A METHOD TO SOLVE THE DIOPHANTINE EQUATION $a x^{2}-b y^{2}+c=0$

Florentin Smarandache
University of New Mexico 200 College Road
Gallup, NM 87301, USA

Abstract

We consider the equation (1) $a x^{2}-b y^{2}+c=0$, with $a, b \in N^{*}$ and $c \in Z^{*}$.

It is a generalization of Pell's equation: $x^{2}-D y^{2}=1$. Here, we show that: if the equation has an integer solution and $a \cdot b$ is not a perfect square, then (1) has an infinitude of integer solutions; in this case we find a closed expression for $\left(x_{n}, y_{n}\right)$, the general positive integer solution, by an original method. More, we generalize it for any Diophantine equation of second degree and with two unknowns.

INTRODUCTION

If $a b=k^{2}$ is a perfect square $(k \in N)$ the equation (1) has at most a finite number of integer solutions, because (1) become:
(2) $(a x-k y)(a x+k y)=-a c$.

If (a, b) does not divide c, the Diophantine equation hasn't solutions.

METHOD TO SOLVE. Suppose (1) has many integer solutions.

Let $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right)$ be the smallest positive integer solutions for (1), with $0 \leq x_{0}<x_{1}$. We construct the recurrent sequences:
(3) $\left\{\begin{array}{l}x_{n+1}-\alpha x_{n}+\beta y_{n} \\ y_{n+1}=\gamma x_{n}+\delta y_{n}\end{array}\right.$
putting the condition (3) verify (1). It results:

$$
\left\{\begin{array}{l}
a \alpha \beta=b \gamma \delta \\
a \alpha^{2}-b \gamma^{2}=a \tag{5}\\
a \beta^{2}-b \delta^{2}=-b
\end{array}\right.
$$

having the unknowns $\alpha, \beta, \gamma, \delta$.
We pull out $a \alpha^{2}$ and $a \beta^{2}$ from (5), respectively (6), and replace them in (4) at the square; it obtains

$$
\begin{equation*}
a \delta^{2}-b \gamma^{2}=a \tag{7}
\end{equation*}
$$

We subtract (7) from (5) and find

$$
\begin{equation*}
\alpha= \pm \delta \tag{8}
\end{equation*}
$$

Replacing (8) in (4) it obtains

$$
\beta= \pm \frac{b}{a} \gamma
$$

Afterwards, replacing (8) in (5), and (9) in (6) it finds the same equation:

$$
a \alpha^{2}-b \gamma^{2}=a
$$

Because we work with positive solutions only, we take

$$
\left\{\begin{array}{l}
x_{n+1}=\alpha_{0} x_{n}+\frac{b}{a} \gamma_{0} y_{n} \\
y_{n+1}=\gamma_{0} x_{n}+\alpha_{0} y_{n}
\end{array}\right.
$$

where $\left(\alpha_{0}, \gamma_{0}\right)$ is the smallest, positive integer solution of (10)
such that $\alpha_{0} \gamma_{0} \neq 0$. Let $A=\left(\begin{array}{cc}\alpha_{0} & \frac{b}{a} \gamma_{0} \\ \gamma_{0} & \alpha_{0}\end{array}\right) \in \mathcal{M}_{2}(Z)$.
Of course, if $\left(x^{\prime}, y^{\prime}\right)$ is an integer solution for (1), then $A\binom{x^{\prime}}{y^{\prime}}, A^{-1}\binom{x^{\prime}}{y^{\prime}}$ are another ones -- where A^{-1} is the inverse matrix of A, i.e. $A^{-1} \cdot A=A \cdot A^{-1}=I$ (unit matrix). Hence, if (1) has an integer solution it has an infinite ones. (Clearly $\left.A^{-1} \in \mathcal{M}_{2}(Z)\right)$.

The general positive integer solution of the equation (1) is

$$
\begin{aligned}
& \left(x_{n}^{\prime}, y_{n}^{\prime}\right)=\left(\left|x_{n}\right|,\left|y_{n}\right|\right) . \\
& \left(G S_{1}\right) \text { with }\binom{x_{n}}{y_{n}}=A^{n} \cdot\binom{x_{0}}{y_{0}}, \text { for all } n \in Z,
\end{aligned}
$$

where by conversion $A^{0}=I$ and $A^{-k}=A^{-1} \cdots A^{-1}$ of k times.
In problems it is better to write (GS) as

$$
\begin{aligned}
& \binom{x_{n}^{\prime}}{y_{n}^{\prime}}=A^{n} \cdot\binom{x_{0}}{y_{0}}, \quad n \in N \\
& \left(G S_{2}\right) \text { and }\binom{x_{n}^{\prime \prime}}{y_{n}^{\prime \prime}}=A^{n} \cdot\binom{x_{1}}{y_{1}}, \quad n \in N^{*}
\end{aligned}
$$

We proof, by reduction ad absurdum, $\left(G S_{2}\right)$ is a general positive integer solution for (1).

Let (u, v) be a positive integer particular solution for (1). If

$$
\exists k_{0} \in N:(u, v)=A^{k 0}\binom{x_{0}}{y_{0}} \text {, or } \exists k_{1} \in N^{*}:(u, v)=A^{k_{1}}\binom{x_{1}}{y_{1}} \text { then }
$$ $(u, v) \in\left(G S_{2}\right)$. Contrary to this, we calculate $\left(u_{i+1}, v_{i+1}\right)=A^{-1}\binom{u_{i}}{v_{i}}$ for $i=0,1,2, \ldots$ where $u_{0}=u, v_{0}=v$. Clearly $u_{i+1}<u_{i}$ for all i. After a certain rank $x_{0}<u_{i_{0}}<x_{1}$ it finds either $0<u_{i_{0}}<x_{0}$ but that is absurd.

It is clear we can put

$$
\left(G S_{3}\right)\binom{x_{n}}{y_{n}}=A^{n} \cdot\binom{x_{0}}{\varepsilon y_{0}}, n \in N, \text { where } \varepsilon= \pm 1 .
$$

We shall now transform the general solution $\left(G S_{3}\right)$ in a closed expression.

Let λ be a real number. Det $(A-\lambda \cdot I)=0$ involves the solutions $\quad \lambda_{1,2}$ and the proper vectors $V_{1,2}$ (i.e. $\left.A v_{i}=\lambda_{i} v_{i}, i \in\{1,2\}\right)$. Note $P=\binom{v_{1}}{v_{2}}^{t} \in \mathcal{M}_{2}(\mathbf{R})$.
Then $P^{-1} A P=\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right)$, whence $A^{n}=P\left(\begin{array}{cc}\lambda_{1}^{n} & 0 \\ 0 & \lambda_{2}^{n}\end{array}\right) P^{-1}$, and replacing it in $\left(G S_{3}\right)$ and doing the calculus we find a closed expression for $\left(G S_{3}\right)$.

EXAMPLES

1. For the Diophantine equation $2 x^{2}-3 y^{2}=5$ at obtains

$$
\binom{x_{n}}{y_{n}}=\left(\begin{array}{ll}
5 & 6 \\
4 & 5
\end{array}\right)^{n} \cdot\binom{2}{3}, n \in N
$$

and $\lambda_{1,2}=5 \pm 2 \sqrt{6}, v_{1,2}=(\sqrt{6}, \pm 2)$, whence a closed expression for x_{n} and y_{n} :

$$
\left\{\begin{array}{l}
x_{n}=\frac{4+\varepsilon \sqrt{6}}{4}(5+2 \sqrt{6})^{n}+\frac{4-\varepsilon \sqrt{6}}{4}(5-2 \sqrt{6})^{n} \\
y_{n}=\frac{3 \varepsilon+2 \sqrt{6}}{6}(5+2 \sqrt{6})^{n}+\frac{3 \varepsilon-2 \sqrt{6}}{6}(5+-2 \sqrt{6})^{n}
\end{array},\right.
$$

for all $n \in N$.
2. For equation $x^{2}-3 y^{2}-4=0$ the general solution in positive integer is:

$$
\left\{\begin{array}{l}
x_{n}=(2+\sqrt{3})^{n}+(2-\sqrt{3})^{n} \\
y_{n}=\frac{1}{\sqrt{3}}\left[(2+\sqrt{3})^{n}+(2-\sqrt{3})^{n}\right]
\end{array}\right.
$$

for all $n \in N$, that is $(2,0),(4,2),(14,8),(52,30), \ldots$
EXERCICES FOR READER. Solve the Diophantine equations:
3. $x^{2}-12 y^{2}+3=0$
[Remark: $\left.\binom{x_{n}}{y_{n}}=\left(\begin{array}{cc}7 & 24 \\ 2 & 7\end{array}\right)^{n} \cdot\binom{3}{\varepsilon}=?, n \in N\right]$
4. $x^{2}-6 y^{2}-10=0$.
[Remark: $\left.\binom{x_{n}}{y_{n}}=\left(\begin{array}{cc}5 & 12 \\ 12 & 5\end{array}\right)^{n} \cdot\binom{4}{\varepsilon}=?, n \in N\right]$
5. $x^{2}-12 y^{2}-9=0$
[Remark: $\left.\binom{x_{n}}{y_{n}}=\left(\begin{array}{cc}7 & 24 \\ 2 & 7\end{array}\right)^{n} \cdot\binom{3}{0}=?, n \in N\right]$
6. $14 x^{2}-3 y^{2}-18=0$

GENERALIZATIONS

If $f(x, y)=0$ is a Diophantine equation of second degree and with two unknowns, by linear transformations it becomes
(12) $a x^{2}+b y^{2}+c=0$, with $a, b, c \in Z$.

If $a b \geq 0$ the equation has at most a finite number of integer solutions which can be found by attempts.

It is easier to present an example:
7. The Diophantine equation
(13) $9 x^{2}+6 x y-13 y^{2}-6 x-16 y+20=0$
can becomes
(14) $2 u^{2}-7 v^{2}+45=0$, where
(15) $u=3 x+y-1$ and $v=2 y+1$

We solve (14). Thus:
(16) $\left\{\begin{array}{l}u_{n+1}=15 u_{n}+28 v_{n} \\ v_{n+1}=8 u_{n}+15 v_{n}\end{array}, n \in N \quad\right.$ with $\quad\left(u_{0}, v_{0}\right)=(3,3 \varepsilon)$

First solution:

By induction we proof that: for all $n \in N$ we have v_{n} is odd, and u_{n} as well as v_{n} are multiple of 3 . Clearly $v_{0}=3 \varepsilon, u_{0}$. For $n+1$ we have: $v_{n+1}=8 u_{n}+15 v_{n}=$ even + odd $=$ odd, and of course u_{n+1}, v_{n+1} are multiples of 3 because u_{n}, v_{n} are multiple of 3, too.

Hence, there exist x_{n}, y_{n} in positive integers for all $n \in N$:
(17) $\left\{\begin{array}{l}x_{n}=\left(2 u_{n}-v_{n}+3\right) / 6 \\ y_{n}=\left(v_{n}-1\right) / 2\end{array}\right.$
(from (15)). Now we find the $\left(G S_{3}\right)$ for (14) as closed expression, and by means of (17) it results the general integer solution of the equation (13).

Second solution

Another expression of the $\left(G S_{3}\right)$ for (13) we obtain if we transform (15) as: $u_{n}=3 x_{n}+y_{n}-1$ and $v_{n}=2 y_{n}+1$, for all $n \in N$. Whence, using (16) and doing the calculus, it finds

$$
\text { (18) }\left\{\begin{array}{l}
x_{n+1}=11 x_{n}+\frac{52}{3} y_{n}+\frac{11}{3} \\
y_{n+1}=12 x_{n}+19 y_{n}+3
\end{array}, n \in N,\right.
$$

with $\left(x_{0}, y_{0}\right)=(1,1)$ or $(2,-2)$ (two infinitude of integer solutions).
Let

$$
\begin{aligned}
& A=\left(\begin{array}{ccc}
11 & 52 / 3 & 11 / 3 \\
12 & 19 & 3 \\
0 & 0 & 1
\end{array}\right) \text { Then }\left(\begin{array}{l}
x_{n} \\
y_{\mathrm{n}} \\
1
\end{array}\right)=A^{n}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \\
& \text { or }
\end{aligned}
$$

$\left(\begin{array}{l}x_{n} \\ y_{n} \\ 1\end{array}\right)=A^{n}\left(\begin{array}{l}2 \\ -2 \\ 1\end{array}\right)$, always $n \in N$.
From (18) we have always $y_{n+1} \equiv y_{n} \equiv \cdots \equiv y_{0} \equiv 1(\bmod 3)$, hence always $x_{n} \in Z$. Of course, (19) and (17) are equivalent as general integer solution for (13).
[The reader can calculate A^{n} (by the same method liable to the start on this note) and find a closed expression for (19).]

More generally:

This method can be generalized for the Diophantine equations

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i} X_{i}^{2}=b, \text { will all } a_{i}, b \text { in } Z . \tag{20}
\end{equation*}
$$

If always $a_{i} a_{j} \geq 0,1 \leq i \leq j<n$, the equation (20) has at most a finite number of integer solution.

Now, we suppose $\exists i_{0}, j_{0} \in\{1, \ldots, n\}$ for which $a_{i_{0}} a_{j_{0}}<0$ (the equation presents at least a variation of sign). Analogously, for $n \in N$. We define the recurrent sequences:

$$
\begin{equation*}
x_{h}^{(n+1)}=\sum_{i=1}^{n} a_{i h} x_{i}^{(n)}, \quad 1 \leq h \leq n \tag{21}
\end{equation*}
$$

considering $\left(x_{1}^{0}, \ldots, x_{n}^{0}\right)$ the smallest positive integer solution of (20). It replaces (21) in (20), it identifies the coefficients and it look for the n^{2} unknowns $a_{i h}, 1 \leq i, h \leq n$. (This calculus is very intricate, but it can be done by means of a computer.) The method goes on similarly, but the calculus becomes more and more intricate - for example to calculate A^{n}. It must a computer, may be.
(The reader will be able to try his force for the Diophantine equation $a x^{2}+b y^{2}-c z^{2}+d=0$, with $a, b, c \in N^{*}$ and $\left.d \in Z\right)$.

REFERENCES

M. Bencze, Aplicații ale unor şiruri de recurență în teoria ecuațiilor diofantiene, Gamma (Braşov), XXI-XXII, Anul VII, Nr.4-5, 1985, pp.15-18.
Z. I. Borevich - I. R. Shafarevich, Teora numerelor, EDP, Bucharest, 1985.
A. Kenstam, Contributions to the Theory of the Diophantine Equations $A x^{n}-B y^{n}=C$.
G. H. Hardy and E.M. Wright, Introduction to the theory of numbers, Fifth edition, Clarendon Press, Oxford, 1984.
N. Ivăşhescu, Rezolvarea ecuațiilor în numere întregi, Lucrare pentru ob!inerea titlului de profesor gradul 2 (coordonator G. Vraciu), Univ. din Craiova, 1985.
E. Landau, Elementary Number Theory, Celsea, 1955.

Calvin T. Long, Elementary Introduction to Number Theory, D. C. Heath, Boston, 1965.
L. J. Mordell, Diophantine equations, London, Academic Press, 1969.
C. Stanley Ogibvy, John T. Anderson, Excursions in number theory, Oxford University Press, New York, 1966.
W. Sierpinski, Oeuvres choisies, Tome I. Warszawa, 1974-1976.
F. Smarandache, Sur la résolution d'équations du second degré a deux inconnues dans Z, in the book Généralizations et généralités, Ed. Nouvelle, Fès, Marocco; MR:85h:00003.
[Published in "Gaceta Matematica", 2a Serie, Volumen 1, Numero 2, 1988, pp.151-7; Madrid; translated in Spanish by Francisco Bellot Rasado: «Un metodo de resolucion de la ecuacion diofantica».]

