
    - 1 -

 A METHOD TO SOLVE  
THE DIOPHANTINE  EQUATION 2 2 0ax by c− + =  

 Florentin Smarandache 
University of New Mexico 

200 College Road 
Gallup, NM 87301, USA 

ABSTRACT  
 We consider the equation  
 (1) 2 2 * *0,  with ,  and ax by c a b N c Z− + = ∈ ∈ . 

 It is a generalization of Pell's equation: 2 2 1x Dy− = . Here, 
we show that: if the equation has an integer solution and a b⋅  is 
not a perfect square, then (1) has an infinitude of integer 
solutions; in this case we find a closed expression for ( , )n nx y , 
the general positive integer solution, by an original method. 
More, we generalize it for any Diophantine equation of second 
degree and with two unknowns.  

 INTRODUCTION  
 If 2ab k=  is a perfect square ( )k N∈  the equation (1) has at 

most a finite number of integer solutions, because (1) become:  
(2) ( )( ) .ax ky ax ky ac− + = −   
 If ( , )a b  does not divide c , the Diophantine equation hasn't 

solutions.  

 METHOD TO SOLVE. Suppose (1) has many integer 
solutions.  
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 Let 0 0 1 1( , ), ( , )x y x y  be the smallest positive  integer solutions 
for (1), with 0 10 x x≤ < . We construct the recurrent sequences:  

(3) 
1

1

n n n

n n n

x x y
y x y

α β
γ δ

+

+

− +⎧
⎨ = +⎩  

 putting the condition (3) verify (1). It results:  

2 2

2 2

           (4)
      (5)

  (6)

a b
a b a
a b b

αβ γδ

α γ

β δ

=⎧
⎪ − =⎨
⎪ − = −⎩

 

  having the unknowns , , ,α β γ δ .  
 We pull out 2aα  and 2aβ  from (5), respectively (6), and replace 

them in (4) at the square; it obtains  
2 2a b aδ γ− = . (7) 

We subtract (7) from (5) and find  
.α δ= ±   (8)  

 Replacing (8) in (4) it obtains  

.b
a

β γ= ±  (9) 

 Afterwards, replacing (8) in (5), and (9) in (6) it finds the 
 same equation:  

2 2 .a b aα γ− =  (10) 
 Because we work with positive solutions only, we take  

1 0 0

1 0 0

;n n n

n n n
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  where 0 0( , )α γ  is the smallest, positive integer solution of (10) 

 such that 0 0 0α γ ≠ . Let 0 0

0 0

( )
b

A Za
α γ

γ α

⎛ ⎞
⎜ ⎟= ∈⎜ ⎟⎜ ⎟
⎝ ⎠

2M .  

 Of course, if ( , )x y′ ′  is an integer solution for (1), then 

1,   
x x

A A
y y

−′ ′⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟′ ′⎝ ⎠ ⎝ ⎠

 are another ones -- where 1A −
 is the inverse 

 matrix of A , i.e. 1 1A A A A I− −⋅ = ⋅ =  (unit matrix). Hence, if 
(1) has an integer solution it has an infinite ones. (Clearly 

1
2 ( )A Z− ∈M ).  

 The general positive integer solution of the equation (1) is  
( , ) (| |,| |)n n n nx y x y′ ′ = . 

0
1

0

( ) with ,  for all n n

n

xx
GS A n Z

y y
⎛ ⎞⎛ ⎞

= ⋅ ∈⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

, 

 where by conversion 0A I=  and 1 1kA A A− − −= L  of k  times.  
 In problems it is better to write ( )GS  as  

0

0

1 *
2

1

,    

( ) and ,    

n n

n

n n

n

xx
A n N

y y

x x
GS A n N

y y

′ ⎛ ⎞⎛ ⎞
= ⋅ ∈⎜ ⎟⎜ ⎟′⎝ ⎠ ⎝ ⎠

′′⎛ ⎞ ⎛ ⎞
= ⋅ ∈⎜ ⎟ ⎜ ⎟′′⎝ ⎠ ⎝ ⎠

. 

We proof, by reduction ad absurdum, 2( )GS  is a general 
positive integer solution for (1).  

 Let ( , )u v  be a positive integer particular solution for (1). If  
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10 10 *
0 1

0 1

: ( , ) ,  or : ( , ) kk x x
k N u v A k N u v A

y y
⎛ ⎞ ⎛ ⎞

∃ ∈ = ∃ ∈ =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

  then 

2( , ) ( )u v GS∈ . Contrary to this, we calculate 1
1 1( , ) i

i i
i

u
u v A

v
−

+ +

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 

for 0,1,2,i = K  where 0 0,u u v v= = . Clearly 1i iu u+ <  for all i . 
After a certain rank 

00 1ix u x< <  it finds either 
0 00 iu x< <  but that 

is absurd.  
  It is clear we can put  

0
3

0

( ) ,  ,  where 1.n n

n

xx
GS A n N

y y
ε

ε
⎛ ⎞⎛ ⎞

= ⋅ ∈ = ±⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 We shall now transform the general solution 3( )GS  in a 
closed expression. 

 Let λ  be a real number. Det ( ) 0A Iλ− ⋅ =  involves the 
solutions 1,2λ  and the proper vectors 1,2V  (i.e. 

{ },  1, 2i i iAv v iλ= ∈ ). Note 1

2

( ).
tv

P
v
⎛ ⎞

= ∈⎜ ⎟
⎝ ⎠

R2M  

 Then 11

2

0
0

P AP
λ

λ
− ⎛ ⎞

= ⎜ ⎟
⎝ ⎠

, whence 11

2

0
0

n
n

nA P P
λ

λ
−⎛ ⎞

= ⎜ ⎟
⎝ ⎠

, and 

 replacing it in 3( )GS  and doing the calculus we find a closed 
expression for 3( )GS .  

 EXAMPLES  

 1. For the Diophantine equation 2 22 3 5x y− =  at obtains  
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5 6 2
,

4 5 3

n
n

n

x
n N

y
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= ⋅ ∈⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

  

  and 1,2 1,25 2 6,  ( 6, 2)λ ν= ± = ± , whence a closed  expression 

for nx  and ny : 

4 6 4 65 2 6 5 2 6
4 4 ,

3 2 6 3 2 65 2 6 5 2 6
6 6

( ) ( )

( ) ( )

n

n

x

y

n n

n n

ε ε

ε ε

⎧ + −
= + + −⎪⎪

⎨
+ −⎪ = + + + −⎪⎩

 

for   all n N∈ . 

 2. For equation 2 23 4 0x y− − =  the general solution in 
positive integer is:  

3 3
,1 3 3

3

(2 ) (2 )

(2 ) (2 )[ ]
n

n

x

y

n n

n n

⎧ = + +⎪
⎨

= + +⎪
⎩

−

−  

  for all n N∈ , that is ( ) ( ) ( )(2,0), 4, 2 , 14,8 , 52,30 ,K  

 EXERCICES FOR READER. Solve the Diophantine 
equations:  

 3. 2 212 3 0x y− + =    

 [Remark: 
7 24 3

?,
2 7

n
n

n

x
n N

y ε
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= ⋅ = ∈⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

]  
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  4. 2 26 10 0x y− − = . 

   [Remark: 
5 12 4

?,
12 5

n
n

n

x
n N

y ε
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= ⋅ = ∈⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

] 

 5. 2 212 9 0x y− − =  

  [Remark: 
7 24 3

?,
2 7 0

n
n

n

x
n N

y
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= ⋅ = ∈⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

]  

  6. 2 214 3 18 0x y− − =  

 GENERALIZATIONS  
 If ( , ) 0f x y =  is a Diophantine equation of second degree and 

with two unknowns, by linear transformations it becomes  
 (12) ax2 + by2 + c = 0, with a, b, c 0 Z. 
 If 0ab ≥ the equation has at most a finite number of integer 

solutions which can be found by attempts.  
 It is easier to present an example:  

7. The Diophantine equation  
 (13) 2 29 6 13 6 16 20 0x xy y x y+ − − − + =   

 can becomes  
 (14) 2 22 7 45 0u ν− + = , where  
(15) 3 1 and 2 1u x y v y= + − = +  
We solve (14). Thus:  

(16) 1
0 0

1

15 28
,    with   ( , ) (3,3 )

8 15
n n n

n n n

u u
n N u

u
ν

ν ε
ν ν

+

+

= +⎧
∈ =⎨ = +⎩
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 First solution:  
 By induction we proof that: for all n N∈  we have nν  is odd, 

 and nu  as well as nν  are multiple of 3. Clearly 0 03 ,uν ε= . For 
1n +  we have: 1 8 15 even + odd= oddn n nuν ν+ = + = , and of 

course 1 1,n nu ν+ +  are multiples of 3 because ,n nu ν  are multiple of 
3, too.  

 Hence, there exist ,n nx y  in positive integers for all n N∈ :  

(17) 
(2 3) / 6
( 1) / 2

n n n

n n

x u
y

ν
ν

= − +⎧
⎨ = −⎩

 

(from (15)). Now we find the 3( )GS  for (14) as closed 
expression, and by means of (17) it results the general integer 
solution of the equation (13).  

 Second solution  
 Another expression of the 3( )GS  for (13) we obtain if we 

transform (15) as: 3 1n n nu x y= + −  and 2 1n nyν = + , for all 
n N∈ . Whence, using (16) and doing the calculus, it finds  

 (18) 1

1

52 1111
,   ,    3 3

12 19 3

n n n

n n n

x x y
n N

y x y

+

+

⎧ = + +⎪ ∈⎨
⎪ = + +⎩

  

0 0with   ( , ) (1,1) or (2, 2) (two infinitude of integer solutions).x y = −
Let  

n

11 52 / 3 11/ 3 1
12 19 3   Then  y 1
0 0 1 11

n
n

x
A A

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟= =⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠  
or 
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n

2
y 2 ,  always .

11

n
n

x
A n N

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= − ∈⎜ ⎟ ⎜ ⎟

⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

  (19)  

 From (18) we have always 1 0 1(mod3)n ny y y+ ≡ ≡ ≡ ≡L , 
hence always nx Z∈ . Of course, (19) and (17) are equivalent as 
general integer solution for (13).  

 [The reader can calculate nA  (by the same method liable to 
the start on this note) and find a closed expression for (19).]  

More generally:  
 This method can be generalized for the Diophantine 

equations  

   (20) 2

1
,   will all  ,  in .

n

i i i
i

a X b a b Z
=

=∑   

 If always 0,  1i ja a i j n≥ ≤ ≤ < , the equation (20) has at most 
a finite number of integer solution.  

Now, we suppose 0 0 , {1, , }i j n∃ ∈ K  for which 
0 0

0i ja a <   (the 
equation presents at least a variation of sign). Analogously, for 
n N∈ . We define the recurrent sequences:  

 (21)  ( 1) ( )

1
,     1

n
n n

h ih i
i

x a x h n+

=

= ≤ ≤∑   

 considering 0 0
1( , , )nx xK  the smallest positive integer solution of 

(20). It replaces (21) in (20), it identifies the coefficients and it 
look for the 2n  unknowns ,   1 ,iha i h n≤ ≤ . (This calculus is 
very intricate, but it can be done by means of a computer.) The 
method goes on similarly, but the calculus becomes more and 
 more intricate - for example to calculate nA . It must a computer, 
may be.  
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 (The reader will be able to try his force for the Diophantine 
 equation 2 2 2 0ax by cz d+ − + = ,  with *, ,a b c N∈  and d Z∈ ) . 

 REFERENCES  

 M. Bencze, Aplicaţii ale unor şiruri de recurenţă în teoria 
ecuaţiilor diofantiene, Gamma (Braşov), XXI-XXII, Anul VII, 
Nr.4-5, 1985, pp.15-18.  

 Z. I. Borevich - I. R. Shafarevich, Teora numerelor, EDP, 
Bucharest, 1985.  

 A. Kenstam, Contributions to the Theory of the Diophantine 
 Equations n nAx By C− = . 

 G. H. Hardy and E.M. Wright, Introduction to the theory of 
numbers, Fifth edition, Clarendon Press, Oxford, 1984.  

 N. Ivăşhescu, Rezolvarea ecuaţiilor în numere întregi, Lucrare 
pentru ob!inerea titlului de profesor gradul 2 (coordonator G. 
Vraciu), Univ. din Craiova, 1985.  

  E. Landau, Elementary Number Theory, Celsea, 1955.  

 Calvin T. Long, Elementary Introduction to Number  Theory, D. 
C. Heath, Boston, 1965.  

 L. J. Mordell, Diophantine equations, London, Academic Press, 
1969.  

 C. Stanley Ogibvy, John T. Anderson, Excursions in number 
theory, Oxford University Press, New York, 1966.  

 W. Sierpinski, Oeuvres choisies, Tome I. Warszawa, 1974-1976.  



    - 10 -

 F. Smarandache, Sur la résolution d'équations du second degré a 
deux inconnues dans Z , in the book Généralizations et 
généralités, Ed. Nouvelle, Fès, Marocco; MR:85h:00003.  

 [Published in "Gaceta Matematica", 2a Serie, Volumen 1, 
Numero 2, 1988, pp.151-7; Madrid; translated in Spanish by 
Francisco Bellot Rasado: «Un metodo de resolucion de la 
ecuacion diofantica».]  

   
 


