂ x

, uo
α =

h̄
m

∂Aα/∂x
Aα

. (4.15)
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In this way, it can be directly verified that the pressure in (4.14) can be written as

P = Pk + Po + PQ, (4.16)

where the kinetic pressure is

Pk =
mn
2

M

∑
α ,β=1

p̃α p̃β (uα −uβ)2, (4.17)

the osmotic pressure is

Po =
mn
2

M

∑
α ,β=1

p̃α p̃β (uo
α −uo

β)2, (4.18)

and the quantum pressure is

PQ = − h̄2n
4m

∂ 2

∂ x2 lnn. (4.19)

In (4.17) and (4.18), a modified set of ensemble probabilities p̃α = p̃α(x,t) was
employed,

p̃α =
N pαA2

α
n

. (4.20)

The new statistical weights satisfy p̃α ≥ 0,∑M
α=1 p̃α = 1 as they should.

The term “osmotic” is used because the uo
α are related to density gradients [5,11].

Moreover, for a particular ψα , the osmotic velocity points to the regions of higher
density, as becomes more evident in the three-dimensional version,

uo
α = (h̄/m)∇ lnAα . (4.21)

Both pressures Pk and Po can be viewed as a measure of velocity dispersion.
Indeed, consider the following average 〈 fα 〉 of an ensemble function fα = fα(x,t):

〈 fα 〉 =
M

∑
α=1

p̃α fα . (4.22)

From this definition, it can be easily shown that (4.17) and (4.18) are equivalent to

Pk = mn(〈u2
α〉− 〈uα〉2), (4.23)

Po = mn(〈[uo
α ]2〉− 〈uo

α〉2). (4.24)

For a pure state (so that p̃α = δαβ for some β ), both Pk and Po vanishes and only
PQ survives.
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Since the kinetic and osmotic pressures are a measure of the kinetic and osmotic
velocities dispersion, it is reasonable to assume an equation of state so that

Pk + Po = PC(n), (4.25)

depending only on density. In this way, we obtain

P = PC(n)− h̄2n
4m

∂ 2

∂x2 lnn. (4.26)

For definiteness, we call PC the “classical” part of the pressure, in the sense that
it represents a measure of the velocities dispersion. However, it explicitly contains
Planck’s constant since it depends on Po and the osmotic velocities, which have a
purely quantum nature.

The rather drastic replacement of the sum of the kinetic and osmotic pressures
by a function of the density only requires some comments. Equation (4.16) is exact
but offer no advancement over the Wigner–Poisson formulation because ultimately
it requires the knowledge of the ensemble wavefunctions. These, in turn, require
the solution of a countable set of self-consistent Schrödinger equations, a hardly
feasible task. In classical kinetic theory (therefore, without the osmotic and quantum
pressures), it is customary to assume a closure assuming that the standard deviation
of the velocities is a function of density only. The present suggestion just goes
one step further, extending the usual approach to include the standard deviation
of the osmotic velocities too. In addition, in the classical limit, we expect equations
reproducing the classical fluid equations. This is certainly true if Pk + Po = PC(n).
In other words, we expect the standard Euler equations to be reproduced thanks to
the residual classical limit in Pk.

Notice that unlike P in (4.3) which uses the Wigner function, in (4.23) and (4.24)
the statistical weights are provided by the p̃α in (4.20). For a pure state one has
PC = 0, which is in line with the understanding that a pure state corresponds to
a cold plasma with no dispersion of velocities. The contribution PQ, on the other
hand, is a purely quantum pressure, with no classical counterpart.

It is well known that the closure problem is a delicate one. The derivation
of macroscopic models from microscopic models always deserve some degree of
approximation and a more or less phenomenological point of view. The present
approach is capable of taking into account the quantum statistics of the charge
carriers, represented by an appropriated equation of state. Moreover, it takes
into account quantum diffraction effects, in particular tunneling and wave packet
dispersion, present in the quantum part of the pressure. It is also able to reproduce
the linear dispersion relation from kinetic theory with the exception of purely kinetic
phenomena like Landau damping. Finally, the quantum fluid model reduces to the
standard Euler equations in the formal classical limit and are sufficiently simple to
be amenable to efficient numerical simulation.
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Besides the above arguments, the proposed simplification is even more justified
for an important class of statistical ensembles, where the wavefunctions have all
equal (but not necessarily constant) amplitude,

ψα =
√

n
N

eiSα /h̄. (4.27)

In this case, the osmotic pressure identically vanishes. Moreover, one has p̃α = pα ,
so that (4.23) becomes the usual standard deviation of the kinetic velocities. Hence,
Pk can be interpreted in full analogy with the standard thermodynamic pressure.
The velocities dispersion arises just from the randomness of the phases of the
wavefunctions. The approximation can be viewed as a first step beyond the standard
homogeneous equilibrium of a fermion gas, for which each state can be represented
by a plane wave

ψα(x,t) = A0 exp

(
imuαx

h̄

)
,

with the amplitude A0 and the velocity uα spatially constant. In the generalization
(4.27), both the amplitude and the velocity can be spatially modulated, although we
still restrict ourselves to the case where the amplitude is the same for all states. This
appears to be a reasonable closure assumption for systems that are not too far from
equilibrium.

In conclusion, with these hypothesis (4.25) the force equation (4.5) can be
written as

∂ u
∂ t

+ u
∂ u
∂ x

= − 1
mn

∂ PC(n)
∂ x

+
e
m

∂ φ
∂ x

− 1
mn

∂ PQ

∂ x
. (4.28)

Using the identity

1
mn

∂ PQ

∂ x
= − h̄2

2m2

∂
∂x

(
∂ 2(

√
n)/∂ x2
√

n

)
, (4.29)

we can rewrite the basic quantum hydrodynamic model for plasmas as composed
by the continuity equation

∂ n
∂ t

+
∂ (nu)

∂ x
= 0 (4.30)

and the force equation

∂ u
∂ t

+ u
∂ u
∂ x

= − 1
mn

∂ PC(n)
∂ x

+
e
m

∂ φ
∂ x

+
h̄2

2m2

∂
∂x

(
∂ 2(

√
n)/∂ x2
√

n

)
. (4.31)

In the limit h̄ → 0, this is formally equal to Euler’s equation for an electron fluid in
the presence of an electric field −∂φ/∂x. Finally, we have the Poisson equation

∂ 2φ
∂ x2 =

e
ε0

(n−n0), (4.32)
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In comparison to the classical hydrodynamical equations for electrostatic plasmas,
the difference is in the addition of the ∼h̄2 term in (4.31), the so-called Bohm
potential term. While mathematically, the Bohm potential is equivalent to a pressure
to be inserted in the momentum transport equation, physically it corresponds to
typical quantum phenomena like tunneling and wave packet spreading. Therefore,
it is not a pressure in the thermodynamic (velocities dispersion) sense.

Quantum hydrodynamical models have been derived in the context of semi-
conductor physics. For instance, Gardner [10] considered a quantum corrected
displaced Maxwellian as introduced by Wigner [25]. More exactly, it is possi-
ble to derive the leading quantum correction f1(x,v,t) for a momentum-shifted
local Maxwell–Boltzmann equilibrium f0(x,v,t), setting f (x,v,t) = f0(x,v,t) +
h̄2 f1(x,v,t) in the semiclassical quantum Vlasov equation (2.52) and collecting
equal powers of h̄2. Here

f0(x,v,t) = n(x,t)
(

m
2πκBT (x,t)

)1/2

exp

(−m[v−u(x,t)]2

2κBT (x,t)

)
, (4.33)

on the assumption of a nondegenerate quasi-equilibrium state. Inserting the resulting
Wigner function in the pressure defined in (4.3), a quantum hydrodynamical model
similar to (4.30)–(4.32) is found, including also an energy transport equation for
the temperature T (x,t). By definition, the resulting system is restricted to quasi-
Maxwellian, dilute systems. We also observe that in the case of a self-consistent
problem, the electrostatic potential should have been also expanded in powers
of some nondimensional quantum parameter. In conclusion, both procedures,
involving a Madelung decomposition of the quantum ensemble wavefunctions or
a quantum corrected Wigner function equilibrium, involve working hypotheses
which are not rigorously justified. Starting from the Wigner–Poisson system,
which is by definition collisionless, hardly one could derive rigorous macroscopic
theories relying on quasi-equilibrium assumptions. Nevertheless, the numerical and
analytical advantages of quantum fluid models over quantum kinetic models justify
the popularity of macroscopic theories.

The quantum correction to the fluid equations, corresponding to the Bohm
potential, was also derived from general thermodynamic arguments by Ancona and
Tiersten in [3]. This work argues that the internal energy of the electron fluid in
an electron–hole semiconductor should depend not only on the density but also on
the density gradient, to extend the standard drift-diffusion model so as to include
the quantum-mechanical behavior exhibited in strong inversion layers. Their theory
defines a “double-force” and a “double-pressure vector” which allows for changes of
the internal energy of the electron gas due purely to density fluctuations. Postulating
a linear dependence of the double-pressure vector on density gradients (see (3.3)
of [3] for more details) and working out the conservation laws of charge, mass,
linear momentum and energy, Ancona and Tiersten found a generalized chemical
potential composed of two contributions: (a) a gradient-independent term which
can be modeled by the equation of state of a zero-temperature Fermi gas or any
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other appropriated form. This corresponds exactly to the classical pressure PC(n)
of the quantum hydrodynamical model for plasmas; (b) a Bohm potential term
proportional to a phenomenological parameter.

Later, Ancona and Iafrate [2] obtained the expression of the phenomenological
coefficient of [3] from the Wigner formalism following the method of [10]. In other
words, the first-order quantum correction for a Maxwell–Boltzmann equilibrium
found from the semiclassical quantum Vlasov equation was employed to calculate
the particle density and the stress tensor. Eliminating the potential function between
the two expressions, the equation of state relating the stress tensor and the particle
density and gradient is derived, containing the Bohm potential. The gradient-
dependent term reflects the quantum mechanical nonlocality, with the equation of
state depending on the derivatives of the density also. Once again, the demonstration
in [2] is valid when quantum contributions to the self-consistent mean field potential
can be ignored. Moreover, the dilute and semiclassical situation is supposed,
where the Boltzmann statistics apply and a small dimensionless quantum parameter
exist.

Further insight can be gained defining the enthalpy [11] or effective potential

W (n) =
∫ n dn′

n′
dPC(n′)

dn′
. (4.34)

It is then possible to combine (4.30) and (4.31) into an effective single-particle
Schrödinger equation. Indeed, let us define the effective wavefunction

Ψ(x,t) =
√

n(x,t)exp(iS(x,t)/h̄), (4.35)

normalized according to

∫
|Ψ |2dx = N. (4.36)

The normalization is a matter of taste, but reflect the fact that Ψ(x,t) is represen-
tative of the whole system even if it depends only on a single spatial coordinate x.
Moreover the phase, or eikonal S(x,t) is defined so that

u(x,t) =
1
m

∂ S(x,t)
∂ x

. (4.37)

We obtain that Ψ(x,t) satisfies the equation

ih̄
∂Ψ
∂ t

= − h̄2

2m
∂ 2Ψ
∂ x2 − eφΨ +WΨ . (4.38)

This is a nonlinear Schrödinger equation, as the effective potential W depends on
the wavefunction through (4.34), where n = |Ψ |2. Separating (4.38) into its real and
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imaginary parts, we recover the continuity (4.30) and force (4.31) equations. Finally,
the complete effective Schrödinger–Poisson system is composed by (4.38) and the
Poisson equation

∂ 2φ
∂ x2 =

e
ε0

(|Ψ |2 −n0
)
. (4.39)

We notice that, in general, the dynamics of a statistical mixture must be treated
with the full Wigner–Poisson system, or, equivalently, with a set of Schrödinger
equations, coupled by Poisson’s equation. We have shown that one can reduce
the quantum transport problem to a single nonlinear Schrödinger equation plus
Poisson’s equation. The main result is that we can reduce the (phase space) Wigner
problem to a nonlinear Schrödinger equation problem.

At this point, it is useful to remember (trying to be not excessively pedantic) the
obvious limitations of the quantum hydrodynamic model given by (4.30)–(4.32):
(a) it is a fluid model, and hence applicable only for long wavelengths. Kinetic
phenomena requiring a detailed knowledge of the equilibrium Wigner function, such
as Landau damping or recurrences in phase space (the plasma echo [19]) deserve a
kinetic treatment; (b) no energy transport equation is included. However it would
be a simple exercise to calculate it taking the second-order moment of the quantum
Vlasov equation; (c) only nonrelativistic phenomena are included, since the starting
point is the one-body Schrödinger equation with a mean field potential; (d) no spin
effects are included, except for the equation of state which can, in a certain measure,
represent some quantum statistical effects. This is the case if the equation of state
for a dense, degenerate electron gas is assumed. In the same way, some relativistic
effects can also be present if the equation of state is adapted to a relativistic electron
gas; (e) no magnetic fields are allowable in the present formulation; (f) the sum of
kinetic and osmotic pressures are replaced by an appropriated equation of state. For
linear regimes, in the vicinity of homogeneous equilibria, this assumption works
well, provided a reasonable equation of state is chosen.

4.3 Applications to Degenerate Plasma

Consider a zero-temperature one-dimensional electron gas, with Fermi velocity vF

and equilibrium density n0. In this case, the classical pressure is

PC =
mv2

F

3n2
0

n3. (4.40)

Notice that the term “classical” is somewhat inappropriate here, as PC will contain
Planck’s constant through the Fermi velocity. We postpone the derivation of
convenient equations of state for a zero-temperature Fermi gas in one, two, and
three spatial dimensions to Sect. 4.4. Additionally, in Sect. 4.4, we review some
basic properties of Fermi gases in general.
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Notice that in one spatial dimension, the Fermi velocity

vF =
π
2

h̄n0

m
(4.41)

is proportional to n0, whereas in three dimensions vF ∝ n1/3
0 .

Using (4.40), the effective potential defined in (4.34) turns out to be

W =
mv2

F

2n2
0

|Ψ |4, (4.42)

taking into account n = |Ψ |2.
The effective potential is repulsive, and tends to flatten the electron density. This

is quite natural, as W derives from the pressure PC, which in turn is a manifestation
of the dispersion of velocities in a fermion gas.

We point out that a similar nonlinear Schrödinger equation with a |Ψ |4-
dependent potential has also been derived in the study of low-dimensional Bose
condensates [16]. We stress, however, that such a boson-fermion duality only applies
to one-dimensional systems.

4.3.1 Linear Wave Propagation

As a first application, let us study linear wave propagation for the quantum
hydrodynamical model (4.30)–(4.32) with the pressure PC as in (4.40). Linearizing
around the homogeneous equilibrium

n = n0, u = 0, eφ = mv2
F/2, (4.43)

we obtain the following dispersion relation (for waves with frequency ω and
wavenumber k),

ω2 = ω2
p + k2v2

F +
h̄2k4

4m2 . (4.44)

For vF = 0, we recover the dispersion relation of the standard Schrödinger–Poisson
system [6, 23]. Equation (4.44) can be written in dimensionless units,

ω2

ω2
p

= 1 + k2λ 2
F +

k4λ 4
F

4
ΓQ. (4.45)

Here,

λF =
vF

ωp
, ΓQ =

h̄2ω2
p

m2v4
F

(4.46)
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are the Fermi length and quantum coupling parameter, adapted to one spatial
dimension. Note that quantum mechanical effects (dispersion of the wave packet)
are first-order in the coupling parameter ΓQ, whereas quantum statistical effects
(Fermi–Dirac distribution) appear at leading order.

We want to compare this dispersion relation (2.85) to the one obtained from the
complete Wigner–Poisson system,

1− ω2
p

n0

∫
f0(v) dv

(ω − kv)2 − h̄2k4/4m2
= 0. (4.47)

In our case, f0(v) is given by the Fermi–Dirac distribution for a zero-temperature
one-dimensional electron gas at equilibrium, that is, f0(v) = n0/2vF if |v| < vF and
f0(v) = 0 if |v| > vF. Substituting into (4.47), one obtains (without any further
approximation)

ω2

ω2
p

=
Ω 2

ω2
p

coth

(
Ω 2

ω2
p

)
+ k2λ 2

F +
k4λ 4

F

4
ΓQ, (4.48)

where
Ω2

ω2
p

=
h̄k3vF

mω2
p

= k3λ 3
F Γ 1/2

Q . (4.49)

Now, we expand the first term on the right-hand side of (4.48) in the long
wavelength (fluid) limit Ω 
 ωp. Using the expansion xcoth(x) = 1 + x2/3 −
x4/45 + · · · , one obtains

ω2

ω2
p

= 1 + k2λ 2
F +

(
k4λ 4

F

4
+

k6λ 6
F

3

)
ΓQ − 1

45
k12λ 12

F Γ 2
Q + · · · . (4.50)

This is a double expansion in powers of the parameters ΓQ and kλF. The
collisionless regime is in principle characterized by ΓQ 
 1, although, as was seen
in Sect. 2.5, electron–electron interactions can be neglected even when ΓQ � 1, as is
the case for metals. On the other hand, the fluid regime is characterized by small
wave numbers (Ω 
 ωp). Indeed, keeping terms to fourth-order in kλF, (4.50)
reduces to the dispersion relation for the effective Schrödinger–Poisson system,
(4.45). This is a further indication that the effective Schrödinger–Poisson system is a
good approximation to the complete Wigner–Poisson system for long wavelengths.

We also note that for ΓQ → 0, the dispersion relation reduces to

ω2 = ω2
p + k2v2

F. (4.51)

This is exactly the dispersion relation obtained from the classical Vlasov–Poisson
system with a zero-temperature Fermi–Dirac equilibrium. In other words, when the
quantum coupling parameter is vanishingly small, a classical dynamical equation
can be used, as the only quantum effects come from the Fermi–Dirac statistics.
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4.3.2 Stationary Solutions

As a second illustration, we use the present formalism to describe the stationary
states of the electron gas [13]. This result is more easily obtained by using the fluid
version of our model. In the time-independent case, the continuity equation (4.30)
and the force equation (4.31) possess the following first integrals

J = A2u, Ξ =
mu2

2
− eφ +W − h̄2

2mA
d2A
dx2 , (4.52)

where A =
√

n = |Ψ |. The first integrals in (4.52) corresponds to current (J) and
energy (Ξ ) conservation. We can always choose Ξ = 0 by a shift in the electrostatic
potential. In this way, we can reduce the description of the stationary states to a set
of second-order nonlinear ordinary differential equations for the amplitude A and
the electrostatic potential φ . For a zero-temperature one-dimensional electron gas,
the effective potential W is given by (4.42), or

W =
mv2

Fn2

2n2
0

. (4.53)

Hence, from (4.39) and (4.52), we get

h̄2 d2A
dx2 = m

(
mJ2

A3 −2eAφ +
mv2

F

n2
0

A5
)

, (4.54)

d2φ
dx2 =

e
ε0

(A2 −n0). (4.55)

Notice that, if the amplitude A(x) is a slowly varying function of x, the second
derivative on the left-hand side of (4.54) can be neglected. With this assumption,
(4.54) reduces to an algebraic equation, which can be solved for A, and the
result plugged into (4.55). This becomes a nonlinear differential equation for the
electrostatic potential, which is the Thomas–Fermi approximation [4] to the fluid
model.

Let us compare (4.54) and (4.55) with (3.22) and (3.23) derived in the context
of the quantum Dawson model for a one-stream plasma. Now in (4.54) there is
the presence of a Fermi pressure term which contribute to the flattening of the
amplitude. This reflect that the quantum Dawson model is intrinsically a “cold”
model, without the possibility of including any classical pressure contribution.
Moreover there is a difference of philosophy: we are not dealing with a “one-stream”
plasma but with a full quantum mixture which, at the end, can all be reduced to an
effective wavefunction Ψ (x,t).
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It can be verified that the J = 0 case cannot sustain small-amplitude, periodic
solutions. Hence, we assume J = n0u0 with u0 �= 0 and introduce the following
rescaling, similar to (3.24) but now with a rescaled Fermi velocity also,

x̂ =
ωpx

u0
, Â =

A√
n0

, φ̂ =
eφ

mu2
0

H =
h̄ωp

mu2
0
, VF =

vF

u0
. (4.56)

We obtain, in the transformed variables (omitting the circumflex for simplicity of
notation),

H2 d2A
dx2 = −2φ A +

1
A3 +V2

F A5, (4.57)

d2φ
dx2 = A2 −1, (4.58)

a system that depends only on the rescaled parameters H and VF. Note that the
quantum coupling parameter can be written as ΓQ = H/V2

F .
It is interesting to perform a linear stability analysis to see in what conditions the

system supports small amplitude spatially periodic solutions. Writing

A = 1 + A′ exp(ikx), φ =

(
1 +V2

F

)
2

+φ ′ exp(ikx), (4.59)

and retaining in (4.57) and (4.58) only terms up to first-order in the primed variables,
we obtain the relation

H2k4 −4(1−V2
F )k2 + 4 = 0. (4.60)

This second degree equation has solutions

k2 =
2(1−V2

F )±2
√

(1−V2
F )2 −H2

H2 . (4.61)

Clearly, spatially oscillating solutions only exist when k2 is real and positive, which
yields the condition

V 2
F < 1−H, (4.62)

or equivalently
mu2

0 > mv2
F + h̄ωp. (4.63)

This expression sets a lower bound on the speed u0, below which no oscillating
stationary solution can exist. Hence, the Fermi pressure tends to suppress these
linear oscillations, as is natural since the exclusion principle tends to flatten the
probability distribution (to compare with the H < 1 condition from the one-stream
quantum Dawson model).
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4.3.3 Two-Stream Instability

A classical plasma composed of two counterstreaming electronic populations with
velocities ±u0 can give rise, for certain wavenumbers, to an instability. In the
previous chapter, we have shown that quantum effects modify the dispersion
relation, and give rise to a new instability branch. These results were obtained
by neglecting the effects of quantum statistics, and are therefore valid in the limit
vF 
 u0. Here, we perform the same calculations for finite values of vF.

We consider two electronic populations, which are both distributed according
to a zero-temperature Fermi–Dirac equilibrium, but with average velocities ±u0.
The motionless ions provide a neutralizing background. The dispersion relation for
such a two-stream plasma can be found in the following way. For a single stream
propagating at velocity ±u0, our fluid model yields the following dielectric constant
(thus valid for long wavelengths)

ε±(k,ω) = 1− ω2
p

(ω ∓ ku0)2 − k2v2
F − h̄2k4/4m2

. (4.64)

Setting ε±(k,ω) = 0 leads to the dispersion relation found previously, (4.44),
with the appropriate Doppler shift. The dielectric constant for the two-stream case
is found by averaging the contributions from each stream ε(k,ω) = (ε+ + ε−)/2.
Using the normalization of (4.56), we obtain

ε(k,ω) = 1− 1/2

(ω + k)2 − k2V 2
F −H2k4/4

− 1/2

(ω − k)2 − k2V 2
F −H2k4/4

. (4.65)

Setting ε(k,ω) = 0, we obtain the dispersion relation for the two-stream plasma

ω4 −
(

1 + 2k2(1 +V2
F )+

H2k4

2

)
ω2

− k2
(

1−V2
F − H2k2

4

)(
1− (1−V2

F )k2 +
H2k4

4

)
= 0. (4.66)

Notice that for VF = 0 we recover the dispersion relation obtained in [13]. Solving
for ω2, one obtains

ω2 =
1
2

+ k2
(

1 + v2
F +

H2k2

4

)
± 1

2

[
1 + 8k2

(
1 + 2k2V 2

F +
H2k4

2

)]1/2

. (4.67)
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Fig. 4.1 Stability diagram for the two-stream plasma, with VF = 0.7 (solid lines) and VF = 0
(dashed lines) according to [20]. The curves correspond to (4.69) and (4.70). For both cases, the
region of the plane containing the H2 axis is unstable

The solution for ω2 has two branches, one of which is always positive and gives
stable oscillations. The other solution is negative (ω2 < 0) provided that

[H2k2 −4(1−V2
F )][H2k4 −4(1−V2

F )k2 + 4] < 0. (4.68)

We immediately notice that, if VF ≥ 1, (4.68) is never verified, and therefore there
is no instability. This is a quite natural result. Indeed, mathematically, the instability
is due to the fact that the two-stream velocity distribution has a “hole” around v = 0.
When VF ≥ 1, the hole is filled up, and no instability can occur. To put it differently,
there can be instability only when the equilibrium distribution is a nonmonotonic
function of the energy, which ceases to be true when VF ≥ 1.

When VF < 1, (4.68) bifurcates for H = 1−V 2
F . If H ≥ 1−V2

F , the second factor is
always positive, and instability occurs for H2k2 < 4(1−V 2

F ). If H < 1−V2
F , there is

instability if either

0 < H2k2 < 2(1−V2
F )−2

√
(1−V2

F )2 −H2, (4.69)

or

2(1−V2
F )+ 2

√
(1−V2

F )2 −H2 < H2k2 < 4(1−V2
F ). (4.70)

This yields the stability diagram plotted in Fig. 4.1, generalizing the result
obtained [13] in the limiting case VF = 0, see Fig. 4.1. The presence of a finite Fermi
velocity has the effect of reducing the region of instability. Numerical simulations
yield similar result to those observed in the VF = 0 case, which are reported in [13].
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4.4 Equation of State for a Zero-Temperature Fermi Gas

How to chose the equation of state is not always an evident subject. However,
two necessary requirements are: (a) the linear dispersion relation from the fluid
equations should reproduce the long wavelength (fluid) limit of linear dispersion
relation for wave propagation in kinetic theory and (b) the function PC(n) should
coincide with the pressure calculated from kinetic theory in equilibrium.

Therefore, a first task is to find the dispersion relation from kinetic theory. For
completeness, the one, two, and three dimensional cases will be considered, since
there are some small numerical differences according to the number of degrees of
freedom. Focusing on electrostatic waves, we have seen that linear wave propagation
is described in (2.85). For arbitrary dimensionality, it is

ε = 1− ω2
p

n0

∫
f0(v)dv

(ω −k ·v)2− h̄2 k4/(4m2)
= 0. (4.71)

For a zero-temperature, completely degenerate Fermi gas, the equilibrium
Wigner function is

f0(v) =
n0

2vF
, |v| < vF,

f0(v) = 0, |v| > vF, (1D), (4.72)

in the one-dimensional case. Inserting this functional dependence on the dielectric
constant interpreted in the principal value sense gives

ε = 1− mω2
p

2h̄k3vF
ln

∣∣∣∣ω2 − (kvF − h̄k2/(2m))2

ω2 − (kvF + h̄k2/(2m))2

∣∣∣∣ = 0. (4.73)

In the long wavelength limit kvF 
 ω , h̄k2/(2m) 
 ω , expanding ε gives

ε = 1− ω2
p

ω2

(
1 +

k2v2
F

ω2 +
h̄2k4

4m2ω2

)
= 0, (4.74)

or

ω2 = ω2
p + k2v2

F +
h̄2k4

4m2 , (1D) (4.75)

which is the limit of the kinetic dispersion relation for small wavenumber and one
spatial dimension.

For the analogous situation in two spatial dimensions, we consider (4.71) with
the equilibrium distribution

f0(v) =
n0

πv2
F

, |v| < vF,

f0(v) = 0, |v| > vF, (2D). (4.76)
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Proceeding as in the one-dimensional case, the long wavelength dispersion relation
is found to be

ω2 = ω2
p +

3
4

k2v2
F +

h̄2k4

4m2 . (2D) (4.77)

Notice the different numerical factor in front of the Fermi velocity contribution.
To finalize, in three spatial dimensions we use

f0(v) =
n0

4πv3
F/3

, |v| < vF,

f0(v) = 0, |v| > vF, (3D), (4.78)

yielding

ω2 = ω2
p +

3
5

k2v2
F +

h̄2k4

4m2 . (3D) (4.79)

To sum up, the dispersion relation for a completely degenerate Fermi gas in the
long wavelength limit is

ω2 = ω2
p +

3
D+ 2

k2v2
F +

h̄2k4

4m2 , (4.80)

where D is the number of degrees of freedom. Whatever the equation of state
in the fluid equations, it should be able to reproduce (4.80) after linearizing the
hydrodynamic model.

It is convenient to write here the three-dimensional version of the quantum fluid
model,

∂ n
∂ t

+ ∇ · (nu) = 0, (4.81)

∂ u
∂ t

+ u ·∇u = − 1
mn

∇ ·PC +
e
m

∇φ +
h̄2

2m2 ∇
(

∇2(
√

n)√
n

)
, (4.82)

∇2φ =
e
ε0

(n−n0), (4.83)

where PC = PC(n) is the sum of kinetic and osmotic velocities as before. The
derivation of the three-dimensional quantum hydrodynamic model follows after
taking the first- and second-order moments of the quantum Vlasov equation in
three spatial dimensions. In this way, a pressure dyad PC instead of a pressure
function will enter the momentum equation. After Madelung-decomposing the
Wigner function, the pressure dyad can be shown to be composed by a kinetic
pressure dyad, an osmotic pressure dyad, and a Bohm potential contribution. As in
the one-dimensional case, we assume the sum of the kinetic and osmotic parts
to be entirely determined by the equilibrium Wigner function. In this way, the
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classical limit of the model is assured to be given as in the classical case, where the
pressure dyad – and hence the equation of state – are determined by the equilibrium
distribution function.

To conclude, now we have a classical pressure dyad, with components PC
i j

determined by the equilibrium Wigner function according to

PC
i j = m

∫
dv f0(v)(vi −ui)(v j −u j). (4.84)

Here, the ui are the components of the mean fluid flow velocity,

nu =
∫

f0(v)vdv, (4.85)

while n is the fluid density or zeroth-order moment of the equilibrium Wigner
function.

For isotropic equilibria, one get

PC
i j = PCδi j, (4.86)

where

PC = PC(n) =
1
D

Tr[PC] (4.87)

is the scalar pressure, with Tr denoting the trace. For isotropic equilibria, the choice
of the equation of state amounts to the choice of a suitable scalar pressure.

For a completely degenerate Fermi gas, from (4.84) and (4.87) the scalar pressure
in equilibrium turns out to be

PC =
mn0v2

F

D+ 2
, (4.88)

with a dimension-dependent numerical factor.
Now it comes the crucial point. The equation of state should be consistent with

the linear wave propagation properties from (4.80), and with the equilibrium scalar
pressure from (4.88). A reasonable choice is a polytropic equation of state

PC(n) = αmn0v2
F

(
n
n0

)β
, (4.89)

where α and β are coefficients to be determined. The above polytropic form imply
a dispersion relation

ω2 = ω2
p +αβ k2v2

F +
h̄2k4

4m2 (4.90)

from the quantum fluid equations (4.81)–(4.83). Consistency with (4.80) and (4.88)
is achieved if and only if

α =
1

D+ 2
, β = 3, (4.91)
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Fig. 4.2 Quasi-equilibrium
distribution function f0(x,v, t)
for an one-dimensional
zero-temperature Fermi gas,
where n = n(x, t),u = u(x, t)
and uF = uF(x, t) are resp. the
local number density, mean
velocity and Fermi velocity v

f0

n

2

u-uF u+uF

uF

so that

PC(n) =
mn0v2

F

D+ 2

(
n
n0

)3

, (4.92)

is the desired equation of state. For D = 1, (4.40) is recovered.
Since no energy transport equation was included in the model, β can be

interpreted as the adiabatic coefficient cp/cv = (D+ 2)/D, where cp and cv are the
specific heats at constant pressure and constant volume, respectively. An adiabatic
equation of state appears because the model apply to fast phenomena where
there is no available time to heat transfer, also justifying the noninclusion of an
energy transport equation. Hence, cp/cv = 3 correspond to an one-dimensional
(D = 1) adiabatic coefficient, reflecting the fact that wave propagation is essentially
an one-dimensional phenomena [21]. The treatment can be extended to nonzero
temperatures using Fermi–Dirac integrals, but we keep T = 0 where the basic ideas
are already illustrated.

Notice that any positive-definite, monotonous, differentiable function of the form

Pc(n) =
mn0v2

F

D+ 2
Π

(
n
n0

)
(4.93)

would work equally well, provided the function Π(n/n0) satisfies

Π(1) = 1, Π ′(1) = 3. (4.94)

Equivalently, the equation of state would be uniquely determined if and only if all
derivatives of Π(n/n0) were known. This amounts to work out all of the higher-
order moment equations, an unfeasible task.

The equation of state in (4.40) for an one-dimensional zero-temperature Fermi
gas can also be justified as follows. For a zero-temperature system, we can assume
a local quasi-equilibrium distribution function f0(x,v,t) as in Fig. 4.2. In other
words, f0(x,v,t) = n(x,t)/[2uF(x,t)] for u(x,t)−uF(x,t)≤ v ≤ u(x,t)+uF(x,t) and
f0(x,v,t) = 0 otherwise. Therefore, from construction, we identify the local density
n(x,t), the local velocity u(x,t) and the local Fermi velocity uF(x,t).
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We postulate that the classical pressure comes only from the equilibrium Wigner
function,

PC = m

(∫
f0(x,v,t)v2dv−n(x,t)u(x,t)2

)
, (4.95)

yielding

PC =
mn(x,t)uF(x,t)2

3
. (1D) (4.96)

The use of the equilibrium distribution function assures that the fluid equations
reproduce the classical Euler equations when h̄ → 0.

To reproduce (4.92) in the D = 1 case, we define the linear dependence

uF(x,t) =
vF

n0
n(x,t) ⇒ PC =

mn0v2
F

3

(
n
n0

)3

. (4.97)

The reasoning for two and three spatial dimensions is similar. In two dimensions,
postulate a quasi-equilibrium Wigner function f0(r,v,t) = n(r,t)/[πuF(r,t)2] in the
circle |v−u(r,t)|2 ≤ u2

F(r,t) and zero otherwise. The scalar pressure turns out to be

PC =
mn(r,t)u2

F(r,t)
4

=
mn0v2

F

4

(
n(r,t)

n0

)3

, (2D) (4.98)

provided the linear dependence in (4.97) is satisfied.
In three dimensions, we have f0(r,v,t) = 3n(r,t)/[4πu3

F(r,t)] for |v−u(r,t)|2 ≤
u2

F(r,t) and zero otherwise. We get

PC =
mn(r,t)u2

F(r,t)
5

=
mn0v2

F

5

(
n(r,t)

n0

)3

. (3D) (4.99)

once again from (4.97) chosen so as to comply with (4.92).
In passing, it is illustrative to calculate the Fermi velocity vF according to the

number of degrees of freedom. Suppose N fermions confined in a spatial length L,
so that the equilibrium number density is n0 = N/L. We need to distribute the N
particles in a phase space of area 2mvF L, corresponding to 2mvF L/h cells where h
is Planck’s constant. Since each cell can be populated by two fermions with opposite
spin, we have

2mvFL
h

=
N
2
⇒ vF =

π h̄n0

2m
, (1D) (4.100)

showing a linear dependence between Fermi velocity and density in one spatial
dimension.

Applying the same method, we found

vF =
h̄
m

(2πn0)1/2, (2D) (4.101)

vF =
h̄
m

(3π2n0)1/3, (3D). (4.102)

Notice the number density has different units according to the dimensionality D :
n0 ∼ 1/LD where L is a length scale.
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4.5 Landau Damping in a Degenerate Plasma

The neglecting of kinetic effects is a necessary assumption for the use of hydrody-
namic equations. Even if the need for a kinetic treatment deserves to be analyzed
in each particular situation, we can consider the case of the propagation of high
frequency electrostatic waves in a degenerate plasma. In this way, we can measure
the importance of the Landau damping, a kinetic effect not taken into account in
usual fluid models. As we shall shortly see, quantum Langmuir waves are strongly
damped for wavenumbers smaller than the Fermi wavenumber. Hence, a fluid
treatment can be valid only for long wavelengths, larger than the Thomas–Fermi
length.

Generalizing (2.93) of Chap. 2 to three dimensions, we have the following
dispersion relation for electrostatic waves,

ε = 1− mω2
p

n0 h̄ k2

(∫
L+

dv f0(v)
k[vz − h̄k/(2m)]−ω

−
∫

L−

dv f0(v)
k[vz + h̄k/(2m)]−ω

)
= 0,

(4.103)

where a wave vector kkẑ was assumed without loss of generality. Here, the
equilibrium distribution Wigner function is f0(v) and L± are Landau contours under
the poles vz = ω/k± h̄k/(2m).

Defining the projection

f0z(vz) =
∫

dvx dvy f0(v) (4.104)

we obtain,

ε = 1− mω2
p

n0 h̄ k2

(∫
L+

dvz f0(vz)
k[vz − h̄k/(2m)]−ω

−
∫

L−

dvz f0(vz)
k[vz + h̄k/(2m)]−ω

)
= 0,

(4.105)

which is formally the same as (2.93). Therefore, in analogy with (2.95), we have

γ � γcl =
π ω3

p

2n0 k2

d f0z

dvz

(
vz =

ω
k

)
. (4.106)

as the classical limit of the growth rate γ . The more exact growth rate expression
(2.94) could have been employed, but quantum diffraction effects are not so
fundamental in the present discussion.

In conclusion, from (4.106) we see that damping (or growth) is determined by the
symbol of the derivative of the projected equilibrium Wigner function. To employ
this result to a degenerate plasma, it is not so useful to focus on a zero-temperature
plasma because in this case the equilibrium distribution is not differentiable. Rather,
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we consider the Thomas–Fermi expression for the equilibrium Wigner distribution
function [9, 14],

f0(v) =
α

exp
[
β

(
mv2

2 − μ
)]

+ 1
, (4.107)

where v2 = v2
x + v2

y + v2
z , β = 1/(κBT ) and the normalization constant is

α = − n0

Li3/2(−eβ μ)

(
mβ
2π

)3/2

= 2
( m

2π h̄

)3
. (4.108)

Here μ is the chemical potential, which is found solving the last equality in (4.108).
In the limit of a vanishing temperature T , one has μ � EF = mv2

F/2, the Fermi
energy of the system. Moreover, Li3/2 is a polylogarithm function of argument 3/2.
Equation (4.108) is found from

n0 =
∫

dv f0(v) = 4πα
(

2
βm

)3/2 ∫ ∞

0

u2 du
exp[−β μ ]u2 + 1

= −α
(

2π
βm

)3/2

Li3/2(−eβ μ). (4.109)

Performing the integration over the perpendicular velocity components, we get

f0z(vz) =
2πα
mβ

ln

(
1 + exp

[
β

(
μ − mv2

z

2

)])
, (4.110)

which has a bell-shaped profile as can be verified. For the corresponding damping
rate, using (4.106), we obtain

γ
ωp

= −π2αω3
p

n0k3

(
1 + exp

[
β

(
mω2

p

2k2 − μ

)])−1

, (4.111)

where the replacement ω � ωp was employed.
For very small temperature, we have μ � EF and a very large β . From (4.111)

it follows that for ω2
p /k2 > 2EF/m or equivalently for ωp/k > vF there will be no

damping at all. This is because the phase velocity of the wave is in a region where
there are no particles to interact.

In the opposite case when ωp/k < vF the exponential in (4.111) will be zero
for very large β , producing significant damping not taken into account in the fluid
description. However, for ωp/k < vF one has, using the definition (4.108) of α and
the expression (4.102) of the Fermi velocity,

|γ|
ωp

=
1

4πn0

(mωp

h̄k

)3
<

1
4πn0

(mvF

h̄

)3
=

3π
4

, (4.112)
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which is not particularly of any help. Therefore, to avoid damping, for quantum
Langmuir waves in degenerate plasma necessarily the long wavelength assumption

k <
ωp

vF
(4.113)

must hold, a condition usually not remembered in the literature. Otherwise, a kinetic
modeling is necessary. The reason for the damping is that many particles would be
available to interact with the wave if (4.113) is not satisfied. Notice that this result
does not hold in the case of an one-dimensional degenerate Fermi gas, where the
derivative of the equilibrium Wigner function is almost everywhere zero. The above
reasoning is equally valid in the case of nondegenerate plasma, provided the Fermi
velocity is replaced by the thermal velocity.

4.6 Decomposing an Equilibrium Wigner Function
in Terms of Ensemble Wavefunctions

The determination of the equilibrium reduced one-body Wigner function associated
with an equilibrium density matrix follows from the Wigner transform as defined in
Chap. 2. For instance [7], in the case of equilibrium with a heat bath at temperature
T one has the equilibrium density operator ρ̂ given by

ρ̂ =
e−β Ĥ

Tr[e−β Ĥ ]
, (4.114)

where Ĥ is the Hamiltonian operator, β = 1/(κBT ) and Tr denotes the trace.
Correspondingly, the density matrix is

ρ(x,y) = ∑
n

pnϕ∗
n (x)ϕn(y), (4.115)

where the ϕn(x) are the normalized eigenfunctions of the Hamiltonian operator with
eigenvalues En, or

Ĥ|ϕn >= En|ϕn > . (4.116)

In (4.115),

pn =
e−β En

Z
(4.117)

are the statistical weights for the canonical ensemble. Here, Z is the canonical
partition function,

Z = ∑
n

e−β En. (4.118)
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The Hamiltonian operator is frequently composed by a kinetic energy term and some
potential V (x) which typically is the sum of a mean field, self-consistent term, and
an external potential. We are using the index n instead of α to label the ensemble
quantum states to be more in accordance with the usual quantum mechanics notation
in the present context. Also, we are omitting the time t in all equations of this section
since only stationary problems are discussed.

In self-consistent problems, the task of finding the equilibrium eigenfunctions
is already a difficult problem which can be done only numerically, with some
optimism. However, ignoring the self-consistent potential, with some luck the
density matrix (4.115) can be explicitly written, for sufficiently simple external
potentials. Then, the reduced one-body Wigner function f0(x,v) can be found
through (2.8)

f0(x,v) =
Nm
2π h̄

∫
dse

imvs
h̄ ρ

(
x +

s
2
,x− s

2

)
, (4.119)

adapted to the normalization
∫

dxdv f0(x,v) = N.
The inverse problem of determining the quantum statistical ensemble from a

given equilibrium reduced one-body Wigner function, however, is more appealing
from the plasma physics point of view. Indeed, traditionally in plasma one starts
from a given equilibrium distribution function and then proceed to the study of
waves, instabilities and so on. For definiteness, consider an spatially homogeneous
equilibrium f0(v). Equation (2.7) then gives the density matrix

ρ(x,y) =
1
N

∫
dve

imv (x−y)
h̄ f0(v). (4.120)

Equation (4.120) suggest a recipe to calculate the statistical weights in the
quantum ensemble corresponding to f0(v), once the quantum states are chosen.
For example, consider the case of a momentum-shifted one-dimensional zero-
temperature Fermi gas equilibrium where f0(v) = n0/[2vF] for u− vF ≤ v ≤ u + vF

and f0(v) = 0 otherwise. Here, the density u0, the mean velocity u and the Fermi
velocity vF will be assumed constant. Using (4.120), we get

ρ(x,y) =
n0h̄

NmvF(x− y)
sin

(
mvF(x− y)

h̄

)
exp

(
imu(x− y)

h̄

)
, (4.121)

displaying an oscillatory pattern. For comparison, see Fig. 4.2 showing the Wigner
function and Fig. 4.3 showing N/n0 times the real part of the density matrix for
u/vF = 3. Notice that (4.121) does not satisfy the condition (2.69) for a pure state,
except in the limit vF → 0. By the way, it is more proper to refer to vF → 0 as the
dilute rather than the cold limit, since vF is a function of the density and not of the
thermodynamic temperature, which is assumed to be identically null in the example.

To represent the microscopic structure of the density matrix in terms of quantum
states and corresponding occupation probabilities, a definite set of wavefunctions
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Fig. 4.3 Oscillatory structure of the real part of the density matrix in (4.121). Lengths are
measured in units of the Fermi length LF = h̄/(mvF). In the graphic, u/vF = 3. A similar pattern
appear for the imaginary part

need to be selected. For unbounded plasma, though not mandatory, it is natural to
choose the plane waves

ψk(x) = A exp(ikx), −∞ < k < ∞ (4.122)

where the amplitude A = 1/
√

L. Here, L is the fictitious length of the system,
eventually set to infinity at the end of the calculation.

In the case of confined charged particle systems, as in semiconductor quantum
wells or other nanoscopic systems, a different set of quantum states can be a better
choice depending on the confinement. For instance, in the case of parabolic quantum
wells with harmonic external potential, the harmonic oscillator eigenfunctions play
a distinguished rôle.

So, we have the plane waves (4.122), each with some occupation probability
p(k) ≥ 0. Since here k is a continuous label, we now need

∫
dk p(k) = 1. Adapting

(2.7) to the continuous label case, we have

ρ(x,y) =
∫

dk p(k)ψk(x)ψ∗
k (y) = A2

∫
dk p(k) exp(ik(x− y)). (4.123)

The equality of (4.121) and (4.123) imply

p(k) =
h̄

2πmvF

∫
dx

x
sin

(mvFx

h̄

)
cos

(
[mu− h̄k]x

h̄

)
, (4.124)
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where the definition of A and n0 = N/L were used. In terms of the Fermi length
λF = h̄/(mvF),

p(k) =
λF

2π

∫
ds
s

sin s cos

([
kλF − u

vF

]
s

)
. (4.125)

The integral can be evaluated, yielding

p(k) =
λF

2
for u− vF <

h̄k
m

< u + vF,

p(k) = 0 otherwise, (4.126)

a rather natural result. Moreover, the wavenumber occupation probabilities p(k)
satisfy

∫
dk p(k) = 1 as they should.

The procedure of this section can be easily extended so as to represent any
given equilibrium f0(v) in terms of a quantum statistical ensemble defined by a set
of wavefunctions and the corresponding occupation probabilities. However, to be
quantum-mechanically acceptable the conditions (2.56)–(2.59) should be meet so
that f0(v) yield a positive definite density matrix. For the one-dimensional zero-
temperature Fermi gas equilibrium, for instance, (2.59) imply L > πλF for the
minimal length of the system, otherwise the Heisenberg principle is violated. In
other words, the spatial extension of the system should be appreciable larger than
the Fermi length, which is a fairly reasonable assumption.

The above mapping from the quantum statistical ensemble to the Wigner function
and its inverse can be seen as a partial translation from the quantum-mechanical to
the plasma languages and vice versa.

Problems

4.1. Calculate the moments of the Wigner function and demonstrate the expression
(4.10) for the pressure in terms of the ensemble wavefunctions.

4.2. By direct calculation demonstrate the expression (4.16) for the pressure as a
sum of kinetic, osmotic and quantum contributions.

4.3. Linearize the one-dimensional quantum hydrodynamic model for a zero-tem-
perature Fermi gas to obtain the dispersion relation (4.44).

4.4. Verify that (4.54) and (4.55) cannot sustain small-amplitude, periodic solutions
in the J = 0 case.

4.5. To calculate the equilibrium Fermi velocity of an electron gas in two and three
dimensions, compute the available phase-space hyper-volume, taking into account
Pauli’s exclusion principle. Deduce (4.101) and (4.102).
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4.6. Extend the quantum hydrodynamic model for plasmas, including an energy
transport equation.

4.7. Introduce a complex amplitude variable as in Chap. 3 and find a Hamiltonian
form for the system (4.54) and (4.55).

4.8. Work out the normalization condition (4.108) in the dilute (nondegenerate)
case β μ 
 1, using the properties of the of the polylogarithm function.

4.9. Obtain the projected equilibrium Wigner function in (4.110) for degenerate
plasma in the Thomas–Fermi approximation.

4.10. Using the coordinate representation, demonstrate (4.115) for the density
matrix in terms of the eigenfunctions of the Hamiltonian operator.

4.11. Demonstrate (4.124).

4.12. Check (4.126).

4.13. Work out condition (2.59) for the one-dimensional zero-temperature Fermi
gas equilibrium of Sect. 4.6 to be an acceptable Wigner function.
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Chapter 5
Quantum Ion-Acoustic Waves

Abstract The quantum hydrodynamic model is applied to ion-acoustic waves in
quantum plasmas. The corresponding linear dispersion relation is found, as well as
a modified Korteweg–de Vries equation for weakly nonlinear solutions. Quantum
effects are shown to enlarge the associated solitary wave solutions width. Fully,
nonlinear traveling wave solutions are investigated.

5.1 Low Frequency Electrostatic Quantum Plasma Waves

For electrostatic waves with a frequency near the electron plasma frequency, the ion
motion is too slow to have any relevance. For this reason, in the previous chapters,
the ionic specie was treated as a fixed, homogeneous neutralizing background.
However, for slow frequency the ion motion should be taken into account, so that
a two species plasma model is needed. By “slow” frequency ω we mean ω < ωpi,
while “high” frequency means ω > ωpe. Here, ωpi,pe denote the ion and electron
plasma frequencies. In classical electrostatic plasmas, the most important waves are
the (high frequency) Langmuir waves and the (low frequency) ion-acoustic waves.
In quantum plasmas, we have already discussed a bit about the high frequency
modes in Sect. 2.7 resulting on the Bohm–Pines dispersion relation (2.91). Now,
it is the time to discuss the quantum counterpart of the classical ion-acoustic modes.

Therefore, following our trend on applications of the quantum plasma hydro-
dynamic model, let us consider an one-dimensional two species quantum
plasma system made by one electronic and one ionic fluid, in the electrostatic
approximation [3]. For simplicity, only the continuity and momentum equations
will be taken into account, with the energy transport equation ignored. These
assumptions are sufficient [4] to describe the classical ion-acoustic wave. Here,
we pursue the same methods of classical physics, with only one difference: the
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inclusion of the Bohm term in the momentum equation. Therefore, the relevant
equations are given by

∂ne

∂ t
+

∂ (neue)
∂x

= 0, (5.1)

∂ni

∂ t
+

∂ (niui)
∂x

= 0, (5.2)

∂ue

∂ t
+ ue

∂ue

∂x
=

e
me

∂φ
∂x

− 1
mene

∂P
∂x

+
h̄2

2m2
e

∂
∂x

(
∂ 2√ne/∂x2

√
ne

)
, (5.3)

∂ui

∂ t
+ ui

∂ui

∂ x
= − e

mi

∂φ
∂x

, (5.4)

∂ 2φ
∂x2 =

e
ε0

(ne −ni), (5.5)

where ne,i are the electronic and ionic number densities, ue,i the electronic and
ionic fluid densities, φ the scalar potential, me,i the electron and ion masses, −e
the electron charge, h̄ = h/(2π), where h is Planck’s constant and ε0 the vacuum
permittivity. Finally, P = P(ne) is the electron fluid pressure, modeled by some
convenient equation of state.

The choice of the equation of state is a delicate subject and depend on the density,
temperature, and wavenumber. For definiteness, here the equation of state for a one-
dimensional zero-temperature Fermi gas is postulated,

P =
mev2

Fe

3n2
0

n3
e, (5.6)

where n0 is the equilibrium density for both electrons and ions, and vFe is the
electrons Fermi velocity, related to the Fermi temperature TFe by mev2

Fe = κBTFe,
where κB is the Boltzmann constant. The results in the following can be trivially
modified in the case of other equations of state.

We are disregarding ion pressure terms of both classical and quantum nature. For
the electrons, we allow a quantum pressure term due to the Pauli exclusion principle
and also a quantum diffraction term which comes from the kinetic term in the
Schrödinger equation. In other applications in semiconductor physics, this quantum
diffraction term is responsible for tunneling and differential resistance effects [2].
The distinct feature included here is the contribution from Fermi–Dirac statistics.

Equations (5.1) and (5.2) refers to conservation of charge and mass. Equations
(5.3) and (5.4) accounts for momentum balance. Equation (5.3), corresponding to
balance of the electron fluid momentum, has two quantum terms on the right-hand
side. One of them, due to the pressure of the electronic fluid, takes into account
the fermionic character of the electrons. The second quantum term, proportional to
h̄2, takes into account the influence of quantum diffraction effects. The ion motion,
however, can be taken as classical in view of the high ion mass in comparison to
the electron mass. Accordingly, (5.4) contains no quantum terms. Finally, (5.5) is
Poisson’s equation, describing the self-consistent electrostatic potential.
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The electron dynamics can be simplified using general thermodynamic
arguments, since electrons reach equilibrium faster than ions due to their smaller
mass. Alternatively, let us introduce the following rescaling,

x̄ =
ωpex

vFe
, t̄ = ωpit,

n̄e =
ne

n0
, n̄i =

ni

n0
,

ūe =
ue

cs
, ūi =

ui

cs
, φ̄ =

eφ
κBTFe

. (5.7)

Here, ωpe and ωpi are the corresponding electron and ion plasma frequencies,

ωpe =
(

n0e2

meε0

)1/2

, ωpi =
(

n0e2

miε0

)1/2

. (5.8)

Also, cs is a quantum ion-acoustic velocity, obtained replacing Te by TFe in the
expression for the classical ion-acoustic velocity,

cs =
(

κBTFe

mi

)1/2

. (5.9)

In addition, consider nondimensional parameter

H =
h̄ωpe

κBTFe
. (5.10)

Using the new variables and dropping bars for simplifying notation, we obtain from
the electron momentum balance equation (5.3)

me

mi

(
∂ue

∂ t
+ ue

∂ue

∂ x

)
=

∂φ
∂x

−ne
∂ne

∂x
+

H2

2
∂
∂ x

(
∂ 2√ne/∂x2

√
ne

)
. (5.11)

Neglecting the left-hand side of (5.11) due to me/mi � 1 and considering the
boundary conditions ne = 1, φ = 0 at infinity, we obtain

φ = −1
2

+
n2

e

2
− H2

2
√

ne

d2

dx2

√
ne. (5.12)

This last equation is the electrostatic potential in terms of the electron density and
its derivatives. If quantum diffraction effects are negligible (H = 0), the charge
density can be obtained from the potential through an algebraic equation. This
is very much like in the classical case where the electron dynamics is simplified
assuming the law of altitudes for expressing the electron density in terms of the
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potential. Here, however, even for H = 0 there will be no law of altitudes at all,
since the electron equilibrium is given by a Fermi–Dirac distribution and not by a
Maxwell–Boltzmann one.

The rescaling (5.7) also implies, from ion conservation of charge and momentum
and from Poisson’s equation,

∂ni

∂ t
+

∂ (niui)
∂x

= 0, (5.13)

∂ui

∂ t
+ ui

∂ui

∂ x
= −∂φ

∂x
, (5.14)

∂ 2φ
∂x2 = ne −ni. (5.15)

Equations (5.13)–(5.15), together with (5.12), provides a reduced model of four
equations with four unknown quantities, ni, ui, ne, and φ . This reduced model is the
basic tool to be used in the following. The only remaining free parameter is H, which
measures the effects of quantum diffraction. Physically, H is the ratio between the
electron plasmon energy and the electron Fermi energy.

The reduced model (5.12)–(5.15) support linear waves around the homogeneous
equilibrium

ne = ni = 1, ui = 0, φ = 0. (5.16)

After linearizing and Fourier-transforming as usual, we find the dispersion relation
for these linear waves as

ω2 =
k2(1 + H2k2/4)

1 + k2(1 + H2k2/4)
, (5.17)

for scaled wave frequency ω and scaled wavenumber k. Assuming small wavenum-
bers, this gives ω = k, or, reintroducing the original physical variables, a wave
propagating at the quantum ion-acoustic velocity cs as given in the definition
(5.9). Equation (5.17) describes the quantum counterpart of the classical ion-
acoustic mode, with the Fermi velocity replacing the thermal velocity and with a
correction from quantum diffraction effects. Accordingly, we call this new solution
the quantum ion-acoustic mode. As for the classical ion-acoustic waves, this mode
shows oscillations of both electrons and ions at low frequency.

At the opposite case of small wavelengths, (5.17) gives oscillations at the ion
plasma frequency ωpi. This happens because for short wavelengths the electrons
are incapable of shielding, so that the ions just oscillate in a background of nega-
tive charge. As seen in Fig. 5.1, the asymptotic value ω → ωpi is reached faster
for increasing quantum diffraction effects. The reason is that the screening of the
electrons become less effective due to the diffusive character of the Bohm potential,
responsible for wave packet spreading.

In the following, we investigate the basic properties of the nonlinear solutions for
the reduced model (5.12)–(5.15).
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Fig. 5.1 Dispersion relation (5.17) for H = 0 (solid), H = 1.5 (dashed) and H = 3 (dotted)

5.2 A Quantum Korteweg–de Vries Equation

To access weakly nonlinear solutions for the quantum ion-acoustic system (5.12)–
(5.15), we use the same singular perturbation methods [1] applied to weakly
nonlinear classical waves for an electron–ion plasma. In other words, expand around
the equilibrium as

ni = 1 + ε ni1 + ε2 ni2 + · · · , (5.18)

ui = ε ui1 + ε2 ui2 + · · · , (5.19)

ne = 1 + ε ne1 + ε2 ne2 + · · · , (5.20)

where ε is a small parameter proportional to the amplitude of the perturbation.
Instead of stopping at first order, the O(ε2) terms will be retained.

From (5.12), we have the following expansion for φ ,

φ = ε ne1 +
ε2

2

(
n2

e1 + 2ne2
)

−H2

4
∂ 2

∂ x2

(
ε ne1 + ε2

(
ne2 − n2

e1

8

))
+

H2ε2 ne1

8
∂ 2ne1

∂x2 + · · · . (5.21)

We use the additional rescaling,

ξ = ε1/2 (x− t), τ = ε3/2 t. (5.22)
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so that the slow varying time scale is incorporated in the ∼ ε3/2 dependence of
τ . With these new independent coordinates, one finds from (5.13)–(5.15) and the
perturbation expansion (5.18)–(5.21), a set of three equations in the form of power
series on ε ,

∂
∂ξ

(ui1 −ni1) + ε
(

∂ ni1

∂τ
+

∂
∂ξ

(−ni2 + ui2 + ni1ui1)
)

= O(ε2), (5.23)

∂
∂ξ

(ne1 −ui1) + ε
(

∂ ui1

∂τ
− ∂ ui2

∂ξ
+ ui1

∂ ui1

∂ξ

−H2

4
∂ 3ne1

∂ξ 3 +
1
2

∂
∂ξ

(n2
e1 + 2ne2)

)
= O(ε2) (5.24)

ni1 −ne1 + ε
(

ni2 −ne2 +
∂ 2ne1

∂ξ 2

)
= O(ε2). (5.25)

These three equations should be satisfied to all orders in ε . From the zeroth-order
terms plus the boundary condition ui1 → 0 at infinity gives

ne1 = ni1 = ui1 ≡U(ξ ,τ), (5.26)

in terms of a new function U(ξ ,τ). Equation (5.26) shows that the mode is
quasi-neutral in a first approximation. This is a reasonable finding, since for very
low frequencies the electrons are viewing an almost stationary ionic background.
To prevent strong electric fields, the electron fluid density will try to cancel such
quasi-static ionic fluid density. However, due to the inertia, this cancellation will not
totally succeed. The deviation from equilibrium then produces the wave’s electric
field. This reasoning apply to the classical ion-acoustic wave as well [1].

The first-order terms in (5.23)–(5.25), taking into account (5.26), imply

∂U
∂τ

+
∂

∂ξ
(−ni2 + ui2 +U2) = 0, (5.27)

∂U
∂τ

+
∂

∂ξ

(
−ui2 + ne2 +U2 − H2

4
∂ 2U
∂ξ 2

)
, (5.28)

∂ 2U
∂ξ 2 = ne2 −ni2. (5.29)

Eliminating ne2, ni2, and ui2 from (5.27)–(5.29), we obtain a “quantum deformed”
Korteweg–de Vries equation,

∂U
∂τ

+ 2U
∂U
∂ξ

+
1
2

(
1− H2

4

)
∂ 3U
∂ξ 3 = 0. (5.30)
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The quantum diffraction effects are responsible for the term proportional to H2,
otherwise we should have the usual Korteweg–de Vries equation.

At first one could imagine that quantum effects would be responsible for the
enhancement of the dispersive properties, represented by the third-order derivative
term in (5.30). Indeed much of the properties of the Korteweg–de Vries equa-
tion, including complete integrability and multi-soliton solutions, follow from the
interplay between advection (the ∼U∂U/∂ξ term) and dispersion. However, one
sees that quantum effects can even invert the sign of the dispersion term, for large
enough H. However, this sign is immaterial since we can apply the transformation
τ → −τ,ξ → ξ ,U → −U to change it. Hence, for H > 2 the localized solutions
(bright solitons) with U > 0 of the original equation correspond also to localized
solutions, but with inverted polarization (U < 0, or dark solitons) and propagating
backward in time. A really unexpected feature is that for H = 2, the dispersive term
disappear. This eventually yields the formation of a shock, much like as for a free
ideal neutral classical fluid.

Let us investigate some localized solutions existing for H �= 2. We assume a
traveling wave solution of the form

U = U(ξ − cτ), (5.31)

for an arbitrary constant phase velocity c. For the sake of definition and without loss
of generality, we suppose c > 0. Inserting (5.31) into (5.30), integrating once and
taking into account the decaying boundary conditions yields

1
2

(
1− H2

4

)
U ′′ +U2 − cU = 0, (5.32)

where the prime denotes derivative with respect to ξ − cτ. Equation (5.32) can be
rewritten in terms of a Sagdeev effective potential V (U),

U ′′ = − dV
dU

, (5.33)

where

V =
(

1− H2

4

)−1 (
2U
3

− c

)
U2. (5.34)

Equation (5.34) admit the energy first integral

Ξ =
U ′2

2
+V(U), (5.35)

which, integrated a second time, yields the exact solution in terms of elliptic
functions. We restrict ourselves to the analytic solutions in the case of separatrix mo-
tion, which is known to be associated with the soliton solution [1]. Figure 5.2 shows
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Fig. 5.2 Sagdeev potential in (5.34) for: H < 2,c > 0 (upper, left); H < 2,c < 0 (upper, right);
H > 2,c > 0 (bottom, left); H > 2,c < 0 (bottom, right)

the Sagdeev potential according to H bigger or smaller than 2, and for positive or
negative propagation velocity, for the sake of generality. In all cases, V ′(U) = 0
at U = 0 and U = c. Also notice that taking c > 0 and for H < 2, the value of
the Sagdeev potential at the local minimum U = c decrease for increasing H. On the
other hand, for H > 2, the value of the Sagdeev potential at the local maximum also
decrease for increasing H. This is a signature that quantum effects tend to destroy
localized structures, since for sufficiently large H there will be asymptotically no
potential well at all.

For positive c and in the H < 2 or semiclassical case, inspection of Fig. 5.2 shows
that separatrix motion Ξ = V (Umax) at a point of local maximum U = Umax follows
from zero energy,

Ξ = 0. (5.36)

For Ξ = 0, integrating (5.35) furnishes

U =
3c
2

sech2
(√

c
2

(ξ − cτ)
(1−H2/4)1/2

)
, (5.37)

disregarding an irrelevant integration constant.
For the H > 2 or fully quantum case, Fig. 5.2 shows that separatrix motion takes

place not for zero energy. Setting Ξ = V (Umax) at a point of local maximum U =
Umax gives

Ξ =
c3

3(H2/4−1)
. (5.38)
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For this value of K, integration of (5.35) furnishes

U = c− 3c
2

sech2
(√

c
2

(ξ − cτ)
(H2/4−1)1/2

)
, (5.39)

disregarding an irrelevant integration constant.
It is clear from (5.37) and (5.39) that the only influence of quantum effects are on

the width of the solitary waves. For both the semiclassical (H < 2) and fully quantum
(H > 2) quantum effects enlarge the solitons widths, which is in accordance with
the dispersive property of the Bohm potential. This enlargement is natural in view
of wave packet spreading. However, in the nongeneric H = 2 case of course no
soliton solution can appear, due to the lack of the third-order derivative term in the
governing equation.

5.3 Nonlinear Quantum Ion-Acoustic Waves

The developments of the last section are restricted to weakly nonlinearities since we
used a second-order expansion on the amplitude parameter. To access arbitrarily
large amplitude waves consider traveling wave forms where all quantities are
depending only on the variable

ζ = x−Mt, (5.40)

where M is a nondimensional variable playing the rôle of the Mach number of
the problem. Equations (5.13) and (5.14) plus the boundary conditions ni = 1,
ui = φ = 0 at infinity gives the conservation laws

ni(ui −M) = −M, (5.41)

1
2
(ui −M)2 +φ =

M2

2
. (5.42)

Eliminating the ion velocity between (5.41) and (5.42) yields

ni =
(

1− 2φ
M2

)−1/2

, (5.43)

expressing the ion density in terms of the electrostatic potential. Defining

ne ≡ A2 (5.44)
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and using (5.12), (6.112), and (5.43), we obtain the dynamical system

H2 d2A
dζ 2 = A(−1 + A4−2φ), (5.45)

d2φ
dζ 2 = A2 −

(
1− 2φ

M2

)−1/2

. (5.46)

Again, we notice the singular character of the formal classical limit H = 0, where
(5.45) becomes an algebraic equation.

Equations (5.45) and (5.46) are a mechanical system describing the traveling
modes of the quantum plasma, depending on the parameters M and H. We are not
aware of any exact nonlinear solution for it. Nevertheless, we can find an exact
conservation law introducing complex variables in the same way as for (3.25) and
(3.26) in the two-stream instability problem. Indeed, with the change of variables

Ā = iA, φ̄ =
φ
H

, ζ̄ =
ζ
H

, (5.47)

the system (5.45) and (5.46) takes on the Hamiltonian form

d2Ā

dζ̄ 2
= −∂W

∂ Ā
,

d2φ̄
dζ̄ 2

= −∂W

∂ φ̄
, (5.48)

in terms of the pseudo-potential W = W (Ā, φ̄ ) given by

W =
Ā2

2
− Ā6

6
−M2

(
1− 2Hφ̄

M2

)1/2

+ HĀ2φ̄ . (5.49)

Hence, there follows immediately the energy first integral

I =
1
2

(
dĀ

dζ̄

)2

+
1
2

(
dφ̄
dζ̄

)2

+W(Ā, φ̄ ), (5.50)

which, expressed in terms of the original variables, gives the exact constant of
motion

I = −H2

2

(
dA
dζ

)2

+
1
2

(
dφ
dζ

)2

− A2

2
+

A6

6
−M2

(
1− 2φ

M2

)1/2

−A2φ . (5.51)

Such conservation law can be used to check the accuracy numerical simulations,
which should preserve I. However, the constant of motion I cannot be used as a
Lyapunov function in nonlinear stability analysis, since their level surfaces are not
compact.

The linear stability analysis of (5.45) and (5.46) is worth to be studied.
Linearizing around A = 1, φ = 0, consider

A = 1 + α, φ = β , (5.52)
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Fig. 5.3 Numerical simulation of the traveling quantum ion-acoustic wave described by (5.45)
and (5.46). Parameters: H = 7, M = 1.22. Initial conditions: A(0) = 1.05, φ(0) = 0.05, A′(0) = 0,
φ ′(0) = 0

for small α and β . Retaining only the first-order terms gives

d2α
dζ 2 =

2
H2 (2α −β ). (5.53)

d2β
dζ 2 = 2α − β

M2 , (5.54)

Assuming α,β ∼ exp(ikcζ ) yields

kc =
1
2

(
4

H2 − 1
J2 ±

(
16
H4 +

8
H2J2 +

1
J4 − 16

H2

)1/2
)

. (5.55)
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Fig. 5.4 Numerical simulation of the nonlinear quantum ion-acoustic traveling wave described by
(5.45) and (5.46). Parameters: H = 3, M = 12. Initial conditions: A(0) = 2, φ(0) = 20, A′(0) = 0,
φ ′(0) = 0

In particular, for

H2 = 4M2 (5.56)

and for supersonic flows (M2 > 1), the system (5.53) and (5.54) shows undamped
oscillatory motion with characteristic eigenvalues

kc = ± i
M2

√
M2 −1. (5.57)

The condition of supersonic flow together with (5.56) shows that this pure oscilla-
tory motion is only possible in the fully quantum regime (H2 > 4).

Numerical simulations can be performed for the nonlinear oscillations of the
system (5.45) and (5.46). Typical results are shown in Figs. 5.3 and 5.4.
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Problems

5.1. Derive the dispersion relation (5.17), encompassing both quantum ion-acoustic
and quantum ion waves.

5.2. Verify the second-order expansion (5.21) for the electrostatic potential.

5.3. Repeat the weakly nonlinear expansion leading to the quantum-mechanically
deformed Korteweg–de Vries equation.

5.4. Perform numerical simulations for the nonlinear quantum ion-acoustic waves
described by the system (5.45) and (5.46).

References

1. Davidson, R. C.: Methods in Nonlinear Plasma Theory. Academic Press, New York (1972)
2. Gardner, C. L.: The quantum hydrodynamic model for semiconductor devices. SIAM J. Appl.

Math. 54, 409–427 (1994)
3. Haas, F., Garcia, L. G., Goedert, J., Manfredi, G.: Quantum ion acoustic waves. Phys. Plasmas

10, 3858–3866 (2003)
4. Nicholson, D. R.: Introduction to Plasma Theory. John Wiley, New York (1983)





Chapter 6
Electromagnetic Quantum Plasmas

Abstract The Wigner formalism is extended to systems with magnetic fields. Fluid
variables are defined in terms of the electromagnetic Wigner function. The associa-
ted evolution equations are shown to include a pressure dyad composed of three
parts, corresponding to kinetic velocities dispersion, osmotic velocities dispersion,
and a Bohm contribution. With a closure assumption, the quantum counterpart of
magnetohydrodynamics is constructed. Exact equilibrium solutions are discussed,
showing an oscillatory pattern not present in classical plasma physics.

6.1 Quantum Fluid Equations with Nonzero Magnetic Fields

Until now, we have considered only purely electrostatic quantum plasmas. To
include magnetic fields, a first step is to write down the corresponding electromag-
netic quantum Vlasov equation. The perspective of this chapter is to consider a
gauge-variant formulation, based on the electromagnetic potentials rather than the
fields. Later on, in Chap. 9, the model will be improved in terms of a gauge-invariant
quantum kinetic equation.

The rather long expression of the electromagnetic Wigner equation provides,
in itself, an obvious justification for the use of macroscopic, fluid models. Hence
the method of Chap. 4 will be pursued again, considering the Wigner function in
terms of the ensemble wavefunctions. Afterwards, the Madelung decomposition of
the ensemble wavefunctions allows the identification of the classical and quantum
parts of the pressure dyad. At the end, the usual Lorentz force term in the classical
electromagnetic fluid equations is recovered. The only difference to the classical
equations appears in the addition of a Bohm potential term in the force equation.
In comparison to the electrostatic case, the only difference is the addition of the
Lorentz force.

Having an electromagnetic quantum fluid model allows for a multitude of
developments. For instance, one can: pursue a multi-fluid quantum plasma theory;
if charge separation is not so relevant, consider the merging of the negatively and

F. Haas, Quantum Plasmas: An Hydrodynamic Approach, Springer Series on Atomic,
Optical, and Plasma Physics 65, DOI 10.1007/978-1-4419-8201-8 6,
© Springer Science+Business Media, LLC 2011
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positively charged species. More exactly, consider only the global properties of
the system, building the quantum analog of the classical magnetohydrodynamic
equations. The resulting quantum magnetohydrodynamic model was presented in
[10], being extended for inclusion of spin variables in [5].

To begin with, one needs the kinetic equation satisfied by the Wigner function.
To simplify notation, it is easier to consider a single species plasma, with the
extension to multi-species plasmas being straightforward. Further, in the context
of a mean field theory, it suffices to deal with one-particle wavefunctions. In other
words, the full N-body wavefunction is assumed to be in the factorized form of a
product of equal one-body wavefunctions. So consider a statistical mixture with M
states ψα = ψα(r,t), each with probability pα , with α = 1, . . . ,M, so that pα ≥ 0
and ∑M

α=1 pα = 1. The one-body wavefunctions satisfy Schrödinger’s equation,

1
2m

(−ih̄∇−qA)2 ψα + qφ ψα = ih̄
∂ψα
∂ t

. (6.1)

Here, we consider charge carriers of mass m and charge q, subjected to mean field
self-consistent scalar and vector potentials φ = φ(r,t) and A = A(r,t), respectively.
For definiteness, the Coulomb gauge ∇ ·A = 0 is chosen.

In the electromagnetic case, it is more customary to define the Wigner function in
phase space in terms of position r and momentum p = mv + qA. Then, the Wigner
function f = f (r,p,t) is defined [6] as

f (r,p,t) =
N

(2π h̄)3

M

∑
α=1

pα

∫
dsψ∗

α

(
r +

s
2
,t

)
e

ip·s
h̄ ψα

(
r− s

2
,t

)
, (6.2)

where N is the number of charge carriers and the ensemble wavefunctions ψα
have unit norm. Since the wavefunctions are changing in time, the same apply to
f = f (r,p,t). A long calculation yields the following integro-differential equation,

∂ f

∂ t
+

p
m
·∇ f

=
iq

h̄(2π h̄)3

∫ ∫
dsdp′ e

i(p−p′)·s
h̄

[
φ

(
r +

s
2
,t

)
−φ

(
r− s

2
,t

)]
f (r,p′,t)

+
iq2

2h̄m(2π h̄)3

∫ ∫
dsdp′ e

i(p−p′)·s
h̄

[
A2

(
r +

s
2
,t

)
−A2

(
r− s

2
,t

)]
f (r,p′,t)

+
q

2m(2π h̄)3 ∇ ·
∫ ∫

dsdp′ e
i(p−p′)·s

h̄

[
A

(
r +

s
2
,t

)
+ A

(
r− s

2
,t

)]
f (r,p′,t)

− iq
h̄m(2π h̄)3 p ·

∫ ∫
dsdp′ e

i(p−p′)·s
h̄

[
A

(
r +

s
2
,t

)
−A

(
r− s

2
,t

)]
f (r,p′,t).

(6.3)
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Let us sketch the derivation of (6.3), which has to be compared with (4.1) valid
in the electrostatic case. In the Coulomb gauge, one has

− h̄2

2m
∇2ψα +

(
qφ +

q2A2

2m

)
ψα +

ih̄q

m
A ·∇ψα = ih̄

∂ψα

∂ t
. (6.4)

By inspection apart from the ∼A ·∇ψα the electromagnetic case could be recovered
from the electrostatic case taking

qφ → qφ +
q2A2

2m
, (6.5)

in (4.1), together with the formal replacement v → p/m, even though actually
momentum p and velocity v are related by p = mv + qA. This gives the first and
second terms in the right-hand side of (6.3). The remaining contributions are the
third and fourth terms in the right-hand side of (6.3). According to the reasoning,
the origin of them is just on the

∂ψα
∂ t

=
q
m

A ·∇ψα + · · · (6.6)

part of Schrödinger’s equation. To proceed, one needs the identity

∫
dse

ip·s
h̄ ψ∗

α

(
r +

s
2
,t

)
A

(
r +

s
2
,t

)
·∇ψα

(
r− s

2
,t

)

+
∫

dse
ip·s

h̄ A
(

r− s
2
,t

)
·∇ψ∗

α

(
r +

s
2
,t

)
ψα

(
r− s

2
,t

)

=
ip
h̄
·
∫

dse
ip·s

h̄

(
A

(
r +

s
2
,t

)
−A

(
r− s

2
,t

))
ψ∗

α

(
r +

s
2
,t

)
ψα

(
r− s

2
,t

)
,

(6.7)

valid in the Coulomb gauge and proved after a couple of integrations by parts
considering

∂ψα
∂ s

(
r− s

2
,t

)
= −1

2
∇ψα

(
r− s

2
,t

)
, (6.8)

∂ψ∗
α

∂ s

(
r +

s
2
,t

)
=

1
2

∇ψ∗
α

(
r +

s
2
,t

)
. (6.9)

In addition, the following identity is necessary,

∫
dp f (r,p,t)e−

ip·s
h̄ = N

M

∑
α=1

pα ψ∗
α

(
r +

s
2
,t

)
ψα

(
r

s
2
,t

)
. (6.10)

Taking into account (6.6)–(6.10) one arrives at the electromagnetic quantum Vlasov
equation (6.3).
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Notice that the Wigner function in Eq. (6.2) is not invariant under the gauge
transformations

φ → φ − ∂Λ
∂ t

, A → A+ ∇Λ , ψα → ψα exp

(
iqΛ

h̄

)
, (6.11)

where Λ = Λ(r,t) is an arbitrary differentiable function. We postpone a more
serious discussion on gauge invariance issues to Chap. 11. For the derivation of
electromagnetic quantum plasma equations and quantum magnetohydrodynamics,
the present gauge-dependent formulation is enough and gives faithful prescriptions.

In the formal classical limit (h̄ → 0), (6.3) becomes the Vlasov equation,

∂ f
∂ t

+ v ·∇ f +
q
m

(E+ v×B) · ∂ f
∂v

= 0, (6.12)

where v = (p−qA)/m, E =−∇φ −∂A/∂ t and B = ∇×A. The proof is as follows:
substitute s = h̄S in (6.3) so as to safely expanding in powers of h̄ without any
singularity; take the change of variables

T = t , R = r , v =
1
m

(p−qA) (6.13)

together with

∂
∂ t

=
∂

∂T
− q

m
∂ A
∂ t

· ∂
∂v

, (6.14)

∂
∂ ri

=
∂

∂Ri
− q

m

3

∑
j=1

∂A j

∂ ri

∂
∂v j

, i = 1,2,3, (6.15)

∂
∂p

=
1
m

∂
∂v

(6.16)

Retaining just the classical contribution in the Taylor expansion of (6.3) in powers
of h̄ gives Vlasov’s equation (6.12), at the end replacing back T = t,R = r.

The electromagnetic Wigner equation is written in terms of the mean field
potentials, with the inclusion of external fields being easily done if necessary. The
determination of A,φ requires Maxwell equations, where the charge and current
densities are given by moments of the Wigner function. In this way, one arrives at a
self-consistent kinetic description for electromagnetic quantum plasmas. Equation
(6.3) has been first obtained, with a different notation, in [1] and rediscovered, in
the case of homogeneous magnetic fields, in [14]. The concept of electromagnetic
Wigner function has been addressed long ago in [8], but without the explicit
derivation of the corresponding evolution equation. Applications of spin-dependent
Wigner functions in spintronics were done in [16]. Relativistic Wigner functions
depending on spin degrees of freedom were addressed in [13].
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With probably some exceptions, (6.3) is too complicated to be of any use. Hence,
as in Chap. 4, a fluid approach is advisable. The resulting quantum hydromagnetic
model share the same limitations of the electrostatic quantum hydrodynamic
model for plasmas. In particular, no kinetic effects can be described within such
framework. Nevertheless, to have sufficiently tractable equations, let us introduce
the following moments of the Wigner function: the fluid density

n =
∫

dp f , (6.17)

the fluid velocity

u =
1

mn

∫
dp(p−qA) f (6.18)

and the pressure dyad

P =
1
m

∫
dp(p−qA)⊗ (p−qA) f −mnu⊗u. (6.19)

Proceeding as in Chap. 4, but now using (6.3), the result is

∂n
∂ t

+ ∇ · (nu) = 0, (6.20)

∂u
∂ t

+ u ·∇u = − 1
mn

∇ ·P +
q
m

(E+ u×B). (6.21)

Equations (6.20) and (6.21) are the formally the same as the classical fluid equations
since there’s no trace of Planck’s constant in it. However, first express the fluid
variables in terms of the wavefunctions. With the aid of the identities

pexp

(
ip · s

h̄

)
= −ih̄

∂
∂ s

exp

(
ip · s

h̄

)
, (6.22)

p⊗pexp

(
ip · s

h̄

)
= −h̄2

(
∂
∂ s

)
⊗

(
∂
∂ s

)
exp

(
ip · s

h̄

)
, (6.23)

we find

n = N
M

∑
α=1

pα |ψα |2, (6.24)

u =
ih̄N
2mn

M

∑
α=1

pα(ψα∇ψ∗
α −ψ∗

α∇ψα)− q
m

A, (6.25)

P = − h̄2N
4m

M

∑
α=1

pα
[
(∇⊗∇)(|ψα |2)−2(∇ψ∗

α)⊗ (∇ψα)−2(∇ψα)⊗ (∇ψ∗
α)

]

+
h̄2N2

4mn

M

∑
α ,β=1

pα pβ (ψα ∇ψ∗
α −ψ∗

α∇ψα )⊗ (ψβ ∇ψ∗
β −ψ∗

β ∇ψβ ). (6.26)
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As in Chap. 4, consider the Madelung decomposition

ψα =
√

nα eiSα /h̄ , α = 1, . . . ,M, (6.27)

for real functions nα = nα(r,t) and Sα = Sα(r,t). Equations (6.24)–(6.26) then
gives

n = N
M

∑
α=1

pαnα , (6.28)

u =
N

mn

M

∑
α=1

pα nα ∇Sα − q
m

A, (6.29)

P =
N
m

M

∑
α=1

pαnα∇Sα ⊗∇Sα − N2

mn

M

∑
α ,β=1

pα pβ nαnβ ∇Sα ⊗∇Sβ

+
h̄2N
4m

M

∑
α=1

pα
∇nα ⊗∇nα

nα
− h̄2N

4m

M

∑
α=1

pα ∇⊗∇nα . (6.30)

We can see the explicit presence of Planck’s constant only at the final two terms of
the second moment of the Wigner function. At first glance, we could identify these
h̄-dependent terms as the “quantum” part of the pressure dyad. This terminology
would reflect the fact that in a semiclassical expansion the leading contribution
would be entirely in the h̄-independent terms in P. However, the pressure dyad
can be rewritten [9] as a sum of: an average dispersion of the usual velocities uα
defined as

uα =
1
m

[∇Sα −qA] , α = 1, . . . ,M, (6.31)

an average dispersion of the osmotic velocities uo
α defined as

uo
α =

h̄
2m

∇nα
nα

, α = 1, . . . ,M, (6.32)

and a Bohm potential term. Indeed, direct calculation shows that (6.30) is equiva-
lent to

P =
mn
2

M

∑
α ,β=1

p̃α p̃β

[
(uα −uβ )⊗ (uα −uβ )+ (uo

α −uo
β)⊗ (uo

α −uo
β )

]

− h̄2n

4m
∇⊗∇ ln n, (6.33)

with modified statistical weights p̃α given by

p̃α =
N pαnα

n
, α = 1, . . . ,M, (6.34)
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satisfying p̃α ≥ 0,∑M
α=1 p̃α = 1. In the three-dimensional space, we can interpret the

osmotic velocities more properly than in Chap. 4, since it is apparent that they are
directed to the regions of highest densities. The terminology “osmotic” stems from
the fact that uo

α = 0 for zero density gradients [4].
Since the two first terms in the right-hand side of (6.33) are a sum of ordinary

and osmotic velocity dispersions, we can identify

PC =
mn
2

M

∑
α ,β=1

p̃α p̃β

[
(uα −uβ )⊗ (uα −uβ)+ (uo

α −uo
β )⊗ (uo

α −uo
β )

]
(6.35)

as the classical part of the pressure dyad, while the Bohm potential term

PQ = − h̄2n
4m

∇⊗∇ ln n (6.36)

can be identified as the intrinsically quantum part of the pressure dyad, so that
P = PC + PQ.

Some comments are in order here: (a) in the classical limit, only PC survives,
moreover with a vanishing osmotic pressure contribution; (b) if we consider an
extended random phase approximation, in the sense of taking a statistical ensemble
with wavefunctions all with the same amplitude, or

ψα =
√

n
N

eiSα/h̄ , α = 1, . . . ,M, (6.37)

then the classical pressure would be entirely contained in the ordinary velocities
dispersion; (c) mathematically from (6.36) the Bohm potential is equivalent to a
nondiagonal pressure dyad. However, it is not a pressure in the thermodynamic
sense, because it has nothing to do with a measure of the velocities fluctuation.
Indeed, PQ is nonzero even in the pure state case. Rather, the Bohm potential should
be understood as a consequence from the wave-like, dispersive properties of the
quantum fluid.

To proceed, some closure assumption should be made. Since PC is written as the
sum of average velocity dispersions, it is natural to define a diagonal, isotropic form
where the components PC

i j of the classical pressure dyad are given by

PC
i j = δi jP

C, (6.38)

where the scalar pressure PC = PC(n) represents a suitable equation of state. Strong
magnetic fields have to be treated more carefully, since they are associated with
anisotropic pressure dyads. Such possibility will not be pursued here, for simplicity.

With the assumed closure, the momentum transport equation (6.21) becomes

∂u
∂ t

+ u ·∇u = − 1
mn

∇PC(n)+
q
m

(E+ u×B)+
h̄2

2m2 ∇
(

∇2√n√
n

)
, (6.39)
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which is just the classical fluid equation modified by the extra ∼h̄2 term, or Bohm
potential term. The equation of continuity (6.20) and the force equation (6.39),
together with Maxwell equations, constitute a quantum hydrodynamic model for
magnetized plasmas.

6.2 Quantum Magnetohydrodynamics

It is rather direct to generalize the previous model to two-species plasmas. In gene-
ral, for a multi-species plasma, one starts with a Wigner function for each species.
Calculating moments as before, the result is a set of hydrodynamic equations for
each particular specie. Consider an electron fluid with number density ne, fluid
velocity ue, charge −e, mass me and scalar pressure Pe. Similarly, take ions with
number density ni, fluid velocity ui, charge e, mass mi and pressure Pi. Presently,
we get the following bipolar quantum fluid model,

∂ ne

∂ t
+ ∇ · (neue) = 0, (6.40)

∂ ni

∂ t
+ ∇ · (niui) = 0, (6.41)

∂ ue

∂ t
+ ue ·∇ue = − ∇Pe

mene
− e

me
(E+ ue ×B)

+
h̄2

2m2
e

∇
(

∇2√ne√
ne

)
−νei(ue −ui), (6.42)

∂ui

∂ t
+ ui ·∇ui = − ∇Pi

mini
+

e
mi

(E+ ui ×B)

+
h̄2

2m2
i

∇
(

∇2√ni√
ni

)
−νie(ui −ue). (6.43)

In (6.42) and (6.43), we have added some often used phenomenological collision
terms, with the collision frequencies νei and νie accounting for the momentum
transfer between the electronic and ionic fluids. Global momentum conservation
in collisions imply meνei = miνie, so that νie 	 νei since typically the ions are much
more massive than electrons. In addition, notice that a first principles derivation
would consider dissipative quantum mechanics, a rather controversial field. Finally,
the exact form of the collision terms is not essential, as long as global momentum
conservation is assured [3, 15].
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Equations (6.40)–(6.43) have to be supplemented by Maxwell equations,

∇ ·E =
ρ
ε0

, (6.44)

∇ ·B = 0, (6.45)

∇×E = −∂B
∂ t

, (6.46)

∇×B = μ0J + μ0ε0
∂E
∂ t

, (6.47)

where the charge and current densities are given, respectively, by

ρ = e(ni −ne) , J = e(niui −neue). (6.48)

Equations (6.40)–(6.48) are an electromagnetic quantum hydrodynamic model for
a two-species plasma.

One can directly work using (6.40)–(6.48), generalizing the classical two-fluid
plasma approach. However, often one is not so interested in the behavior of each
species. Rather a more rough, but nevertheless very useful approach is to study
the properties of the entire plasma, in terms of an one-fluid model. We chose this
last view, proceeding in entire analogy with the classical magnetohydrodynamic
modeling. Hence, define the global mass density

ρm = mene + mini (6.49)

and the global fluid velocity

U =
meneue + miniui

mene + mini
. (6.50)

The electronic and ionic densities are defined in terms of the global mass and
charge densities according to

ne =
1

mi + me

(
ρm − mi

e
ρ
)

, (6.51)

ni =
1

mi + me

(
ρm +

me

e
ρ
)

. (6.52)

It is also useful to express each species fluid velocity in terms of the one-fluid
velocity and the current density, by means of

(
ρm − mi

e
ρ
)

ue = ρmU− mi

e
J, (6.53)

(
ρm +

me

e
ρ
)

ui = ρmU+
me

e
J. (6.54)
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We desire the transport equations for the global, one-fluid quantities. Multiplying
the continuity equations (6.40) and (6.41), respectively, by me and mi and adding
the results, we obtain a continuity equation for the global mass density. In the
same manner, multiplying the force equations (6.42) and (6.43) by mene and mini,
respectively, and adding the results, we obtain a transport equation for the global
velocity field. Specifically,

∂ρm

∂ t
+ ∇ · (ρmU) = 0, (6.55)

ρm

(
∂ U
∂ t

+ U ·∇U
)

= −∇ · P̃+ J×B+
h̄2ρm

2memi
∇

(
∇2√ρm√ρm

)
, (6.56)

where quasi-neutrality (ne = ni,ρ = 0) was used. In addition, an one-fluid pressure
was defined,

P̃ = PI+
memineni

ρm
(ue −ui)⊗ (ue −ui), (6.57)

with P = Pe +Pi and where I is the identity matrix. Further, supposing Pe = Pi = P/2
and disregarding the last term in (6.57), which is reasonable except for very large
current densities, we obtain

∂U
∂ t

+ U ·∇U = − 1
ρm

∇P+
1

ρm
J×B+

h̄2

2memi
∇

(
∇2√ρm√ρm

)
. (6.58)

In the quasi-neutral case, we need the transport equations only for ρm, U and J.
Hence, consider now the current density. While (6.55) and (6.56) are valid regardless
of the mass of the ions, from now on it is preferable to assume me 	 mi to be
allowed to neglect a large number of terms. This is a reasonable assumption, for
example, for hydrogen plasma (mi 
 1,836me). Then, in the combined quasi-neutral
and me/mi 	 1 limits, we get the following equation for the current density J,

memi

ρme2

∂J
∂ t

− mi∇Pe

ρme
= E+U×B− mi

ρme
J×B− h̄2

2eme
∇

(
∇2√ρm√ρm

)
− 1

σ
J, (6.59)

where σ = ρme2/(memiνei) is the longitudinal electrical conductivity. In the
derivation, all nonlinear terms involving either U and J were disregarded, as usual
in magnetohydrodynamics [3]. This is the reason why advective terms like U ·∇J
are not present in (6.59). For strongly turbulent plasma, the approximation certainly
breaks down. In this same equation because the current density is regarded as a small
perturbation one can consider σ as a constant, evaluated at the equilibrium value of
the mass density. Also νie 	 νei was taken into account.

Equation (6.59) is the quantum version of the generalized Ohm’s law [3, 15]
because neglecting magnetic fields, quantum effects, and the left-hand side of it,
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we obtain J = σE. The continuity equation (6.55), the force equation (6.58), the
quantum version of the generalized Ohm’s law (6.59), an equation of state for the
scalar pressure, plus Maxwell equations, provides a closed system of equations.
However, it can be further simplified, assuming a very large conductivity and a
slowly varying time-scale.

6.3 Simplified and Ideal Quantum Magnetohydrodynamic
Models

Usually [3, 15], the left-hand side of the equation (6.59) is neglected in the cases
of slowly varying processes and small pressures. Also, for slowly varying and high
conductivity problems, the displacement current can be neglected in Ampère’s law.
Finally, for definiteness, we assume an equation of state appropriated for adiabatic
processes. In this way, we get a set of simplified quantum magnetohydrodynamic
equations:

∂ρm

∂ t
+ ∇ · (ρmU) = 0, (6.60)

∂U
∂ t

+ U ·∇U = − 1
ρm

∇P +
1

ρm
J×B+

h̄2

2memi
∇

(
∇2√ρm√ρm

)
, (6.61)

∇P = V 2
s ∇ρm, (6.62)

∇×E = −∂B
∂ t

, (6.63)

∇×B = μ0J, (6.64)

J = σ
[

E+ U×B− mi

ρme
J×B− h̄2

2eme
∇

(
∇2√ρm√ρm

)]
. (6.65)

In (6.62), Vs is the adiabatic speed of sound of the fluid. Gauss law for magnetism
can be regarded as the initial condition for Faraday’s law, since ∂ (∇ ·B)/∂ t = 0
from (6.63). Moreover, the Hall term J×B at (6.65) is usually neglected.

Taking into account the equation of state, we are left with a system of 13
equations for 13 unknowns, namely, ρm and the components of U,J,B, and E.
In comparison to classical magnetohydrodynamics, the difference of the quantum
model rests on the presence of the last terms in the right-hand side of (6.61) and
(6.65). These are reminiscent of the Bohm potential and can be relevant only for
large density fluctuations.
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In ideal magnetohydrodynamics, one assumes an infinite conductivity and
neglect the Hall force in (6.65). This gives the following ideal quantum magne-
tohydrodynamic model,

ρm

(
∂U
∂ t

+ U ·∇U
)

= −∇P+
1
μ0

(∇×B)×B+
h̄2ρm

2memi
∇

(
∇2√ρm√ρm

)
, (6.66)

∂B
∂ t

= ∇× (U×B), (6.67)

supplemented by the continuity equation (6.60) and the equation of state (6.62).
After solving this system of seven equations for the seven unknowns ρm,U,B, one
find the electric field from

E = −U×B+
h̄2

2eme
∇

(
∇2√ρm√ρm

)
. (6.68)

At the end, the quantum ideal magnetohydrodynamic model have the two
additional terms ∼h̄2 in (6.66) and (6.68), not present in the classical case.
However, (6.67) have no quantum correction. This “dynamo” equation can be used
to prove that the magnetic field lines are “frozen” in the plasma, in the ideal,
infinite conductivity limit. Actually, even for finite conductivity, the diffusion of
magnetic field lines is described by the same diffusion equation as in classical
magnetohydrodynamics. This comes from the fact that the quantum correction
disappear after taking the curl of both sides of (6.65), neglecting the Hall term and
assuming a constant σ as usual.

It is relevant to measure the strength of the quantum effects. For this purpose, a
sensible rescaling is a good approach. We use

ρ̄m =
ρm

ρ0
, Ū =

U
VA

, B̄ =
B
B0

,

r̄ =
Ωir
VA

, t̄ = Ωit, (6.69)

where ρ0 and B0 are the equilibrium mass density and magnetic field. In addition,
VA = (B2

0/(μ0ρ0))1/2 is the Alfvén velocity, which is the natural velocity scale in
magnetohydrodynamics. Moreover, Ωi = eB0/mi is the ion cyclotron frequency,
providing a suitable slow time scale Ω−1

i . To preserve the form of the continuity
equation, one then is obliged to adopt the length scale VA/Ωi, as shown in (6.69).
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The rescaling of (6.60), (6.66) and (6.67) gives the ideal quantum magnetohy-
drodynamic model in nondimensional form,

∂ ρ̄m

∂ t
+ ∇ · (ρ̄mŪ) = 0, (6.70)

ρ̄m

(
∂ Ū
∂ t

+ Ū ·∇Ū
)

= −V 2
s

V 2
A

∇ρ̄m +(∇× B̄)× B̄+
H2ρ̄m

2
∇

(
∇2(ρ̄m)1/2

(ρ̄m)1/2

)
, (6.71)

∂ B̄
∂ t

= ∇× (Ū× B̄), (6.72)

where

H =
h̄Ωi√

memi V 2
A

(6.73)

is a dimensionless parameter measuring the relevance of quantum effects. Using
MKS units, we have H = 5.44× 10−31n0/B0, where n0 is the equilibrium number
density. While for ordinary plasmas H is negligible, for dense astrophysical plasmas
[7], with n0 about 1029–1034 m−3, H can be significant. Hence, in dense astrophys-
ical plasmas like the atmosphere of neutron stars or the interior of massive white
dwarfs, quantum corrections to magnetohydrodynamics can be of experimental
importance. However, quantum effects can be small even for large H. This happens
in the cases where the density is slowly varying in space, so that the Bohm potential
term in (6.71) is not of order unity.

6.4 Quantum Ideal Magnetohydrodynamics: Equilibrium
Solutions

We will derive some equilibrium solutions of the quantum ideal magnetohydrody-
namic model, to better understand the rôle of the quantum effects. The relevant
question about the stability of these equilibria will be not addressed here.

Assuming that there is no flow (U = 0) and that all quantities are time-indepen-
dent, the ideal quantum magnetohydrodynamic model reduces to

E =
h̄2

2eme
∇

(
∇2√ρm√ρm

)
, (6.74)

∇P =
1
μ0

(∇×B)×B+
h̄2ρm

2memi
∇

(
∇2√ρm√ρm

)
. (6.75)

According to (6.74), the equilibrium solutions of ideal quantum magnetohydrody-
namics are not electric field free as in the classical case.
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In the present analysis, we postulate a magnetic field

B = B(r,φ)ẑ, (6.76)

in terms of cylindrical coordinates (r,φ ,z). Gauss law is immediately satisfied.
Translational invariance (∂/∂ z = 0) will be also imposed to all quantities. Moreover,
straightforward algebra convert (6.75) into

∇
(

P+
B2

2μ0

)
=

h̄2ρm

2memi
∇

(
∇2√ρm√ρm

)
. (6.77)

Taking into account ρm 
 min in terms of the number density n, it is advisable to
restrict to a magnetic field strength such that

B = B(n), (6.78)

a function of the number density only. In this case, using some equation of state
P = P(n), it is possible to introduce a generalized enthalpy, or effective potential
W (n) by means of

W (n) =
∫ n dn′

n′
d

dn′

(
P(n′)+

B2(n′)
2μ0

)
, (6.79)

so that

∇W =
h̄2

2me
∇

(
∇2√n√

n

)
. (6.80)

It is interesting to compare the effective potentials in (4.34) and (6.79). The latter
include magnetic fields.

Defining the amplitude n = A2, one has from integration of (6.80) that

∇2A +
m2

ev2
0

h̄2 A =
2me

h̄2 W (A2), (6.81)

in terms of an integration constant v2
0 (which can assume any sign). Notice that

from (6.80) if quantum effects were absent one would be restricted to W (n) =
constant, a much more limited class of solutions.

Due to the quantum effects, one can find a very general class of oscillatory
solutions from (6.81). To solve this equation, one needs to first stipulate the specific
form of W (n). If A can be found either exactly or numerically, then one can finally
derive the magnetic field inverting (6.79), using the equation of state.

For a specific example, we take the simplest possible choice, namely v2
0 > 0 and

W = 0 ⇒ P +
B2

2μ0
= P0, P0 = cte. (6.82)
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Hence, (6.81) reduces to the Helmholtz equation

∇2A +
m2

ev2
0

h̄2 A = 0, (6.83)

with general (nonsingular) solution

A =
∞

∑
ν=0

[αν cos(νφ)+ βν sin(νφ)]Jν

(mev0r
h̄

)
, (6.84)

where the Jν are Bessel functions of the first kind and the αν ,βν are arbitrary
constants. From the constraint (6.82), one then get the magnetic field strength,
provided some equation of state is specified. The oscillatory structure is evident
from (6.84), unlike in the classical case. Hence, again we verify the qualitative
differences between classical and quantum plasmas.

To illustrate, consider the equation of state for a zero-temperature Fermi gas in
three spatial dimensions,

P = P0

(
n
n0

)3

, P0 =
men0v2

Fe

5
, (6.85)

where n0 is the equilibrium number density and vFe the electron Fermi velocity.
Notice that the electron Fermi energy is much higher than the ion Fermi energy, due
to the smaller electron mass. Hence, the ion pressure contribution can be neglected.

Restricting to the radially symmetric solutions, or αν =
√

n0δν0,βν = 0, one has
from (6.82), (6.84) and (6.85)

n
n0

=
A2

n0
= J2

0

(mev0r
h̄

)
, (6.86)

P
P0

=
[
J0

(mev0r
h̄

)]6
, (6.87)

B2

2μ0P0
= 1−

[
J0

(mev0r
h̄

)]6
, (6.88)

with graphics shown in Fig. 6.1. Other examples can be easily constructed. Addi-
tional translational invariant ideal quantum magnetohydrodynamic equilibria can
be found in [10].
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Fig. 6.1 Exact radially symmetric equilibrium ideal quantum magnetohydrodynamic solutions
from (6.86)–(6.88). Density (upper), pressure (mid) and magnetic field strength (bottom) oscil-
lations are shown. Nondimensional variables are used
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6.5 Quantum Harris Sheet Solutions

Besides quantum magnetohydrodynamic models, we can also investigate equilibria
for one-component quantum plasmas composed by an electronic fluid in a neutrali-
zing, fixed ionic background. In this context it is natural to discuss the quantum
counterpart of the Harris sheet solution [12], a celebrated classical magnetized
plasma equilibrium. As will be seen, the quantum solutions exhibits an oscillatory
pattern not present in the classical case. The general theory for the quantum Harris
sheet solution was presented in [11].

For a one-component quantum plasma, the electromagnetic quantum fluid
equations are given by (6.20) and (6.39), or

∂n

∂ t
+ ∇ · (nu) = 0, (6.89)

∂u
∂ t

+ u ·∇u = − 1
mn

∇P− e
m

(E+ u×B)+
h̄2

2m2 ∇
(

∇2√n√
n

)
, (6.90)

where P = P(n) denotes the kinetic pressure. In addition, Maxwell’s equations are
satisfied.

Following Harris [12], we postulate purely magnetic one-dimensional stationary
solutions with E = 0 and

B = By(x)ŷ + Bz(x)ẑ,

n = n(x) ,

u = uy(x)ŷ + uz(x)ẑ,

P = P(n). (6.91)

The continuity equation is satisfied in advance.
In terms of a vector potential A so that B = ∇×A, we choose

A = Ay(x)ŷ + Az(x)ẑ ⇒ By =
−dAz

dx
, Bz =

dAy

dx
. (6.92)

To assure charge neutrality, an appropriate immobile ionic background ionic
density ni(x) = n(x) should be included, so that we don’t need to worry about
Poisson’s equation. However, Ampère–Maxwell law ∇×B = μ0J with a current
density J = −enu given in terms of (6.91) gives

d2Ay

dx2 = eμ0nuy, (6.93)

d2Az

dx2 = eμ0nuz. (6.94)
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Moreover, the momentum transport equation yield

dP

dx
= −en

(
uy

dAy

dx
+ uz

dAz

dx

)
+

h̄2n

2m
d
dx

(
d2√n/dx2

√
n

)
. (6.95)

Equations (6.93)–(6.95) form the basic system to be analyzed.
At this point, we could eliminate the velocity components from (6.93) and (6.94),

substituting them in (6.95) to find

1
n

d
dx

(
P+

B2

2μ0

)
=

h̄2

2m
d
dx

(
d2√n/dx2

√
n

)
, B2 =

(
dAy

dx

)2

+
(

dAz

dx

)2

, (6.96)

in total similarity with (6.77). Therefore, it could be straightforward to proceed as
in the case of the magnetostatic equilibria of the last section, assuming B = B(n),
defining a generalized potential, choosing some equation of state and proceeding to
the analytic solution. From this approach, we already know that (6.93)–(6.95) have
spatially periodic solutions.

However, a different strategy can be followed. As proposed in [2], it is useful to
restrict to the cases where (6.93) and (6.94) are derivable from a potential function
V (Ay,Az), or

nuy = − 1
eμ0

∂V
∂Ay

⇒ d2Ay

dx2 = − ∂V
∂Ay

, (6.97)

nuz = − 1
eμ0

∂V

∂Az
⇒ d2Az

dx2 = − ∂V

∂Az
. (6.98)

In this Hamiltonian form, some freedom is lost: Ay and Az are not two arbitrary
functions. Rather they should be found from the solution of a dynamical system
involving only one input function, the potential V . However, we can now make use
of the extensive knowledge on autonomous, two-dimensional Hamiltonian systems
to build interesting classes of solutions. Moreover, (6.96) is reformulated in the more
compact form

d
dx

(
P− V

μ0

)
=

h̄2n
2m

d
dx

(
d2√n/dx2

√
n

)
, (6.99)

using V = −B2/2 apart from an irrelevant additive constant. After choosing V and
solving for the vector potential components, (6.99) becomes a third-order ordinary
differential equation for the density once an equation of state is plugged in.

The left-hand side of (6.96) and (6.99) is associated with the usual kinetic plus
magnetic pressures balance equation of classical plasmas. The right-hand side has a
quantum origin, accounting for the extra dispersion due to the Bohm potential.
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It is useful to express (6.99) in terms of a variable a =
√

n. Taking into account
the equation of state P = P(n), we get

aa′′′ −a′a′′ + f (a)a′ + g(x) = 0, (6.100)

where the prime denotes differentiation with respect to x and we have introduced
the quantities

f (a) = −4ma

h̄2

dP
dn

(n = a2), (6.101)

g(x) =
2m

μ0h̄2

dṼ
dx

, Ṽ (x) = V (Ay(x),Az(x)). (6.102)

The strategy to derive the solutions is now clear. Choosing a pseudo-potential
V (Ay,Az) and then solving (6.97)–(6.98) for the vector potential, we determine
simultaneously the magnetic field and Ṽ . Finally, we need to solve (6.100) for a
specific equation of state.

To allow for a strict comparison with the classical Harris sheet solution, we
should suppose a Maxwell–Boltzmann isothermal equation of state, or

P = nκBT, (6.103)

where T is the electron fluid temperature. Other equations of state (e.g., for an ultra-
cold Fermi gas) could have been equally applied. However, here we are interested
just on the rôle of the quantum diffraction effects represented by the right-hand side
of (6.99). Hence, a classical equation of state is sufficient.

In addition, we take the following potential function,

V =
B2

∞
2

exp

(
2Az

B∞L

)
, (6.104)

where L is a characteristic length and B∞ is a reference magnetic field. The
Hamiltonian system ((6.97) and (6.98)) is then

d2Ay

dx2 = 0,
d2Az

dx2 = −B∞

L
exp

(
2Az

B∞L

)
. (6.105)

If we further take the boundary conditions Az(x = 0) = (dAz/dx)(x = 0) = 0, we get

Ay = Ay0 + B0x , Az = −B∞L lncosh
( x

L

)
, (6.106)

where Ay0 and B0 are integration constants. From the vector potential, we derive the
Harris sheet magnetic field

By = B∞ tanh
( x

L

)
, Bz = B0, (6.107)
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with an additional superimposed homogeneous magnetic field. Equation (6.107)
shows a monotonic, tanh-like dependence, appropriated to situations with a smooth
magnetic field polarity inversion. Classically [12] this is associated with a density
bump.

If desired, the velocity field can be found from (6.93) and (6.94), which in this
case becomes

uy = 0 , uz =
B∞

eμ0nL
sech2

( x
L

)
. (6.108)

While the magnetic field have no trace of h̄, the same did not apply to the velocity
field since it contain the density n. The current density, however, is purely classical.

To obtain the density n, we have to solve the third-order equation (6.100), cons-
tructed in terms of the functions f (a) and g(x) in (6.101) and (6.102). Using the
isothermal equation of state, the potential V in (6.104) and the Harris sheet solution,
we get

f (a) = −4mκBT

h̄2 a, (6.109)

g(x) = − mB2
∞

μ0h̄2L
sech2

( x
L

)
tanh

( x
L

)
. (6.110)

Let us define the dimensionless variables

α =
a√
n0

, X =
x
L

, (6.111)

where n0 is some ambient density such that

n0κBT =
B2

∞
4μ0

. (6.112)

Now (6.100) becomes

α
d3α
dX3 − dα

dX
d2α
dX2 − α

H2

dα
dX

=
1

H2 sech2X tanh X , (6.113)

including the dimensionless parameter

H =
h̄

mVAL
, (6.114)

where VA = B∞/(μ0mn0)1/2 is the Alfvén velocity.
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The parameter H is a measure of the relevance of the quantum effects. It is the
ratio of Planck’s constant over 2π to the action of a particle of mass m traveling
with the Alfvén velocity and confined in a length L related to the thickness of
the sheet. The larger the ambient density n0 and the smaller the characteristic
length L or the characteristic magnetic field B∞, the larger are the quantum effects.
This is in accordance with the fact that quantum diffraction effects are enhanced
by larger densities and smaller dimensions. The magnetic field tend to enhance
the classical character of the model because the magnetic pressure B2/(2μ0)
is additive to the kinetic pressure P. Hence, comparatively the Bohm potential
term becomes less important. From this perspective, magnetized plasmas are less
quantum than electrostatic plasmas. However, in the present modeling, we are
disregarding a fundamental quantum contribution which is certainly decisive in
magnetized plasmas: the spin [5].

To understand the rôle of the quantum terms, we may investigate (6.113) with

α(X = 0) = 1 ,
dα
dX

(X = 0) = 0 ,
d2α
dX2 (X = 0) = −1, (6.115)

which reproduces the boundary conditions for the classical Harris sheet solution,
which is α = sechX . Integrating (6.113) taking into account (6.115) gives

α
d2α
dX2 −

(
dα
dX

)2

+ 1 =
1

2H2

(
α2 − sech2X

)
. (6.116)

In the ultra-quantum limit H � 1, the left-hand side of (6.116) vanishes. In this
situation and using the prescribed boundary conditions, the solution would be

α = cosX , H � 1. (6.117)

On the opposite, H 	 1 case, the right-hand side of (6.116) is much bigger than the
left-hand one, so that

α = sechX , H 	 1. (6.118)

Hence, we see a qualitative change from classical localized to quantum oscillatory
solutions.

For intermediate values of the quantum parameter, (6.116) can be numerically
investigated with initial condition α(0) = 1,α ′(0) = 0. For instance, Fig. 6.2 show
the results for H = 1 and H = 5. For larger quantum parameter, we observe a
slow amplitude decay, indicating the oscillatory structure culminating with periodic
solutions in the extreme quantum limit.
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Fig. 6.2 Density oscillations n = n0α2 from (6.116). Parameters: n0 = L = 1. Top: H = 1. Bottom:
H = 5

Problems

6.1. Fill up the missing points and derive the electromagnetic Wigner equation
(6.3).

6.2. Show that the electromagnetic Wigner equation (6.3) is not gauge invariant.

6.3. Use the change of variables (6.13) and derive Vlasov’s equation as the classical
limit of the electromagnetic Wigner equation (6.3).

6.4. Demonstrate the identity (6.7).

6.5. Derive the hydromagnetic quantum model (6.20) and (6.21).

6.6. Verify (6.33).
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6.7. Defining an average osmotic velocity

uo =
M

∑
α=1

p̃αuo
α ,

with modified statistical weights in (6.34), show that it satisfies the simple relation

uo =
h̄

2m
∇n
n

.

6.8. Relate the average osmotic velocity to the Bohm potential term.

6.9. Derive the quantum magnetohydrodynamic equations (6.55) and (6.56) from
the two-fluid quantum plasma model, following the steps indicated in the text.
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Chapter 7
The One-Dimensional Quantum
Zakharov System

Abstract In classical plasma, the Zakharov system provides the fluid modeling
of the interaction between Langmuir and ion-acoustic waves. The derivation of
the corresponding quantum Zakharov system from the quantum two-fluid system
is shown in detail. Applications are shown for quantum parametric and four-wave
instabilities. A Lagrangian approach is used for the semiclassical adiabatic regime.
This case reduces to a generalized nonlinear Schrödinger equation for the envelope
electric field. A time-dependent variational formalism is applied in the analysis of
the internal oscillations of quantum Langmuir solitons, in the general, nonadiabatic
and nonsemiclassical case.

7.1 Quantum Zakharov Equations in One Spatial Dimension

In one spatial dimension and using rescaled variables, the classical Zakharov system
can be expressed as

i
∂ Ẽ
∂ t

+
∂ 2Ẽ
∂ x2 = nẼ, (7.1)

∂ 2n
∂ t2 − ∂ 2n

∂ x2 =
∂ 2|Ẽ|2

∂x2 , (7.2)

where Ẽ is the slowly varying envelope of the high frequency electric and n the
plasma density perturbation from its equilibrium value. Since its formulation by
Zakharov [19] the system (7.1) and (7.2) has been the subject of several theoretical
and experimental works, as can be verified in reviews [18]. As will become clear
from the examples below, interacting Langmuir (high frequency) and ion-acoustic
(low frequency) waves are supported by the usual and quantum Zakharov systems.
A detailed account on the nonlinear energy transfer between these fundamental
plasma oscillations justify the Zakharov’s system popularity.
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Optical, and Plasma Physics 65, DOI 10.1007/978-1-4419-8201-8 7,
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The derivation of the model follows precisely from a two-time scales analysis,
made possible due to the presence of high and low frequency oscillations. The start-
ing point are the fluid equations for an electron–ion plasma, so that kinetic effects
such as Landau damping are not included. Hence, only wavenumbers k � kD are
admitted, where kD = 2π/λD is the Debye wavenumber, with λD being the Debye
length. In the degenerate case, we need to consider the corresponding Thomas–
Fermi length λF and Fermi wavenumber kF = 2π/λF. A kinetic treatment of the
interaction between quantum Langmuir and ion-acoustic waves can be found in
[13]. In addition, “almost quasi” neutrality is considered to be valid, in the sense
that departures from quasi-neutrality occur only for the high frequency part of the
electron fluid density. Finally, a weak turbulence or weak correlation hypothesis
should be assumed, as detailed in the continuation. A general discussion about the
derivation of the (classical) Zakharov equations can be found in [18]. The quantum
Zakharov system was introduced in [5].

Consider an one-dimensional two-species electrostatic quantum plasma decri-
bed by

∂ne

∂ t
+

∂ (neue)
∂x

= 0, (7.3)

∂ni

∂ t
+

∂ (niui)
∂x

= 0, (7.4)

∂ue

∂ t
+ ue

∂ue

∂x
= − 1

mene

∂Pe

∂x
− eE

me
+

h̄2

2m2
e

∂
∂x

(
∂ 2√ne/∂x2

√
ne

)
, (7.5)

∂ui

∂ t
+ ui

∂ui

∂ x
=

e
mi

E, (7.6)

∂E

∂x
=

e
ε0

(ni −ne), (7.7)

where ne,i are the electron or ion fluid densities, ue,i the electron or ion fluid
velocities, E the electric field, Pe the electron fluid pressure, me,i the electron or
ion masses. Ions are single charged with a charge +e. Finally, ε0 and h̄ = h/(2π)
are, respectively, the vacuum permittivity and Planck’s constant over 2π . Hereafter,
assume mi � me, a necessary assumption to have a two-time scales separation due
to the slow and rapid time scales associated with ions and electrons, respectively.
Therefore, the following treatment is not applicable, for example, to electron–
positron plasmas. Quantum effects are not present in the ion momentum equation,
also due to the larger ion mass. Indeed the Bohm potential term is proportional
to the inverse squared mass. Finally, for simplicity ions are assumed to be cold
(pressureless). Hence, we have the same initial model of Chap. 5 on the quantum
ion-acoustic wave.

The electron fluid equation of state is not very relevant because after some
rescalings and series expansions the specific form of Pe can be hardly detected.
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For definiteness, we consider the zero-temperature one-dimensional Fermi gas
equation of state

Pe =
men0v2

Fe

3

(
ne

n0

)3

, (7.8)

where n0 is the equilibrium electron fluid density and vFe the electron Fermi velocity.
Quantum ion-acoustic waves were obtained from (7.3)–(7.7) in Chap. 5, after

disregarding the electron’s inertia. Let us briefly discuss the quantum Langmuir
waves also supported by the same model. Linearization of the electron equations
(7.3), (7.5) and (7.7) around

ne = ni = n0, ue = 0, E = 0 (7.9)

and Fourier analyzing yield

ω2 = ω2
pe + 3v2

Fek2 +
h̄2

4m2
e

k4, (7.10)

where ω is the wave frequency, k is the wavenumber and ωpe = (n0e2/meε0)1/2 the
electron plasma frequency. Taking the formal classical limit h̄→ 0 gives the classical
Langmuir waves dispersion relation [14]. There is no damping or instability in the
corresponding quantum Langmuir waves described by (7.10). Only in a kinetic
treatment or some extended fluid approach, these features could have been included.

We now proceed to the derivation of the quantum Zakharov system following as
closely as possible the method applied to the classical fluid equations [14, 18, 19],
the only noticeable difference being the presence of the quantum potential in the
electron momentum equation. First, decompose the fluid variables into fast and slow
oscillatory parts, identified by the subscripts f and s, respectively,

ne(x,t) = n0 + ns(x,t)+ nf(x,t), (7.11)

ni(x,t) = n0 + ns(x,t), (7.12)

ue(x,t) = us(x,t)+ uf(x,t), (7.13)

ui(x,t) = us(x,t), (7.14)

E(x,t) = Es(x,t)+ Ef(x,t). (7.15)

We are considering that the fast quantities have zero average, while the slow
quantities does not significantly change over an oscillation period. This is very much
in the spirit of a two-time scales analysis [3]. The high frequency components of
the ion fluid density and velocity were disregarded in view of mi � me. In addition,
quasi-neutrality (ni ≈ ne and ui ≈ ue) is almost exact, except from the high frequency
oscillatory electronic contributions.

For completeness, it is convenient to review the whole classical derivation
in detail, now including the Bohm potential term. Taking into account the ion
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continuity and force equations (7.4) and (7.6), we have from (7.11)–(7.15) and the
electron equations (7.3) and (7.5) that

∂nf

∂ t
+ n0

∂uf

∂x
+

∂ (nsuf)
∂x

+
∂ (nfus)

∂ x
+

∂ (nfuf)
∂x

= 0, (7.16)

∂uf

∂ t
+ us

∂uf

∂x
+ uf

∂us

∂x
+ uf

∂uf

∂x
= − e

me
(Es + Ef)−3

v2
Fe

n0

∂ (ns + nf)
∂x

+
h̄2

4m2
en0

∂ 3(ns + nf)
∂x3 . (7.17)

The electron density was linearized around n0. Here, it becomes clear that basically
the same results would follow from another equation of state, due to the neglect of
higher-order density fluctuation effects. Finally, a term was disregarded in (7.17) in
view of mi � me.

Differentiating Poisson’s equation with respect to t, using the continuity equa-
tions and integrating with respect to x we get

∂ E
∂ t

=
e
ε0

(neue −niui), (7.18)

which is Ampère’s law for a zero magnetic field. Subtracting from (7.18) the average
of itself, the result is

∂Ef

∂ t
=

e
ε0

(n0 + ns)uf +
e
ε0

nfus +
e
ε0

[nfuf −〈nfuf〉], (7.19)

where 〈〉 denotes time average over a period.
The third term in the right-hand side of (7.19) can be ignored in view of the

following argument. Linearization of both the ion continuity equation and (7.16)
yields the rough estimates

ωsns ∼ n0ksus, ωpenf ∼ n0kuf, (7.20)

where ω−1
s ,k−1

s are the time and length scales of the slowly varying functions, and
ω−1

pe ,k−1 the time and length scales of the fast quantities. Therefore, a comparison
between the second and third terms in (7.19) yield

nfus

nsuf
∼ k

ks

ωs

ωpe
� 1, (7.21)

since ωs � ωpe, neglecting the unlikely situation when k � ks. Moreover, the
contribution inside brackets in (7.19) can be also discarded from a weak turbulence
condition [18] which allows to ignore correlations. Hence, (7.19) simplifies to

∂Ef

∂ t
=

e
ε0

(n0 + ns)uf. (7.22)
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Subtracting from (7.17) the average of itself, we get

∂uf

∂ t
= − e

me
Ef −3

v2
Fe

n0

∂nf

∂x
+

h̄2

4m2
en0

∂ 3nf

∂ x3 , (7.23)

using once again the weak turbulence hypothesis which allows to ignore convective
and correlation terms.

From the fast component of the Poisson equation,

∂Ef

∂x
= −enf

ε0
. (7.24)

Using (7.22)–(7.23), we obtain

(
1− ns

n0

)
∂ 2Ef

∂ t2 + ω2
peEf = 3v2

Fe
∂ 2Ef

∂ x2 − h̄2

4m2
e

∂ 4Ef

∂ x4 , (7.25)

where again only the leading density fluctuation term was retained. The underlying
strategy of keeping only the first-order density perturbations has consequences on
the form of the quantum corrections, since the Bohm potential is strongly dependent
on the modulations of ne. However, extending the theory to higher-order terms
seems to be a challenge.

The high frequency part of the electric field can be decomposed as

Ef(x,t) =
1
2

Ẽ(x,t)e−iωpet + c.c., (7.26)

where Ẽ(x,t) is an slowly varying “envelope” and c.c. refer to complex conjugate.
Hence, Langmuir oscillations are incorporated already in the exponential since they
occur approximately at the electron plasma frequency. Inserting (7.26) into (7.25)
yield

i
∂ Ẽ
∂ t

+
3
2

v2
Fe

ωpe

∂ 2Ẽ
∂x2 − h̄2

8m2
eωpe

∂ 4Ẽ
∂x4 =

ωpe

2
ns

n0
Ẽ. (7.27)

where the second-order time-derivative of the envelope field has been neglected
since ∣∣∣∣∂ 2Ẽ

∂ t2

∣∣∣∣ �
∣∣∣∣ωpe

∂ Ẽ
∂ t

∣∣∣∣ . (7.28)

Equation (7.27) describes the time evolution of the slowly varying amplitude Ẽ .
Equation (7.27) contain the slow part ns of the plasma density perturbation. To

study the dynamics of ns, consider the low frequency parts of the electron continuity
and ion force equations,

∂ns

∂ t
+ n0

∂us

∂x
= 0, (7.29)
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∂us

∂ t
− e

mi
Es = 0. (7.30)

Convective terms were once more disregarded. In the same spirit, the slow part of
the electron momentum equation imply

∂ us

∂ t
+

e
me

Es + 3
v2

Fe

n0

∂ ns

∂x
− h̄2

4m2
en0

∂ 3ns

∂x3 +
〈

uf
∂uf

∂x

〉
= 0. (7.31)

The last term above can be treated using the estimate uf ∼ −eEf/(meωpe), writing
the so-called ponderomotive force [18] according to

me

〈
uf

∂uf

∂x

〉
=

e2

2meω2
pe

∂
∂ x

〈E2
f 〉 =

e2

4meω2
e

∂ |Ẽ|2
∂x

. (7.32)

Finally, from (7.31) we get

∂us

∂ t
+

e
me

Es + 3
v2

Fe

n0

∂ns

∂x
− h̄2

4m2
en0

∂ 3ns

∂x3 +
e2

4m2
eω2

pe

∂ |Ẽ|2
∂x

= 0. (7.33)

Eliminating us and Es from (7.29), (7.30) and (7.33) and using me/mi � 1, the
result is

∂ 2ns

∂ t2 −3c2
s

∂ 2ns

∂x2 +
h̄2

4mime

∂ 4ns

∂x4 =
ε0

4mi

∂ 2|Ẽ|2
∂x2 , (7.34)

where cs = (κBTFe/mi)1/2 is the quantum ion-acoustic velocity. Equations (7.27)
and (7.34) form a coupled system for the envelope electric field and the slow
component of the plasma density fluctuation. It is the quantum analog of the
classical Zakharov system, which would be obtained if h̄ ≡ 0. Hence, it is natural to
refer to (7.27) and (7.34) as the quantum Zakharov equations [5].

It is convenient to clean (7.27) and (7.34) from some weird factors using the
normalized quantities

x̄ = 2
√

me

3mi

x
λF

, t̄ = 2
me

mi
ωpe t, (7.35)

n̄ =
1
4

mi

me

ns

n0
, Ē =

eẼ

4
√

3mevFeωpi
, (7.36)

where λF = vFe/ωpe is the electron Thomas–Fermi length and ωpi = (n0e2/miε0)1/2

is the ion plasma frequency. It is also convenient to introduce the dimensionless
quantum parameter

H =
h̄ωpi

3κB TFe
, (7.37)
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with κBTFe = mev2
Fe. Dropping bars, the final system reads

i
∂E
∂ t

+
∂ 2E
∂ x2 −H2 ∂ 4E

∂x4 = nE, (7.38)

∂ 2n
∂ t2 − ∂ 2n

∂x2 + H2 ∂ 4n
∂x4 =

∂ 2|E|2
∂x2 . (7.39)

The quantum parameter H in (7.37) is the ratio between the ion plasmon and
electron thermal energies. The unavoidable presence of the ion parameter ωpi in H
is due to the existence of the ion-acoustic collective mode.

One should have in mind the numerous approximations in the derivation of the
quantum Zakharov equations, in particular the nonrelativistic and weak turbulence
(or weak coupling) assumptions. Nevertheless, we may expect that some of the
gross features of the quantum effects in the nonlinear interaction of Langmuir and
ion-sound waves in dense plasmas are still captured by (7.38) and (7.39), in a first
approximation at least.

Instead of paying attention to the quantity H only, a more legitimate estimate
of the quantum effects comes from the ratio of the second and third terms of the
left-hand side of the dimensional (7.27) and (7.34). Assuming ∂/∂ x ∼ k gives

(
h̄2

m2
e ωe

∂ 4Ẽ
∂ x4

)
(

v2
Fe

ωpe

∂ 2Ẽ
∂x2

) ∼
(

h̄2

memi

∂ 4ns
∂ x4

)
(

c2
s

∂ 2ns
∂ x2

) ∼
(

h̄k
mevFe

)2

<

(
h̄ωpe

κBTFe

)2

, (7.40)

for the relative strength of the quantum terms, the last inequality arising from the
high frequency hypothesis ωpe > kvFe which is also needed to avoid kinetic effects.
From (7.40), we have that the quantum diffraction effects are comparable to the
Fermi statistics effects provided the electron plasmon energy is of the same order of
the Fermi energy.

In the following model, (7.38) and (7.39) is applied to two well-known para-
metric instabilities from classical plasma physics, namely the decay and four wave
instabilities.

7.2 Parametric Instabilities

7.2.1 Decay Instability

Consider the Ansatz

E = E0ei(k0x−ω0t) + E1(t)ei(k1x−ω1t), (7.41)

n = n1(t)cos(Kx−Ω t), (7.42)
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for the quantum Zakharov equations (7.38) and (7.39), where E0,k0,1,ω0,1,K,Ω
are constants and E1(t) and n1(t) are first-order quantities. This Ansatz mimics the
classical treatment of the decay instability [18]. Here,

ω0 = k2
0 + H2k4

0, (7.43)

ω1 = k2
1 + H2k4

1, (7.44)

Ω 2 = K2 + H2K4. (7.45)

Equations (7.43) and (7.44) correspond to Langmuir waves, where the electron
plasma frequency contributions did not appear due to the decomposition (7.26)
which produces a slowly varying envelope field. On the other hand, (7.45) is
associated with quantum ion-acoustic waves [10]. The quantum Zakharov system
admit the plane wave solution (7.41) and (7.42) with E1 = n1 = 0, thanks to the
dispersion relation (7.43). The question now is about the stability of such a solution,
for increasing amplitude E0 playing the rôle of control parameter.

Due to momentum and energy conservation [18], the matching conditions

k0 = k1 + K, ω0 = ω1 + Ω , (7.46)

hold. Therefore, we have the decay of a quantum Langmuir wave, with dispersion
relation (7.43), into other quantum Langmuir wave, with dispersion relation (7.44),
and a quantum ion-acoustic wave, with dispersion relation (7.45).

Keeping only the first-order quantities in (7.38) and (7.39), we obtain

iĖ1e1 =
E0n1

2
(e+ + e−)e0, (7.47)

(
n̈1

2
− iΩ ṅ1 + K2E0E∗

1

)
e+ +

(
n̈1

2
+ iΩ ṅ1 + K2E∗

0 E1

)
e− = 0, (7.48)

with the notation

e0,1 = exp[i(k0,1x−ω0,1t)], e± = exp[±i(Kx−Ω t)]. (7.49)

Taking into account the resonance condition (7.46), (7.47) read

iĖ1 =
E0n1

2

(
1 + e2i(Kx−Ωt)

)
, (7.50)

so that, apart from a zero-average oscillatory part, we have

n1 =
2i
E0

Ė1. (7.51)
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Fig. 7.1 Growth rate of the decay instability for E0 = 0.5 and 0 ≤H ≤ 1.5, showing the saturation
effect for H > 0

Similarly, (7.48) gives

n̈1

2
+ iΩ ṅ1 + K2E∗

0 E1 = 0. (7.52)

Assuming Ė1 = iωE1, from (7.51) and (7.52), we get

ω3 + 2Ωω2 + K2|E0|2 = 0, (7.53)

which exactly reproduces the classical decay instability dispersion relation [18].
Hence, the conclusions valid for the classical case can be immediately extended
to the quantum case. In particular, when Ω � |ω |, so that the cubic term can be
disregarded in (7.53), defining ω = iγ we deduce the growth rate

γ =
K|E0|√

2Ω
. (7.54)

With more generality, the cubic equation (7.53) can be shown to have a positive dis-
criminant, so that it always admit one real and two complex conjugate solutions [8].
Hence, only one solution is associated with a (decay) instability, with unbounded
growth of both perturbations E1 and n1. However, in spite of the formal similarity,
the quantum case is different from the classical one due to the quantum corrections
in the dispersion relations (7.43)–(7.45) for the quantum Langmuir and ion-acoustic
modes.

The distinct quantum Langmuir dispersion relation produces a saturation effect
not present in the classical case (see Fig. 7.1). Indeed, using (7.45) we can rewrite
(7.54) as

γ =
√

K|E0|√
2(1 + H2K2)1/4

, (7.55)
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admitting a maximum value γmax = |E0|/
√

2H for large K. This is to be compared
with the formal classical case (H = 0) where γ grows with no bound as K increases.
The quantum diffraction effects, therefore, did not stabilize the decay instability, but
at least impose a maximum growth rate.

Notice that neglecting the first term in (7.53) is valid for large wavenumbers in
both the classical and quantum situations. Indeed, for large K we have Ω ∼K, |ω | ∼
K1/2 in the classical case and Ω ∼ K2, |ω | ∼ 1 in the quantum case, so that the first
term in (7.53) becomes more and more negligible as K increases.

However, the wavenumber can not increase indefinitely otherwise the fluid model
becomes incorrect. Taking into account the rescaling (7.35) and the inequality
(7.40), we have

KH =
√

3mi

me

kλFe

2

h̄ωpi

3κBTFe
<

h̄ωpe

2
√

3κBTFe
. (7.56)

The right-hand side of (7.56) shows an upper bound on the quantum effects strength,
basically given by the ratio between the electron plasmon and Fermi energies, as
expected.

7.2.2 Four-Wave Instability

Let us consider the energy transfer from one single finite-amplitude quantum
Langmuir wave and two other quantum Langmuir waves and one quantum ion-
acoustic wave. In comparison to the previous problem, now one extra quantum
Langmuir wave is included. The appropriate model can be written [14] as

E(x,t) = E0 exp(−iω0t + ik0x)+ E+ exp[−i(ω0 +ω)t + i(k0 + k)x]

+E− exp[−i(ω0 −ω∗)t + i(k0 − k)x], (7.57)

n(x,t) = ñexp(−iωt + ikx)+ c.c, (7.58)

where E0 is a zeroth-order and E± and ñ are first-order amplitudes, ω0,k0 and k
are real constants and ω is a complex constant. To have an unperturbed solution
E(x,t) = E0 exp(−iω0t + ik0x), n(x,t) = 0 satisfying (7.38) and (7.39), necessarily

ω0 = k2
0 + H2k4

0. (7.59)

which correspond to a quantum Langmuir mode after absorbing the electron plasma
frequency trough the definition (7.26).

Inserting (7.57) and (7.58) into (7.38) for the time-evolution of the envelope
electric field, linearizing and separating the parts proportional to exp[−i(ω0 +ω)t +
i(k0 + k)x] and exp[−i(ω0 −ω∗)t + i(k0 − k)x] gives
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(ω0 +ω)E+− (k0 + k)2E+ = ñE0 + H2(k0 + k)4E+, (7.60)

(ω0 −ω∗)E−− (k0 − k)2E− = ñ∗E0 + H2(k0 − k)4E−. (7.61)

In a similar way, from (7.39) for the time-evolution of the density perturbation we
find

(ω2 − k2 −H2k4)ñ = k2(E∗
0 E+ + E0E∗

−) (7.62)

plus
((ω∗)2 − k2 −H2k4)ñ∗ = k2(E0E∗

+ + E∗
0E−). (7.63)

In passing, we observe that (7.62) and (7.63) are compatible if and only if ω2 =
(ω∗)2. Hence, ω should be either purely real or purely imaginary. Assuming E0,E±
to be real, we have from (7.60)–(7.63) an homogeneous system of four equations for
the four quantities E±, ñ and ñ∗. Nontrivial solutions exist provided the dispersion
relation

DsD1D2 = k2E2
0(D1 + D2), (7.64)

is satisfied, where

Ds = ω2 − k2 −H2k4, (7.65)

D1 = ω + ω0 − (k + k0)2 −H2(k + k0)4, (7.66)

D2 = −ω +ω0 − (k− k0)2 −H2(k− k0)4. (7.67)

In the limit H → 0 the classical dispersion relation for the four-wave interaction
[14] is recovered. From (7.64), we see that in the absence of the pump amplitude E0

we have one quantum ion-acoustic (Ds = 0) and two quantum Langmuir (D1,2 = 0)
modes, without any instability therefore.

The dispersion relation (7.64) is a fourth-order polynomial equation for ω .
Fortunately, assuming ω0 = k0 = 0 and ω = iγ it moves to a quadratic equation
for γ2,

[γ2 + k2 + H2k4][γ2 +(k2 + H2k4)2] = 2k2E2
0(k2 + H2k4). (7.68)

Solving for γ2 two roots are found,

γ2 =− 1
2
(k2 + H2k4)(1 + k2 + H2k4)

± 1
2
(k2 + H2k4)1/2[(k2 + H2k4)(1− k2 −H2k4)2 + 8k2E2

0 ]1/2. (7.69)

One root is a stable mode (γ2 < 0). The other one is positive for sufficiently high
pump amplitude,

E2
0 >

k2

2
(1 + H2k2)2. (7.70)
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Fig. 7.2 γ2 as a function of k2 for the potentially unstable mode of the dispersion relation (7.69)
for the four-wave instability according to [5]. Parameters: E0 = 0.5, H = 0 (full line), H = 0.5
(dashed line) and H = 0.9 (dotted line)

If (7.70) is satisfied, we have a purely growing instability. In all cases, we have
ω2 = (ω∗)2 so that (7.62) and (7.63) are consistent.

When H → 0, (7.70) recovers the classical instability condition [14] for the
four-wave interaction. However, for larger quantum effects it becomes increasingly
difficult to satisfy the inequality (7.70). There is even suppression of the four-wave
instability whenever

H2 ≥
√

2E0 − k

k3 . (7.71)

Hence, we have one more example of the stabilizing rôle of the quantum diffraction
effects. In this case, there is a less efficient energy transfer from the original
Langmuir wave to the additional Langmuir and ion-acoustic modes, due to the
Bohm potential terms in the quantum Zakharov system.

Let us study in more detail the potentially unstable mode associated with the
positive root in (7.69). In Fig. 7.2, we show this γ2 as a function of k2 for H = 0,
H = 0.5 and H = 0.9, always with E0 = 0.5. The instability region (γ2 > 0) in
k-space becomes narrower for bigger H, and the maximum γ2 becomes smaller for
larger quantum effects. The wavenumber for maximum growth rate, kmax can be
approximately calculated by expanding (7.69) up to O(k6), which is reasonable
in view of the long wavelength approximation. Then, d(γ2)/d(k2) = 0 gives a
quadratic equation for k2, which can be solved in closed form. The cumbersome
resulting expression will be omitted here, but the result of the expansion procedure
is shown in Fig. 7.3, where k2

max for maximum growth rate is shown as a function of
H for a fixed E0 = 0.5. Inserting this k2

max in the unstable mode in (7.69) an awkward
expression for the maximum growth rate as a function of H is derived. Figure 7.4
shows how an increasing quantum parameter produces a smaller maximum growth
rate, for the same particular value E0 = 0.5.
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Fig. 7.3 Square k2
max of the wavenumber for maximum growth rate of the four-wave instability,

as a function of H, calculated from a series expansion of the unstable root in (7.69) up to O(k6),
according to [5]. Here E0 = 0.5
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Fig. 7.4 Maximum growth rate γmax as a function of the quantum parameter H according to [5].
Pump electric field amplitude: E0 = 0.5

In the more general case when k0 �= 0, (7.64) needs to be numerically studied
from the beginning. Figure 7.5 displays the real (solid lines) and imaginary (dashed
lines) parts of ω as a function of k. Both uncoupled (i.e., E0 ≈ 0) and coupled cases
are considered, for three different values of H. In view of the symmetry (k,ω) ↔
(−k,−ω)⇒ D1 ↔ D2 of the dispersion relation (7.64), only positive wavenumbers
are necessary. Of special relevance is the overlay region of the branches Ds and
D2, where instability occurs. In the uncoupled case, k = 2k0 is a root of D2 when
ω = 0, for both classical and quantum cases. In addition, the plots of Ds and D2

branches touch each other at isolated points while, when E0 �= 0, overlay occurs
in a finite interval k ∈ Ik = (ka,kb) corresponding to instability. The first column
of plots shows that, for a fixed k0, both uncoupled curves raise with H, implying
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Fig. 7.5 Real (solid lines) and imaginary (dashed lines) components of the frequency ω as a
function of k for uncoupled (frames a1–a3) and coupled cases (frames b1–c3) according to [5].
From top to bottom, H = 0, H = 0.5 and H = 0.9, respectively. From left to right, E0 = 0, E0 = 0.5
and E0 = 0.5. For the first and second columns k0 = 0.5; for the third column, k0 = 0.75

reduction of the unstable interval Ik. The same tendency of a stretching unstable
range of wavenumbers is apparent in the second and third columns.

For nonzero pump amplitude E0, both the second and third columns of Fig. 7.5
shows an overall contraction of Ik. This results from the gradual shift of ka to the
right and kb to the left, due to the quantum effects. Hence, the numerical results
show that the quantum effect inhibits the efficient spreading of energy among
different modes. Moreover, for a specific k, NI = (kb − ka)/k represents a measure
of the number of active unstable modes. Hence, a shrinking Ik means that the
Langmuir fluctuations in quantum plasmas represent more coherent configurations,
that is, having less effective unstable modes in comparison with the classical
limit.

7.3 Nonlinear Analysis

In the previous parametric instabilities analysis, only the linear content of the
quantum Zakharov system was explored. To start investigating arbitrary amplitude
waves, first notice that exact solutions for (7.38) and (7.39) are possible if we
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consider pure ion-sound waves, defined by E = 0. With zero electric field, the
density perturbation satisfy

∂ 2n
∂ t2 − ∂ 2n

∂x2 + H2 ∂ 4n
∂x4 = 0, (7.72)

which is the only remaining equation to be solved. In spite of the apparent simplicity,
this linear fourth-order wave equation is not endowed with a rich symmetry
structure. Indeed, searching for Lie point symmetries [15], the only invariance
transformations we have found are time and space translation symmetries, as well
as a scale symmetry associated with the linearity. In other words, the Lorentz
invariance present in the case of classical (H = 0) ion sound waves is not available.
A more detailed Lie symmetry analysis of the full (E �= 0) quantum Zakharov
equations was performed by Tang and Shukla [17]. In this work it was shown
that the classical and quantum Zakharov systems admit the same symmetry groups.
Similarity reductions were obtained and a pure general periodic ion-acoustic wave
solution derived.

In the E = 0 case, exact traveling waves for (7.72) can be found supposing n =
n̄(x − ct), for constant c and n̄ a function to be determined. For supersonic flow
(c2 > 1), disregarding an integration constant associated with unbounded solutions
we get periodic solutions given by

n = a + bcos

(√
c2 −1
H

(x− ct)+ δ

)
, (7.73)

where a, b, and δ are numerical constants. In the reference frame of the traveling
wave, the wavenumber of the solution increase without bound as H → 0. Hence, the
classical limit of (7.73) is singular, as can be expected from the beginning since the
order of (7.72) is changed from 4 to 2 as the quantum parameter goes to zero.

For nonzero electric field, some considerations on the fully nonlinear realm
of (7.38) and (7.39) can be made at least in the adiabatic regime, where the
density fluctuation is very slowly changing in time. In the classical adiabatic limit,
the Zakharov system reduces to the nonlinear Schrödinger equation, which is a
completely integrable model [1]. Hence, it is tempting to try to reproduce the
classical procedure for the derivation of quasi-static solutions, setting ∂ 2n/∂ t2 → 0
in (7.39). Integration of this equation with, for example, decaying or periodic
boundary conditions then gives

n = −|E|2 + H2 ∂ 2n
∂x2 . (7.74)
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The strategy is not totally absurd, since the variables entering the quantum
Zakharov system are slowly varying in time, so that the second-order time-derivative
of n can with some confidence be taken as negligible. Inserting (7.74) into (7.38)
yields

i
∂ E

∂ t
+

∂ 2E

∂ x2 + |E|2E = H2
(

∂ 4E

∂x4 + E
∂ 2n

∂x2

)
. (7.75)

In the formal classical limit H → 0, the right-hand side of (7.75) vanishes and we
are left with the nonlinear Schrödinger equation, which is completely integrable by
the inverse scattering transform. In this case, it has a number of properties including
the existence of N-soliton solutions [1].

On the other hand, as argued in [5], it is interesting to consider the simultaneous
semiclassical and adiabatic limits of the quantum Zakharov model. In this case, it
is allowed to replace n →−|E|2 on the right-hand side of (7.75), which is already a
quantum correction. We are then left with the decoupled equation

i
∂E
∂ t

+
∂ 2E
∂x2 + |E|2E = H2

(
∂ 4E
∂x4 −E

∂ 2|E|2
∂x2

)
(7.76)

for the envelope electric field. Equation (7.76) can be used as a starting point to study
first-order quantum perturbations of the classical soliton solutions. The generalized
nonlinear Schrödinger equation (7.76) will be addressed in the next section in the
light of an underlying Lagrangian formalism.

7.4 Semiclassical Adiabatic Regime

The nonlinear Schrödinger equation is completely integrable with N-soliton so-
lutions, as a consequence of a detailed balance between dispersive and nonlinear
contributions [1]. Therefore, we could ask at this point about the way the quantum
effects perturb or perhaps even destroy these localized solitonic structures. Since
quantum effects enhance dispersion in view of the Bohm potential, one should
expect that solitons for the quantum Zakharov equations will be not easy to
find. To investigate this conjecture consider first the simultaneous adiabatic and
semiclassical case, which reduces to the decoupled (7.76) for E .

Equation (7.76) is derivable from a variational principle,

δ S = δ
∫

L dxdt = 0, (7.77)

with a Lagrangian density

L =
i
2

(
E∗ ∂ E

∂ t
−E

∂E∗

∂ t

)
− ∂E∗

∂x
∂E
∂x

+
|E|4

2
−H2 ∂ 2E∗

∂ x2

∂ 2E
∂x2 +

H2

2
|E|2 ∂ 2|E|2

∂ x2 .

(7.78)
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The variational derivatives δS/δ E∗ = δ S/δE = 0 produce (7.76) and the complex
conjugate equation, respectively.

We recall that for the higher-order Lagrangian density shown in (7.78) the
variational derivatives are given by

δL

δE
=

∂L

∂E
− ∂

∂ t

(
∂L

∂ (∂E/∂ t)

)
− ∂

∂x

(
∂L

∂ (∂E/∂x)

)
+

∂ 2

∂x2

(
∂L

∂ (∂ 2E/∂ x2)

)
,

(7.79)

δL

δE∗ =
∂L

∂E∗ −
∂
∂ t

(
∂L

∂ (∂E∗/∂ t)

)
− ∂

∂x

(
∂L

∂ (∂ E∗/∂ x)

)
+

∂ 2

∂x2

(
∂L

∂ (∂ 2E∗/∂x2)

)
.

(7.80)

The existence of a Lagrangian can be used to search for approximate solutions.
In quantum mechanics a time-independent variational method consider searching
for the minimal energy assuming a reasonable Ansatz for the eigenfunctions
and calculating the expectation value of the Hamiltonian operator. The same
methodology can be pursued for nonlinear time-dependent problems too, where
trial wavefunctions are supposed to extremize an underlying action integral. This
strategy yield better results if the choice of the trial wavefunction is dictated by
physical and mathematical arguments. For instance, in the case of Bose–Einstein
condensates described by a Gross–Pitaevskii equation with a parabolic confinement
potential a time-dependent Gaussian Ansatz is the natural guess [9]. Indeed, the
confinement certainly produce some localized solution. Moreover, neglecting the
nonlinear interaction term the corresponding Gross–Pitaevskii equation becomes
the (linear) Schrödinger equation for the simple harmonic oscillator, for which the
ground state is a Gaussian.

In the strict classical case H = 0, (7.76) admit the one soliton solution

E = E0 exp

(
iE2

0 t

2

)
sech

(
E0x√

2

)
, (7.81)

where E0 is a constant. Inspired by this result, we postulate the time-dependent,
localized in space trial function

E = α(t)exp(iθ(t))sech(β (t)x), (7.82)

for the quantum nonlinear Schrödinger equation (7.76), composed by adjustable real
functions α(t),β (t), and θ (t), considered as functions of time only.

Inserting the Ansatz (7.82) into the functional (7.77) and performing the spatial
integration, we get

S =
∫

Ldt (7.83)
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with a Lagrange function

L = L(θ ,α,β , θ̇ , α̇ , β̇ ) =
α2

15

(
30θ̇
β

− 10α2

β
+ 10β + 8H2α2β + 14H2β 3

)
.

(7.84)

With the spatial dependence of the solution defined from advance, there remains
a finite-dimensional mechanical system where all quantities are functions of
time only. Since the action should be extremized, the variational derivatives of
the Lagrangian (7.84) equals zero, taking α,β and θ as independent variables.
Therefore,

δS
δθ

=
∂L
∂θ

− d
dt

(
∂L

∂ θ̇

)
= 0, (7.85)

δS
δα

=
∂L
∂α

− d
dt

(
∂L
∂α̇

)
= 0, (7.86)

δS
δβ

=
∂L
∂β

− d
dt

(
∂L

∂ β̇

)
= 0. (7.87)

Computing the variational derivatives, we obtain

δ S
δθ

= 0 ⇒ d
dt

(
α2

β

)
= 0, (7.88)

δS

δα
= 0 ⇒ α

(
θ̇ − 2α2

3
+

β 2

3
+

8H2α2β 2

15
+

7H2β 4

15

)
= 0, (7.89)

δS
δβ

= 0 ⇒ α2
(

θ̇ − α2

3
− β 2

3
− 4H2α2β 2

15
− 7H2β 4

5

)
= 0. (7.90)

Equation (7.88) imply
α2 =

√
2E0β , (7.91)

where E0 is a numerical constant. Excluding the trivial case α = 0 and inserting
(7.91) into (7.89), we derive

θ̇ =
2
√

2E0β
3

− β 2

3
− 8

√
2E0H2β 3

15
− 7H2β 4

15
, (7.92)

which, taking into account (7.90), yields

H2β 3 +
3
√

2E0H2β 2

7
+

5β
14

− 5
√

2E0

28
= 0. (7.93)

Equations (7.91)–(7.93) show that α and β are constants while θ is a linear
function of t, just like in the classical case. However, it is worth to consider the
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dependence of the several expressions on H, to see what is the rôle of the quantum
effects on the one soliton solution (7.81). For this purpose (7.93) is essential. An
useful simplification of it is achieved through the rescaling

β̄ =
√

2β
E0

, H̄ =
√

2E0H
2

, (7.94)

which eliminates one free parameter,

H̄2β̄ 3 +
6H̄2β̄ 2

7
+

5β̄
14

− 5
14

= 0. (7.95)

In the formal classical limit H̄ = 0, (7.95) imply β̄ = 1, recovering the classical
one soliton solution. Moreover, considering the discriminant of (7.95) it follows that
for

H̄2 ≤ 5
1,152

(681 + 23
√

897) ≈ 5.946, (7.96)

it admits only one real besides two complex conjugate roots. This range of parame-
ters is in line with the semiclassical limit. However, it is important to notice that,
in view of the dependence of H̄ on E0 (see (7.94)), no constraint is imposed on
the maximum value of H̄, since sufficiently high values of E0 can be freely chosen.
Hence, we now consider both large and small values of H̄.

7.4.1 Small H̄2

For H̄ � 1, solving (7.95) recursively gives

β̄ = 1− 26H̄2

5
+ O(H̄4). (7.97)

Retaining only the leading quantum correction and transforming back to the original
variables yield

α = E0

(
1− 13Ω H2

5

)
, (7.98)

β =
√

2E0

2

(
1− 26Ω H2

5

)
, (7.99)

θ̇ =
E2

0

2
−5

E4
0

4
H2. (7.100)

By inspection of the variational solution (7.82), we conclude that the amplitude
and the rate of change the phase θ became smaller due to quantum effects,
while the spatial extent of the soliton has the opposite behavior. Hence, the
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quantum diffraction effects tend to enlarge the dispersion of the soliton, destroying
localization. This is similar to the well-known quantum mechanical effect of wave
packet spreading, a signature of the indeterminacy principle.

7.4.2 Large H̄2

Now consider the case H̄ =
√

2E0 H/2 � 1, which can be accessed even for
H � 1 provided H is not strictly zero and E0 is sufficiently large. The leading
order dependence of the terms in (7.95) can be examined supposing a power law
expression β ∼ H̄r for some constant r. In this way, two possible families are found:
(a) for r = 0 the first and second terms in (7.95) are the leading order contributions
and can balance each other; (b) for r = −1 the first and third terms are the most
relevant.

Proceeding in this way we find, instead of only one class of solutions as in the
small H̄ situation, three different subclasses, corresponding to

β̄0 = −6
7

+
65
72

H̄ −2 + O
(
H̄ −4) , (7.101)

β̄+ =
(

5
12

)1/2

H̄−1 − 65
144

H̄ −2 + O
(
H̄ −3) , (7.102)

β̄− = −
(

5
12

)1/2

H̄−1 − 65
144

H̄−2 + O
(
H̄−3) . (7.103)

The first solution comes from an expansion in 1/H̄2, while the last two result from
an expansion in 1/H̄.

Inspection of (7.91) shows a purely imaginary α is obtained from the leading
terms in (7.101) or (7.103). However, this contradict the proposal (7.82), where α,
β and θ are supposed real. Hence, we discard (7.101) and (7.103) and consider only
β̄+ in (7.102). This yields, again considering only the leading order terms,

α =
(

5E2
0

6H2

)1/4

, β =
(5/12)1/2

H
, θ̇ =

4
9

√
5
6

E0

H
. (7.104)

Since H � 1 and E0 � 1, this corresponds to a large amplitude, highly localized,
and highly oscillating variational solution, with no classical correspondence. Such
approximate purely quantum periodic structure resembles the ion-sound nonlinear
solution (7.73), which also has a singular limit when H → 0.

In conclusion, quantum effects were shown to contribute to destroy localized
structures of the adiabatic semiclassical limit. The employed time-dependent vari-
ational formalism also points to a new, strongly oscillating pattern as described by
(7.82) and (7.104). Many open questions still remain, in particular on the rôle of
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quantum effects on the stability of the N-soliton solutions admitted in the classical
limit. These N-soliton solutions were found, through numerical experiments [7],
to typically act as asymptotic equilibria in the classical case. Even if in principle one
can expect that quantum terms would tend to eliminate any localized structure due to
(roughly speaking) wave packet diffraction, this is not an obvious property since in
quantum plasmas the nonlinearities may produce unexpected coherent phenomena.
For instance, nonlinear structures can appear in quantum electron plasmas, in the
form of dark solitons and vortices. These structures were numerically shown to
stable, and therefore useful for the transport of information at quantum scales [4].

The time-dependent variational method is an useful method to explore the
nonlinear behavior of systems of evolution equations, provided a Lagrangian
formalism is available. In the next section, we formulate the one-dimensional
quantum Zakharov system as a Lagrangian system, regardless of adopting the
adiabatic and semiclassical limit.

7.5 Time-Dependent Variational Method

Coherent structures like solitons, vortices, cavitons, spikons and so on play a
relevant rôle in any physical system. In quantum plasmas, the numerical stability
of vortices and dark solitons has been detected in Schrödinger–Poisson quantum
electron plasmas [4]. At the quantum scales, the transport of information in ultracold
micromechanical systems can be addressed through such nonlinear structures. In
this section, the influence of quantum effects on localized solutions of the quantum
Zakharov system is considered in terms of an associated variational formalism and
a trial function method. No restrictions to an adiabatic or semiclassical limit is
imposed, as was done in the last section. Approximate methods are justified, since
only few exact solutions are available for the quantum Zakharov system [17].

In the classical case, the Zakharov equations admit a Langmuir soliton solution
[18]. The internal vibrations of such solitary waves were analyzed by a variational
approach using Gaussian trial functions [12], thanks to the associated Lagrangian
formalism. Time-dependent variational methods are also traditional, for instance,
in the study of nonlinear pulse propagation in optical fibers [2] and Bose–Einstein
condensates [9]. Hence, it is a natural trend to search for a Lagrangian description
and then using it in the stability analysis of localized waves for the quantum
Zakharov system. In other words, using a Gaussian Ansatz or similar solitary pulses
as a trial function extremizing an action functional, we can derive information about
the perturbation of the Langmuir soliton by quantum effects. We can expect the
enlargement of the width and a smaller amplitude of these pulses, due to wave packet
spreading. This tendency has been verified in the adiabatic and semiclassical case in
the preceding section. However, it can also happens that pure quantum instabilities
tend to destroy the localized structures, beyond a simple deformation. Moreover, in
a mathematical ground the construction of a variational formulation for the quantum
Zakharov equations is important in itself.
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We can be more specific. Indeed the quantum Zakharov contains a dimensionless
parameter H representative of the strength of the quantum effects, see (7.37).
Treating H as a control parameter, a variational method can be used to access the
modifications of a trial Gaussian profile as H varies. In this way, a general tendency
can be understood, even without the knowledge of any exact solution.

The one-dimensional quantum Zakharov equations (7.38) and (7.39) are deriv-
able from the Lagrangian density [11]

L =
i
2

(
E∗ ∂E

∂ t
−E

∂E∗

∂ t

)
−

∣∣∣∣∂E

∂x

∣∣∣∣
2

− ∂u

∂x
|E|2 +

1
2

(
∂u

∂ t

)2

− 1
2

(
∂u

∂x

)2

−H2

∣∣∣∣∂ 2E
∂x2

∣∣∣∣
2

− H2

2

(
∂ 2u
∂x2

)2

, (7.105)

where it was introduced the auxiliary variable u from which the density can be
found,

n =
∂u
∂x

. (7.106)

The Lagrangian densities in (7.78) and (7.105) can be compared. In the general,
nonadiabatic and nonsemiclassical case, one more variable need to be incorporated,
since now the density is an independent quantity. Equation (7.105) is reminiscent
from the classical Lagrangian density [6], with the appropriate quantum contribu-
tions added.

The independent fields are E,E∗, and u. Besides (7.4) and (7.4) one more
variational derivative should be calculated. In the present case, it is

δL

δu
= − ∂

∂ t

(
∂L

∂ (∂u/∂ t)

)
− ∂

∂x

(
∂L

∂ (∂u/∂x)

)
+

∂ 2

∂x2

(
∂L

∂ (∂ 2u/∂ x2)

)
. (7.107)

Inserting L from (7.105) into (7.4), (7.4), and (7.107), we get

δL

δE
= 0 ⇒−i

∂E∗

∂ t
+

∂ 2E∗

∂ x2 −H2 ∂ 4E∗

∂x4 =
∂u

∂ x
E∗, (7.108)

δL

δE∗ = 0 ⇒ i
∂E
∂ t

+
∂ 2E
∂x2 −H2 ∂ 4E

∂x4 =
∂u
∂ x

E, (7.109)

δL

δ u
= 0 ⇒− ∂

∂x

(
|E|2 +

∂u
∂ x

)
+

∂ 2u
∂ t2 + H2 ∂ 4u

∂x4 = 0. (7.110)

After differentiation with respect to x, the last equation reproduces (7.39).
The classical Zakharov system is nonintegrable, except in the adiabatic limit

when it reduces to the nonlinear Schrödinger equation which is tractable by the
inverse scattering transform. However, it admits [18] some analytical solutions,
among which we select the Langmuir soliton
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E = E0 exp

(
iE2

0 t

2

)
sech

(
E0x√

2

)
, (7.111)

n = −E2
0 sech2

(
E0x√

2

)
, (7.112)

where E0 is an arbitrary real parameter. Notice that (7.111) provides a solution
for the corresponding nonlinear Schrödinger equation too, see (7.81). Strictly, the
expression “Langmuir soliton” is not applicable since different solutions (7.111)
and (7.112), for different parameter E0, do not produce simple phase shifts under
collisions [18], as expected for solitons. Nevertheless, we follow the traditional
usage in the spirit that the coherent waves in (7.111) and (7.112) results from the
equilibrium between nonlinearity and dispersion, in the same way as solitons form.
Physically, the Langmuir soliton represents a hole in the low frequency part of the
electron–ion density maintained self-consistently by the ponderomotive force.

Isolated classical Langmuir solitons are remarkably stable and do not decay
[18]. What is the effect of quantum perturbations on such structures? To answer
the question on analytic grounds we can use the variational formalism and set a
time-dependent trial function reproducing the gross features of (7.111) and (7.112).
In addition, it is desirable to have a sufficiently tractable Ansatz. These requirements
are satisfied by the Gaussian profile

E = Aexp

(
− x2

2a2 + iφ + iκx2
)

, (7.113)

n = −Bexp

(
− x2

b2

)
, (7.114)

where A,B,a,b,φ , and κ are functions of time only. We assume A and B positive
to maintain resemblance with (7.111) and (7.112). The “chirp function” κ is
responsible for the increase of the spatial frequency of oscillations of the envelope
electric field for larger distances, since E ∼ exp(iκx2). It is not present in the original
Langmuir soliton, but is a necessary mathematical ingredient in the Lagrangian
formalism.

As for any trial function, the main drawback of the Gaussian profile is that it does
not modify its spatial shape as time evolves. The advantage is the transformation
of a set of nonlinear partial differential equations in a set of nonlinear ordinary
differential equations, whose properties can be more easily accessed. The classical
Zakharov system can also be treated by a variational approach using a combination
of Jacobi elliptic functions [16], but we use Gaussian functions for the sake of
simplicity. In the same spirit (7.113) and (7.114) are analytically simpler than other
localized forms involving hyperbolic functions, Lorentzian distributions and so on.

To calculate the Lagrangian

L =
∫ ∞

−∞
L dx (7.115)
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corresponding to the profile (7.113) and (7.114) there is the need of the auxiliary
quantity u(x,t). From (7.106) and (7.114), we have

u = u0(t)−Bb

√
π

2
Erf

( x
b

)
, (7.116)

involving an arbitrary function u0(t) depending on time only and the error function
defined by

Erf(x) =
2√
π

∫ x

0
exp(−x′2)dx′. (7.117)

It turns out that taking into account (7.116) and computing ∂u/∂x and ∂u/∂ t
the Lagrangian (7.115) diverges except for constant u0 and Bb = M, where M is a
constant. Without loss of generality we can take u0 = 0.

The invariance of M = Bb is in line with the conservation of the low frequency
part of the “mass”

M ≡− 1√
π

∫ +∞

−∞
ndx = Bb, (7.118)

the last equality following from the variational solution and with the factor 1/
√

π
being introduced for convenience. The minus sign assures a positive value. In other
words, imposing B = M/b is equivalent to the invariance of the low frequency part
of the mass. Actually M could be better associated with an absence of mass, since
we are considering hole, or caviton solutions.

In addition, the quantum Zakharov equations admit the conservation laws for the
number of high frequency quanta

N =
1√
π

∫ +∞

−∞
|E|2dx, (7.119)

for the linear momentum

P =
i
2

∫ +∞

−∞

(
E∗ ∂E

∂x
− ∂E∗

∂x
E

)
dx, (7.120)

and for the energy

H =
1√
π

∫ ∞

−∞

[∣∣∣∣∂E
∂x

∣∣∣∣
2

+
∂u
∂x

|E|2 +
1
2

(
∂u
∂ t

)2

+
1
2

(
∂u
∂x

)2
]

dx. (7.121)

In other words,

Ṅ = 0, Ṗ = 0, Ḣ = 0. (7.122)

The conservation laws can be directly checked using the quantum Zakharov
equations.
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The conserved quantities for the quantum Zakharov system can be found
sistematically from the application of Noether’s theorem, relating symmetries and
conservation laws [15]. In this context, the invariance of N, P and H are associated
with the symmetry of the action integral under a phase transformation of the electric
field and space and time translations, respectively.

For instance, the energy integral exist since the Lagrangian density (7.105) is
invariant under time translation, with the conserved quantity being the Hamiltonian.
To compute the Hamiltonian we consider the momenta ΠE ,ΠE∗ , and Πu associated
with E,E∗, and u,

ΠE =
∂L

∂ (∂E/∂ t)
=

i
2

E∗, (7.123)

ΠE∗ =
∂L

∂ (∂E∗/∂ t)
= − i

2
E, (7.124)

Πu =
∂L

∂ (∂u/∂ t)
=

∂u
∂ t

(7.125)

and take the Legendre transform as usual,

H =
1√
π

∫ ∞

−∞

(
ΠE

∂E
∂ t

+ΠE∗
∂E∗

∂ t
+ Πu

∂u
∂ t

−L

)
dx. (7.126)

The factor 1/
√

π is just a matter of convenience.
In addition, for the (classical) Langmuir soliton in (7.111) and (7.112), we have

the property

|E|2 = −n. (7.127)

To assure that the Gaussian form in (7.113) and (7.114) reproduces somehow the
Langmuir soliton, we postulate that

1√
π

∫ ∞

−∞
|E|2dx = − 1√

π

∫ ∞

−∞
ndx, (7.128)

so as to satisfy (7.127) in a global sense. Equivalently, from (7.118) and (7.119) we
impose

M = N, (7.129)

in what follows, eliminating one free parameter. The above equation express a sort
of balance: the number of quanta originates from the density depletion. In the
remaining, we examine only the balanced solutions for which N equals the low
frequency part of the mass.
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For the proposed trial functions,

N = A2a, (7.130)

P = 0, (7.131)

H =
M
2

(
1
a2 + 4κ2a2

)
− M2

√
a2 + b2

+
M2

2
√

2b
+

M2ḃ2

8
√

2b

+
3H2M

4

(
1
a2 + 4κ2a2

)2

+
H2M2

2
√

2b3
. (7.132)

The invariance of N and H imply useful simplifications, while the momentum
conservation is not significant here since for the present Ansatz the “center-of-mass”
of the Langmuir soliton is nontranslating, or P = 0.

Observe that for the adiabatic semiclassical case the generalized nonlinear
Schrödinger equation (7.76) admit the same N and P invariants as shown in (7.119)
and (7.120), while the corresponding energy integral needs to be adapted to

H =
1√
π

∫ ∞

−∞

[∣∣∣∣∂E
∂x

∣∣∣∣
2

− 1
2
|E|2 + H2|∂

2E
∂ x2 |2 −

H2 |E|2
2

∂ 2

∂x2

(|E|2)
]

dx, (7.133)

not containing the auxiliary variable u.
All the ingredients for the evaluation of the Lagrangian L in (7.115) are known.

Using (7.105), (7.113), (7.114) and (7.116), after spatial integration, we get

L =
√

π

[
−A2aφ̇ − A2a

2

(
a2 κ̇ +

1
a2 + 4κ2a2

)
+

MA2a√
a2 + b2

− M2

2
√

2b

+
M2ḃ2

8
√

2b
− 3H2A2a

4

(
1
a2 + 4κ2a2

)2

− H2M2

2
√

2b3

]
, (7.134)

depending on the dynamical variables φ ,κ,A,a,b and their derivatives. Hence, we
have a five-dimensional configuration space. Only the last two terms in (7.134)
contain quantum corrections.

The Euler–Lagrange equations follow in the usual way, since L is depending
only on the dynamical variables and their first-order time-derivatives. For instance,
we have

∂L
∂φ

− d
dt

(
∂L

∂ φ̇

)
= 0 ⇒ A2a = N = constant, (7.135)

just reproducing the conservation of the number N of high frequency quanta, see
(7.130). Similarly, virtual variations of κ gives

∂L
∂κ

− d
dt

(
∂L
∂ κ̇

)
= 0 ⇒ aȧ = 4κa2 + 12H2κ(1 + 4κ2a4). (7.136)
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In contrast to the classical case where the chirp function κ is easily derived from
a(t), in the quantum case κ is the solution of the third-degree equation (7.136).
Expressing κ in terms of a and ȧ would give too cumbersome equations. A
reasonable alternative in the semiclassical limit is to solve (7.136) for κ as a power
series in H2. Other possibility is to regard (7.136) as a dynamical equation to be
included in numerical simulations. Let us consider both approaches.

The system of Euler–Lagrange equations for a and A is equivalent to a linear
system for κ̇ and φ̇ , because L does not depend on the derivatives of a and A:

∂L
∂A

− d
dt

(
∂L

∂ Ȧ

)
= 0 ⇒ φ̇ +

1
2

(
a2κ̇ +

1
a2 + 4κ2a2

)

− M√
a2 + b2

+
3H2

4

(
1
a2 + 4κ2a2

)2

= 0, (7.137)

∂L
∂a

− d
dt

(
∂L
∂ ȧ

)
= 0 ⇒ φ̇ +

1
2

(
3a2κ̇ − 1

a2 + 12κ2a2

)

− Mb2

(a2 + b2)3/2
+ 3H2

(
− 3

4a4 + 2κ2 + 20κ4a4
)

= 0. (7.138)

Eliminating φ̇ , we get

aκ̇ =
1
a3 −4κ2a− Ma

(a2 + s4)3/2
+

3H2

a5 −48H2κ4a3. (7.139)

Finally, variation of b gives

∂L

∂b
− d

dt

(
∂L

∂ ḃ

)
= 0 ⇒ s̈ =

1
s3 − 2

√
2s3

(a2 + s4)3/2
+

3H2

s7 , (7.140)

in terms of a new variable s =
√

b and using the conservation law in (7.130) to
eliminate A.

Equations (7.136), (7.139) and (7.140) form a closed system for the dynamical
variables a,κ , and s and are the basis for what follows. The small and large values
of H can be analyzed separately.

7.5.1 The Small H Case

When H � 1 is a small parameter, (7.136) can be solved to first-order in H2 yielding

κ =
ȧ
4a

−H2
(

3ȧ
4a3 +

3ȧ3

16a

)
, (7.141)
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disregarding higher-order quantum corrections. Inserting κ in (7.139) one is left
with a coupled, nonlinear system of second-order equations for a and s, namely,
(7.140) and

ä =
4
a3 −

4Ma

(a2 + s4)3/2
+H2

(
24
a5 +

6ȧ2

a3 − 12M

a(a2 + s4)3/2
− 9Maȧ2

(a2 + s4)3/2

)
. (7.142)

The energy (7.132), evaluated using (7.141), is

H =
1
4

(
M

[
ȧ2

2
+

2
a2

]
+
√

2M2
[

ṡ2 +
1
s2

]
− 4M2

√
a2 + s4

)

+
H2

64

(
48M
a4 − 24Mȧ2

a2 −9Mȧ4 +
16

√
2M2

s6

)
. (7.143)

It is constant in the context of the semiclassical approximation:

dH

dt
= O(H4) (7.144)

along trajectories of (7.140) and (7.142). The invariance of H is a useful tool to
check the accuracy of numerical schemes.

Equations (7.140) and (7.142) describe the nonlinear oscillations of the Gaussian
widths of the electric field and the density depletion. Since we have a two degrees-
of-freedom system, some simple tools from differential equations theory can be
used to infer the behavior of the solutions, according to the parameters H and M.
For instance, consider the linear stability analysis of the fixed points admitted by
(7.140) and (7.142).

We can search for fixed points for the dynamical system as a power series in H2.
Setting the first- and second-order time-derivatives to zero in (7.140) and (7.142),
we find the critical points at (a,s) = (a0,s0), where

a0 =
2
√

2
M

+
3H2M√

2
, (7.145)

s0 =

(
2
√

2
M

)1/2

+
H2M3/2

21/4
, (7.146)

disregarding O(H4) terms. In terms of the original variables a and b these fixed
points corresponds to Gaussians of same width at the formal classical limit. Quan-
tum corrections, however, introduce a disturbance: the width a0 of the equilibrium
envelope electric field and the width b0 ∼ s2

0 associated with the density start
behaving differently. However, both characteristic lengths a0 and b0 increase with
H, pointing for a wave packet spreading effect.
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Consider small deviations ∼ exp(iωt) from the equilibrium point, setting

a = a0 + a1 exp(iωt), s = s0 + s1 exp(iωt) (7.147)

where a1 and b1 are first-order quantities. Linearizing, one obtain

ω2 =
M2

128

[
24 + 10M2−H2M2(18M2 + 33)

]

±M2

64

[
144 + 24M2 + 25M4 −H2M2(396 + 177M2 + 90M4)

]1/2
. (7.148)

For consistency one could also expand the square root at (7.148) up to O(H2).
Then four possible frequency modes are detected, corresponding to the two possible
choices of sign in (7.148). Instability comes when ω2 < 0. A detailed calculation in
this way shows that instability will arrive when

H2 > f (M2) ≡ (24 + 10M2)
√

144 + 24M2 + 25M4 −2(144 + 24M2+ 25M4)
M2((18M2 + 33)

√
144 + 24M2 + 25M4 − (396 + 177M2 + 90M4))

.

(7.149)

Notice that the internal soliton oscillations are stable in the classical case H = 0
for which always ω2 > 0. The expression in (7.149) differs from the result in [11]
because here all quantities are expanded in powers of H. Nevertheless, the results
are basically the same at the end.

The internal soliton vibrations can be unstable for small quantum parameter. For
instance, for M > 0.81, f (M2) < 1 at (7.149). Further increasing M allows for
smaller values of H. For M = 1, one has H > 0.79 for instability, which is still
reasonably attained at the underlying semiclassical limit. Too large values of M are
not reasonable, however, due to the weak turbulence condition which precludes very
strong electric fields. Figure 7.6 shows the marginal curve H2 = f (M2) separating
stable and unstable regions.

The presence of instabilities when H �= 0 shows that the classical localized
solution eventually disappear due to quantum effects, since the width of the
corresponding Gaussian continuously increases with time. Hence, the classical
Langmuir soliton, produced by particle trapping in the self-consistent electrostatic
potential, becomes unstable due to electron tunneling. Differently from the usual
tunneling process, here the electrons tunnel through a self-consistent potential
barrier. At the end both the electron–hole and the electric field diffuse away. It can be
the case, however, that nonlinear effects not included in the linear stability analysis
above prevent the complete erasure of the Langmuir soliton.

Differently from the classical internal Langmuir soliton oscillations [12], (7.140)
and (7.142) seems to be not described by a pseudo-potential function. Indeed due to
the explicit velocity dependence on the dynamical equation for a(t), we do not have
an obvious recipe to express this system in a variational form. Nevertheless, using
the energy integral H in (7.143) some conclusions can be obtained. For instance,
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Fig. 7.6 The the marginal stability condition H2 = f (M2) from (7.149). Instability happens for
H2 > f (M2)

one step ahead the above linear analysis comprises a rough estimate for the escape
velocity, defined as the minimum speed for unbounded motion. Asymptotically far
from the self-consistent potential well, one has ȧ = ṡ = 0, in the unbounded case
when a → ∞ and s → ∞. From (7.143) this correspond to H = 0. Supposing
an initial condition at the fixed point in (7.145) and (7.146) and defining ȧ(0) =
ȧ0 = 0 for the sake of simplicity, one find H = 0 for a escape velocity ṡ(0) = ṡ0

specified by

ṡ2
0 =

M

4
√

2
− 7H2M3

64
√

2
, (7.150)

where M = N was used. Quantum effects act in a tunneling-like manner once
again because (7.150) shows that for H > (4/

√
7)M−1 the pseudo-particle with

coordinates (a,s) will escape from (a0,s0) with ȧ0 = 0 whatever the value of ṡ0.
The limiting value can be achieved even for the semiclassical case for sufficiently
high M. For instance, when M = 2 the particle certainly escapes for H > 0.76, which
can be regarded as moderate with some optimism. However, smaller values of H can
be found for nonzero ȧ0. In all cases, (7.150) confirm the overall diffusive effect of
the Bohm potential in quantum plasmas.

Figures 7.7–7.9 shows typical oscillations for (7.140) and (7.142), describing
the dynamics of the widths of the Gaussians associated with the electric field and
the density, with M = 3, H = 0.3. The initial condition is at the fixed point and
ȧ(0) = 0. Also, ṡ0 = 0.62. For such parameters, simulations shows unbounded
motion for ṡ0 = 0.64, which is much less than the classical escape velocity, ṡ0 =
0.73, and in good agreement with the critical value 0.59 arising from the crude
estimate in (7.150). The energy H in (7.143) remains approximately constant at
the value −0.10 along the run. We observe distinct time scales for a(t) and s(t).
Taking a smaller initial value ṡ0 gives a more regular, quasi-periodic oscillation
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Fig. 7.7 Simulation of the semiclassical equations (7.140) and (7.142) showing a(t), according to
[11]. Parameters, M = 3, H = 0.3. Initial condition, (a0, s0, ȧ0, ṡ0) = (1.52,1.36,0,0.62)
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Fig. 7.8 Simulation for the semiclassical equations (7.140) and (7.142) showing s(t), according
to [11]. Parameters, M = 3, H = 0.3. Initial condition, (a0, s0, ȧ0, ṡ0) = (1.52,1.36,0,0.62)

pattern, similar to the classical oscillations [12]. However, quantum effects imply
complicated trajectories, approaching the critical value of ṡ0 for unbounded motion
(see Fig. 7.9). Additional runs show that increasing the value of ṡ0 increases the
period and the amplitude of the oscillations.
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Fig. 7.9 Trajectory from (7.140) and (7.142) in configuration space, according to [11]. Parame-
ters, M = 3, H = 0.3. Initial condition, (a0, s0, ȧ0, ṡ0) = (1.52,1.36,0,0.62)

7.5.2 Fully Quantum Case

If H is not very small, it is more appropriate to include κ as a dynamical variable,
treating (7.136), (7.139) and (7.140) as a dynamical system for a,κ , and s. In
this case, it is not possible to get a closed form solution for the fixed points,
which need to be numerically found. For M = 1,H = 5, equilibrium is found for
(κ ,a,s) = (0,9.15,3.53). Figure 7.10 shows a typical trajectory starting at this
initial condition, with ṡ0 = 0.2. Under the same parameters but with a smaller initial
velocity produces quasi-periodic motion, as shown in Fig. 7.11, where ṡ0 = 0.05.
Similar simulations shows that for increasing H it becomes more difficult to get
regular, quasi-periodic trajectories, pointing for instabilities of quantum nature. In
addition, unbounded motion appears for smaller values of the initial velocity.

Further results on the rôle of quantum effects can be obtained in the idealized
ultra quantum case where we can neglect all terms in the right-hand sides of (7.136),
(7.139) and (7.140) except those containing H2. In this situation, we get

ȧ =
12H2κ(1 + 4κ2a4)

a
, (7.151)

κ̇ =
3H2(1−16κ4a8)

a6 , (7.152)

s̈ =
3H2

s7 , (7.153)
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Fig. 7.10 Simulation of (7.136), (7.139) and (7.140) displaying a and s, according to [11].
Parameters: M = 1, H = 5. Initial conditions (κ ,a, s, ṡ) = (0,9.15,3.53,0.20)
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Fig. 7.11 Simulation of (7.136), (7.139) and (7.140) displaying a and s, according to [11].
Parameters: M = 1, H = 5. Initial condition at (κ ,a, s, ṡ) = (0,9.15,3.53,0.05)

which can be analytically solved yielding

a2 = a2
0 +

36H4(t − t0)2

a6
0

, κ2 =
9a4

0H4(t − t0)2

(a8
0 + 36H4(t − t0)2)2

, (7.154)
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where a0 and t0 are numerical constants. From (7.154) the conclusion is that the
width a of the envelope electric field tends to increase without bound in the ultra
quantum limit, while the chirp function κ approaches zero. Similarly, inspection
of (7.153) shows that the width b = s2 of the density fluctuation increases without
bound, since s̈ = −∂V/∂ s for a pseudo-potential V = H2/2s6 having no bound
states.

Problems

7.1. Derive the quantum Langmuir dispersion relation in (7.10).

7.2. Repeat the derivation of the quantum Zakharov system using now the equation
of state for a isothermal Maxwell–Boltzmann equilibrium, p = nκBT .

7.3. Verify the dispersion relation (7.64) for the quantum four-wave instability.

7.4. Expand (7.69) up to O(k6). Obtain the wavenumber kmax for maximal growth
rate. Reproduce Figs. 7.3 and 7.4.

7.5. Check that the Lagrangian density (7.107) yields the one-dimensional quantum
Zakharov system.

7.6. Prove the invariance of number of quanta, momentum and energy in (7.119)–
(7.121) for the one-dimensional quantum Zakharov system.

7.7. Use the Gaussian Ansatz described by (7.105), (7.113), (7.114) and (7.116) to
obtain the Lagrangian (7.134) after performing the spatial integration in (7.115).

7.8. Check the conservation law (7.144).

7.9. Repeat the linear stability analysis of (7.140) and (7.148) describing the
internal semiclassical oscillations of the quantum Langmuir soliton.
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Chapter 8
The Three-Dimensional Quantum
Zakharov System

Abstract The results from the last chapter are extended to the three-dimensional
situation. First, the three-dimensional quantum Zakharov system is derived from a
two-time scales analysis. A Lagrangian formalism and the associated conservation
laws are written down. Restricting to the adiabatic and semiclassical case, the system
reduces to a quantum vector nonlinear Schrödinger equation (QVNLS) for the
envelope electric field. A Lagrangian formalism for this QVNLS equation is used
to investigate the behavior of Gaussian shaped solutions (Langmuir wave packets),
by means of a time-dependent variational method. Quantum corrections are shown
to prevent the collapse of Langmuir wave packets, in both two and three spatial
dimensions. The conservation laws of the QVNLS equation are discussed. Finally,
we discuss the oscillations of the width of the Langmuir wave packets, as a result
from the interplay between classical refraction and quantum diffraction.

8.1 Collapse of Langmuir Wave Packets

In the last chapter, the one-dimensional quantum Zakharov system was investigated
in some detail. Quantum effects were shown to be responsible for the suppression
of the four-wave decay instability. Also variational methods were employed first
for the adiabatic, semiclassical case, which is reducible to a quantum-generalized
nonlinear Schrödinger equation for the envelope electric field. Later the general,
nonadiabatic, and nonsemiclassical situation was also shown to be amenable to
a variational approach. Thanks to the Lagrangian formalism, the spatio-temporal
dynamics was replaced by an approximate system of ordinary differential equations,
in terms of reasonable trial functions for the density depletion and the envelope
electric field. The advantage of the reduced equations is that they are amenable
to standard methods of nonlinear analysis, comparing to the original quantum
Zakharov equations. For instance, we concluded that quantum effects tend to
destroy localized nonlinear structures such as Langmuir solitons, due to tunneling
through the self-consistent potential barrier associated with the ponderomotive

F. Haas, Quantum Plasmas: An Hydrodynamic Approach, Springer Series on Atomic,
Optical, and Plasma Physics 65, DOI 10.1007/978-1-4419-8201-8 8,
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force. The purpose of this chapter is to extend the previous results to the more
ambitious case of three spatial dimensions.

In the classical case, it is well known that the solutions for the Zakharov
system behaves in a qualitatively different way, according to the dimensionality.
For instance, both heuristic arguments and numerical simulations indicate that the
ponderomotive force can produce finite-time collapse of Langmuir wave packets in
two or three spatial dimensions [7,21,22]. This is in contrast to the one-dimensional
case, whose solutions are smooth for all time. A dynamic rescaling method was used
for the time-evolution of electrostatic self-similar and asymptotically self-similar
solutions in two- and three-dimensions, respectively [10]. Allowing for transverse
fields shows that singular solutions of the resulting vector Zakharov equation are
weakly anisotropic, for a wide class of initial conditions [14]. The electrostatic
nonlinear collapse of Langmuir wave packets in the ionospheric and laboratory
plasmas has been observed [4, 16]. Also, the collapse of Langmuir wave packets
in beam plasma experiments [3] verifies the basic concepts of strong Langmuir
turbulence, as introduced by Zakharov [20]. The analysis of the coupled longitudinal
and transverse modes in the classical strong Langmuir turbulence has been less
studied [1, 2, 11], as well as the intrinsically magnetized case [15], which can lead
to upper-hybrid wave collapse [18]. Finally, Zakharov-like equations have been
proposed for the electromagnetic wave collapse in a radiation background [13].

Our main concern is about the rôle of the quantum diffraction effects against
the collapse of localized solutions in the two- and three-dimensional cases. The
extra dispersion induced by the Bohm potential term makes the dynamics less
violent, a first hint to infer that collapse can be prevented due to quantum effects.
To verify the conjecture, a variational procedure will be pursued. Recently, the
same question was addressed in a more rigorous way [17], by means of estimates
and systematic asymptotic expansions, confirming the qualitative results of the
variational approach.

The first task we have is to derive the three-dimensional quantum Zakharov equa-
tions. Now, magnetic field perturbations are unavoidable, so that the electromagnetic
quantum fluid equations are needed. The general theory on the three-dimensional
quantum Zakharov model was presented in [9].

8.2 Derivation of the Three-Dimensional Quantum
Zakharov System

For convenience, we write the quantum two-fluid equations in the electromagnetic
case. As apparent from Chap. 6, these are

∂ ne

∂ t
+ ∇ · (neue) = 0, (8.1)

∂ ni

∂ t
+ ∇ · (niui) = 0, (8.2)
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∂ue

∂ t
+ ue ·∇ue = − ∇Pe

mene
− e

me
(E+ ue ×B)

h̄2

2m2
e

∇
(

∇2√ne√
ne

)
, (8.3)

∂ui

∂ t
+ ui ·∇ui =

e
mi

(E+ ue ×B), (8.4)

as derived after extracting the zeroth- and first-order moments from the electro-
magnetic Wigner equation. The symbols are the same as in Chap. 6. In contrast to
(6.42) and (6.43), no phenomenological dissipation terms are included now in the
momentum transport equations, since collisions are not the main concern in what
follows. To excellent approximation the ions behave classically due to their large
mass, so that no Bohm term was included in the ion force equation. The theory
should be adapted to alternative cases, for example, for an electron–positron plasma.

For the electronic fluid pressure, consider the equation of state for a three-
dimensional completely degenerate zero-temperature spin 1/2 gas,

Pe =
men0v2

Fe

5

(
ne

n0

)3

, (8.5)

where all symbols are as before. In a first approximation, the ionic Fermi pressure
can be disregarded due to the larger ion mass.

The system (8.1)–(8.4) is coupled to Maxwell’s equations,

∇ ·E =
ρ
ε0

, ∇ ·B = 0, (8.6)

∇×E = −∂B
∂ t

, ∇×B = μ0J + μ0ε0
∂E
∂ t

, (8.7)

where the charge and current densities are given, respectively, by

ρ = e(ni −ne), J = e(niui −neue). (8.8)

The model is the same as in the classical plasma case [19, 20], except for the Fermi
pressure and Bohm potential in the electron force equation (8.3).

Combining Faraday’s and Ampère’s laws, we get

μ0ε0
∂ 2E
∂ t2 + ∇× (∇×E) = −μ0

∂ J
∂ t

. (8.9)

Due to the larger ion inertia, there are two time scales, with a fast electron
and a slow ion dynamics. Hence, it is indicated to introduce a two-time scale
decomposition,

ne = n0 + δns + δnf, ni = n0 + δns, (8.10)

ue = δus +δuf, ui = δus, (8.11)

E = δEs +δ Ef, B = δBf, (8.12)
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where the subscripts “s” and “f” refer to slowly and rapidly changing quantities,
respectively. On averaging over many periods of fast oscillations, we have

〈δns〉 = δ ns, 〈δnf〉 = 0, (8.13)

the same applying to the remaining variables.
Following [19], we use the fast component of (8.9) to derive an evolution

equation for the electric field. The current density

J = −eδ nfδus − e(n0 +δns + δnf)δ uf (8.14)

on averaging gives
〈J〉 = −e〈δnfδuf〉, (8.15)

so that

Jf = J−〈J〉= −e(n0 + δns)δuf − eδnfδus − e[δnfδuf −〈δnfδuf〉]. (8.16)

The third term on the right-hand side of (8.16) can be neglected using the same
estimate as in (7.21), valid for small electric field wavenumbers much smaller than
the electron Fermi wavenumber kFe = ωpe/vFe. Moreover, the square bracket term
in (8.16) can be neglected in terms of a weak turbulence assumption which allows
to disregard all harmonic generating terms (see [19] for a detailed justification).

In conclusion, taking into account the different time-scales for the slow and fast
quantities, we get

∂Jf

∂ t
= −e(n0 +δns)

∂δ uf

∂ t
. (8.17)

Hence, from (8.9),

μ0ε0
∂ 2Ef

∂ t2 + ∇× (∇×Ef) = μ0e(n0 +δns)
∂δ uf

∂ t
. (8.18)

In view of the weak turbulence and small wavenumber assumptions, the fast
component of the electron force equation is

∂δuf

∂ t
=

3ε0v2
Fe

5n0e
∇(∇ ·δ Ef)− e

me
δEf − ε0h̄2

4m2
en0e

∇
[
∇2 (∇ ·δEf)

]
, (8.19)

where the fast component of Poisson’s equation

∇ ·δEf = − e
ε0

δnf (8.20)

was used to eliminate δnf. Moreover, all convective terms were neglected [19] and
the pressure and Bohm terms linearized. Finally, the magnetic force contribution
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was discarded since it would contribute a higher-order nonlinearity, δEf �
δus × δBf.

Inserting (8.19) into (8.18) and disregarding some higher-order nonlinearities
using n0δnf � δnsδnf the result is

∂ 2Ef

∂ t2 + ω2
peδ Ef + c2∇× (∇×E)− 3

5
v2

Fe∇(∇ · δEf)+
h̄2

4m2
e

∇
[
∇2(∇ ·δEf)

]

= −ω2
pe

n0
δnsδEf, (8.21)

where c2 = 1/(μ0ε0). The left-hand side of (8.21) is depending only on the fast part
of the electric field, which is coupled to the slow part of the density perturbation
appearing on the right-hand side. Hence, also the equation for δns has to be found.

The slow component of the electron force equation is

∂δus

∂ t
+ δus ·∇δus + 〈δ uf ·∇δuf〉+ e

me
δEs +

e

me
〈δ uf × δBf〉

+
3
5

v2
Fe

n0
∇δns − h̄2

4m2
en0

∇∇2δns = 0. (8.22)

To lowest-order on the fast time-scale,

∂δ us

∂ t
= − e

me
δEf, (8.23)

which can be combined with the fast part of Faraday’s law

∇×δEf = −∂δ Ef

∂ t
(8.24)

to obtain
B =

me

e
∇×δuf. (8.25)

Hence, in (8.22) we get

〈δuf ·∇δuf〉+ e
me

〈δuf ×δ Bf〉 =
1
2

∇
〈|δuf|2

〉
=

e2

2m2
eω2

pe
∇

〈|δEf|2
〉
, (8.26)

the last equality following from

δuf = −ieδEf/(meωpe) (8.27)

in a first-order approximation.
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Hence, the slow component of the electron force equation becomes

∂δus

∂ t
+ δus ·∇δus +

e
me

δ Es +
e2

2m2
eω2

pe
∇

〈|δEf|2
〉

+
3
5

v2
Fe

n0
∇δns − h̄2

4m2
en0

∇∇2δns = 0. (8.28)

In an analogous way, the slow component of the ion force equation is

∂δus

∂ t
+ δus ·∇δus − e

mi
δEs +

e2

2m2
i ω2

pe
∇

〈|δ Ef|2
〉

= 0. (8.29)

Eliminating δEs between (8.28) and (8.29) and using me/mi � 1 to disregard
some terms, we get

∂δ us

∂ t
+ δus ·∇δus +

e2

2memiω2
pe

∇
〈|δEf|2

〉

+
3
5

mev2
Fe

min0
∇δns − h̄2

4memin0
∇∇2δns = 0. (8.30)

The third term on (8.30) is the so-called ponderomotive force [19], which appears
as a radiation pressure force.

The equation of continuity for ions gives

∂δ ns

∂ t
+ ∇ · ((n0 +δns)δ us) = 0, (8.31)

which, combined with (8.30) and linearizing with respect to δ ns and δus gives

∂ 2

∂ t2

(
δns

n0

)
− 3

5
c2

s ∇2
(

δ ns

n0

)
=

ε0

2min0
∇2 〈|δEf|2

〉− h̄2

4memin0
∇4

(
δns

n0

)
, (8.32)

where

cs =
(

mev2
Fe

mi

)1/2

(8.33)

is the ion-acoustic velocity in the case of a degenerate Fermi electron gas.
Equations (8.21) and (8.32) form a closed system for δns and δEf. However,

some improvement can be obtained defining the slowly varying envelope electric
field Ẽ via

δEf =
1
2

(Ẽe−iωpet + Ẽ∗ eiωpet). (8.34)
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Disregarding the second-order time-derivative of the slowly varying envelope
electric field, and using 〈|δEf|2〉 = (1/2)〈|Ẽf|2〉, we finally obtain the quantum
corrected 3D Zakharov equations,

iωpe
∂ Ẽ
∂ t

− c2 ∇× (∇× Ẽ)+
3
5

v2
Fe∇(∇ · Ẽ)− h̄2

4m2
e

∇
[
∇2(∇ · Ẽ)

]
=

δ ns

n0
ω2

pe Ẽ,

(8.35)

∂ 2

∂ t2

(
δns

n0

)
− 3

5
c2

s ∇2
(

δ ns

n0

)
+

h̄2

4memin0
∇4

(
δns

n0

)
=

ε0

4min0
∇2 〈|Ẽ|2〉 .

(8.36)

In comparison to the classical Zakharov system (see (2.48a) and (2.48b) of [19]),
there is the inclusion of the extra dispersive terms proportional to h̄2 in (8.35) and
(8.36). Other quantum difference is the presence of the Fermi speed instead of the
thermal speed in the last term at the left-hand side of (8.35). From the qualitative
point of view, the terms proportional to h̄2 are responsible for extra dispersion which
can avoid collapsing of Langmuir envelopes, at least in principle. Finally, notice
the nontrivial form of the fourth-order derivative term in (8.35). It is not simply
proportional to ∇4Ẽ as could be wrongly guessed from the quantum Zakharov
equations in 1 + 1 dimensions, where there is a ∼ ∂ 4Ẽ/∂x4 contribution [5].

It is useful to consider the rescaling

r̄ =
2
√

5μ/3ωpe r
vFe

, t̄ = 2 μ ωpet,

n =
δns

4μn0
, E =

e Ẽ

4
√

3μ/5meωpevFe
, (8.37)

where μ = me/mi. Then, dropping the bars in r,t, we obtain

i
∂E

∂ t
− 5c2

3v2
Fe

∇× (∇×E )+ ∇(∇ ·E ) = nE + H ∇
[
∇2(∇ ·E )

]
, (8.38)

∂ 2n
∂ t2 −∇2n−∇2(|E |2)+ H ∇4n = 0, (8.39)

where

H =
me

mi

(
5h̄ωpe

3κBTFe

)2

(8.40)



176 8 The Three-Dimensional Quantum Zakharov System

is a nondimensional parameter associated with the quantum effects, in terms of
κBTFe = mev2

Fe. Usually, it is a very small quantity, but it is nevertheless interesting
to retain the ∼ H terms, specially for the collapse scenarios. The reason is not only
in a general theoretical motivation, but also because from some simple estimates
one concludes that these terms become of the same order as some of other terms in
(8.35) and (8.36) provided that the characteristic length L for the spatial derivatives

becomes as small as the mean inter-particle distance, L ∼ n−1/3
0 . Precisely, in a

collapsing scenario one would have large spatial gradients and then the quantum
effects would come into play. However, of course the quantum Zakharov equations
are not able to describe the late stages of the collapse, since they do not include
dissipation, which is unavoidable for short scales. In the left-hand side of (8.38),
the ∇(∇ ·E ) term is retained because the ∼ c2/v2

Fe transverse term disappears in the
electrostatic approximation.

In the adiabatic limit, neglecting ∂ 2n/∂ t2 in (8.39) and under appropriated
boundary conditions, it follows that

n = −|E |2 + H ∇2n, (8.41)

It is not so easy to directly express n as a function of |E | as in the classical case.
Therefore, the adiabatic limit is not enough to derive a vector nonlinear Schrödinger
equation.

8.3 Lagrangian Structure and Conservation Laws

The quantum Zakharov equations (8.38) and (8.39) can be described by the
Lagrangian density

L =
i
2

(
E ∗ · ∂E

∂ t
−E · ∂E ∗

∂ t

)
− 5c2

3v2
Fe

|∇×E |2 −|∇ ·E |2 −H |∇(∇ ·E )|2

+n
( ∂α

∂ t
−|E |2

)
− 1

2

(
n2 + H|∇n|2 + |∇α|2

)
, (8.42)

where n, the auxiliary function α and the components of E ,E ∗ are regarded as
independent fields.

Remark. For the particular form (8.42) and for a generic field ψ , one computes the
functional derivative as

δL

δψ
=

∂L

∂ψ
− ∂

∂ ri

∂L

∂ψ/∂ ri
− ∂

∂ t
∂L

∂ψ/∂ t
+

∂ 2

∂ ri ∂ r j

∂L

∂ 2ψ/∂ ri∂ r j
, (8.43)

using the summation convention and where ri are Cartesian components.
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Taking the functional derivatives with respect to n and α , we have

∂α
∂ t

= n + |E |2 −H∇2n, (8.44)

and
∂n

∂ t
= ∇2α, (8.45)

respectively. Eliminating α from (8.44) and (8.45), we obtain the low frequency
equation. In addition, the functional derivatives with respect to E ∗ and E produce
the high-frequency equation and its complex conjugate. The present formalism is
inspired by the Lagrangian formulation of the classical Zakharov equations [6].

The quantum Zakharov equations admit as exact conserved quantities the
“number of plasmons” of the Langmuir field,

N =
∫

|E |2 dr, (8.46)

the linear momentum (with components Pi, i = x,y,z),

Pi =
∫ [

i
2

(
E j

∂E ∗
j

∂ ri
−E ∗

j
∂E j

∂ ri

)
−n

∂α
∂ ri

]
dr (8.47)

and the Hamiltonian,

H =
∫ [

n|E |2 +
5c2

3v2
Fe

|∇×E |2 + |∇ ·E |2 + H |∇(∇ ·E )|2

+
1
2

(
n2 + H|∇n|2 + |∇α|2

)]
dr. (8.48)

Furthermore, there is also a preserved angular momenta functional, but it is not rele-
vant in the present work. These four conserved quantities can be associated, through
Noether’s theorem, to the invariance of the action under gauge transformation, time
translation, space translation and rotations, respectively. The conservation laws can
be used, for example, to test the accuracy of numerical procedures. Also, observe
that equations (8.39) and (8.41) for the adiabatic limit are described by the same
Lagrangian density (8.42). In this approximation, it suffices to set α ≡ 0.

In addition to the adiabatic limit, (8.41) can be further approximated to

n = −|E |2 −H∇2(|E |2), (8.49)
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assuming that the quantum term is a perturbation. In this way and using (8.38), a
quantum vector nonlinear Schrödinger equation (QVNLS) is derived

i
∂E

∂ t
+ ∇(∇ ·E )− 5c2

3v2
Fe

∇× (∇×E )+ |E |2E

= H∇
[
∇2(∇ ·E )

]−H E ∇2(|E |2). (8.50)

The appropriate Lagrangian density Lad,sc for the semiclassical equation (8.50)
is given by

Lad,sc =
i
2

(
E ∗ · ∂E

∂ t
−E · ∂E ∗

∂ t

)
− 5c2

3v2
Fe

|∇×E |2 −|∇ ·E |2

−H |∇(∇ ·E )|2 +
1
2
|E |4 − H

2

∣∣∣∇[ |E |2]
∣∣∣2

, (8.51)

where the independent fields are taken as E and E ∗ components.
The expression N for the number of plasmons in (8.46) remain valid as a constant

of motion in the joint adiabatic and semiclassical limit, as well as the momentum P
in (8.47) with α ≡ 0. Finally, the Hamiltonian

Had,sc =
∫ [

5c2

3v2
Fe

|∇×E |2 + |∇ ·E |2 + H |∇(∇ ·E )|2 − 1
2
|E |4 +

H
2

∣∣∣∇[ |E |2 ]
∣∣∣2

]
dr

(8.52)

is also a conserved quantity.
In the following, the influence of the quantum terms in the right-hand side

of (8.50) are investigated, assuming adiabatic conditions for collapsing quantum
Langmuir envelopes. Other scenarios for collapse, like the supersonic one [10, 14],
could also be relevant.

8.4 Variational Solution in Two Dimensions

Consider the adiabatic semiclassical system described by (8.50). We refer to
localized solution for this QVNLS equation as quantum “Langmuir wave packets,”
or envelopes. As discussed in detail in [6] in the purely classical case, Langmuir
wave packets will become singular in a finite time, provided the energy is not
bounded from below. Of course, explicit analytic three-dimensional Langmuir
envelopes are difficult to derive. A fruitful approach is to make use of the Lagrangian
structure for deriving approximate solutions. This approach has been pursued in
[12] for the classical and in [8] for the quantum Zakharov system. Both studies
considered the internal vibrations of Langmuir envelopes in one spatial dimension.
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Presently, we shall apply the time-dependent variational method for the higher-
dimensional cases. A priori, it is expected that the quantum corrections would inhibit
the collapse of localized solutions, in view of wave packet spreading. To check this
conjecture, and to have more definite information on the influence of the quantum
terms, first we consider the following Ansatz,

E =
(

N
π

)1/2 1
σ

exp

(
− ρ2

2σ 2

)
exp

(
i(Θ + kρ2)

)
(cosφ ,sin φ ,0), (8.53)

which is appropriate for two spatial dimensions. Here, σ ,k,Θ , and φ are real
functions of time, and ρ =

√
x2 + y2. The normalization condition (8.46) is

automatically satisfied (in 2D the spatial integrations reduce to integrations on
the plane). Other localized forms, involving, for example, a sech-type dependence,
could have been also proposed. Here, a Gaussian form was suggested mainly for the
sake of simplicity. Notice that the envelope electric field (8.53) is not necessarily
electrostatic: it can carry a transverse (∇×E 
= 0) component.

The free functions in (8.53) should be determined by extremization of the
action functional associated with the Lagrangian density (8.51). A straightforward
calculation gives

L2 ≡
∫

Lad,sc dxdy = −N

[
Θ̇ +σ 2k̇ +

10c2

3v2
Fe

k2σ 2 +
1
2

(
5c2

3v2
Fe

− N
2π

)
1

σ2

+8Hk2 + 16Hk4σ 4 +
(

1 +
N

2π

)
H
σ 4

]
, (8.54)

where only the main quantum contributions are retained. Now L2 is the Lagrangian
for a finite-dimensional mechanical system, since the spatial dependence of the
envelope electric field was defined in advance via (8.53). Of special interest is the
behavior of the width function σ . For a collapsing solution one could expect that
σ goes to zero in a finite time. The phase Θ and the chirp function k should be
regarded as auxiliary fields. Notice that L2 is not dependent on the angle φ , which
remains arbitrary as far as the variational method is concerned.

Applying the functional derivative of L2 with respect to Θ , we obtain

δ L2

δΘ
= 0 → Ṅ = 0, (8.55)

so that the variational solution preserves the number of plasmons, as expected. The
remaining Euler–Lagrange equations are

δL2

δk
= 0 → σσ̇ =

10c2

3v2
Fe

σ 2k + 8Hk + 32Hσ 4k3, (8.56)
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δL2

δσ
= 0 → σ k̇ = −10c2

3v2
Fe

k2σ +
1
2

(
5c2

3v2
Fe

− N

2π

)
1

σ3 −32Hk4σ 3

+
(

1 +
N
2π

)
2H
σ5 . (8.57)

The exact solution of the nonlinear system (8.56) and (8.57) is difficult to obtain,
but at least the dynamics was reduced to a set of ordinary differential equations.

It is instructive to analyze the purely classical (H ≡ 0) case first. This is specially
true, since to our knowledge the time-dependent variational method was not applied
to the QVNLS equation (8.50), even for classical systems. The reason can be due to
the algebraic complexity induced by the transverse term.

When H = 0, (8.56) gives

k =
3v2

Feσ̇
10c2σ

. (8.58)

Inserting this result in (8.57), we have

σ̈ = −∂V2c

∂σ
, (8.59)

where the classical pseudo-potential V2c is

V2c =
5c2

6v2
Fe

(
5c2

3v2
Fe

− N
2π

)
1

σ 2 . (8.60)

From (8.60) it is evident that the repulsive character of the pseudo-potential will
be converted into an attractive one, whenever the number of plasmons exceeds a
threshold,

N >
10πc2

3v2
Fe

, (8.61)

a condition for Langmuir wave packet collapse in the classical two-dimensional
case. The interpretation of the result is as follows. When the number of plasmons
satisfy (8.61), the refractive ∼ |E |4 term dominates over the dispersive terms in the
Lagrangian density (8.51), producing a singularity in a finite time. Finally, notice
the ballistic motion when N = 10πc2/(3v2

Fe), which can also lead to singularity.
Further insight follows after evaluating the energy integral (8.52) with the Ansatz

(8.53), which gives, after eliminating k,

Had,sc =
3Nv2

Fe

5c2

[
σ̇2

2
+V2c

]
(H = 0, 2D). (8.62)

Of course, this energy first integral could be directly obtained from (8.59). Ho-
wever, the plausibility of the variational solution is reinforced, since (8.62) shows
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that it preserves the exact constant of motion Had,sc. In addition, in the attractive
(collapsing) case the energy (8.62) is not bounded from below.

In the quantum (H 
= 0) case, (8.56) becomes a cubic equation in k, whose exact
solution is too cumbersome to be of practical use. It is better to proceed by suc-
cessive approximations, taking into account that the quantum and electromagnetic
terms are small. In this way, one arrives at

σ̈ = −∂V2

∂σ
, (8.63)

where the pseudo-potential V2 is

V2 =
5c2

6v2
Fe

(
5c2

3v2
Fe

− N
2π

)
1

σ 2 +
5Hc2

3v2
Fe

(
1 +

N
2π

)
1

σ 4 . (8.64)

Now, even if the threshold (8.61) is exceeded, the repulsive ∼σ−4 quantum term
in V2 will prevent singularities. This adds quantum diffraction as another physical
mechanism, besides dissipation and Landau damping, so that collapsing Langmuir
wave packets are avoided in the QVNLS equation. Also, similarly to (8.62), it can
be shown that the approximate dynamics preserves the energy integral, even in the
quantum case. Indeed, calculating from (8.52) and the variational solution gives
Had,sc as

Had,sc =
3Nv2

Fe

5c2

[
σ̇ 2

2
+V2

]
(H ≥ 0, 2D). (8.65)

From (8.63), obviously Ḣad,sc,2 = 0.
It should be noticed that oscillations of purely quantum nature are obtained

when the number of plasmons exceeds the threshold (8.61). Indeed, in this case
the pseudo-potential V2 in (8.64) assumes a potential well form as shown in Fig. 8.1,
which clearly admits oscillations around a minimum σ = σm. Here,

σm = 2

[
H(1 + N/2π)

N/2π −5c2/(3v2
Fe)

]1/2

. (8.66)

At this place, one get the minimum value of V2,

V2(σm) = − 5c2

48H v2
Fe

(N/2π −5c2/(3v2
Fe))

2

1 + N/2π
> − 1

16H

(
N
2π

− 5c2

3v2
Fe

)2

, (8.67)

the last inequality follows since (8.61) is assumed. Therefore, a deepest potential
well is obtained when N is increasing. Also, for too large quantum effects the
trapping of the localized electric field in this potential well would be difficult, since
V2(σm) → 0− as H increases. This is due to the dispersive nature of the quantum
corrections.



182 8 The Three-Dimensional Quantum Zakharov System

V2

σ

Fig. 8.1 The qualitative form of the pseudo-potential in (8.64) for N > 10πc2/(3v2
Fe)

The frequency ω of the small amplitude oscillations is derived linearizing (8.63)
around the equilibrium point (8.66). Restoring physical coordinates via (8.37) this
frequency is calculated as

ω =

√
5
6

c
vFe

(
3κBTFe

5h̄ωpe

)2 (N/2π −5c2/(3v2
Fe)

3/2

1 + N/2π
ωpe

<

√
5
6

vFe

c

(
3κBTFe

5h̄ωpe

)2 (
N
2π

− 5c2

3v2
Fe

)3/2

ωpe. (8.68)

To conclude, the variational solution suggests that the extra dispersion arising
from the quantum terms would inhibit the collapse of Langmuir wave packets
in two spatial dimensions. Moreover, for sufficient electric field energy (which
is proportional to N), instead of collapse there will be oscillations of the width
of the localized solution, due to the competition between classical refraction and
quantum diffraction. The frequency of linear oscillations is then given by (8.68).
The emergence of a pulsating Langmuir envelope is a qualitatively new phenomena,
which may be tested quantitatively in experiments.

8.5 Variational Solution in Three Dimensions

It is worth to study the dynamics of localized solutions for the QVNLS equation
(8.50) in fully three-dimensional space. For this purpose, we consider the Gaussian
form

E =
(

N

(
√

π σ)3

)1/2

exp

[
− r2

2σ 2 +i(Θ +k r2)
]
(cosφ sinθ ,sin φ sinθ ,cosθ ),

(8.69)
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where σ ,k,Θ ,θ , and φ are real functions of time and r =
√

x2 + y2 + z2, applying
the time-dependent variational method just like in the last section. The normaliza-
tion condition (8.46) is automatically satisfied with (8.69), which can also support a
transverse (∇×E 
= 0) part.

Proceeding as before, the Lagrangian

L3 ≡
∫

Lad,sc dr = −N

[
Θ̇ +

3
2

σ 2k̇ +
12c2

5v2
Fe

k2σ 2 +
3c2

5v2
Fe σ 2

− N

4
√

2π3/2 σ3

+10Hk2 + 20Hk4σ 4 +
5H
4σ 4 +

3HN

4
√

2π3/2 σ 5

]
(8.70)

is derived. In comparison to the reduced 2D-Lagrangian in (8.54), there are different
numerical factors as well as qualitative changes due to higher-order nonlinearities.
Also, the angular variables θ and φ do not appear in L3. Moreover, the algebra is
more complicated and a symbolic computation package is advisable to obtain (8.70).

The main remaining task is to analyze the dynamics of the width σ as a
function of time. This is achieved from the Euler–Lagrange equations for the action
functional associated with L3. As before, δL3/δΘ = 0 gives Ṅ = 0, a consistency
test satisfied by the variational solution. The other functional derivatives yield

δL3

δk
= 0 → σσ̇ =

4k
3

[
6c2

5v2
Fe

σ 2 + 5H (1 + 4k2σ 4)
]
, (8.71)

δL3

δσ
= 0 → σ k̇ =

1
3

[
−24c2

5v2
Fe

k2σ +
6c2

5v2
Feσ 3

− 3N

4
√

2π3/2 σ 4

−80Hk4σ 3 +
5H
σ 5 +

15HN

4
√

2π3/2 σ6

]
. (8.72)

In the formal classical limit (H ≡ 0), and using (8.71) to eliminate k, we obtain

σ̈ = −∂V3c

∂σ
, (8.73)

where now the pseudo-potential V3c is

V3c =
3c2

5v2
Fe

(
8c2

15v2
Fe σ 2

− 2N

9
√

2π3/2 σ 3

)
. (8.74)

The form (8.74) shows a generic singular behavior, since the attractive ∼σ−3 term
will dominate for sufficiently small σ , irrespective of the value of N. Hence, in fully
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V3 c

σ

Fig. 8.2 The qualitative form of the pseudo-potential V3c in (8.74)

three-dimensional space there is more “room” for a collapsing dynamics. Figure 8.2
shows the qualitative form of V3c, attaining a maximum at σ = σM, where

σM =
5v2

F N

8
√

2π3/2 c2
. (8.75)

By (8.72) and using successive approximations in the parameter H to eliminate
k via (8.71), we obtain

σ̈ = −∂V3

∂σ
, (8.76)

where

V3 =
8c2

5v2
Fe

[
c2

5v2
Fe σ 2

− N

12
√

2π3/2 σ3
+

5H
12σ 4 +

H N

4
√

2π3/2 σ 5

]
. (8.77)

The quantum terms are repulsive and prevent collapse, since they dominate for
sufficiently small σ . Moreover, when H 
= 0 an oscillatory behavior is possible,
provided a certain condition, to be explained in the following, is meet.

To examine the possibility of oscillations, consider V ′
3(σ) = 0, the equation for

the critical points of V3. Under the rescaling s = σ/σM, where σM (defined in (8.75))
is the maximum of the purely classical pseudo-potential, the equation for the critical
points read

V ′
3 = 0 → s3 − s2 +

4g
27

= 0, (8.78)

where

g =
864π3 H c4

5N2 v4
Fe

(8.79)

is a new dimensionless parameter. In deriving (8.78), it was omitted a term
negligible except if s ∼ c2/v2

Fe, which is unlikely.
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V3 V3

σ

σ

Fig. 8.3 The qualitative form of the pseudo-potential V3 in (8.77) for g < 1 (on the left) and g > 1
(on the right)

The quantity g plays a decisive rôle on the shape of V3. Indeed, calculating
the discriminant shows that the solutions to the cubic in (8.78) are as follows: (a)
g < 1 → three distinct real roots (one negative and two positive); (b) g = 1 → one
negative root, one (positive) double root; (c) g > 1 → one (negative) real root, two
complex conjugate roots. Therefore, g < 1 is the condition for the existence of a
potential well, which can support oscillations. This is shown in Fig. 8.3. The analytic
solutions of the cubic in (8.78) are cumbersome and will be omitted.

Restoring physical coordinates, the necessary condition for oscillations is rewrit-
ten as

g < 1 → ε0

2

∫
|Ẽ|2 dr >

√
50π
Γ

me vFe c, (8.80)

where Γ = e2/4πε0 h̄c � 1/137 is the fine structure constant. From (8.80) it is seen
that for sufficient electrostatic energy the width σ of the localized envelope field
can show oscillations, supported by the competition between classical refraction
and quantum diffraction. Also, due to the Fermi pressure, for large particle

densities the inequality (8.80) becomes more difficult to be met, since vFe ∼ n1/3
0 .

For example, when n0 ∼ 1036 m−3 (white dwarf), the right-hand side of (8.80) is
0.8 GeV. For n0 ∼ 1033 m−3 (the next generation intense laser-solid density plasma
experiments), it is 74.2 MeV.

Finally, notice that Had,sc from (8.52), evaluated with the variational solution
(8.69), is proportional to σ̇2/2 + V3, which is a constant of motion for (8.76).
Therefore, the approximate solution preserves one of the basic first integrals of the
QVNLS equation (8.50), as it should.

Problems

8.1. Rederive the three-dimensional quantum Zakharov system using a general
polytropic equation of state, Pe = P0(n/n0)γ , where P0 and γ are constants.

8.2. Show that the quantum Zakharov equations (8.38) and (8.39) can be described
by the Lagrangian density (8.42).
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8.3. Using the quantum Zakharov system, directly check the invariance of the
quantities in (8.46)–(8.48), associated with the plasmon number, momentum and
energy conservation.

8.4. Verify that (8.51) provides a Lagrangian density for the QVNLS equation.

8.5. Obtain the Lagrangian L2 in (8.54) for the two-dimensional time-dependent
variational solution for the QVNLS equation.

8.6. Check (8.68) for the frequency of small amplitude width oscillations in the
two-dimensional case.

8.7. Obtain the Lagrangian L3 in (8.70) for the three-dimensional time-dependent
variational solution for the QVNLS equation. Using a symbolic calculus package
may be a good idea.

8.8. Consider the potential V3 in (8.77) for the three-dimensional wave packet
dynamics. Linearize it and derive the frequency of small amplitude oscillations, in
the periodic motion case.

8.9. Calculate the energy in (8.52) for the three-dimensional time-dependent
variational solution. Show that it is proportional to the reduced, one-dimensional
Hamiltonian σ̇ 2/2 +V3 for the width dynamics.
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Chapter 9
The Moments Method

Abstract The quantum hydrodynamic model for plasmas is extended through
the inclusion of higher-order moments of the Wigner function. In this manner,
quantum effects appear without the need of the Madelung decomposition of the
ensemble wavefunctions. The treatment apply to the electrostatic as well as the
electromagnetic cases. To describe nonlinearities and inhomogeneous magnetic
fields, a gauge invariant Wigner formulation is unavoidable. Dispersion relations
for high-frequency wave propagation are discussed.

9.1 Moments Method

As seen in Chaps. 4 and 6, a closed set of quantum fluid equations for plasmas
is obtained, supposing the sum of the kinetic and osmotic pressures to be given
in terms of an equation of state. The choice of equation of state is dictated by
the (quasi) equilibrium properties of the system. For instance, one can choose the
equation of state corresponding to a zero-temperature Fermi–Dirac distribution.
Besides, the quantum hydrodynamical model contains also quantum diffraction
effects represented by the Bohm potential term.

In spite of the simplicity and physical appeal of the resulting model, the closure
hypothesis and the choice of equation of state are not free of objections, as for
any set of macroscopic equations. A more complete theory would include higher-
order moments of the Wigner function, beyond the zeroth- and first-order moments
associated with the particle and current densities, respectively. Therefore, we do not
perform a Madelung decomposition to identify the different pieces in the pressure
dyad (kinetic pressure + osmotic pressure + Bohm potential). Instead, in this chapter,
we define the pertinent moments and compute the associated dynamics, obtaining an
alternative macroscopic theory for quantum plasmas, as described in [7,8]. Later, the
same approach was applied to the treatment of the ponderomotive force [16] and to
the derivation of two-fluid equations [19] in spin-dependent plasmas. We start with
the electrostatic case.

F. Haas, Quantum Plasmas: An Hydrodynamic Approach, Springer Series on Atomic,
Optical, and Plasma Physics 65, DOI 10.1007/978-1-4419-8201-8 9,
© Springer Science+Business Media, LLC 2011
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9.2 Electrostatic Case

The moments approach is traditional in classical kinetic theory, since Grad’s
pioneering work [6]. In addition, the moments approach for quantum charged
particle systems is popular in the semiconductor community [3, 20]. However, in
semiconductor devices usually one has a doping profile as well as external hetero-
junction potentials which makes the analysis intrinsically nonlinear, differently from
plasmas where the propagation of linear waves is the first subject worth to study.
Hence, it is convenient to explicitly write the moment equations in the simplest
case, namely for electrostatic quantum plasmas.

Our starting point is the Wigner–Poisson system, as discussed in Chap. 2 and
written here in the three-dimensional version,

∂ f
∂ t

+ v ·∇ f +
∫

dv′K(v′ −v,r) f (v′,r) = 0, (9.1)

∇2φ =
e
ε0

(∫
dv f (v,r)−n0

)
, (9.2)

where K(v′ −v,r) is defined by

K(v′ −v,r) =
ie
h̄

( m
2π h̄

)3 ∫
ds exp

[
im(v−v′) · s

h̄

]

×
[

φ
(

r +
s
2

)
−φ

(
r− s

2

)]
. (9.3)

For brevity, the time-dependence of the various quantities is omitted. The symbols
are all as in Chap. 2 and the three-dimensional Wigner function is

f (r,v) = N
( m

2π h̄

)3

∑
α

pα

∫
dsexp

(
imv · s

h̄

)
ψ∗

α

(
r +

s
2

)
ψα

(
r− s

2

)
. (9.4)

Unlike in Chap. 2, we now prefer to use the velocity v instead of the canonical
momentum p = mv because of gauge invariance issues which will become clear
when treating the electromagnetic case.

To obtain macroscopic equations, let us introduce the moments

n =
∫

dv f (r,v), (9.5)

nu =
∫

dvv f (r,v), (9.6)

Pi j = m

(∫
dvvi v j f −nui u j

)
, (9.7)

Qi jk = m
∫

dv(vi −ui)(v j −u j)(vk −uk) f (r,v), (9.8)

Ri jkl = m
∫

dv(vi −ui)(v j −u j)(vk −uk)(vl −ul) f (r,v). (9.9)
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In special, from the pressure dyad P a scalar pressure P can be obtained,

P =
(

1
3

)
Pii. (9.10)

Similarly, from the triad Q one can form the heat flux vector q, with

qi =
(

1
2

)
Q j ji. (9.11)

Here and in the following, the summation convention is applied.
From the moments of (9.1), one obtain the following macroscopic equations,

Dn
Dt

= −n∇ ·u, (9.12)

Dui

Dt
= − ∂ jPi j

mn
+

e
m

∂iφ , (9.13)

DPi j

Dt
= −Pk(i ∂ ku j)−Pi j∇ ·u−∂ kQi j k, (9.14)

DQi jk

Dt
=

1
mn

P(i j∂ lPk)l − Ql(i j ∂ luk)−Qi jk∇ ·u

−e h̄2n

4m2 ∂ 3
i jkφ −∂ lRi jkl, (9.15)

where ∂ i = ∂ i = ∂/∂ ri and

D
Dt

=
∂
∂ t

+ u ·∇ (9.16)

is the material derivative. To close the system, we need Poisson’s equation,

∇2φ =
e
ε0

(n−n0). (9.17)

The calculation assumes, for example, decaying or periodic boundary conditions
and uses that Pi j, Qi j k, and Ri jkl are completely symmetric under index permutation.
In addition, in (9.14) and (9.15) the round brackets denote symmetrization, where
we use a minimal sum over permutations of free indices needed to get symmetric
tensors. Thus, for example,

Pk(i ∂ ku j) ≡ Pki ∂ ku j + Pk j ∂ kui, (9.18)

P(i j∂ lPk)l ≡ Pi j∂ lPkl + Pjk∂ lPil + Pki∂ lPjl (9.19)

and so on.
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Presently, there is no assumption on the particular equilibrium Wigner function.
This is a difference in comparison with approaches [4] relying on the first-order
quantum correction to Maxwell–Boltzmann equilibria [18]. Therefore, the model is
not semi-classical; there is not necessarily a small quantum parameter measuring
quantum diffraction effects. Moreover, it is not restricted to classical, Maxwell–
Boltzmann statistics. In addition, notice that the explicit dependence on Planck’s
constant appears only when the heat flux triad transport equation is considered.
Finally, the quantum contribution disappears in (9.15) when the scalar potential is
absent. This is similar to Gardner’s approach [4] and in contrast to the Madelung-
decomposition method of Chaps. 4 and 6 where quantum effects modeled by a
Bohm potential appear already at the momentum transport equation. Here, the usual
quantum force is replaced by the third-order derivative of the scalar potential term
in (9.15). It is remarkable that in this context a free particle gas would be described
by entirely classical equations.

It is to be expected from the very beginning that Planck’s constant would not
appear through the moments of the Wigner equation when there is no electric
field because in this case the Wigner equation reduces to the free-particle Vlasov
equation. However, even so Wigner functions are quantum objects, associated with a
certain quantum statistical ensemble. Furthermore, Planck’s constant should appear
in the initial conditions for the Wigner function.

Let us examine the derivation of the moment equations. The continuity equation
(9.12) and the force equation (9.13) follows in a straightforward manner taking the
zeroth- and first-order moments of (9.3) for the Wigner function. To obtain (9.14)
for the pressure dyad, multiply each term of (9.3) by viv j and integrate to get

∂
∂ t

∫
dvviv j f (r,v)+ ∂k

∫
dvviv jvk f (r,v)+

∫
dv′K(v′ −v)viv j f (r,v) = 0.

(9.20)

The first two integrals above can be handled considering
∫

dvviv j f (r,v) =
Pi j

m
+ nuiu j, (9.21)

∫
dvviv jvk f (r,v) =

Qi jk

m
+

u(iPjk)

m
+ nuiu juk, (9.22)

which can be proven by expanding Pi j and Qi jk in terms of the lower-order moments.
The third term in (9.20) is

∫
dv′K(v′ −v)viv j f (r,v) = −en

m
u(i∂ j)φ , (9.23)

as follows from the identity

( m
2π h̄

)3 ∫
dv exp

(
imv · s

h̄

)
= − h̄2

m2

∂ 2

∂ si∂ s j
δ (s) (9.24)
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together with integration by parts. Joining the results and using the continuity and
force equations to eliminate ∂n/∂ t and ∂u/∂ t after some algebra, we arrive at
(9.14). Similarly, the transport equation (9.15) for the heat triad Qi jk is found.

9.3 Dispersion Relation for Electrostatic Waves

We disregard the contribution from the fourth-order moment Ri jkl , which is the
simplest way to achieve closure of the system (9.12)–(9.15). We take into account
Poisson’s equation and linearize around the homogeneous equilibrium n = n0, u = 0,

Pi j = n0κB

[
T0⊥(x̂⊗ x̂+ ŷ⊗ ŷ)+ T0‖ẑ⊗ ẑ

]
, (9.25)

Qi jk = 0, and φ = 0, where the equilibrium temperatures perpendicular and parallel
to the wave propagation T0⊥ and T0‖ can be unequal. Here, κB is Boltzmann’s
constant and plane wave perturbations proportional to exp(ik z− iωt) are assumed,
without loss of generality. The wave propagating in the z-axis direction is an
anisotropy source. It follows that

ω2 =
ω2

p

2

⎡
⎣1 +

(
1 +

12κB T0‖ k2

mω2
p

+
h̄2 k4

m2 ω2
p

)1/2
⎤
⎦ , (9.26)

where ωp = (n0e2/mε0)1/2 is the plasma frequency. The transverse temperature T0⊥
does not contribute. To obtain (9.26), we need to consider the linearization of the
moment equations, which yield an homogeneous system of 20 equations for 20
unknowns composing the perturbationsδn,δui,δPi j, and δ Qi jk, taking into account
the symmetrization.

In the particular case of small wavenumber and quantum effects, (9.26) reduces
to the usual quantum Langmuir dispersion relation

ω2 = ω2
p +

3κB T0‖ k2

m
+

h̄2 k4

4m2 . (9.27)

The temperature T0‖ should be associated with the velocities dispersion of the
equilibrium Wigner function. For Maxwell–Boltzmann equilibrium, one has T0‖ =
T , the thermodynamic temperature. For a zero-temperature Fermi gas, one has
T0‖ = (2/5)TF, where TF is the Fermi temperature.

Contrarily to the habitual prejudice, one cannot simply postulate Pi j = Pδi j in
terms of the scalar pressure P because the linearization of (9.13)–(9.15) with Pi j =
P0i j + δPi j, φ = δφ gives

δPi j = −eδφ k2

mω2

(
P0i j + P0(izδ jz) +

n0 h̄2 k2 δiz δ jz

4m

)
(9.28)
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as the first-order perturbation of the pressure dyad, assuming k = kẑ and where
the Kronecker delta δi j was employed. Clearly, the wave propagation itself is a
source of anisotropy because there will be nonzero off-diagonal components of the
perturbed pressure dyad even for initially isotropic equilibria. The result (9.28) also
follows from the kinetic theory in the long wavelength limit, and is independent of
the classical or quantum nature of the system. However, as apparent from (9.28), it
is acceptable to assume

Pi j = nκB

[
T⊥(x̂⊗ x̂+ ŷ⊗ ŷ)+ T‖ẑ⊗ ẑ

]
, (9.29)

where the transverse and parallel temperatures T⊥ and T‖ in general are different.
Anisotropic forms of the pressure dyad are usually considered in the case of strong
magnetic fields; here, we show that they should be followed also in the electrostatic
case because of the wave propagation which in itself defines a preferred direction.

The Bohm–Gross dispersion relation is recovered from (9.12)–(9.14) in the
adiabatic and classical case. When heat transfer is irrelevant, we can postulate
Qi jk = 0 and forget (9.15). Linearizing the remaining equations, the result is

ω2 = ω2
p + 3

(κB T0‖
m

)
k2, (9.30)

where only the parallel component P0zz ≡ n0 κB T0‖ of the equilibrium pressure dyad
contributes. However, if the transport equation for the third-order moment Qi jk is
not included no quantum effects are present!

Insisting on an isotropic pressure dyad Pi j = Pδi j and taking Qi jk = 0, one obtain,
in particular,

DP
Dt

= −5
3

P∇ ·u, (9.31)

as follows after taking the trace of all terms in (9.14). Using the continuity equation
one then derive

D
Dt

(
Pn−5/3

)
= 0, (9.32)

which is consistent with the classical, adiabatic equation of state P ∼ n5/3 as
expected.

Alternative moment hierarchy formulations [20], closed at the temperature
(basically the trace of the second-order moment of the Wigner function) evolution
equation, can be shown to result in ω2 = ω2

p +(5/3)(κBT0/m)k2 + h̄2 k4/(12m2),
which goes neither to the Bohm–Gross nor Bohm–Pines dispersion relations in the
classical or zero-temperature limits, respectively. In contrast, as shown here, the
quantum modified Bohm–Gross dispersion relation is a natural consequence from
third-order moment theory, in the small wavenumber and quantum effects limit
of (9.26).
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In addition to the above linear wave propagation analysis, nonlinear oscillating
solutions for the electrostatic moment hierarchy equations (9.12)–(9.15) and (9.17)
can be found in [7]. Next, we investigate the electromagnetic case.

9.3.1 Electromagnetic Case

Frequently Wigner function methods are applied only to electrostatic problems.
One reason for this is the considerable complexity of the quantum Vlasov equation
including magnetic fields. Already in the electrostatic case, the quantum Vlasov
equation include a cumbersome integro-differential term, so that hardly it can be
examined except in the linear limit or numerically. However, the emergence of new
areas like spintronics [21] where magnetic effects are crucial makes it desirable to
have quantum kinetic models allowing for nonzero vector potentials, besides the
intrinsic interest of the subject. In addition, a gauge invariant formalism is needed
to avoid inconsistencies, as will be shortly verified.

The gauge invariant Wigner function (GIWF) formalism have already been
detailed in the past [11, 13, 17]. Reference [13] by Serimaa et al. contain an elegant
expression for the evolution equation satisfied by the GIWF, see (9.39). The gauge-
free Wigner function method has been applied in describing friction as a result of
radiation reaction [9]. Also notice the work by Bialynicki-Birula et al. [1], where the
quantum phase-space equations have been applied and explicitly solved for spinning
particles in a gauge invariant manner. Here we use the GIWF method to model
quantum plasmas, as proposed for the first time in [8].

Since the electromagnetic quantum Vlasov equation is quite complicated, we
introduce a macroscopic theory taking the moments of the GIWF, as done in
the electrostatic case. As stressed in this monograph, in macroscopic models the
nonlinear regimes are not necessarily unaccessible to qualitative analysis. Also, they
are less numerically demanding. The price of replacing the more detailed kinetic
models by macroscopic models is the loss of information on kinetic phenomena
like Landau damping, the plasma echo, particle trapping, etc.

9.4 Gauge Invariant Wigner Function

A sensible definition of gauge invariant one-particle Wigner function f = f (r,v)
was introduced by Stratonovich [17]. In a noncovariant form it is given by

f (r,v) = N
( m

2π h̄

)3 ∫
ds exp

[
is
h̄
·
(

mv− e
∫ 1/2

−1/2
dτA(r + τs)

)]

×ψ∗
(

r +
s
2

)
ψ
(

r− s
2

)
, (9.33)
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to be compared with the definition (9.4) in the electrostatic case. For brevity, the
time-dependence of all quantities is omitted. To simplify the notation, a pure state,
normalized to unity wavefunction is used, although the results hold equally well in
the mixed state case. In addition, A(r) is the vector potential. The charge of the
plasma particles is −e.

It is immediate to verify that the extra integral in (9.33) containing the vec-
tor potential compensates for the change in the wavefunction in a local gauge
transformation

A → A+ ∇Λ , ψ → ψ exp

(−ieΛ
h̄

)
, (9.34)

where Λ = Λ(r) is an arbitrary differentiable function. Indeed,

s ·
∫ 1/2

−1/2
dτ ∇Λ(r + τs) = Λ

(
r +

s
2

)
−Λ

(
r− s

2

)
. (9.35)

Our choice of the form (9.33) is due to convenience since it provides a
nonambiguous way to calculate averaged quantities. The phase factor in it can be
justified [11] in terms of the minimal coupling principle. Moreover, as discussed in
more detail elsewhere, the function of the phase factor is to convert any gauge into
the axial gauge [11]. However, there are other ways to introduce gauge-free Wigner
functions. For instance, one can take [2] a GIWF written in terms of a line integral∫ r2

r1
A(s,t) ·ds instead of the chosen phase factor. However, in this case how to chose

the integration path from r1 to r2? To avoid ambiguities, we apply (9.33).
From f , we can compute the very basic zeroth- and first-order moments

∫
dv f = N|ψ |2, (9.36)

∫
dvv f =

ih̄N
2m

(ψ∇ψ∗ −ψ∗∇ψ)+
N e
m

|ψ |2 A, (9.37)

with the interpretation of particle and current densities, respectively. By construction
these quantities are invariant under local gauge transformations. The same apply if
the usual (gauge dependent) Wigner function

f GD(r,p) =
N

(2π h̄)3

∫
ds exp

(
ip · s

h̄

)
ψ∗
(

r +
s
2

)
ψ
(

r− s
2

)
, (9.38)

is employed, where the canonical moment is p = mv + eA. Also the second-order
moments from f GD are gauge-free, the troubles starting when considering higher-
order moments. Serious drawbacks occurs when calculating the evolution equation
for the second-order moment of the usual Wigner function, as will be seen later.

The time-evolution of the GIWF was considered already by Stratonovich [17],
but a particularly illuminating form to express it was provided by Serimaa et al. [13]:
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{
∂
∂ t

+(v +Δ ṽ) · ∂
∂r

− e
m

[
Ẽ+(v + Δ ṽ)× B̃

] · ∂
∂v

}
f (r,v) = 0. (9.39)

Here, we introduced the operators

Δ ṽ = − i h̄ e
m2

∂
∂ v

×
∫ 1/2

−1/2
dτ τB

(
r +

i h̄τ
m

∂
∂v

)
, (9.40)

Ẽ =
∫ 1/2

−1/2
dτ E

(
r +

i h̄τ
m

∂
∂v

)
, (9.41)

B̃ =
∫ 1/2

−1/2
dτ B

(
r +

i h̄τ
m

∂
∂v

)
, (9.42)

where B = B(r) and E = E(r) are the magnetic and electric fields, respectively. The
kinetic equation (9.39) follows from the Schrödinger equation for the wavefunction
or, alternatively, from the von Neumann equation solved by the density matrix [13].
Hence, we have a manifestly gauge-free formalism, where the time-evolution of the
Wigner function involves only the physical fields.

The operators in (9.40)–(9.42) are understood in terms of the series expansion of
the integrands in powers of h̄ (so that the electric and magnetic fields are supposed
to be differentiable). After Taylor expanding, one perform the τ integration.

Equation (9.39) resembles Vlasov’s equation, with two differences: the electro-
magnetic fields are replaced by Ẽ and B̃ defined in (9.41) and (9.42); the velocity
vector is displaced by the intrinsically quantum mechanical perturbation Δ ṽ defined
in (9.40). This perturbation Δ ṽ is zero in the electrostatic case. Moreover, not any
function can be taken as a Wigner function, see conditions (2.56)–(2.59).

9.5 Macroscopic Equations

Equation (9.39) is in a compact form, but it becomes quite complicated after expli-
citly writing the operators Δ ṽ, Ẽ and B̃. Hence, it is useful to consider a moments
formulation. We define the moments as in (9.5)–(9.9), where now f is the GIWF.

For the sake of calculating the moments hierarchy equations, it is convenient to
expand Δ ṽ, B̃ and Ẽ according to

Δ ṽi = −qh̄2εi jk

12m3 ∂mBk
∂ 2

∂v j ∂vm
+

qh̄4εi jk

540m5 ∂ 3
mnlBk

∂ 4

∂v j∂vm∂ vn∂vl
+ · · · , (9.43)

Ẽi = Ei − h̄2

24m2 ∂ 2
jkEi

∂ 2

∂v j ∂vk
+

h̄4

1920m4 ∂ 4
jkmnEi

∂ 4

∂ v j∂ vk∂vm∂vn
+ · · · , (9.44)

B̃i = Bi − h̄2

24m2 ∂ 2
jkBi

∂ 2

∂v j ∂vk
+

h̄4

1920m4 ∂ 4
jkmnBi

∂ 4

∂ v j∂ vk∂vm∂vn
+ · · · , (9.45)
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disregarding higher-order quantum corrections. The notation ∂i ≡ ∂/∂ ri is used.
Equations (9.43)–(9.45) are proven directly from the definitions of Δ ṽ, Ẽ, and B̃.

Assuming decaying boundary conditions, as far as the moment hierarchy is
closed at the third-rank stress tensor, only the leading quantum corrections [the
terms ∝ h̄2 in (9.43)–(9.45)] are needed. This is due to the structure of the higher-
order corrections. Indeed, these terms always involve at least fourth-order velocity
derivatives and, for instance,

∫
dvvi v j vk

∂ 4 f
∂va∂vb∂vc∂d

= 0. (9.46)

Therefore, only the semiclassical Wigner equation is needed, which does not
mean that the quantum effects are necessarily small. It just happens that higher-
order quantum corrections would appear only for higher-order moment evolution
equations.

Following (9.39), the semiclassical electromagnetic Wigner equation then reads

[
∂
∂ t

+ v · ∂
∂r

− e
m

(E+ v×B) · ∂
∂ v

]
f (r,v) = − eh̄2

24m3 ∂ 2
jkEi

∂ 3 f
∂ vi∂v j∂vk

−eh̄2εi jk

12m3 ∂mBk
∂ 3 f

∂ ri∂v j ∂vm
− eh̄2εi jkv j

24m3 ∂ 2
mnBk

∂ 3 f
∂vi∂vm ∂vn

+
e2h̄2

12m4

(
Bi∂ jBk

∂ 3 f
∂vi∂ v j∂vk

−Bi∂ jBi
∂ 3 f

∂v j∂vk∂vk

)
. (9.47)

After a tedious algebra, the result for the moments hierarchy equation is

Dn
Dt

+ n∇ ·u = 0, (9.48)

Dui

Dt
= −∂ jPi j

mn
− e

m
(E+ u×B)i , (9.49)

DPi j

Dt
= −Pik ∂ku j −Pjk ∂kui −Pi j∇ ·u− e

m
εimnPjmBn − e

m
ε jmnPimBn

− eh̄2

12m2 εikl∂l (n∂ jBk)− eh̄2

12m2 ε jkl∂l (n∂iBk)−∂kQi j k, (9.50)

DQi jk

Dt
= −Qi jr ∂ ruk −Qjkr ∂ rui −Qkir ∂ ru j −Qi jk∇ ·u−∂rRi j kr

+
1

mn

(
Pi j∂rPkr+Pjk∂rPir+Pki∂rPjr

)
− e

m

(
εirsQr jk+ε jrsQrki+εkrsQri j

)
Bs

+
eh̄2n
12m2

(
∂ 2

i jEk +∂ 2
jkEi + ∂ 2

kiE j

)
+

e2h̄2n
12m3

(
δi j∂k + δ jk∂i +δki∂ j

)
B2
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+
eh̄2n

12m2

[
(u×∂ 2

jkB)i +(u×∂ 2
kiB) j +(u× ∂ 2

i jB)k

]

− eh̄2 n
12m2

[
εirs (∂ jBr∂suk + ∂kBr∂su j)+ ε jrs (∂kBr∂sui +∂iBr∂suk)

+εkrs (∂iBr∂su j + ∂ jBr∂sui)
]

−e2h̄2n

12m3

[
∂i(BjBk)+ ∂ j(BkBi)+ ∂k(BiB j)

]
. (9.51)

When B = 0, (9.48)–(9.51) recover the electrostatic equations (9.12)–(9.15). In
the formal classical limit h̄ → 0, the classical electromagnetic moment hierarchy
equations are recovered [5, 12, 15]. Now quantum effects are explicit already in the
transport equation for the pressure dyad, through the magnetic field.

If we have employed the traditional, gauge dependent Wigner function, it would
not be possible to proceed exactly as in the classical case in the definition of the
moments. Indeed, it would then necessary to define them as

n =
∫

dp f GD, (9.52)

nu =
∫

dp
(

p+ eA
m

)
f GD, (9.53)

Pi j = m

(∫
dp

(pi + eAi)(p j + eAj)
m2 f GD −nui u j

)
, (9.54)

QGV
i jk =

1
m2

∫
dp(pi + eAi −mui)(p j + eA j −muj)(pk + eAk −muk) f GV. (9.55)

The same symbols n, u and Pi j are used on purpose since (9.52)–(9.54) produce the
same expressions as from the GIWF, in spite of the fact that f GV itself is a gauge
dependent object. However, from (6.3) satisfied by the usual Wigner equation one
would obtain

DPi j

Dt
= −Pik ∂ku j −Pjk ∂kui −Pi j∇ ·u− e

m
εimnPjmBn − e

m
ε jmnPimBn

+
e h̄2

4m2 ∂ 2
i jA ·∇n− ∂kQGV

i j k , (9.56)

which is not gauge-free. The reason is that

QGV
i jk = Qi jk +

e h̄2 n
12m2

(
∂ 2

i j Ak +∂ 2
jk Ai +∂ 2

ki A j
)

(9.57)

is not gauge invariant. If QGV
i jk from (9.57) is inserted into (9.56) one rederive

(9.50) for the pressure dyad, but only assuming the Coulomb gauge ∇ ·A = 0. Also
transport equations for the higher-order moments are not gauge invariant. For this
reason, we do not use the usual gauge-dependent Wigner function anymore.



200 9 The Moments Method

9.6 Electromagnetic Dispersion Relation

The fluid model given by (9.48)–(9.51) can be used to describe linear transverse
waves. Considering an one-component plasma, with an homogeneous neutralizing
ionic background with density n0. The system is then closed by Maxwell equations,

∇ ·E =
e
ε0

(n−n0), ∇ ·B = 0, (9.58)

∇×E = −∂B
∂ t

, ∇×B = −μ0enu+
1
c2

∂E
∂ t

. (9.59)

The moment equations can be linearized around the equilibrium

n = n0,u = 0,Pi j = P(0)
i j ,Qi jk = 0,Ri jkl = 0,E = 0,B = 0. (9.60)

To consider waves propagating in the z-direction with transverse polarization we let
all fluctuations have the space-time dependence eikz−iωt and set Ez = 0. Moreover,
we decompose the zeroth-order pressure dyad as

P(0)
i j = P⊥(δixδ jx + δiyδ jy)+ P||δizδ jz, (9.61)

allowing for anisotropy, where P⊥ and P‖ are constants.
It turns out that if we use the closure assumption Ri jkl = 0 the quantum

corrections to the transverse modes will not be retained so that to display the lowest-
order quantum corrections, it is necessary to take into account also the contribution
from the fourth-order moment. As a closure assumption, we use

Ri jkl =
eh̄2

4m3ω2

(
P(0)

im ∂ 3
jkl + P(0)

jm ∂ 3
kli + P(0)

km ∂ 3
li j + P(0)

lm ∂ 3
i jk

)
Em, (9.62)

adapted to the transverse wave case. The closure (9.62) is deduced systematically
from the linearized equations satisfied by the fourth- and fifth-order moments,
see [8]. Note that in principle the fourth-order moment Ri jkl can have a nonzero

equilibrium contribution R(0)
i jkl ∼ v4

T, where vT =
√

(2P⊥ + P||)/(mn0) is the thermal

velocity, but we will neglect this since we are looking only for the lowest-order
correction. Likewise for the terms ∼ h̄4. Finally, it is worth to remark that in the
classical limit the fourth-order moment could be set to zero.

The linearized equations can then be solved by first writing the magnetic field
in terms of the electric field and then eliminating all quantities except the velocity
so that we obtain the velocity in terms of the electric field. Coupling the resulting
equation with Faraday’s law the dispersion relation

ω2 − k2c2 = ω2
p

[
1 +

k2P⊥
n0mω2 +

h̄2k6P⊥
4n0m3ω4

]
, (9.63)
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is obtained. Here, ωp =
√

n0 e2/(mε0) is the plasma frequency. If, instead, the
closure Ri jkl = 0 was used, the term proportional to h̄2 would be absent in the
dispersion relation.

In the simultaneous long wavelength and semiclassical limits, (9.63) can be
shown to admit an approximate solution

ω2 
 ω2
p + c2 k2 +

P⊥ k2

mn0
+

h̄2 k6 P⊥
4m3 n0 ω2

p
. (9.64)

To check the consistency, we need to compare to the results from kinetic theory.
Here, we are not concerned with Landau damping issues so that all integrals can be
interpreted in the principal value sense. Assume

E = E1 exp[i(k z−ω t)], (9.65)

B = B1 exp[i(k z−ω t)], (9.66)

f = f0(v)+ f1(v) exp[i(k z−ω t)], (9.67)

where k ·E = 0 as before and with the subscript 1 denoting first-order quantities.
The equilibrium Wigner function satisfy

∫
dv f0 = n0,

∫
dvv f0 = 0. (9.68)

Further, we assume an equilibrium Wigner function such that f0 = f0(v⊥,vz),
where v2

⊥ = v2
x + v2

y . Notice that since there is no zeroth-order magnetic field the
perturbation velocity Δ ṽ is also of first-order. Hence, Δ ṽ does not contribute in the
linearized Wigner equation (9.39). Using (9.41) and (9.42) we get

Ẽ = EL, B̃ = BL, (9.69)

defining the operator

L =
sinhθ

θ
, θ =

h̄ k
2m

∂
∂ vz

. (9.70)

We note that

L

(
∂ f0

∂ vz

)
=

m
h̄k

[
f0

(
v +

h̄k
2m

)
− f0

(
v− h̄k

2m

)]
, (9.71)

where k = k ẑ. Moreover L → 1 in the classical limit, since

L =
∞

∑
j=0

1
(2 j + 1)!

(
h̄ k
2m

∂
∂ vz

)2 j

= 1 +
1
24

(
h̄ k
m

)2 ∂ 2

∂ v2
z

+ · · · (9.72)
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Fig. 9.1 Quantum diffusion on the equilibrium Wigner function f0 = fT(v⊥) exp[−v2
z /(2v2

0)],
according to [8]. Here f̃|| = L(exp[−v2

z/(2v2
0)]). Values of the parameter H = h̄ k/(2mv0) are

H = 0,1 and 2, so that f̃||(0) = 1, 0.86 and 0.60, respectively

Linearizing the quantum Vlasov equation (9.39) and the Maxwell equations, the
result is

ω2 = ω2
p + c2 k2 +

k2 ω2
p

2n0

∫
dv

v2
⊥ L f0

(ω −k ·v)2 , (9.73)

where c is the speed of light and ωp is the plasma frequency. In comparison to the
classical transverse dispersion relation, the only change is the replacement f0 →
f̃0 = L f0. In a classical picture, it is as if the particle velocities were reorganized
through the diffusive operator L. Also notice that still f̃0 = f̃0(v⊥,vz). Moreover,
the quantum diffusion induced by the operator L preserves the number of particles,
since

∫
dv f̃0 =

∫
dv f0 due to (9.72) under decaying boundary conditions. Figure 9.1

shows the effect of L on the equilibrium f0 = fT(v⊥) exp[−v2
z/(2v2

0)], for different
values of the nondimensional parameter H = h̄k/(2mv0). In the simultaneous long
wavelength and semiclassical limits and retaining only the leading ∼ v2

T thermal
corrections, (9.64) and (9.73) give the same result via the natural identification P⊥ =
(m/2)

∫
dvv2

⊥ f0. This conclude the equivalence between the moments and kinetic
theories, in the fluid limit. It can also be shown that the usual Wigner equation gives
the same linear dispersion relation for transverse waves as the GIWF [8, 10, 14],
at least for homogeneous equilibria. Hence, the gauge-invariance issues tend to
be crucial only in nonlinear regimes. However, in the case of nonhomogeneous
equilibria the use of a gauge independent electromagnetic Wigner equation is
advisable even for linear waves.
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Problems

9.1. Demonstrate (9.15) for the transport of the third-order moment Qi jk in the
electrostatic case.

9.2. Demonstrate (9.26), the dispersion relation for linear electrostatic waves in the
moments theory.

9.3. Check (9.28) for the perturbed pressure dyad.

9.4. Linearize the electrostatic fluid moment hierarchy equations in the adiabatic
(Qi jk = 0) and classical case. Recover the Bohm–Gross dispersion relation.

9.5. Verify that the Wigner function in (9.33) is indeed gauge-free.

9.6. Prove the series expansions in (9.43)–(9.45).

9.7. Obtain the semiclassical equation (9.47) satisfied by the GIWF.

9.8. Derive the moment equations (9.48)–(9.51) valid in the electromagnetic case.
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