
ptg7068951

ptg7068951

800 East 96th Street, Indianapolis, Indiana, 46240 USA

24in

Hours

SamsTeachYourself

Java™

Sixth Edition

ptg7068951

Sams Teach Yourself Java™ in 24 Hours, Sixth Edition

Copyright © 2012 by Sams Publishing
All rights reserved. No part of this book shall be reproduced, stored in a retrieval system,
or transmitted by any means, electronic, mechanical, photocopying, recording, or other-
wise, without written permission from the publisher. No patent liability is assumed with
respect to the use of the information contained herein. Although every precaution has
been taken in the preparation of this book, the publisher and author assume no responsi-
bility for errors or omissions. Nor is any liability assumed for damages resulting from the
use of the information contained herein.

ISBN-13: 978-0-672-33575-4
ISBN-10: 0-672-33575-1

Library of Congress Cataloging-in-Publication Data:

Cadenhead, Rogers.

Sams teach yourself Java in 24 hours / Rogers Cadenhead.

p. cm.

ISBN-13: 978-0-672-33575-4 (pbk.)

ISBN-10: 0-672-33575-1 (pbk.)

1. Java (Computer program language) I. Title.

QA76.73.J38C335 2012

005.13’3—dc23

2011038994

Printed in the United States of America

First Printing October 2011

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Sams Publishing cannot attest to the accuracy of this
information. Use of a term in this book should not be regarded as affecting the validity of
any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible,
but no warranty or fitness is implied. The information provided is on an “as is” basis. The
author and the publisher shall have neither liability nor responsibility to any person or enti-
ty with respect to any loss or damages arising from the information contained in this book.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact

International Sales
international@pearson.com

Acquisitions Editor

Mark Taber

Development Editor

Songlin Qiu

Managing Editor

Sandra Schroeder

Senior Project Editor

Tonya Simpson

Copy Editor
Charlotte Kughen,
The Wordsmithery LLC

Indexer

Larry Sweazy

Proofreader
Apostrophe Editing
Services

Technical Editor

Boris Minkin

Publishing Coordinator

Vanessa Evans

Book Designer

Gary Adair

Compositor

TnT Design, Inc

ptg7068951

Contents at a Glance
Introduction

Part I: Getting Started
Hour 1: Becoming a Programmer 3

2 Writing Your First Program 13

3 Vacationing in Java 25

4 Understanding How Java Programs
Work 39

Part II: Learning the Basics of
Programming
5 Storing and Changing Information in a

Program 49

6 Using Strings to Communicate 65

7 Using Conditional Tests to Make
Decisions 79

8 Repeating an Action with Loops 95

Part III: Working with Information in
New Ways
9 Storing Information with Arrays 107

10 Creating Your First Object 121

11 Describing What Your Object Is Like 137

12 Making the Most of Existing Objects 155

Part IV: Programming a Graphical User
Interface
13 Building a Simple User Interface 169

14 Laying Out a User Interface 187

15 Responding to User Input 201

16 Building a Complex User Interface 219

Part V: Moving into Advanced Topics
17 Creating Interactive Web Programs 235

18 Handling Errors in a Program 249

19 Creating a Threaded Program 265

20 Reading and Writing Files 283

Part VI: Writing Internet Applications
21 Reading and Writing XML Data 299

22 Creating Web Services with JAX-WS 313

23 Creating Java2D Graphics 327

24 Writing Android Apps 343

Part VII: Appendixes
A Using the NetBeans Integrated

Development Environment 373

B Where to Go from Here: Java
Resources 381

C This Book’s Website 387

D Setting Up an Android Development
Environment 389

Index 397

ptg7068951

Table of Contents

INTRODUCTION 1

PART I: Getting Started

HOUR 1: Becoming a Programmer

Choosing a Language . 4

Telling the Computer What to Do. 5

How Programs Work . 7

When Programs Don’t Work . 8

Choosing a Java Programming Tool 8

Installing a Java Development Tool 9

HOUR 2: Writing Your First Program

What You Need to Write Programs 13

Creating the Saluton Program . 14

Beginning the Program . 14

Storing Information in a Variable . 17

Saving the Finished Product . 18

Compiling the Program into a Class File 19

Fixing Errors. 19

Running a Java Program . 20

HOUR 3: Vacationing in Java

First Stop: Oracle . 25

Going to School with Java . 27

Lunch in JavaWorld . 29

Watching the Skies at NASA . 31

Getting Down to Business . 32

Stopping by Java Boutique for Directions 33

Running Java on Your Phone. 35

HOUR 4: Understanding How Java Programs
Work

Creating an Application . 39

Sending Arguments to Applications 41

Creating an Applet . 42

PART II: Learning the Basics of
Programming

HOUR 5: Storing and Changing Information in
a Program

Statements and Expressions . 49

Assigning Variable Types . 50

Naming Your Variables . 54

Storing Information in Variables . 54

All About Operators . 55

Using Expressions . 59

HOUR 6: Using Strings to Communicate

Storing Text in Strings . 65

Displaying Strings in Programs . 66

Using Special Characters in Strings. 67

Pasting Strings Together . 68

Using Other Variables with Strings. 68

Advanced String Handling . 70

Presenting Credits . 72

HOUR 7: Using Conditional Tests to Make
Decisions

if Statements . 79

if-else Statements . 83

switch Statements . 84

The Conditional Operator . 86

Watching the Clock . 87

HOUR 8: Repeating an Action with Loops

for Loops . 95

while Loops . 98

do-while Loops . 99

Exiting a Loop . 100

Naming a Loop . 101

Testing Your Computer Speed . 102

ptg7068951

Contents v

PART III: Working with Information in
New Ways

HOUR 9: Storing Information with Arrays

Creating Arrays . 108

Using Arrays. 109

Multidimensional Arrays . 111

Sorting an Array . 111

Counting Characters in Strings . 113

HOUR 10: Creating Your First Object

How Object-Oriented Programming Works 121

Objects in Action . 122

What Objects Are . 124

Understanding Inheritance . 125

Building an Inheritance Hierarchy 125

Converting Objects and Simple Variables 127

Creating an Object . 132

HOUR 11: Describing What Your Object Is
Like

Creating Variables . 137

Creating Class Variables . 139

Creating Behavior with Methods 140

Putting One Class Inside Another 146

Using the this Keyword . 147

Using Class Methods and Variables. 148

HOUR 12: Making the Most of Existing Objects

The Power of Inheritance . 155

Establishing Inheritance . 157

Working with Existing Objects . 159

Storing Objects of the Same Class in Vectors 160

Creating a Subclass . 164

PART IV: Programming a Graphical User
Interface

HOUR 13: Building a Simple User Interface

Swing and the Abstract Windowing Toolkit 169

Using Components . 170

Creating Your Own Component . 180

HOUR 14: Laying Out a User Interface

Using Layout Managers . 187

Laying Out an Application . 192

HOUR 15: Responding to User Input

Getting Your Programs to Listen 201

Setting Up Components to Be Heard 202

Handling User Events . 202

Completing a Graphical Application 207

HOUR 16: Building a Complex User Interface

Scroll Panes. 219

Sliders . 222

Change Listeners . 223

Using Image Icons and Toolbars 227

PART V: Moving into Advanced Topics

HOUR 17: Creating Interactive Web Programs

Standard Applet Methods. 235

Putting an Applet on a Web Page 238

Creating an Applet . 239

Sending Parameters from a Web Page 242

Handling Parameters in an Applet 243

Using the Object Tag . 245

HOUR 18: Handling Errors in a Program

Exceptions . 249

Throwing Exceptions . 256

Throwing and Catching Exceptions 258

HOUR 19: Creating a Threaded Program

Threads . 265

Working with Threads . 270

Starting with init() . 272

Catching Errors as You Set Up URLs 272

Handling Screen Updates in the paint()
Method . 273

Starting the Thread . 274

Handling Mouse Clicks . 276

Displaying Revolving Links . 276

ptg7068951

Sams Teach Yourself Java in 24 Hours, Sixth Editionvi

HOUR 20: Reading and Writing Files

Streams . 283

Writing Data to a Stream . 290

Reading and Writing Configuration Properties . . 292

PART VI: Writing Internet Applications

HOUR 21: Reading and Writing XML Data

Creating an XML File . 299

Reading an XML File . 302

Reading RSS Syndication Feeds 307

HOUR 22: Creating Web Services with JAX-WS

Defining a Service Endpoint Interface 313

Creating a Service Implementation Bean 316

Publishing the Web Service . 317

Using Web Service Definition Language Files 318

Creating a Web Service Client. 320

HOUR 23: Creating Java2D Graphics

Using the Font Class. 327

Using the Color Class . 328

Creating Custom Colors . 329

Drawing Lines and Shapes . 329

Baking a Pie Graph . 333

HOUR 24: Writing Android Apps

Introduction to Android . 343

Creating an Android App . 345

Running the App . 352

Designing a Real App . 355

PART VII: Appendixes

APPENDIX A: Using the NetBeans Integrated
Development Environment

Installing NetBeans . 373

Creating a New Project . 374

Creating a New Java Class . 376

Running the Application . 378

Fixing Errors . 378

APPENDIX B: Where to Go from Here: Java
Resources

Other Books to Consider . 381

Oracle’s Official Java Site . 382

Other Java Websites . 383

Job Opportunities . 385

APPENDIX C: This Book’s Website 387

APPENDIX D: Setting Up an Android
Development Environment

Getting Started. 389

Installing Eclipse . 390

Installing Android SDK . 390

Installing the Android Plug-in for Eclipse 391

Setting Up Your Phone . 394

INDEX 397

ptg7068951

About the Author
Rogers Cadenhead is a writer, computer programmer, and web developer who has written more
than 20 books on Internet-related topics, including Sams Teach Yourself Java in 21 Days. He
maintains the Drudge Retort and other websites that receive more than 20 million visits a year.
This book’s official website is at www.java24hours.com.

Dedication
With this edition of the book, I’d like to break from tradition and cheat my family and friends out of
praise, because frankly it’s going to their heads. I dedicate this book to James Gosling, Mike
Sheridan, Kim Polese, Bill Joy, and the others who launched the first version of this amazing program-
ming language back in 1995. A language I was once surprised to see running on a web page is now
running apps on millions of Android phones around the world—a testimonial to the visionary work
you did at the late Sun Microsystems. Long may the purple reign!

Acknowledgments
To the folks at Sams—especially Mark Taber, Songlin Qiu, Tonya Simpson, Charlotte Kughen, and
Boris Minkin. No author can produce a book like this on his own. Their excellent work will give me
plenty to take credit for later.

To my wife, Mary, and my sons, Max, Eli, and Sam. Although our family has not fulfilled my dream
of becoming death-defying high-wire trapeze acrobats, I’m the world’s proudest husband and father
in a household of acrophobics.

Reader Acknowledgments
I’d also like to thank readers who have sent helpful comments about corrections, typos, and
suggested improvements to the book. The list includes Brian Converse, Philip B. Copp III, Wallace
Edwards, M.B. Ellis, Kevin Foad, Adam Grigsby, Mark Hardy, Kelly Hoke, Donovan Kelorii, Russel
Loski, Jason Saredy, Mike Savage, Peter Schrier, Gene Wines, Jim Yates, and others who shall
remain nameless because they helped me improve the book before I started this list.

www.java24hours.com

ptg7068951

We Want to Hear from You!
As the reader of this book, you are our most important critic and commentator. We value your opin-
ion and want to know what we’re doing right, what we could do better, what areas you’d like to see
us publish in, and any other words of wisdom you’re willing to pass our way.

You can email or write me directly to let me know what you did or didn’t like about this book—as
well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book, and that
due to the high volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book’s title and author as well as your name and
phone or email address. I will carefully review your comments and share them with the author and
editors who worked on the book.

E-mail: feedback@samspublishing.com

Mail: Mark Taber
Executive Editor
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services
Visit our website and register this book at informit.com/register for convenient access to any
updates, downloads, or errata that might be available for this book.

ptg7068951

Introduction

As the author of computer books, I spend a lot of time lurking in the com-
puter section of bookstores, observing the behavior of readers while I’m
pretending to read the latest issue of In Touch Weekly magazine.

Because of my research, I’ve learned that if you have picked up this book
and turned to the introduction, I have only 12 more seconds before you
put it down and head to the coffee bar for a double-tall-decaf-skim-with-
two-shots-of-vanilla-hold-the-whip latte.

So I’ll keep this brief: Computer programming with Java is easier than it
looks. I’m not supposed to tell you that because thousands of program-
mers have used their Java skills to get high-paying jobs in software devel-
opment, web application programming, and mobile app creation. The last
thing any programmer wants is for the boss to know that anyone who has
persistence and a little free time can learn this language, the most popular
programming language in use today. By working your way through each
of the one-hour tutorials in Sams Teach Yourself Java in 24 Hours, you’ll be
able to learn Java programming quickly.

Anyone can learn how to write computer programs—even if they can’t
program a DVR. Java is one of the best programming languages to learn
because it’s a useful, powerful, modern technology that’s embraced by
thousands of programmers around the world.

This book is aimed at nonprogrammers, new programmers who hated
learning the subject, and experienced programmers who want to quickly
get up to speed with Java. It uses Java 7, the version of the language just
released.

Java is an enormously popular programming language because of the
things it makes possible. You can create programs that feature a graphical
user interface, design software that makes the most of the Internet, read
XML data, create a game that runs on an Android cell phone, and more.

ptg7068951

2

This book teaches Java programming from the ground up. It introduces the
concepts in English instead of jargon with step-by-step examples of work-
ing programs you will create. Spend 24 hours with this book and you’ll be
writing your own Java programs, confident in your ability to use the lan-
guage and learn more about it. You also will have skills that are becoming
increasingly important—such as network computing, graphical user inter-
face design, and object-oriented programming.

These terms might not mean much to you now. In fact, they’re probably
the kind of thing that makes programming seem intimidating and difficult.
However, if you can use a computer to balance your checkbook, or create a
photo album on Facebook, you can write computer programs by reading
Sams Teach Yourself Java in 24 Hours.

At this point, if you would rather have coffee than Java, please reshelve
this book with the front cover facing outward on an endcap near a lot of
the store’s foot traffic.

ptg7068951

WHAT YOU’LL LEARN IN
THIS HOUR:

. Choosing which program-
ming language to learn
first

. Using programs to boss
your computer around

. Discovering how programs
work

. Fixing program errors

. Selecting a Java develop-
ment tool

. Getting ready to write
programs

You’ve probably heard that computer programming is insanely difficult. It
requires a degree in computer science, thousands of dollars in computer
hardware and software, a keen analytical mind, the patience of Job, and a
strong liking for caffeinated drinks.

Aside from the part about caffeine, you heard wrong. Programming is easi-
er than you might think, despite what programmers have been telling peo-
ple for years to make it easier for us to get high-paying jobs.

This is a great time to learn programming. Countless programming tools are
being made available as free downloads from the Web, and thousands of
programmers distribute their work under open-source licenses so people can
examine how programs are written, correct errors, and contribute improve-
ments. Even in a down economy, many companies are hiring programmers.

Millions of mobile devices use Android, an operating system whose apps
are all written in Java. If you have an Android phone, you’ve been enjoying
the work of Java programmers every time you look up a movie, get driving
directions, or fire an antagonistic avian at a poorly built fortress of swine.

This book aims to teach Java programming to two kinds of people: the
ones who never tried to program before and the ones who tried program-
ming but hated it like Lord Voldemort hates orphaned British schoolchild-
ren. The English language is used as much as possible instead of jargon
and obscure acronyms, and all new programming terms are thoroughly
explained as they are introduced.

If I’ve succeeded, you will finish this book with enough programming skills
to be a danger to yourself and others. You’ll be able to write programs, dive
into other programming books with more confidence, and learn new lan-
guages more easily. (Programming languages, I mean. This book won’t help
you master Spanish, French, or Klingon.) You also will have skills with Java,
the most widely used programming language on the planet.

HOUR 1
Becoming a Programmer

ptg7068951

4 HOUR 1: Becoming a Programmer

The first hour of this book provides an introduction to programming fol-
lowed by instructions on how to set up your computer so you can write
Java programs.

Choosing a Language
If you’re comfortable enough with a computer to prepare a nice-looking
résumé, balance a checkbook, or share your vacation photos on Facebook,
you can write computer programs.

The key to learning how to program is to start with the right language. The
programming language you choose often depends on the tasks you want
to accomplish. Each language has strengths and weaknesses. For many
years, people learned to program with some form of the BASIC language
because the language was created with beginners in mind.

Microsoft Visual Basic has been used to write thousands of sophisticated
programs for commercial, business, and personal use. However, programs
created with some versions of Visual Basic can be slower than programs
written in other languages such as C# and Visual C++. This difference is
especially noticeable in programs that use a lot of graphics, such as games.

This book covers the Java programming language, which is offered by
Oracle Corporation. Though Java is more difficult to learn than a language
such as Visual Basic, it’s a good starting place for several reasons. One
advantage of learning Java is that you can use it on the Web and mobile
phones. Java programs can be used to create Android phone apps, browser
games, and other hot areas of software development.

Another important advantage is that Java requires an organized approach
for getting programs to work. You must be particular about how you write
programs; Java balks when you don’t follow its rules.

When you start writing Java programs, you might not see the language’s
persnickety behavior as an advantage. You might tire of writing a program
and having several errors to fix before the program is finished.

In the coming hours, though, you learn about Java’s rules and the pitfalls
to avoid. The benefit of this extra effort is that the programs you create are
more reliable, useful, and error-free.

Java was invented by developer James Gosling as a better way to create
computer programs. While working at Sun Microsystems, Gosling was
unhappy with the way the C++ programming language was performing
on a project, so he created a new language that did the job better. It’s a

NOTE

The BASIC language was invent-
ed in the 1960s to be easy for
students and beginners to learn
(the B in BASIC stands for
Beginner’s). The downside to
using some form of BASIC is
that it’s easy to fall into sloppy
programming habits with the
language.

ptg7068951

Telling the Computer What to Do 5

matter of contentious debate whether Java is superior to other program-
ming languages, of course, but the success of the language over the past
decade demonstrates the strength of his design. Three billion devices
across the world are running Java. More than 1,000 books have been pub-
lished about the language since its introduction. (This is my sixteenth!)

Regardless of whether Java is the best language, it definitely is a great lan-
guage to learn. You’ll get your first chance to try out Java during Hour 2,
“Writing Your First Program.”

Learning any programming language makes it much easier to learn subse-
quent languages. Many languages are similar to each other, so you aren’t
starting from scratch when you dive into a new one. For instance, many
C++ and Smalltalk programmers find it fairly easy to learn Java because
Java borrows a lot of ideas from those languages. Similarly, C# adopts
many ideas from Java, so it’s easier to pick up for Java programmers.

Telling the Computer What to Do
A computer program, also called software, is a way to tell a computer what
to do. Everything that the computer does, from booting up to shutting
down, is done by a program. Windows 7 is a program; Call of Duty is a pro-
gram; the driver software you installed with your printer is a program;
even an email virus is a program.

Computer programs are made up of a list of commands the computer han-
dles in a specific order when the program is run. Each command is called a
statement.

If your house had its own butler, and you were a high-strung Type-A per-
sonality, you could give your servant a detailed set of instructions to follow:

Dear Mr. Jeeves,

Please take care of these errands for me while I’m out asking
Congress for a bailout:

Item 1: Vacuum the living room.

Item 2: Go to the store.

Item 3: Pick up soy sauce, wasabi, and as many California sushi rolls
as you can carry.

Item 4: Return home.

Thanks,

Bertie Wooster

NOTE

C++ is mentioned several times
this hour, so you might be trip-
ping over the term wondering
what it means—and how it’s
pronounced. C++ is pronounced
C-Plus-Plus, and it’s a program-
ming language developed by
Bjarne Stroustrop at Bell
Laboratories. C++ is an
enhancement of the C program-
ming language, hence the Plus-
Plus part of the name. Why not
just call it C+? The Plus-Plus
part is a computer programming
joke you’ll understand later in
this book.

ptg7068951

6 HOUR 1: Becoming a Programmer

If you tell a butler what to do, there’s a certain amount of leeway in how
your requests are fulfilled. If California rolls aren’t available, Jeeves could
bring Boston rolls home instead.

Computers don’t do leeway. They follow instructions literally. The pro-
grams that you write are followed precisely, one statement at a time.

The following is one of the simplest examples of a computer program,
written in BASIC. Take a look at it, but don’t worry yet about what each
line is supposed to mean.

1 PRINT “Shall we play a game?”
2 INPUT A$

Translated into English, this program is equivalent to giving a computer
the following to-do list:

Dear personal computer,

Item 1: Display the question, “Shall we play a game?”

Item 2: Give the user a chance to answer the question.

Love,

Snookie Lumps

Each of the lines in the computer program is a statement. A computer han-
dles each statement in a program in a specific order, in the same way that a
cook follows a recipe or Mr. Jeeves the butler follows the orders of Bertie
Wooster. In BASIC, the line numbers are used to put the statements in the
correct order. Other languages such as Java do not use line numbers, favor-
ing different ways to tell the computer how to run a program.

Figure 1.1 shows the sample BASIC program running Joshua Bell’s
AppleSoft BASIC interpreter. The interpreter runs in a web browser, and
you can find it at www.calormen.com/Applesoft.

Because of the way programs operate, it’s hard to blame the computer
when something goes wrong while your program runs. The computer is
just doing exactly what you told it to do. The blame for program errors lies
with the programmer. That’s the bad news.

The good news is you can’t do any permanent harm. No one was harmed
during the making of this book, and no computers will be injured as you
learn how to program in Java.

www.calormen.com/Applesoft

ptg7068951

How Programs Work 7

How Programs Work
Most computer programs are written in the same way that you write a letter—
by typing each statement into a text editor. Some programming tools come
with their own editor, and others can be used with any text-editing software.

When you have finished writing a computer program, you save the file to
disk. Computer programs often have their own filename extension to indi-
cate what type of file they are. Java programs must have the extension
.java, as in Calculator.java.

To run a program you have saved as a file, you need some help. The kind of
help that’s needed depends on the programming language you’re using.
Some languages require an interpreter to run their programs. The interpreter
is a program that interprets each line of a computer program and tells the
computer what to do. Most versions of BASIC are interpreted languages.
The advantage of interpreted languages is that they are faster to test. When
you are writing a BASIC program, you can try it out immediately, fix errors,
and try again. The primary disadvantage is that interpreted languages run
slower than other programs.

Other programming languages require a compiler. The compiler takes a com-
puter program and translates it into a form that the computer can under-
stand. It also makes the program run as efficiently as possible. The compiled
program can be run directly without the need for an interpreter. Compiled

FIGURE 1.1
An example of a BASIC program.

NOTE

The quote “Shall we play a
game?” is from the 1983 movie
WarGames, in which a young
computer programmer (Matthew
Broderick) saves the world after
nearly causing global thermonu-
clear war. You learn how to do
that in Sams Teach Yourself to
Endanger Humankind with Java
in 24 Hours.

NOTE

If your text editor is a word pro-
cessing program that has fea-
tures such as boldface text,
font sizes, and other stylistic
touches, do not use those fea-
tures while writing a computer
program. Programs should be
prepared as text files with no
special formatting. Notepad, a
word processor that comes with
Windows, saves all files as
unformatted text. You also can
use the vi editor on Linux sys-
tems to create text files without
formatting.

ptg7068951

8 HOUR 1: Becoming a Programmer

programs run more quickly than interpreted programs but take more time
to test. You have to write your program and compile it before trying it out.
If you find an error and fix it, you must compile the program again.

Java is unusual because it requires both a compiler and an interpreter. You
learn more about this later as you write Java programs.

When Programs Don’t Work
Many new programmers become discouraged when they start to test their
programs. Errors appear everywhere. Some of these are syntax errors,
which are identified by the computer as it looks at the program and
becomes confused by what you wrote. Other errors are logic errors, which
are noticed only by the programmer as the program is being tested (and
might be overlooked entirely). Logic errors sneak by the computer unno-
ticed, but they often cause it to do something unintended.

As you begin writing your own programs, you become well acquainted
with errors. They’re a natural part of the process. Programming errors are
called bugs, a term that dates back a century or more to describe errors in
technical devices. The process of fixing errors has its own term also: debug-
ging. It’s no coincidence that so many ways exist to describe programming
errors. You get a lot of debugging experience as you learn programming—
whether you want it or not.

Choosing a Java Programming Tool
Before you can start writing Java programs, you need Java programming
software. Several programs are available for Java, including the Java
Development Kit, Eclipse, IntelliJ IDEA, and NetBeans. Whenever Oracle
releases a new version of Java, the first tool that supports it is the Java
Development Kit (JDK).

To create the programs in this book, you must use version 7 of the JDK or
another programming tool that can work in conjunction with it. The JDK is
a set of free command-line tools for creating Java software. The JDK lacks a
graphical user interface, so if you have never worked in a nongraphical
environment such as DOS or Linux, you’re going to be shocked—and not
in a good way—when you start using the JDK.

Oracle offers another free tool, the NetBeans integrated development envi-
ronment, that’s a much better way to write Java code. NetBeans offers a

ptg7068951

Summary 9

graphical user interface, source code editor, user interface designer, and
project manager. It works in complement to the JDK, running it behind the
scenes, so you must have both tools on your system when you begin
developing Java programs.

The programs in this book were created with NetBeans, which you can
download and install in a bundle with the JDK. You can use other Java
tools as long as they support JDK 7.

Installing a Java Development Tool
Every hour of this book ends with a Java programming project you can
undertake to enhance your knowledge of the subject matter while it perco-
lates in your brain.

You can’t do any of that Java programming if you lack a Java program-
ming tool on your computer.

If you have a programming tool such as NetBeans or the JDK, you can use
it to develop the tutorial programs in the next 23 hours. However, you
already should have some familiarity with how to use the tool. Learning
Java and a complex development tool at the same time can be daunting.

If you don’t have a Java development tool, you ought to consider using
NetBeans 7, which is freely available from Oracle’s website:
www.netbeans.org.

To find out how to download and install NetBeans, read Appendix A,
“Using the NetBeans Integrated Development Environment.”

Summary
During this hour, you were introduced to the concept of programming a
computer—giving it a set of instructions that tell it what to do. You also
might have downloaded and installed a Java development tool that you
will use as you write sample programs throughout the book.

If you are still confused about programs, programming languages, or Java
in general, don’t sweat. Everything will begin to make sense in the next
hour, “Writing Your First Program,” which gingerly steps through the
process of creating a Java program.

NOTE
Oracle offers comprehensive
documentation for the Java lan-
guage in web page format. You
don’t need this information to
use this book because each
topic is discussed fully as it is
introduced, but these pages
come in handy when you write
your own programs.

You can download the entire
documentation, but it might be
more convenient to browse it as
needed from Oracle’s website.
The most up-to-date Java docu-
mentation is available at
http://download.oracle.com/
javase/7/docs/api.

http://download.oracle.com/javase/7/docs/api
http://download.oracle.com/javase/7/docs/api
www.netbeans.org

ptg7068951

10 HOUR 1: Becoming a Programmer

Q&A
Q. BASIC? C++? Smalltalk? Java? What are the names of these lan-

guages supposed to mean?

A. BASIC gets its name from an acronym that describes what it is:
Beginner’s All Symbolic Instruction Code. C++ is a programming lan-
guage that was created to be an improvement on the C language, which
itself was an improvement of the B programming language. Smalltalk is
an innovative object-oriented language developed in the 1970s that had
numerous ideas adopted by Java.

Java goes against the tradition of naming a language with an acronym or
other meaningful term. It’s just the name that Java’s developers liked the
best, beating out WebRunner, Silk, Ruby, and others. When I create my own
programming language, it will be named Salsa. Everybody loves salsa.

Q. Why are interpreted languages slower than compiled ones?

A. They’re slower for the same reason that a person interpreting a live
speech in a foreign language is slower than a translator interpreting a
printed speech. The live interpreter has to think about each statement
that’s being made as it happens, while the other interpreter can work
on the speech as a whole and take shortcuts to speed up the process.
Compiled languages can be much faster than interpreted languages
because they do things to make the program run more efficiently.

Q. Do you answer questions only about Java?

A. Not at all. Ask me anything.

Q. Okay, what is the lowest score ever given on Dancing with the Stars?

A. The worst dance by a celebrity contestant on the hit ABC show was per-
formed by the rapper Master P during the second season in 2006. His
Paso Doble with professional dancer Ashly DelGrosso scored a lowest-
ever 8. Judges Len Goodman and Bruno Tonioli scored it a 2 and judge
Carrie Ann Inaba a 4.

Tonioli’s take: “It was a nightmare. … It looked like a child on the mall
lost looking for his mother.”

Goodman: “I know viewers think they’re being kind by bringing you back.
They’re not. They’re being cruel—to Ashly, to the judges.”

Inaba: “I actually thought that that was your best dancing.”

Master P trained only 20 hours for the show, compared to 130 for the
other contestants at that point in the season. He also refused to wear
dancing shoes and performed in basketball sneakers. The dance was
his last before being voted off.

ptg7068951

Workshop 11

The dance can be seen on YouTube, where one commenter writes,
“Thumbs up if you’re watching this just to see the 2 paddle.”

Workshop

Quiz
Test your knowledge of the material covered in this hour by answering the
following questions.

1. Which of the following is not a reason that people think computer pro-
gramming is painfully difficult?

A. Programmers spread that rumor to improve their employment
prospects.

B. Jargon and acronyms are all over the place.

C. People who find programming too difficult are eligible for a gov-
ernment bailout.

2. What kind of tool runs a computer program by figuring out one line at a
time?

A. A slow tool

B. An interpreter

C. A compiler

3. Why did James Gosling hole up in his office and create Java?

A. He was unhappy with the language he was using on a project.

B. His rock band wasn’t getting any gigs.

C. When you can’t visit YouTube at work, the Internet is pretty dull.

Answers
1. C. Computer book authors didn’t get a bailout either.

2. B. Compilers figure out the instructions beforehand so that the program
can run faster.

3. A. He was frustrated with C++. Back in 1991 when Gosling created
Java, people thought that YouTube was the place that held
YouToothpaste.

ptg7068951

12 HOUR 1: Becoming a Programmer

Activities
If you’d like to better introduce yourself to the subjects of Java and com-
puter programming, do the following activities:

. Visit Oracle’s Java site at www.oracle.com/technetwork/topics/
newtojava, and read some of the Get Started with Java Technology
pages.

. Using English sentences instead of a programming language, write a
set of instructions to add 10 to a number selected by a user, and then
multiply the result by 5. Break the instructions into as many short
one-sentence lines as you can.

To see solutions to the activities at the end of each hour, visit the book’s
website at www.java24hours.com.

www.oracle.com/technetwork/topics/newtojava
www.oracle.com/technetwork/topics/newtojava
www.java24hours.com

ptg7068951

WHAT YOU’LL LEARN IN
THIS HOUR:

. Entering a program into a
text editor

. Naming a Java program
with the class statement

. Organizing a program with
bracket marks

. Storing information in a
variable

. Displaying the information
stored in a variable

. Saving, compiling, and run-
ning a program

. Fixing errors

As you learned during Hour 1, “Becoming a Programmer,” a computer
program is a set of instructions that tells a computer what to do. These
instructions are given to a computer using a programming language.

During this hour, you create your first Java program by entering it into a text
editor. When that’s done, you save the program, compile it, and test it out.

What You Need to Write Programs
As explained in Hour 1, to create Java programs you must have a develop-
ment tool that supports the Java Development Kit (JDK) such as the
NetBeans integrated development environment (IDE). You need a tool that
can compile and run Java programs and a text editor to write those pro-
grams.

With most programming languages, computer programs are written by
entering text into a text editor (also called a source code editor). Some pro-
gramming languages come with their own editor. Oracle’s development
tool NetBeans includes its own editor for writing Java programs.

Java programs are simple text files without any special formatting such as
centered text or boldface text. The NetBeans source code editor functions like
a simple text editor with an extremely useful enhancement. Color text high-
lights identify different elements of the language as you type. NetBeans also
indents lines properly and provides helpful programming documentation.

Because Java programs are text files, you can open and edit them with any
text editor. You could write a Java program with NetBeans, open it in
Windows Notepad and make changes, and open it again later in NetBeans
without any problems.

HOUR 2
Writing Your First Program

ptg7068951

14 HOUR 2: Writing Your First Program

Creating the Saluton Program
The first Java program that you create is an application that displays a tra-
ditional greeting from the world of computer science: “Saluton mondo!”

To prepare for the first programming project in NetBeans, if you haven’t
already done so, create a new project called Java24 by following these steps:

1. Choose the menu command File, New Project.

2. Choose the project category Java and the project type Java
Application, and then click Next.

3. Enter Java24 as the project’s name. You see the error message
“Project folder already exists and is not empty” if you created this
project already.

4. Deselect the Create Main Class checkbox.

5. Click Finish.

The Java24 project is created in its own folder. You can use this project for
all Java programs you write as you progress through this book.

Beginning the Program
NetBeans groups related programs together into a project. If you don’t
have the Java24 project open, here’s how to retrieve it:

. Choose File, Open Project.

. Find and select the NetBeansProjects folder (if necessary).

. Choose Java24 and click Open Project.

The Java24 project appears in the Projects Pane.

To add a new Java program to the current project, choose File, New File.
The New File Wizard opens, as shown in Figure 2.1.

The Categories pane lists the different kinds of Java programs you can cre-
ate. Click the Java folder in this pane to see the file types that belong to this
category. For this first project, choose the Empty Java File type, and click
Next.

In the Class Name field, enter Saluton and click Finish to create the new
Java program. An empty file named Saluton.java opens in the source
code editor.

ptg7068951

Beginning the Program 15

Using the source editor, begin your Java programming career by entering each
line from Listing 2.1. These statements are called the program’s source code.

LISTING 2.1 The Saluton Program
1: public class Saluton {
2: public static void main(String[] arguments) {
3: // My first Java program goes here
4: }
5: }

Make sure to capitalize everything exactly as shown, and use your spacebar
or Tab key to insert the blank spaces in front of Lines 2–4. When you’re
done, choose File, Save or click the Save All Files button to save the file.

At this point, Saluton.java contains the bare-bones form of a Java program.
You will create several programs that start exactly like this one, except for the
word Saluton on Line 1. This word represents the name of your program and
changes with each program you write. Line 3 also should make sense—it’s a
sentence in actual English. The rest is probably new to you.

The class Statement
The first line of the program is the following:

class Saluton {

Translated into English, this line means, “Computer, give my Java program
the name Saluton.”

FIGURE 2.1
The New File Wizard.

CAUTION

Don’t enter the line number and
colon at the beginning of each
line—these are used in this
book to reference specific line
numbers.

ptg7068951

16 HOUR 2: Writing Your First Program

As you might recall from Hour 1, each instruction you give a computer is
called a statement. The class statement is the way you give your computer
program a name. It’s also used to determine other things about the pro-
gram, as you will see later. The significance of the term class is that Java
programs also are called classes.

In this example, the program name Saluton matches the document’s file
name, Saluton.java. A Java program must have a name that matches the
first part of its filename and should be capitalized the same way.

If the program name doesn’t match the filename, you get an error when
you try to compile some Java programs, depending on how the class
statement is being used to configure the program.

What the main Statement Does
The next line of the program is the following:

public static void main(String[] arguments) {

This line tells the computer, “The main part of the program begins here.”
Java programs are organized into different sections, so there needs to be a
way to identify the part of a program that is handled first.

The main statement is the entry point to most Java programs. The most
common exceptions are applets, programs that are run as part of a web
page, and servlets, programs run by a web server. Most programs you write
during upcoming hours use main as their starting point.

Those Squiggly Bracket Marks
In the Saluton program, every line except Line 3 contains a squiggly
bracket mark of some kind—either a { or a }. These brackets are a way to
group parts of your program (in the same way that parentheses are used in
a sentence to group words). Everything between the opening bracket { and
the closing bracket } is part of the same group.

These groupings are called blocks. In Listing 2.1, the opening bracket on
Line 1 is associated with the closing bracket on Line 5, which makes your
entire program a block. You use brackets in this way to show the beginning
and end of your programs.

Blocks can be located inside other blocks (just as parentheses are used in
this sentence (and a second set is used here)). The Saluton program has
brackets on Line 2 and Line 4 that establish another block. This block

ptg7068951

Storing Information in a Variable 17

begins with the main statement. Everything inside the main statement’s
block is a command for the computer to handle when the program is run.

The following statement is the only thing located inside the block:

// My first Java program goes here

This line is a placeholder. The // at the beginning of the line tells the com-
puter to ignore this line because it was put in the program solely for the
benefit of humans who are looking at the source code. Lines that serve this
purpose are called comments.

Right now, you have written a complete Java program. It can be compiled,
but if you run it nothing happens. The reason why is that you haven’t told
the computer to do anything yet. The main statement block contains only a
single comment, which is ignored. You must add some statements inside
the opening and closing brackets of the main block.

Storing Information in a Variable
In the programs you write, you need a place to store information for a brief
period of time. You can do this by using a variable, a storage place that can
hold information such as integers, floating-point numbers, true-false val-
ues, characters, and lines of text. The information stored in a variable can
change, which is how it gets the name variable.

In Saluton.java file, replace Line 3 with the following:

String greeting = “Saluton mondo!”;

This statement tells the computer to store the line of text “Saluton mondo!”
in a variable called greeting.

In a Java program, you must tell the computer what type of information a
variable will hold. In this program, greeting is a string—a line of text that
can include letters, numbers, punctuation, and other characters. Putting
String in the statement sets up the variable to hold string values.

When you enter this statement into the program, a semicolon must be
included at the end of the line. Semicolons end each statement in your Java
programs. They’re like periods at the end of a sentence. The computer uses
them to determine when one statement ends and the next one begins.

Putting only one statement on each line makes a program more under-
standable (for us humans).

NOTE

NetBeans can help you figure
out where a block begins and
ends. Click one of the brackets
in the source code of the
Saluton program. The bracket
you clicked turns yellow along
with its corresponding bracket.
The Java statements enclosed
within these yellow brackets
comprise a block.

ptg7068951

18 HOUR 2: Writing Your First Program

Displaying the Contents of a Variable
If you run the program at this point, it wouldn’t display anything. The
command to store a line of text in the greeting variable occurs behind the
scenes. To make the computer show that it is doing something, you can
display the contents of that variable.

Insert another blank line in the Saluton program after the String greeting
= “Saluton mondo!” statement. Use that empty space to enter the following
statement:

System.out.println(greeting);

This statement tells the computer to display the value stored in the greet-
ing variable. The System.out.println statement tells the computer to dis-
play a line on the system output device—your monitor.

Saving the Finished Product
Your program should now resemble Listing 2.2, although you might have
used slightly different spacing in Lines 3–4. Make any corrections that are
needed and save the file (by choosing File, Save or the Save All Files button).

LISTING 2.2 The Finished Version of the Saluton Program
1: class Saluton {
2: public static void main(String[] args) {
3: String greeting = “Saluton mondo!”;
4: System.out.println(greeting);
5: }
6: }

When the computer runs this program, it runs each of the statements in the
main statement block on Lines 3 and 4. Listing 2.3 shows what the program
would look like if it were written in the English language instead of Java.

LISTING 2.3 A Line-by-Line Breakdown of the Saluton Program
1: The Saluton program begins here:
2: The main part of the program begins here:
3: Store the text “Saluton mondo!” in a String variable named
greeting
4: Display the contents of the variable greeting
5: The main part of the program ends here.
6: The Saluton program ends here.

ptg7068951

Fixing Errors 19

Compiling the Program into a Class
File
Before you can run a Java program, you must compile it. When you compile
a program, the instructions given to the computer in the program are con-
verted into a form the computer can better understand.

NetBeans compiles programs automatically as they are saved. If you typed
everything as shown in Listing 2.2, the program compiles successfully.

A compiled version of the program, a new file called Saluton.class, is creat-
ed. All Java programs are compiled into class files, which are given the .class
file extension. A Java program can be made up of several classes that work
together, but in a simple program such as Saluton only one class is needed.

Fixing Errors
As you compose a program .in the NetBeans source editor, errors are flagged
with a red alert icon to the left of the editor pane, as shown in Figure 2.2.

NOTE

The Java compiler speaks up
only when there’s an error to
complain about. If you compile
a program successfully without
any errors, nothing happens in
response. This is a little anticli-
mactic. When I was starting out
as a Java programmer, I was
hoping successful compilation
would be met with a grand flour-
ish of celebratory horns.

Error Icon FIGURE 2.2
Spotting errors in the Source
Editor.

The icon appears on the line that triggered the error. You can click this icon to
display an error message that explains the compiler error with these details:

. The name of the Java program

. The type of error

. The line where the error was found

ptg7068951

20 HOUR 2: Writing Your First Program

Here’s an example of an error message you might see when compiling the
Saluton program:

cannot find symbol.
symbol : variable greting
location: class Saluton

The error is the first line of the message: “cannot find symbol.” These mes-
sages often can be confusing to new programmers. When the error mes-
sage doesn’t make sense to you, don’t spend much time trying to figure it
out. Instead, take a look at the line where the error occurred and look for
the most obvious causes.

For instance, can you determine what’s wrong with the following statement?

System.out.println(greting);

The error is a typo in the variable name, which should be greeting instead
of greting. (Add this typo in NetBeans to see what happens.)

If you get error messages when creating the Saluton program, double-
check that your program matches Listing 2.2, and correct any differences
you find. Make sure that everything is capitalized correctly and all punctu-
ation marks such as {, }, and ; are included.

Often, a close look at the line identified by the error message is enough to
reveal the error (or errors) that need to be fixed.

Running a Java Program
To see whether the Saluton program. does what you want, run the class
with the Java Virtual Machine (JVM), the interpreter that runs all Java
code. In NetBeans, choose the menu command Run, Run File. An output
pane opens below the source editor. In this pane, if there were no errors,
the program displays the output, as shown in Figure 2.3.

If you see the text “Saluton Mondo!” you have just written your first work-
ing Java program! Your computer has just greeted the world—a tradition
in the computer programming field that’s as important to many of us as
caffeine, short-sleeved dress shirts, and Call of Duty.

TIP

This book’s official website
www.java24hours.com includes
source files for all programs
you create. If you can’t find any
typos or other reasons for
errors in the Saluton program
but there are still errors, go to
the book’s website and down-
load Saluton.java from the.
Hour 2 page. Try to run that file
instead.

NOTE

You might be asking yourself
why “Saluton mondo!” is a tra-
ditional greeting. The phrase
means “Hello world!” in
Esperanto, an artificial lan-
guage created by Ludwig
Zamenhof in 1887 to facilitate
international communication.
It’s only a traditional greeting in
the sense that I’m trying to
start that tradition.

www.java24hours.com

ptg7068951

Summary 21

Output Pane

FIGURE 2.3
Running your first Java program.

Summary
During this hour, you got your first chance to create a Java program using
the NetBeans IDE. You learned that to develop a Java program you need to
complete these four basic steps:

1. Write the program with a text editor.

2. Compile the program into a class file.

3. Tell the Java Virtual Machine to run the class.

4. Call your mother.

Along the way, you were introduced to some basic computer programming
concepts such as compilers, interpreters, blocks, statements, and variables.
These will become clearer to you in successive hours. As long as you got the
Saluton program to work during this hour, you’re ready to proceed.

(The fourth step has nothing to do with Java programming. It’s just some-
thing my mother suggested I put in the book.)

ptg7068951

22 HOUR 2: Writing Your First Program

Q&A
Q. How important is it to put the right number of blank spaces on a line

in a Java program?

A. It’s completely unimportant. Spacing is strictly for the benefit of people
looking at a computer program—the Java compiler couldn’t care less.
You could have written the Saluton program without using blank spaces
or used the Tab key to indent lines, and it would compile successfully.

Although the number of spaces in front of lines isn’t important, you
should use consistent spacing in your Java programs. Why? Because
spacing makes it easier for you to see how a program is organized and
to which programming block a statement belongs.

Q. A Java program has been described as a class and as a group of
classes. Which is it?

A. Both. The simple Java programs you create during the next few hours
are compiled into a single file with the extension .class. You can run
these with the Java Virtual Machine. Java programs also can be made
up of a set of classes that work together. This topic is fully explored
during Hour 10, “Creating Your First Object.”

Q. If semicolons are needed at the end of each statement, why does the
comment line // My first Java program goes here not end with
a semicolon?

A. Comments are completely ignored by the compiler. If you put // on a
line in your program, this tells the Java compiler to ignore everything to
the right of the // on that line. The following example shows a com-
ment on the same line as a statement:

System.out.println(greeting); // hello, world!

Q. I couldn’t find any errors in the line where the compiler noted an error.
What can I do?

A. The line number displayed with the error message isn’t always the
place where an error needs to be fixed. Examine the statements that
are directly above the error message to see whether you can spot any
typos or other bugs. The error usually is within the same programming
block.

Q. How can I visit Antarctica?

A. If you’re not willing to become a scientific researcher or a support staffer
such as a cook, an electrician, or a doctor, you can become one of the
10,000 people who visit the frozen continent annually as tourists.

ptg7068951

Workshop 23

Flyovers are available from Australia, New Zealand, and South America
and cost around $1,000 per person.

Several cruise ships visit for a trip lasting from 10 days to three weeks,
the most expensive of which is around $25,000. Some cruises offer a
chance to kayak or hike among penguins, visit icebergs, and even camp
overnight.

The Polar Cruises website at www.polarcruises.com provides more infor-
mation for prospective Antarctica visitors.

The British Antarctic Survey offers a piece of advice for visitors: “Do not
walk onto glaciers or large snowfields unless properly trained.”

Workshop
Test your knowledge of the material covered in this hour by answering the fol-
lowing questions.

Quiz
1. When you compile a Java program, what are you doing?

A. Saving it to a disk

B. Converting it into a form the computer can better understand

C. Adding it to your program collection

2. What is a variable?

A. Something that wobbles but doesn’t fall down

B. Text in a program that the compiler ignores

C. A place to store information in a program

3. What is the process of fixing errors called?

A. Defrosting

B. Debugging

C. Decomposing

www.polarcruises.com

ptg7068951

24 HOUR 2: Writing Your First Program

Answers
1. B. Compiling a program converts a .java file into a .class file or a set

of .class files.

2. C. Variables are one place to store information; later you learn about
others such as arrays and constants. Weebles wobble but they don’t
fall down, and comments are text in a program that the compiler
ignores.

3. B. Because errors in a computer program are called bugs, fixing those
errors is called debugging. Some programming tools come with a tool
called a debugger that helps you fix errors.

Activities
If you’d like to explore the topics covered in this hour a little more fully, try the
following activities:

. You can translate the English phrase “Hello world!” into other lan-
guages using Yahoo’s Babelfish at http://babelfish.yahoo.com. Write a
program that enables your computer to greet the world in a language
such as French, Italian, or Portuguese.

. Go back to the Saluton program and add one or two errors. For exam-
ple, take a semicolon off the end of a line or change the text println
on one line to print1n (with a number 1 instead of the letter L). Save
the program and try to compile it. Compare the error messages you get
to the errors you caused.

To see solutions to these activities, visit the book’s website at
www.java24hours.com.

http://babelfish.yahoo.com
www.java24hours.com

ptg7068951

WHAT YOU’LL LEARN IN
THIS HOUR:

. The History of Java

. Benefits of using the
language

. Examples of Java at work

. An explanation of object-
oriented programming

Before you venture further into Java programming, it’s worthwhile to learn
more about the language and see what programmers are doing with it
today. Though Java has outgrown its origins as a language focused on web
browser programs, you can still find some interesting examples of how
Java is used on the Web.

During this hour, we take a look at sites that feature Java programs and
talk about the history and development of the language.

To go on this vacation, you need a web browser that has been set up to run
Java programs.

Load your browser of choice, put on your best batik shirt, and get ready to
take a vacation. You won’t be leaving your house, and you won’t experi-
ence the simpler pleasures of tourism, such as reckless cab drivers, exotic
food, exotic locals, exotic locals with food, and so on. Look on the bright
side though: no traveler’s check hassles, no passports, and no
Montezuma’s revenge.

First Stop: Oracle
The Java vacation begins at www.java.com, a site created by Oracle, the
company that owns the Java language.

A Java program that runs as part of a web page is called an applet. Applets
are placed on pages like other elements of a page. A markup language
called HTML defines where the program should be displayed, how big it
is, and what the program does when it runs. Java also enhances the Web in
two other ways: Desktop programs written in Java can be launched from a
web browser, and Java servlets are run by web servers to deliver web
applications.

HOUR 3
Vacationing in Java

www.java.com

ptg7068951

26 HOUR 3: Vacationing in Java

Java.com provides a place to learn about how Java is being used. Oracle
also offers a more technically oriented website for Java programmers at
http://www.oracle.com/technetwork/java. This site is the place to find
the latest released versions of NetBeans and the Java Development Kit
along with other programming resources.

A Brief History of Java
Bill Joy, one of the executives at Sun Microsystems when the company cre-
ated Java, called the language “the end result of 15 years of work to pro-
duce a better, more reliable way to write computer programs.” Java’s cre-
ation was a little more complicated than that.

Java was developed in 1990 by James Gosling as a language that would
serve as the brains for smart appliances (interactive TVs, omniscient ovens,
SkyNet military satellites that enslave mankind, and so on). Gosling was
unhappy with the results he was getting by writing programs with a pro-
gramming language called C++. In a burst of inspiration, he holed up in
his office and wrote a new language to better suit his needs.

Oracle’s Java division leads the development of the Java language and relat-
ed software. The Java in Action section of Java.com showcases how Java is
being used on websites, Android phones, and other platforms. Millions of
devices run programs written with Java. Figure 3.1 shows RuneScape, a
massively multiplayer online game powered by Java. You can play the
game for free by using any web browser to visit www.runescape.com.

FIGURE 3.1
The Java-powered online game
RuneScape.

http://www.oracle.com/technetwork/java
www.runescape.com

ptg7068951

Going to School with Java 27

Gosling named his new language Oak after a tree he could see from his office
window. The language was part of his company’s strategy to make a fortune
when interactive TV became a multimillion-dollar industry. That still hasn’t
happened today (though Netflix, TiVo, and others are making a game
attempt), but something completely different took place for Gosling’s new
language. Just as Oak was about to be scrapped, the Web became popular.

In a fortuitous circumstance, many qualities that made Gosling’s language
good on its appliance project made it suitable for adaptation to the Web. His
team devised a way for programs to be run safely from web pages and a
catchy new name was chosen to accompany the language’s new purpose: Java.

Although Java can be used for many other things, the Web provided the show-
case it needed. When the language rose to prominence, you had to be in soli-
tary confinement or a long-term orbital mission to avoid hearing about it.

There have been eight major releases of the Java language:

. Fall 1995: Java 1.0—The original release

. Spring 1997: Java 1.1—An upgrade that improved support for graphi-
cal user interfaces

. Summer 1998: Java 2 version 1.2—A huge expansion, making the lan-
guage a general-purpose programming language

. Fall 2000: Java 2 version 1.3—A release for enhanced multimedia

. Spring 2002: Java 2 version 1.4—An upgrade of Internet support,
XML capabilities, and text processing

. Spring 2004: Java 2 version 5—A release offering greater reliability
and automatic data conversion

. Winter 2006: Java 6—A upgrade with a built-in database and web
services support

. Summer 2011: Java 7—The current release, which adds new core lan-
guage improvements, memory management improvements, and the
Nimbus graphical user interface

Going to School with Java
The Web includes numerous resources for educators and schoolchildren.
Because Java programs can offer a more interactive experience than standard
web pages, some programmers have used the language to write learning pro-
grams for the Internet.

NOTE

You might have heard that Java
is an acronym that stands for
Just Another Vague Acronym.
You also might have heard that
it was named for the Gosling’s
love of coffee. The story behind
Java’s naming contains no
secret messages or declara-
tions of liquid love. Java was
chosen as the name for the
same reason that comedian
Jerry Seinfeld likes to say the
word salsa: It sounds cool.

ptg7068951

28 HOUR 3: Vacationing in Java

For one such example, visit http://www.cs.ubc.ca/~van/sssjava to access a
ski jump simulator created by Michiel van de Panne, a computer science pro-
fessor at the University of British Columbia. The program uses Java to
demonstrate physics-based animation as a skier tries several different slopes
and jumps. The motion of the skier is controlled by moving a mouse one of
eight directions, each of which affects the success of a jump. Figure 3.2 shows
one run of the program right before my virtual skier met a gruesome end.

FIGURE 3.2
A ski-jump simulator can be experi-
enced interactively on the Web
using a Java program.

Numerous educational programs are available for many different operat-
ing systems, but one thing that makes this program stand out is its avail-
ability. The simulator is run directly from a web page. No special installa-
tion is needed, and, unlike most desktop software, it isn’t limited to a par-
ticular operating system. You can run Java programs on any computer that
has a Java Virtual Machine (JVM).

The JVM loaded by a browser is the same one used to run the Saluton pro-
gram during Hour 2, “Writing Your First Program.” A browser’s JVM only
can run Java programs that are set up to run on web pages and cannot
handle programs set up to run elsewhere, such as in a file folder.

The first browsers to support Java included a built-in JVM. Today,
browsers support Java by relying on the Java Plug-in, a JVM that works as
a browser enhancement.

TIP

Oracle includes the Java Plug-in
with the JDK and other prod-
ucts, so it might already be
installed on your computer. To
check if Java is installed, visit
the www.java.com website. The
“Do I Have Java?” link can
detect the presence of Java.

http://www.cs.ubc.ca/~van/sssjava
www.java.com

ptg7068951

Lunch in JavaWorld 29

A Java program, such as the ski-jump simulator, does not have to be written
for a specific operating system. Because operating systems like Windows
also are called platforms, this advantage is called platform independence. Java
was created to work on multiple systems. Originally, Java’s developers
believed it needed to be multiplatform because it would be used on a vari-
ety of appliances and other electronic devices.

Users can run the programs you write with Java on a variety of systems
without requiring any extra work from you. Under the right circumstances,
Java can remove the need to create specific versions of a program for differ-
ent operating systems and devices.

Lunch in JavaWorld
After working up an appetite on the slopes, take a lunch break with JavaWorld,
an online magazine for Java programmers. Visit www.javaworld.com.

JavaWorld offers how-to articles, news stories, and research centers on hot
areas of Java development. One of the advantages of the publication’s web
format is that it can display functional Java programs in conjunction with
articles. Figure 3.3 shows a Java poetry magnet board that accompanies a
tutorial explaining how it is written.

FIGURE 3.3
A JavaWorld how-to article on how
to create a poetry magnet board
includes a working example of the
program.

NOTE

JavaWorld occasionally moves
things around, but at the time
of this writing, you can go
directly to the poetry magnet
board tutorial at www.caden-
head.org/poetry. If that page is
unavailable, use the site’s
search engine to look for the
word “poetry.”

JavaWorld publishes articles and commentary about the language and its
development. One issue that has been hotly debated since Java’s introduc-
tion is whether the language is secure.

www.javaworld.com
www.cadenhead.org/poetry
www.cadenhead.org/poetry

ptg7068951

30 HOUR 3: Vacationing in Java

Security is important because of the way Java programs work when they
are placed on a web page. The Java programs you have tried during this
hour were downloaded to your computer. When the program was finished
downloading, it ran on your computer.

Unless you know a whole lot of people, most web pages you visit are pub-
lished by strangers. In terms of security, running their programs isn’t a lot
different than letting the general public come over and borrow your com-
puter. If the Java language did not have safeguards to prevent abuse, its
programs could introduce viruses onto your system, delete files, play the
collected works of Justin Bieber, and do other unspeakable things. Java
includes several different kinds of security to make sure that its programs
are safe when run from web pages.

The main security is provided by restrictions on Java programs running
over the Web:

. No program can open, read, write, or delete files on the user’s system.

. No program can run other programs on the user’s system.

. All windows created by the program are identified clearly as Java
windows.

. Programs cannot make connections to websites other than the one
from which they came.

. All programs are verified to make sure that nothing was modified
after they were compiled.

Although there are no guarantees, the language has been proven to have
enough safeguards to be usable over the Web.

The Java language also offers a more flexible security policy for programs
that run in a browser. You can designate some companies and program-
mers as trusted developers, which enables their Java programs to run in
your browser without the restrictions that normally would be in place.

This system of trust is established through the use of signed applets that
have digital signatures, files that clearly identify the author of a Java pro-
gram. These signatures are created in collaboration with independent veri-
fication groups such as VeriSign.

If you ever have authorized a program to run in a browser such as Internet
Explorer or Google Chrome, you have worked with a similar system of
trust and identity verification.

ptg7068951

Watching the Skies at NASA 31

Applets can still be useful today, but over the years other technology, such
as Flash, Silverlight, and HTML5, have been employed for web
page–based programs. Java is more commonly encountered on mobile
apps, server programs, and desktop software.

Watching the Skies at NASA
The first afternoon stop on the Java tour is a trip to NASA, a U.S. govern-
ment agency that makes extensive use of Java. One of the most popular
examples is SkyWatch, an applet that helps stargazers keep an eye out for
orbiting satellites. Load it in your browser by visiting www.cadenhead.
org/nasa; you are forwarded automatically to NASA’s SkyWatch site.

SkyWatch superimposes the current location and path of eight different
satellites—which you can add or drop from view—over a globe of the
world. The applet running in Figure 3.4 shows the SEASAT-1 satellite mak-
ing a patch from the Bootes constellation to the Hercules constellation.

FIGURE 3.4
NASA’s SkyWatch applet monitors
the location and path of orbiting
satellites, a boon to metal bird-
watchers.

The applet redraws the position of each tracked satellite as it runs. This
kind of real-time update is possible because the Java language is multi-
threaded. Multithreading is a way for the computer to do more than one
thing at the same time. One part of a program takes care of one task, anoth-
er part takes care of a different task, and the two parts can pay no attention
to each other. Each part of a program in this example is called a thread.

www.cadenhead.org/nasa
www.cadenhead.org/nasa

ptg7068951

32 HOUR 3: Vacationing in Java

In a program such as SkyWatch, each satellite could run in its own thread.
If you use an operating system such as Windows 7, you’re using a type of
this behavior when you run more than one program at the same time. If
you’re at work playing Desktop Tower Defense in one window while
running a company sales report in another window and making a long-
distance call to a friend, congratulate yourself—you’re multithreading!

Getting Down to Business
At this point in your travels, you might have the impression that Java is
primarily of use to space buffs, atrocious poets, and terrible skiers. The
next stop on our trip shows an example of Java getting down to business.

Direct your web browser to the JTicker website at www.jticker.com.

The publisher of JTicker, a company called Stock Applets, develops Java
programs that display business news headlines and stock quotes for use on
other websites. Figure 3.5 shows a demo of its scrolling stock ticker.

Unlike other stock analysis programs that require the installation of soft-
ware on the computers of each employee who needs access, the use of Java
enables customers of Stock Applets to make the programs available to any-
one with a web browser. All employees have to do is access the company’s
website.

FIGURE 3.5
Java programs from Stock Applets
report stock market prices.

You can think of a program like this stock ticker applet in several different
ways. One is to think of a program as an object—something that exists in

www.jticker.com

ptg7068951

Stopping by Java Boutique for Directions 33

the world, takes up space, and has certain things it can do. Object-oriented
programming (OOP), which Java uses (read more in Hour 10, “Creating
Your First Object”), is a way of creating computer programs as a group of
objects. Each object handles a specific job and knows how to speak to other
objects. For example, a stock ticker program could be set up as the follow-
ing group of objects:

. A quote object, which represents an individual stock quote

. A portfolio object, which holds a set of quotes for specific stocks

. A ticker object, which displays a portfolio

. An Internet object, a user object, and many others

Under that model, the stock ticker software is a collection of all the objects
necessary to get work done.

OOP is a powerful way to create programs, and it makes the programs you
write more useful. Consider the stock software. If the programmer wants
to use the quote capabilities of that program in some other software, the
quote object can be used with the new program. No changes need to be
made.

Stopping by Java Boutique for
Directions
This world tour of Java programs is being led by a professional who is
well-versed in the hazards and highlights of web-based travel. You’ll be
venturing out on your own trips soon, so it’s worthwhile to stop at one of
the best guides for the tourist who wants to see Java: Java Boutique at
http://javaboutique.internet.com.

Java Boutique features a directory of Java programs and programming
resources related to the language. One of the best uses of the site for pro-
grammers is to see what programs are available that offer source code. In
case you’re unfamiliar with the term, source code is another name for the
text files that are used to create computer programs. The Saluton.java file
you developed during Hour 2 is an example of source code.

The Source Code link on the Java Boutique’s home page lists the programs
in the site’s directory that include their source code.

http://javaboutique.internet.com

ptg7068951

34 HOUR 3: Vacationing in Java

One of the programs whose source code is available is Aleksey
Udovydchenko’s Absolute, a space videogame in which you control a ship
and blast your way through an asteroid field (see Figure 3.6). The game
features scrolling animation, graphics, keyboard control, and sound. To
learn more and play the game, visit http://javaboutique.internet.com/
Absolute.

FIGURE 3.6
Source code for Java programs
such as Aleksey Udovydchenko’s
space shoot-’em-up Absolute can
be found using Java Boutique.

NOTE

Gamelan’s Java Applet Ratings
Service (JARS), a directory of
browser-based Java programs
and other resources available
at www.jars.com, often includes
programs that are accompanied
by the source code used to cre-
ate them. The language has
been adopted by thousands of
programmers around the world,
partially because of the simplic-
ity of the language.

The entire Absolute program was written in just more than 700 lines of
code. That’s an extremely small number, considering everything the pro-
gram does. Java includes an extensive library of classes you can use in
your own programs. Udovydchenko employs a class called Image to dis-
play graphics such as asteroids and an AudioClip class to play sounds
such as laser fire and explosions.

One goal of Java’s design was to make it easier to learn than C++, the lan-
guage Gosling was having fits with on his smart-appliance project. Much
of Java is based on C++, so programmers who have learned to use that lan-
guage find it easier to learn Java. However, some of the elements of C++
that are the hardest to learn and use correctly are not present in Java.

For people learning programming for the first time, Java is easier to learn
than C++. Some languages are created to make it easier for experienced
programmers to harness the capabilities of the computer in their programs.

http://javaboutique.internet.com/Absolute
http://javaboutique.internet.com/Absolute
www.jars.com

ptg7068951

Running Java on Your Phone 35

These languages include shortcuts and other features that programming
veterans easily understand.

Java does not use some of these features, preferring to make the language as
simple as an object-oriented programming language can be. Java was creat-
ed to be easy to learn, easy to debug, and easy to use Java includes numer-
ous enhancements that make it a worthy competitor to other languages.

Running Java on Your Phone
The last stop on your whirlwind tour of Java is the nearest Google Android
cell phone. Every single program that runs on Android has been pro-
grammed with Java. These mobile programs, which extend the functionali-
ty of the phones, are called apps. One of the most popular apps is a game
called Angry Birds, shown in Figure 3.7.

FIGURE 3.7
Angry Birds and all other Android
apps were created with the Java
language.

You can learn more about this game, if you’re not already familiar with it,
by visiting www.angrybirds.com. (But don’t do it! The game will obliterate
any hope you had of being productive for the rest of the day, week, or
even month—depending on how much you hate fortified pigs.)

Android ends the trip around Java because it’s becoming an incredibly
popular place for the language to be used. After you learn Java, you can
apply your skills developing your own apps using the Android Software
Development Kit (SDK), a free programming toolkit that runs on
Windows, MacOS, and Linux.

www.angrybirds.com

ptg7068951

36 HOUR 3: Vacationing in Java

More than 250,000 apps have been created for Android phones and other
devices that run the mobile operating system. You learn more about it in
Hour 24, “Writing Android Apps.”

Summary
Now that the hour-long vacation is over, it’s time to put away your lug-
gage and get ready for a return to actual Java programming.

During the next 21 hours, you will master the basic building blocks of the
Java language, learn how to create your own objects to accomplish tasks in
object-oriented programming, design graphical user interfaces, and much
more.

Unless you’ve stopped reading this book to play Angry Birds.

ptg7068951

Workshop 37

Q&A
Q. Why are Java applets no longer popular?

A. When the Java language was introduced in the mid-’90s, most people
were learning the language to write applets. Java was the only way to
create interactive programs that ran in a web browser.

Over the years, alternatives emerged. Macromedia Flash, Microsoft
Silverlight, and the new web publishing HTML5 standard all offer ways
to put programs on web pages.

Applets were hampered by poor loading time and slow support for new
versions of Java by browser developers. A Java plug-in was introduced
that could run the current version of Java in browsers, but by that time
Java had outgrown its origins and was a sophisticated general-purpose
programming language.

Q. What’s a Chris Steak House, and why does Ruth have one?

A. Ruth’s Chris Steak House, the chain of more than 120 upscale steak
restaurants across the United States and a handful of other countries,
has an odd two-first-name name that reveals its humble origins and the
stubborn streak of its founder.

The chain was founded in 1965 as a solitary New Orleans restaurant
owned by Ruth Fertel, a single mother of two sons. Fertel saw a classi-
fied ad offering a restaurant for sale and took out a $22,000 home
mortgage to buy it (equivalent to around $150,000 in present dollars).

She reached a deal to keep the name Chris Steak House with original
owner Chris Matulich, but later had to relocate after a kitchen fire.

Fertel’s contract did not permit her to use the Chris Steak House name
anywhere but the original location, so she renamed it Ruth’s Chris
Steak House. Though she had no restaurant or culinary expertise, the
business was so successful that she began offering it as a franchise
within 12 years. She disregarded several suggestions over the years to
change the name to broaden its appeal.

“I’ve always hated the name,” she once told a reporter for Fortune mag-
azine, “but we’ve always managed to work around it.”

Fertel, who died in 2002, was born on Feb. 5, 1927—the same day
that Matulich opened the steakhouse.

Workshop
If your mind hasn’t taken a vacation by this point, test your knowledge of this
hour with the following questions.

ptg7068951

38 HOUR 3: Vacationing in Java

Quiz
1. How did object-oriented programming get its name?

A. Programs are considered to be a group of objects working together.

B. People often object because it’s hard to master.

C. Its parents named it.

2. Which of the following isn’t a part of Java’s security?

A. Web programs cannot run programs on the user’s computer.

B. The identity of a program’s author is always verified.

C. Java windows are labeled as Java windows.

3. What is a program’s capability to handle more than one task called?

A. Schizophrenia

B. Multiculturalism

C. Multithreading

Answers
1. A. It’s also abbreviated as OOP.

2. B. Programmers can use digital signatures and an identity-verification
company such as VeriSign in Java, but it isn’t required.

3. C. This also is called multitasking, but the term multithreading is used
in conjunction with Java because a separately running part of a program
is called a thread.

Activities
Before unpacking your luggage, you can explore the topics of this hour more
fully with the following activities:

. Use the Java Boutique site at http://javaboutique.internet.com to find
out what card games have been developed using the language.

. Visit Oracle’s website for Java users, www.java.com, and click the “Do I
Have Java?” link. Follow the instructions to see whether Java’s present
on your computer. Download and install the most up-to-date version, if
prompted to do so.

Solutions for the activities in this book are presented on the book’s website
at www.java24hours.com.

http://javaboutique.internet.com
www.java24hours.com
www.java.com

ptg7068951

WHAT YOU’LL LEARN IN
THIS HOUR:

. How applications work

. Organizing an application

. Sending arguments to an
application

. How applets work

. Organizing an applet

. Putting an applet on a web
page

An important distinction to make in Java programming is where your pro-
gram is supposed to be running. Some programs are intended to work on
your computer. Other programs are intended to run as part of a web page.

Java programs that run locally on your own computer are called
applications. Programs that run on web pages are called applets. During this
hour, you learn why that distinction is important.

Creating an Application
The Saluton program you wrote during Hour 2, “Writing Your First
Program,” is an example of a Java application. The next application you
create calculates the square root of a number and displays the value.

With the Java24 project open in NetBeans, begin a new application:

1. Choose File, New File. The New File Wizard opens.

2. Choose the category Java and the file type Empty Java File, and
then click Next.

3. Enter the class name Root and click Finish.

NetBeans creates Root.java and opens the empty file in the source editor
so you can begin working on it. Enter everything from Listing 4.1, remem-
bering not to enter the line numbers and colons along the left side of the
listing. The numbers are used to make parts of programs easier to describe
in the book. When you’re done, save the file by clicking the Save All but-
ton on the toolbar.

HOUR 4
Understanding How Java

Programs Work

ptg7068951

40 HOUR 4: Understanding How Java Programs Work

When you run a Java application, the Java Virtual Machine (JVM) looks for a
main() block and starts handling Java statements within that block. If your
program does not have a main() block, the JVM responds with an error.

LISTING 4.1 The Full Text of Root.java
1: class Root {
2: public static void main(String[] arguments) {
3: int number = 225;
4: System.out.println(“The square root of “
5: + number
6: + “ is “
7: + Math.sqrt(number)
8:);
9: }
10: }

The Root application accomplishes the following tasks:

. Line 3: An integer value of 225 is stored in a variable named number.

. Lines 4–8: This integer and its square root are displayed. The
Math.sqrt(number) statement in Line 7 displays the square root.

If you have entered Listing 4.1 without any typos, including all punctua-
tion and every word capitalized as shown, you can run the file in NetBeans
by choosing Run, Run File. The output of the program appears in the out-
put pane, as shown in Figure 4.1.

Output Pane

FIGURE 4.1
The output of the Root application.

ptg7068951

Sending Arguments to Applications 41

Sending Arguments to Applications
You can run Java applications from a command line using java, a program
that invokes the JVM. NetBeans uses this program behind the scenes when
you run programs. When a Java program is run as a command, the JVM
loads the application. The command can include extra items of informa-
tion, as in this example:

java TextDisplayer readme.txt /p

Extra information sent to a program is called an argument. The first argu-
ment, if there is one, is provided one space after the name of the applica-
tion. Each additional argument also is separated by a space. In the preced-
ing example, the arguments are readme.txt and /p.

If you want to include a space inside an argument, you must put quotation
marks around it, as in the following:

java TextDisplayer readme.txt /p “Page Title”

This example runs the TextDisplayer program with three arguments:
readme.txt, /p, and “Page Title”. The quote marks prevent Page and
Title from being treated as separate arguments.

You can send as many arguments as you want to a Java application (within
reason). To do something with them, you must write statements in the
application to handle them.

To see how arguments work in an application, create a new class in the
Java24 project:

1. Choose File, New File.

2. In the New File Wizard, choose the category Java and file type Empty
Java File.

3. Give the class the name BlankFiller and click Finish.

Enter the text of Listing 4.2 in the source code editor and save it when
you’re done. Compile the program, correcting any errors that are flagged
by the editor as you type.

LISTING 4.2 The Full Text of BlankFiller.java
1: class BlankFiller {
2: public static void main(String[] arguments) {
3: System.out.println(“The “ + arguments[0]
4: + “ “ + arguments[1] + “ fox “

ptg7068951

42 HOUR 4: Understanding How Java Programs Work

5: + “jumped over the “
6: + arguments[2] + “ dog.”
7:);
8: }
9: }

This application compiles successfully and can be run, but if you try it with
the menu command Run, Run File, you get a complicated-looking error:

Output ▼

Exception in thread “main” java.lang.ArrayIndexOutOfBoundsException: 0
at BlankFiller.main(BlankFiller.java:3)

This error occurs because the program expects to receive three arguments
when it is run. You can specify arguments by customizing the project in
NetBeans:

1. Choose the menu command Run, Set Project Configuration,
Customize. The Project Properties dialog opens.

2. Enter BlankFiller in the Main Class text field.

3. In the Arguments field, enter retromingent purple lactose-
intolerant and click OK.

Because you’ve customized the project, you must run it a little differently.
Choose the menu command Run, Run Main Project. The application uses
the arguments you specified as adjectives to fill out a sentence, as shown in
the following output:

Output ▼

The retromingent purple fox jumped over the lactose-intolerant dog.

Return to the Project Properties dialog and designate three adjectives of your
own choosing as arguments, making sure to always include at least three.

Arguments are a simple way to customize the behavior of a program. The
arguments are stored in a type of variable called an array. You learn about
arrays during Hour 9, “Storing Information with Arrays.”

Creating an Applet
When the Java language was introduced, the language feature that got the
most attention was applets, Java programs that run on web pages. You can

LISTING 4.2 Continued

ptg7068951

Creating an Applet 43

run them in any web browser that handles Java programs and test them
with appletviewer, a tool included in the JDK that’s supported in NetBeans.

The structure of applets differs from applications. Unlike applications,
applets do not have a main() block. Instead, they have several sections that
are handled depending on what is happening in the applet. Two sections
are the init() block statement and the paint() block. init() is short for
initialization, and it is used to take care of anything that needs to be set up
as an applet first runs. The paint() block is used to display anything that
should be displayed.

To see an applet version of the Root application, create a new empty Java
file with the class name RootApplet. Enter the code in Listing 4.3 and
make sure to save it when you’re done.

LISTING 4.3 The Full Text of RootApplet.java
1: import java.awt.*;
2:
3: public class RootApplet extends javax.swing.JApplet {
4: int number;
5:
6: public void init() {
7: number = 225;
8: }
9:
10: public void paint(Graphics screen) {
11: Graphics2D screen2D = (Graphics2D) screen;
12: screen2D.drawString(“The square root of “ +
13: number +
14: “ is “ +
15: Math.sqrt(number), 5, 50);
16: }
17: }

This program contains many of the same statements as the Root applica-
tion. The primary difference is in how it is organized. The main() block has
been replaced with an init() block and a paint() block.

When you run the program in NetBeans (choose Run, Run File), the applet
loads in the appletviewer tool, as shown in Figure 4.2.

Applets are slightly more complicated than applications because they must
be able to run on a web page and coexist with other page elements in a
browser. You learn how to create them in Hour 17, “Creating Interactive
Web Programs.”

NOTE

The sample programs in this
hour are provided primarily to
introduce you to the way Java
programs are structured. The
main purpose of this hour is to
get the programs to compile
and see how they function
when you run them. Some
aspects of the programs will be
introduced fully in the hours to
come.

ptg7068951

44 HOUR 4: Understanding How Java Programs Work

The appletviewer tool is useful for testing, but it gives the wrong impres-
sion about applets. They don’t run in their own windows as Java applica-
tions. Instead, they’re placed on web pages as if they are text, photos, or
graphics. The applet is presented seamlessly with the rest of the page.

Figure 4.3 shows RootApplet on a web page. The applet window is the
white box that displays the program’s output: the square root of 225. The
heading, paragraphs of text and lightbulb photo are ordinary elements of a
web page.

Java applets can be static like the output of this project, but that’s a com-
plete waste of the language. Applets usually display dynamic content as in
a stock ticker, chat room client, or video games.

FIGURE 4.2
The RootApplet applet running in
appletviewer.

FIGURE 4.3
The RootApplet applet on a web
page loaded in the Google Chrome
browser.

ptg7068951

Summary 45

Summary
During this hour, you had a chance to create both a Java application and
an applet. These two types of programs have several important differences
in the way they function and the way they are created.

The next several hours continue to focus on applications as you become
more experienced as a Java programmer. Applications are quicker to test
because they don’t require you to create a web page to view them; they can
be easier to create and more powerful as well.

ptg7068951

46 HOUR 4: Understanding How Java Programs Work

Q&A
Q. Do all arguments sent to a Java application have to be strings?

A. Java stores all arguments as strings when an application runs. When you
want to use one of these arguments as an integer or some other non-
string type, you have to convert the value. You learn how to do this dur-
ing Hour 11, “Describing What Your Object Is Like.”

Q. If applets run on web pages and applications run everywhere else, what
are Java programs launched by Java Web Start?

A. Java Web Start is a way to launch Java applications from a web browser.
A user clicks a link on a web page to run the program, which is easier
than downloading it, running an installation wizard, and starting it like
any other desktop software.

Although they’re run from a browser, Java Web Start programs are applica-
tions instead of applets. The application’s always up-to-date because it’s
retrieved over the web from the program’s provider every time it is run.

Google Web Toolkit (GWT), a set of opensource tools for web programming,
can convert a Java program into JavaScript, making it run faster and more
reliably in web browsers without requiring a Java virtual machine.

Q. Does the line of succession to the British throne run out at some point?

A. Under Parliamentary law that has been in place since 1701, the British
monarch must be a Protestant descendant of Sophia of Hanover, a German
princess who was the heiress to the crown when the law was passed.

There are a finite number of people who are descendants of Sophia, so
there’s always somebody last in the regal line. The British government
only lists the first 38, so genealogists have attempted to fill out the rest
of the list themselves.

The last person in the line of succession is Karin Vogel, a German pain
therapist in her thirties. She was 4,973rd in line as of 2001, genealo-
gists determined after an exhaustive search that took years. So if all the
people ahead of her drop out of the running (to, say, spend more time
learning Java programming), Vogel takes over the mortgage of
Buckingham Palace and becomes Her Majesty Karin the First.

Vogel is Sophia’s great-great-great-great-great-great-great-great-grand-
daughter. She told the Wall Street Journal that becoming monarch would
be “too stressful.”

If by the time you read this Prince William and Princess Kate have pro-
duced a Protestant child, Vogel drops to 4,974.

ptg7068951

Workshop 47

Workshop
Test your knowledge of the material covered in this hour by answering the fol-
lowing questions.

Quiz
1. Which type of Java program can be run inside a browser?

A. Applets

B. Applications

C. None

2. What does JVM stand for?

A. Journal of Vacation Marketing

B. Jacksonville Veterans Memorial

C. Java Virtual Machine

3. If you get into a fight with someone over the way to send information to
a Java application, what are you doing?

C. Struggling over strings

B. Arguing about arguments

C. Feudin’ for functionality

Answers
1. A. Applets run as part of a web page, whereas applications are run

everywhere else.

2. A, B, or C. Trick question! The initials stand for all three things, though
Java Virtual Machine is the one you need to remember for the next 20
hours.

3. B. Applications receive information in the form of arguments. Can’t we
all just get along?

ptg7068951

48 HOUR 4: Understanding How Java Programs Work

Activities
If you’d like to apply your acumen of applets and applications, the following
activities are suggested:

. Using the Root application as a guide, create a NewRoot application
that can display the square root of 625.

. Using the Root application as a guide, create a NewRoot application that
can display the square root of a number submitted as an argument.

To see a Java program that implements each of these activities, visit the
book’s website at www.java24hours.com.

www.java24hours.com

ptg7068951

WHAT YOU’LL LEARN IN
THIS HOUR:

. Creating variables

. Using the different types of
variables

. Storing values into
variables

. Using variables in mathe-
matical expressions

. Storing one variable’s value
into another variable

. Increasing and decreasing
a variable’s value

In Hour 2, “Writing Your First Program,” you used a variable, a special stor-
age place designed to hold information. The information stored in vari-
ables can be changed as a program runs. Your first program stored a string
of text in a variable. Strings are only one type of information that can be
stored in variables. They also can hold characters, integers, floating-point
numbers, and objects.

During this hour, you learn more about using variables in your Java
programs.

Statements and Expressions
Computer programs are a set of instructions that tell the computer what to
do. Each instruction is called a statement. The following example from a
Java program is a statement:

int highScore = 450000;

You can use brackets to group a set of statements together in a Java pro-
gram. These groupings are called block statements. Consider the following
portion of a program:

1: public static void main(String[] args) {
2: int a = 3;
3: int b = 4;
4: int c = 8 * 5;
5: }

Lines 2–4 of this example are a block statement. The opening bracket on
Line 1 denotes the beginning of the block, and the closing bracket on
Line 5 denotes the end of the block.

HOUR 5
Storing and Changing Information

in a Program

ptg7068951

50 HOUR 5: Storing and Changing Information in a Program

Some statements are called expressions because they involve a mathematical
expression and produce a result. Line 4 in the preceding example is an
expression because it sets the value of the c variable equal to 8 multiplied
by 5. You work with expressions during this hour.

Assigning Variable Types
Variables are the main way that a computer remembers something as it
runs a program. The Saluton program in Hour 2 used the greeting vari-
able to hold “Saluton mondo!”. The computer needed to remember that
text so that the message could be displayed.

In a Java program, variables are created with a statement that must include
two things:

. The name of the variable

. The type of information the variable will store

Variables also can include the value of the information being stored.

To see the different types of variables and how they are created, run
NetBeans and create a new empty Java file with the class name Variable.

Start writing the program by entering the following lines:

class Variable {
public static void main(String[] args) {

// Coming soon: variables
}

}

Go ahead and save these lines before making any changes.

Integers and Floating-Point Numbers
So far, the Variable program has a main() block with only one statement
in it—the comment // Coming soon: variables. Delete the comment and
enter the following statement in its place:

int tops;

This statement creates a variable named tops. It does not specify a value
for tops, so for the moment this variable is an empty storage space. The
int text at the beginning of the statement designates tops as a variable

ptg7068951

Assigning Variable Types 51

that is used to store integer numbers. You can use the int type to store
most of the nondecimal numbers you need in your computer programs. It
can hold any integer ranging from around –2.14 billion to 2.14 billion.

Create a blank line after the int tops statement and add the following
statement:

float gradePointAverage;

This statement creates a variable with the name gradePointAverage. The
float text stands for floating-point numbers. Floating-point variables are
used to store numbers that might contain a decimal point.

The float variable type holds decimal numbers of up to 38 figures. The
larger double type holds decimal numbers up to 300 figures.

Characters and Strings
Because the variables you have dealt with so far are numeric, you might
have the impression that all variables are used to store numbers. Think
again. You also can use variables to store text. Two types of text can be
stored as variables: characters and strings. A character is a single letter,
number, punctuation mark, or symbol. A string is a group of characters.

Your next step in creating the Variable program is to create a char vari-
able and a String variable. Add these two statements after the line float
gradePointAverage:

char key = ‘C’;
String productName = “Larvets”;

When you are using character values in your program, you must put sin-
gle quotation marks on both sides of the character value being assigned to
a variable. For string values, you must surround them with double quota-
tion marks.

Quotation marks prevent the character or string from being confused with
a variable name or another part of a statement. Take a look at the following
statement:

String productName = Larvets;

This statement might look like one telling the computer to create a string
variable called productName and give it the text value of Larvets.
However, because there are no quotation marks around the word Larvets,

NOTE

You can use a floating-point
variable to store a grade point
average such as 2.25 (to pick
my own at the University of
North Texas—hi, Professor
Wells!). You can also use it to
store a number such as 0,
which is the percentage chance
of getting into a good graduate
school with my grade point aver-
age, which is why I was avail-
able in the job market in 1996
when this publisher was looking
for computer book authors.

ptg7068951

52 HOUR 5: Storing and Changing Information in a Program

the computer is being told to set the productName value to the same value
as a variable named Larvets.

After adding the char and String statements, your program resembles
Listing 5.1. Make any necessary changes and be sure to save the file.

LISTING 5.1 The Variable Program
1: class Variable {
2: public static void main(String[] args) {
3: int tops;
4: float gradePointAverage;
5: char key = ‘C’;
6: String productName = “Larvets”;
7: }
8: }

The last two variables in the Variable program use the = sign to assign a
starting value when the variables are created. You can use this option for
any variables you create in a Java program, as you discover later in this
hour.

This program can be run but produces no output.

Other Numeric Variable Types
The types of variables you have been introduced to thus far are the main
ones you use for most of your Java programming. You can call on a few
other types of variables in special circumstances.

You can use the first, byte, for integer numbers that range from –128 to
127. The following statement creates a variable called escapeKey with an
initial value of 27:

byte escapeKey = 27;

The second, short, can be used for integers that are smaller in size than the
int type. A short integer can range from –32,768 to 32,767, as in the fol-
lowing example:

short roomNumber = 222;

The last of the numeric variable types, long, is typically used for integers
that are too big for the int type to hold. A long integer can be from –9.22
quintillion to 9.22 quintillion, which is a large enough number to cover
everything but government spending.

NOTE

Although the other variable
types are all lowercase letters
(int, float, and char), the cap-
ital letter is required in the
word String when creating
string variables. A string in a
Java program is different than
the other types of information
you use in variable statements.
You learn about this distinction
in Hour 6, “Using Strings to
Communicate.”

ptg7068951

Assigning Variable Types 53

When working with large numbers in Java, it can be difficult to see at a
glance the value of the number, as in this statement:

long salary = 264400000;

Unless you count the zeros, you probably can’t tell that it’s $264.4 million.
Java 7 makes it possible to organize large numbers with underscore (_)
characters. Here’s an example:

long salary = 264_400_000;

The underscores are ignored, so the variable still equals the same value.
They’re just a way to make numbers more human readable.

The boolean Variable Type
Java has a type of variable called boolean that only can be used to store the
value true or the value false. At first glance, a boolean variable might not
seem particularly useful unless you plan to write a lot of true-or-false
quizzes. However, boolean variables are used in a variety of situations in
your programs. The following are some examples of questions that
boolean variables can be used to answer:

. Has the user pressed a key?

. Is the game over?

. Is my bank account overdrawn?

. Do these pants make my butt look fat?

. Can the rabbit eat Trix?

The following statement creates a boolean variable called gameOver:

boolean gameOver = false;

This variable has the starting value of false, so a statement like this could
indicate in a game program that the game isn’t over yet. Later, when some-
thing happens to end the game, the gameOver variable can be set to true.

Although the two possible boolean values look like strings in a program,
you should not surround them with quotation marks. Hour 7, “Using
Conditional Tests to Make Decisions,” describes boolean variables more
fully.

CAUTION

All the improvements offered in
Java 7, including underscores in
numbers, will be flagged as an
error in the NetBeans source
code editor unless the IDE has
been set up to recognize
Java 7. You learn how to do this
in Hour 7, “Using Conditional
Tests to Make Decisions.”

NOTE

Boolean numbers are named
for George Boole (1815–1864).
Boole, a mathematician who
was mostly self-taught until
adulthood, invented Boolean
algebra, which has become a
fundamental part of computer
programming, digital electron-
ics, and logic. One imagines
that he did pretty well on true-
false tests as a child.

ptg7068951

54 HOUR 5: Storing and Changing Information in a Program

Naming Your Variables
Variable names in Java can begin with a letter, underscore character (_), or
a dollar sign ($). The rest of the name can be any letters or numbers. You
can give your variables any names you like but should be consistent in
how you name variables. This section outlines the generally recommended
naming method for variables.

Java is case-sensitive when it comes to variable names, so you must always
capitalize variable names the same way. For example, if the gameOver vari-
able is referred to as GameOver somewhere in the program, an error pre-
vents the program from being compiled.

A variable’s name should describe its purpose in some way. The first letter
should be lowercase, and if the variable name has more than one word,
make the first letter of each subsequent word a capital letter. For instance,
if you want to create an integer variable to store the all-time high score in a
game program, you can use the following statement:

int allTimeHighScore;

You can’t use punctuation marks or spaces in a variable name, so neither
of the following works:

int all-TimeHigh Score;
int all Time High Score;

If you try these variable names in a program, NetBeans responds by flag-
ging the error with the red alert icon alongside the line in the source editor.

Storing Information in Variables
You can store a value in a variable at the same time that you create the
variable in a Java program. You also can put a value in the variable at any
time later in the program.

To set a starting value for a variable upon its creation, use the equal sign
(=). Here’s an example of creating a double floating-point variable called pi
with the starting value of 3.14:

double pi = 3.14;

All variables that store numbers can be set up in a similar fashion. If you’re
setting up a character or a string variable, quotation marks must be placed
around the value as described earlier in this hour.

ptg7068951

All About Operators 55

You also can set one variable equal to the value of another variable if they
both are of the same type. Consider the following example:

int mileage = 300;
int totalMileage = mileage;

First, an integer variable called mileage is created with a starting value of 300.
Next, an integer variable called totalMileage is created with the same value
as mileage. Both variables have the starting value of 300. In future hours, you
learn how to convert one variable’s value to the type of another variable.

As you’ve learned, Java has similar numeric variables that hold values of
different sizes. Both int and long hold integers, but long holds a larger
range of possible values. Both float and double carry floating-point num-
bers, but double is bigger.

You can append a letter to a numeric value to indicate the value’s type, as in
this statement:

float pi = 3.14F;

The F after the value 3.14 indicates that it’s a float value. If the letter is
omitted, Java assumes that 3.14 is a double value. The letter L is used for
long integers and D for double floating-point values.

Another naming convention in Java is to capitalize the names of variables
that do not change in value. These variables are called constants. The follow-
ing creates three constants:

final int TOUCHDOWN = 6;
final int FIELDGOAL = 3;
final int PAT = 1;

Because constants never change in value, you might wonder why one ever
should be used—you can just use the value assigned to the constant instead.
One advantage of using constants is that they make a program easier to
understand.

In the preceding three statements, the name of the constant was capitalized.
This is not required in Java, but it has become a standard convention among
programmers to distinguish constants from other variables.

All About Operators
Statements can use mathematical expressions by employing the operators +,
-, *, /, and %. You use these operators to crunch numbers throughout your
Java programs.

CAUTION

If you do not give a variable a
starting value, you must give it
a value before you use it in
another statement. If you don’t,
when your program is compiled,
you might get an error stating
that the variable “may not have
been initialized.”

ptg7068951

56 HOUR 5: Storing and Changing Information in a Program

An addition expression in Java uses the + operator, as in these statements:

double weight = 205;
weight = weight + 10;

The second statement uses the + operator to set the weight variable equal
to its current value plus 10. A subtraction expression uses the - operator:

weight = weight - 15;

This expression sets the weight variable equal to its current value minus 15.

A division expression uses the / sign:

weight = weight / 3;

This sets the weight variable to its current value divided by 3.

To find a remainder from a division expression, use the % operator (also
called the modulo operator). The following statement finds the remainder
of 245 divided by 3:

int remainder = 245 % 3;

A multiplication expression uses the * sign. Here’s a statement that employs
a multiplication expression as part of a more complicated statement:

int total = 500 + (score * 12);

The score * 12 part of the expression multiplies score by 12. The full
statement multiples score by 12 and adds 500 to the result. If score equals
20, the result is that total equals 740: 500 + (20 * 12).

Incrementing and Decrementing a Variable
A common task in programs is changing the value of a variable by one.
You can increase the value by one, which is called incrementing the vari-
able, or decrease the value by one, which is decrementing the variable.
There are operators to accomplish both of these tasks.

To increment the value of a variable by one, use the ++ operator, as in the
following statement:

x++;

This statement adds one to the value stored in the x variable.

To decrement the value of a variable by one, use the -- operator:

y--;

ptg7068951

All About Operators 57

This statement reduces y by one.

You also can put the increment and decrement operators in front of the
variable name, as in the following statements:

++x;
--y;

Putting the operator in front of the variable name is called prefixing, and
putting it after the name is called postfixing.

The difference between prefixed and postfixed operators becomes impor-
tant when you use the increment and decrement operators inside an
expression.

Consider the following statements:

int x = 3;
int answer = x++ * 10;

What does the answer variable equal after these statements are handled?
You might expect it to equal 40—which would be true if 3 was increment-
ed by 1, which equals 4, and then 4 was multiplied by 10.

However, answer ends up with the value 30 because the postfixed operator
was used instead of the prefixed operator.

When a postfixed operator is used on a variable inside an expression, the
variable’s value doesn’t change until after the expression has been com-
pletely evaluated. The statement int answer = x++ * 10 does the same
thing in the same order, as the following two statements:

int answer = x * 10;
x++;

The opposite is true of prefixed operators. If they are used on a variable
inside an expression, the variable’s value changes before the expression is
evaluated.

Consider the following statements:

int x = 3;
int answer = ++x * 10;

This does result in the answer variable being equal to 40. The prefixed
operator causes the value of the x variable to be changed before the expres-
sion is evaluated. The statement int answer = ++x * 10 does the same
thing in order, as these statements:

NOTE

Confused yet? This is easier
than it sounds, if you think back
to elementary school when you
learned about prefixes. Just as
a prefix such as “sub-” or “un-”
goes at the start of a word, a
prefix operator goes at the start
of a variable name. A postfix
operator goes at the end.

ptg7068951

58 HOUR 5: Storing and Changing Information in a Program

x++;
int answer = x * 10;

It’s easy to become exasperated with the ++ and — operators because
they’re not as straightforward as many of the concepts you encounter in
this book.

I hope I’m not breaking some unwritten code of Java programmers by
telling you this, but you don’t need to use the increment and decrement
operators in your own programs. You can achieve the same results by
using the + and – operators like this:

x = x + 1;
y = y - 1;

Incrementing and decrementing are useful shortcuts, but taking the longer
route in an expression is fine, too.

Operator Precedence
When you are using an expression with more than one operator, you need
to know what order the computer uses as it works out the expression.
Consider the following statements:

int y = 10;
x = y * 3 + 5;

Unless you know what order the computer uses when working out the
math in these statements, you cannot be sure what the x variable will be
set to. It could be set to either 35 or 80, depending on whether y * 3 is
evaluated first or 3 + 5 is evaluated first.

The following order is used when working out an expression:

1. Incrementing and decrementing take place first.

2. Multiplication, division, and modulus division occur next.

3. Addition and subtraction follow.

4. Comparisons take place next.

5. The equal sign (=) is used to set a variable’s value.

Because multiplication takes place before addition, you can revisit the pre-
vious example and come up with the answer: y is multiplied by 3 first,
which equals 30, and then 5 is added. The x variable is set to 35.

NOTE
Back in Hour 1, “Becoming a
Programmer,” the name of the
C++ programming language was
described as a joke you’d
understand later. Now that
you’ve been introduced to the
increment operator ++, you have
all the information you need to
figure out why C++ has two
plus signs in its name instead
of just one. Because C++ adds
new features and functionality
to the C programming language,
it can be considered an incre-
mental increase to C—hence
the name C++.

After you work through all 24
hours of this book, you too will
be able to tell jokes like this
that are incomprehensible to
more than 99 percent of the
world’s population.

ptg7068951

Using Expressions 59

Comparisons are discussed during Hour 7. The rest has been described
during this hour, so you should be able to figure out the result of the fol-
lowing statements:

int x = 5;
int number = x++ * 6 + 4 * 10 / 2;

These statements set the number variable equal to 50.

How does the computer come up with this total? First, the increment oper-
ator is handled, and x++ sets the value of the x variable to 6. However,
make note that the ++ operator is postfixed after x in the expression. This
means that the expression is evaluated with the original value of x.

Because the original value of x is used before the variable is incremented,
the expression becomes the following:

int number = 5 * 6 + 4 * 10 / 2;

Now, multiplication and division are handled from left to right. First, 5 is
multiplied by 6, 4 is multiplied by 10, and that result is divided by 2 (4 *
10 / 2). The expression becomes the following:

int number = 30 + 20;

This expression results in the number variable being set to 50.

If you want an expression to be evaluated in a different order, you can use
parentheses to group parts of an expression that should be handled first.
For example, the expression x = 5 * 3 + 2; would normally cause x to
equal 17 because multiplication is handled before addition. However, look
at a modified form of that expression:

x = 5 * (3 + 2);

In this case, the expression within the parentheses is handled first, so the
result equals 25. You can use parentheses as often as needed in a statement.

Using Expressions
When you were in school, as you worked on a particularly unpleasant
math problem, did you ever complain to a higher power, protesting that
you would never use this knowledge in your life? Sorry to break this to
you, but your teachers were right—your math skills come in handy in your
computer programming. That’s the bad news.

ptg7068951

60 HOUR 5: Storing and Changing Information in a Program

The good news is that the computer does any math you ask it to do.
Expressions are used frequently in your computer programs to accomplish
tasks such as the following:

. Changing the value of a variable

. Counting the number of times something has happened in a program

. Using a mathematical formula in a program

As you write computer programs, you find yourself drawing on your old
math lessons as you use expressions. Expressions can use addition, sub-
traction, multiplication, division, and modulus division.

To see expressions in action, return to NetBeans and create a new Java file
with the class name PlanetWeight. This program tracks a person’s weight
loss and gain as she travels to other bodies in the solar system. Enter the
full text of Listing 5.2 in the source editor. Each part of the program is dis-
cussed in turn.

LISTING 5.2 The PlanetWeight Program
1: class PlanetWeight {
2: public static void main(String[] args) {
3: System.out.print(“Your weight on Earth is “);
4: double weight = 205;
5: System.out.println(weight);
6:
7: System.out.print(“Your weight on Mercury is “);
8: double mercury = weight * .378;
9: System.out.println(mercury);
10:
11: System.out.print(“Your weight on the Moon is “);
12: double moon = weight * .166;
13: System.out.println(moon);
14:
15: System.out.print(“Your weight on Jupiter is “);
16: double jupiter = weight * 2.364;
17: System.out.println(jupiter);
18: }
19: }

When you’re done, save the file and it should compile automatically. Run
the program with the menu command Run, Run File. The output is shown
in the output pane in Figure 5.1.

ptg7068951

Summary 61

FIGURE 5.1
The output of the PlanetWeight
program.

As in other programs you have created, the PlanetWeight program uses a
main() block statement for all its work. This statement can be broken into
the following four sections:

1. Lines 3–5: The person’s weight is set initially to 205.

2. Lines 7–9: Mercury weight loss is calculated.

3. Lines 11–13: Weight loss on the Moon is determined.

4. Lines 15–17: Jupiter weight gain is calculated.

Line 4 creates the weight variable and designates it as an integer variable
with int. The variable is given the initial value 205 and used throughout
the program to monitor the person’s weight.

The next line is similar to several other statements in the program:

System.out.println(weight);

The System.out.println() command displays a string that is contained
within its parenthesis marks. On Line 3, the System.out.print()
command displays the text “Your weight on Earth is”. There are several
System.out.print() and System.out.println() statements in the program.

The difference between them is that print() does not start a new line after
displaying the text, whereas println() does.

Summary
Now that you have been introduced to variables and expressions, you can
give a wide range of instructions to your computer in a program. With the
skills you have developed during this hour, you can write programs that
accomplish many of the same tasks as a calculator, handling sophisticated
mathematical equations with ease. You’ve also learned that a trip to the
Moon is a particularly effective diet plan.

Numbers are only one kind of thing that can be stored in a variable. You
also can store characters, strings of characters, and special true or false
values called boolean variables. The next hour expands your knowledge of
String variables and how they are used.

ptg7068951

62 HOUR 5: Storing and Changing Information in a Program

Q&A
Q. Is a line in a Java program the same thing as a statement?

A. No. The programs you create in this book put one statement on each
line to make the programs easier to understand; it’s not required.

The Java compiler does not consider lines, spacing, or other formatting
issues when compiling a program. The compiler just wants to see semi-
colons at the end of each statement. This line would work just fine in Java:

int x = 12; x = x + 1;

Putting more than one statement on a line makes a program more diffi-
cult for humans to understand when they read its source code. For this
reason, it is not recommended.

Q. Why should the first letter of a variable name be lowercase, as in
gameOver?

A. It’s a naming convention that helps your programming in two ways. First,
it makes variables easier to spot among the other elements of a Java
program. Second, by following a consistent style in the naming of vari-
ables, you eliminate errors that can occur when you use a variable in
several different places in a program. The style of capitalization used in
this book is the one that’s been adopted by most Java programmers over
the years.

Q. Can I specify integers as binary values in Java?

A. You can for the first time in Java 7. Put the characters 0b in front of the
number and follow it with the bits in the value. Because 1101 is the binary
form for the number 13, the following statement sets an integer to 13:

int z = 0b0000_1101;

The underscore is just to make the number more readable. It’s ignored
by the Java compiler.

NetBeans will treat this feature as an error unless your project has been
set up to use Java 7. You learn how to do this in Hour 7.

Q. What the heck are Larvets?

A. Larvets, the product mentioned in this hour, are snacks made from edi-
ble worms that have been killed, dried, and mixed with the same kinds
of scrumptious food-like flavoring as Doritos chips. You can order Larvets
in three flavors—BBQ, cheddar cheese, and Mexican spice—from the
mail-order retailer HotLix at the website www.hotlix.com or by calling
1-800-EAT-WORM.

www.hotlix.com

ptg7068951

Workshop 63

Workshop
Test your knowledge of variables, expressions, and the rest of the information
in this hour by answering the following questions.

Quiz
1. What do you call a group of statements that is contained with an open-

ing bracket and a closing bracket?

A. A block statement

B. Groupware

C. Bracketed statements

2. A boolean variable is used to store true or false values.

A. True

B. False

C. No, thanks. I already ate.

3. What characters cannot be used to start a variable name?

A. A dollar sign

B. Two forward slash marks (//)

C. A letter

Answers
1. A. The grouped statements are called a block statement or a block.

2. A. true and false are the only answers a boolean variable can store.

3. B. Variables can start with a letter, a dollar sign ($), or an underscore
character (_). If you started a variable name with two slash marks, the
rest of the line would be ignored because the slash marks are used to
start a comment line.

ptg7068951

64 HOUR 5: Storing and Changing Information in a Program

Activities
You can review the topics of this hour more fully with the following activities:

. Expand the PlanetWeight program to track a person’s weight on Venus
(90.7% of Earth weight) and his weight on Uranus (88.9% Earth)—and
stop snickering because I mentioned Uranus.

. Create a short Java program that uses an x integer and a y integer and
displays the result of x squared plus y squared.

To see Java programs that implement these activities, visit the book’s website
at www.java24hours.com.

www.java24hours.com

ptg7068951

WHAT YOU’LL LEARN IN
THIS HOUR:

. Using strings to store text

. Displaying strings in a
program

. Including special charac-
ters in a string

. Pasting two strings
together

. Including variables in a
string

. Comparing two strings

. Determining the length of
a string

In the film The Piano, Holly Hunter portrays Ada, a young Scottish woman
who is mute and can express herself only by playing her piano.

Like Ada, your computer programs are capable of quietly doing their work
and never stopping for a chat—or piano recital—with humans. But if The
Piano teaches us anything, it’s that communication ranks up there with food,
water, and shelter as essential needs. (It also teaches us that the actor Harvey
Keitel has a lot of body confidence, but that’s a matter for another book.)

Java programs use strings as the primary means to communicate with
users. Strings are collections of text—letters, numbers, punctuation, and
other characters. During this hour, you learn all about working with
strings in your Java programs.

Storing Text in Strings
Strings store text and present it to users. The most basic element of a string
is a character. A character is a single letter, number, punctuation mark, or
other symbol.

In Java programs, a character is one of the types of information that can be
stored in a variable. Character variables are created with the char type in a
statement such as the following:

char keyPressed;

This statement creates a variable named keyPressed that can store a char-
acter. When you create character variables, you can set them up with an
initial value, as in the following:

char quitKey = ‘@’;

HOUR 6
Using Strings to Communicate

ptg7068951

66 HOUR 6: Using Strings to Communicate

The value of the character must be surrounded by single quotation marks.

A string is a collection of characters. You can set up a variable to hold a
string value by following String with the name of the variable, as in this
statement:

String fullName = “Ada McGrath Stewart”;

This statement creates a string variable called fullName containing the text
“Ada McGrath Stewart” in it, which is the full name of Hunter’s pianist. A
string is denoted with double quotation marks around the text in a Java
statement. These quotation marks are not included in the string itself.

Unlike the other types of variables you have used—int, float, char,
boolean, and so on—the name of the String type is capitalized.

Strings are a special kind of information called objects, and the types of all
objects are capitalized in Java. You learn about objects during Hour 10,
“Creating Your First Object.” The important thing to note during this hour
is that strings are different than the other variable types, and because of
this difference, String is capitalized.

Displaying Strings in Programs
The most basic way to display a string in a Java program is with the
System.out.println() statement. This statement takes strings and other
variables inside the parentheses and displays their values on the system
output device, which is the computer’s monitor. Here’s an example:

System.out.println(“Silence affects everyone in the end.”);

This statement causes the following text to be displayed:

Silence affects everyone in the end.

Displaying text on the screen often is called printing, which is what
println() stands for—print line. You can use the System.out.println()
statement to display text within double quotation marks and also to dis-
play variables, as you see later. Put all the material you want to be dis-
played within the parentheses.

Another way to display text is to call System.out.print(). This statement
displays strings and other variables inside the parentheses, but unlike
System.out.println(), it enables subsequent statements to display text on
the same line.

ptg7068951

Using Special Characters in Strings 67

You can use System.out.print() several times in a row to display several
things on the same line, as in this example:

System.out.print(“She “);
System.out.print(“never “);
System.out.print(“said “);
System.out.print(“another “);
System.out.println(“word.”);

These statements cause the following text to be displayed:

She never said another word.

Using Special Characters in Strings
When a string is being created or displayed, its text must be enclosed with-
in double quotation marks. These quotation marks are not displayed,
which brings up a good question: What if you want to display double
quotation marks?

To display them, Java has created a special code that can be put into a
string: \”. Whenever this code is encountered in a string, it is replaced with
a double quotation mark. For example, examine the following:

System.out.println(“Jane Campion directed \”The Piano\” in 1993.”);

This code is displayed as the following:

Jane Campion directed “The Piano” in 1993.

You can insert several special characters into a string in this manner. The
following list shows these special characters; note that each is preceded by
a backslash (\).

Special Characters Display

\’ Single quotation mark

\” Double quotation mark

\\ Backslash

\t Tab

\b Backspace

\r Carriage return

\f Formfeed

\n Newline

ptg7068951

68 HOUR 6: Using Strings to Communicate

The newline character causes the text following the newline character to be
displayed at the beginning of the next line. Look at this example:

System.out.println(“Music by\nMichael Nyman”);

This statement would be displayed like this:

Music by
Michael Nyman

Pasting Strings Together
When you use System.out.println() and work with strings in other
ways, you can paste two strings together by using +, the same operator
that is used to add numbers.

The + operator has a different meaning in relation to strings. Instead of
performing some math, it pastes two strings together. This action can cause
strings to be displayed together or make one big string out of two smaller
ones.

Concatenation is the word used to describe this action because it means to
link two things together.

The following statement uses the + operator to display a long string:

System.out.println(“\”\’The Piano\’ is as peculiar and haunting as any” +
“ film I’ve seen.\”\n\t— Roger Ebert, Chicago Sun-Times”);

Instead of putting this entire string on a single line, which would make it
harder to understand when you look at the program later, the + operator is
used to break the text over two lines of the program’s Java source code.
When this statement is displayed, it appears as the following:

“‘The Piano’ is as peculiar and haunting as any film I’ve seen.”
— Roger Ebert, Chicago Sun-Times

Several special characters are used in the string: \”, \’, \n, and \t. To bet-
ter familiarize yourself with these characters, compare the output with the
System.out.println() statement that produced it.

Using Other Variables with Strings
Although you can use the + operator to paste two strings together, you use
it more often to link strings and variables. Take a look at the following:

NOTE

You’ll probably see the term
concatenation in other books
as you build your programming
skills, so it’s worth knowing.
However, pasting is the term
used here when one string and
another string are joined togeth-
er. Pasting sounds like fun.
Concatenating sounds like
something that should never be
done in the presence of an
open flame.

ptg7068951

Using Other Variables with Strings 69

int length = 121;
char rating = ‘R’;
System.out.println(“Running time: “ + length + “ minutes”);
System.out.println(“Rated “ + rating);

This code will be displayed as the following:

Running time: 121 minutes
Rated R

This example displays a unique facet about how the + operator works with
strings. It can cause variables that are not strings to be treated just like
strings when they are displayed. The variable length is an integer set to the
value 121. It is displayed between the strings Running time: and minutes.
The System.out.println() statement is being asked to display a string
plus an integer, plus another string. This statement works because at least
one part of the group is a string. The Java language offers this functionality
to make displaying information easier.

One thing you might want to do with a string is paste something to it sev-
eral times, as in the following example:

String searchKeywords = “”;
searchKeywords = searchKeywords + “drama “;
searchKeywords = searchKeywords + “romance “;
searchKeywords = searchKeywords + “New Zealand”;

This code would result in the searchKeywords variable being set to “drama
romance New Zealand”. The first line creates the searchKeywords variable
and sets it to be an empty string because there’s nothing between the dou-
ble quotation marks. The second line sets the searchKeywords variable
equal to its current string plus the string “drama” added to the end. The
next two lines add “romance” and “New Zealand” in the same way.

As you can see, when you are pasting more text at the end of a variable,
the name of the variable has to be listed twice. Java offers a shortcut to
simplify this process: the += operator. The += operator combines the func-
tions of the = and + operators. With strings, it is used to add something to
the end of an existing string. The searchKeywords example can be short-
ened by using +=, as shown in the following statements:

String searchKeywords = “”;
searchKeywords += “drama “;
searchKeywords += “romance “;
searchKeywords += “New Zealand”;

This code produces the same result: searchKeywords is set to “drama
romance New Zealand”.

ptg7068951

70 HOUR 6: Using Strings to Communicate

Advanced String Handling
There are several other ways you can examine a string variable and change
its value. These advanced features are possible because strings are objects
in the Java language. Working with strings develops skills you’ll use on
other objects later.

Comparing Two Strings
One thing you are testing often in your programs is whether one string is
equal to another. You do this by using equals() in a statement with both
of the strings, as in this example:

String favorite = “piano”;
String guess = “ukulele”;
System.out.println(“Is Ada’s favorite instrument a “ + guess + “?”);
System.out.println(“Answer: “ + favorite.equals(guess));

This example uses two different string variables. One, favorite, stores the
name of Ada’s favorite instrument: a piano. The other, guess, stores a guess
as to what her favorite might be. The guess is that Ada prefers the ukulele.

The third line displays the text “Is Ada’s favorite instrument a” followed
by the value of the guess variable, and then a question mark. The fourth
line displays the text “Answer:” and then contains something new:

favorite.equals(guess)

This part of the statement makes use of a method. A method is a way to
accomplish a task in a Java program. This method’s task is to determine if
one string has the same value as another. If the two string variables have
the same value, the text true is displayed. If not, the text false is dis-
played. The following is the output of this example:

Output ▼

Is Ada’s favorite instrument a ukulele?
Answer: false

Determining the Length of a String
It also can be useful to determine the length of a string in characters. You
do this with the length() method. This method works in the same fashion
as the equals() method, except that only one string variable is involved.
Look at the following example:

ptg7068951

Advanced String Handling 71

String cinematographer = “Stuart Dryburgh”;
int nameLength = cinematographer.length();

This example sets nameLength, an integer variable, equal to 15. The cine-
matographer.length() method counts the number of characters in the
string variable called cinematographer and stores this count in the
nameLength integer variable.

Changing a String’s Case
Because computers take everything literally, it’s easy to confuse them.
Although a human would recognize that the text Harvey Keitel and the text
HARVEY KEITEL refer to the same thing, most computers would disagree.
The equals() method discussed previously in this hour would state
authoritatively that Harvey Keitel is not equal to HARVEY KEITEL.

To get around some of these obstacles, Java has methods that display a
string variable as all uppercase letters or all lowercase letters,
toUpperCase() and toLowerCase(), respectively. The following example
shows the toUpperCase() method in action:

String baines = “Harvey Keitel”;
String change = baines.toUpperCase();

This code sets the string variable change equal to the baines string vari-
able converted to all uppercase letters—”HARVEY KEITEL”. The
toLowerCase() method works in the same fashion but returns an all-
lowercase string value.

Note that the toUpperCase() method does not change the case of the
string variable it is called on. In the preceding example, the baines vari-
able is still equal to “Harvey Keitel”.

Looking for a String
Another common task when handling strings is to see whether one string
can be found inside another. To look inside a string, use its indexOf()
method. Put the string you are looking for inside the parentheses. If the
string is not found, indexOf() produces the value –1. If the string is found,
indexOf() produces an integer that represents the position where the
string begins. Positions in a string are numbered upwards from 0, begin-
ning with the first character in the string. In the string “The Piano”, the
text “Piano” begins at position 4.

ptg7068951

72 HOUR 6: Using Strings to Communicate

One possible use of the indexOf() method would be to search the entire
script of The Piano for the place where Ada’s domineering husband tells
her daughter Flora, “You are greatly shamed and you have shamed those
trunks.”

If the entire script of The Piano was stored in a string called script, you
could search it for part of that quote with the following statement.

int position = script.indexOf(“you have shamed those trunks”);

If that text can be found in the script string, position equals the position
at which the text “you have shamed those trunks” begins. Otherwise, it
will equal -1.

Presenting Credits
In The Piano, Ada McGrath Stewart was thrown into unfamiliar territory
when she moved from Scotland to New Zealand to marry a stranger who
didn’t appreciate her music. You might have felt lost yourself with some of
the topics introduced during this hour.

Next, to reinforce the string-handling features that have been covered, you
write a Java program to display credits for a feature film. You can probably
guess the movie.

Return to the Java24 project in NetBeans and create a new Java class called
Credits. Enter the text of Listing 6.1 into the source editor and save the file
when you’re done.

LISTING 6.1 The Credits Program
1: class Credits {
2: public static void main(String[] args) {
3: // set up film information
4: String title = “The Piano”;
5: int year = 1993;
6: String director = “Jane Campion”;
7: String role1 = “Ada”;
8: String actor1 = “Holly Hunter”;
9: String role2 = “Baines”;
10: String actor2 = “Harvey Keitel”;
11: String role3 = “Stewart”;
12: String actor3 = “Sam Neill”;
13: String role4 = “Flora”;
14: String actor4 = “Anna Paquin”;
15: // display information
16: System.out.println(title + “ (“ + year + “)\n” +
17: “A “ + director + “ film.\n\n” +

CAUTION

The indexOf() method is case-
sensitive, which means that it
only looks for text capitalized
exactly like the search string. If
the string contains the same text
capitalized differently, indexOf()
produces the value -1.

ptg7068951

Presenting Credits 73

18: role1 + “\t” + actor1 + “\n” +
19: role2 + “\t” + actor2 + “\n” +
20: role3 + “\t” + actor3 + “\n” +
21: role4 + “\t” + actor4);
22: }
23: }

Look over the program and see whether you can figure out what it’s doing
at each stage. Here’s a breakdown of what’s taking place:

. Line 1 gives the Java program the name Credits.

. Line 2 begins the main() block statement in which all of the pro-
gram’s work gets done.

. Lines 4–14 set up variables to hold information about the film, its
director, and its stars. One of the variables, year, is an integer. The
rest are string variables.

. Lines 16–21 are one long System.out.println() statement.
Everything between the first parenthesis on Line 16 and the last
parenthesis on Line 21 is displayed onscreen. The newline character
(\n) causes the text after it to be displayed at the beginning of a new
line. The tab character (\t) inserts tab spacing in the output. The rest
are either text or string variables that should be shown.

. Line 22 ends the main() block statement.

. Line 23 ends the program.

If you do encounter error messages, correct any typos you find in your ver-
sion of the Credits program and save it again. NetBeans compiles the pro-
gram automatically. When you run the program, you see an output win-
dow like the output pane in Figure 6.1.

LISTING 6.1 Continued

FIGURE 6.1
The output of the Credits
program.

ptg7068951

74 HOUR 6: Using Strings to Communicate

Summary
When your version of Credits looks like Figure 6.1, give yourself some
credit. Six hours into this book, you’re writing longer Java programs and
dealing with more sophisticated issues. Strings are something you use
every time you sit down to write a program.

At the beginning of The Piano, Holly Hunter’s character Ada lost her piano
when her new husband refused to make his Maori laborers carry it home.
Strings cannot be taken away from you. You’ll be using strings in many
ways to communicate with users.

NOTE

If this hour’s trivia related to
The Piano and the films of
director Jane Campion has
sparked your curiosity or if you
just dig quiet women in braids,
visit Magnus Hjelstuen’s unoffi-
cial The Piano website at
www.cadenhead.org/piano.

www.cadenhead.org/piano

ptg7068951

Q&A 75

Q&A
Q. How can I set the value of a string variable to be blank?

A. Use an empty string, a pair of double quotation marks without any text
between them. The following code creates a new string variable called
adaSays and sets it to nothing:

String adaSays = “”;

Q. I can’t seem to get the toUpperCase() method to change a string so
that it’s all capital letters. What am I doing wrong?

A. When you call a String object’s toUpperCase() method, it doesn’t actually
change the String object it is called on. Instead, it creates a new string
that is set in all uppercase letters. Consider the following statements:

String firstName = “Nessie”;
String changeName = firstName.toUpperCase();
System.out.println(“First Name: “ + firstName);

These statements display the text First Name: Nessie because
firstName contains the original string. If you switched the last state-
ment to display the changeName variable instead, it would output First
Name: NESSIE.

Strings do not change in value in Java after they are created.

Q. Do all methods in Java display true or false in the same way that
the equals() method does in relation to strings?

A. Methods have different ways of producing a response after they are
used. When a method sends back a value, as the equals() method
does, it’s called returning a value. The equals() method is set to return
a Boolean value. Other methods might return a string, an integer, anoth-
er type of variable, or nothing at all—which is represented by void.

Q. Why do schools assign grades the letters A, B, C, D and F but not E?

A. The letter grade E already was being used in an alternative grading sys-
tem. Until the mid-20th century, in the United States the most popular
grading system was to assign E for excellent, S for satisfactory, N for
needs improvement or U for the dreaded unsatisfactory. So when the
ABCD system came along, giving a failing student an E was considered
a not-so-excellent idea.

ESNU grading remains in wide use in elementary schools.

ptg7068951

76 HOUR 6: Using Strings to Communicate

Workshop
The following questions test your knowledge of the care and feeding of a string.

Quiz
1. My friend concatenates. Should I report him to the authorities?

A. No. It’s only illegal during the winter months.

B. Yes, but not until I sell the story to TMZ.com first.

C. No. All he’s doing is pasting two strings together in a program.

2. Why is the word String capitalized, whereas int and others are not?

A. String is a full word, but int ain’t.

B. Like all objects that are a standard part of Java, String has a
capitalized name.

C. Poor quality control at Oracle.

3. Which of the following characters puts a single quote in a string?

A. <quote>

B. \’

C. ‘

Answers
1. C. Concatenation is just another word for pasting, joining, melding, or oth-

erwise connecting two strings together. It uses the + and += operators.

2. B. The types of objects available in Java are all capitalized, which is the
main reason variable names have a lowercase first letter. It makes it
harder to mistake them for objects.

3. B. The single backslash is what begins one of the special characters
that can be inserted into strings.

ptg7068951

Workshop 77

Activities
You can review the topics of this hour more fully with the following activities:

. Write a short Java program called Favorite that puts the code from
this hour’s “Comparing Two Strings” section into the main() block
statement. Test it out to make sure it works as described and says that
Ada’s favorite instrument is not the ukulele. When you’re done, change
the initial value of the guess variable from ukulele to piano. See what
happens.

. Modify the Credits program so the names of the director and all per-
formers are displayed entirely in uppercase letters.

To see Java programs that implement these activities, visit the book’s website
at www.java24hours.com.

www.java24hours.com

ptg7068951

This page intentionally left blank

ptg7068951

WHAT YOU’LL LEARN IN
THIS HOUR:

. Using the if statement for
basic conditional tests

. Testing whether one value
is greater than or less than
another

. Testing whether two values
are equal or unequal

. Using else statements as
the opposite of if state-
ments

. Chaining several condition-
al tests together

. Using the switch state-
ment for complicated con-
ditional tests

. Creating complicated tests
with the ternary operator

When you write a computer program, you provide the computer with a
list of instructions called statements, and these instructions are followed to
the letter. You can tell the computer to work out some unpleasant mathe-
matical formulas, and it works them out. Tell it to display some informa-
tion, and it dutifully responds.

There are times when you need the computer to be more selective about
what it does. For example, if you have written a program to balance your
checkbook, you might want the computer to display a warning message if
your account is overdrawn. The computer should display this message
only if your account is overdrawn. If it isn’t, the message would be inaccu-
rate and emotionally upsetting.

The way to accomplish this task in a Java program is to use a conditional, a
statement that causes something to happen in a program only if a specific
condition is met. During this hour, you learn how to use the conditionals
if, else, and switch.

When a Java program makes a decision, it does so by employing a condi-
tional statement. During this hour, you are checking the condition of sever-
al things in your Java programs using the conditional keywords if, else,
switch, case, and break. You also use the conditional operators ==, !=, <,
>, <=, >= and ?, along with boolean variables.

if Statements
The most basic way to test a condition in Java is by using an if statement.
The if statement tests whether a condition is true or false and takes action
only if the condition is true.

HOUR 7
Using Conditional Tests to Make

Decisions

ptg7068951

HOUR 7: Using Conditional Tests to Make Decisions

You use if along with the condition to test, as in the following statement:

if (account < 0) {
System.out.println(“Account overdrawn; you need a bailout”);

}

The if statement checks whether the account variable is below 0 by using
the less than operator <. If it is, the block within the if statement is run,
displaying text.

The block only runs if the condition is true. In the preceding example, if
the account variable has a value of 0 or higher, the println statement is
ignored. Note that the condition you test must be surrounded by parenthe-
ses, as in (account < 0).

The less-than operator < is one of several different operators you can use
with conditional statements.

Less Than and Greater Than Comparisons
In the preceding section, the < operator is used the same way as in math
class: as a less-than sign. There also is a greater-than conditional operator
>, which is used in the following statements:

int elephantWeight = 900;
int elephantTotal = 13;
int cleaningExpense = 200;

if (elephantWeight > 780) {
System.out.println(“Elephant too fat for tightrope act”);

}

if (elephantTotal > 12) {
cleaningExpense = cleaningExpense + 150;

}

The first if statement tests whether the value of the elephantWeight vari-
able is greater than 780. The second if statement tests whether the
elephantTotal variable is greater than 12.

If the two preceding statements are used in a program where
elephantWeight is equal to 600 and elephantTotal is equal to 10, the
statements within each if block are ignored.

You can determine whether something is less than or equal to something
else with the <= operator. Here’s an example:

ptg7068951

if Statements 81

if (account <= 0) {
System.out.println(“You are flat broke”);

}

There’s also a >= operator for greater-than-or-equal-to tests.

Equal and Not Equal Comparisons
Another condition to check in a program is equality. Is a variable equal to a
specific value? Is one variable equal to the value of another? These ques-
tions can be answered with the == operator, as in the following statements:

if (answer == rightAnswer) {
studentGrade = studentGrade + 10;

}

if (studentGrade == 100) {
System.out.println(“Show off!”);

}

You also can test inequality, whether something is not equal to something
else, with the != operator, as follows:

if (answer != rightAnswer) {
score = score - 5;

}

You can use the == and != operators with every type of variable except for
strings, because strings are objects.

Organizing a Program with Block Statements
Up to this point, the if statements in this hour have been accompanied by
a block contained within the { and } brackets. (I believe the technical term
for these characters is “squiggly bracket marks.”)

Previously, you have seen how block statements are used to mark the
beginning and end of the main() block of a Java program. Each statement
within the main() block is handled when the program is run.

An if statement does not require a block statement. It can occupy a single
line, as in this example:

if (account <= 0) System.out.println(“No more money”);

CAUTION

The operator used to conduct
equality tests has two equal
signs: ==. It’s easy to confuse
this operator with the = opera-
tor, which is used to give a
value to a variable. Always use
two equal signs in a conditional
statement.

ptg7068951

82 HOUR 7: Using Conditional Tests to Make Decisions

The statement that follows the if conditional only is executed if the condi-
tional is true.

Listing 7.1 is an example of a Java program with a block statement used to
denote the main() block. The block statement begins with the opening
bracket { on Line 2 and ends with the closing bracket } on Line 13. Create a
new empty Java file called Game in NetBeans and enter the text in Listing 7.1.

LISTING 7.1 The Game Program
1: class Game {
2: public static void main(String[] arguments) {
3: int total = 0;
4: int score = 7;
5: if (score == 7) {
6: System.out.println(“You score a touchdown!”);
7: }
8: if (score == 3) {
9: System.out.println(“You kick a field goal!”);
10: }
11: total = total + score;
12: System.out.println(“Total score: “ + total);
13: }
14: }

When you run the program, the output should resemble Figure 7.1.

FIGURE 7.1
The output of the Game program.

You can use block statements in if statements to make the computer do
more than one thing if a condition is true. The following is an example of
an if statement that includes a block statement:

int playerScore = 12000;
int playerLives = 3;
int difficultyLevel = 10;

if (playerScore > 9999) {
playerLives++;
System.out.println(“Extra life!”);
difficultyLevel = difficultyLevel + 5;

}

ptg7068951

if-else Statements 83

The brackets are used to group all statements that are part of the if state-
ment. If the variable playerScore is greater than 9,999, three things happen:

. The value of the playerLives variable increases by one (because the
increment operator ++ is used).

. The text “Extra life!” is displayed.

. The value of the difficultyLevel variable is increased by 5.

If the variable playerScore is not greater than 9,999, nothing happens. All
three statements inside the if statement block are ignored.

if-else Statements
There are times when you want to do something if a condition is true and
something else if the condition is false. You can do this by using the else
statement in addition to the if statement, as in the following example:

int answer = 17;
int correctAnswer = 13;

if (answer == correctAnswer) {
score += 10;
System.out.println(“That’s right. You get 10 points”);

} else {
score -= 5;
System.out.println(“Sorry, that’s wrong. You lose 5 points”);

}

The else statement does not have a condition listed alongside it, unlike the
if statement. The else statement is matched with the if statement that
immediately precedes it. You also can use else to chain several if state-
ments together, as in the following example:

if (grade == ‘A’) {
System.out.println(“You got an A. Great job!”);

} else if (grade == ‘B’) {
System.out.println(“You got a B. Good work!”);

} else if (grade == ‘C’) {
System.out.println(“You got a C. What went wrong?”);

} else {
System.out.println(“You got an F. You’ll do well in Congress!”);

}

By putting together several different if and else statements in this way,
you can handle a variety of conditions. The preceding example sends a spe-
cific message to A students, B students, C students, and future legislators.

ptg7068951

84 HOUR 7: Using Conditional Tests to Make Decisions

switch Statements
The if and else statements are good for situations with two possible con-
ditions, but there are times when you have more than two conditions.

With the preceding grade example, you saw that if and else statements
can be chained to handle several different conditions.

Another way to do this is with the switch statement, which can test for a
variety of different conditions and respond accordingly. In the following
code, the grading example has been rewritten with a switch statement:

switch (grade) {
case ‘A’:

System.out.println(“You got an A. Great job!”);
break;

case ‘B’:
System.out.println(“You got a B. Good work!”);
break;

case ‘C’:
System.out.println(“You got a C. What went wrong?”);
break;

default:
System.out.println(“You got an F. You’ll do well in Congress!”);

}

The first line of the switch statement specifies the variable that is tested—
in this example, grade. Then, the switch statement uses the { and } brack-
ets to form a block statement.

Each case statement checks the test variable in the switch statement
against a specific value. The value used in a case statement can be a char-
acter, an integer, or a string. In the preceding example, there are case state-
ments for the characters A, B, and C. Each has one or two statements that
follow it. When one of these case statements matches the variable in
switch, the computer handles the statements after the case statement until
it encounters a break statement.

For example, if the grade variable has the value of B, the text “You got a B.
Good work!” is displayed. The next statement is break, so nothing else in
the switch statement is executed. The break statement tells the computer
to break out of the switch statement.

The default statement is used as a catch-all if none of the preceding case
statements is true. In this example, it occurs if the grade variable does not
equal A, B, or C. You do not have to use a default statement with every
switch block statement you use in your programs. If it is omitted, nothing
happens if none of the case statements has the correct value.

ptg7068951

switch Statements 85

Java 7 adds support for using strings as the test variable in a switch-case
statement. The Commodity class in Listing 7.2 uses this statement to either
buy or sell an unspecified commodity. The commodity costs $20 when pur-
chased and earns $15 when sold.

A switch-case statement tests the value of a string named command, run-
ning one block if it equals “BUY” and another if it equals “SELL”.

LISTING 7.2 The Commodity Program
1: public class Commodity {
2: public static void main(String arguments) {
3: String command = “BUY”;
4: int balance = 550;
5: int quantity = 42;
6:
7: switch (command) {
8: case “BUY”:
9: quantity += 5;
10: balance -= 20;
11: break;
12: case “SELL”:
13: quantity -= 5;
14: balance += 15;
15: }
16: System.out.println(“Balance: “ + balance + “\n”
17: + “Quantity: “ + quantity);
18: }
19: }

This application sets the command string to “BUY” in line 3. When the
switch is tested, the case block in lines 9–11 is run. The quantity of the
commodity increases by 5 and the balance is lowered by $20.

You might encounter an error when writing this program that prevents it
from being compiled and run. NetBeans might not be configured to
employ features of the language introduced in Java 7. If you use a string in
a switch statement, you might see a red alert icon to the left of the source
code editor pane on line 7. The error message could be “strings in switch
are not supported,” which indicates that some configuration is needed.

Java 7 features are enabled on a project-by-project basis in NetBeans.
Follow these steps to do this:

1. In the Projects pane, right-click the Java24 item (or whatever you
named your project) and click Properties from the pop-up menu. The
Project Properties dialog opens.

ptg7068951

86 HOUR 7: Using Conditional Tests to Make Decisions

2. In the Categories pane, click Sources if it is not already selected. The
dialog displays source code properties (see Figure 7.2).

3. In the Source/Binary Format drop-down, choose JDK 7 and click OK.

FIGURE 7.2
Setting up the NetBeans editor to
support Java 7.

This sets up the source code editor for all programs in the project to work
with Java 7.

When the Commodity program is run, it produces the following output:

Balance: 530
Quantity: 47

The Conditional Operator
The most complicated conditional statement in Java is the ternary operator ?.

You can use the ternary operator when you want to assign a value or dis-
play a value based on a condition. For example, consider a video game
that sets the numberOfEnemies variable based on whether the skillLevel
variable is greater than 5. One way you can do this is an if-else state-
ment:

if (skillLevel > 5) {
numberOfEnemies = 10;

ptg7068951

Watching the Clock 87

} else {
numberOfEnemies = 5;

}

A shorter way to do this is to use the ternary operator. A ternary expres-
sion has five parts:

. The condition to test, surrounded by parentheses, as in (skillLevel
> 5)

. A question mark (?)

. The value to use if the condition is true

. A colon (:)

. The value to use if the condition is false

To use the ternary operator to set numberOfEnemies based on skillLevel,
you could use the following statement:

int numberOfEnemies = (skillLevel > 5) ? 10 : 5;

You also can use the ternary operator to determine what information to
display. Consider the example of a program that displays the text “Mr.” or
“Ms.” depending on the value of the gender variable. Here’s a statement
that accomplishes this:

System.out.print((gender.equals(“male”)) ? “Mr.” : “Ms.”);

The ternary operator can be useful, but it’s also the hardest conditional in
Java to understand. As you learn Java, you don’t encounter any situations
where the ternary operator must be used instead of if-else statements.

Watching the Clock
The next project gives you another look at each of the conditional tests you
can use in your programs. For this project, you use Java’s built-in time-
keeping feature, which keeps track of the current date and time, and pres-
ent this information in sentence form.

Run NetBeans (or another program to create Java programs) and give a
new class the name Clock. This program is long, but most of it consists of
long conditional statements. Type the full text of Listing 7.3 into the source
code editor, and save the file.

ptg7068951

88 HOUR 7: Using Conditional Tests to Make Decisions

LISTING 7.3 The Clock Program
1: import java.util.*;
2:
3: class Clock {
4: public static void main(String[] arguments) {
5: // get current time and date
6: Calendar now = Calendar.getInstance();
7: int hour = now.get(Calendar.HOUR_OF_DAY);
8: int minute = now.get(Calendar.MINUTE);
9: int month = now.get(Calendar.MONTH) + 1;
10: int day = now.get(Calendar.DAY_OF_MONTH);
11: int year = now.get(Calendar.YEAR);
12:
13: // display greeting
14: if (hour < 12) {
15: System.out.println(“Good morning.\n”);
16: } else if (hour < 17) {
17: System.out.println(“Good afternoon.\n”);
18: } else {
19: System.out.println(“Good evening.\n”);
20: }
21:
22: // begin time message by showing the minutes
23: System.out.print(“It’s”);
24: if (minute != 0) {
25: System.out.print(“ “ + minute + “ “);
26: System.out.print((minute != 1) ? “minutes” :
27: “minute”);
28: System.out.print(“ past”);
29: }
30:
31: // display the hour
32: System.out.print(“ “);
33: System.out.print((hour > 12) ? (hour - 12) : hour);
34: System.out.print(“ o’clock on “);
35:
36: // display the name of the month
37: switch (month) {
38: case 1:
39: System.out.print(“January”);
40: break;
41: case 2:
42: System.out.print(“February”);
43: break;
44: case 3:
45: System.out.print(“March”);
46: break;
47: case 4:
48: System.out.print(“April”);
49: break;
50: case 5:
51: System.out.print(“May”);

ptg7068951

Watching the Clock 89

52: break;
53: case 6:
54: System.out.print(“June”);
55: break;
56: case 7:
57: System.out.print(“July”);
58: break;
59: case 8:
60: System.out.print(“August”);
61: break;
62: case 9:
63: System.out.print(“September”);
64: break;
65: case 10:
66: System.out.print(“October”);
67: break;
68: case 11:
69: System.out.print(“November”);
70: break;
71: case 12:
72: System.out.print(“December”);
73: }
74:
75: // display the date and year
76: System.out.println(“ “ + day + “, “ + year + “.”);
77: }
78: }

After the program compiles correctly, look it over to get a good idea about
how the conditional tests are being used.

With the exception of Line 1 and Lines 6–11, the Clock program contains
material that has been covered up to this point. After a series of variables
are set up to hold the current date and time, a series of if or switch condi-
tionals are used to determine what information should be displayed.

This program contains several uses of System.out.println() and
System.out.print() to display strings.

Lines 6–11 refer to a Calendar variable called now. The Calendar variable
type is capitalized because Calendar is an object.

You learn how to create and work with objects during Hour 10, “Creating
Your First Object.” For this hour, focus on what’s taking place in those
lines rather than how it’s happening.

LISTING 7.3 Continued

ptg7068951

90 HOUR 7: Using Conditional Tests to Make Decisions

The Clock program is made up of the following sections:

. Line 1 enables your program to use a class that is needed to track the
current date and time: java.util.Calendar.

. Lines 3–4 begin the Clock program and its main() statement block.

. Line 6 creates a Calendar object called now that contains the current
date and time of your system. The now object changes each time you
run this program. (Unless the physical laws of the universe are
altered and time stands still).

. Lines 7–11 create variables to hold the hour, minute, month, day, and
year. The values for these variables are pulled from the Calendar
object, which is the storehouse for all this information.

. Lines 14–20 display one of three possible greetings: “Good morn-
ing.”, “Good afternoon.”, or “Good evening.” The greeting to display
is selected based on the value of the hour variable.

. Lines 23–29 display the current minute along with some accompany-
ing text. First, the text “It’s” is displayed in Line 23. If the value of
minute is equal to 0, Lines 25–28 are ignored because of the if state-
ment in Line 24. This statement is necessary because it would not
make sense for the program to tell someone that it’s 0 minutes past
an hour. Line 25 displays the current value of the minute variable. A
ternary operator is used in Lines 26–27 to display either the text
“minutes” or “minute,” depending on whether minute is equal to 1.
Finally, in Line 28 the text past is displayed.

. Lines 32–34 display the current hour by using another ternary opera-
tor. This ternary conditional statement in Line 33 causes the hour to
be displayed differently if it is larger than 12, which prevents the
computer from stating times like “15 o’clock.”

. Lines 37–73, almost half of the program, are a long switch statement
that displays a different name of the month based on the integer
value stored in the month variable.

. Line 76 finishes off the display by showing the current date and the
year.

. Lines 77–78 close out the main() statement block and then the entire
Clock program.

When you run this program, the output should display a sentence based
on the current date and time. The output of the application is shown in the
Output pane in Figure 7.3.

ptg7068951

Summary 91

Run the program several times to see how it keeps up with the clock.

Summary
Now that you can use conditional statements, the overall intelligence of
your Java programs has improved greatly. Your programs can evaluate
information and use it to react differently in different situations, even if
information changes as the program is running. They can decide between
two or more alternatives based on specific conditions.

Programming a computer forces you to break a task down into a logical set
of steps to undertake and decisions that must be made. Using the if state-
ment and other conditionals in programming also promotes a type of logi-
cal thinking that can reap benefits in other aspects of your life:

. “If he is elected president in November, I will seek a Cabinet posi-
tion, else I will move to Canada.”

. “If my blind date is attractive, I’ll pay for dinner at an expensive
restaurant, else we will go to Pizza Hut.”

. “If I violate my probation, the only team that will draft me is the
Philadelphia Eagles.”

FIGURE 7.3
The output of the Clock program.

ptg7068951

92 HOUR 7: Using Conditional Tests to Make Decisions

Q&A
Q. The if statement seems like the one that’s most useful. Is it possible

to use only if statements in programs and never use the others?

A. It’s possible to do without else or switch, and many programmers
never use the ternary operator ?. However, else and switch often are
beneficial to use in your programs because they make the programs
easier to understand. A set of if statements chained together can
become unwieldy.

Q. In the Clock program, why is 1 added to Calendar.MONTH to get the
current month value?

A. This is necessary because of a quirk in the way that the Calendar class
represents months. Instead of numbering them from 1 to 12 as you
might expect, Calendar numbers months beginning with 0 in January
and ending with 11 in December. Adding 1 causes months to be repre-
sented numerically in a more understandable manner.

Q. During this hour, opening and closing brackets { and } are not used
with an if statement if it is used in conjunction with only one state-
ment. Isn’t it mandatory to use brackets?

A. No. Brackets can be used as part of any if statement to surround the
part of the program that’s dependent on the conditional test. Using
brackets is a good practice to get into because it prevents a common
error that might take place when you revise the program. If you add a
second statement after an if conditional and don’t add brackets, unex-
pected errors occur when the program is run.

Q. Does break have to be used in each section of statements that follow
a case?

A. You don’t have to use break. If you do not use it at the end of a group
of statements, all the remaining statements inside the switch block
statement are handled, regardless of the case value they are being
tested with. However, in most cases you’re likely to want a break state-
ment at the end of each group.

Q. Why did the Thompson Twins get that name when they were a trio,
they were not related, and none of them was named Thompson?

A. Band members Tom Bailey, Alannah Currie, and Joe Leeway called them-
selves the Thompson Twins in honor of Thomson and Thompson, a pair
of bumbling detectives featured in the Belgian comic books The
Adventures of Tintin.

ptg7068951

Workshop 93

The bowler-wearing detectives were physically indistinguishable except
for a minor difference in the shape of their mustaches. Despite being
terrible at their jobs, they were inexplicably assigned to important and
sensitive missions. They often pursued Tintin for crimes that he did not
commit.

As their names would indicate, the detectives were not related either.

Workshop
The following questions see what condition you’re in after studying condi-
tional statements in Java.

Quiz
1. Conditional tests result in either a true or false value. Which variable

type does this remind you of?

A. None. Stop pestering me with all these questions.

B. The long variable type.

C. The boolean type.

2. Which statement is used as a catch-all category in a switch block
statement?

A. default

B. otherwise

C. onTheOtherHand

3. What’s a conditional?

A. The thing that repairs messy split ends and tangles after you
shampoo.

B. Something in a program that tests whether a condition is true or
false.

C. The place where you confess your sins to a religious authority
figure.

ptg7068951

94 HOUR 7: Using Conditional Tests to Make Decisions

Answers
1. C. The boolean variable type only can equal true or false, making it

similar to conditional tests. If you answered A., I’m sorry, but there’s
only 17 hours left and we’ve got a lot left to cover. Java doesn’t teach
itself.

2. A. default statements are handled if none of the other case state-
ments matches the switch variable.

3. B. The other answers describe conditioner and a confessional.

Activities
To improve your conditioning in terms of Java conditionals, review the topics
of this hour with the following activities:

. Add // in front of a break statement on one of the lines in the Clock
program to make it a comment, and then compile it and see what hap-
pens when you run it. Try it again with a few more break statements
removed.

. Create a short program that stores a value of your choosing from 1 to
100 in an integer variable called grade. Use this grade variable with a
conditional statement to display a different message for all A, B, C, D,
and F students. Try it first with an if statement, and then try it with a
switch statement.

To see Java programs that implement these activities, visit the book’s website
at www.java24hours.com.

www.java24hours.com

ptg7068951

WHAT YOU’LL LEARN IN
THIS HOUR:

. Using the for loop

. Using the while loop

. Using the do-while loop

. Exiting a loop prematurely

. Naming a loop

One of the more annoying punishments for schoolchildren is to make them
write something over and over again on a chalkboard. On The Simpsons, in
one of his frequent trips to the board, Bart Simpson had to write, “The art
teacher is fat, not pregnant,” dozens of times. This punishment might work
on children, but a computer can repeat a task with ease.

Computer programs are ideally suited to do the same thing over and over
because of loops. A loop is a statement or block that is repeated in a pro-
gram. Some loops run a fixed number of times. Others run indefinitely.

There are three loop statements in Java: for, do, and while. Each can work
like the others, but it’s beneficial to learn how all three operate. You often
can simplify a loop section of a program by choosing the right statement.

for Loops
In your programming, you find many circumstances in which a loop is
useful. You can use them to keep doing something several times, such as
an antivirus program that opens each new email received to look for virus-
es. You also can use loops to cause the computer to do nothing for a brief
period, such as an animated clock that displays the current time once per
minute.

A loop statement causes a computer program to return to the same place
more than once, like a stunt plane completing an acrobatic loop.

Java’s most complex loop statement is for. A for loop repeats a section of
a program a fixed number of times. The following is an example:

HOUR 8
Repeating an Action with Loops

ptg7068951

96 HOUR 8: Repeating an Action with Loops

for (int dex = 0; dex < 1000; dex++) {
if (dex % 12 == 0) {

System.out.println(“#: “ + dex);
}

}

This loop displays every number from 0 to 999 evenly divisible by 12.

Every for loop has a variable that determines when the loop should begin
and end. This variable is called the counter (or index). The counter in the
preceding loop is the variable dex.

The example illustrates the three parts of a for statement:

. The initialization section: In the first part, the dex variable is given an
initial value of 0.

. The conditional section: In the second part, there is a conditional test
like one you might use in an if statement: dex < 1000.

. The change section: The third part is a statement that changes the
value of the dex variable, in this example by using the increment
operator.

In the initialization section, you set up the counter variable. You can create
the variable in the for statement, as the preceding example does with the
integer variable dex. You also can create the variable elsewhere in the pro-
gram. In either case, you should give the variable a starting value in this sec-
tion of the for statement. The variable has this value when the loop starts.

The conditional section contains a test that must remain true for the loop
to continue looping. When the test is false, the loop ends. In this example,
the loop ends when the dex variable is equal to or greater than 1,000.

The last section of the for statement contains a statement that changes the
value of the counter variable. This statement is handled each time the loop
goes around. The counter variable has to change in some way or the loop
never ends. In the example, dex is incremented by one in the change sec-
tion. If dex was not changed, it would stay at its original value of 0 and the
conditional dex < 1000 always would be true.

The for statement’s block is executed during each trip through the loop.

The preceding example had the following statements in the block:

if (dex % 12 == 0) {
System.out.println(“#: “ + dex);

}

ptg7068951

for Loops 97

These statements are executed 1,000 times. The loop starts by setting the
dex variable equal to 0. It then adds 1 to dex during each pass through the
loop and stops looping when dex is no longer less than 1,000.

As you have seen with if statements, a for loop does not require brackets if
it contains only a single statement. This is shown in the following example:

for (int p = 0; p < 500; p++)
System.out.println(“I will not sell miracle cures”);

This loop displays the text “I will not sell miracle cures” 500 times.
Although brackets are not required around a single statement inside a
loop, you can use them to make the block easier to spot.

The first program you create during this hour displays the first 200 multi-
ples of 9: 9 × 1, 9 × 2, 9 × 3, and so on, up to 9 × 200. In NetBeans, create a
new empty Java file named Nines and enter the text in Listing 8.1. When
you save the file, it is stored as Nines.java.

LISTING 8.1 The Full Text of Nines.java
1: class Nines {
2: public static void main(String[] arguments) {
3: for (int dex = 1; dex <= 200; dex++) {
4: int multiple = 9 * dex;
5: System.out.print(multiple + “ “);
6: }
7: }
8: }

The Nines program contains a for statement in Line 3. This statement has
three parts:

. Initialization: int dex = 1, which creates an integer variable called
dex and gives it an initial value of 1.

. Conditional: dex <= 200, which must be true during each trip
through the loop. When it is not true, the loop ends.

. Change: dex++, which increments the dex variable by one during
each trip through the loop.

Run the program by choosing Run, Run File in NetBeans. The program
produces the following output:

NOTE

An unusual term you might hear
in connection with loops is iter-
ation. An iteration is a single
trip through a loop. The counter
variable that is used to control
the loop is called an iterator.

ptg7068951

98 HOUR 8: Repeating an Action with Loops

Output ▼

9 18 27 36 45 54 63 72 81 90 99 108 117 126 135 144 153 162 171
180 189 198 207 216 225 234 243 252 261 270 279 288 297 306 315
324 333 342 351 360 369 378 387 396 405 414 423 432 441 450 459
468 477 486 495 504 513 522 531 540 549 558 567 576 585 594 603
612 621 630 639 648 657 666 675 684 693 702 711 720 729 738 747
756 765 774 783 792 801 810 819 828 837 846 855 864 873 882 891
900 909 918 927 936 945 954 963 972 981 990 999 1008 1017 1026
1035 1044 1053 1062 1071 1080 1089 1098 1107 1116 1125 1134 1143
1152 1161 1170 1179 1188 1197 1206 1215 1224 1233 1242 1251 1260
1269 1278 1287 1296 1305 1314 1323 1332 1341 1350 1359 1368 1377
1386 1395 1404 1413 1422 1431 1440 1449 1458 1467 1476 1485 1494
1503 1512 1521 1530 1539 1548 1557 1566 1575 1584 1593 1602 1611
1620 1629 1638 1647 1656 1665 1674 1683 1692 1701 1710 1719 1728
1737 1746 1755 1764 1773 1782 1791 1800

The output window in NetBeans does not wrap text, so all the numbers
appear on a single line. To make the text wrap, right-click the output pane
and choose Wrap text from the pop-up menu.

while Loops
The while loop does not have as many different sections as a for loop. The
only thing it needs is a conditional test, which accompanies the while
statement. The following is an example of a while loop:

while (gameLives > 0) {
// the statements inside the loop go here

}

This loop continues repeating until the gameLives variable is no longer
greater than 0.

The while statement tests the condition at the beginning of the loop before
any statements in the loop have been handled. If the tested condition is
false when a program reaches the while statement for the first time, the
statements inside the loop are ignored.

If the while condition is true, the loop goes around once and tests the
while condition again. If the tested condition never changes inside the
loop, the loop keeps looping indefinitely.

The following statements cause a while loop to display the same line of
text several times:

ptg7068951

do-while Loops 99

int limit = 5;
int count = 1;
while (count < limit) {

System.out.println(“Pork is not a verb”);
count++;

}

A while loop uses one or more variables set up before the loop statement.
In this example, two integer variables are created: limit, which has a value
of 5, and count, which has a value of 1.

The while loop displays the text “Pork is not a verb” four times. If you
gave the count variable an initial value of 6 instead of 1, the text never
would be displayed.

do-while Loops
The do-while loop is similar to the while loop, but the conditional test
goes in a different place. The following is an example of a do-while loop:

do {
// the statements inside the loop go here

} while (gameLives > 0);

Like the while loop, this loop continues looping until the gameLives vari-
able is no longer greater than 0. The do-while loop is different because the
conditional test is conducted after the statements inside the loop, instead of
before them.

When the do loop is reached for the first time as a program runs, the state-
ments between the do and while are handled automatically, and then the
while condition is tested to determine whether the loop should be repeat-
ed. If the while condition is true, the loop goes around one more time. If
the condition is false, the loop ends. Something must happen inside the
do and while statements that changes the condition tested with while, or
the loop continued indefinitely. The statements inside a do-while loop
always are handled at least once.

The following statements cause a do-while loop to display the same line of
text several times:

int limit = 5;
int count = 1;
do {

System.out.println(“I will not Xerox my butt”);
count++;

} while (count < limit);

ptg7068951

100 HOUR 8: Repeating an Action with Loops

Like a while loop, a do-while loop uses one or more variables that are set
up before the loop statement.

The loop displays the text “I will not Xerox my butt” four times. If you
gave the count variable an initial value of 6 instead of 1, the text would be
displayed once, even though count is never less than limit.

In a do-while loop, the statements inside the loop are executed at least
once even if the loop condition is false the first time around.

Exiting a Loop
The normal way to exit a loop is for the tested condition to become false.
This is true of all three types of loops in Java. There might be times when
you want a loop to end immediately, even if the condition being tested is
still true. You can accomplish this with a break statement, as shown in the
following code:

int index = 0;
while (index <= 1000) {

index = index + 5;
if (index == 400) {

break;
}

}

A break statement ends the loop that contains the statement.

In this example, the while loop loops until the index variable is greater
than 1,000. However, a special case causes the loop to end earlier than that:
If index equals 400, the break statement is executed, ending the loop
immediately.

Another special-circumstance statement you can use inside a loop is con-
tinue. The continue statement causes the loop to exit its current trip
through the loop and start over at the first statement of the loop. Consider
the following loop:

int index = 0;
while (index <= 1000) {

index = index + 5;
if (index == 400)

continue;
System.out.println(“The index is “ + index);

}

ptg7068951

Naming a Loop 101

In this loop, the statements are handled normally unless the value of index
equals 400. In that case, the continue statement causes the loop to go
back to the while statement instead of proceeding normally to the
System.out.println() statement. Because of the continue statement,
the loop never displays the following text:

The index is 400

You can use the break and continue statements with all three kinds of loops.

The break statement makes it possible to create a loop in your program
that’s designed to run forever, as in this example:

while (true) {
if (quitKeyPressed == true) {

break;
}

}

Naming a Loop
Like other statements in Java programs, you can place loops inside each
other. The following shows a for loop inside a while loop:

int points = 0;
int target = 100;
while (target <= 100) {

for (int i = 0; i < target; i++) {
if (points > 50)

break;
points = points + i;

}
}

In this example, the break statement causes the for loop to end if the
points variable is greater than 50. However, the while loop never ends
because target is never greater than 100.

In some cases, you might want to break out of both loops. To make this
possible, you have to give the outer loop—in this example, the while state-
ment—a name. To name a loop, put the name on the line before the begin-
ning of the loop and follow it with a colon (:).

When the loop has a name, use the name after the break or continue state-
ment to indicate the loop to which the break or continue statement
applies. The following example repeats the previous one with the excep-
tion of one thing: If the points variable is greater than 50, both loops end.

ptg7068951

102 HOUR 8: Repeating an Action with Loops

int points = 0;
int target = 100;
targetLoop:
while (target <= 100) {

for (int i = 0; i < target; i++) {
if (points > 50)

break targetLoop;
points = points + i;

}
}

When a loop’s name is used in a break or continue statement, the name
does not include a colon.

Complex for Loops
A for loop can be more complex, including more than one variable in its
initialization, conditional, and change sections. Each section of a for loop
is set off from the other sections with a semicolon (;). A for loop can have
more than one variable set up during the initialization section and more
than one statement in the change section, as in the following code:

int i, j;
for (i = 0, j = 0; i * j < 1000; i++, j += 2) {

System.out.println(i + “ * “ + j + “ = “ + (i * j));
}

In each section of the for loop, commas are used to separate the variables
as in i = 0, j = 0. The example loop displays a list of equations where
the i and j variables are multiplied together. The i variable increases by
one, and the j variable increases by two during each trip through the loop.
When i multiplied by j is equal or greater than 1,000, the loop ends.

Sections of a for loop also can be empty. An example of this is when a
loop’s counter variable already has been created with an initial value in
another part of the program, as in the following:

for (; displayCount < endValue; displayCount++) {
// loop statements would be here

}

Testing Your Computer Speed
This hour’s workshop is a Java program that performs a benchmark, a test
that measures how fast computer hardware or software is operating. The

ptg7068951

Testing Your Computer Speed 103

Benchmark program uses a loop statement to repeatedly perform the fol-
lowing mathematical expression:

double x = Math.sqrt(index);

This statement calls the Math.sqrt() method to find the square root of a
number. You learn how methods work during Hour 11, “Describing What
Your Object Is Like.”

The benchmark you’re creating sees how many times a Java program can
calculate a square root in one minute.

Use NetBeans to create a new empty Java file called Benchmark. Enter the
text of Listing 8.2 and save the program when you’re done.

LISTING 8.2 The Full Source Code of Benchmark.java
1: class Benchmark {
2: public static void main(String[] arguments) {
3: long startTime = System.currentTimeMillis();
4: long endTime = startTime + 60000;
5: long index = 0;
6: while (true) {
7: double x = Math.sqrt(index);
8: long now = System.currentTimeMillis();
9: if (now > endTime) {
10: break;
11: }
12: index++;
13: }
14: System.out.println(index + “ loops in one minute.”);
15: }
16: }

The following things take place in the program:

. Lines 1–2: The Benchmark class is declared and the main() block of
the program begins.

. Line 3: The startTime variable is created with the current time in
milliseconds as its value, measured by calling the
currentTimeMillis() method of Java’s System class.

. Line 4: The endTime variable is created with a value 60,000 higher
than startTime. Because one minute equals 60,000 milliseconds, this
sets the variable one minute past startTime.

. Line 5: A long named index is set up with an initial value of 0.

ptg7068951

104 HOUR 8: Repeating an Action with Loops

. Line 6: The while statement begins a loop using true as the condi-
tional, which causes the loop to continue forever (in other words,
until something else stops it).

. Line 7: The square root of index is calculated and stored in the x
variable.

. Line 8: Using currentTimeMillis(), the now variable is created with
the current time.

. Lines 9–11: If now is greater than endTime, this signifies that the loop
has been running for one minute and break ends the while loop.
Otherwise, it keeps looping.

. Line 12: The index variable is incremented by 1 with each trip
through the loop.

. Lines 14: Outside the loop, the program displays the number of times
it performed the square root calculation.

The output of the application is shown in the Output pane in Figure 8.1.

FIGURE 8.1
The output of the Benchmark
program.

The Benchmark program is an excellent way to see whether your computer is
faster than mine. During the testing of this program, my computer performed
around 4.5 billion calculations. If your computer has better results, don’t just
send me your condolences. Buy more of my books so I can upgrade.

Summary
Loops are a fundamental part of most programming languages. Animation
created by displaying several graphics in sequence is one of many tasks
you could not accomplish in Java or any other programming language
without loops.

Every one of Bart Simpson’s chalkboard punishments has been document-
ed on the Web. Visit www.snpp.com/guides/chalkboard.openings.html to
see the list along with a Java program that runs on the page drawing Bart’s
sayings on a green chalkboard.

www.snpp.com/guides/chalkboard.openings.html

ptg7068951

105Q&A

Q&A
Q. The term initialization has been used in several places. What does it

mean?

A. It means to give something an initial value and set it up. When you cre-
ate a variable and assign a starting value to it, you are initializing the
variable.

Q. If a loop never ends, how does the program stop running?

A. Usually in a program where a loop does not end, something else in the
program is set up to stop execution in some way. For example, a loop in
a game program could continue indefinitely while the player still has lives
left.

One bug that crops up often as you work on programs is an infinite loop,
a loop that never stops because of a programming mistake. If one of the
Java programs you run becomes stuck in an infinite loop, press the red
alert icon to the left of the Output pane.

Q. How can I buy stock in the Green Bay Packers?

A. Unless the publicly owned NFL team decides to hold another stock sale,
the only way to become a stockholder is to inherit shares in a will.

The Packers have sold stock in 1923, 1935, 1950, and 1997.
Approximately 112,000 people own 4.7 million shares in the team, despite
the fact that they have very limited rights associated with the stock.

Holders don’t earn a dividend and can’t profit from their shares. They
only can sell them back to the team and lose money in the deal. No indi-
vidual can own more than 200,000 shares.

They do receive exclusive team merchandise offers and can attend an annu-
al meeting to elect the seven-member board that manages the team.

In the 1923 stock sale that formed the franchise, 1,000 fans bought
shares for $5 each. The 1997 sale raised $24 million for the Lambeau
Field renovation.

More information on the stock can be found on the Web at
www.packers.com/community/shareholders.html.

Workshop
The following questions test your knowledge of loops. In the spirit of the sub-
ject matter, repeat each of these until you get them right.

www.packers.com/community/shareholders.html

ptg7068951

106 HOUR 8: Repeating an Action with Loops

Quiz
1. What must be used to separate each section of a for statement?

A. Commas

B. Semicolons

C. Off-duty police officers

2. Which statement causes a program to go back to the statement that
began a loop and then keep going from there?

A. continue

B. next

C. skip

3. Which loop statement in Java always runs at least once?

A. for

B. while

C. do-while

Answers
1. B. Commas are used to separate things within a section, but semi-

colons separate sections.

2. A. The break statement ends a loop entirely, and continue skips to the
next go-round of the loop.

3. C. The do-while conditional isn’t evaluated until after the first pass
through the loop.

Activities
If your head isn’t going in circles from all this looping, review the topics of
this hour with the following activities:

. Modify the Benchmark program to test the execution of simple mathe-
matical calculation such as multiplication or division.

. Write a short program using loops that finds the first 400 numbers that
are multiples of 13.

To see Java programs that implement these activities, visit the book’s website
at www.java24hours.com.

www.java24hours.com

ptg7068951

WHAT YOU’LL LEARN IN
THIS HOUR:

. Creating an array

. Setting the size of an array

. Giving a value to an array
element

. Changing the information
in an array

. Making multidimensional
arrays

. Sorting an array

No one benefited more from the development of the computer than Santa
Claus. For centuries, humankind has put an immense burden on him to
gather and process information. Old St. Nick has to keep track of the fol-
lowing things:

. Naughty children

. Nice children

. Gift requests

. Homes with impassable chimneys

. Women who want more from Santa than Mrs. Claus is willing to let
him give

. Countries that shoot unidentified aircraft first and ask questions later

Computers were a great boon to the North Pole. They are ideal for the stor-
age, categorization, and study of information.

The most basic way that information is stored in a computer program is by
putting it into a variable. The list of naughty children is an example of a
collection of similar information. To keep track of a list of this kind, you
can use arrays.

Arrays are groups of related variables that share the same type. Any type of
information that can be stored as a variable can become the items stored in
an array. Arrays can be used to keep track of more sophisticated types of
information than a single variable, but they are almost as easy to create
and manipulate as variables.

HOUR 9
Storing Information with Arrays

ptg7068951

108 HOUR 9: Storing Information with Arrays

Creating Arrays
Arrays are variables grouped together under a common name. The term
array should be familiar to you—think of a salesperson showing off her
array of products or a game show with a dazzling array of prizes. Like
variables, arrays are created by stating the type of variable being organized
into the array and the name of the array. A pair of square brackets ([])
follow the type to distinguish arrays from variables.

You can create arrays for any type of information that can be stored as a
variable. For example, the following statement creates an array of string
variables:

String[] naughtyChild;

Here are two more examples:

int[] reindeerWeight;
boolean[] hostileAirTravelNations;

The previous examples create arrays, but they do not store any values in
them. To do this, you can use the new keyword along with the variable
type or store values in the array within { and } marks. When using new,
you must specify how many different items are stored in the array. Each
item in an array is called an element. The following statement creates an
array and sets aside space for the values that it holds:

int[] elfSeniority = new int[250];

This example creates an array of integers called elfSeniority. The array
has 250 elements that can store the months that each of Santa’s elves has
been employed at the Pole. If Santa runs a union shop, this information is
extremely important to track.

When you create an array with the new statement, you must specify the
number of elements. Each element of the array is given an initial value that
depends on the type of the array. All numeric arrays have the initial value
0, char arrays equal ‘\0’, and boolean arrays have the value false. A
String array and all other objects are created with the initial value of null.

For arrays that are not extremely large, you can set up their initial values at
the same time that you create them. The following example creates an
array of strings and gives them initial values:

String[] reindeerNames = { “Dasher”, “Dancer”, “Prancer”, “Vixen”,
“Comet”, “Cupid”, “Donder”, “Blitzen” };

NOTE
Java is flexible about where the
square brackets are placed
when an array is being created.
You can put them after the vari-
able name instead of the vari-
able type, as in the following:

String niceChild[];

To make arrays easier for
humans to spot in your pro-
grams, you should stick to one
style rather than switching back
and forth. Examples in this
book always place the brackets
after the variable or class type.

ptg7068951

Using Arrays 109

The information that should be stored in elements of the array is placed
between { and } brackets with commas separating each element. The number
of elements in the array is set to the number of elements in the comma-
separated list. Each element of the array must be of the same type. The
preceding example uses a string to hold each of the reindeer names.

After the array is created, you cannot make room for more elements. Even
if you recall the most famous reindeer of all, you couldn’t add “Rudolph”
as the ninth element of the reindeerNames array. The Java compiler won’t
let poor Rudolph join in any reindeerNames.

Using Arrays
You use arrays in a program as you would any variable, except for the ele-
ment number between the square brackets next to the array’s name. You can
use an array element anywhere a variable could be used. The following state-
ments all use arrays that have already been defined in this hour’s examples:

elfSeniority[193] += 1;
niceChild[9428] = “Eli”;
if (hostileAirTravelNations[currentNation] == true) {

sendGiftByMail();
}

The first element of an array is numbered 0 instead of 1. This means that
the highest number is one less than you might expect. Consider the follow-
ing statement:

String[] topGifts = new String[10];

This statement creates an array of string variables numbered from 0 to 9. If
you referred to topGifts[10] somewhere else in the program, you would
get an error message referring to an ArrayIndexOutOfBoundsException.

Exceptions are another word for errors in Java programs. This exception is an
“array index out of bounds” error, which means that a program tried to use
an array element that doesn’t exist within its defined boundaries. You learn
more about exceptions during Hour 18, “Handling Errors in a Program.”

If you want to check the upper limit of an array so you can avoid going
beyond that limit, a variable called length is associated with each array
that is created. The length variable is an integer that contains the number
of elements an array holds. The following example creates an array and
then reports its length:

ptg7068951

110 HOUR 9: Storing Information with Arrays

String[] reindeerNames = { “Dasher”, “Dancer”, “Prancer”, “Vixen”,
“Comet”, “Cupid”, “Donder”, “Blitzen”, “Rudolph” };

System.out.println(“There are “ + reindeerNames.length + “ reindeer.”);

In this example, the value of reindeerNames.length is 9, which means that
the highest element number you can specify is 8.

You can work with text in Java as a string or an array of characters. When
you’re working with strings, one useful technique is to put each character
in a string into its own element of a character array. To do this, call the
string’s toCharArray() method, which produces a char array with the
same number of elements as the length of the string.

This hour’s first project uses both of the techniques introduced in this sec-
tion. The SpaceRemover program displays a string with all space characters
replaced with periods (.).

To get started, open the Java24 project in NetBeans, choose File, New File
and create a new Empty Java File called SpaceRemover. Enter Listing 9.1 in
the source editor and save it when you’re done.

LISTING 9.1 The Full Text of SpaceRemover.java
1: class SpaceRemover {
2: public static void main(String[] args) {
3: String mostFamous = “Rudolph the Red-Nosed Reindeer”;
4: char[] mfl = mostFamous.toCharArray();
5: for (int dex = 0; dex < mfl.length; dex++) {
6: char current = mfl[dex];
7: if (current != ‘ ‘) {
8: System.out.print(current);
9: } else {

10: System.out.print(‘.’);
11: }
12: }
13: System.out.println();
14: }
15: }

Run the program with the command Run, Run File to see the output
shown in Figure 9.1.

The SpaceRemover application stores the text “Rudolph the Red-Nosed
Reindeer” in two places—a string called mostFamous and a char array
called mfl. The array is created in Line 4 by calling the toCharArray()
method of mostFamous, which fills an array with one element for each
character in the text. The character “R” goes into element 0, “u” into ele-
ment 1, and so on, up to “r” in element 29.

ptg7068951

Sorting an Array 111

The for loop in Lines 5–12 looks at each character in the mfl array. If the
character is not a space, it is displayed. If it is a space, a . character is dis-
played instead.

Multidimensional Arrays
The arrays thus far in the hour all have one dimension, so you can retrieve
an element using a single number. Some types of information require more
dimensions to store adequately as arrays, such as points in an (x,y) coordi-
nate system. One dimension of the array could store the x coordinate, and
the other dimension could store the y coordinate.

To create an array that has two dimensions, you must use an additional set
of square brackets when creating and using the array, as in these statements:

boolean[][] selectedPoint = new boolean[50][50];
selectedPoint[4][13] = true;
selectedPoint[7][6] = true;
selectedPoint[11][22] = true;

This example creates an array of Boolean values called selectedPoint. The
array has 50 elements in its first dimension and 50 elements in its second
dimension, so 2,500 individual array elements can hold values (50 multi-
plied by 50). When the array is created, each element is given the default
value of false. Three elements are given the value true: a point at the
(x,y) position of 4,13, one at 7,6, and one at 11,22.

Arrays can have as many dimensions as you need, but keep in mind that
they take up a lot of memory if they’re extremely large. Creating the 50 by 50
selectedPoint array was equivalent to creating 2,500 individual variables.

Sorting an Array
When you have grouped a bunch of similar items together into an array,
one thing you can do is rearrange items. The following statements swap
the values of two elements in an integer array called numbers:

FIGURE 9.1
The output of the SpaceRemover
program.

ptg7068951

112 HOUR 9: Storing Information with Arrays

int temp = numbers[7];
numbers[5] = numbers[6];
numbers[6] = temp;

These statements result in numbers[5] and numbers[6] trading values with
each other. The integer variable called temp is used as a temporary storage
place for one of the values being swapped. Sorting is the process of arrang-
ing a list of related items into a set order, such as when a list of numbers is
sorted from lowest to highest.

Santa Claus could use sorting to arrange the order of gift recipients by last
name with Willie Aames and Hank Aaron raking in their Yuletide plunder
much earlier than alphabetical unfortunates Dweezil Zappa and Jim Zorn.

Sorting an array is easy in Java because the Arrays class does all of the
work. Arrays, which is part of the java.util group of classes, can
rearrange arrays of all variable types.

To use the Arrays class in a program, use the following steps:

1. Use the import java.util.* statement to make all the java.util
classes available in the program.

2. Create the array.

3. Use the sort() method of the Arrays class to rearrange an array.

An array of variables that is sorted by the Arrays class are rearranged into
ascending numerical order. Characters and strings are arranged in alpha-
betical order.

To see this in action, create a new Empty Java File named Name and enter
the text of Listing 9.2, a short program that sorts names, in the source editor.

LISTING 9.2 The Full Source Code of Name.java
1: import java.util.*;
2:
3: class Name {
4: public static void main(String[] args) {
5: String names[] = { “Lauren”, “Audrina”, “Heidi”, “Whitney”,
6: “Stephanie”, “Spencer”, “Lisa”, “Brody”, “Frankie”,
7: “Holly”, “Jordan”, “Brian”, “Jason” };
8: System.out.println(“The original order:”);
9: for (int i = 0; i < names.length; i++) {

10: System.out.print(i + “: “ + names[i] + “ “);
11: }
12: Arrays.sort(names);
13: System.out.println(“\nThe new order:”);

ptg7068951

Counting Characters in Strings 113

14: for (int i = 0; i < names.length; i++) {
15: System.out.print(i + “: “ + names[i] + “ “);
16: }
17: System.out.println();
18: }
19: }

When you run this Java program, it displays a list of 13 names in their orig-
inal order, sorts the names, and then redisplays the list. Here’s the output:

Output ▼

The original order:
0: Lauren 1: Audrina 2: Heidi 3: Whitney 4: Stephanie 5: Spencer
6: Lisa 7: Brody 8: Frankie 9: Holly 10: Jordan 11: Brian
12: Jason
The new order:
0: Audrina 1: Brian 2: Brody 3: Frankie 4: Heidi 5: Holly
6: Jason 7: Jordan 8: Lauren 9: Lisa 10: Spencer 11: Stephanie 12:
Whitney

When you’re working with strings and the basic types of variables such as
integers and floating-point numbers, you only can sort them by ascending
order using the Arrays class. You can write code to do your own sorts by
hand if you desire a different arrangement of elements during a sort, or
you want better efficiency than the Arrays class provides.

Counting Characters in Strings
The letters that appear most often in English are E, R, S, T, L, N, C, D, M,
and O, in that order. This is a fact worth knowing if you ever find yourself
on the syndicated game show Wheel of Fortune.

The next program you create this hour counts letter frequency in as many
different phrases and expressions as you care to type. An array is used to
count the number of times that each letter appears. When you’re done, the
program presents the number of times each letter appeared in the phrases.

Create a new Empty Java File in NetBeans called Wheel.java, fill it with
the contents of Listing 9.3 and save the file when you’re finished. Feel free
to add additional phrases between Lines 17 and 18, formatting them exact-
ly like Line 17.

NOTE

If you’re unfamiliar with the
show, Wheel of Fortune is a
game in which three contest-
ants guess the letters of a
phrase, name, or quote. If they
get a letter right and it’s a con-
sonant, they win the amount of
money spun on a big wheel. To
re-create the experience, play
hangman with your friends in
front of a studio audience, hand
out random amounts of money
when someone guesses a letter
correctly, and give the winner a
new Amana stove.

LISTING 9.2 Continued

ptg7068951

114 HOUR 9: Storing Information with Arrays

LISTING 9.3 The Full Source Code of Wheel.java
1: class Wheel {
2: public static void main(String[] args) {
3: String phrase[] = {
4: “A STITCH IN TIME SAVES NINE”,
5: “DON’T EAT YELLOW SNOW”,
6: “JUST DO IT”,
7: “EVERY GOOD BOY DOES FINE”,
8: “I WANT MY MTV”,
9: “I LIKE IKE”,

10: “PLAY IT AGAIN, SAM”,
11: “FROSTY THE SNOWMAN”,
12: “ONE MORE FOR THE ROAD”,
13: “HOME FIELD ADVANTAGE”,
14: “VALENTINE’S DAY MASSACRE”,
15: “GROVER CLEVELAND OHIO”,
16: “SPAGHETTI WESTERN”,
17: “AQUA TEEN HUNGER FORCE”,
18: “IT’S A WONDERFUL LIFE”
19: };
20: int[] letterCount = new int[26];
21: for (int count = 0; count < phrase.length; count++) {
22: String current = phrase[count];
23: char[] letters = current.toCharArray();
24: for (int count2 = 0; count2 < letters.length; count2++) {
25: char lett = letters[count2];
26: if ((lett >= ‘A’) & (lett <= ‘Z’)) {
27: letterCount[lett - ‘A’]++;
28: }
29: }
30: }
31: for (char count = ‘A’; count <= ‘Z’; count++) {
32: System.out.print(count + “: “ +
33: letterCount[count - ‘A’] +
34: “ “);
35: }
36: System.out.println();
37: }
38: }

If you run the program without adding your own phrases, the output
should resemble Listing 9.4.

LISTING 9.4 Output of the Wheel Program
A: 22 B: 3 C: 5 D: 13 E: 28 F: 6 G: 5 H: 8 I: 18
J: 1 K: 0 L: 13 M: 10 N: 19 O: 27 P: 3 Q: 0 R: 13
S: 15 T: 19 U: 4 V: 7 W: 9 X: 0 Y: 10 Z: 0

ptg7068951

Counting Characters in Strings 115

The following things are taking place in the Wheel program:

. Lines 3–19: Phrases are stored in a string array called phrase.

. Line 20: An integer array called letterCount is created with 26 ele-
ments. This array is used to store the number of times each letter
appears. The order of the elements is from A to Z. letterCount[0]
stores the count for letter A, letterCount[1] stores the count for B,
and so on, up to letterCount[25] for Z.

. Line 21: A for loop cycles through the phrases stored in the phrase
array. The phrase.length variable is used to end the loop after the
last phrase is reached.

. Line 22: A string variable named current is set with the value of the
current element of the phrase array.

. Line 23: A character array is created and stores all the characters in
the current phrase.

. Line 24: A for loop cycles through the letters of the current phrase.
The letters.length variable is used to end the loop after the last
letter is reached.

. Line 25: A character variable called lett is created with the value of
the current letter. In addition to their text value, characters have a
numeric value. Because elements of an array are numbered, the
numeric value of each character is used to determine its element
number.

. Lines 26–28: An if statement weeds out all characters that are not
part of the alphabet, such as punctuation and spaces. An element of
the letterCount array is increased by 1 depending on the numeric
value of the current character, which is stored in lett. The numeric
values of the alphabet range from 65 for ‘A’ to 90 for ‘Z’. Because
the letterCount array begins at 0 and ends at 25, ‘A’ (65) is sub-
tracted from lett to determine which array element to increase.

. Line 31: A for loop cycles through the alphabet from ‘A’ to ‘Z’.

. Lines 32–34: The current letter is displayed followed by a semicolon
and the number of times the letter appeared in the phrases stored in
the phrase array.

This project shows how two nested for loops can be used to cycle through
a group of phrases one letter at a time. Java attaches a numeric value to
each character; this value is easier to use than the character inside arrays.

NOTE

The numeric values associated
with each of the characters
from A to Z are those used by
the ASCII character set. The
ASCII character set is part of
Unicode, the full character set
supported by the Java lan-
guage. Unicode includes sup-
port for more than 60,000 dif-
ferent characters used in the
world’s written languages. ASCII
is limited to just 256.

ptg7068951

116 HOUR 9: Storing Information with Arrays

Summary
Arrays make it possible to store complicated types of information in a pro-
gram and manipulate that information. They’re ideal for anything that can
be arranged in a list and can be accessed easily using the loop statements
that you learned about during Hour 8, “Repeating an Action with Loops.”

To be honest, the information processing needs of Santa Claus probably
have outgrown arrays. More children are manufactured each year, and the
gifts they want are increasing in complexity and expense.

Your programs are likely to use arrays to store information that is
unwieldy to work with using variables, even if you’re not making any lists
or checking them twice.

ptg7068951

Q&A 117

Q&A
Q. Is the numeric range of the alphabet, from 65 for A to 90 for Z, part of

the basic Java language? If so, what are 1 through 64 reserved for?

A. The numbers 1 through 64 include numerals, punctuation marks, and
some unprintable characters, such as linefeed, newline, and backspace. A
number is associated with each printable character that can be used in a
Java program, as well as some unprintable ones. Java uses the Unicode
numbering system. The first 127 characters are from the ASCII character
set, which you might have used in another programming language.

Q. Why are some errors called exceptions?

A. The significance of the term is that a program normally runs without any
problems, and the exception signals an exceptional circumstance that
must be dealt with. Exceptions are warning messages that are sent from
within a Java program. In the Java language, the term error is sometimes
confined to describe error conditions that take place within the interpreter
running a program. You learn more about both subjects during Hour 18.

Q. In a multidimensional array, is it possible to use the length variable to
measure different dimensions other than the first?

A. You can test any dimension of the array. For the first dimension, use
length with the name of the array, as in x.length. Subsequent dimen-
sions can be measured by using length with the [0] element of that
dimension. Consider an array called data that was created with the fol-
lowing statement:

int[][][] data = new int[12][13][14];

The dimensions of this array can be measured by using the
data.length variable for the first dimension, data[0].length for the
second, and data[0][0].length for the third.

Q. Why does New England Patriots head coach Bill Belichick always wear
that ridiculous hoodie on the sidelines?

A. Sportswriters believe that Belichick began wearing the attire in
response to an NFL deal with Reebok that required all coaches to wear
licensed team apparel.

“He decided that if they were going to make him wear team apparel
then he’d sift through the options and put on the absolute ugliest thing
he could find,” Dan Wetzel of Yahoo! Sports explained in 2007. “He
chose a grey sweatshirt, often with a hood.”

Belichick’s passive-aggressive fashion statement has turned the hoodie
into one of the team’s best-selling items.

ptg7068951

118 HOUR 9: Storing Information with Arrays

Workshop
If the brain were an array, you could test its length by answering each of the
following questions about arrays.

Quiz
1. What types of information are arrays best suited for?

A. Lists

B. Pairs of related information

C. Trivia

2. What variable can you use to check the upper boundary of an array?

A. top

B. length

C. limit

3. How many reindeer does Santa have, including Rudolph?

A. 8

B. 9

C. 10

Answers
1. A. Lists that contain nothing but the same type of information—strings,

numbers, and so on—are well-suited for storage in arrays.

2. B. The length variable contains a count of the number of elements in
an array.

3. B. Santa had “eight tiny reindeer,” according to Clement Clarke Moore’s
“A Visit from St. Nicholas,” so Rudolph makes nine.

ptg7068951

Workshop 119

Activities
To give yourself an array of experiences to draw from later, you can expand
your knowledge of this hour’s topics with the following activities:

. Create a program that uses a multidimensional array to store student
grades. The first dimension should be a number for each student, and
the second dimension should be for each student’s grades. Display the
average of all the grades earned by each student and an overall aver-
age for every student.

. Write a program that stores the first 400 numbers that are multiples of
13 in an array.

To see Java programs that implement these activities, visit the book’s website
at www.java24hours.com.

www.java24hours.com

ptg7068951

This page intentionally left blank

ptg7068951

WHAT YOU’LL LEARN IN
THIS HOUR:

. Creating an object

. Describing an object with
attributes

. Determining how objects
behave

. Combining objects

. Inheriting from other
objects

. Converting objects and
other types of information

One of the more fearsome examples of jargon that you encounter during
these 24 hours is object-oriented programming (OOP). This complicated term
describes, in an elegant way, what a computer program is and how it
works.

Before OOP, a computer program was usually described under the sim-
plest definition you’ve learned in this book: a set of instructions listed in a
file and handled in some kind of reliable order.

By thinking of a program as a collection of objects, you can figure out the
tasks a program must accomplish and assign the tasks to the objects where
they best belong.

How Object-Oriented Programming
Works
You can think of the Java programs you create as objects, just like physical
objects that exist in the real world. Objects exist independently of other
objects, interact in specific ways, and can be combined with other objects to
form something bigger. If you think of a computer program as a group of
objects that interact with each other, you can design a program that’s more
reliable, easier to understand, and reusable in other projects.

In Hour 23, “Creating Java2D Graphics,” you create a Java program that
displays pie graphs—circles with different-colored pie slices to represent
data (see Figure 10.1). A pie chart is an object that is made up of smaller
objects—individual slices of different colors, a legend identifying what
each slice represents, and a title.

HOUR 10
Creating Your First Object

ptg7068951

122 HOUR 10: Creating Your First Object

Each object has things that make it different than other objects. Pie charts
are circular, whereas bar graphs represent data as a series of rectangles. If
you break down computer programs in the same way a pie chart is broken
down, you’re engaging in OOP. In OOP, an object contains two things:
attributes and behavior. Attributes are things that describe the object and
show how it is different than other objects. Behavior is what an object does.

You create objects in Java by using a class as a template. A class is a master
copy of the object that determines the attributes and behavior an object
should have. The term class should be familiar to you because Java pro-
grams are called classes. Every program you create with Java is a class that
you can use as a template for the creation of new objects. As an example,
any Java program that uses strings is using objects created from the String
class. This class contains attributes that determine what a String object is
and behavior that controls what String objects can do.

With OOP, a computer program is a group of objects that work together to
get something done. Some simple programs might seem as though they
consist of only one object: the class file. However, even those programs are
using other objects to get work done.

Objects in Action
Consider the case of the program that displays a pie chart. A PieChart

object could consist of the following:

. Behavior to calculate the size of each pie slice

. Behavior to draw the chart

. An attribute to store the title of the chart

Bangladesh

India

Indonesia

China

United States

Pakistan

Brazil

Nigeria
Russia
Japan

FIGURE 10.1
A Java program that displays a pie
chart.

ptg7068951

Objects in Action 123

It might seem odd to ask the PieChart object to draw itself because graphs
don’t draw themselves in the real world. Objects in OOP work for them-
selves whenever possible. This quality makes it easier to incorporate them
in other programs. If a PieChart object did not know how to draw itself,
for instance, every time you used that PieChart object in another program,
you would have to create behavior to draw it.

For another example of OOP, consider the autodialer program that Matthew
Broderick’s character used in the movie WarGames to find computers he
could break into.

Using an autodialer today would attract the attention of your local phone
company or law enforcement. Back in the ‘80s, it was a good way to be
rebellious without leaving the house. David Lightman (the character por-
trayed by Broderick) used his autodialer to look for a video game compa-
ny’s private computer system—he wanted to play the company’s new game
before it was released. Instead, Lightman found a secret government com-
puter that could play everything from chess to Global Thermonuclear War.

An autodialer, like any computer program, can be thought of as a group of
objects that work together. It could be broken down into the following:

. A Modem object, which knows its attributes such as speed, and has
behavior—for example, it can make the modem dial a number and
detect that another computer system has answered a call

. A Monitor object, which keeps track of what numbers are called and
which ones are successful

Each object exists independently of the other.

One advantage of designing a completely independent Modem object is that
it could be used in other programs that need modem functionality.

Another reason to use self-contained objects is that they are easier to
debug. Computer programs quickly become unwieldy in size. If you’re
debugging something like a Modem object and you know it’s not dependent
on anything else, you can focus on making sure the Modem object does the
job it’s supposed to do and holds the information that it needs to do its job.

Learning an object-oriented language such as Java as your first program-
ming language can be advantageous because you’re not unlearning the
habits of other styles of programming.

NOTE

An autodialer is software that
uses a modem to dial a series
of phone numbers in sequence.
The purpose of such a program
is to find other computers that
answer the phone, so you can
call them later to see what they
are.

ptg7068951

124 HOUR 10: Creating Your First Object

What Objects Are
Objects are created by using a class of objects as a template. The following
statements create a class:

public class Modem {
}

An object created from this class can’t do anything because it doesn’t have
any attributes or behavior. You need to add those to make the class useful,
as in the following statements:

public class Modem {
int speed;

public void displaySpeed() {
System.out.println(“Speed: “ + speed);

}
}

The Modem class now should be starting to look like programs you’ve writ-
ten during Hours 1 through 9. The Modem class begins with a class state-
ment, except that it has public in it. This means that the class is available
for use by the public—in other words, by any program that wants to use
Modem objects.

The first part of the Modem class creates an integer variable called speed.
This variable is an attribute of the object.

The second part of the Modem class is a method called displaySpeed().
This method is part of the object’s behavior. It contains one statement,
System.out.println(), which reveals the modem’s speed value.

An object’s variables often are called instance variables or member variables.

If you want to use a Modem object in a program, you create the object with
the following statement:

Modem device = new Modem();

This statement creates a Modem object called device. After you have created
an object, you can set its variables and call its methods. Here’s how to set
the value of the speed variable of the device object:

device.speed = 28800;

ptg7068951

Building an Inheritance Hierarchy 125

To make this modem display its speed by calling the displaySpeed()
method, you call the method:

device.displaySpeed();

The Modem object named device would respond to this statement by dis-
playing the text “Speed: 28800.”

Understanding Inheritance
A big advantage to OOP is inheritance, which enables one object to inherit
behavior and attributes from another object.

When you start creating objects, you sometimes find that a new object you
want is a lot like an object you already have.

What if David Lightman wanted an object that could handle error correc-
tion and other advanced modem features that weren’t around in 1983
when WarGames was released? Lightman could create a new
ErrorCorrectionModem object by copying the statements of the Modem
object and revising them. However, if most of the behavior and attributes
of ErrorCorrectionModem are the same as those of Modem, this is a lot of
unnecessary work. It also means that Lightman would have two separate
programs to update if something needed to be changed later.

Through inheritance, a programmer can create a new class of objects by
defining how they are different than an existing class. Lightman could
make ErrorCorrectionModem inherit from Modem, and all he would need to
write are things that make error-correction modems different than modems.

A class of objects inherits from another class by using the extends state-
ment. The following is a skeleton of an ErrorCorrectionModem class that
inherits from the Modem class:

public class ErrorCorrectionModem extends Modem {
// program goes here

}

Building an Inheritance Hierarchy
Inheritance, which enables a variety of related classes to be developed with-
out redundant work, makes it possible for code to be passed down from
one class to another class to another class. This grouping of classes is called

ptg7068951

HOUR 10: Creating Your First Object

a , and all the standard classes you can use in your Java pro-
grams are part of a hierarchy.

Understanding a hierarchy is easier if you understand subclasses and
superclasses. A class that inherits from another class is called a .
The class that is inherited from is called a .

In the preceding example, the Modem class is the superclass of the
ErrorCorrectionModem class. ErrorCorrectionModem is the subclass of
Modem.

A class can have more than one class that inherits from it in the hierarchy—
another subclass of Modem could be ISDNModem because ISDN modems have
behavior and attributes that make them different from error-correcting
modems. If there was a subclass of ErrorCorrectionModem such as
InternalErrorCorrectionModem, it would inherit from all classes above it
in the hierarchy—both ErrorCorrectionModem and Modem. These inheri-
tance relationships are shown in Figure 10.2.

Modem

Error
Correction

Modem

ISDN
Modem

Internal
Error

Correction
Modem

An example of a class hierarchy.

The classes that make up the standard Java language make full use of
inheritance, so understanding it is essential. You learn more about inheri-
tance during Hour 12, “Making the Most of Existing Objects.”

ptg7068951

Converting Objects and Simple Variables 127

Converting Objects and Simple
Variables
One of the most common tasks you need to accomplish in Java is to con-
vert information from one form into another. Several types of conversions
you can do include

. Converting an object into another object

. Converting a simple variable into another type of variable

. Using an object to create a simple variable

. Using a simple variable to create an object

Simple variables are the basic data types you learned about during Hour 5,
“Storing and Changing Information in a Program.” These types include
int, float, char, long, and double.

When using a method or an expression in a program, you must use the
right type of information that’s expected by these methods and expres-
sions. A method that expects a Calendar object must receive a Calendar
object, for instance. If you used a method that takes a single integer argu-
ment and you sent it a floating-point number instead, an error would
occur when you attempted to compile the program.

Converting information to a new form is called casting. Casting produces a
new value that is a different type of variable or object than its source. You
don’t actually change the value when casting. Instead, a new variable or
object is created in the format you need.

The terms source and destination are useful when discussing the concept of
casting. The source is some kind of information in its original form—
whether it’s a variable or an object. The destination is the converted ver-
sion of the source in a new form.

Casting Simple Variables
With simple variables, casting occurs most commonly between numeric
variables such as integers and floating-point numbers. One type of variable
that cannot be used in any casting is Boolean values.

NOTE

When a method such as
System.out.println()
requires a string argument, you
can use the + operator to com-
bine several different types of
information in that argument.
As long as one of the things
being combined is a string, the
combined argument is convert-
ed into a string.

ptg7068951

128 HOUR 10: Creating Your First Object

To cast information into a new format, you precede it with the new format
surrounded by parentheses marks. For example, if you want to cast some-
thing into a long variable, you precede it with (long). The following state-
ments cast a float value into an int:

float source = 7.06F;
int destination = (int) source;

In variable casting where the destination holds larger values than the
source, the value is converted easily, such as when a byte is cast into an
int. A byte holds values from –128 to 127, whereas an int holds values
from –2.1 billion to 2.1 billion. No matter what value the byte variable
holds, the new int variable has plenty of room for it.

You sometimes can use a variable in a different format without casting it at
all. For example, you can use char variables as if they were int variables.
Also, you can use int variables as if they were long variables, and any-
thing can be used as a double.

In most cases, because the destination provides more room than the source,
the information is converted without changing its value. The main excep-
tions occur when an int or long variable is cast to a float, or a long is
cast into a double.

When you are converting information from a larger variable type into a
smaller type, you must explicitly cast it, as in the following statements:

int xNum = 103;
byte val = (byte) xNum;

Here, casting converts an integer value called xNum into a byte variable
called val. This is an example where the destination variable holds a
smaller range of values than the source variable. A byte holds integer val-
ues ranging from –128 to 127, and an int holds a much larger range of
integer values.

When the source variable in a casting operation has a value that isn’t
enabled in the destination variable, Java changes the value to make the cast
fit successfully. This can produce unexpected results if you’re not expecting
the change.

Casting Objects
You can cast objects into other objects when the source and destination are
related by inheritance. One class must be a subclass of the other.

ptg7068951

Converting Objects and Simple Variables 129

Some objects do not require casting at all. You can use an object where any
of its superclasses are expected. All objects in Java are subclasses of the
Object class, so you can use any object as an argument when an Object is
expected.

You also can use an object where one of its subclasses is expected.
However, because subclasses usually contain more information than their
superclasses, you might lose some of this information. If the object doesn’t
have a method that the subclass would contain, an error results if that
missing method is used in the program.

To use an object in place of one of its subclasses, you must cast it explicitly
with statements such as the following:

Graphics comp = new Graphics();
Graphics2D comp2D = (Graphics2D) comp;

This casts a Graphics object called comp into a Graphics2D object. You
don’t lose any information in the cast, but you gain all the methods and
variables the subclass defines.

Converting Simple Variables to Objects and
Back
One thing you can’t do is cast an object to a simple variable or a simple
variable to an object. There are classes in Java for each of the simple vari-
able types include Boolean, Byte, Character, Double, Float, Integer,
Long, and Short. All these classes are capitalized because they are objects,
not simple variable types.

Using methods defined in each of these classes, you can create an object
using a variable’s value as an argument. The following statement creates
an Integer object with the value 5309:

Integer suffix = new Integer(5309);

After you have created an object like this, you can use it like any other
object. When you want to use that value again as a simple variable, the
class has methods to perform that conversion. To get an int value from the
preceding suffix object, the following statement could be used:

int newSuffix = suffix.intValue();

This statement causes the newSuffix variable to have the value 5309,
expressed as an int value. One common casting from an object to a

ptg7068951

130 HOUR 10: Creating Your First Object

variable is to use a string in a numeric expression. When the string’s value
could become an integer, this can be done using the parseInt() method of
the Integer class, as in this example:

String count = “25”;
int myCount = Integer.parseInt(count);

This converts a string with the text “25” into an integer with the value 25.
If the string value was not a valid integer, the conversion would not work.

The next project you create is an application that converts a string value in
a command-line argument to a numeric value, a common technique when
you’re taking input from a user at the command line.

Return to your Java24 project in NetBeans, choose File, New File, and then
create a new Empty Java File named NewRoot. Enter Listing 10.1 in the
source editor and remember to save the file.

LISTING 10.1 The Full Text of NewRoot.java
1: class NewRoot {
2: public static void main(String[] args) {
3: int number = 100;
4: if (args.length > 0) {
5: number = Integer.parseInt(args[0]);
6: }
7: System.out.println(“The square root of “
8: + number
9: + “ is “
10: + Math.sqrt(number));
11: }
12: }

Before you run the program, you must configure NetBeans to run it with a
command-line argument. Choose the menu command Run, Set Project
Configuration, Customize. The Project Properties window opens. Enter
NewRoot as the Main Class and 169 in the Arguments field. Click OK to
close the dialog.

To run the program, choose Run, Run Main Project (instead of Run, Run
File). The program displays the number and its square root, as shown in
Figure 10.3.

The NewRoot application is an expansion of an earlier tutorial from Hour 4,
“Understanding How Java Programs Work,” that displayed the square root
of the integer 225.

ptg7068951

Converting Objects and Simple Variables 131

That program would have been more useful if it took a number submitted
by a user and displayed its square root. This requires conversion from a
string to an integer. All command-line arguments are stored as elements of
a String array, so you must cast them to numbers before using them in
mathematical expressions.

To create an integer value based on the contents of a string, the
Integer.parseInt() method is called with the string as the only argu-
ment, as in Line 5:

number = Integer.parseInt(args[0]);

The args[0] array element holds the first command-line argument submit-
ted when the application is run. When the program was run with “169” as
an argument, the string “169” was cast to the int 169.

Autoboxing and Unboxing
Every one of the basic data types in Java has a corresponding object class:
boolean (Boolean class), byte (Byte), char (Character), double (Double),
float (Float), int (Integer), long (Long), and short (Short).

For each of these pairs, the information has identical value. The only differ-
ence between them is the format the value takes. An integer value such as
413 could be represented by either an int or the Integer class.

Java’s autoboxing and unboxing capabilities make it possible to use the
basic data type and object forms of a value interchangeably.

Autoboxing casts a simple variable value to the corresponding class.

Unboxing casts an object to the corresponding simple value.

These features work behind the scenes, assuring that when you are expect-
ing a simple data type like float, an object is converted to the matching
data type with the same value. When you’re expecting an object like Float,
a data type is converted to an object as necessary.

FIGURE 10.3
The output of the NewRoot
program.

ptg7068951

132 HOUR 10: Creating Your First Object

The following statements show where autoboxing and unboxing come in
handy:

Float total = new Float(1.3F);
float sum = total / 5;

In early versions of Java (before Java 1.5), this would be an error—the use
of a Float object in the second statement is not possible. Java now unboxes
total to make the statement work, resulting in sum being equal to 0.26.

Creating an Object
To see a working example of classes and inheritance, in the next project
you create classes that represent two types of objects: cable modems, which
are implemented as the CableModem class, and DSL modems, which are
implemented as the DslModem class. The workshop focuses on simple
attributes and behavior for these objects:

. Each object should have a speed that it can display.

. Each object should be able to connect to the Internet.

One thing that cable modems and DSL modems have in common is that
they both have a speed. Because this is something they share, it can be put
into a class that is the superclass of both the CableModem and DslModem
classes. Call this class Modem. In NetBeans, create a new empty Java class
called Modem. Enter Listing 10.2 in the source editor and save the file.

LISTING 10.2 The Full Text of Modem.java
1: public class Modem {
2: int speed;
3:
4: public void displaySpeed() {
5: System.out.println(“Speed: “ + speed);
6: }
7: }

This file is compiled automatically as Modem.class. You cannot run this pro-
gram directly, but you can use it in other classes. The Modem class can handle
one of the things that the CableModem and DslModem classes have in common.
By using the extends statement when you are creating the CableModem and
DslModem classes, you can make each of them a subclass of Modem.

Start a new empty Java file in NetBeans with the class name CableModem.
Enter Listing 10.3 and save the file.

ptg7068951

Creating an Object 133

LISTING 10.3 The Full Text of CableModem.java
1: public class CableModem extends Modem {
2: String method = “cable connection”;
3:
4: public void connect() {
5: System.out.println(“Connecting to the Internet ...”);
6: System.out.println(“Using a “ + method);
7: }
8: }

Create a third file in NetBeans named DslModem. Enter Listing 10.4 and
save the file.

LISTING 10.4 The Full Text of DslModem.java
1: public class DslModem extends Modem {
2: String method = “DSL phone connection”;
3:
4: public void connect() {
5: System.out.println(“Connecting to the Internet ...”);
6: System.out.println(“Using a “ + method);
7: }
8: }

If there were no errors, you now have three class files: Modem.class,
CableModem.class, and DslModem.class. However, you cannot run any of
these class files because they do not have main() blocks like the ones in
other programs you’ve created. You need to create a short application to
test out the class hierarchy you have just built.

Return to your NetBeans and create a new empty Java file with the class
name ModemTester. Enter Listing 10.5 in the source editor and save the file.

LISTING 10.5 The Full Text of ModemTester.java
1: public class ModemTester {
2: public static void main(String[] args) {
3: CableModem surfBoard = new CableModem();
4: DslModem gateway = new DslModem();
5: surfBoard.speed = 500000;
6: gateway.speed = 400000;
7: System.out.println(“Trying the cable modem:”);
8: surfBoard.displaySpeed();
9: surfBoard.connect();
10: System.out.println(“Trying the DSL modem:”);
11: gateway.displaySpeed();
12: gateway.connect();
13: }
14: }

ptg7068951

134 HOUR 10: Creating Your First Object

When you run the program, you should see output matching Figure 10.4.

FIGURE 10.4
The output of the ModemTester
program.

The following things are taking place in Listing 10.5:

. Lines 3–4: Two new objects are created—a CableModem object called
surfBoard and a DslModem object called gateway.

. Line 5: The speed variable of the CableModem object named
surfBoard is set to 500000.

. Line 6: The speed variable of the DslModem object named gateway is
set to 400000.

. Line 8: The displaySpeed() method of the surfBoard object is
called. This method is inherited from Modem—even though it isn’t
present in the CableModem class, you can call it.

. Line 9: The connect() method of the surfBoard object is called.

. Line 11: The displaySpeed() method of the gateway object is called.

. Line 12: The connect() method of the gateway object is called.

Summary
After creating your first class of objects and arranging several classes into a
hierarchy, you ought to be more comfortable with the term object-oriented
programming (OOP). You learn more about object behavior and attributes in
the next two hours as you start creating more sophisticated objects.

Terms such as program, class, and object make more sense as you become
more experienced with this style of development. OOP is a concept that
takes some time to get used to. When you have mastered it, you find that
it’s an effective way to design, develop, and debug computer programs.

ptg7068951

Workshop 135

Q&A
Q. Can classes inherit from more than one class?

A. It’s possible with some programming languages (such as C++), but not
Java. Multiple inheritance is a powerful feature, but it also makes OOP a
bit harder to learn and use. Java’s developers decided to limit inheri-
tance to one superclass for any class, although a class can have numer-
ous subclasses. One way to compensate for this limitation is to inherit
methods from a special type of class called an interface. You learn more
about interfaces during Hour 19, “Creating a Threaded Program.”

Q. When would you want to create a method that isn’t public?

A. The main time you would not want to make a method available to other
programs is when the method is strictly for the use of one program
you’re writing. If you’re creating a game program and your
shootRayGun() method is highly specific to the game you’re writing, it
could be a private method. To keep a method from being public, leave
off the public statement in front of the method’s name.

Q. Why is it possible to use char values as if they were int values?

A. A character can be used as an int variable because each character
has a corresponding numeric code that represents its position in the
character set. If you have a variable named k with the value 67, the
cast (char) k produces the character value ‘C’ because the numeric
code associated with a capital C is 67, according to the ASCII character
set. The ASCII character set is part of the Unicode character standard
adopted by the Java language.

Q. Does Tabasco hot sauce spoil?

A. No it doesn’t, though if you keep an opened bottle around for several
years it will change color. The ingredients of vinegar, red pepper, and
salt are an extremely inhospitable environment for bacterial growth.

McIlhenny Company, the makers of Tabasco, say the original brand has
a shelf life of five years. Other versions have a shelf life from 18
months to three years.

As a huge fan of the product, I find it hard to believe anyone is keeping
a bottle of Tabasco around long enough to ask this question.

Workshop
The following questions test your knowledge of objects and the programs that
use them.

ptg7068951

136 HOUR 10: Creating Your First Object

Quiz
1. What statement is used to enable one class to inherit from another class?

A. inherits

B. extends

C. handItOverAndNobodyGetsHurt

2. Why are compiled Java programs saved with the .class file extension?

A. Java’s developers think it’s a classy language.

B. It’s a subtle tribute to the world’s teachers.

C. Every Java program is a class.

3. What are the two things that make up an object?

A. Attributes and behavior

B. Commands and data files

C. Spit and vinegar

Answers
1. B. The extends statement is used because the subclass is an exten-

sion of the attributes and behavior of the superclass and of any super-
classes above that in the class hierarchy.

2. C. Your programs are always made up of at least one main class and
any other classes that are needed.

3. A. In a way, B also is true because commands are comparable to
behavior, and data files are analogous to attributes.

Activities
If you don’t object, you can extends your knowledge of this hour’s topics with
the following activities:

. Create an AcousticModem class with a speed of 300 and its own con-
nect() method.

. Add a disconnect() method to one of the classes in the Modem proj-
ect, deciding where it should go to support modem disconnection in
cable, DSL, and acoustic modems.

To see Java programs that implement these activities, visit the book’s website
at www.java24hours.com.

www.java24hours.com

ptg7068951

WHAT YOU’LL LEARN IN
THIS HOUR:

. Creating variables for an
object or class

. Using methods with
objects and classes

. Calling a method and
returning a value

. Creating constructors

. Sending arguments to a
method

. Using this to refer to an
object

. Creating new objects

As you learned during last hour’s introduction to object-oriented program-
ming (OOP), an object is a way of organizing a program so that it has every-
thing it needs to accomplish a task. Objects consist of attributes and behavior.

Attributes are the information stored within an object. They can be variables
such as integers, characters, and Boolean values, or objects such as String
and Calendar objects. Behavior is the groups of statements used to handle
specific jobs within the object. Each of these groups is called a method.

Up to this point, you have been working with methods and variables of
objects without knowing it. Any time your statement had a period in it
that wasn’t a decimal point or part of a string, an object was involved.

Creating Variables
In this hour, you are looking at a class of objects called Virus whose sole
purpose in life is to reproduce in as many places as possible—much like
some people I knew in college. A Virus has several different things it needs
to do its work, and these are implemented as the behavior of the class. The
information that’s needed for the methods are stored as attributes.

The attributes of an object represent variables needed for the object to func-
tion. These variables could be simple data types such as integers, charac-
ters, and floating-point numbers, or they could be arrays or objects of
classes such as String or Calendar. You can use an object’s variables
throughout its class, in any of the methods the object contains. By conven-
tion, you create variables immediately after the class statement that cre-
ates the class and before any methods.

HOUR 11
Describing What Your

Object Is Like

ptg7068951

138 HOUR 11: Describing What Your Object Is Like

One of the things that a Virus object needs is a way to indicate that a file
already has been infected. Some computer viruses change the field that
stores the time a file was last modified; for example, a virus might move
the time from 13:41:20 to 13:41:61. Because no normal file would be saved
on the 61st second of a minute, the time signifies that the file was infected.
The Virus object uses the impossible seconds value 86 in an integer vari-
able called newSeconds.

The following statements begin a class called Virus with an attribute called
newSeconds and two other attributes:

public class Virus {
public int newSeconds = 86;
public String author = “Sam Snett”;
int maxFileSize = 30000;

}

All three variables are attributes for the class: newSeconds, maxFileSize,
and author.

Putting a statement such as public in a variable declaration statement is
called access control because it determines how other objects made from
other classes can use that variable—or if they can use it at all.

Making a variable public makes it possible to modify the variable from
another program that is using the Virus object.

If the other program attaches special significance to the number 92, for
instance, it can change newSeconds to that value. The following statements
create a Virus object called influenza and set its newSeconds variable:

Virus influenza = new Virus();
influenza.newSeconds = 92;

In the Virus class, the author variable also is public, so it can be changed
freely from other programs. The other variable, maxFileSize, can be used
only within the class itself.

When you make a variable in a class public, the class loses control over
how that variable is used by other programs. In many cases, this might not
be a problem. For example, the author variable can be changed to any
name or pseudonym that identifies the author of the virus. The name
might eventually be used on court documents if the author is prosecuted,
so you don’t want to pick a dumb one. The State of Ohio v. LoveHandles
doesn’t have the same ring to it as Ohio v. MafiaBoy.

Restricting access to a variable keeps errors from occurring if the variable
is set incorrectly by another program. With the Virus class, if newSeconds

ptg7068951

Creating Class Variables 139

is set to a value of 60 or less, it isn’t reliable as a way to tell that a file is
infected. Some files might be saved with that number of seconds regardless
of the virus. If the Virus class of objects needs to guard against this prob-
lem, you need to do these two things:

. Switch the variable from public to protected or private, two other
statements that provide more restrictive access.

. Add behavior to change the value of the variable and report the
value of the variable to other programs.

You can use a protected variable only in the same class as the variable,
any subclasses of that class, or classes in the same package. A package is a
group of related classes that serve a common purpose. An example is the
java.util package, which contains classes that offer useful utilities such
as date and time programming and file archiving. When you use the
import statement in a Java program with an asterisk, as in import
java.util.*, you are making it easier to refer to the classes of that pack-
age in a program.

A private variable is restricted even further than a protected variable—
you can use it only in the same class. Unless you know that a variable can
be changed to anything without affecting how its class functions, you
should make the variable private or protected.

The following statement makes newSeconds a private variable:

private int newSeconds = 86;

If you want other programs to use the newSeconds variable in some way,
you have to create behavior that makes it possible. This task is covered
later in the hour.

There also is another type of access control: the lack of any public,
private, or protected statement when the variable is created.

In most of the programs you have created prior to this hour, you didn’t
specify any access control. When no access control is set, the variable is
available only to classes in the same package. This is called default or
package access.

Creating Class Variables
When you create an object, it has its own version of all variables that are
part of the object’s class. Each object created from the Virus class of objects

ptg7068951

140 HOUR 11: Describing What Your Object Is Like

has its own version of the newSeconds, maxFileSize, and author variables.
If you modified one of these variables in an object, it would not affect the
same variable in another Virus object.

There are times when an attribute should describe an entire class of objects
instead of a specific object itself. These are called class variables. If you want
to keep track of how many Virus objects are being used in a program, you
could use a class variable to store this information. Only one copy of the
variable exists for the whole class. The variables you have been creating for
objects thus far can be called object variables because they are associated
with a specific object.

Both types of variables are created and used in the same way, but static is
part of the statement that creates class variables. The following statement
creates a class variable for the Virus example:

static int virusCount = 0;

Changing the value of a class variable is no different than changing an
object’s variables. If you have a Virus object called tuberculosis, you
could change the class variable virusCount with the following statement:

tuberculosis.virusCount++;

Because class variables apply to an entire class, you also can use the name
of the class instead:

Virus.virusCount++;

Both statements accomplish the same thing, but an advantage to using the
name of the class when working with class variables is that it shows imme-
diately that virusCount is a class variable instead of an object variable. If
you always use object names when working with class variables, you
aren’t able to tell whether they are class or object variables without looking
carefully at the source code.

Class variables also are called static variables.

Creating Behavior with Methods
Attributes are the way to keep track of information about a class of objects,
but for a class to do the things it was created to do, you must create behav-
ior. Behavior describes the parts of a class that accomplish specific tasks.
Each of these sections is called a method.

CAUTION

Although class variables are
useful, you must take care not
to overuse them. These vari-
ables exist for as long as the
class is running. If a large array
of objects is stored in class
variables, it will take up a size-
able chunk of memory and
never release it.

ptg7068951

Creating Behavior with Methods 141

You have been using methods throughout your programs up to this point
without knowing it, including one in particular: println(). This method
displays text onscreen. Like variables, methods are used in connection with
an object or a class. The name of the object or class is followed by a period
and the name of the method, as in screen2D.drawString() or
Integer.parseInt().

Declaring a Method
You create methods with a statement that looks similar to the statement
that begins a class. Both can take arguments between parentheses after
their names, and both use { and } marks at the beginning and end. The
difference is that methods can send back a value after they are handled.
The value can be one of the simple types such as integers or Boolean val-
ues, or it can be a class of objects.

The following is an example of a method the Virus class can use to infect
files:

public boolean infectFile(String filename) {
boolean success = false;
// file-infecting statements go here
return success;

}

This method takes a single argument: a string variable called filename,
which is a variable that represents the file that should be attacked. If the
infection is a success, the success variable is set to true.

In the statement that begins the method, boolean precedes the name of the
method, infectFile. This statement signifies that a boolean value is sent
back after the method is handled. The return statement is what actually
sends a value back. In this method, the value of success is returned.

If a method should not return a value, use the keyword void.

When a method returns a value, you can use the method as part of an
expression. For example, if you created a Virus object called malaria, you
could use statements such as these:

if (malaria.infectFile(currentFile)) {
System.out.println(currentFile + “ has been infected!”);

} else {
System.out.println(“Curses! Foiled again!”);

}

NOTE

The System.out.println()
method might seem confusing
because it has two periods
instead of one. This is because
two classes are involved in the
statement—the System class
and the PrintStream class.
The System class has a variable
called out that is a
PrintStream object. println()
is a method of the PrintStream
class. The System.out.print-
ln() statement means, in
effect, “Use the println()
method of the out variable of
the System class.” You can
chain together references in
this way.

ptg7068951

142 HOUR 11: Describing What Your Object Is Like

You can use any method that returns a value at any place in the program
where you could use a variable.

Earlier in the hour, you switched the newSeconds variable to private to
prevent it from being read or modified by other programs. There’s still a
way to make it possible for newSeconds to be used elsewhere: Create
public methods in the Virus class that get the value of newSeconds and set
newSeconds to a new value. These new methods should be public, unlike
the newSeconds variable itself, so they can be called in other programs.

Consider the following two methods:

public int getSeconds() {
return newSeconds;

}

public void setSeconds(int newValue) {
if (newValue > 60) {

newSeconds = newValue;
}

}

These methods are called accessor methods because they enable the
newSeconds variable to be accessed from other objects.

The getSeconds() method is used to retrieve the current value of
newSeconds. The getSeconds() method does not have any arguments, but
it still must have parentheses after the method name. The setSeconds()
method takes one argument, an integer called newValue. This argument is
the new value of newSeconds. If newValue is greater than 60, the change
will be made.

In this example, the Virus class controls how the newSeconds variable can
be used by other classes. This process is called encapsulation, and it’s a fun-
damental concept of OOP. The better your objects are able to protect them-
selves against misuse, the more useful they are when you use them in
other programs.

Though newSeconds is private, the new methods getSeconds() and
setSeconds() are able to work with newSeconds because they are in the
same class.

Similar Methods with Different Arguments
As you have seen with the setSeconds() method, you can send arguments
to a method to affect what it does. Different methods in a class can have

ptg7068951

Creating Behavior with Methods 143

different names, but methods also can have the same name if they have
different arguments.

Two methods can have the same name if they have a different number of
arguments or the arguments are of different variable types. For example, it
might be useful for the Virus class of objects to have two tauntUser()
methods. One could have no arguments and would deliver a generic taunt.
The other could specify the taunt as a string argument. The following
statements implement these methods:

void tauntUser() {
System.out.println(“That has gotta hurt!”);

}

void tauntUser(String taunt) {
System.out.println(taunt);

}

The methods have the same name, but the arguments differ—one has no
argument, the other has a single String argument. The arguments to a
method are called the method’s signature. A class can have different meth-
ods with the same name as long as each method has a different signature.

Constructor Methods
When you want to create an object in a program, the new statement is used,
as in the following example:

Virus typhoid = new Virus();

This statement creates a new Virus object called typhoid. When you use
the new statement, a special method of that object’s class is called. This
method is called a constructor because it handles the work required to cre-
ate the object. The purpose of a constructor is to set up any variables and
call the methods that must take place for the object to function properly.

Constructors are defined like other methods, except they cannot return a
value. The following are two constructors for the Virus class of objects:

public Virus() {
String author = “Ignoto”;
int maxFileSize = 30000;

}

public Virus(String name, int size) {
author = name;
maxFileSize = size;

}

ptg7068951

144 HOUR 11: Describing What Your Object Is Like

Like other methods, constructors can use the arguments they are sent as a
way to define more than one constructor in a class. In this example, the
first constructor would be called when a new statement such as the follow-
ing is used:

Virus mumps = new Virus();

The other constructor could be called only if a string and an integer are
sent as arguments with the new statement, as in this example:

Virus rubella = new Virus(“April Mayhem”, 60000);

If you don’t include any constructor methods in a class, it inherits a single
constructor method with no arguments from its superclass. There also
might be other constructor methods that it inherits, depending on the
superclass used.

In any class, there must be a constructor method that has the same number
and type of arguments as the new statement that’s used to create objects of
that class. In the example of the Virus class, which has Virus() and
Virus(String name, int size) constructors, you only could create Virus
objects with two different types of new statements: one without arguments
and one with a string and an integer as the only two arguments.

Class Methods
Like class variables, class methods are a way to provide functionality associ-
ated with an entire class instead of a specific object. Use a class method when
the method does nothing that affects an individual object of the class. In the
previous hour, “Creating Your First Object,” you used the parseInt()
method of the Integer class to convert a string to a variable of the type int:

int fontSize = Integer.parseInt(fontText);

This is a class method. To make a method into a class method, use static
in front of the method name, as in the following code:

static void showVirusCount() {
System.out.println(“There are “ + virusCount + “ viruses”);

}

The virusCount class variable was used earlier to keep track of how many
Virus objects have been created by a program. The showVirusCount()
method is a class method that displays this total, and you can call it with a
statement such as the following:

Virus.showVirusCount();

ptg7068951

Creating Behavior with Methods 145

Variable Scope Within Methods
When you create a variable or an object inside a method in one of your
classes, it is usable only inside that method. The reason for this is the con-
cept of variable scope. Scope is the block in which a variable exists in a pro-
gram. If you go outside of the part of the program defined by the scope,
you can no longer use the variable.

The { and } statements in a program define the boundaries for a variable’s
scope. Any variable created within these marks cannot be used outside of
them. For example, consider the following statements:

if (numFiles < 1) {
String warning = “No files remaining.”;

}
System.out.println(warning);

This code does not work—and does not compile in NetBeans—because the
warning variable was created inside the brackets of the if block. Those
brackets define the scope of the variable. The warning variable does not
exist outside of the brackets, so the System.out.println() method cannot
use it as an argument.

When you use a set of brackets inside another set of brackets, you need to
pay attention to the scope of the enclosed variables. Take a look at the fol-
lowing example:

if (infectedFiles < 5) {
int status = 1;
if (infectedFiles < 1) {

boolean firstVirus = true;
status = 0;

} else {
firstVirus = false;

}
}

See any problems? In this example the status variable can be used any-
where, but the statement that assigns a value to the firstVirus variable
causes a compiler error. Because firstVirus is created within the scope of
the if (infectedFiles < 1) statement, it doesn’t exist inside the scope of
the else statement that follows.

To fix the problem, firstVirus must be created outside both of these
blocks so that its scope includes both of them. One solution is to create
firstVirus one line after status is created.

ptg7068951

146 HOUR 11: Describing What Your Object Is Like

Rules that enforce scope make programs easier to debug because scope
limits the area in which you can use a variable. This reduces one of the
most common errors that can crop up in programming—using the same
variable two different ways in different parts of a program.

The concept of scope also applies to methods because they are defined by
an opening bracket and closing bracket. A variable created inside a method
cannot be used in other methods. You only can use a variable in more than
one method if it was created as an object variable or class variable.

Putting One Class Inside Another
Although a Java program is called a class, there are many occasions when
a program requires more than one class to get its work done. These pro-
grams consist of a main class and any helper classes that are needed.

When you divide a program into multiple classes, there are two ways to
define the helper classes. One way is to define each class separately, as in
the following example:

public class Wrecker {
String author = “Ignoto”;

public void infectFile() {
VirusCode vic = new VirusCode(1024);

}
}

class VirusCode {
int vSize;

VirusCode(int size) {
vSize = size;

}
}

In this example, the VirusCode class is a helper class for the Wrecker class.
Helper classes often are defined in the same source code file as the class
they’re assisting. When the source file is compiled, multiple class files are
produced. The preceding example produces the files Wrecker.class and
VirusCode.class when compiled.

When creating a main class and a helper class, you also can put the helper
inside the main class. When this is done, the helper class is called an inner
class.

CAUTION

If more than one class is
defined in the same source file,
only one of the classes can be
public. The other classes
should not have public in their
class statements. The name of
the source code file must
match the public class that it
defines.

ptg7068951

Using the this Keyword 147

You place an inner class within the opening bracket and closing bracket of
another class.

public class Wrecker {
String author = “Ignoto”;

public void infectFile() {
VirusCode vic = new VirusCode(1024);

}

class VirusCode {
int vSize;

VirusCode(int size) {
vSize = size;

}
}

}

You can use an inner class in the same manner as any other kind of helper
class. The main difference—other than its location—is what happens after
the compiler gets through with these classes. Inner classes do not get the
name indicated by their class statement. Instead, the compiler gives them
a name that includes the name of the main class.

In the preceding example, the compiler produces Wrecker.class and
Wrecker$VirusCode.class.

Using the this Keyword
Because you can refer to variables and methods in other classes along with
variables and methods in your own classes, the variable you’re referring to
can become confusing in some circumstances. One way to make things
more clear is with the this statement—a way to refer within a program to
the program’s own object.

When you are using an object’s methods or variables, you put the name of
the object in front of the method or variable name, separated by a period.
Consider these examples:

Virus chickenpox = new Virus();
chickenpox.name = “LoveHandles”;
chickenpox.setSeconds(75);

These statements create a new Virus object called chickenpox, set the
name variable of chickenpox, and then call the setSeconds() method of
chickenpox.

ptg7068951

148 HOUR 11: Describing What Your Object Is Like

There are times in a program when you need to refer to the current
object—in other words, the object represented by the program itself. For
example, inside the Virus class, you might have a method that has its own
variable called author:

public void checkAuthor() {
String author = null;

}

A variable called author exists within the scope of the checkAuthor()
method, but it isn’t the same variable as an object variable called author. If
you want to refer to the current object’s author variable, you have to use
the this statement, as in the following:

System.out.println(this.author);

By using this, you make it clear to which variable or method you are
referring. You can use this anywhere in a class that you would refer to an
object by name. If you want to send the current object as an argument in a
method, for example, you could use a statement such as the following:

verifyData(this);

In many cases, the this statement is not needed to make it clear that
you’re referring to an object’s variables and methods. However, there’s no
detriment to using this any time you want to be sure you’re referring to
the right thing.

The this keyword comes in handy in a constructor when setting the value
of an object’s instance variables. Consider a Virus object that has author
and maxFileSize variables. This constructor sets them:

public Virus(String author, int maxFileSize) {
this.author = author;
this.maxFileSize = maxFileSize;

}

Using Class Methods and Variables
At the insistence of our attorney, the next project is not the creation of a
working virus. Instead, you create a simple Virus object that can count the
number of Virus objects that a program has created and report the total.

Choose File, New File in NetBeans and create a new Empty Java File called
Virus. Enter Listing 11.1 in the source editor.

ptg7068951

Using Class Methods and Variables 149

Listing 11.1 The Full Text of Virus.java
1: public class Virus {
2: static int virusCount = 0;
3:
4: public Virus() {
5: virusCount++;
6: }
7:
8: static int getVirusCount() {
9: return virusCount;
10: }
11: }

Save the file, which NetBeans compiles automatically. This class lacks a
main() method and thus cannot be run directly. To test out this new Virus
class, you need to create a second class that can create Virus objects.

The VirusLab class is a simple application that creates Virus objects and
then counts the number of objects that have been created with the
getVirusCount() class method of the Virus class.

Open a new file with your word processor and enter Listing 11.2. Save the
file as VirusLab.java when you’re done.

Listing 11.2 The Full Text of VirusLab.java
1: public class VirusLab {
2: public static void main(String[] args) {
3: int numViruses = Integer.parseInt(args[0]);
4: if (numViruses > 0) {
5: Virus[] virii = new Virus[numViruses];
6: for (int i = 0; i < numViruses; i++) {
7: virii[i] = new Virus();
8: }
9: System.out.println(“There are “ + Virus.getVirusCount()
10: + “ viruses.”);
11: }
12: }
13: }

The VirusLab class is an application that takes one argument when you
run it at the command line: the number of Virus objects to create. To speci-
fy the command-line argument in NetBeans, do the following:

1. Choose Run, Set Project Configuration, Customize. The Project
Properties dialog opens.

ptg7068951

150 HOUR 11: Describing What Your Object Is Like

2. Enter VirusLab in the Main Class field, and enter the number of
Virus objects you’d like the program to create in the Arguments
field.

3. Click OK to close the dialog.

To run a program you’ve configured in this manner, choose Run, Run
Main Project in NetBeans.

Arguments are read into an application using a string array that’s sent to
the main() method. In the VirusLab class, this occurs in Line 2.

To work with an argument as an integer, it must be converted from a
String object to an integer. This requires the use of the parseInt() class
method of the Integer class. In Line 3, an int variable named numViruses
is created from the first argument sent to the program on the command
line.

If the numViruses variable is greater than 0, the following things take place
in the VirusLab application:

. Line 5: An array of Virus objects is created with the numViruses vari-
able determining the number of objects in the array.

. Lines 6–8: A for loop is used to call the constructor method for each
Virus object in the array.

. Lines 9–10: After all the Virus objects have been constructed, the
getVirusCount() class method of the Virus class is used to count the
number of its objects that have been created. This should match the
argument that was set when you ran the VirusLab application.

If the numViruses variable is not greater than 0, nothing happens in the
VirusLab application.

After the VirusLab.java file has been compiled, test it with any command-
line argument you’d like to try. The number of Virus objects that can be
created depends on the memory that’s available on your system when you
run the VirusLab application. On the author’s system, anything greater
than 5.5 million viruses causes the program to crash after displaying an
OutOfMemoryError message.

If you don’t specify more Virus objects than your system can handle, the
output should be something like Figure 11.1.

ptg7068951

Summary 151

Summary
You now have completed two of the three hours devoted to object-oriented
concepts in this book. You’ve learned how to create an object, give behav-
ior and attributes to the object and its class of objects, and convert objects
and variables into other forms by using casting.

Thinking in terms of objects is one of the tougher challenges of the Java
programming language. When you start to understand it, however, you
realize that the entire language makes use of objects and classes.

During the next hour, you learn how to give your objects parents and
children.

FIGURE 11.1
The output of the VirusLab
program.

ptg7068951

152 HOUR 11: Describing What Your Object Is Like

Q&A
Q. Do you have to create an object to use class variables or methods?

A. Because class variables and methods aren’t associated with a specific
object, you don’t need to create an object solely for the purpose of
using them. The use of the Integer.parseInt() method is an example
of this because you don’t have to create a new Integer object just to
convert a string to an int value.

Q. Is there a list of all the built-in methods that Java supports?

A. Oracle offers full documentation for all classes in the Java language,
including all public methods you can use, on the Web at
http://download.oracle.com/javase/7/docs/api.

Q. What do I have to do to be ranked in men’s tennis?

A. There are currently 1,847 male tennis players ranked in the ATP World
Tour tennis rankings. If your goal is to do at least as well as the lowest
ranked player, you must reach the round of 16 in an ITF Futures tourna-
ment.

At the time of this writing, Tilen Zitnik is ranked in 1,847th place
among men’s singles players. Zitnik achieved this distinction by earning
only one point in the 15 tournaments he’s entered the past 52 weeks.
Several hundred other players also have earned one point, but they did
it in fewer tournaments.

Zitnik, a 19-year-old from Slovenia, played the Ukraine F3 futures tour-
nament in March 2011. There was a 48-player qualifier and a 32-player
field. Zitnik beat Matteo Marfa of Italy in three sets. He had the misfor-
tune of drawing No. 1 seed Artem Smirnov of the Ukraine in the second
round and lost in two sets. His year-to-date prize winnings are $1,260.

There’s probably a Futures tournament near you. More than 500 take
place around the world each year. Visit www.itftennis.com for the calen-
dar and entry information.

Good luck! If you make it, I want a share of your earnings.

http://download.oracle.com/javase/7/docs/api
www.itftennis.com

ptg7068951

Workshop 153

Workshop
The following questions see if you have the attributes and behavior to under-
stand OOP techniques.

Quiz
1. In a Java class, a method is an example of what?

A. Attributes

B. Statements

C. Behavior

2. If you want to make a variable a class variable, what statement must
you use when it is created?

A. new

B. public

C. static

3. What is the name for the part of a program in which a variable lives?

A. Its nest

B. The scope

C. Variable valley

Answers
1. C. A method is made up of statements, but it’s an example of behavior.

2. C. If the static statement is left off, the variable is an object variable
instead of a class variable.

3. B. The compiler fails with an error when a variable is used outside of
its scope.

ptg7068951

154 HOUR 11: Describing What Your Object Is Like

Activities
If all this talk of viruses didn’t make you sick, you can increase your knowl-
edge of this hour’s topics with the following activity:

. Add a private variable to the Virus class that stores an integer called
newSeconds. Create methods to return the value of newSeconds and
change the value of newSeconds only if the new value is between 60
and 100.

. Write a Java application that takes an argument as a string, converts it
to a float variable, converts that to a Float object, and finally turns
that into an int variable. Run it a few times with different arguments to
see how the results change.

To see Java programs that implement these activities, visit the book’s website
at www.java24hours.com.

www.java24hours.com

ptg7068951

WHAT YOU’LL LEARN IN
THIS HOUR:

. Designing superclasses
and subclasses

. Forming an inheritance
hierarchy

. Overriding methods

Java objects are ideally suited for childbearing. When you create an
object—a set of attributes and behavior—you have designed something
that’s ready to pass these qualities on to offspring. These child objects take
on a lot of the same attributes and behavior of the parent. They also can do
some things differently than the parent.

This system is called inheritance, and it’s something every superclass (par-
ent) gives to its subclasses (children). Inheritance is one of the most useful
aspects of object-oriented programming (OOP), and you learn about it dur-
ing this hour.

Another useful aspect of OOP is the capability to create an object that you
can use with different programs. Reusability makes it easier to develop
error-free, reliable programs.

The Power of Inheritance
You have used inheritance every time you worked with one of the stan-
dard Java classes such as String or Integer. Java classes are organized
into a pyramid-shaped hierarchy of classes in which all classes descend
from the Object class.

A class of objects inherits from all superclasses that are above it. To get a
working idea of how this operates, consider the JApplet class. This class is
a superclass of all applets, browser-based Java programs that use a graphi-
cal user interface framework called Swing. The JApplet class is a subclass
of Applet.

A partial family tree of JApplet is shown in Figure 12.1. Each of the boxes
is a class, and the lines connect a superclass to any subclasses below it.

HOUR 12
Making the Most of Existing

Objects

ptg7068951

HOUR 12: Making the Most of Existing Objects

At the top is the Object class. JApplet has five superclasses above it in the
hierarchy: Applet, Panel, Container, Component, and Object.

The JApplet class inherits attributes and behavior from each of these class-
es because each is directly above it in the hierarchy of superclasses. JApplet
does not inherit anything from the five green classes in Figure 12.1, which
include Dialog and Frame, because they are not above it in the hierarchy.

If this seems confusing, think of the hierarchy as a family tree. JApplet
inherits from its parent, the parent’s parent, and on upward. It even might
inherit some things from its great-great-great-grandparent, Object. The
JApplet class doesn’t inherit from its siblings or its cousins, however.

Creating a new class boils down to the following task: You only have to
define the ways in which it is different from an existing class. The rest of
the work is done for you.

Inheriting Behavior and Attributes
The behavior and attributes of a class are a combination of two things: its
own behavior and attributes and all the behavior and attributes it inherits
from its superclasses.

The following are some of the behavior and attributes of JApplet:

. The equals() method determines whether a JApplet object has the
same value as another object.

WINDOW

DIALOG

FILEDIALOG

CONTAINER

COMPONENT

OBJECT

PANEL

APPLET

JAPPLET

SCROLLPANE

FRAME

The family tree of the JApplet
class.

ptg7068951

Establishing Inheritance 157

. The setBackground() method sets the background color of the
applet window.

. The add() method adds user interface components such as buttons
and text fields to the applet.

. The setLayout() method defines how the applet’s graphical user
interface is organized.

The JApplet class can use all these methods, even though setLayout() is
the only one it didn’t inherit from another class. The equals() method is
defined in Object, setBackground() comes from Component, and add()
comes from Container.

Overriding Methods
Some methods defined in the JApplet class of objects also are defined in
one of its superclasses. As an example, the update() method is part of both
the JApplet class and the Component class. When a method is defined in a
subclass and its superclass, the subclass method is used. This enables a
subclass to change, replace, or completely wipe out some of the behavior
or attributes of its superclasses. In the case of update(), the purpose is to
wipe out some behavior present in a superclass.

Creating a new method in a subclass to change behavior inherited from a
superclass is called overriding the method. You need to override a method
any time the inherited behavior produces an undesired result.

Establishing Inheritance
A class is defined as the subclass of another class using the extends state-
ment, as in the following:

class AnimatedLogo extends JApplet {
// behavior and attributes go here

}

The extends statement establishes the AnimatedLogo class of objects as a
subclass of JApplet. As you see during Hour 17, “Creating Interactive Web
Programs,” all Swing applets must be subclasses of JApplet. They need
the functionality this class provides to run when presented on a web page.

One method that AnimatedLogo must override is the paint() method,
which is used to draw everything within the program’s window. The

ptg7068951

158 HOUR 12: Making the Most of Existing Objects

paint() method, implemented by the Component class, is passed all the
way down to AnimatedLogo. However, the paint() method does not do
anything. It exists so that subclasses of Component have a method they can
use when something must be displayed.

To override a method, you must declare the method in the same way it was
declared in the superclass from which it was inherited. A public method
must remain public, the value sent back by the method must be the same,
and the number and type of arguments to the method must not change.

The paint() method of the Component class begins as follows:

public void paint(Graphics g) {

When AnimatedLogo overrides this method, it must begin with a statement
like this:

public void paint(Graphics screen) {

The only difference lies in the name of the Graphics object, which does not
matter when determining if the methods are created in the same way.
These two statements match because the following things match:

. Both paint() methods are public.

. Both methods return no value, as declared by the use of the void
statement.

. Both have a Graphics object as their only argument.

Using this and super in a Subclass
Two keywords that are extremely useful in a subclass are this and super.

As you learned during the previous hour, the this keyword is used to
refer to the current object. When you’re creating a class and you need to
refer to the specific object created from that class, you can use this, as in
the following statement:

this.title = “Cagney”;

This statement sets the object’s title variable to the text “Cagney.”

The super keyword serves a similar purpose: It refers to the immediate
superclass of the object. You can use super in several different ways:

. To refer to a constructor method of the superclass, as in
super(“Adam”, 12);

ptg7068951

Working with Existing Objects 159

. To refer to a variable of the superclass, as in super.hawaii = 50

. To refer to a method of the superclass, as in super.dragnet()

One way you use the super keyword is in the constructor method of a sub-
class. Because a subclass inherits the behavior and attributes of its super-
class, you have to associate each constructor method of that subclass with
a constructor method of its superclass. Otherwise, some of the behavior
and attributes might not be set up correctly, and the subclass isn’t able to
function properly.

To associate the constructors, the first statement of a subclass constructor
method must be a call to a constructor method of the superclass. This
requires the super keyword, as in the following statements:

public readFiles(String name, int length) {
super(name, length);

}

This example is the constructor method of a subclass, which is using
super(name, length) to call a comparable constructor in its superclass.

If you don’t use super to call a constructor method in the superclass, Java
automatically calls super() with no arguments when the subclass con-
structor begins. If this superclass constructor doesn’t exist or provides
unexpected behavior, errors result, so it’s better to call a superclass con-
structor yourself.

Working with Existing Objects
OOP encourages reuse. If you develop an object for use with one Java pro-
gramming project, it should be possible to incorporate that object into
another project without modification.

If a Java class is well designed, it’s possible to make that class available for
use in other programs. The more objects available for use in your pro-
grams, the less work you have to do when creating your own software. If
there’s an excellent spell-checking object that suits your needs, you can use
it instead of writing your own. Ideally, you can even give your boss a false
impression about how long it took to add spell-checking functionality to
your project, and use this extra time to make personal long-distance calls
from the office.

NOTE

The author of this book, like
many in his profession, is self-
employed and works out of his
home. Please keep this in mind
when evaluating his advice on
how to conduct yourself in the
workplace.

ptg7068951

160 HOUR 12: Making the Most of Existing Objects

When Java was first introduced, the system of sharing objects was largely
an informal one. Programmers developed their objects to be as independ-
ent as possible and protected them against misuse through the use of pri-
vate variables and public methods to read and write those variables.

Sharing objects becomes more powerful when there’s a standard approach
to developing reusable objects.

The benefits of a standard include the following:

. There’s less need to document how an object works because anyone
who knows the standard already knows a lot about how it functions.

. You can design development tools that follow the standard, making
it possible to work more easily with these objects.

. Two objects that follow the standard are able to interact with each
other without special programming to make them compatible.

Storing Objects of the Same Class
in Vectors
An important decision to make when writing a computer program is
where to store data. In the first half of this book, you’ve found three useful
places to keep information: basic data types such as int and char, arrays,
and String objects.

Any Java class can hold data. One of the most useful is Vector, a data
structure that holds objects of the same class.

Vectors are like arrays, which also hold elements of related data, but they
can grow or shrink in size at any time.

The Vector class belongs to the java.util package of classes, one of the
most useful in the Java class library. An import statement makes it avail-
able in your program:

import java.util.Vector;

A vector holds objects that either belong to the same class or share the
same superclass. They are created by referencing two classes—the Vector
class and the class the vector holds.

ptg7068951

Storing Objects of the Same Class in Vectors 161

The name of the class held by the vector is placed within < and > charac-
ters, as in this statement:

Vector<String> victor = new Vector<String>();

The preceding statement creates a vector that holds strings. Identifying a
vector’s class in this manner utilizes generics, a way to indicate the kind of
objects a data structure like vector holds. If you are using vectors with an
older version of Java, you’d write a constructor like this:

Vector victor = new Vector();

Although you can still do this, generics make your code more reliable
because they give the compiler a way to prevent you from misusing a vec-
tor. If you attempt to put an Integer object in a vector that’s supposed to
hold String objects, the compiler fails with an error.

Unlike arrays, vectors aren’t created with a fixed number of elements they
hold. The vector is created with 10 elements. If you know you’re storing a
lot more objects than that, you can specify a size as an argument to the
constructor. Here’s a statement that creates a 300-element vector:

Vector<String> victoria = new Vector<String>(300);

You can add an object to a vector by calling its add() method, using the
object as the only argument:

victoria.add(“Vance”);
victoria.add(“Vernon”);
victoria.add(“Velma”);

You add objects in order, so if these are the first three objects added to
victoria, element 0 is “Vance”, element 1 is “Vernon”, and element 2 is
“Velma”.

You retrieve elements from vectors by calling their get() method with the
element’s index number as the argument:

String name = victoria.get(1);

This statement stores “Vernon” in the name string.

To see if a vector contains an object in one of its elements, call its
contains() method with that object as an argument:

if (victoria.contains(“Velma”)) {
System.out.println(“Velma found”);

}

ptg7068951

HOUR 12: Making the Most of Existing Objects

You can remove an object from a vector using itself or an index number:

victoria.remove(0);
victoria.remove(“Vernon”);

These two statements leave “Velma” as the only string in the vector.

Looping Through a Vector
Java includes a special for loop that makes it easy to load a vector and
examine each of its elements in turn.

This loop has two parts, one less than the for loops you learned about in
Hour 8, “Repeating an Action with Loops.”

The first part is the initialization section: the class and name of a variable
that holds each object retrieved from the vector. This object should belong
to the same class that holds the vector.

The second part identifies the vector.

Here’s code that loops through the victoria vector, displaying each name
to the screen:

for (String name : victoria) {
System.out.println(name);

}

The hour’s first project takes vectors and the special for loop for a spin,
presenting a list of strings in alphabetical order. The list comes from an
array and command-line arguments.

With your Java24 project open within NetBeans, choose File, New File, and
then create a new Empty Java File named StringLister. Enter Listing 12.1
in the source editor and save the file.

LISTING 12.1 The Full Text of StringLister.java
1: import java.util.*;
2:
3: public class StringLister {
4: String[] names = { “Spanky”, “Alfalfa”, “Buckwheat”, “Daria”,
5: “Stymie”, “Marianne”, “Scotty”, “Tommy”, “Chubby” };
6:
7: public StringLister(String[] moreNames) {
8: Vector<String> list = new Vector<String>();
9: for (int i = 0; i < names.length; i++) {

10: list.add(names[i]);
11: }
12: for (int i = 0; i < moreNames.length; i++) {

ptg7068951

Storing Objects of the Same Class in Vectors

13: list.add(moreNames[i]);
14: }
15: Collections.sort(list);
16: for (String name : list) {
17: System.out.println(name);
18: }
19: }
20:
21: public static void main(String[] args) {
22: StringLister lister = new StringLister(args);
23: }
24: }

Before you run the. application (choose Run, Run File), you should use the
Run, Set Project Configuration, Customize command to set the main class
to StringLister and the argument to one or more names separated by
spaces, such as Jackie Mickey Farina Woim.

The names specified at the command line are added to the names stored in
an array in Lines 4–5. Because the total number of names is not known
until the program runs, a vector serves as a better storage place for these
strings than an array.

The vector’s strings are sorted in alphabetical order using a method of the
Collections class:

Collections.sort(list);

This class, like Vector, belongs to the java.util package. Vectors and
other useful data structures are called collections in Java.

When you run the program, the output should be a list of names in alpha-
betical order (see Figure 12.2). The flexible size of vectors enables your
additional names to be added to the data structure and sorted along with
the others.

The output of the StringLister
program.

ptg7068951

164 HOUR 12: Making the Most of Existing Objects

Creating a Subclass
To see an example of inheritance at work, in the next project you create a class
called Point3D that represents a point in three-dimensional space. You can
express a two-dimensional point with an (x,y) coordinate. Applets use an (x,y)
coordinate system to determine where text and graphics should be displayed.
Three-dimensional space adds a third coordinate, which can be called z.

The Point3D class of objects should do three things:

. Keep track of an object’s (x,y,z) coordinate

. Move an object to a new (x,y,z) coordinate when needed

. Move an object by a certain amount of x, y, and z values as needed

Java already has a standard class that represents two-dimensional points;
it’s called Point.

It has two integer variables called x and y that store a Point object’s (x,y)
location. It also has a move() method to place a point at the specified loca-
tion, and a translate() method to move an object by an amount of x and y
values.

In the Java24 projects in NetBeans, create a new empty file called Point3D
and enter the text of Listing 12.2 into the file. Save it when you’re done.

LISTING 12.2 The Full Text of Point3D.java
1: import java.awt.*;
2:
3: public class Point3D extends Point {
4: public int z;
5:
6: public Point3D(int x, int y, int z) {
7: super(x,y);
8: this.z = z;
9: }
10:
11: public void move(int x, int y, int z) {
12: this.z = z;
13: super.move(x, y);
14: }
15:
16: public void translate(int x, int y, int z) {
17: this.z += z;
18: super.translate(x, y);
19: }
20: }

ptg7068951

Creating a Subclass 165

The Point3D class does not have a main() block statement, so you cannot run
it with a Java interpreter, but you can use it in Java programs anywhere a
three-dimensional point is needed.

The Point3D class only has to do work that isn’t being done by its superclass,
Point. This primarily involves keeping track of the integer variable z and
receiving it as an argument to the move() method, translate() method, and
Point3D() constructor method.

All the methods use the keywords super and this. The this statement is
used to refer to the current Point3D object, so this.z = z; in Line 8 sets the
object variable z equal to the z value that is sent as an argument to the
method in Line 6.

The super statement refers to the current object’s superclass, Point. It is used
to set variables and call methods that are inherited by Point3D. The statement
super(x,y) in Line 7 calls the Point(x,y) constructor in the superclass,
which then sets the (x,y) coordinates of the Point3D object. Because Point
already is equipped to handle the x and y axes, it would be redundant for the
Point3D class of objects to do the same thing.

To test out the Point3D class you have compiled, create a program that uses
Point and Point3D objects and moves them around. Create a new file in
NetBeans called PointTester and enter Listing 12.3 into it. The file compiles
automatically when it is saved.

LISTING 12.3 The Full Text of PointTester.java
1: import java.awt.*;
2:
3: class PointTester {
4: public static void main(String[] args) {
5: Point object1 = new Point(11,22);
6: Point3D object2 = new Point3D(7,6,64);
7:
8: System.out.println(“The 2D point is located at (“ + object1.x
9: + “, “ + object1.y + “)”);
10: System.out.println(“\tIt’s being moved to (4, 13)”);
11: object1.move(4,13);
12: System.out.println(“The 2D point is now at (“ + object1.x
13: + “, “ + object1.y + “)”);
14: System.out.println(“\tIt’s being moved -10 units on both the x “
15: + “and y axes”);
16: object1.translate(-10,-10);
17: System.out.println(“The 2D point ends up at (“ + object1.x
18: + “, “ + object1.y + “)\n”);
19:

ptg7068951

166 HOUR 12: Making the Most of Existing Objects

20: System.out.println(“The 3D point is located at (“ + object2.x
21: + “, “ + object2.y + “, “ + object2.z + “)”);
22: System.out.println(“\tIt’s being moved to (10, 22, 71)”);
23: object2.move(10,22,71);
24: System.out.println(“The 3D point is now at (“ + object2.x
25: + “, “ + object2.y + “, “ + object2.z + “)”);
26: System.out.println(“\tIt’s being moved -20 units on the x, y “
27: + “and z axes”);
28: object2.translate(-20,-20,-20);
29: System.out.println(“The 3D point ends up at (“ + object2.x
30: + “, “ + object2.y + “, “ + object2.z + “)”);
31: }
32: }

When you run the file by choosing Run, Run File, you see the output shown
in Figure 12.3 if the program compiled properly. If not, look for the red icon
alongside the source editor that indicates the line that triggered an error.

LISTING 12.3 Continued

FIGURE 12.3
The output of the PointTester
program.

Summary
When people talk about the miracle of birth, they’re probably not speaking
of the way a superclass in Java can give birth to subclasses or the way
behavior and attributes are inherited in a hierarchy of classes.

If the real world worked the same way that OOP does, every descendant of
Mozart could choose to be a brilliant composer. All descendants of Mark
Twain could be poetic about Mississippi riverboat life. Every skill your ances-
tors worked to achieve would be handed to you without an ounce of toil.

On the scale of miracles, inheritance isn’t quite up to par with continuing
the existence of a species or throwing consecutive no-hitters. However, it’s
an effective way to design software with a minimum of redundant work.

ptg7068951

Workshop 167

Q&A
Q. Most Java programs we’ve created up to this point have not used

extends to inherit from a superclass. Does this mean they exist out-
side of the class hierarchy?

A. All classes you create in Java are part of the hierarchy because the
default superclass for the programs you write is Object when you aren’t
using the extends keyword. The equals() and toString() methods of
all classes are part of the behavior that automatically is inherited from
Object.

Q. Why do people yell “eureka!” when they’ve discovered something?

A. Eureka is borrowed from ancient Greek, where it meant “I have found
it!” The phrase was supposedly exclaimed by the Greek scholar
Archimedes when he stepped into a bath.

What did the Greek discover in the bath? The rising water level, which
led him to understand that the volume of displaced water must equal
the volume of his body parts.

The story about Archimedes was spread two centuries later by Vitruvius
in his multivolume De Architectura, a book about architecture.

“Eureka” has been in the California state seal since 1849, referring to
the discovery of gold near Sutter’s Mill a year earlier.

Workshop
To determine what kind of knowledge you inherited from the past hour’s
work, answer the following questions.

Quiz
1. If a superclass handles a method in a way you don’t want to use in the

subclass, what can you do?

A. Delete the method in the superclass.

B. Override the method in the subclass.

C. Write a nasty letter to the editor of the San Jose Mercury News
hoping that Java’s developers read it.

ptg7068951

168 HOUR 12: Making the Most of Existing Objects

2. What methods can you use to retrieve an element stored in a vector?

A. get()

B. read()

C. elementAt()

3. What statement can you use to refer to the methods and variables of
the current object?

A. this

B. that

C. theOther

Answers
1. B. Because you can override the method, you don’t have to change any

aspect of the superclass or the way it works.

2. A. The get() method has one argument—the index number of the ele-
ment.

3. A. The this keyword refers to the object in which it appears.

Activities
If a fertile imagination has birthed in you a desire to learn more, you can
spawn more knowledge of inheritance with the following activities:

. Create a Point4D class that adds a t coordinate to the (x,y,z) coordi-
nate system created by the Point3D class. The t coordinate stands for
time, so you need to ensure that it is never set to a negative value.

. Take the members of a football team’s offense: lineman, wide receiver,
tight end, running back, and quarterback. Design a hierarchy of classes
that represent the skills of these players, putting common skills higher
up in the hierarchy. For example, blocking is behavior that probably
should be inherited by the linemen and tight end classes, and speed is
something that should be inherited by wide receivers and running backs.

To see Java programs that implement these activities, visit the book’s website
at www.java24hours.com.

www.java24hours.com

ptg7068951

WHAT YOU’LL LEARN IN
THIS HOUR:

. Creating user interface
components such as
buttons

. Creating labels, text fields,
and other components

. Grouping components
together

. Putting components inside
other components

. Opening and closing
windows

Things are going to get pretty gooey during this hour. You will make an
enormous mess creating your first graphical user interface (GUI) with Java.

Computer users have come to expect their software to feature a GUI, take
user input from a mouse, and work like other programs. Although some
users still work in command-line environments such as MS-DOS or a
Linux shell, most would be confused by software that does not offer a
point-and-click, drag-and-drop graphical interface like in Microsoft
Windows or MacOS.

Java supports this kind of software with Swing, a collection of Java classes
that represent all the different buttons, text fields, sliders, and other com-
ponents that can be part of a GUI, as well as the classes needed to take
user input from those components.

During this hour and the next, you create and organize GUIs in Java.
Afterward in Hour 15, “Responding to User Input,” you enable those inter-
faces to receive mouse clicks and other user input.

Swing and the Abstract Windowing
Toolkit
Because Java is a cross-platform language that enables you to write pro-
grams for many different operating systems, its graphical user software
must be flexible. Instead of catering only to the Windows style or the Mac
version, it must handle both along with other platforms.

With Java, the development of a program’s user interface is based on
Swing and an earlier set of classes called the Abstract Windowing Toolkit.
These classes enable you to create a GUI and receive input from the user.

HOUR 13
Building a Simple User Interface

ptg7068951

170 HOUR 13: Building a Simple User Interface

Swing includes everything you need to write programs that use a GUI.
With Java’s user interface classes, you can create a GUI that includes all the
following and more:

. Buttons, check boxes, labels, and other simple components

. Text fields, sliders, and other more complex components

. Pull-down menus and pop-up menus

. Windows, frames, dialog boxes, panels, and applet windows

Using Components
In Java, every part of a GUI is represented by a class in the Swing package.
There is a JButton class for buttons, a JWindow class for windows, a
JTextField class for text fields, and so on.

To create and display an interface, you create objects, set their variables,
and call their methods. The techniques are the same as those you used dur-
ing the previous three hours as you were introduced to object-oriented
programming (OOP).

When you are putting a GUI together, you work with two kinds of objects:
components and containers. A component is an individual element in a user
interface, such as a button or slider. A container is a component that you
can use to hold other components.

The first step in creating an interface is to create a container that can hold
components. In an application, this container is often a window or a frame.

Windows and Frames
Windows and frames are containers that can be displayed in a user inter-
face and hold other components. Windows are simple containers that do
not have a title bar or any of the other buttons normally along the top edge
of a GUI. Frames are windows that include all the common windowing fea-
tures users expect to find when they run software—such as buttons to
close, expand, and shrink the window.

You create these containers using Swing’s JWindow and JFrame classes. To
make the Swing package of classes available in a Java program, use the fol-
lowing statement:

import javax.swing.*;

ptg7068951

Using Components 171

One way to make use of a frame in a Java application is to make the appli-
cation a subclass of JFrame. Your program inherits the behavior it needs to
function as a frame. The following statements create a subclass of JFrame:

import javax.swing.*;

public class MainFrame extends JFrame {
public MainFrame() {

// set up the frame
}

}

This class creates a frame but doesn’t set it up completely. In the frame’s
constructor, you must do several things when creating a frame:

. Call a constructor of the superclass, JFrame.

. Set up the title of the frame.

. Set up the size of the frame.

. Set the frame’s look and feel.

. Define what happens when the frame is closed by a user.

You also must make the frame visible, unless for some reason it should not
be displayed when the application begins running.

Most of these things can be handled in the frame’s constructor. The first
thing the method must contain is a call to one of the constructors of
JFrame, using the super statement. Here’s an example:

super();

The preceding statement calls the JFrame constructor with no arguments.
You also can call it with the title of your frame as an argument:

super(“Main Frame”);

This sets the title of the frame, which appears in the title bar along the top
edge, to the specified string. In this example, the text greeting “Main
Frame” appears.

If you don’t set up a title in this way, you can call the frame’s setTitle()
method with a string as an argument:

setTitle(“Main Frame”);

ptg7068951

172 HOUR 13: Building a Simple User Interface

The size of the frame can be established by calling its setSize() method
with two arguments: the width and height. The following statement sets
up a frame that is 350 pixels wide and 125 pixels tall:

setSize(350, 125);

Another way to set the size of a frame is to fill it with components, and
then call the frame’s pack() method with no arguments:

pack();

The pack() method sets the frame big enough to hold the preferred size of
each component inside the frame (but no bigger). Every interface compo-
nent has a preferred size, though this is sometimes disregarded, depending
on how components have been arranged within an interface. You don’t
need to explicitly set the size of a frame before calling pack()—the method
sets it to an adequate size before the frame is displayed.

Every frame is displayed with a button along the title bar that can be used
to close the frame. On a Windows system, this button appears as an X in
the upper-right corner of the frame. To define what happens when this
button is clicked, call the frame’s setDefaultCloseOperation() method
with one of four JFrame class variables as an argument:

. setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE)—Exit the pro-
gram when the button is clicked.

. setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE)—Close the
frame and keep running the application.

. setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE)—Keep
the frame open and continue running.

. setDefaultCloseOperation(JFrame.HIDE_ON_CLOSE)—Close the
frame and continue running.

A graphical user interface created with Swing can customize its appear-
ance with a look and feel, a visual theme that controls how buttons and
other components appear and how they behave.

Java 7 introduces an enhanced look and feel called Nimbus, but it must be
turned on to be used in a class. You set a look and feel by calling the
setLookAndFeel() method of the UIManager class in the main Swing
package. The method takes one argument: the full name of the look and
feel’s class.

ptg7068951

Using Components 173

The following statement sets Nimbus as the look and feel:

UIManager.setLookAndFeel(
“com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel”

);

One last thing is required to make the frame visible: Call its setVisible()
method with true as an argument:

setVisible(true);

This opens the frame at the defined width and height. You also can call it
with false to stop displaying a frame.

Listing 13.1 contains the source code described in this section. In an empty
Java file named SalutonFrame, enter these statements.

LISTING 13.1 The Full Text of SalutonFrame.java
1: import javax.swing.*;
2:
3: public class SalutonFrame extends JFrame {
4: public SalutonFrame() {
5: super(“Saluton mondo!”);
6: setLookAndFeel();
7: setSize(350, 100);
8: setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
9: setVisible(true);
10: }
11:
12: private void setLookAndFeel() {
13: try {
14: UIManager.setLookAndFeel(
15: “com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel”
16:);
17: } catch (Exception exc) {
18: // ignore error
19: }
20: }
21:
22: public static void main(String[] arguments) {
23: SalutonFrame sal = new SalutonFrame();
24: }
25: }

Lines 22–24 of Listing 13.1 contain a main() method, which turns this
frame class into an application. When you run the class, you see the frame
shown in Figure 13.1.

ptg7068951

174 HOUR 13: Building a Simple User Interface

The only thing that SalutonFrame displays is a title—the Esperanto greeting
“Saluton mondo!” The frame is an empty window because it doesn’t contain
any other components yet.

To add components to a frame, you must create the component and add it to
the container. Each container has an add() method that takes one argument:
the component to display.

The SalutonFrame class includes a setLookAndFeel() method that desig-
nates Nimbus as the frame’s look and feel. The setLookAndFeel() method
of the UIManager class is called in lines 14–16 to accomplish this.

The call to this method is placed inside a try-catch block, which enables
errors that might occur to be handled. The try and catch statements are
new because they haven’t been introduced yet. Dealing with errors using
these statements is covered in Hour 18, “Handling Errors in a Program.”

At this point, all you need to know is that calling UIManager.setLookAndFeel()
sets a GUI’s look and feel. Any error that might occur as a result will just cause
a program to keep the default look and feel instead of Nimbus.

Buttons
One simple component you can add to a container is a JButton object.
JButton, like the other components you are working with during this hour,
is part of the java.awt.swing package. A JButton object is a clickable button
with a label that describes what clicking the button does. This label can be
text, graphics, or both. The following statement creates a JButton called
okButton and gives it the text label OK:

JButton okButton = new JButton(“OK”);

After a component such as JButton is created, it should be added to a con-
tainer by calling its add() method:

add(okButton);

FIGURE 13.1
Displaying a frame in an
application.

ptg7068951

Using Components 175

When you add components to a container, you do not specify the place in
the container where the component should be displayed. The arrangement
of components is decided by an object called a layout manager. The simplest
of these managers is the FlowLayout class, which is part of the java.awt
package.

To make a container use a specific layout manager, you must first create an
object of that layout manager’s class. You create a FlowLayout object with a
statement, such as the following:

FlowLayout flo = new FlowLayout();

After you create a layout manager, you call the container’s setLayout()
method to associate the manager with the container. The only argument to this
method should be the layout manager object, as in the following example:

pane.setLayout(flo);

This statement designates the flo object as the layout manager for the pane
container.

The next application you create, a class called Playback, is a Java applica-
tion that displays a frame with three buttons. Enter the text from Listing
13.2 into a new empty Java file and save the file.

LISTING 13.2 The Full Text of Playback.java
1: import javax.swing.*;
2: import java.awt.*;
3:
4: public class Playback extends JFrame {
5: public Playback() {
6: super(“Playback”);
7: setLookAndFeel();
8: setSize(225, 80);
9: setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
10: FlowLayout flo = new FlowLayout();
11: setLayout(flo);
12: JButton play = new JButton(“Play”);
13: JButton stop = new JButton(“Stop”);
14: JButton pause = new JButton(“Pause”);
15: add(play);
16: add(stop);
17: add(pause);
18: setVisible(true);
19: }
20:
21: private void setLookAndFeel() {
22: try {
23: UIManager.setLookAndFeel(

ptg7068951

176 HOUR 13: Building a Simple User Interface

24: “com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel”
25:);
26: } catch (Exception exc) {
27: // ignore error
28: }
29: }
30:
31: public static void main(String[] arguments) {
32: Playback pb = new Playback();
33: }
34: }

The Playback program creates a FlowLayout layout manager in line 10 and
sets the frame to employ it in line 11. When three buttons are added to the
frame in lines 15–17, they’re arranged by this manager.

When you run the application, your output should resemble Figure 13.2.
You can click each of the buttons, but nothing happens in response because
your program does not contain any methods to receive user input—that’s
covered during Hour 15.

You can add many Swing user components to a container in this manner.

Labels and Text Fields
A JLabel component displays information that the user cannot modify.
This information can be text, a graphic, or both. These components are
often used to label other components in an interface, hence the name. They
often identify text fields.

A JTextField component is an area where a user can enter a single line of
text. You can set up the width of the box when you create the text field.

The following statements create a JLabel component and JTextField
object and add them to a container:

JLabel pageLabel = new JLabel(“Web page address: “, JLabel.RIGHT);
JTextField pageAddress = new JTextField(20);
FlowLayout flo = new FlowLayout();
setLayout(flo);
add(pageLabel);
add(pageAddress);

Figure 13.3 shows this label and text field side-by-side. Both of the state-
ments in this example use an argument to configure how the component
should look.

LISTING 13.2 Continued

FIGURE 13.2
Displaying buttons on a GUI.

NOTE

Because so many different user
interface components must be
introduced during this hour, the
full source code used to create
each figure is not listed here.
You can find full versions of
each program on the book’s
website at www.java24hours.
com on the Hour 13 page.

www.java24hours.com
www.java24hours.com

ptg7068951

Using Components 177

The pageLabel label is set up with the text “Web page address:” and a
JLabel.RIGHT argument. This last value indicates that the label should
appear flush right. JLabel.LEFT aligns the label text flush left, and JLabel.
CENTER centers it. The argument used with JTextField indicates the text field
should be approximately 20 characters wide. You also can specify default text
that appears in the text field with a statement such as the following:

JTextField country = new JTextField(“US”, 29);

This statement would create a JTextField object that is 20 characters wide
and has the text US in the field.

You can retrieve the text contained within the object with the getText()
method, which returns a string:

String countryChoice = country.getText();

As you might have guessed, you also can set the text with a corresponding
method:

country.setText(“Separate Customs Territory of Taiwan, Penghu, Kinmen,
and Matsu”);

This sets the text to the official name of Chinese Taipei, which is the
longest country name in the world.

Check Boxes
A JCheckBox component is a box next to a line of text that can be checked
or unchecked by the user. The following statements create a JCheckBox
object and add it to a container:

JCheckBox jumboSize = new JCheckBox(“Jumbo Size”);
FlowLayout flo = new FlowLayout();
setLayout(flo);
add(jumboSize);

The argument to the JCheckBox() constructor indicates the text to be dis-
played alongside the box. If you want the box to be checked, you use the
following statement instead:

JCheckBox jumboSize = new JCheckBox(“Jumbo Size”, true);

FIGURE 13.3
Displaying labels and text fields.

ptg7068951

178 HOUR 13: Building a Simple User Interface

You can present a JCheckBox singly or as part of a group. In a group of
check boxes, only one can be checked at a time. To make a JCheckBox
object part of a group, you have to create a ButtonGroup object. Consider
the following:

JCheckBox frogLegs = new JCheckBox(“Frog Leg Grande”, true);
JCheckBox fishTacos = new JCheckBox(“Fish Taco Platter”, false);
JCheckBox emuNuggets = new JCheckBox(“Emu Nuggets”, false);
FlowLayout flo = new FlowLayout();
ButtonGroup meals = new ButtonGroup();
meals.add(frogLegs);
meals.add(fishTacos);
meals.add(emuNuggets);
setLayout(flo);
add(jumboSize);
add(frogLegs);
add(fishTacos);
add(emuNuggets);

This creates three check boxes that are all grouped under the ButtonGroup
object called meals. The Frog Leg Grande box is checked initially, but if the
user checked one of the other meal boxes, the check next to Frog Leg
Grande would disappear automatically. Figure 13.4 shows the different
check boxes from this section.

Combo Boxes
A JComboBox component is a pop-up list of choices that also can be set up
to receive text input. When both options are enabled, you can select an
item with your mouse or use the keyboard to enter text instead. The
combo box serves a similar purpose to a group of check boxes, except that
only one of the choices is visible unless the pop-up list is being displayed.

To create a JComboBox object, you have to add each of the choices after cre-
ating the object, as in the following example:

JComboBox profession = new JComboBox();
FlowLayout flo = new FlowLayout();
profession.addItem(“Butcher”);
profession.addItem(“Baker”);
profession.addItem(“Candlestick maker”);
profession.addItem(“Fletcher”);
profession.addItem(“Fighter”);
profession.addItem(“Technical writer”);
setLayout(flo);
add(profession);

FIGURE 13.4
Displaying check box components.

ptg7068951

Using Components 179

This example creates a single JComboBox component that provides six
choices from which the user can select. When one is selected, it appears in
the display of the component. Figure 13.5 shows this example while the
pop-up list of choices is being displayed.

FIGURE 13.5
Displaying combo box
components.

To enable a JComboBox component to receive text input, you must call its
setEditable() method with an argument of true:

profession.setEditable(true);

You must call this method before the component is added to a container.

Text Areas
A JTextArea component is a text field that enables the user to enter more
than one line of text. You can specify the width and height of the compo-
nent. The following statements create and add a JTextArea component
with a width of 40 characters and a height of 8 lines and to a container:

JTextArea comments = new JTextArea(8, 40);
FlowLayout flo = new FlowLayout();
setLayout(flo);
add(comments);

Figure 13.6 shows this example in a frame.

FIGURE 13.6
Displaying text area components.

ptg7068951

180 HOUR 13: Building a Simple User Interface

You can specify a string in the JTextArea() constructor to be displayed in
the text area, using the newline character (\n) to send text to the next line,
as in the following:

JTextArea comments = new JTextArea(“I should have been a pair\n”
+ “of ragged claws.”, 10, 25);

Panels
The last components you learn to create during this hour are panels, which
are created in Swing using the JPanel class. JPanel objects are the simplest
kind of container you can use in a Swing interface. The purpose of JPanel
objects is to subdivide a display area into different groups of components.
When the display is divided into sections, you can use different rules for
how each section is organized.

You can create a JPanel object and add it to a container with the following
statements:

JPanel topRow = new JPanel();
FlowLayout flo = new FlowLayout();
setLayout(flo);
add(topRow);

Panels are often used when arranging the components in an interface, as
you see in Hour 14, “Laying Out a User Interface.”

You add components to a panel by calling its add() method. You can
assign a layout manager directly to the panel by calling its setLayout()
method.

You can also use panels when you need an area in an interface to draw
something, such as an image from a graphics file.

Another convenient use of JPanel is to create your own components that
can be added to other classes. This is demonstrated in this hour’s work-
shop.

Creating Your Own Component
An advantage of OOP is the capability to reuse classes in different projects.
For the next project, you create a special panel component that you can
reuse in other Java programs. The component, ClockPanel, displays the
current date and time in a manner similar to the ClockTalk project from
Hour 7, “Using Conditional Tests to Make Decisions.”

CAUTION

Text area components behave
in ways you might not expect—
they expand in size when the
user reaches the bottom of the
area, and do not include scroll-
bars along the right edge or
bottom edge. To implement the
kind of text areas you see in
other GUI software, you must
place the area inside a contain-
er called a scroll pane, as you
see in Hour 16, “Building a
Complex User Interface.”

ptg7068951

Creating Your Own Component 181

The first step in creating your own user interface component is to decide
the existing component from which to inherit. The ClockPanel component
is a subclass of JPanel.

The ClockPanel class is defined in Listing 13.3. This class represents panel
components that include a label displaying the current date and time.
Enter the text from Listing 13.3 into a new empty Java file and save the file.

LISTING 13.3 The Full Text of ClockPanel.java
1: import javax.swing.*;
2: import java.awt.*;
3: import java.util.*;
4:
5: public class ClockPanel extends JPanel {
6: public ClockPanel() {
7: super();
8: String currentTime = getTime();
9: JLabel time = new JLabel(“Time: “);
10: JLabel current = new JLabel(currentTime);
11: add(time);
12: add(current);
13: }
14:
15: final String getTime() {
16: String time;
17: // get current time and date
18: Calendar now = Calendar.getInstance();
19: int hour = now.get(Calendar.HOUR_OF_DAY);
20: int minute = now.get(Calendar.MINUTE);
21: int month = now.get(Calendar.MONTH) + 1;
22: int day = now.get(Calendar.DAY_OF_MONTH);
23: int year = now.get(Calendar.YEAR);
24:
25: String monthName = “”;
26: switch (month) {
27: case (1):
28: monthName = “January”;
29: break;
30: case (2):
31: monthName = “February”;
32: break;
33: case (3):
34: monthName = “March”;
35: break;
36: case (4):
37: monthName = “April”;
38: break;
39: case (5):
40: monthName = “May”;
41: break;
42: case (6):

ptg7068951

182 HOUR 13: Building a Simple User Interface

43: monthName = “June”;
44: break;
45: case (7):
46: monthName = “July”;
47: break;
48: case (8):
49: monthName = “August”;
50: break;
51: case (9):
52: monthName = “September”;
53: break;
54: case (10):
55: monthName = “October”;
56: break;
57: case (11):
58: monthName = “November”;
59: break;
60: case (12):
61: monthName = “December”;
62: }
63: time = monthName + “ “ + day + “, “ + year + “ “
64: + hour + “:” + minute;
65: return time;
66: }
67: }

The getTime() method in ClockPanel contains the same technique for
retrieving the current date and time as the ClockTalk application from
Hour 7. This method has the keyword final when it is declared in line 15:

final String getTime() {
// ...

}

Using final prevents the method from being overridden in a subclass.
This is required for ClockPanel to be a GUI component.

The panel is created in the constructor in Lines 6–13. The following things
are taking place:

. Line 8—The date and time are retrieved by calling getTime() and
storing the string it returns in the currentTime variable.

. Line 9—A new label named time is created with the text “Time: “.

. Line 10—currentTime is used as the text of new label component
called current.

LISTING 13.3 Continued

ptg7068951

Creating Your Own Component 183

. Line 11—The time label is added to the clock panel by calling the
panel’s add() method with the label as an argument.

. Line 12—The current label is added to the panel in the same
manner.

To try out this panel, create the ClockFrame application, which is defined
in Listing 13.4.

LISTING 13.4 The Full Text of ClockFrame.java
1: import java.awt.*;
2: import javax.swing.*;
3:
4: public class ClockFrame extends JFrame {
5: public ClockFrame() {
6: super(“Clock”);
7: setLookAndFeel();
8: setSize(225, 125);
9: setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
10: FlowLayout flo = new FlowLayout();
11: setLayout(flo);
12: ClockPanel time = new ClockPanel();
13: add(time);
14: setVisible(true);
15: }
16:
17: private void setLookAndFeel() {
18: try {
19: UIManager.setLookAndFeel(
20: “com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel”
21:);
22: } catch (Exception exc) {
23: // ignore error
24: }
25: }
26:
27: public static void main(String[] arguments) {
28: ClockFrame clock = new ClockFrame();
29: }
30: }

When you run the application, it should resemble Figure 13.7.

FIGURE 13.7
Displaying a clock panel
component.

ptg7068951

184 HOUR 13: Building a Simple User Interface

Summary
Users have come to expect a point-and-click, visual environment for the
programs they run. This expectation makes creating software more of a
challenge, but Java puts these capabilities into your hands with Swing,
which provides all the classes you need to provide a working, useful
GUI—regardless of what kind of setup you’re using to run Java programs.

During the next hour, you learn more about the design of a GUI as you
work with layout managers, classes that are used to specify how compo-
nents are arranged within a container.

ptg7068951

Workshop 185

Q&A
Q. How are components arranged if I don’t assign a layout manager to a

container?

A. In a simple container such as a panel, components are arranged using
FlowLayout by default. Each component is added in the same manner
that words are displayed on a page in English, from left to right, then
down to the next line when there’s no more room. Frames, windows,
and applets use the GridLayout default layout style you learn about
during the next hour.

Q. Why do so many of the graphical user interface classes have names
preceded by a J, such as JFrame and JLabel?

A. These classes are a part of the Swing framework, which was the sec-
ond attempt at graphical user interface classes in the Java class
library. The Abstract Windowing Toolkit (AWT) was first, and it had sim-
pler class names like Frame and Label.

The AWT classes belong to the java.awt package and related pack-
ages, while Swing belong to javax.swing and the like, so they could
have the same class names. The use of the J names keeps the class-
es from being mistaken for each other.

Swing classes also are called Java Foundation Classes (JFC).

Q. Where can I buy an uncut sheet of $1 bills?

A. The U.S. Bureau of Engraving and Printing sells sheets of real $1, $10,
$20 and $50 bills at the website www.moneyfactorystore.gov.

A sheet of 32 $1 bills sells for $55, 16 $10 bills for $269, 16 $20
bills for $409, and 16 $50 bills for $900.

The bureau also sells a five-pound bag containing $10,000 of shredded
bills for $45.

Workshop
If your brain hasn’t been turned into a GUI mush with this hour’s toil, test
your skills by answering the following questions.

www.moneyfactorystore.gov

ptg7068951

186 HOUR 13: Building a Simple User Interface

Quiz
1. Which user component is used as a container to hold other

components?

A. TupperWare

B. JPanel

C. Choice

2. Which of the following must be done first within a container?

A. Establish a layout manager.

B. Add components.

C. Doesn’t matter.

3. What method determines how components are arranged within a container?

A. setLayout()

B. setLayoutManager()

C. setVisible()

Answers
1. B. JPanel. You can add components to the panel and then add the

panel to another container such as a frame.

2. A. You must specify the layout manager before the components so you
can add them in the correct way.

3. A. The setLayout() method takes one argument: the layout manager
object that has the job of deciding where components should be dis-
played.

Activities
To interface further with the subject of GUI design, undertake the following
activities:

. Modify the SalutonFrame application so that it displays “Saluton
Mondo!” in the frame’s main area instead of the title bar.

. Create a frame that contains another frame and make both of them visi-
ble at the same time.

To see Java programs that implement these activities, visit the book’s website
at www.java24hours.com.

www.java24hours.com

ptg7068951

WHAT YOU’LL LEARN IN
THIS HOUR:

. Creating a layout manager

. Assigning a layout manager
to a container

. Using panels to organize
components in an interface

. Working with unusual
layouts

. Creating a prototype for a
Java application

When you begin designing graphical user interfaces (GUI) for your Java
programs, one obstacle you face is that your components can move
around. Whenever a container changes size—such as when a user resizes a
frame—the components it holds may rearrange themselves to fit its new
dimensions.

This fluidity works in your favor because it takes into account the differ-
ences in how interface components are displayed on different operating
systems. A clickable button might look different in Windows than it does
in Linux or Mac OS.

Components are organized in an interface by using a set of classes called
layout managers. These classes define how components are displayed within
a container. Each container in an interface can have its own layout manager.

Using Layout Managers
In Java, the placement of components within a container depends on the
size of other components and the height and width of the container. The
layout of buttons, text fields, and other components can be affected by the
following things:

. The size of the container

. The size of other components and containers

. The layout manager that is being used

There are several layout managers you can use to affect how components
are shown. The default manager for panels is the FlowLayout class in the
java.awt package, which was used during the previous hour.

HOUR 14
Laying Out a User Interface

ptg7068951

188 HOUR 14: Laying Out a User Interface

Under FlowLayout, components are dropped onto an area in the same way
words are organized on a page in English—from left to right, and then
down to the next line when there’s no more space.

The following example could be used in a frame so that it employs flow
layout when components are added:

FlowLayout topLayout = new FlowLayout();
setLayout(topLayout);

You also can set up a layout manager to work within a specific container,
such as a JPanel object. You can do this by using the setLayout() method
of that container object.

The Crisis application has a GUI with five buttons. Create a new empty
Java file for a class named Crisis. Enter text from Listing 14.1 into the file
and save the file.

LISTING 14.1 The Full Text of Crisis.java
1: import java.awt.*;
2: import javax.swing.*;
3:
4: public class Crisis extends JFrame {
5: JButton panicButton;
6: JButton dontPanicButton;
7: JButton blameButton;
8: JButton mediaButton;
9: JButton saveButton;
10:
11: public Crisis() {
12: super(“Crisis”);
13: setLookAndFeel();
14: setSize(348, 128);
15: setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
16: FlowLayout flo = new FlowLayout();
17: setLayout(flo);
18: panicButton = new JButton(“Panic”);
19: dontPanicButton = new JButton(“Don’t Panic”);
20: blameButton = new JButton(“Blame Others”);
21: mediaButton = new JButton(“Notify the Media”);
22: saveButton = new JButton(“Save Yourself”);
23: add(panicButton);
24: add(dontPanicButton);
25: add(blameButton);
26: add(mediaButton);
27: add(saveButton);
28: setVisible(true);
29: }
30:

ptg7068951

Using Layout Managers 189

31: private void setLookAndFeel() {
32: try {
33: UIManager.setLookAndFeel(
34: “com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel”
35:);
36: } catch (Exception exc) {
37: // ignore error
38: }
39: }
40:
41: public static void main(String[] arguments) {
42: Crisis cr = new Crisis();
43: }
44: }

Figure 14.1 shows the application running.

LISTING 14.1 Continued

FIGURE 14.1
Arranging components using flow
layout.

The FlowLayout class uses the dimensions of its container as the only
guideline for how to lay out components. Resize the window of the appli-
cation to see how components are instantly rearranged. Make the window
twice as wide, and you see all of the JButton components are now shown
on the same line.

The GridLayout Manager
The GridLayout class in the java.awt package organizes all components in
a container into a specific number of rows and columns. All components
are allocated the same amount of size in the display area, so if you specify
a grid that is three columns wide and three rows tall, the container is
divided into nine areas of equal size.

GridLayout places all components as they are added into a place on a grid.
Components are added from left to right until a row is full, and then the
leftmost column of the next grid is filled.

The following statements create a container and set it to use a grid layout
that is two rows wide and three columns tall:

ptg7068951

190 HOUR 14: Laying Out a User Interface

GridLayout grid = new GridLayout(2, 3);
setLayout(grid);

Figure 14.2 shows what the Crisis application would look like if it used
grid layout.

FIGURE 14.2
Arranging components using grid
layout.

Some labels in Figure 14.2 display text that has been shortened. If the text
is wider than the area available in the component, the label is shortened
using ellipses (…).

The BorderLayout Manager
The BorderLayout class, also in java.awt, arranges components at specific
positions within the container that are identified by one of five directions:
north, south, east, west, or center.

The BorderLayout manager arranges components into five areas: four
denoted by compass directions and one for the center area. When you add
a component under this layout, the add() method includes a second argu-
ment to specify where the component should be placed. This argument
should be one of five class variables of the BorderLayout class: NORTH,
SOUTH, EAST, WEST, and CENTER are used for this argument.

Like the GridLayout class, BorderLayout devotes all available space to the
components. The component placed in the center is given all the space that
isn’t needed for the four border components, so it’s usually the largest.

The following statements create a container that uses border layout:

BorderLayout crisisLayout = new BorderLayout();
setLayout(crisisLayout);
add(panicButton, BorderLayout.NORTH);
add(dontPanicButton, BorderLayout.SOUTH);
add(blameButton, BorderLayout.EAST);
add(mediaButton, BorderLayout.WEST);
add(saveButton, BorderLayout.CENTER);

Figure 14.3 shows how this looks in the Crisis application.

ptg7068951

Using Layout Managers 191

The BoxLayout Manager
Another handy layout manager, BoxLayout in the javax.swing package,
makes it possible to stack components in a single row horizontally or
vertically.

To employ this layout, create a panel to hold components, and then create
a layout manager with two arguments:

. The component to organize in box layout

. The value BoxLayout.Y_AXIS for vertical alignment and
BoxLayout.X_AXIS for horizontal alignment

Here’s code to stack the Crisis components:

JPanel pane = new JPanel();
BoxLayout box = new BoxLayout(pane, BoxLayout.Y_AXIS);
pane.setLayout(box);
pane.add(panicButton);
pane.add(dontPanicButton);
pane.add(blameButton);
pane.add(mediaButton);
pane.add(saveButton);
add(pane);

Figure 14.4 shows how this turns out.

Separating Components with Insets
As you are arranging components within a container, you can move com-
ponents away from the edges of the container using Insets, an object that
represents the border area of a container.

The Insets class, which is part of the java.awt package, has a constructor
that takes four arguments: the space to leave at the top, left, bottom, and
right of the container. Each argument is specified using pixels, the same
unit of measure employed when defining the size of a frame.

FIGURE 14.3
Arranging components using
border layout.

FIGURE 14.4
Stacking components using box
layout.

ptg7068951

192 HOUR 14: Laying Out a User Interface

The following statement creates an Insets object:

Insets around = new Insets(10, 6, 10, 3);

The around object represents a container border that is 10 pixels inside the
top edge, 6 pixels inside the left, 10 pixels inside the bottom, and 3 pixels
inside the right.

To make use of an Insets object in a container, you must override the con-
tainer’s getInsets() method. This method has no arguments and returns
an Insets object, as in the following example:

public Insets getInsets() {
Insets squeeze = new Insets(50, 15, 10, 15);
return squeeze;

}

Figure 14.5 shows how this would change the FlowLayout-managed inter-
face shown in Figure 14.1.

FIGURE 14.5
Using insets to add space around
components.

The container shown in Figure 14.5 has an empty border that’s 15 pixels
from the left edge, 10 pixels from the bottom edge, 15 pixels from the right
edge, and 50 pixels from the top edge.

Laying Out an Application
The layout managers you have seen thus far were applied to an entire
frame; the setLayout() method of the frame was used, and all compo-
nents followed the same rules. This setup can be suitable for some pro-
grams, but as you try to develop a GUI with Swing, you often find that
none of the layout managers fit.

One way around this problem is to use a group of JPanel objects as con-
tainers to hold different parts of a GUI. You can set up different layout
rules for each of these parts by using the setLayout() methods of each
JPanel. After these panels contain all the components they need to contain,
you can add the panels directly to the frame.

NOTE

A JFrame container has a built-
in inset to make room for the
frame’s title bar. When you over-
ride getInsets() and set your
own values, a low inset value
causes the container to display
components underneath the
title bar.

ptg7068951

Laying Out an Application 193

The next project develops a full interface for the program you write during
the next hour. The program is a Lotto number cruncher that assesses a
user’s chance of winning one of the multimillion dollar Lotto contests in
the span of a lifetime. This chance is determined by running random six-
number Lotto drawings again and again until the user’s numbers turn up
as the big winner. Figure 14.6 shows the GUI you are developing for the
application.

FIGURE 14.6
Displaying the GUI of the
LottoMadness application.

Create a new empty Java file called LottoMadness, enter text from Listing
14.2 into the source editor, and save the file.

LISTING 14.2 The Full Text of LottoMadness.java
1: import java.awt.*;
2: import javax.swing.*;
3:
4: public class LottoMadness extends JFrame {
5:
6: // set up row 1
7: JPanel row1 = new JPanel();
8: ButtonGroup option = new ButtonGroup();
9: JCheckBox quickpick = new JCheckBox(“Quick Pick”, false);
10: JCheckBox personal = new JCheckBox(“Personal”, true);
11: // set up row 2
12: JPanel row2 = new JPanel();
13: JLabel numbersLabel = new JLabel(“Your picks: “, JLabel.RIGHT);
14: JTextField[] numbers = new JTextField[6];
15: JLabel winnersLabel = new JLabel(“Winners: “, JLabel.RIGHT);
16: JTextField[] winners = new JTextField[6];

ptg7068951

194 HOUR 14: Laying Out a User Interface

17: // set up row 3
18: JPanel row3 = new JPanel();
19: JButton stop = new JButton(“Stop”);
20: JButton play = new JButton(“Play”);
21: JButton reset = new JButton(“Reset”);
22: // set up row 4
23: JPanel row4 = new JPanel();
24: JLabel got3Label = new JLabel(“3 of 6: “, JLabel.RIGHT);
25: JTextField got3 = new JTextField(“0”);
26: JLabel got4Label = new JLabel(“4 of 6: “, JLabel.RIGHT);
27: JTextField got4 = new JTextField(“0”);
28: JLabel got5Label = new JLabel(“5 of 6: “, JLabel.RIGHT);
29: JTextField got5 = new JTextField(“0”);
30: JLabel got6Label = new JLabel(“6 of 6: “, JLabel.RIGHT);
31: JTextField got6 = new JTextField(“0”, 10);
32: JLabel drawingsLabel = new JLabel(“Drawings: “, JLabel.RIGHT);
33: JTextField drawings = new JTextField(“0”);
34: JLabel yearsLabel = new JLabel(“Years: “, JLabel.RIGHT);
35: JTextField years = new JTextField();
36:
37: public LottoMadness() {
38: super(“Lotto Madness”);
39: setLookAndFeel();
40: setSize(550, 400);
41: setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
42: GridLayout layout = new GridLayout(5, 1, 10, 10);
43: setLayout(layout);
44:
45: FlowLayout layout1 = new FlowLayout(FlowLayout.CENTER,
46: 10, 10);
47: option.add(quickpick);
48: option.add(personal);
49: row1.setLayout(layout1);
50: row1.add(quickpick);
51: row1.add(personal);
52: add(row1);
53:
54: GridLayout layout2 = new GridLayout(2, 7, 10, 10);
55: row2.setLayout(layout2);
56: row2.add(numbersLabel);
57: for (int i = 0; i < 6; i++) {
58: numbers[i] = new JTextField();
59: row2.add(numbers[i]);
60: }
61: row2.add(winnersLabel);
62: for (int i = 0; i < 6; i++) {
63: winners[i] = new JTextField();
64: winners[i].setEditable(false);
65: row2.add(winners[i]);
66: }
67: add(row2);

LISTING 14.2 Continued

ptg7068951

Laying Out an Application 195

68:
69: FlowLayout layout3 = new FlowLayout(FlowLayout.CENTER,
70: 10, 10);
71: row3.setLayout(layout3);
72: stop.setEnabled(false);
73: row3.add(stop);
74: row3.add(play);
75: row3.add(reset);
76: add(row3);
77:
78: GridLayout layout4 = new GridLayout(2, 3, 20, 10);
79: row4.setLayout(layout4);
80: row4.add(got3Label);
81: got3.setEditable(false);
82: row4.add(got3);
83: row4.add(got4Label);
84: got4.setEditable(false);
85: row4.add(got4);
86: row4.add(got5Label);
87: got5.setEditable(false);
88: row4.add(got5);
89: row4.add(got6Label);
90: got6.setEditable(false);
91: row4.add(got6);
92: row4.add(drawingsLabel);
93: drawings.setEditable(false);
94: row4.add(drawings);
95: row4.add(yearsLabel);
96: years.setEditable(false);
97: row4.add(years);
98: add(row4);
99:
100: setVisible(true);
101: }
102:
103: private void setLookAndFeel() {
104: try {
105: UIManager.setLookAndFeel(
106: “com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel”
107:);
108: } catch (Exception exc) {
109: // ignore error
110: }
111: }
112:
113: public static void main(String[] arguments) {
114: LottoMadness frame = new LottoMadness();
115: }
116: }

LISTING 14.2 Continued

ptg7068951

196 HOUR 14: Laying Out a User Interface

Even though you haven’t added any statements that make the program do
anything yet, you can run the application to make sure that the graphical
interface is organized correctly and collects the information you need.

This application uses several different layout managers. To get a clearer
picture of how the application’s user interface is laid out, take a look at
Figure 14.7. The interface is divided into four horizontal rows that are sep-
arated by horizontal black lines in the figure. Each of these rows is a
JPanel object, and the overall layout manager of the application organizes
these rows into a GridLayout of four rows and one column.

1

2

3

4

FIGURE 14.7
Dividing the LottoMadness
application into panels.

Within the rows, different layout managers are used to determine how the
components should appear. Rows 1 and 3 use FlowLayout objects. Lines
45–46 of the program show how these are created:

FlowLayout layout1 = new FlowLayout(FlowLayout.CENTER,
10, 10);

Three arguments are used with the FlowLayout() constructor. The first
argument, FlowLayout.CENTER, indicates that the components should be
centered within their container—the horizontal JPanel on which they are
placed. The last two components specify the width and height that each
component should be moved away from other components. Using a width
of 10 pixels and a height of 10 pixels puts a small amount of extra distance
between the components.

ptg7068951

Summary 197

Row 2 of the interface is laid out into a grid that is two rows tall and seven
columns wide. The GridLayout() constructor also specifies that components
should be set apart from other components by 10 pixels in each direction.
Lines 54–55 set up this grid:

GridLayout layout2 = new GridLayout(2, 7, 10, 10);
row2.setLayout(layout2);

Row 4 uses GridLayout to arrange components into a grid that is two rows
tall and three columns wide.

The LottoMadness application uses several components described during this
hour. Lines 7–35 are used to set up objects for all the components that make up
the interface. The statements are organized by row. First, a JPanel object for the
row is created, and then each component that goes on the row is set up. This
code creates all the components and containers, but they are not displayed
unless an add() method is used to add them to the application’s main frame.

In Lines 45–98, the components are added. Lines 45–52 are indicative of the
entire LottoMadness() constructor:

FlowLayout layout1 = new FlowLayout(FlowLayout.CENTER,
10, 10);

option.add(quickpick);
option.add(personal);
row1.setLayout(layout1);
row1.add(quickpick);
row1.add(personal);
add(row1);

After a layout manager object is created, it is used with the setLayout()
method of the row’s JPanel object—row1 in this case. When the layout has
been specified, components are added to the JPanel by using its add()
method. After all the components have been placed, the entire row1 object is
added to the frame by calling its own add() method.

Summary
When you design a Java program’s GUI for the first time, you might have
trouble believing that it’s an advantage for components to move around.
Layout managers provide a way to develop an attractive GUI that is flexible
enough to handle differences in presentation.

During the next hour, you learn more about the function of a GUI. You get a
chance to see the LottoMadness interface in use as it churns through lottery
drawings and tallies up winners.

ptg7068951

198 HOUR 14: Laying Out a User Interface

Q&A
Q. Why are some of the text fields in the LottoMadness application shad-

ed in gray while others are white?

A. The setEditable() method has been used on the gray fields to make
them impossible to edit. The default behavior of a text field is to enable
users to change the value of the text field by clicking within its borders
and typing any desired changes. However, some fields are intended to
display information rather than take input from the user. The
setEditable() method prevents users from changing a field they
should not modify.

Q. Was there a Willy Wonka golden ticket winner in Willy Wonka and the
Chocolate Factory whose death was too horrible for the movie?

A. The fate of Miranda Piker was so gruesome that she was dropped from
the final draft of Roald Dahl’s book Charlie and the Chocolate Factory,
which inspired the 1971 movie and its 2005 remake. Piker was a smug
child who believed children should never play so they could attend
school all the time. Her father was a school headmaster.

Piker and the other kids at Wonka’s factory are introduced to Spotty
Powder, a sugary concoction that causes the eater to break out in red
spots so they can feign illness and miss school. Piker and her father
become outraged and decide to destroy the machine that makes it.

As their screams are heard from the adjacent room, Wonka explains that
they’ve gone into the place where the candy’s ingredients are ground
into powder. “That’s part of the recipe,” he tells Miranda’s mother.
“We’ve got to use one or two schoolmasters occasionally or it doesn’t
work.”

The Oompa-Loompas celebrate her demise with song: “Oh, Miranda
Mary Piker,/How could anybody like her,/Such a priggish and revolting
little kid./So we said, ‘Why don’t we fix her/In the Spotty-Powder
mixer/Then we’re bound to like her better than we did.’/Soon this child
who is so vicious/Will have gotten quite delicious,/And her classmates
will have surely understood/That instead of saying, ‘Miranda!/Oh, the
beast! We cannot stand her!’/They’ll be saying, ‘Oh, how useful and
how good!’”

ptg7068951

Workshop 199

Workshop
To see whether your brain cells are laid out properly, test your Java layout
management skills by answering the following questions.

Quiz
1. What container is often used when subdividing an interface into differ-

ent layout managers?

A. JWindow

B. JPanel

C. Container

2. What is the default layout manager for a panel?

A. FlowLayout

B. GridLayout

B. No default

3. The BorderLayout class gets its name from where?

A. The border of each component

B. The way components are organized along the borders of a
container

C. Sheer capriciousness on the part of Java’s developers

Answers
1. B. JPanel, which is the simplest of the containers.

2. A. Panels use flow layout, but the default manager for frames and win-
dows is grid layout.

3. B. You must specify the border position of components with the use of
directional variables such as BorderLayout.WEST and
BorderLayout.EAST as you add them to a container.

ptg7068951

200 HOUR 14: Laying Out a User Interface

Activities
If you’d like to keep going with the flow (and the grid and the border), under-
take the following activities:

. Create a modified version of the Crisis application with the panic and
dontPanic objects organized under one layout manager and the
remaining three buttons under another.

. Make a copy of the LottoMadness.java file that you can rename to
NewMadness.java. Make changes to this program so the quick pick or
personal choice is a combo box and the start, stop, and reset buttons
are check boxes.

To see Java programs that implement these activities, visit the book’s website
at www.java24hours.com.

www.java24hours.com

ptg7068951

WHAT YOU’LL LEARN IN
THIS HOUR:

. Making your programs
aware of events

. Setting up a component so
it can cause events

. Ignoring some components

. Finding out where events
end up in a program

. Storing information in the
interface

. Converting values stored in
text fields

The graphical user interface (GUI) you developed during the past two
hours can run on its own. Users can click buttons, fill text fields with text,
and resize the window. Sooner or later, even the least discriminating user
is going to be left wanting more. The GUI that a program offers has to
cause things to happen when a mouse-click or keyboard entry occurs.

These things become possible when your Java program can respond to
user events, which is called event handling, the activity you learn about dur-
ing this hour.

Getting Your Programs to Listen
A user event in Java is something that happens when a user performs an
action with the mouse, keyboard, or another input device.

Before you can receive events, you must learn how to make an object lis-
ten. Responding to user events requires the use of one or more
EventListener interfaces. Interfaces are a feature of object-oriented pro-
gramming in Java that enable a class to inherit behavior it would not be
able to employ otherwise. They’re like a contract agreement with other
classes that guarantee the class will contain specific methods.

An EventListener interface contains methods that receive user input of a
specific type.

Adding an EventListener interface requires two things. First, because the
listening classes are part of the java.awt.event package, you must make
them available with the following statement:

import java.awt.event.*;

HOUR 15
Responding to User Input

ptg7068951

202 HOUR 15: Responding to User Input

Second, the class must use the implements keyword to declare that it sup-
ports one or more listening interfaces. The following statement creates a
class that uses ActionListener, an interface for responding to button and
menu clicks:

public class Graph implements ActionListener {

EventListener interfaces enable a component of a GUI to generate user
events. Without one of the listeners in place, a component cannot do any-
thing that can be heard by other parts of a program. A program must
include a listener interface for each type of component to which it listens.
To have the program respond to a mouse-click on a button or the Enter key
being pressed in a text field, you must include the ActionListener inter-
face. To respond to the use of a choice list or check boxes, you need the
ItemListener interface.

When you require more than one interface in the same class, separate their
names with commas after the implements keyword, as in this code:

public class Graph3D implements ActionListener, MouseListener {
// ...

}

Setting Up Components to Be Heard
After you have implemented the interface needed for a particular compo-
nent, you must set that component to generate user events. The
ActionListener interface listens for action events, such as a button-click or
the press of the Enter key. To make a JButton object generate an event,
employ the addActionListener() method, as in the following:

JButton fireTorpedos = new JButton(“Fire torpedos”);
fireTorpedos.addActionListener(this);

This code creates the fireTorpedos button and calls the button’s
addActionListener() method. The this keyword used as an argument to
the addActionListener() method indicates the current object receives the
user event and handles it as needed.

Handling User Events
When a user event is generated by a component that has a listener, a
method is called automatically. The method must be found in the class
specified when the listener was attached to the component.

NOTE

The this keyword confuses a
lot of readers when they are
first introduced to it. this
refers to the object in which the
keyword appears. So, if you cre-
ate a LottoMadness class and
use this in a statement inside
that class, it refers to the
LottoMadness object executing
the code.

ptg7068951

Handling User Events 203

Each listener has different methods that are called to receive their events.
The ActionListener interface sends events to a method called
actionPerformed(). The following is a short example of an
actionPerformed() method:

public void actionPerformed(ActionEvent event) {
// method goes here

}

All action events sent in the program go to this method. If only one com-
ponent in a program can possibly send action events, you can put state-
ments in this method to handle the event. If more than one component can
send these events, you need to check the object sent to the method.

An ActionEvent object is sent to the actionPerformed() method. Several
different classes of objects represent the user events that can be sent in a
program. These classes have methods to determine which component
caused the event to happen. In the actionPerformed() method, if the
ActionEvent object is named event, you can identify the component with
the following statement:

String cmd = event.getActionCommand();

The getActionCommand() method sends back a string. If the component is
a button, the string is the label on the button. If it’s a text field, the string is
the text entered in the field. The getSource() method sends back the
object that caused the event.

You could use the following actionPerformed() method to receive events
from three components: a JButton object called start, a JTextField called
speed, and another JTextField called viscosity:

public void actionPerformed(ActionEvent event) {
Object source = event.getSource();
if (source == speed) {

// speed field caused event
} else if (source == viscosity) {

// viscosity caused event
} else {

// start caused event
}

}

You can call the getSource() method on all user events to identify the spe-
cific object that caused the event.

ptg7068951

204 HOUR 15: Responding to User Input

Check Box and Combo Box Events
Combo boxes and check boxes require the ItemListener interface. Call the
component’s addItemListener() method to make it generate these events.
The following statements create a check box called superSize that sends
out user events when selected or deselected:

JCheckBox superSize = new JCheckBox(“Super Size”, true);
superSize.addItemListener(this);

These events are received by the itemStateChanged() method, which
takes an ItemEvent object as an argument. To see which object caused the
event, you can call the event object’s getItem() method.

To determine whether a check box is selected or deselected, compare the
value returned by the getStateChange() method to the constants
ItemEvent.SELECTED and ItemEvent.DESELECTED. The following code is an
example for an ItemEvent object called item:

int status = item.getStateChange();
if (status == ItemEvent.SELECTED) {

// item was selected
}

To determine the value selected in a JComboBox object, use getItem() and
convert that value to a string, as in the following:

Object which = item.getItem();
String answer = which.toString();

Keyboard Events
When a program must react immediately once a key is pressed, it uses key-
board events and the KeyListener interface.

The first step is to register the component that receives key presses by call-
ing its addKeyListener() method. The argument of the method should be
the object that implements the KeyListener interface. If it is the current
class, use this as the argument.

An object that handles keyboard events must implement three methods:

. void keyPressed(KeyEvent)—A method called the moment a key is
pressed

. void keyReleased(KeyEvent)—A method called the moment a key
is released

ptg7068951

Handling User Events 205

. void keyTyped(KeyEvent)—A method called after a key has been
pressed and released

Each of these has a KeyEvent object as an argument, which has methods to
call to find out more about the event. Call the getKeyChar() method to
find out which key was pressed. This key is returned as a char value, and
it only can be used with letters, numbers, and punctuation.

To monitor any key on the keyboard, including Enter, Home, Page Up, and
Page Down, you can call getKeyCode() instead. This method returns an
integer value representing the key. You then can call getKeyText() with
that integer as an argument to receive a String object containing the name
of the key (such as Home, F1, and so on).

Listing 15.1 contains a Java application that draws the most recently pressed
key in a label by using the getKeyChar() method. The application imple-
ments the KeyListener interface, so there are keyTyped(), keyPressed(),
and keyReleased() methods in the class. The only one of these that does
anything is keyTyped() in Lines 22–25. Create a new Java file called
KeyViewer, enter the listing in NetBeans’ source editor, and save the file.

LISTING 15.1 The Full Text of KeyViewer.java
1: import javax.swing.*;
2: import java.awt.event.*;
3: import java.awt.*;
4:
5: public class KeyViewer extends JFrame implements KeyListener {
6: JTextField keyText = new JTextField(80);
7: JLabel keyLabel = new JLabel(“Press any key in the text field.”);
8:
9: KeyViewer() {

10: super(“KeyViewer”);
11: setLookAndFeel();
12: setSize(350, 100);
13: setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
14: keyText.addKeyListener(this);
15: BorderLayout bord = new BorderLayout();
16: setLayout(bord);
17: add(keyLabel, BorderLayout.NORTH);
18: add(keyText, BorderLayout.CENTER);
19: setVisible(true);
20: }
21:
22: public void keyTyped(KeyEvent input) {
23: char key = input.getKeyChar();
24: keyLabel.setText(“You pressed “ + key);
25: }

ptg7068951

206 HOUR 15: Responding to User Input

26:
27: public void keyPressed(KeyEvent txt) {
28: // do nothing
29: }
30:
31: public void keyReleased(KeyEvent txt) {
32: // do nothing
33: }
34:
35: private void setLookAndFeel() {
36: try {
37: UIManager.setLookAndFeel(
38: “com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel”
39:);
40: } catch (Exception exc) {
41: // ignore error
42: }
43: }
44:
45: public static void main(String[] arguments) {
46: KeyViewer frame = new KeyViewer();
47: }
48: }

When you run the application, it should resemble Figure 15.1.

LISTING 15.1 Continued

FIGURE 15.1
Handling keyboard events in a
program.

Enabling and Disabling Components
You might have seen a component in a program that appears shaded
instead of its normal appearance.

Shading indicates that users cannot do anything to the component because
it is disabled. Disabling and enabling components is accomplished with
the setEnabled() method of the component. A Boolean value is sent as an
argument to the method, so setEnabled(true) enables a component for
use, and setEnabled(false) disables it.

The following statements create buttons with the labels Previous, Next,
and Finish and disable the first button:

JButton previousButton = new JButton(“Previous”);
JButton nextButton = new JButton(“Next”);

ptg7068951

Completing a Graphical Application 207

JButton finishButton = new JButton(“Finish”);
previousButton.setEnabled(false);

This method is an effective way to prevent a component from sending a user
event when it shouldn’t. For example, if you’re writing a Java application that
collects a user’s address using text fields, you could disable a Save Address
button until the user provided a street address, city, state and ZIP code.

Completing a Graphical Application
To see how Swing’s event-handling classes work in a Java program, you
finish LottoMadness, the lottery simulation begun during Hour 14,
“Laying Out a User Interface.”

At this point, LottoMadness is just a GUI. You can click buttons and enter
text into text boxes, but nothing happens in response. In this workshop,
you create LottoEvent, a new class that receives user input, conducts lotto
drawings, and keeps track of the number of times you win. When the class
is complete, you add a few lines to LottoMadness so that it makes use of
LottoEvent. It often is convenient to divide Swing projects in this manner,
with the GUI in one class and the event-handling methods in another.

The purpose of this application is to assess the user’s chance of winning a
six-number lotto drawing in a lifetime. Figure 15.2 shows a screen capture
of the program as it runs.

FIGURE 15.2
Running the LottoMadness
application.

ptg7068951

208 HOUR 15: Responding to User Input

Instead of using probability to figure this problem out, the computer con-
ducts drawings in rapid succession and doesn’t stop until there’s a winner.
Because the 6-out-of-6 win is extremely unlikely, the program also reports
on any combination of three, four, or five winning numbers.

The interface includes 12 text fields for lotto numbers and two check boxes
labeled Quick Pick and Personal. Six text fields, disabled for input, are
used to display the winning numbers of each drawing. The other six text
fields are for the user’s choice of numbers. Selecting the Quick Pick box
chooses six random numbers for a user. Selecting Personal enables the user
to select desired numbers.

Three buttons control the activity of the program: Stop, Play, and Reset.
When the Play button is pressed, the program starts a thread called
playing and generates Lotto drawings.

Pressing the Stop button stops the thread, and pressing Reset clears all
fields so the user can start over. You learn about threads in Hour 19,
“Creating a Threaded Program.”

The LottoEvent class implements three interfaces: ActionListener,
ItemListener, and Runnable. The Runnable interface relates to threads
and is covered in Hour 19. The listeners are needed to listen to user events
generated by the application’s buttons and check boxes. The program does
not need to listen to any events related to the text fields because they are
used strictly to store the user’s choice of numbers. The user interface han-
dles this storage automatically.

The class requires the use of the main Swing package, javax.swing, and
Java’s event-handling package, java.awt.event.

The class has two instance variables:

. gui, a LottoMadness object

. playing, a Thread object used to conduct continuous lotto drawings

The gui variable is used to communicate with the LottoMadness object that
contains the program’s GUI. When you need to make a change to the inter-
face or retrieve a value from one of its text fields, you use the gui object’s
instance variables.

For example, the play instance variable of LottoMadness represents the
Play button. To disable this button in LottoEvent, you can use the follow-
ing statement:

gui.play.setEnabled(false);

ptg7068951

Completing a Graphical Application 209

You can use the next statement to retrieve the value of the JTextField
object got3:

String got3value = gui.got3.getText();

Listing 15.2 contains the full text of the LottoEvent class. Create a new
empty Java file called LottoEvent in NetBeans to hold the source code.

LISTING 15.2 The Full Text of LottoEvent.java
1: import javax.swing.*;
2: import java.awt.event.*;
3:
4: public class LottoEvent implements ItemListener, ActionListener,
5: Runnable {
6:
7: LottoMadness gui;
8: Thread playing;
9:
10: public LottoEvent(LottoMadness in) {
11: gui = in;
12: }
13:
14: public void actionPerformed(ActionEvent event) {
15: String command = event.getActionCommand();
16: if (command.equals(“Play”)) {
17: startPlaying();
18: }
19: if (command.equals(“Stop”)) {
20: stopPlaying();
21: }
22: if (command.equals(“Reset”)) {
23: clearAllFields();
24: }
25: }
26:
27: void startPlaying() {
28: playing = new Thread(this);
29: playing.start();
30: gui.play.setEnabled(false);
31: gui.stop.setEnabled(true);
32: gui.reset.setEnabled(false);
33: gui.quickpick.setEnabled(false);
34: gui.personal.setEnabled(false);
35: }
36:
37: void stopPlaying() {
38: gui.stop.setEnabled(false);
39: gui.play.setEnabled(true);
40: gui.reset.setEnabled(true);
41: gui.quickpick.setEnabled(true);
42: gui.personal.setEnabled(true);

ptg7068951

210 HOUR 15: Responding to User Input

43: playing = null;
44: }
45:
46: void clearAllFields() {
47: for (int i = 0; i < 6; i++) {
48: gui.numbers[i].setText(null);
49: gui.winners[i].setText(null);
50: }
51: gui.got3.setText(“0”);
52: gui.got4.setText(“0”);
53: gui.got5.setText(“0”);
54: gui.got6.setText(“0”);
55: gui.drawings.setText(“0”);
56: gui.years.setText(“0”);
57: }
58:
59: public void itemStateChanged(ItemEvent event) {
60: Object item = event.getItem();
61: if (item == gui.quickpick) {
62: for (int i = 0; i < 6; i++) {
63: int pick;
64: do {
65: pick = (int) Math.floor(Math.random() * 50 + 1);
66: } while (numberGone(pick, gui.numbers, i));
67: gui.numbers[i].setText(“” + pick);
68: }
69: } else {
70: for (int i = 0; i < 6; i++) {
71: gui.numbers[i].setText(null);
72: }
73: }
74: }
75:
76: void addOneToField(JTextField field) {
77: int num = Integer.parseInt(“0” + field.getText());
78: num++;
79: field.setText(“” + num);
80: }
81:
82: boolean numberGone(int num, JTextField[] pastNums, int count) {
83: for (int i = 0; i < count; i++) {
84: if (Integer.parseInt(pastNums[i].getText()) == num) {
85: return true;
86: }
87: }
88: return false;
89: }
90:
91: boolean matchedOne(JTextField win, JTextField[] allPicks) {
92: for (int i = 0; i < 6; i++) {
93: String winText = win.getText();

LISTING 15.2 Continued

ptg7068951

Completing a Graphical Application 211

94: if (winText.equals(allPicks[i].getText())) {
95: return true;
96: }
97: }
98: return false;
99: }
100:
101: public void run() {
102: Thread thisThread = Thread.currentThread();
103: while (playing == thisThread) {
104: addOneToField(gui.drawings);
105: int draw = Integer.parseInt(gui.drawings.getText());
106: float numYears = (float)draw / 104;
107: gui.years.setText(“” + numYears);
108:
109: int matches = 0;
110: for (int i = 0; i < 6; i++) {
111: int ball;
112: do {
113: ball = (int) Math.floor(Math.random() * 50 + 1);
114: } while (numberGone(ball, gui.winners, i));
115: gui.winners[i].setText(“” + ball);
116: if (matchedOne(gui.winners[i], gui.numbers)) {
117: matches++;
118: }
119: }
120: switch (matches) {
121: case 3:
122: addOneToField(gui.got3);
123: break;
124: case 4:
125: addOneToField(gui.got4);
126: break;
127: case 5:
128: addOneToField(gui.got5);
129: break;
130: case 6:
131: addOneToField(gui.got6);
132: gui.stop.setEnabled(false);
133: gui.play.setEnabled(true);
134: playing = null;
135: }
136: try {
137: Thread.sleep(100);
138: } catch (InterruptedException e) {
139: // do nothing
140: }
141: }
142: }
143: }

LISTING 15.2 Continued

ptg7068951

212 HOUR 15: Responding to User Input

The LottoEvent class has one constructor: LottoEvent(LottoMadness).
The LottoMadness object specified as an argument identifies the object that
is relying on LottoEvent to handle user events and conduct drawings.

The following methods are used in the class:

. The clearAllFields() method causes all text fields in the applica-
tion to be emptied out. This method is handled when the user clicks
the Reset button.

. The addOneToField() method converts a text field to an integer,
increments it by one, and converts it back into a text field. Because all
text fields are stored as strings, you have to take special steps to use
them in expressions.

. The numberGone() method takes three arguments—a single number
from a lotto drawing, an array that holds several JTextField objects,
and a count integer. This method makes sure that each number in a
drawing hasn’t been selected already in the same drawing.

. The matchedOne() method takes two arguments—a JTextField
object and an array of six JTextField objects. This method checks to
see whether one of the user’s numbers matches the numbers from
the current lotto drawing.

The application’s actionPerformed() method receives the action events
when the user clicks a button. The getActionCommand() method retrieves
the label of the button to determine which component was clicked.

Clicking the Play button causes the startPlaying() method to be called.
This method disables four components. Clicking Stop causes the
stopPlaying() method to be called, which enables every component
except for the Stop button.

The itemStateChanged() method receives user events triggered by the
selection of the Quick Pick or Personal check boxes. The getItem()
method sends back an Object that represents the check box that was
clicked. If it’s the Quick Pick check box, six random numbers from 1 to 50
are assigned to the user’s lotto numbers. Otherwise, the text fields that
hold the user’s numbers are cleared out.

The LottoEvent class uses numbers from 1 to 50 for each ball in the
lotto drawings. This is established in Line 113, which multiplies the
Math.random() method by 50, adds 1 to the total, and uses this as an argu-
ment to the Math.floor() method. The end result is a random integer
from 1 to 50. If you replace 50 with a different number here and on Line 65,

ptg7068951

Completing a Graphical Application 213

you could use LottoMadness for lottery contests that generate a wider or
smaller range of values.

The LottoMadness project lacks variables used to keep track of things such
as the number of drawings, winning counts, and lotto number text fields.
Instead, the interface stores values and displays them automatically.

To finish the project, reopen LottoMadness.java in NetBeans. You only
need to add six lines to make it work with the LottoEvent class.

First, add a new instance variable to hold a LottoEvent object:

LottoEvent lotto = new LottoEvent(this);

Next, in the LottoMadness() constructor, call the addItemListener() and
addActionListener() methods of each user interface component that can
receive user input:

// Add listeners
quickpick.addItemListener(lotto);
personal.addItemListener(lotto);
stop.addActionListener(lotto);
play.addActionListener(lotto);
reset.addActionListener(lotto);

Listing 15.3 contains the full text of LottoMadness.java after you have
made the changes. The lines you added are shaded—the rest is unchanged
from the previous hour.

LISTING 15.3 The Full Text of LottoMadness.java
1: import java.awt.*;
2: import javax.swing.*;
3:
4: public class LottoMadness extends JFrame {
5: LottoEvent lotto = new LottoEvent(this);
6:
7: // set up row 1
8: JPanel row1 = new JPanel();
9: ButtonGroup option = new ButtonGroup();
10: JCheckBox quickpick = new JCheckBox(“Quick Pick”, false);
11: JCheckBox personal = new JCheckBox(“Personal”, true);
12: // set up row 2
13: JPanel row2 = new JPanel();
14: JLabel numbersLabel = new JLabel(“Your picks: “, JLabel.RIGHT);
15: JTextField[] numbers = new JTextField[6];
16: JLabel winnersLabel = new JLabel(“Winners: “, JLabel.RIGHT);
17: JTextField[] winners = new JTextField[6];
18: // set up row 3
19: JPanel row3 = new JPanel();
20: JButton stop = new JButton(“Stop”);

ptg7068951

214 HOUR 15: Responding to User Input

21: JButton play = new JButton(“Play”);
22: JButton reset = new JButton(“Reset”);
23: // set up row 4
24: JPanel row4 = new JPanel();
25: JLabel got3Label = new JLabel(“3 of 6: “, JLabel.RIGHT);
26: JTextField got3 = new JTextField(“0”);
27: JLabel got4Label = new JLabel(“4 of 6: “, JLabel.RIGHT);
28: JTextField got4 = new JTextField(“0”);
29: JLabel got5Label = new JLabel(“5 of 6: “, JLabel.RIGHT);
30: JTextField got5 = new JTextField(“0”);
31: JLabel got6Label = new JLabel(“6 of 6: “, JLabel.RIGHT);
32: JTextField got6 = new JTextField(“0”, 10);
33: JLabel drawingsLabel = new JLabel(“Drawings: “, JLabel.RIGHT);
34: JTextField drawings = new JTextField(“0”);
35: JLabel yearsLabel = new JLabel(“Years: “, JLabel.RIGHT);
36: JTextField years = new JTextField(“0”);
37:
38: public LottoMadness() {
39: super(“Lotto Madness”);
40: setLookAndFeel();
41: setSize(550, 270);
42: setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
43: GridLayout layout = new GridLayout(5, 1, 10, 10);
44: setLayout(layout);
45:
46: // Add listeners
47: quickpick.addItemListener(lotto);
48: personal.addItemListener(lotto);
49: stop.addActionListener(lotto);
50: play.addActionListener(lotto);
51: reset.addActionListener(lotto);
52:
53: FlowLayout layout1 = new FlowLayout(FlowLayout.CENTER,
54: 10, 10);
55: option.add(quickpick);
56: option.add(personal);
57: row1.setLayout(layout1);
58: row1.add(quickpick);
59: row1.add(personal);
60: add(row1);
61:
62: GridLayout layout2 = new GridLayout(2, 7, 10, 10);
63: row2.setLayout(layout2);
64: row2.add(numbersLabel);
65: for (int i = 0; i < 6; i++) {
66: numbers[i] = new JTextField();
67: row2.add(numbers[i]);
68: }
69: row2.add(winnersLabel);
70: for (int i = 0; i < 6; i++) {
71: winners[i] = new JTextField();
72: winners[i].setEditable(false);

LISTING 15.3 Continued

ptg7068951

Completing a Graphical Application 215

73: row2.add(winners[i]);
74: }
75: add(row2);
76:
77: FlowLayout layout3 = new FlowLayout(FlowLayout.CENTER,
78: 10, 10);
79: row3.setLayout(layout3);
80: stop.setEnabled(false);
81: row3.add(stop);
82: row3.add(play);
83: row3.add(reset);
84: add(row3);
85:
86: GridLayout layout4 = new GridLayout(2, 3, 20, 10);
87: row4.setLayout(layout4);
88: row4.add(got3Label);
89: got3.setEditable(false);
90: row4.add(got3);
91: row4.add(got4Label);
92: got4.setEditable(false);
93: row4.add(got4);
94: row4.add(got5Label);
95: got5.setEditable(false);
96: row4.add(got5);
97: row4.add(got6Label);
98: got6.setEditable(false);
99: row4.add(got6);
100: row4.add(drawingsLabel);
101: drawings.setEditable(false);
102: row4.add(drawings);
103: row4.add(yearsLabel);
104: years.setEditable(false);
105: row4.add(years);
106: add(row4);
107:
108: setVisible(true);
109: }
110:
111: private void setLookAndFeel() {
112: try {
113: UIManager.setLookAndFeel(
114: “com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel”
115:);
116: } catch (Exception exc) {
117: // ignore error
118: }
119: }
120:
121: public static void main(String[] arguments) {
122: LottoMadness frame = new LottoMadness();
123: }
124: }

LISTING 15.3 Continued

ptg7068951

216 HOUR 15: Responding to User Input

After you add the shaded lines, you can run the application, which is capa-
ble of testing your lotto skills for thousands of years. As you might expect,
these lotteries are an exercise in futility. The chance of winning a 6-out-of-6
lotto drawing in a lifetime is extremely slim, even if you live as long as a
biblical figure.

Summary
You can create a professional-looking program with a modest amount of
programming by using Swing. Although the LottoMadness application is
longer than many of the examples you have worked in during the last 14
hours, half of the program was comprised of statements to build the inter-
face.

If you spend some time running the application, you become even more
bitter and envious about the good fortune of the people who win these six-
number lottery drawings.

My most recent run of the program indicates that I could blow $27,000 and
the best 266 years of my life buying tickets, only to win a handful of 4-out-
of-6 and 3-out-of-6 prizes. In comparison to those odds, the chance to make
your Java programming skills pay off is practically a sure thing.

NOTE

The book’s website at
www.java24hours.com contains
a link to an applet version of
the LottoMadness program. At
the time of this printing,
410,732,244 drawings have
been conducted, which equals
3.9 million years of twice-
weekly drawings. There have
been 6,364,880 3-out-of-6 win-
ners, 337,285 4-out-of-6 win-
ners, 6,476 5-out-of-6 winners,
and 51 6-out-of-6 winners
(roughly one out of every 8 mil-
lion drawings). The first person
to win this fictional lottery was
Bill Teer on August. 14, 2000,
more than four years after the
applet went online. His num-
bers were 3, 7, 1, 15, 34, and
43, and it only took him
241,225 drawings (2,319.47
years) to win.

www.java24hours.com

ptg7068951

Workshop 217

Q&A
Q. Do you need to do anything with the paint() method or repaint() to

indicate that a text field has been changed?

A. After the setText() method of a text component is used to change its
value, you don’t need to do anything else. Swing handles the updating
necessary to show the new value.

Q. Why do you often import a class and also one of its subclasses, as in
Listing 15.1 when you import java.awt.* and java.awt.event.*?
Could the first of these statements include the second?

A. Though the names of the java.awt and java.awt.event packages look
like they are related, there’s no such thing as inheritance for packages
in Java. One package cannot be a subpackage of another.

When you use an asterisk in an import statement, you are making all
the classes in a package available in a program.

The asterisk only works on classes, not packages. The most a single
import statement can load is the classes of a single package.

Q. Why is the actor Michael J. Fox identified by his middle initial?

A. There already was a Michael Fox in the Screen Actor’s Guild, forcing the
future Family Ties and Back to the Future star to choose another name
for his professional work. Michael Andrew Fox is his real name, but he
didn’t like the sound of Andrew or Andy Fox and Michael A. Fox sounded
like he was admiring his own good looks.

He settled on Michael J. Fox as an homage to the character actor
Michael J. Pollard.

The other Michael Fox was an actor who appeared on episodes of Perry
Mason, Burke’s Law, and numerous other TV shows and movies until his
death in 1996.

Workshop
After the LottoMadness program has soured you on games of chance, play a
game of skill by answering the following questions.

ptg7068951

218 HOUR 15: Responding to User Input

Quiz
1. Why are action events called by that name?

A. They occur in reaction to something else.

B. They indicate that some kind of action should be taken in response.

C. They honor cinematic adventurer Action Jackson.

2. What does this signify as the argument to an addActionListener()
method?

A. this listener should be used when an event occurs.

B. this event takes precedence over others.

C. this object handles the events.

3. Which component stores user input as integers?

A. JButton

B. JTextField or JTextArea

C. Neither A nor B

Answers
1. B. Action events include the click of a button and the selection of an

item from a pull-down menu.

2. C. The this keyword refers to the current object. If the name of an
object is used as an argument instead of the this statement, that
object would receive the events and be expected to handle them.

3. B. JTextField and JTextArea components store their values as text,
so you must convert their values before you can use them as integers,
floating-point numbers, or other nontext values.

Activities
If the main event of this hour didn’t provide enough action for your tastes,
interface with the following activities:

. Add a text field to the LottoMadness application that works in conjunc-
tion with the Thread.sleep() statement in the LottoEvent class to
slow down the rate that drawings are conducted.

. Modify the LottoMadness project so it draws five numbers from 1 to 90.

To see Java programs that implement these activities, visit the book’s website
at www.java24hours.com.

www.java24hours.com

ptg7068951

WHAT YOU’LL LEARN IN
THIS HOUR:

. Scrolling components hori-
zontally and vertically

. Accepting a range of
numeric input with sliders

. Monitoring user input on
sliders

. Creating image icons and
toolbars

Creating a graphical user interface (GUI) with Swing involves more than
learning how to use the different interface components, layout managers,
and event-handling methods. You also have to familiarize yourself with
everything that Swing offers.

More than 400 different classes make Swing one of the most extensive class
libraries in Java. Many of these classes can be implemented using the same
techniques you have learned during the preceding three hours—Swing
containers and components share superclasses with each other, which
gives them common behavior.

During this hour, you learn about additional components that you can use
in your Swing programs.

Scroll Panes
Components in a GUI are often bigger than the area available to display
them. To move from one part of the component to another, vertical and
horizontal scrollbars are used.

In Swing, you offer scrolling by adding a component to a scroll pane, a
container that is represented by the JScrollPane class.

You can create a scroll pane with the following constructors:

. JScrollPane()—Create a scroll pane with a horizontal and vertical
scrollbar that appear as needed.

. JScrollPane(int, int)—Create a scroll pane with the specified
vertical scrollbar and horizontal scrollbars.

HOUR 16
Building a Complex User Interface

ptg7068951

220 HOUR 16: Building a Complex User Interface

. JScrollPane(Component)—Create a scroll pane that contains the
specified user interface component.

. JScrollPane(Component, int, int)—Create a scroll pane with the
specified component, vertical scrollbar, and horizontal scrollbar.

The integer arguments to these constructors determine how scrollbars are
used in the pane. Use the following class variables as these arguments:

. JScrollPane.VERTICAL_SCROLLBAR_AS_NEEDED or
JScrollPane.HORIZONTAL_SCROLLBAR_AS_NEEDED

. JScrollPane.VERTICAL_SCROLLBAR_NEVER or
JScrollPane.HORIZONTAL_SCROLLBAR_NEVER

. JScrollPane.VERTICAL_SCROLLBAR_ALWAYS or
JScrollPane.HORIZONTAL_SCROLLBAR_ALWAYS

If you have created a scroll pane without a component in it, you can use
the pane’s add(Component) method to add components. After you have
finished setting up a scroll pane, it should be added to a container in place
of the component.

To see an application that includes a scroll pane, enter Listing 16.1 into a
new empty Java file named MailWriter and save the file.

LISTING 16.1 The Full Text of MailWriter.java
1: import javax.swing.*;
2: import java.awt.*;
3:
4: public class MailWriter extends JFrame {
5:
6: public MailWriter() {
7: super(“Write an E-Mail”);
8: setLookAndFeel();
9: setSize(370, 270);
10: setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11: FlowLayout flow = new FlowLayout(FlowLayout.RIGHT);
12: setLayout(flow);
13:
14: JPanel row1 = new JPanel();
15: JLabel toLabel = new JLabel(“To:”);
16: row1.add(toLabel);
17: JTextField to = new JTextField(24);
18: row1.add(to);
19: add(row1);
20:
21: JPanel row2 = new JPanel();

ptg7068951

Scroll Panes 221

22: JLabel subjectLabel = new JLabel(“Subject:”);
23: row2.add(subjectLabel);
24: JTextField subject = new JTextField(24);
25: row2.add(subject);
26: add(row2);
27:
28: JPanel row3 = new JPanel();
29: JLabel messageLabel = new JLabel(“Message:”);
30: row3.add(messageLabel);
31: JTextArea message = new JTextArea(4, 22);
32: message.setLineWrap(true);
33: message.setWrapStyleWord(true);
34: JScrollPane scroll = new JScrollPane(message,
35: JScrollPane.VERTICAL_SCROLLBAR_ALWAYS,
36: JScrollPane.HORIZONTAL_SCROLLBAR_NEVER);
37: row3.add(scroll);
38: add(row3);
39:
40: JPanel row4 = new JPanel();
41: JButton send = new JButton(“Send”);
42: row4.add(send);
43: add(row4);
44:
45: setVisible(true);
46: }
47:
48: private void setLookAndFeel() {
49: try {
50: UIManager.setLookAndFeel(
51: “com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel”
52:);
53: } catch (Exception exc) {
54: // ignore error
55: }
56: }
57:
58: public static void main(String[] arguments) {
59: MailWriter mail = new MailWriter();
60: }
61: }

When you run the application, you should see a window like the one in
Figure 16.1.

The MailWriter application is a GUI used to compose an email. There’s no
event-handling code in the program, so you can’t do anything with the
data entered in the form.

LISTING 16.1 Continued

ptg7068951

222 HOUR 16: Building a Complex User Interface

The text of an email is entered in a scrolling text area, which is implement-
ed by creating a text area and adding it to a scroll pane with the following
statements:

JTextArea message = new JTextArea(4, 22);
message.setLineWrap(true);
message.setWrapStyleWord(true);
JScrollPane scroll = new JScrollPane(message,

JScrollPane.VERTICAL_SCROLLBAR_ALWAYS,
JScrollPane.HORIZONTAL_SCROLLBAR_NEVER);

row3.add(scroll);

Sliders
The easiest way to collect numeric input from a user is with a slider, a com-
ponent that can be dragged from side to side or up and down. Sliders are
represented in Swing by the JSlider class.

Sliders enable a number to be chosen between minimum and maximum
values. These values can be displayed on a label that includes the mini-
mum value, maximum value, and intermediate values. An example you
create later is shown in Figure 16.2.

You can create a horizontal slider with one of the following constructors:

. JSlider()—Create a slider with a minimum of 0, maximum of 100,
and starting value of 50.

. JSlider(int, int)—Create a slider with the specified minimum
and maximum values.

. JSlider(int, int, int)—Create a slider with the specified mini-
mum, maximum, and starting values.

FIGURE 16.1
Displaying a scrolling text area in
an application.

FIGURE 16.2
Choosing a color using three slider
components.

ptg7068951

Change Listeners 223

To create a vertical slider, use a constructor with an additional first argu-
ment: the orientation of the slider. This argument should be the class vari-
able JSlider.VERTICAL or JSlider.HORIZONTAL.

The following statement creates a vertical slider for a number from 1 to
1,000:

JSlider guess = new JSlider(JSlider.VERTICAL, 1, 1000, 500);

This slider starts with the caret—the part of the component that selects a
number—at the 500 position.

To display a label for a slider, you must set up the information the label
will contain. Call the slider’s setMajorTickSpacing(int) and
setMinorTickSpacing(int) methods to determine how often a tick mark is
displayed on the label. Major ticks are displayed as a thicker line than minor
ticks.

After you have set up how often tick marks appear, call the slider’s
setPaintTicks(boolean) method with true as the argument. You also
can display the numeric value of each major tick by calling the slider’s
setPaintLabels(boolean) method with true.

Change Listeners
To monitor slider input, you must have a class that implements the
ChangeListener interface in the javax.swing.event package. This interface
includes only one method:

public void stateChanged(ChangeEvent event); {
// statements to handle the event

}

To register an object as a change listener, call the addChangeListener(Object)

method of the container that holds the slider. When the slider is moved, the lis-
tening object’s stateChanged() method is called.

This method is called with a ChangeEvent object that can identify the slider
component that changed in value. Call the object’s getSource() method
and cast the object to a JSlider, as in the following statement:

JSlider changedSlider = (JSlider) event.getSource();

In this example, event is the ChangeEvent object that is an argument to the
stateChanged() method.

ptg7068951

224 HOUR 16: Building a Complex User Interface

Change events occur throughout a slider’s movement. They begin when
the slider is first moved, and they don’t stop occurring until the slider has
been released. For this reason, you might not want to do anything in the
stateChanged() method until the slider has stopped moving.

To see if a slider is currently being moved around, call its
getValueIsAdjusting() method. This method returns true while move-
ment is taking place and false otherwise.

This technique is demonstrated in your next project, a Java application that
uses three sliders to choose a color. Colors are created in Java by using the
Color class in the java.awt package.

One way to create a Color object is to specify the amount of red, green,
and blue in the color. Each of these can be an integer from 0 to 255 with
255 representing the maximum amount of that color.

The following statement creates a Color object that represents the color
butterscotch:

Color butterscotch = new Color(255, 204, 128);

The red value used to create this Color object is 255, so it contains the max-
imum amount of red. It also contains a large amount of green and some
blue.

Listing 16.2 contains the ColorSliders application, which has three sliders,
three labels for the sliders, and a panel where the color is displayed. Create
a new empty Java file called ColorSliders, enter the text of the listing in
the source editor, and save the file.

LISTING 16.2 The Full Text of ColorSliders.java
1: import javax.swing.*;
2: import javax.swing.event.*;
3: import java.awt.*;
4:
5: public class ColorSliders extends JFrame implements ChangeListener {
6: ColorPanel canvas;
7: JSlider red;
8: JSlider green;
9: JSlider blue;
10:
11: public ColorSliders() {
12: super(“Color Slide”);
13: setLookAndFeel();
14: setSize(270, 300);
15: setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

ptg7068951

Change Listeners 225

16: setVisible(true);
17:
18: canvas = new ColorPanel();
19: red = new JSlider(0, 255, 255);
20: green = new JSlider(0, 255, 0);
21: blue = new JSlider(0, 255, 0);
22:
23: red.setMajorTickSpacing(50);
24: red.setMinorTickSpacing(10);
25: red.setPaintTicks(true);
26: red.setPaintLabels(true);
27: red.addChangeListener(this);
28:
29: green.setMajorTickSpacing(50);
30: green.setMinorTickSpacing(10);
31: green.setPaintTicks(true);
32: green.setPaintLabels(true);
33: green.addChangeListener(this);
34:
35: blue.setMajorTickSpacing(50);
36: blue.setMinorTickSpacing(10);
37: blue.setPaintTicks(true);
38: blue.setPaintLabels(true);
39: blue.addChangeListener(this);
40:
41: JLabel redLabel = new JLabel(“Red: “);
42: JLabel greenLabel = new JLabel(“Green: “);
43: JLabel blueLabel = new JLabel(“Blue: “);
44: GridLayout grid = new GridLayout(4, 1);
45: FlowLayout right = new FlowLayout(FlowLayout.RIGHT);
46: setLayout(grid);
47:
48: JPanel redPanel = new JPanel();
49: redPanel.setLayout(right);
50: redPanel.add(redLabel);
51: redPanel.add(red);
52: add(redPanel);
53:
54: JPanel greenPanel = new JPanel();
55: greenPanel.setLayout(right);
56: greenPanel.add(greenLabel);
57: greenPanel.add(green);
58: add(greenPanel);
59:
60: JPanel bluePanel = new JPanel();
61: bluePanel.setLayout(right);
62: bluePanel.add(blueLabel);
63: bluePanel.add(blue);
64: add(bluePanel);
65: add(canvas);
66:

LISTING 16.2 Continued

ptg7068951

226 HOUR 16: Building a Complex User Interface

67: setVisible(true);
68: }
69:
70: public void stateChanged(ChangeEvent event) {
71: JSlider source = (JSlider) event.getSource();
72: if (source.getValueIsAdjusting() != true) {
73: Color current = new Color(red.getValue(),

➥green.getValue(),
74: blue.getValue());
75: canvas.changeColor(current);
76: canvas.repaint();
77: }
78: }
79:
80: public Insets getInsets() {
81: Insets border = new Insets(45, 10, 10, 10);
82: return border;
83: }
84:
85: private void setLookAndFeel() {
86: try {
87: UIManager.setLookAndFeel(
88: “com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel”
89:);
90: } catch (Exception exc) {
91: // ignore error
92: }
93: }
94:
95: public static void main(String[] arguments) {
96: ColorSliders cs = new ColorSliders();
97: }
98: }
99:
100: class ColorPanel extends JPanel {
101: Color background;
102:
103: ColorPanel() {
104: background = Color.red;
105: }
106:
107: public void paintComponent(Graphics comp) {
108: Graphics2D comp2D = (Graphics2D) comp;
109: comp2D.setColor(background);
110: comp2D.fillRect(0, 0, getSize().width, getSize().height);
111: }
112:
113: void changeColor(Color newBackground) {
114: background = newBackground;
115: }
116: }

LISTING 16.2 Continued

ptg7068951

Using Image Icons and Toolbars 227

When you run the application, as shown earlier in Figure 16.2, a frame
contains three sliders that represent the amount of red, green, and blue in a
panel along the bottom edge of the frame.

Adjust the values of each slider to change the color that is displayed. In
Figure 16.2, the application is used to create North Texas Mean Green (red 50,
green 150, and blue 50). This shade inspires alumni of the University of North
Texas to leap to our feet at sporting events and make ferocious eagle-claw
hand gestures that turn visiting teams yellow (red 255, green 255, orange 0).

Using Image Icons and Toolbars
One of the easiest ways to improve the visual appeal of a GUI is to use
icons, small images used to identify buttons and other parts of an interface.

With many of the components in the Swing class library, you can label a
component with an image instead of text by using the ImageIcon class in
the javax.swing package.

You can create an ImageIcon from a file on your computer by calling the
ImageIcon(String) constructor method. The argument to the method is
either the name of the file or its location and name, as in these examples:

ImageIcon stopSign = new ImageIcon(“stopsign.gif”);
ImageIcon saveFile = new ImageIcon(“images/savefile.gif”);

The graphics file used to create the image icon must be in GIF, JPEG, or
PNG format. Most are in GIF format which is well suited to displaying
small graphics with a limited number of colors.

The ImageIcon constructor loads the entire image from the file immediately.

You can use image icons as labels and buttons by using the
JLabel(ImageIcon) and JButton(ImageIcon) constructor methods, as in
the following example:

ImageIcon siteLogo = new ImageIcon(“siteLogo.gif”);
JLabel logoLabel = new JLabel(siteLogo);
ImageIcon searchWeb = new ImageIcon(“searchGraphic.gif”);
JButton search = new JTextField(searchWeb);

Several components can have an icon and a text label. The following state-
ment creates a button with both:

JButton refresh = new JButton(“Refresh”,
“images/refreshIcon.gif”);

CAUTION

Although some operating sys-
tems use the \ character to
separate folders and filenames,
the ImageIcon constructor
requires the / character as a
separator.

ptg7068951

228 HOUR 16: Building a Complex User Interface

Image icons often are used in toolbars, containers that group several com-
ponents together into a row or column.

Toolbars, which are created by using the JToolBar class, can be designed so
that a user can move them from one part of a GUI to another. This process
is called docking, and these components are also called dockable toolbars.

You can create a toolbar with one of the following constructor methods:

. JToolBar()—Create a toolbar that lines up components in a horizon-
tal direction

. JToolBar(int)—Create a toolbar that lines up components in the
specified direction, which is either SwingConstants.HORIZONTAL or
SwingConstants.VERTICAL.

Components are added to a toolbar in the same way they are added to
other containers—the add(Component) method is called with the compo-
nent to be added.

For a toolbar to be dockable, it must be placed in a container that uses
BorderLayout as its layout manager. This layout arranges a container into
north, south, east, west, and center areas. When you are using a dockable
toolbar, however, the container only should use two of these: the center
and one directional area.

The toolbar should be added to the directional area. The following state-
ments create a vertical, dockable toolbar with three icon buttons:

BorderLayout border = new BorderLayout();
pane.setLayout(border);
JToolBar bar = new JToolBar(SwingConstants.VERTICAL);
ImageIcon play = new ImageIcon(“play.gif”);
JButton playButton = new JButton(play);
ImageIcon stop = new ImageIcon(“stop.gif”);
JButton stopButton = new JButton(stop);
ImageIcon pause = new ImageIcon(“pause.gif”);
JButton pauseButton = new JButton(pause);
bar.add(playButton);
bar.add(stopButton);
bar.add(pauseButton);
add(bar, BorderLayout.WEST);

The next project you undertake during this hour is Tool, a Java application
that includes image icons and a dockable toolbar around. Create an empty
Java file called Tool, enter Listing 16.3 in the file, and save the file.

ptg7068951

Using Image Icons and Toolbars 229

LISTING 16.3 The Full Text of Tool.java
1: import java.awt.*;
2: import java.awt.event.*;
3: import javax.swing.*;
4:
5: public class Tool extends JFrame {
6: public Tool() {
7: super(“Tool”);
8: setLookAndFeel();
9: setSize(370, 200);
10: setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11:
12: // build toolbar buttons
13: ImageIcon image1 = new ImageIcon(“newfile.gif”);
14: JButton button1 = new JButton(image1);
15: ImageIcon image2 = new ImageIcon(“openfile.gif”);
16: JButton button2 = new JButton(image2);
17: ImageIcon image3 = new ImageIcon(“savefile.gif”);
18: JButton button3 = new JButton(image3);
19:
20: // build toolbar
21: JToolBar bar = new JToolBar();
22: bar.add(button1);
23: bar.add(button2);
24: bar.add(button3);
25:
26: // build text area
27: JTextArea edit = new JTextArea(8, 40);
28: JScrollPane scroll = new JScrollPane(edit);
29:
30: // create frame
31: BorderLayout border = new BorderLayout();
32: setLayout(border);
33: add(“North”, bar);
34: add(“Center”, scroll);
35: setVisible(true);
36: }
37:
38: private void setLookAndFeel() {
39: try {
40: UIManager.setLookAndFeel(
41: “com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel”
42:);
43: } catch (Exception exc) {
44: // ignore error
45: }
46: }
47:
48: public static void main(String[] arguments) {
49: Tool frame = new Tool();
50: }
51: }

ptg7068951

230 HOUR 16: Building a Complex User Interface

The Tool application requires three graphics files that are used to create
the icons on the toolbar: newfile.gif, openfile.gif, and savefile.gif.
Download these files from the Hour 16 page on the book’s website at
www.java24hours.com and save them in the Java24 project folder (or the
folder you designated for your Java projects in NetBeans).

Figure 16.3 and Figure 16.4 show two different screenshots of this applica-
tion as it runs. The toolbar has been moved from its original location (see
Figure 16.3) to another edge of the interface (see Figure 16.4).

TIP

Having trouble finding this fold-
er? Start a new project in
NetBeans: Choose File, New
Project, category Java, project
type Java application, and then
click Next. The Project Location
text field should contain the
location of the folder where
these icons should be saved.

FIGURE 16.3
Using an application with a toolbar.

FIGURE 16.4
Docking a toolbar at a new
location.

Compile the application and try it out by moving the toolbar around. You
can move a toolbar by clicking its handle and dragging the toolbar to a dif-
ferent edge of the text area. When you release the toolbar, it is placed along
that edge and the text area moves over to make room for it.

Oracle offers a repository of icon graphics that you can use in your own
programs. The three icons used in this hour’s workshop are from that col-
lection. To view the graphics, visit http://java.sun.com/developer/
techDocs/hi/repository.

NOTE

You also can drag a dockable
toolbar off an interface entirely.
This causes a new window to
be opened that contains the
toolbar.

http://java.sun.com/developer/techDocs/hi/repository
http://java.sun.com/developer/techDocs/hi/repository
www.java24hours.com

ptg7068951

Summary 231

Summary
This is the last of four hours devoted to Swing, the part of the Java lan-
guage that supports GUI software.

Although Swing is by far the largest part of the Java class library, most of
the classes are used in similar ways. After you know how to create a com-
ponent, add a component to a container, apply a layout manager to a con-
tainer, and respond to user input, you can make use of many new Swing
classes as you explore the language.

ptg7068951

232 HOUR 16: Building a Complex User Interface

Q&A
Q. How can I find out about the rest of the Swing classes in the Java

class library?

A. On Oracle’s official Java site, the full documentation for the Java class
library is published at http://download.oracle.com/javase/7/docs/api.
You can see the classes that are included in javax.swing, java.awt,
and java.awt.event, the packages that are covered during the preced-
ing four hours. All Swing classes and interfaces are documented,
including their constructors, class variables, and instance variables.

Q. Why is a videogame about a barrel-tossing, princess-kidnapping ape
and an Italian plumber called Donkey Kong?

A. Donkey Kong was named by Shigeru Miyamoto, who created the game
for Nintendo as a coin-operated arcade game in 1981. Miyamoto was
under the mistaken impression that the word “donkey” meant “stupid”
in English, but by the time Nintendo’s American division learned of it
the name had stuck.

Miyamoto’s gorilla/princess/plumber love triangle was inspired by
Nintendo’s failed attempt to license Popeye for a videogame. Later
videogames established that the original Donkey Kong has become
Cranky Kong, an elderly bad-tempered ape who believes that an exces-
sive amount of processing power is devoted to current games com-
pared to his 8-bit heyday.

Workshop
No pane, no gain: Exercise some brain muscle by answering the following
questions about scroll panes, image icons, and other Swing features.

Quiz
1. What graphics file formats are supported by the ImageIcon class?

A. GIF

B. GIF and JPEG

C. GIF, PNG, and JPEG

http://download.oracle.com/javase/7/docs/api

ptg7068951

Workshop 233

2. What does a JSlider object’s getValueIsAdjusting() method
accomplish?

A. It determines whether the slider has been changed from its origi-
nal value.

B. It determines whether the slider is currently being changed in
value.

C. Not a lot; this method is a major disappointment to its parent
superclass.

3. The Swing library was named after a style of dance band jazz that was
popularized in the 1930s and revived in the 1990s. Which of the follow-
ing is not a real title of a song performed by a Swing musician?

A. “Cement Mixer (Put-ti, Put-ti)”

B. “Sussudio”

C. “Flat Foot Floogie (with the Floy Floy)”

Answers
1. C. PNG support in ImageIcon was added in Java 1.3.

2. B. The getValueIsAdjusting() method returns true while the slider is
being moved and false otherwise.

3. B. “Sussudio,” a hit song by Phil Collins in 1985, was five decades too
late for Swing. The other two songs are Swing hits by Slim Gaillard,
whose gift for gibberish also was evident in the songs “Boot-Ta-La-Za,”
“Ra-Da-Da-Da,” “Bingie-Bingie-Scootie,” and “Vout Oreenie.”

Activities
To see if you have got the swing of things, try the following activities:

. Create a GUI that includes a combo box in a scroll pane.

. Add event-handling to the MailWriter application that displays the con-
tents of the to, subject, and message components using
System.out.println() when the Send button is clicked.

To see Java programs that implement these activities, visit the book’s website
at www.java24hours.com.

www.java24hours.com

ptg7068951

This page intentionally left blank

ptg7068951

WHAT YOU’LL LEARN IN
THIS HOUR:

. Stopping and starting an
applet

. Putting an applet on a web
page

. Customizing an applet with
parameters on a web page

. Displaying web pages in an
application

Java has become successful as a general-purpose language that runs on
many distinct platforms, including cell phones, web servers, and Internet
appliances. When the language was introduced in the mid-1990s, it was
the first programming language that could run inside a web browser.

Applets are Java programs designed to run as part of a web page. When a
Java applet is encountered on a page, it is downloaded to the user’s com-
puter and begins running.

Programming applets is different than creating applications with the lan-
guage. Because applets must be downloaded from a page each time they
are run, they’re smaller than most applications to reduce download time.
Also, because applets run on the computer of the person using the applet,
they have security restrictions in place to prevent malicious or damaging
code from being run.

Standard Applet Methods
The first step in the creation of an applet is to make it a subclass of
JApplet, a class in the Swing package javax.swing. An applet is treated as
a visual window inside a web page, so JApplet is part of Swing alongside
buttons, scrollbars, and other components of a program’s user interface.

The applets you write inherit all the behavior and attributes they need to
be run as part of a web page. Before you begin writing any other state-
ments in your applets, they are able to interact with a web browser, load
and unload themselves, redraw their windows in response to changes in
the browser window, and handle other necessary tasks.

HOUR 17
Creating Interactive Web

Programs

ptg7068951

236 HOUR 17: Creating Interactive Web Programs

Applications begin running with the first statement inside the main()
block. There is no main() method in a Java applet, so there’s no set starting
place for the program. Instead, an applet has a group of standard methods
that are handled in response to specific events as the applet runs.

The following are the events that could prompt one of the applet methods
to be handled:

. The program is loaded for the first time, which causes the applet’s
init() and start() methods to be called.

. Something happens that requires the applet window to be redis-
played, which causes the applet’s paint() method to be called.

. The program is stopped by the browser, which calls the applet’s
stop() method.

. The program restarts after a stop, which calls start().

. The program is unloaded as it finishes running, which calls
destroy().

The following is an example of a bare-bones applet:

public class Skeleton extends javax.swing.JApplet {
// program will go here

}

Applet class files must be public because the JApplet class also is public.
(If your applet uses other class files of your own creation, they do not have
to be declared public.)

Your applet’s class inherits all the methods that are handled automatically
when needed: init(), paint(), start(), stop(), and destroy().
However, none of these methods do anything. If you want something to
happen, you must override these methods with new versions in your
applet.

Painting an Applet Window
The paint() method is used to display text and graphics within the applet
window. Whenever something needs to be displayed or redisplayed in the
applet, the paint() method handles the task. You also can force paint() to
be called by using the following statement in an applet:

repaint();

ptg7068951

Standard Applet Methods 237

The main time the paint() method is called is when something changes in
the browser or the operating system running the browser. For example, if a
user closes a window of another program that was in front of the browser,
the paint() method is called to redisplay everything in the applet.

The paint() method takes a single argument, a Graphics object from the
java.awt package:

public void paint(Graphics screen) {
Graphics2D screen2D = (Graphics2D) screen;
// display statements go here

}

The Graphics class represents a graphical context, an environment in which
something can be displayed. As you did with Swing applications, you
should cast this to a Graphics2D object from the java.awt package to use
Swing’s graphical capabilities.

Later this hour, you learn about drawString(), a method for displaying
text in the Graphics2D classes.

If you are using a Graphics or Graphics2D object in your applet, you
should add the following import statements before the class statement at
the beginning of the source file:

import java.awt.Graphics;
import java.awt.Graphics2D;

Alternatively, you can make all java.awt classes available by using the
wildcard character “*”:

import java.awt.*;

Initializing an Applet
The init() method is called once—and only once—when an applet is run.
It’s an ideal place to set up values for objects and variables that are needed
for the applet to run successfully. This method also is a good place to set
up fonts, colors, and the applet window’s background color. Here’s an
example:

public void init() {
FlowLayout flo = new FlowLayout();
setLayout(flo);
JButton run = new JButton(“Run”);
add(run);

}

ptg7068951

238 HOUR 17: Creating Interactive Web Programs

If you are going to use a variable in other methods, it should not be created
inside an init() method because it only exists within the scope of that
method. Create any variables you need to use throughout a class as
instance variables.

Starting and Stopping an Applet
When the applet program starts running, the start() method is called.
When a program first begins, the init() method is followed by the
start() method. After that, the start() method only is called again if the
applet stops execution at some point and is later restarted.

The stop() method is called when an applet stops execution. This event
can occur when a user leaves the web page containing the applet and con-
tinues to another page. It also can occur when the stop() method is called
directly in a program.

Destroying an Applet
The destroy() method is the opposite of the init() method. It is handled
just before an applet completely closes down and completes running.

Putting an Applet on a Web Page
Applets are placed on a web page by using HTML, the markup language
used to create web pages. HTML is a way to combine formatted text,
images, sound, and other elements together and present them in a web
browser. HTML uses markup commands called tags that are surrounded
by < and > marks, including for the display of images, <p> for the
insertion of a paragraph mark, and <h1> and </h1> to indicate the text that
they surround is a heading.

The performance of HTML tags can be affected by attributes that deter-
mine how they function. The src attribute of an img tag provides the name
of the image file that should be displayed, as in this example of HTML
markup:

This markup causes a web page to display the image stored in the file
graduation.jpg. One way to place applets on a web page is to use applet

tag and several attributes. The following HTML markup runs an applet on
a page:

ptg7068951

Creating an Applet 239

<applet code=”StripYahtzee.class” codebase=”javadir” height=”300”
width=”400”>
<p>Sorry, no dice ... this requires a Java-enabled browser.</p>
</applet>

The code attribute identifies the name of the applet’s class file. If more than
one class file is being used with an applet, code should refer to the class
that’s a subclass of the JApplet class.

The codebase applet contains the path of the folder or subfolder where the
applet and related files can be found. If there is no codebase attribute, all
files associated with the applet must be in the same folder as the web page
that contains the applet. In the preceding example, codebase indicates that
the StripYahtzee applet can be found in the javadir subfolder.

The height and width attributes designate the size of the applet window
on the web page in pixels. It must be big enough to handle the things you
are displaying in your applet.

In between the opening <applet> tag and the closing </applet> tag, you
can provide some HTML markup to display to web users whose browsers
either do not support Java or have Java turned off.

In the preceding example, the paragraph “Sorry, no dice…this requires a
Java-enabled browser” is displayed in place of the applet in browsers that
don’t run Java. You can put instructions here on how to download a Java-
enabled browser from Oracle at www.java.com. You also can include
hyperlinks and other HTML elements.

Another useful attribute, align, designates how an applet is displayed in
relation to the surrounding material on the page, including text and graph-
ics. The value align=”left” lines up an applet to the left of adjacent page
elements and align=”right” to the right.

Creating an Applet
This hour’s first project is an applet that displays the string “Saluton
mondo!”, the traditional Esperanto greeting that is becoming more tradi-
tional by the hour. You get a feel for how applets are structured by re-creat-
ing the Saluton application from Hour 2, “Writing Your First Program,” as
a program that can run on a web page.

Create a new empty Java file called SalutonApplet, enter the text from
Listing 17.1 into the file, and save the file.

www.java.com

ptg7068951

240 HOUR 17: Creating Interactive Web Programs

LISTING 17.1 The Full Text of SalutonApplet.java
1: import java.awt.*;
2:
3: public class SalutonApplet extends javax.swing.JApplet {
4: String greeting;
5:
6: public void init() {
7: greeting = “Saluton mondo!”;
8: }
9:

10: public void paint(Graphics screen) {
11: Graphics2D screen2D = (Graphics2D) screen;
12: screen2D.drawString(greeting, 25, 50);
13: }
14: }

The SalutonApplet program stores the string “Saluton mondo!” inside the
init() method in lines 6–8 and displays it in the applet window in line 12.
The applet does not need to use the start(), stop(), or destroy() meth-
ods, so they are not included in the program. You run the applet after
learning more about how it was coded.

Drawing in an Applet Window
Text is displayed in an applet window by using the drawString() method
of the Graphics2D class, which draws text in a user interface component.
The drawString() method is similar to the System.out.println() method
that you’ve been using to display text in applications.

The following three arguments are sent to drawString():

. The text to display, which can be several different strings and vari-
ables strung together with the + operator

. The x position in an (x,y) coordinate system, where the string should
be displayed

. The y position in an (x,y) coordinate system, where the string should
be displayed

The (x,y) coordinate system in an applet is used with several methods. It
begins with the (0,0) point in the upper-left corner of the applet window.
The x values count up as you move to the right and y values count up as
you move down.

ptg7068951

Creating an Applet

Testing the SalutonApplet Program
Java applets can’t be run like applications because they lack a main()
method.

Instead, to run an applet, you must add markup to a web page that con-
tains the applet. To create an example web page for SalutonApplet, create
a new web page in NetBeans by following these steps:

1. Choose File, New File. The New File dialog opens.

2. Choose Other from the Categories pane and HTML File from File
Types, then click Next. The New HTML File dialog opens.

3. Give the file the name SalutonApplet and click Finish.

NetBeans opens the source code editor with some default HTML markup.
Delete all the markup that’s been provided for you, enter Listing 17.2 into
the editor, and save the file.

LISTING 17.2 The Full Text of SalutonApplet.html
1: <html>
2: <head>
3: <title>Saluton Mondo!</title>
4: </head>
5: <body bgcolor=”#000000” text=”#FF00FF”>
6: <p>This is a Java applet.</p>
7: <applet
8: code=”SalutonApplet.class”
9: codebase=”..\\..\\build\\classes”
10: height=”150”
11: width=”300”
12: >
13: <p>You need a Java-enabled browser to see this.</p>
14: </applet>
15: </body>
16: </html>

The <applet> tag is defined in lines 7–14, but line 13 will be ignored in any
browser equipped to run Java.

After saving the file, you can view it in a web browser: In the Project pane
to the left of the source code editor, right-click the filename
SalutonApplet.html, and then choose View. The web page opens in your
computer’s default web browser, as shown in Figure 17.1.

ptg7068951

242 HOUR 17: Creating Interactive Web Programs

When you run the applet in a browser, you might be asked whether it’s
OK to run the program. Many web browsers must be configured to enable
Java programs before they run Java applets.

Java applets are run in current browsers by the Java Plug-in, an interpreter
from Oracle that supports the most up-to-date version of the language.

A plug-in is a program that works in conjunction with a web browser to
expand its functionality. Plug-ins handle a type of data that the browser
normally could not handle. Apple offers a plug-in to display QuickTime
movies, Macromedia distributes a plug-in to run Flash animation files, and
many other kinds of special content are supported in this manner.

The plug-in can be downloaded from Sun’s Java site at www.java.com.

Sending Parameters from a Web
Page
The functionality of an applet can be customized with the use of parame-
ters, settings stored in HTML markup that serve the same purpose as com-
mand-line arguments in applications.

Parameters are stored as part of the web page that contains an applet.
They’re created using the HTML tag param and its two attributes: name and
value. You can have more than one param tag with an applet, but all must
be placed between the opening <applet> and closing </applet> tags.
Here’s an applet tag that includes several parameters:

FIGURE 17.1
The SalutonApplet applet loaded
with Microsoft Internet Explorer.

TIP

NetBeans can test applets with-
out the necessity to create a
web page. With the applet’s
class file open in the source
editor, choose the menu com-
mand Run, Run File. The applet
is loaded by the appletviewer
tool, which is part of the Java
Development Kit (JDK).

www.java.com

ptg7068951

Handling Parameters in an Applet 243

<applet code=”ScrollingHeadline” height=”50” width=”400”>
<param name=”headline1” value=”Dewey defeats Truman”>
<param name=”headline2” value=”Stix nix hix pix”>
<param name=”headline3” value=”Man bites dog”>

</applet>

This markup could be used with an applet that scrolls news headlines
across a web page. Because news changes all the time, the only way to
design a program like that is through the use of parameters.

The name attribute give a parameter a name and value assigns it a value.

Receiving Parameters in the Applet
You access parameters in an applet by. calling the getParameter(String)
method of the applet—inherited from JApplet—with its name as the argu-
ment, as in this statement:

String display1 = getParameter(“headline1”);

The getParameter() method returns parameter values as strings, so they
must be converted to other types as needed. If you want to use a parame-
ter as an integer, you could use statements such as the following:

int speed;
String speedParam = getParameter(“speed”);
if (speedParam != null) {

speed = Integer.parseInt(speedParam);
}

This example sets the speed integer variable by using the speedParam
string. When you try to retrieve a parameter with getParameter() that
was not included on a web page with the param tag, it is sent as null,
which is the value of an empty string.

Handling Parameters in an Applet
The workshop for this hour takes a person’s weight and displays it under
several different units. The applet takes two parameters: a weight in
pounds and the name of the person who weighs that amount. The weight
is used to figure out the person’s weight in ounces, kilograms, and metric
tons, which are all displayed.

Create a new empty Java file called WeightScale, enter the text of
Listing 17.3 into the file, and save the file.

CAUTION

The Integer.parseInt(String)
method requires the use of
exceptions, a technique you
learn about during Hour 18,
“Handling Errors in a Program.”

ptg7068951

244 HOUR 17: Creating Interactive Web Programs

LISTING 17.3 The Full Text of WeightScale.java
1: import java.awt.*;
2:
3: public class WeightScale extends javax.swing.JApplet {
4: float lbs = 0F;
5: float ozs;
6: float kgs;
7: float metricTons;
8: String name = “somebody”;
9:

10: public void init() {
11: String lbsValue = getParameter(“weight”);
12: if (lbsValue != null) {
13: lbs = Float.valueOf(lbsValue);
14: }
15: String personValue = getParameter(“person”);
16: if (personValue != null) {
17: name = personValue;
18: }
19: ozs = (float) (lbs * 16);
20: kgs = (float) (lbs / 2.204623);
21: metricTons = (float) (lbs / 2204.623);
22: }
23:
24: public void paint(Graphics screen) {
25: Graphics2D screen2D = (Graphics2D) screen;
26: screen2D.drawString(“Studying the weight of “ + name, 5, 30);
27: screen2D.drawString(“In pounds: “ + lbs, 55, 50);
28: screen2D.drawString(“In ounces: “ + ozs, 55, 70);
29: screen2D.drawString(“In kilograms: “ + kgs, 55, 90);
30: screen2D.drawString(“In metric tons: “ + metricTons, 55, 110);
31: }
32: }

The init() method is where the two parameters are loaded into the applet.
Because parameters come from the web page as strings, the weight parame-
ter must be converted to a floating-point number to use it in mathematical
expressions. The Float object class includes a valueOf(String) that returns
a string’s value as a Float. This value is automatically unboxed to the float
variable type in Line 13.

Lines 19–21 are used to convert the lbs variable into different units of meas-
ure. Each statement has (float) in front of the conversion equation. This is
used to cast the result of the equation into a floating-point number.

The paint() method of the applet uses drawString() to display a line of
text. The paint() method has three arguments: the text to display, the x
position, and the y position where the text should be shown.

ptg7068951

Using the Object Tag 245

Before you can test the WeightScale applet, you must create a web page
that contains the applet. Create a new HTML file in NetBeans called
WeightScale. Enter Listing 17.4 into the file, and then open the newly cre-
ated web page in a browser—right-click WeightScale.html in the Project
pane and choose View.

LISTING 17.4 The Full Text of WeightScale.html
1: <applet code=”WeightScale.class” codebase=”..\\..\\build\\classes”
2: height=”170” width=”210”>
3: <param name=”person” value=”Konishiki”>
4: <param name=”weight” value=”605”>
5: </applet>

This demonstration uses Konishiki, an American-born sumo wrestling
champion who weighed 605 pounds when he competed, making him the
largest of the immodest, bikini-wearing behemoths. You can substitute
anyone whose weight is either exemplary or well-known. Figure 17.2
shows an example of output from the applet.

FIGURE 17.2
The WeightScale applet loaded
with Internet Explorer.

To make the applet display a different name along with a different value
for the weight parameter, you have to change the WeightScale.html file.
The applet itself continues to work correctly.

Using the Object Tag
The newest version of HTML, HTML5, has replaced the <applet> tag with
an <object> tag for loading Java applets, Flash programs, and other forms
of interactive content. This tag has height and width attributes just like

ptg7068951

246 HOUR 17: Creating Interactive Web Programs

<applet>. There’s also a type attribute that must be “application/
x-java-applet”, the designated MIME type of Java applets. (MIME types
categorize file formats that can be delivered over the Internet.) Here’s the
start to the formatting of an object:

<object type=”application/x-java-applet” height=”300” width=”400”>
</object>

The code and codebase of an applet are not designated as attributes.
Instead, parameters named code and codebase are placed within the open-
ing <object> tag and closing </object> tag.

The following HTML5 markup displays an applet:

<object type=”application/x-java-applet” height=”300” width=”400”>
<param name=”code” value=”StripYahtzee” />
<param name=”codebase” value=”javadir” />
<p>Sorry, no dice ... this requires a Java-enabled browser.</p>

</object>

Summary
Most of the hours in this book focus on applications, primarily because
most Java programmers today don’t do a lot of work designing applets for
the Web.

Applets are limited by a set of default security restrictions that make them
safe to be executed on user computers in a web browser. They can’t save
files to the computer, read files from the computer, list file folders, or create
pop-up windows that are not identified as Java applets, among other safe-
guards.

These restrictions can be overcome by signing an applet with a digital sig-
nature and asking a user to approve the applet. An alternative to deploy-
ing Java programs as applets is to use Java Web Start, a technology for
launching Java applications from a web browser.

ptg7068951

247Workshop

Q&A
Q. Is there a reason why the codebase attribute should be used in an

applet tag?

A. If all Java programs are grouped into their own subfolder using
codebase, this structure might improve the way a website is organized,
but there’s no other reason why using codebase is better than omitting
it. The choice is a matter of personal preference.

Q. Why don’t applets have a main() method?

A. Applets don’t use main() because they have a more complicated life
cycle than applications. An application starts, runs until its work is com-
plete, and exits. An applet can be started and stopped multiple times
in a browser as the page on which it is contained is displayed.

If a user uses the back button to leave the page and then the forwards
button to return, the applet’s start() method is called again. If a pop-
up window that obscures the applet is closed, the applet’s paint()
method is called.

The JApplet class was designed to make these more complex interac-
tions work inside a browser.

Q. Have the Washington Generals ever beaten the Harlem Globetrotters?

A. The Generals have beaten the Globetrotters seven times over the
decades, most recently in 1971. Playing in Martin, Tennessee, the
Generals won 100–99 on a shot by team owner Louis “Red” Klotz.

Although the Generals are known today for being patsies, they began in
1921 as the Philadelphia Sphas, a legitimate team that played in the
Eastern and American basketball leagues. The Sphas—an acronym for
South Philadelphia Hebrew Association—won 10 championships. Klotz
was a former Sphas player who bought the team and changed their
name to the Generals in 1952 when they became the permanent tour-
ing partner of Harlem’s famous team.

The 1971 victory ended a 2,495-game winning streak for the
Globetrotters.

Workshop
The following questions test your knowledge of applets.

ptg7068951

248 HOUR 17: Creating Interactive Web Programs

Quiz
1. What type of argument is used with the paint() method?

A. A Graphics object

B. A Graphics2D object

C. None

2. Which method is handled right before an applet finishes running?

A. decline()

B. destroy()

C. defenestrate()

3. Why can’t all variables needed in an applet be created inside the
init() method?

A. The scope of the variables would be limited to the method only.

B. Federal legislation prohibits it.

C. They can be created there without any problems.

Answers
1. A. The Graphics object keeps track of the behavior and attributes need-

ed to display things on-screen in the applet window. You might create a
Graphics2D object inside the method, but it isn’t sent as an argument.

2. B. The destroy() method can be used to free up resources used by
the applet.

3. A. Variables that are used in more than one method of a class should be
created right after the class statement but before any methods begin.

Activities
You can apply your applet programming knowledge with the following activities:

. Write an applet in which the text that is displayed moves each time the
applet window is repainted.

. Install the Java Plug-in with your preferred browser and try the applets
at www.javaonthebrain.com.

To see Java programs that implement these activities, visit the book’s website
at www.java24hours.com.

www.javaonthebrain.com
www.java24hours.com

ptg7068951

WHAT YOU’LL LEARN IN
THIS HOUR:

. How to respond to excep-
tions in your Java programs

. How to create methods
that ignore an exception,
leaving it for another class
to handle

. How to use methods that
cause exceptions

. How to create your own
exceptions

Errors, the bugs, blunders, and typos that prevent a program from running
correctly, are a natural part of the software development process.
“Natural” is probably the kindest word that’s ever been used to describe
them. In my own programming, when I can’t find the cause of an elusive
error, I use words that would make a gangsta rapper blush.

Some errors are flagged by the compiler and prevent you from creating a
class. Others are noted by the interpreter in response to a problem that
keeps it from running successfully. Java divided errors into two categories:

. Exceptions—Events that signal an unusual circumstance has taken
place as a program runs

. Errors—Events that signal the interpreter is having problems that
might be unrelated to your program

Errors normally aren’t something a Java program can recover from, so
they’re not the focus of this hour. You might have encountered an
OutOfMemoryError as you worked on Java programs; nothing can be done
to handle that kind of error. The program exits with the error.

Exceptions often can be dealt with in a way that keeps a program running
properly.

Exceptions
Although you are just learning about them now, you have probably
become well-acquainted with exceptions during the last 17 previous hours.
These errors turn up when you write a Java program that compiles suc-
cessfully but encounters a problem as it runs.

HOUR 18
Handling Errors in a Program

ptg7068951

250 HOUR 18: Handling Errors in a Program

For example, a common programming mistake is to refer to an element of
an array that doesn’t exist, as in the following statements:

String[] greek = { “Alpha”, “Beta”, “Gamma” };
System.out.println(greek[3]);

The String array greek has three elements. Because the first element of an
array is numbered 0 rather than 1, the first element is greek[0], the second
greek[1], and the third greek[2]. So the statement attempting to display
greek[3] is erroneous. The preceding statements compile successfully, but
when you run the program, the Java interpreter halts with a message such
as the following:

Output ▼

Exception in thread “main” java.lang.ArrayIndexOutBoundsException: 3
at SampleProgram.main(SampleProgram.java:4)

This message indicates that the application has generated an exception,
which the interpreter noted by displaying an error message and stopping
the program.

The error message refers to a class called ArrayIndexOutOfBoundsException
in the java.lang package. This class is an exception, an object that represents
an exceptional circumstance that has taken place in a Java program.

When a Java class encounters an exception, it alerts users of the class to the
error. In this example, the user of the class is the Java interpreter.

All exceptions are subclasses of Exception in the java.lang package. The
ArrayIndexOutOfBoundsException does what you would expect—it reports
that an array element has been accessed outside the array’s boundaries.

There are hundreds of exceptions in Java. Many such as the array excep-
tion indicate a problem that can be fixed with a programming change.
These are comparable to compiler errors—after you correct the situation,
you don’t have to concern yourself with the exception any longer.

Other exceptions must be dealt with every time a program runs by using
five new keywords: try, catch, finally, throw, and throws.

Catching Exceptions in a try-catch Block
Up to this point, you have dealt with exceptions by fixing the problem that
caused them. There are times you can’t deal with an exception in that man-
ner and must handle the issue within a Java class.

NOTE

Two terms are used to describe
this process: throw and catch.
Objects throw exceptions to
alert others that they have
occurred. These exceptions are
caught by other objects or the
Java interpreter.

ptg7068951

Exceptions 251

As an introduction to why this is useful, enter the short Java application in
Listing 18.1 in a new empty Java file called Calculator and save the file.

LISTING 18.1 The Full Text of Calculator.java
1: public class Calculator {
2: public static void main(String[] arguments) {
3: float sum = 0;
4: for (int i = 0; i < arguments.length; i++) {
5: sum = sum + Float.parseFloat(arguments[i]);
6: }
7: System.out.println(“Those numbers add up to “ + sum);
8: }
9: }

The Calculator application takes one or more numbers as command-line
arguments, adds them up, and displays the total.

Because all command-line arguments are represented by strings in a Java
application, the program must convert them into floating-point numbers
before adding them together. The Float.parseFloat() class method in
Line 5 takes care of this, adding the converted number to a variable named
sum.

Before running the application with the following command-line
arguments, which can be set in NetBeans with the Run, Set Project
Configuration, Customize command: 8 6 7 5 3 0 9. Choose Run, Run
Main Project to run the application and see the output in Figure 18.1.

FIGURE 18.1
The output of the Calculator
application.

Run the program several times with different numbers as arguments. It
should handle them successfully, which might make you wonder what this
has to do with exceptions.

To see the relevance, change the Calculator application’s command-line
arguments to 1 3 5x.

The third argument contains a typo—there shouldn’t be an x after the
number 5. The Calculator application has no way to know this is a mis-
take, so it tries to add 5x to the other numbers, causing the following
exception to be displayed:

ptg7068951

252 HOUR 18: Handling Errors in a Program

Output ▼

Exception in thread “main” java.lang.NumberFormatException: For input
string: “5x” at sun.misc.FloatingDecimal.readJavaFormatString
(FloatingDecimal.java:1224)

at java.lang.Float.parseFloat(Float.java:422)
at Calculator.main(Calculator.java:5)

This message can be informative to a programmer, but it’s not something
you’d want a user to see. Java programs can take care of their own excep-
tions by using a try-catch block statement, which takes the following form:

try {
// statements that might cause the exception

} catch (Exception e) {
// what to do when the exception occurs

}

A try-catch block must be used on any exception that you want a method
of a class to handle. The Exception object that appears in the catch state-
ment should be one of three things:

. The class of the exception that might occur

. More than one class of exception, separated by | characters

. A superclass of several different exceptions that might occur

The try section of the try-catch block contains the statement (or state-
ments) that might throw an exception. In the Calculator application, the
call to the Float.parseFloat(String) method in Line 5 of Listing 18.1
throws a NumberFormatException whenever it is used with a string argu-
ment that can’t be converted to a floating-point value.

To improve the Calculator application so that it never stops running with
this kind of error, you can use a try-catch block.

Create a new empty Java file called NewCalculator and enter the text of
Listing 18.2.

LISTING 18.2 The Full Text of NewCalculator.java
1: public class NewCalculator {
2: public static void main(String[] arguments) {
3: float sum = 0;
4: for (int i = 0; i < arguments.length; i++) {
5: try {
6: sum = sum + Float.parseFloat(arguments[i]);
7: } catch (NumberFormatException e) {
8: System.out.println(arguments[i] + “ is not a

➥number.”);

ptg7068951

Exceptions 253

9: }
10: }
11: System.out.println(“Those numbers add up to “ + sum);
12: }
13: }

After you save the application, run it with the command-line argument
1 3 5x and you see the output shown in Figure 18.2.

Listing 18.2 Continued

FIGURE 18.2
The output of the NewCalculator
application.

The try-catch block in Lines 5–9 deals with NumberFormatException
errors thrown by Float.parseFloat(). These exceptions are caught within
the NewCalculator class, which displays an error message for any argu-
ment that is not a number. Because the exception is handled within the
class, the Java interpreter does not display an error. You can often deal
with problems related to user input and other unexpected data by using
try-catch blocks.

Catching Several Different Exceptions
A try-catch block can be used to handle several different kinds of excep-
tions, even if they are thrown by different statements.

One way to handle multiple classes of exceptions is to devote a catch
block to each one, as in this code:

String textValue = “35”;
int value;
try {

value = Integer.parseInt(textValue);
catch (NumberFormatException exc) {

// code to handle exception
} catch (Arithmetic Exception exc) {

// code to handle exception
}

ptg7068951

254 HOUR 18: Handling Errors in a Program

As of Java 7, you also can handle multiple exceptions in the same catch
block by separating them with pipe (|) characters and ending the list with a
name for the exception variable. Here’s an example:

try {
value = Integer.parseInt(textValue);

catch (NumberFormatException | Arithmetic Exception exc) {
// code to handle exceptions

}

If a NumberFormatException or ArithmeticException is caught, it will be
assigned to the exc variable.

Listing 18.3 contains an application called NumberDivider that takes two
integer arguments from the command-line and uses them in a division
expression.

This application must be able to deal with two potential problems in user
input:

. Nonnumeric arguments

. Division by zero

Create a new empty Java file for NumberDivider and enter the text of Listing
18.3 into the source editor.

LISTING 18.3 The Full Text of NumberDivider.java
1: public class NumberDivider {
2: public static void main(String[] arguments) {
3: if (arguments.length == 2) {
4: int result = 0;
5: try {
6: result = Integer.parseInt(arguments[0]) /
7: Integer.parseInt(arguments[1]);
8: System.out.println(arguments[0] + “ divided by “ +
9: arguments[1] + “ equals “ + result);
10: } catch (NumberFormatException e) {
11: System.out.println(“Both arguments must be numbers.”);
12: } catch (ArithmeticException e) {
13: System.out.println(“You cannot divide by zero.”);
14: }
15: }
16: }
17: }

ptg7068951

Exceptions 255

Using command-line arguments to specify two arguments, you can run it
with integers, floating-point numbers, and nonnumeric arguments.

The if statement in Line 3 checks to make sure that two arguments are sent
to the application. If not, the program exits without displaying anything.

The NumberDivider application performs integer division, so the result is
an integer. In integer division, 5 divided by 2 equals 2, not 2.5.

If you use a floating-point or nonnumeric argument, a NumberFormat
Exception is thrown by Lines 6–7 and caught by Lines 10–11.

If you use an integer as the first argument and a zero as the second argument,
a ArithmeticExpression is thrown in Lines 6–7 and caught by Lines 12–13.

Handling Something After an Exception
When you are dealing with multiple exceptions by using try and catch,
there are times when you want the program to do something at the end of
the block whether an exception occurred or not.

You can handle this by using a try-catch-finally block, which takes the
following form:

try {
// statements that might cause the exception

} catch (Exception e) {
// what to do when the exception occurs

} finally {
// statements to execute no matter what

}

The statement or statements within the finally section of the block is exe-
cuted after everything else in the block, even if an exception occurs.

One place this is useful is in a program that reads data from a file on disk,
which you do in Hour 20, “Reading and Writing Files.” There are several
ways an exception can occur when you are accessing data—the file might
not exist, a disk error could occur, and so on. If the statements to read the
disk are in a try section and errors are handled in a catch section, you can
close the file in the finally section. This makes sure that the file is closed
whether or not an exception is thrown as it is read.

ptg7068951

256 HOUR 18: Handling Errors in a Program

Throwing Exceptions
When you call a method of another class, that class can control how the
method is used by throwing exceptions.

As you make use of the classes in the Java class library, the compiler often
displays a message such as the following:

Output ▼

NetReader.java:14: unreported exception java.net.MalformedURLException;
must be caught or declared to be thrown

Whenever you see an error stating that an exception “must be caught or
declared to be thrown,” it indicates the method you are trying to use
throws an exception.

Any class that calls these methods, such as an application that you write,
must do one of the following things:

. Handle the exception with a try-catch block.

. Throw the exception.

. Handle the exception with a try-catch block and then throw it.

Up to this point in the hour, you have seen how to handle exceptions. If
you would like to throw an exception after handling it, you can use a
throw statement followed by the exception object to throw.

The following statements handle a NumberFormatException error in a
catch block, and then throw the exception:

try {
principal = Float.parseFloat(loanText) * 1.1F;

} catch (NumberFormatException e) {
System.out.println(arguments[i] + “ is not a number.”);
throw e;

}

This rewritten code handles all exceptions that could be generated in the
try block and throws them:

try {
principal = Float.parseFloat(loanText) * 1.1F;

} catch (Exception e) {
System.out.println(“Error “ + e.getMessage());
throw e;

}

ptg7068951

Throwing Exceptions 257

Exception is the parent of all exception subclasses. A catch statement will
catch the class and any subclass below it in the class hierarchy.

When you throw an exception with throw, it generally means you have not
done everything that needs to be done to take care of the exception.

An example of where this might be useful: Consider a hypothetical pro-
gram called CreditCardChecker, an application that verifies credit card
purchases. This application uses a class called CheckDatabase, which has
the following job:

1. Make a connection to the credit card lender’s computer.

2. Ask that computer if the customer’s credit card number is valid.

3. Ask the computer if the customer has enough credit to make the
purchase.

As the CheckDatabase class is doing its job, what happens if the credit card
lender’s computer doesn’t answer the phone at all? This kind of error is
exactly the kind of thing that the try-catch block was designed for, and it
is used within CheckDatabase to handle connection errors.

If the CheckDatabase class handles this error by itself, the
CreditCardChecker application doesn’t know that the exception took place
at all. This isn’t a good idea—the application should know when a connec-
tion cannot be made so it can report this to the person using the applica-
tion.

One way to notify the CreditCardChecker application is for
CheckDatabase to catch the exception in a catch block, and then throw it
again with a throw statement. The exception is thrown in CheckDatabase,
which must then deal with it like any other exception.

Exception handling is a way that classes can communicate with each other
in the event of an error or other unusual circumstance.

When using throw in a catch block that catches a parent class, such as
Exception, throwing the exception throws that class. This loses some detail
of what kind of error occurred, because a subclass such as
NumberFormatException tells you a lot more about the problem than sim-
ply the Exception class.

Java 7 offers a new way to keep this detail: the final keyword in a catch
statement.

ptg7068951

258 HOUR 18: Handling Errors in a Program

try {
principal = Float.parseFloat(loanText) * 1.1F;

} catch (final Exception e) {
System.out.println(“Error “ + e.getMessage());
throw e;

}

That final keyword in catch causes throw to behave differently. The spe-
cific class that was caught is thrown.

Ignoring Exceptions
The last technique that is covered this hour is how to ignore an exception
completely. A method in a class can ignore exceptions by using a throws
clause as part of the method definition.

The following method throws a MalformedURLException, an error that can
occur when you are working with web addresses in a Java program:

public loadURL(String address) throws MalformedURLException {
URL page = new URL(address);
loadWebPage(page);

}

The second statement in this example creates a URL object, which repre-
sents an address on the Web. The constructor method of the URL class
throws a MalformedURLException to indicate that an invalid address is
used, so no object can be constructed. The following statement causes one
of these exceptions to be thrown:

URL source = new URL(“http:www.java24hours.com”);

The string http:www.java24hours.com is not a valid URL. It’s missing
some punctuation—two slash characters (//) after the colon.

Because the loadURL() method has been declared to throw
MalformedURLException errors, it does not have to deal with them inside
the method. The responsibility for catching this exception falls to any
method that calls the loadURL() method.

Throwing and Catching Exceptions
For the next project, you create a class that uses exceptions to tell another
class about an error that has taken place.

http:www.java24hours.com

ptg7068951

Throwing and Catching Exceptions 259

The classes in this project are HomePage, a class that represents a personal
home page on the Web, and PageCatalog, an application that catalogs
these pages.

Enter the text of Listing 18.4 in a new empty Java file called HomePage.

LISTING 18.4 The Full Text of HomePage.java
1: import java.net.*;
2:
3: public class HomePage {
4: String owner;
5: URL address;
6: String category = “none”;
7:
8: public HomePage(String inOwner, String inAddress)
9: throws MalformedURLException {
10:
11: owner = inOwner;
12: address = new URL(inAddress);
13: }
14:
15: public HomePage(String inOwner, String inAddress, String inCategory)
16: throws MalformedURLException {
17:
18: this(inOwner, inAddress);
19: category = inCategory;
20: }
21: }

You can use the compiled HomePage class in other programs. This class
represents personal web pages on the Web. It has three instance variables:
address, a URL object representing the address of the page; owner, the person
who owns the page; and category, a short comment describing the page’s
primary subject matter.

Like any class that creates URL objects, HomePage must either deal with
MalformedURLException errors in a try-catch block or declare that it is
ignoring these errors.

The class takes the latter course, as shown in Lines 8–9 and Lines 15–16. By
using throws in the two constructor methods, HomePage removes the need
to deal with MalformedURLException errors in any way.

To create an application that uses the HomePage class, return to NetBeans
and create an empty Java file called PageCatalog that contains the text of
Listing 18.5.

ptg7068951

260 HOUR 18: Handling Errors in a Program

LISTING 18.5 The Full Text of PageCatalog.java
1: import java.net.*;
2:
3: public class PageCatalog {
4: public static void main(String[] arguments) {
5: HomePage[] catalog = new HomePage[5];
6: try {
7: catalog[0] = new HomePage(“Mark Evanier”,
8: “http://www.newsfromme.com”, “comic books”);
9: catalog[1] = new HomePage(“Todd Smith”,
10: “http://www.sharkbitten.com”, “music”);
11: catalog[2] = new HomePage(“Rogers Cadenhead”,
12: “http://workbench.cadenhead.org”, “programming”);
13: catalog[3] = new HomePage(“Juan Cole”,
14: “http://www.juancole.com”, “politics”);
15: catalog[4] = new HomePage(“Rafe Colburn”,
16: “www.rc3.org”);
17: for (int i = 0; i < catalog.length; i++) {
18: System.out.println(catalog[i].owner + “: “ +
19: catalog[i].address + “ — “ +
20: catalog[i].category);
21: }
22: } catch (MalformedURLException e) {
23: System.out.println(“Error: “ + e.getMessage());
24: }
25: }
26: }

When you run the compiled application, the following output is displayed:

Output ▼

Error: no protocol: www.rc3.org

The PageCatalog application creates an array of HomePage objects and then
displays the contents of the array. Each HomePage object is created using up
to three arguments:

. The name of the page’s owner

. The address of the page (as a String, not a URL)

. The category of the page

The third argument is optional, and it is not used in Lines 15–16.

The constructor methods of the HomePage class throw
MalformedURLException errors when they receive a string that cannot be
converted into a valid URL object. These exceptions are handled in the
PageCatalog application by using a try-catch block.

www.rc3.org

ptg7068951

Summary 261

To correct the problem causing the “no protocol” error, edit Line 16 so the
string begins with the text http:// like the other web addresses in Lines
7–14. When you run the program again, you see the output shown in
Figure 18.3.

FIGURE 18.3
The output of the PageCatalog
application.

Summary
Now that you have put Java’s exception handling techniques to use, the
subject of errors ought to be a bit more popular than it was at the begin-
ning of the hour.

You can do a lot with these techniques:

. Catch an exception and deal with it.

. Ignore an exception, leaving it for another class or the Java inter-
preter to take care of.

. Catch several different exceptions in the same try-catch block.

. Throw your own exception.

Managing exceptions in your Java programs makes them more reliable,
more versatile, and easier to use because you don’t display any cryptic
error messages to people who are running your software.

ptg7068951

262 HOUR 18: Handling Errors in a Program

Q&A
Q. Is it possible to create your own exceptions?

A. You can create your own exceptions easily by making them a subclass
of an existing exception, such as Exception, the superclass of all
exceptions. In a subclass of Exception, there are only two methods you
might want to override: Exception() with no arguments and
Exception() with a String as an argument. In the latter, the string
should be a message describing the error that has occurred.

Q. Why doesn’t this hour cover how to throw and catch errors in addition
to exceptions?

A. Java divides problems into Errors and Exceptions because they differ
in severity. Exceptions are less severe, so they are something that
should be dealt with in your programs using try-catch or throws in the
method declaration. Errors, on the other hand, are more serious and
can’t be dealt with adequately in a program.

Two examples of these errors are stack overflows and out-of-memory
errors. These can cause the Java interpreter to crash, and there’s no
way you can fix them in your own program as the interpreter runs it.

Q. What is the oldest comic strip that’s still running in newspapers?

A. Katzenjammer Kids, which was created by Rudolph Dirks in 1897 and is
still offered today by King Features Syndicate. The strip was started
only two years after the first comic strip, The Yellow Kid, and is the first
to use speech balloons.

Dirks, a German immigrant to the United States, was inspired to create
the rebellious kids Hans and Fritz by a children’s story from his native
country. He quit the strip in 1912 in a contractual dispute and was suc-
ceeded by Harold Knerr, who wrote and drew it until 1949. There have
been five subsequent cartoonists working on it. Hy Eisman has been
doing it since 1986.

The word katzenjammer literally means “the wailing of cats” in German,
but it’s more often used to describe a hangover.

ptg7068951

Workshop 263

Workshop
Although this hour is literally filled with errors, see if you can answer the fol-
lowing questions about them without making any errors of your own.

Quiz
1. How many exceptions can a single catch statement handle?

A. Only one.

B. Several different exceptions.

C. This answer intentionally left blank.

2. When are the statements inside a finally section be run?

A. After a try-catch block has ended with an exception

B. After a try-catch block has ended without an exception

C. Both

3. With all this talk about throwing and catching, what do the Texas
Rangers need to do in the off season?

A. Get more starting pitching.

B. Sign a left-handed power-hitting outfielder who can reach the
short porch in right.

C. Bring in new middle relievers.

Answers
1. B. An Exception object in the catch statement can handle all excep-

tions of its own class and its superclasses.

2. C. The statement (or statements) in a finally section always are exe-
cuted after the rest of a try-catch block, whether an exception has
occurred.

3. A. Every answer is correct, but A is more correct than the others and
will probably be correct for the next 30 years.

ptg7068951

264 HOUR 18: Handling Errors in a Program

Activities
To see whether you are an exceptional Java programmer, try to make as few
errors as possible in the following activities:

. Modify the NumberDivider application so that it throws any exceptions
that it catches and run the program to see what happens.

. There’s a try-catch block in the LottoEvent class you created in Hour
15, “Responding to User Input.” Use this block as a guide to create
your own Sleep class, which handles InterruptedException so other
classes such as LottoEvent don’t need to deal with them.

To see Java programs that implement these activities, visit the book’s website
at www.java24hours.com.

www.java24hours.com

ptg7068951

WHAT YOU’LL LEARN IN
THIS HOUR:

. Using an interface with a
program

. Creating threads

. Starting, stopping, and
pausing threads

. Catching errors

A computer term used often to describe the hectic pace of daily life is
multitasking, which means to do more than one thing at once—such as
browsing the Web at your desk while participating in a conference call and
doing butt crunch exercises. A multitasking computer is one that can run
more than one program at a time.

One sophisticated feature of the Java language is the ability to write pro-
grams that can multitask, which is made possible through a class of objects
called threads.

Threads
In a Java program, each of the simultaneous tasks the computer handles is
called a thread and the overall process is called multithreading. Threading is
useful in animation and many other programs.

Threads are a way to organize a program so that it does more than one
thing at a time. Each task that must occur simultaneously is placed in its
own thread, and this often is accomplished by implementing each task as a
separate class.

Threads are represented by the Thread class and the Runnable interface,
which are both part of the java.lang package of classes. Because they
belong to this package, you don’t have to use an import statement to make
them available in your programs.

One of the simplest uses of the Thread class is to slow down how fast a
program does something.

HOUR 19
Creating a Threaded Program

ptg7068951

266 HOUR 19: Creating a Threaded Program

Slowing Down a Program
The Thread class has a sleep() method that you can call in any program
that should stop running for a short period of time. You often see this tech-
nique used in a program that features animation because it prevents images
from being displayed faster than the Java interpreter can handle them.

To use the sleep() method, call Thread.sleep() with the number of mil-
liseconds to pause, as in the following statement:

Thread.sleep(5000);

The preceding statement causes the Java interpreter to pause for five sec-
onds before doing anything else. If for some reason the interpreter can’t
pause that long, an InterruptedException is thrown by the sleep()
method.

Because this exception might be thrown, you must deal with it in some
manner when using the sleep() method. One way to do this is to place
the Thread.sleep() statement inside a try-catch block:

try {
Thread.sleep(5000);

} catch (InterruptedException e) {
// wake up early

}

When you want a Java program to handle more than one thing at a time,
you must organize the program into threads. Your program can have as
many threads as needed, and they all can run simultaneously without
affecting each other.

Creating a Thread
A Java class that can be run as a thread is referred to as a runnable (or thread-
ed) class. Although you can use threads to pause a program’s execution for a
few seconds, programmers often use them for the opposite reason—to speed
up a program. If you put time-consuming tasks in their own threads, the rest
of the program runs more quickly. This often is used to prevent a task from
slowing down the responsiveness of a program’s graphical user interface
(GUI).

For example, if you have written an application that loads stock market
price data from disk and compiles statistics, the most time-consuming task
is to load the data from disk. If threads are not used in the application, the

ptg7068951

Threads 267

program’s interface might respond sluggishly as the data is being loaded.
This can be extremely frustrating to a user.

Two ways to place a task in its own thread include

. Putting the task in a class that implements the Runnable interface

. Putting the task in a class that is a subclass of Thread

To support the Runnable interface, the implements keyword is used when
the class is created, as in this example:

public class LoadStocks implements Runnable {
// body of the class

}

When a class implements an interface, it indicates that the class contains
some extra behavior in addition to its own methods.

Classes that implement the Runnable interface must include the run()
method, which has the following structure:

public void run() {
// body of the method

}

The run() method should take care of the task that the thread was created to
accomplish. In the stock-analysis example, the run() method could contain
statements to load data from disk and compile statistics based on that data.

When a threaded application is run, the statements in its run() method are
not executed automatically. Threads can be started and stopped in Java,
and a thread doesn’t begin running until you do two things:

. Create an object of the threaded class by calling the Thread constructor

. Start the thread by calling its start() method

The Thread constructor takes a single argument—the object that contains
the thread’s run() method. Often, you use the this keyword as the argu-
ment, which indicates the current class includes the run() method.

Listing 19.1 contains a Java application that displays a sequence of prime
numbers in a text area. Create a new empty Java file named PrimeFinder,
enter the text from the listing in the file, and save the file.

ptg7068951

268 HOUR 19: Creating a Threaded Program

LISTING 19.1 The Full Text of PrimeFinder.java
1: import java.awt.*;
2: import javax.swing.*;
3: import java.awt.event.*;
4:
5: class PrimeFinder extends JFrame implements Runnable, ActionListener {
6: Thread go;
7: JLabel howManyLabel;
8: JTextField howMany;
9: JButton display;
10: JTextArea primes;
11:
12: PrimeFinder() {
13: super(“Find Prime Numbers”);
14: setLookAndFeel();
15: setSize(400, 300);
16: setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
17: BorderLayout bord = new BorderLayout();
18: setLayout(bord);
19:
20: howManyLabel = new JLabel(“Quantity: “);
21: howMany = new JTextField(“400”, 10);
22: display = new JButton(“Display primes”);
23: primes = new JTextArea(8, 40);
24:
25: display.addActionListener(this);
26: JPanel topPanel = new JPanel();
27: topPanel.add(howManyLabel);
28: topPanel.add(howMany);
29: topPanel.add(display);
30: add(topPanel, BorderLayout.NORTH);
31:
32: primes.setLineWrap(true);
33: JScrollPane textPane = new JScrollPane(primes);
34: add(textPane, BorderLayout.CENTER);
35:
36: setVisible(true);
37: }
38:
39: public void actionPerformed(ActionEvent event) {
40: display.setEnabled(false);
41: if (go == null) {
42: go = new Thread(this);
43: go.start();
44: }
45: }
46:
47: public void run() {
48: int quantity = Integer.parseInt(howMany.getText());
49: int numPrimes = 0;
50: // candidate: the number that might be prime
51: int candidate = 2;

ptg7068951

Threads 269

52: primes.append(“First “ + quantity + “ primes:”);
53: while (numPrimes < quantity) {
54: if (isPrime(candidate)) {
55: primes.append(candidate + “ “);
56: numPrimes++;
57: }
58: candidate++;
59: }
60: }
61:
62: public static boolean isPrime(int checkNumber) {
63: double root = Math.sqrt(checkNumber);
64: for (int i = 2; i <= root; i++) {
65: if (checkNumber % i == 0) {
66: return false;
67: }
68: }
69: return true;
70: }
71:
72: private void setLookAndFeel() {
73: try {
74: UIManager.setLookAndFeel(
75: “com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel”
76:);
77: } catch (Exception exc) {
78: // ignore error
79: }
80: }
81: public static void main(String[] arguments) {
82: PrimeFinder fp = new PrimeFinder();
83: }
84: }

The PrimeFinder application displays a text field, a Display Primes button,
and a text area, as shown in Figure 19.1.

LISTING 19.1 Continued

FIGURE 19.1
Running the PrimeFinder
application.

ptg7068951

270 HOUR 19: Creating a Threaded Program

Most statements in the application are used to create the GUI or display a
sequence of prime numbers. The following statements are used to imple-
ment threads in this program:

. Line 5: The Runnable interface is applied to the PrimeFinder class.

. Line 6: A Thread object variable is created with the name go but isn’t
assigned a value.

. Lines 41–44: If the go object variable has a value of null, which indi-
cates the thread hasn’t been created yet, a new Thread object is creat-
ed and stored in the variable. The thread is started by calling the
thread’s start() method, which causes the run() method of the
PrimeFinder class to be called.

. Lines 47–60: The run() method looks for a sequence of prime num-
bers beginning with 2, displaying each one in the primes text area
component by calling its append() method. The number of primes in
the sequence is determined by the value in the howMany text field.

Working with Threads
You can start a thread by calling its start() method, which might lead
you to believe there’s also a stop() method to bring it to a halt.

Although Java includes a stop() method in the Thread class, it has been
deprecated. In Java, a deprecated element is a class, interface, method, or
variable that has been replaced with something that works better.

The next project you undertake shows how you can stop a thread. The pro-
gram you are writing rotates through a list of website titles and the
addresses used to visit them.

The title of each page and the web address is displayed in a continuous
cycle. Users are able to visit the currently displayed site by clicking a but-
ton on the applet window. This program operates over a period of time,
displaying information about each website in sequence. Because of this
time element, threads are the best way to control the program.

Instead of entering this program into the NetBeans source editor first and
learning about it afterward, you get a chance to enter the full text of the
LinkRotator applet at the end of the hour. Before then, each section of the
program is described.

CAUTION

It’s a good idea to heed this
deprecation warning. Oracle has
deprecated the stop() method
because it can cause problems
for other threads running in the
Java interpreter. The resume()
and suspend() methods of the
class also are deprecated.

ptg7068951

Working with Threads 271

The class Declaration
The first thing you need to do in this applet is to use import for classes in
the packages java.awt, java.net, java.applet, java.awt.event, and
javax.swing.

After you have used import to make some classes available, you’re ready
to begin the applet with the following statement:

public class LinkRotator extends JApplet
implements Runnable, ActionListener {

This statement creates the LinkRotator class as a subclass of the JApplet
class. It also indicates that two interfaces are supported by this class—
Runnable and ActionListener. By implementing the Runnable class, you are
able to use a run() method in this applet to make a thread begin running.
The ActionListener interface enables the applet to respond to mouse clicks.

Setting Up Variables
The first thing to do in LinkRotator is create the variables and objects of
the class. Create a six-element array of String objects called pageTitle
and a six-element array of URL objects called pageLink:

String[] pageTitle = new String[6];
URL[] pageLink = new URL[6];

The pageTitle array holds the titles of the six websites that are displayed.
The URL class of objects stores the value of a website address. URL has all
the behavior and attributes needed to keep track of a web address and use
it to load the page with a web browser.

The last three things to create are a Color object named butterscotch, an
integer variable called current, and a Thread object called runner:

Color butterscotch = new Color(255, 204, 158);
int current = 0;
Thread runner;

Color objects represent colors you can use on fonts, user interface compo-
nents, and other visual aspects of Swing. You find out how to use them
during Hour 23, “Creating Java2D Graphics.”

The current variable keeps track of which site is being displayed so you
can cycle through the sites. The Thread object runner represents the thread
this program runs. You call methods of the runner object when you start,
stop, and pause the operation of the applet.

ptg7068951

272 HOUR 19: Creating a Threaded Program

Starting with init()
The init() method of an applet automatically is handled once when the
applet first starts to run. This method is used to assign values to the arrays
pageTitle and pageLink. It also is used to create a clickable button that
appears on the applet. The method consists of the following statements:

public void init() {
pageTitle = new String[] {

“Sun’s Java site”,
“Cafe au Lait”,
“JavaWorld”,
“Java in 24 Hours”,
“Sams Publishing”,
“Workbench”
};

pageLink[0] = getURL(“http://java.sun.com”);
pageLink[1] = getURL(“http://www.ibiblio.org/javafaq”);
pageLink[2] = getURL(“http://www.javaworld.com”);
pageLink[3] = getURL(“http://www.java24hours.com”);
pageLink[4] = getURL(“http://www.samspublishing.com”);
pageLink[5] = getURL(“http://workbench.cadenhead.org”);
Button goButton = new Button(“Go”);
goButton.addActionListener(this);
FlowLayout flow = new FlowLayout();
setLayout(flow);
add(goButton);

}

The title of each page is stored in the six elements of the pageTitle array,
which is initialized using six strings. The elements of the pageLink array
are assigned a value returned by the getURL() method, yet to be created.

The last seven statements of the init() method create and lay out a button
labeled “Go” in the applet window.

Catching Errors as You Set Up URLs
When you set up a URL object, you must make sure the text used to set up
the address is in a valid format. http://workbench.cadenhead.org and
http://www.samspublishing.com are valid, but http:www.javaworld.com
would not be because of missing “/” marks.

The getURL(String) method takes a web address as an argument, return-
ing a URL object representing that address. If the string is not a valid
address, the method returns null instead:

http://workbench.cadenhead.org
http:www.javaworld.com
http://www.samspublishing.com

ptg7068951

Handling Screen Updates in the paint() Method 273

URL getURL(String urlText) {
URL pageURL = null;
try {

pageURL = new URL(getDocumentBase(), urlText);
} catch (MalformedURLException m) {

// do nothing
}
return pageURL;

}

The try-catch block deals with any MalformedURLException errors that
occur when URL objects are created. Because nothing needs to happen if this
exception is thrown, the catch block only contains a comment.

Handling Screen Updates in the
paint() Method
An applet’s paint() method is executed when the applet window needs to be
updated. You can also manually call the paint() method within an applet.

Calling repaint() forces the paint() method to be called. This statement tells
the GUI that something has happened to make a display update necessary.

The LinkRotator applet has a short paint() method:

public void paint(Graphics screen) {
Graphics2D screen2D = (Graphics2D) screen;
screen2D.setColor(butterscotch);
screen2D.fillRect(0, 0, getSize().width, getSize().height);
screen2D.setColor(Color.black);
screen2D.drawString(pageTitle[current], 5, 60);
screen2D.drawString(“” + pageLink[current], 5, 80);

}

The first statement in this method creates a screen2D object that represents
the drawable area of the applet window. All drawing is done by calling the
methods of this object.

The setColor() method of Graphics2D selects the color used for subse-
quent drawing. The color is set to butterscotch before a rectangle that fills
the entire applet window is drawn. Next, the color is set to black and lines
of text are displayed on the screen at the (x,y) positions of (5,60) and (5,80).
The first line displayed is an element of the pageTitle array. The second
line displayed is the address of the URL object, which is stored in the
pageLink array. The current variable determines the element of the arrays
to display.

ptg7068951

274 HOUR 19: Creating a Threaded Program

Starting the Thread
In this applet, the runner thread starts when the applet’s start() method
is called and stop when its stop() method is called.

The start() method is called right after the init() method and every
time the program is restarted. Here’s the method:

public void start() {
if (runner == null) {

runner = new Thread(this);
runner.start();

}
}

This method starts the runner thread if it is not already started.

The statement runner = new Thread(this) creates a new Thread object
with one argument—the this keyword. The this keyword refers to the
applet itself, designating it as the class that runs within the thread.

The call to runner.start() causes the thread to begin running. When a
thread begins, the run() method of that thread is called. Because the run-
ner thread is the applet itself, the run() method of the applet is called.

Running the Thread
The run() method is where the main work of a thread takes place. In the
LinkRotator applet, the following represents the run() method:

public void run() {
Thread thisThread = Thread.currentThread();
while (runner == thisThread) {

current++;
if (current > 5) {

current = 0;
}
repaint();
try {

Thread.sleep(10000);
} catch (InterruptedException e) {

// do nothing
}

}
}

The first thing that takes place in the run() method is the creation of a
Thread object called thisThread. A class method of the Thread class,

ptg7068951

Starting the Thread 275

currentThread(), sets up the value for the thisThread object. The
currentThread() method keeps track of the thread that’s currently running.

All statements in this method are part of a while loop that compares the
runner object to the thisThread object. Both objects are threads, and as
long as they refer to the same object, the while loop continues looping.
There’s no statement inside this loop that causes the runner and
thisThread objects to have different values, so it loops indefinitely unless
something outside of the loop changes one of the Thread objects.

The run() method calls repaint(). Next, the value of the current variable
increases by one, and if current exceeds 5, it is set to 0 again. The current
variable is used in the paint() method to determine which website’s infor-
mation to display. Changing current causes a different site to be displayed
the next time paint() is handled.

This method includes another try-catch block that handles errors. The
Thread.sleep(10000) statement causes a thread to pause 10 seconds, long
enough for users to read the name of the website and its address. The
catch statement takes care of any InterruptedException errors that might
occur while the Thread.sleep() statement is being handled. These errors
would occur if something interrupted the thread as it slept.

Stopping the Thread
The stop() method is called any time the applet is stopped because the
applet’s page is exited, which makes it an ideal place to stop a running
thread. The stop() method for the LinkRotator applet contains the fol-
lowing statements:

public void stop() {
if (runner != null) {

runner = null;
}

}

The if statement tests whether the runner object is equal to null. If it is,
there isn’t an active thread that needs to be stopped. Otherwise, the state-
ment sets runner equal to null.

Setting the runner object to a null value causes it to have a different value
than the thisThread object. When this happens, the while loop inside the
run() method stops running.

ptg7068951

276 HOUR 19: Creating a Threaded Program

Handling Mouse Clicks
The last thing to take care of in the LinkRotator applet is event handling.
Whenever a user clicks the Go button, the web browser should open the
website shown. This is done with a method called actionPerformed(),
which is called whenever the button is clicked.

The following is the actionPerformed() method of the LinkRotator
applet:

public void actionPerformed(ActionEvent event) {
if (runner != null) {

runner = null;
}
AppletContext browser = getAppletContext();
if (pageLink[current] != null) {

browser.showDocument(pageLink[current]);
}

}

The first thing that happens in this method is that the runner thread is
stopped. The next statement creates a new AppletContext object called
browser.

An AppletContext object represents the environment in which the applet
is being presented—in other words, the page it’s located on and the web
browser that loaded the page.

The showDocument(URL) method loads the specified web address in a
browser. If pageLink[current] is a valid address, showDocument()
requests that the browser load the page.

Displaying Revolving Links
You’re now ready to create the program and test it. Create a new empty
Java file named LinkRotator and type in the text from Listing 19.2.

LISTING 19.2 The Full Text of LinkRotator.java
1: import java.applet.*;
2: import java.awt.*;
3: import java.awt.event.*;
4: import javax.swing.*;
5: import java.net.*;
6:
7: public class LinkRotator extends JApplet
8: implements Runnable, ActionListener {

ptg7068951

Displaying Revolving Links 277

9:
10: String[] pageTitle = new String[6];
11: URL[] pageLink = new URL[6];
12: Color butterscotch = new Color(255, 204, 158);
13: int current = 0;
14: Thread runner;
15:
16: public void init() {
17: pageTitle = new String[] {
18: “Sun’s Java site”,
19: “Cafe au Lait”,
20: “JavaWorld”,
21: “Java in 24 Hours”,
22: “Sams Publishing”,
23: “Workbench”
24: };
25: pageLink[0] = getURL(“http://java.sun.com”);
26: pageLink[1] = getURL(“http://www.ibiblio.org/javafaq”);
27: pageLink[2] = getURL(“http://www.javaworld.com”);
28: pageLink[3] = getURL(“http://www.java24hours.com”);
29: pageLink[4] = getURL(“http://www.samspublishing.com”);
30: pageLink[5] = getURL(“http:// workbench.cadenhead.org”);
31: Button goButton = new Button(“Go”);
32: goButton.addActionListener(this);
33: FlowLayout flow = new FlowLayout();
34: setLayout(flow);
35: add(goButton);
36: }
37:
38: URL getURL(String urlText) {
39: URL pageURL = null;
40: try {
41: pageURL = new URL(getDocumentBase(), urlText);
42: } catch (MalformedURLException m) { }
43: return pageURL;
44: }
45:
46: public void paint(Graphics screen) {
47: Graphics2D screen2D = (Graphics2D) screen;
48: screen2D.setColor(butterscotch);
49: screen2D.fillRect(0, 0, getSize().width, getSize().height);
50: screen2D.setColor(Color.black);
51: screen2D.drawString(pageTitle[current], 5, 60);
52: screen2D.drawString(“” + pageLink[current], 5, 80);
53: }
54:
55: public void start() {
56: if (runner == null) {
57: runner = new Thread(this);
58: runner.start();
59: }

LISTING 19.2 Continued

ptg7068951

278 HOUR 19: Creating a Threaded Program

60: }
61:
62: public void run() {
63: Thread thisThread = Thread.currentThread();
64: while (runner == thisThread) {
65: current++;
66: if (current > 5) {
67: current = 0;
68: }
69: repaint();
70: try {
71: Thread.sleep(10000);
72: } catch (InterruptedException e) {
73: // do nothing
74: }
75: }
76: }
77:
78: public void stop() {
79: if (runner != null) {
80: runner = null;
81: }
82: }
83:
84: public void actionPerformed(ActionEvent event) {
85: if (runner != null) {
86: runner = null;
87: }
88: AppletContext browser = getAppletContext();
89: if (pageLink[current] != null) {
90: browser.showDocument(pageLink[current]);
91: }
92: }
93: }

After you save the program, you need to create a web page in which to put
the applet—it won’t work correctly if you use Run, Run File to test it in
NetBeans because links can’t be opened that way. Create a new web
page—choose File, New File, and then click Other to find the HTML File
option in the File Types pane of the Choose File Type dialog. Name the
web page LinkRotator, which NetBeans saves as NetBeans.html, and then
enter Listing 19.3 as the web page’s markup.

LISTING 19.2 Continued

ptg7068951

Summary 279

LISTING 19.3 The Full Text of LinkRotator.html
1: <applet
2: code=”LinkRotator.class”
3: codebase=”..\\build\\classes”
4: width=”300”
5: height=”100”
6: >
7: </applet>

When you’re done, right-click the name LinkRotator.html in the Project
pane and choose View. The page opens in a web browser, and the applet
displays each of the links in rotation. Click the Go button to visit a site.
Figure 19.2 shows what the applet looks like in Internet Explorer.

Summary
Threads are a powerful concept implemented with a small number of
classes and interfaces in Java. By supporting multithreading in your pro-
grams, you make them more responsive and can speed up how quickly
they perform tasks.

Even if you learned nothing else from this hour, you now have a new term
to describe your frenzied lifestyle. Use it in a few sentences to see if it
grabs you:

. “Boy, I was really multithreading yesterday after we held up that
string of liquor stores.”

. “I multithreaded all through lunch, and it gave me gas.”

. “Not tonight, dear, I’m multithreading.”

FIGURE 19.2
Displaying revolving links in an
applet window.

ptg7068951

280 HOUR 19: Creating a Threaded Program

Q&A
Q. Are there any reasons to do nothing within a catch statement, as the

LinkRotator applet does?

A. It depends on the type of error or exception being caught. In the
LinkRotator applet, you know with both catch statements what the
cause of an exception would be, so you can be assured that doing
nothing is always appropriate. In the getURL() method, the
MalformedURLException would be caused only if the URL sent to the
method is invalid.

Q. Whatever happened to the band that sang “My Future’s So Bright, I
Gotta Wear Shades”?

A. Their future was not bright. Timbuk3, a band formed by husband and
wife Pat and Barbara K. MacDonald, never had another hit after the
song that became a top 20 single in 1986. They produced six albums
from 1986 to 1995, when they broke up the band and divorced.

Pat MacDonald continues to perform and release albums under his own
name. He’s also written songs for Cher, Peter Frampton, Night Ranger,
Aerosmith, and other musicians.

Barbara Kooyman performs as Barbara K and has several albums, one
that reinterprets Timbuk3 songs. She also formed the artist’s free
speech charity Artists for Media Diversity.

Their best known song, widely taken to be a positive message about
the future, was supposed to be ironic. The MacDonalds said the bright
future was actually an impending nuclear holocaust.

Workshop
Set aside your threads (in the Java sense, not the nudity sense) and answer
the following questions about multithreading in Java.

Quiz
1. What interface must be implemented for a program to use threads?

A. Runnable

B. Thread

C. JApplet

ptg7068951

Workshop 281

2. If an interface contains three different methods, how many of them
must be included in a class that implements the interface?

A. None of them.

B. All of them.

C. I know, but I’m not telling.

3. You’re admiring the work of another programmer who has created a pro-
gram that handles four simultaneous tasks. What should you tell him?

A. “That’s not half as exciting as the Anna Kournikova screensaver I
downloaded off the Web.”

B. “You’re the wind beneath my wings.”

C. “Nice threads!”

Answers
1. A. Runnable must be used with the implements statement. Thread is

used inside a multithreaded program, but it is not needed in the class
statement that begins a program.

2. B. An interface is a guarantee that the class includes all the interface’s
methods.

3. C. This compliment could be confusing if the programmer is well
dressed, but let’s be honest, what are the chances of that?

Activities
If this long workshop hasn’t left you feeling threadbare, expand your skills
with the following activities:

. If you are comfortable with HTML, create your own home page that
includes the LinkRotator applet and six of your own favorite websites.
Use the applet along with other graphics and text on the page.

. Add a button to the PrimeFinder application that can stop the thread
while the sequence of prime numbers is still being calculated.

To see Java programs that implement these activities, visit the book’s website
at www.java24hours.com.

www.java24hours.com

ptg7068951

This page intentionally left blank

ptg7068951

WHAT YOU’LL LEARN IN
THIS HOUR:

. Reading bytes from a file
into a program

. Creating a new file on your
computer

. Saving an array of bytes to
a file

. Making changes to the
data stored in a file

There are numerous ways to represent data on a computer. You already
have worked with one by creating objects. An object includes data in the
form of variables and references to objects. It also includes methods that
use the data to accomplish tasks.

To work with other kinds of data, such as files on your hard drive and doc-
uments on a web server, you can use the classes of the java.io package.
The “io” part of its name stands for “input/output” and the classes are
used to access a source of data, such as a hard drive, CD-ROM, or the com-
puter’s memory.

You can bring data into a program and send data out by using a communi-
cations system called streams, or objects that take information from one
place to another.

Streams
To save data permanently within a Java program, or to retrieve that data
later, you must use at least one stream.

A stream is an object that takes information from one source and sends it
somewhere else, taking its name from water streams that take fish, boats,
and industrial pollutants from one place to another.

Streams connect a diverse variety of sources, including computer pro-
grams, hard drives, Internet servers, computer memory, and DVD-ROMs.
After you learn how to work with one kind of data using streams, you are
able to work with others in the same manner.

During this hour, you use streams to read and write data stored in files on
your computer.

HOUR 20
Reading and Writing Files

ptg7068951

284 HOUR 20: Reading and Writing Files

There are two kinds of streams:

. Input streams, which read data from a source

. Output streams, which write data to a source

All input and output streams are made up of bytes, individual integers
with values ranging from 0 to 255. You can use this format to represent
data, such as executable programs, word-processing documents, and MP3
music files, but those are only a small sampling of what bytes can repre-
sent. A byte stream is used to read and write this kind of data.

A more specialized way to work with data is in the form of characters—
individual letters, numbers, punctuation, and the like. You can use a char-
acter stream when you are reading and writing a text source.

Whether you work with a stream of bytes, characters, or other kinds of
information, the overall process is the same:

. Create a stream object associated with the data.

. Call methods of the stream to either put information in the stream or
take information out of it.

. Close the stream by calling the object’s close() method.

Files
In Java, files are represented by the File class, which also is part of the
java.io package. Files can be read from hard drives, CD-ROMs, and other
storage devices.

A File object can represent files that already exist or files you want to cre-
ate. To create a File object, use the name of the file as the constructor, as in
this example:

File bookName = new File(“address.dat”);

This creates an object for a file named address.dat in the current folder.
You also can include a path in the filename:

File bookName = new File(“data\\address.dat”);

When you have a File object, you can call several useful methods on that
object:

. exists()—true if the file exists, false otherwise

. getName()—The name of the file, as a String

NOTE

Java class files are stored as
bytes in a form called bytecode.
The Java interpreter runs byte-
code, which doesn’t actually
have to be produced by the
Java language. It can run com-
piled bytecode produced by
other languages, including
NetRexx and Jython. You also
hear the Java interpreter
referred to as the bytecode
interpreter.

NOTE
This example works on a
Windows system, which uses
the backslash (\\) character as
a separator in path and file-
names. Linux and other Unix-
based systems use a forward
slash (/) character instead. To
write a Java program that refers
to files in a way that works
regardless of the operating sys-
tem, use the class variable
File.pathSeparator instead of
a forward or backslash, as in
this statement:
File bookName = new
File(“data” +
File.pathSeparator

+ “address.dat”);

ptg7068951

Streams 285

. length()—The size of the file, as a long value

. createNewFile()—Creates a file of the same name, if one does not
exist already

. delete()—Deletes the file, if it exists

. renameTo(File)—Renames the file, using the name of the File
object specified as an argument

You also can use a File object to represent a folder on your system rather
than a file. Specify the folder name in the File constructor, which can be
absolute (such as “C:\\MyDocuments\\”) or relative (such as “java\\
database”).

After you have an object representing a folder, you can call its listFiles()
method to see what’s inside the folder. This method returns an array of
File objects representing every file and subfolder it contains.

Reading Data from a Stream
The first project of the hour is to read data from a file using an input
stream. You can do this using the FileInputStream class, which represents
input streams that are read as bytes from a file.

You can create a file input stream by specifying a filename or a File object
as the argument to the FileInputStream() constructor method.

The file must exist before the file input stream is created. If it doesn’t, an
IOException is generated when you try to create the stream. Many of the
methods associated with reading and writing files generate this exception,
so it’s often convenient to put all statements involving the file in their own
try-catch block, as in this example:

try {
File cookie = new File(“cookie.web”);
FileInputStream stream = new FileInputStream(cookie);
System.out.println(“Length of file: “ + cookie.length());

} catch (IOException e) {
System.out.println(“Could not read file.”);

}

File input streams read data in bytes. You can read a single byte by calling
the stream’s read() method without an argument. If no more bytes are
available in the stream because you have reached the end of the file, a byte
value of –1 is returned.

ptg7068951

286 HOUR 20: Reading and Writing Files

When you read an input stream, it begins with the first byte in the stream,
such as the first byte in a file. You can skip some bytes in a stream by calling
its skip() method with one argument: an int representing the number of
bytes to skip. The following statement skips the next 1024 bytes in a stream
named scanData:

scanData.skip(1024);

If you want to read more than one byte at a time, do the following:

. Create a byte array that is exactly the size of the number of bytes you
want to read.

. Call the stream’s read() method with that array as an argument. The
array is filled with bytes read from the stream.

You create an application that reads ID3 data from an MP3 audio file.
Because MP3 is such a popular format for music files, 128 bytes are often
added to the end of an ID3 file to hold information about the song, such as
the title, artist, and album.

The ID3Reader application reads an MP3 file using a file input stream, skip-
ping everything but the last 128 bytes. The remaining bytes are examined to
see if they contain ID3 data. If they do, the first three bytes are the numbers
84, 65, and 71.

Create a new empty Java file called ID3Reader and fill it with the text from
Listing 20.1.

LISTING 20.1 The Full Text of ID3Reader.java
1: import java.io.*;
2:
3: public class ID3Reader {
4: public static void main(String[] arguments) {
5: try {
6: File song = new File(arguments[0]);
7: FileInputStream file = new FileInputStream(song);
8: int size = (int) song.length();
9: file.skip(size - 128);

10: byte[] last128 = new byte[128];
11: file.read(last128);
12: String id3 = new String(last128);
13: String tag = id3.substring(0, 3);
14: if (tag.equals(“TAG”)) {
15: System.out.println(“Title: “ + id3.substring(3, 32));
16: System.out.println(“Artist: “ + id3.substring(33, 62));
17: System.out.println(“Album: “ + id3.substring(63, 91));

NOTE

On the ASCII character set,
which is included in the
Unicode Standard character set
supported by Java, those three
numbers represent the capital
letters “T,” “A,” and “G,” respec-
tively.

ptg7068951

Streams 287

18: System.out.println(“Year: “ + id3.substring(93, 97));
19: } else {
20: System.out.println(arguments[0] + “ does not contain”
21: + “ ID3 info.”);
22: }
23: file.close();
24: } catch (Exception e) {
25: System.out.println(“Error — “ + e.toString());
26: }
27: }
28: }

Before running this class as an application, you must specify an MP3 file as
a command-line argument. The program can be run with any MP3, such as
Come On and Gettit.mp3, the unjustly forgotten 1973 soul classic by
Marion Black. If you have the song Come On and Gettit.mp3 on your
system (and you really should), Figure 20.1 shows what the ID3Reader
application displays.

LISTING 20.1 Continued

FIGURE 20.1
Running the ID3Reader application.

TIP
If you don’t have Come On and
Gettit.mp3 on your computer (a
big mistake, in my opinion), you
can look for MP3 songs to exam-
ine using the Creative Commons
license using Yahoo! Search at
http://search.yahoo.com/cc.

Creative Commons is a set of
copyright licenses that stipulate
how a work such as a song or
book can be distributed, edited, or
republished. The website Rock
Proper, at www.rockproper.com,
offers a collection of MP3 albums
that are licensed for sharing
under Creative Commons.

The application reads the last 128 bytes from the MP3 in Lines 10–11 of
Listing 20.1, storing them in a byte array. This array is used in Line 12 to
create a String object that contains the characters represented by those
bytes.

If the first three characters in the string are “TAG,” the MP3 file being exam-
ined contains ID3 information in a format the application understands.

In Lines 15–18, the string’s substring() method is called to display por-
tions of the string. The characters to display are from the ID3 format,
which always puts the artist, song, title, and year information in the same
positions in the last 128 bytes of an MP3 file.

http://search.yahoo.com/cc
www.rockproper.com

ptg7068951

288 HOUR 20: Reading and Writing Files

Some MP3 files either don’t contain ID3 information at all or contain ID3
information in a different format than the application can read.

The file Come On and Gettit.mp3 contains readable ID3 information if
you created it from a copy of the Eccentric Soul CD that you purchased
because programs that create MP3 files from audio CDs read song infor-
mation from a music industry database called CDDB.

After everything related to the ID3 information has been read from the
MP3’s file input stream, the stream is closed in Line 23. You should always
close streams when you are finished with them to conserve resources in
the Java interpreter.

Buffered Input Streams
One of the ways to improve the performance of a program that reads input
streams is to buffer the input. Buffering is the process of saving data in
memory for use later when a program needs it. When a Java program
needs data from a buffered input stream, it looks in the buffer first, which
is faster than reading from a source such as a file.

To use a buffered input stream, you create an input stream such as a
FileInputStream object, and then use that object to create a buffered
stream. Call the BufferedInputStream(InputStream) constructor with the
input stream as the only argument. Data is buffered as it is read from the
input stream.

To read from a buffered stream, call its read() method with no arguments.
An integer from 0 to 255 is returned and represents the next byte of data in
the stream. If no more bytes are available, –1 is returned instead.

As a demonstration of buffered streams, the next program you create adds
a feature to Java that many programmers miss from other languages they
have used: console input.

Console input is the ability to read characters from the console (also
known as the command-line) while running an application.

The System class, which contains the out variable used in the
System.out.print() and System.out.println() statements, has a class
variable called in that represents an InputStream object. This object
receives input from the keyboard and makes it available as a stream.

NOTE

You might be tempted to find a
copy of Come On and
Gettit.mp3 on a service such
as BitTorrent, one of the most
popular file-sharing services. I
can understand this temptation
perfectly where “Come On and
Gettit” is concerned. However,
according to the Recording
Industry Association of
America, anyone who down-
loads MP3 files for music CDs
you do not own will immediately
burst into flame. Eccentric Soul
is available from Amazon.com,
eBay, Apple iTunes, and other
leading retailers.

ptg7068951

Streams 289

You can work with this input stream like any other. The following statement
creates a buffered input stream associated with the System.in input stream:

BufferedInputStream bin = new BufferedInputStream(System.in);

The next project, the Console class, contains a class method you can use to
receive console input in any of your Java applications. Enter the text from
Listing 20.2 in a new empty Java file named Console.

LISTING 20.2 The Full Text of Console.java
1: import java.io.*;
2:
3: public class Console {
4: public static String readLine() {
5: StringBuffer response = new StringBuffer();
6: try {
7: BufferedInputStream bin = new
8: BufferedInputStream(System.in);
9: int in = 0;

10: char inChar;
11: do {
12: in = bin.read();
13: inChar = (char) in;
14: if (in != -1) {
15: response.append(inChar);
16: }
17: } while ((in != -1) & (inChar != ‘\n’));
18: bin.close();
19: return response.toString();
20: } catch (IOException e) {
21: System.out.println(“Exception: “ + e.getMessage());
22: return null;
23: }
24: }
25:
26: public static void main(String[] arguments) {
27: System.out.print(“You are standing at the end of the road “);
28: System.out.print(“before a small brick building. Around you “);
29: System.out.print(“is a forest. A small stream flows out of “);
30: System.out.println(“the building and down a gully.\n”);
31: System.out.print(“> “);
32: String input = Console.readLine();
33: System.out.println(“That’s not a verb I recognize.”);
34: }
35: }

ptg7068951

290 HOUR 20: Reading and Writing Files

The Console class includes a main() method that demonstrates how it can be
used. When you run the application, the output should resemble Figure 20.2.

FIGURE 20.2
Running the Console application.

The Console class contains one class method, readLine(), which receives
characters from the console. When the Enter key is hit, readLine() returns
a String object that contains all the characters that are received.

If you save the Console class in a folder that is listed in your CLASSPATH
environment variable (on Windows), you can call Console.readLine()
from any Java program that you write.

Writing Data to a Stream
In the java.io package, the classes for working with streams come in
matched sets. There are FileInputStream and FileOutputStreams classes
for working with byte streams, FileReader and FileWriter classes for
working with character streams, and many other sets for working with
other kinds of stream data.

To begin writing data, you first create a File object that is associated with
an output stream. This file doesn’t have to exist on your system.

You can create a FileOutputStream in two ways. If you want to append
bytes onto an existing file, call the FileOutputStream() constructor
method with two arguments: a File object representing the file and the
boolean of true. The bytes you write to the stream are tacked onto the end
of the file.

If you want to write bytes into a new file, call the FileOutputStream()
constructor method with a File object as its only object.

After you have an output stream, you can call different write() methods
to write bytes to it:

. Call write() with a byte as its only argument to write that byte to
the stream.

NOTE

The Console class is also the
world’s least satisfying text
adventure game. You can’t
enter the building, wade in the
stream, or even wander off. For
a more full-featured version of
this game, which is called
Adventure, visit the Interactive
Fiction archive at
www.wurb.com/if/game/1.

www.wurb.com/if/game/1

ptg7068951

Writing Data to a Stream 291

. Call write() with a byte array as its only argument to write all the
array’s bytes to the stream.

. Specify three arguments to the write(byte[], int, int) method: a
byte array, an integer representing the first element of the array to
write to the stream, and the number of bytes to write.

The following statement creates a byte array with 10 bytes and writes the
last 5 to an output stream:

File dat = new File(“data.dat”);
FileOutputStream datStream = new FileOutputStream(dat);
byte[] data = new byte[] { 5, 12, 4, 13, 3, 15, 2, 17, 1, 18 };
datStream.write(data, 5, 5);

When writing bytes to a stream, you can convert text to an array of bytes
by calling the String object’s getBytes() method, as in this example:

String name = “Puddin N. Tane”;
byte[] nameBytes = name.getBytes();

After you have finished writing bytes to a stream, you close it by calling
the stream’s close() method.

The next project you write is a simple application, ConfigWriter, that
saves several lines of text to a file by writing bytes to a file output stream.
Create an empty Java file of that name and enter the text from Listing 20.3
into the source editor.

LISTING 20.3 The Full Text of ConfigWriter.java
1: import java.io.*;
2:
3: class ConfigWriter {
4: String newline = System.getProperty(“line.separator”);
5:
6: ConfigWriter() {
7: try {
8: File file = new File(“program.properties”);
9: FileOutputStream fileStream = new FileOutputStream(file);
10: write(fileStream, “username=max”);
11: write(fileStream, “score=12550”);
12: write(fileStream, “level=5”);
13: } catch (IOException ioe) {
14: System.out.println(“Could not write file”);
15: }
16: }
17:
18: void write(FileOutputStream stream, String output)
19: throws IOException {

ptg7068951

292 HOUR 20: Reading and Writing Files

20:
21: output = output + newline;
22: byte[] data = output.getBytes();
23: stream.write(data, 0, data.length);
24: }
25:
26: public static void main(String[] arguments) {
27: ConfigWriter cw = new ConfigWriter();
28: }
29: }

When this application is run, it creates a file called program.properties
that contains the following three lines of text:

Output ▼

username=max
score=12550
level=5

Reading and Writing Configuration
Properties
Java programs are more versatile when they can be configured using com-
mand-line arguments, as you have demonstrated in several applications
created in preceding hours. The java.util package includes a class,
Properties, that enables configuration settings to be loaded from another
source: a text file.

The file can be read like other file sources in Java:

. Create a File object that represents the file.

. Create a FileInputStream object from that File object.

. Call load() to retrieve the properties from that input stream.

A properties file has a set of property names followed by an equal sign (=)
and their values. Here’s an example:

username=lepton
lastCommand=open database
windowSize=32

LISTING 20.3 Continued

ptg7068951

Reading and Writing Configuration Properties 293

Each property has its own line, so this sets up properties named username,
lastCommand, and windowSize with the values “lepton”, “open database”,
and “32”, respectively. (The same format was used by the ConfigWriter
class.)

The following code loads a properties file called config.dat:

File configFile = new File(“config.dat”);
FileInputStream inStream = new FileInputStream(configFile);
Properties config = new Properties();
config.load(inStream);

Configuration settings, which are called properties, are stored as strings in
the Properties object. Each property is identified by a key that’s like an
applet parameter. The getProperty() method retrieves a property using
its key, as in this statement:

String username = config.getProperty(“username”);

Because properties are stored as strings, you must convert them in some
manner to use a numerical value, as in this code:

String windowProp = config.getProperty(“windowSize”);
int windowSize = 24;
try {

windowSize = Integer.parseInt(windowProp);
} catch (NumberFormatException exception) {

// do nothing
}

Properties can be stored by calling the setProperty() method with two
arguments—the key and value:

config.setProperty(“username”, “max”);

You can display all properties by calling the list(PrintStream) method of
the Properties object. PrintStream is the class of the out variable of the
System class, which you’ve been using throughout the book to display out-
put in System.out.println() statements. The following code calls list()
to display all properties:

config.list(System.out);

After you have made changes to the properties, you can store them back to
the file:

. Create a File object that represents the file.

. Create a FileOutputStream object from that File object.

ptg7068951

294 HOUR 20: Reading and Writing Files

. Call store(OutputStream, String) to save the properties to the
designated output stream with a description of the properties file as
the string.

For the next project, you build on the ConfigWriter application, which
wrote several program settings to a file. The Configurator application
reads those settings into a Java properties file, adds a new property named
runtime with the current date and time, and saves the altered file.

Create a new empty Java file to hold the Configurator class and enter the
text from Listing 20.4.

LISTING 20.4 The Full Text of Configurator.java
1: import java.io.*;
2: import java.util.*;
3:
4: class Configurator {
5:
6: Configurator() {
7: try {
8: // load the properties file
9: File configFile = new File(“program.properties”);

10: FileInputStream inStream = new
➥FileInputStream(configFile);

11: Properties config = new Properties();
12: config.load(inStream);
13: // create a new property
14: Date current = new Date();
15: config.setProperty(“runtime”, current.toString());
16: // save the properties file
17: FileOutputStream outStream = new

➥FileOutputStream(configFile);
18: config.store(outStream, “Properties settings”);
19: inStream.close();
20: config.list(System.out);
21: } catch (IOException ioe) {
22: System.out.println(“IO error “ + ioe.getMessage());
23: }
24: }
25:
26: public static void main(String[] arguments) {
27: Configurator con = new Configurator();
28: }
29: }

The output of the Configurator application is shown in Figure 20.3.

ptg7068951

Summary 295

The program.properties file now contains the following text:

Output ▼

#Properties settings
#Tue May 12 22:51:26 EDT 2009
runtime=Tue May 12 22\:51\:26 EDT 2009
score=12550
level=5
username=max

The backslash character’s (\) formatting, which differs from the output of
the application, ensures the properties file is stored properly.

Summary
During this hour, you worked with input streams and output streams that
wrote bytes, the simplest way to represent data over a stream.

There are many more classes in the java.io package to work with streams
in other ways. There’s also a package of classes called java.net that
enables you to read and write streams over an Internet connection.

Byte streams can be adapted to many uses because you can easily convert
bytes into other data types, such as integers, characters, and strings.

The first project of this hour, the ID3Reader application, read bytes from a
stream and converted them into a string because it was easier to read the
ID3 data in this format from a song such as “Come On and Gettit” by
Marian Black off the album Eccentric Soul.

Have I mentioned yet that you should buy the song?

FIGURE 20.3
Running the Configurator
application.

ptg7068951

296 HOUR 20: Reading and Writing Files

Q&A
Q. Why do some of the byte stream methods in this hour use integers as

arguments? Should they be using byte arguments?

A. There’s a difference between the bytes in a stream and the bytes repre-
sented by the byte class. A byte in Java has a value ranging from –128
to 127, while a byte in a stream has a value from 0 to 255. You often
have to use int when working with bytes for this reason—it can hold
the values 128 to 255, whereas byte cannot.

Q. What is Mumblety-Peg?

A. It’s a schoolyard game played by children with pocketknives.

In the simplest form, players stand and throw knives at their own feet.
The one whose knife lands closest wins. Other versions involve throw-
ing the knife at each other so the opponent has to stretch a foot to
where it lands. The player who stretches too far and falls down loses.

The name comes from a rule that the winner could pound a peg into
the ground with three blows of the knife. The loser had to “mumble the
peg,” removing it solely with his teeth.

The game faded from popularity in the early 20th century when the
world reached the collective realization that children throwing knives at
each other might not be the greatest idea in the world.

Workshop
To see whether you took a big enough byte from the tree of knowledge during
this hour, answer the following questions about streams in Java.

Quiz
1. Which of the following techniques can be used to convert an array of

bytes into a string?

A. Call the array’s toString() method.

B. Convert each byte to a character and then assign each one to an
element in a String array.

C. Call the String() constructor method with the array as an
argument.

ptg7068951

Workshop 297

2. What kind of stream is used to read from a file in a Java program?

A. An input stream

B. An output stream

C. Either

3. What method of the File class can be used to determine the size of a
file?

A. getSize()

B. read()

C. length()

Answers
1. C. You can deal with each byte individually, as suggested in answer B,

but you can easily create strings from other data types.

2. A. An input stream is created from a File object or by providing a file-
name to the input stream’s constructor method.

3. C. This method returns a long, representing the number of bytes in the
stream.

Activities
To experience the refreshing feeling of wading through another stream, test
the waters with the following activities:

. Write an application that reads the ID3 tags of all MP3 files in a folder
and renames the files using the artist, song, and album information
(when it is provided).

. Write a program that reads a Java source file and writes it back without
any changes under a new name.

. Buy a copy of the song “Come on and Gettit” by Marian Black.

To see Java programs that implement these activities, visit the book’s website
at www.java24hours.com.

www.java24hours.com

ptg7068951

This page intentionally left blank

ptg7068951

WHAT YOU’LL LEARN IN
THIS HOUR:

. Reading XML from a file

. Extracting XML elements

. Collecting a set of child
elements

. Reading attribute values
for an XML element

. Writing an XML file

The rise to prominence of Java in the 1990s coincided with another dramat-
ic change in the development of computer software: the introduction of
Extensible Markup Language (XML). XML, a format for organizing and
storing data so that it can be read by any program, has become ginormous,
to borrow my kids’ favorite adjective.

Thanks to XML, data can be read and written independently of the soft-
ware used to create it. This is a welcome change from the bad old days
when every program seemed to have its own proprietary and idiosyncratic
format.

XML data can be read with a parser, a program that recognizes the format
and can extract portions of the data as needed.

During this hour, you read and write XML data using the XML Object
Model (XOM), a Java class library that makes it easy to work with XML
data in Java programs.

Creating an XML File
Before exploring XOM, you should learn some things about XML and how it
stores data. XML data turns up in countless places—it can be stored to a file,
transmitted over an Internet network, and held in a program’s memory.

Several classes in the Java class library can read and write XML, including
the Properties class in the java.util package, which was covered in
Hour 20, “Reading and Writing Files.”

A Properties object can be stored as XML rather than in the name=value
format covered in the preceding hour.

HOUR 21
Reading and Writing XML Data

ptg7068951

300 HOUR 21: Reading and Writing XML Data

After the object has been filled with configuration properties, its storeToXML()
method saves it to an XML file. This method takes two arguments:

. A FileOutputStream over which the file should be saved

. A comment, which can be the empty string “” if the data requires no
comment

This hour’s first project is a simple application, PropertyFileCreator, that
stores configuration properties in XML format. Fire up NetBeans, enter the
text from Listing 21.1 in a new empty Java file named
PropertyFileCreator, and save the file.

LISTING 21.1 The Full Text of PropertyFileCreator.java
1: import java.io.*;
2: import java.util.*;
3:
4: public class PropertyFileCreator {
5: public PropertyFileCreator() {
6: Properties prop = new Properties();
7: prop.setProperty(“username”, “rcade”);
8: prop.setProperty(“browser”, “Mozilla Firefox”);
9: prop.setProperty(“showEmail”, “no”);
10: try {
11: File propFile = new File(“properties.xml”);
12: FileOutputStream propStream = new

➥FileOutputStream(propFile);
13: Date now = new Date();
14: prop.storeToXML(propStream, “Created on “ + now);
15: } catch (IOException exception) {
16: System.out.println(“Error: “ + exception.getMessage());
17: }
18: }
19:
20: public static void main(String[] arguments) {
21: PropertyFileCreator pfc = new PropertyFileCreator();
22: }
23: }

When you run the application, it creates a properties file with three settings:
the username “rcade”, browser “Mozilla Firefox”, and showEmail “no”.

If the properties had been saved in the other format, it would look like this:

#Created on Wed Jun 15 20:56:33 EDT 2011
Thu Wed Jun 15 20:56:33 EDT 2011
showEmail=no
browser=Mozilla Firefox
username=rcade

ptg7068951

Creating an XML File 301

When you run the application, it creates the XML file properties.xml,
which is presented in Listing 21.2.

LISTING 21.2 The Full Text of properties.xml
1: <?xml version=”1.0” encoding=”UTF-8”?>
2: <!DOCTYPE properties SYSTEM “http://java.sun.com/dtd/properties.dtd”>
3: <properties>
4: <comment>Created on Wed Jun 15 20:56:33 EDT 2011</comment>
5: <entry key=”showEmail”>no</entry>
6: <entry key=”browser”>Mozilla Firefox</entry>
7: <entry key=”username”>rcade</entry>
8: </properties>

XML organizes data in a self-documenting manner, making it possible to
understand a great deal about the data simply by looking at it.

As you glance over Listing 21.2, you can tell pretty quickly how it stored
the configuration properties. The ?xml and !DOCTYPE tags might be tough
to follow, but the rest of the file should be reasonably simple.

Data in an XML file is surrounded by tags that look a lot like HTML, the
markup language employed on the Web.

Start tags begin with a < character followed by the name of an element and
a > character, such as <properties> on Line 3 of Listing 21.2.

End tags begin with < followed by the same element name and the />
characters, such as </properties> on Line 8.

Everything nested within a start tag and end tag is considered to be the
element’s value.

XML data must have a single root element that encloses all its data. In
Listing 21.2, the root is the properties element defined in Lines 3–8.

An element might contain text, a child element, or multiple child elements.
The properties element holds four children: a comment element and three
entry elements.

Here’s the comment element:

<comment>Created on Wed Jun 15 20:56:33 EDT 2011</comment>

This element has the value of the text it encloses: “Created on Wed Jun 15
20:56:33 EDT 2011.”

ptg7068951

302 HOUR 21: Reading and Writing XML Data

An XML element also can have one or more attributes, which are defined
inside its start tag as name=”value” pairs. Attributes must be separated by
spaces. They provide supplemental information about the element.

Each entry element has an attribute and a value:

<entry key=”showEmail”>no</entry>

This element has the value “no” and a key attribute with the value
“showEmail”.

One kind of XML element isn’t present in Listing 21.2: an element defined
entirely as a single tag. These elements begin with the < character, followed
by the element name and the /> characters.

For instance, this element could be present as a child of the properties
element:

<inactive />

Although XML has been described as a format and compared to HTML,
it’s not actually a language itself. Instead, XML describes how to create
data formats specific to the tasks you want to accomplish with a computer
program. XML formats are called dialects.

The XML dialect created by Java’s Properties class is an example of this.
Oracle has developed this format for the representation of software config-
uration settings.

Data that follows the rules of XML formatting is described as well-formed.
Software that reads or writes XML must accept well-formed data.

Data also can follow a more meticulous standard called validity. A valid
XML file contains the right elements in the right places, requiring some
means of defining the valid elements.

Reading an XML File
As you have discovered during the first 20 hours, 13 minutes, and 52 sec-
onds of this book, a wealth of Java code is already written for you to great-
ly simplify your job. Within the Java class library, you can adopt Swing
classes for user interface programming, the java.io classes for file access,
java.awt.event to take user input, and other classes to do as little pro-
gramming of your own as possible.

ptg7068951

Reading an XML File 303

A vital skill to develop in your Java programming is to learn where to look
for Java classes and packages you can employ in your own projects.
Reusing a well-developed class library is considerably easier than coding
your own classes from scratch.

The Java team at Oracle isn’t the only developer producing terrific Java
classes, which you see during the remainder of this hour by using XOM, a
class library developed by the computer programmer and book author
Elliotte Rusty Harold. Harold, an expert in both the Java language and
XML, grew frustrated with how existing XML libraries worked. (You might
be sensing a theme here—Java itself was developed by James Gosling as an
expression of his frustration with another language.)

Harold created his own class library that represents XML data as a tree
holding each element as a node.

You can download the library from www.xom.nu.

Unpack the archive in a folder on your system. I used C:\\java\\XOM on
my Windows XP system, devoting the top-level folder C:\\java to Java
libraries I use. After downloading and unpacking a library, you must add
it to your current project in NetBeans:

1. Choose File, Project Properties. The Project Properties dialog opens.

2. Click Libraries in the Categories pane, and then click the Add
Library button. The Add Library dialog opens.

3. Click the Create button. The Create New Library dialog opens.

4. Enter XOM in the Library Name field and click OK. The Customize
Library dialog opens.

5. Click Add JAR/Folder. The Browser JAR/Folder dialog opens.

6. Find the folder where you saved XOM and choose the xom-1.2.1
and xom-samples files. (The version number of XOM might be differ-
ent.) Click Add JAR/Folder.

7. In the Customize Library dialog, click OK.

8. In the Add Library dialog, choose XOM and click Add Library.

9. In the Project Properties dialog, click OK.

The XOM library is now available to your project.

XOM has classes to read and write XML data, saving it to files and other
destinations.

CAUTION
XOM has been made available
at no cost under an open
source license, the GNU Lesser
General Public License (LGPL).
You can distribute the XOM
library without modification with
Java applications that rely on it.

You also can make changes to
the classes in the library, but
you must make these changes
available under the LGPL. You
can view the full details of the
license at www.xom.nu/
license.xhtml.

www.xom.nu
www.xom.nu/license.xhtml
www.xom.nu/license.xhtml

ptg7068951

304 HOUR 21: Reading and Writing XML Data

The next program you create is the WeatherStation application, which
reads forecast information offered in an XML dialect by the Weather
Underground website, which is available at www.wunderground.com.

The core classes of the XOM library are in the nu.xom package, made avail-
able in your programs with an import statement:

import nu.xom.*;

The Builder class can load and parse XML data in any dialect, as long as
it’s well formed.

Here’s the code to create a builder and load the forecast file with it:

File file = new File(“forecast.xml”);
Builder builder = new Builder();
Document doc = builder.build(propFile);

XOM also can load XML data over the Web. Instead of calling build(File),
call the method with the web address of the data, as in this code:

Builder builder = new Builder();
Document doc = builder.build(“http://tinyurl.com/rd4r72”);

When the builder loads XML data, it makes it available as a Document
object, which holds an entire XML document.

You can retrieve the document’s root element with its getRootElement()
method:

Element root = doc.getRootElement();

The Element class represents a single element. Each element has several
methods that you can use to examine its contents:

. The getFirstChildElement() method grabs the first child matching
a specified name.

. The get(int) method reads an element matching a specified index,
numbered in order from 0 up.

. The getChildElements() method grabs all its child elements.

. The getValue() method reads its text.

. The getAttribute() method retrieves one of its attributes.

The following statements retrieve the comment element and its value:

Element highF = high.FirstChildElement(“fahrenheit”);
String highTemp = highF.getValue();

NOTE
The web address
http://tinyurl.com/rd4r72 is a
shortened URL that redirects to
the actual address on the
Weather Underground site,
which is considerably more diffi-
cult to type in correctly. Here’s
the full address:

http://wunderground.com/auto
/wui/geo/ForecastXML/
index.xml?query=Wasilla,AK

This contains the weather fore-
cast for Wasilla, Alaska.

http://tinyurl.com/rd4r72
http://wunderground.com/auto/wui/geo/ForecastXML/index.xml?query=Wasilla,AK
http://wunderground.com/auto/wui/geo/ForecastXML/index.xml?query=Wasilla,AK
http://wunderground.com/auto/wui/geo/ForecastXML/index.xml?query=Wasilla,AK
www.wunderground.com

ptg7068951

Reading an XML File 305

This approach doesn’t work when several elements share the same name,
as the forecastday element does. For those, you can retrieve all the ele-
ments and loop through them with a for loop:

Elements days = root.getChildElements(“simpleday”);
for (int current = 0; current < days.size(); current++) {

Element day = days.get(current);
}

This program does not make use of attributes, but an element’s attribute
can be accessed with the getAttribute() method, which takes the
attribute’s name as an argument:

Attribute key = day.getAttribute(“key”);

When you have the attribute, its getValue() method reveals the matching
value:

String keyValue = key.getValue();

Create a new empty Java file called WeatherStation and enter the text
from Listing 21.3 into the file.

LISTING 21.3 The Full Text of WeatherStation.java
1: import java.io.*;
2: import nu.xom.*;
3:
4: public class WeatherStation {
5: int[] highTemp = new int[6];
6: int[] lowTemp = new int[6];
7: String[] conditions = new String[6];
8:
9: public WeatherStation() throws ParsingException, IOException {
10: // get the XML document
11: Builder builder = new Builder();
12: Document doc = builder.build(“http://tinyurl.com/rd4r72”);
13: // get the root element, <forecast>
14: Element root = doc.getRootElement();
15: // get the <simpleforecast> element
16: Element simple = root.getFirstChildElement(“simpleforecast”);
17: // get the <forecastday> elements
18: Elements days = simple.getChildElements(“forecastday”);
19: for (int current = 0; current < days.size(); current++) {
20: // get current <forecastday>
21: Element day = days.get(current);
22: // get current <high>
23: Element high = day.getFirstChildElement(“high”);
24: Element highF = high.getFirstChildElement(“fahrenheit”);
25: // get current <low>

ptg7068951

306 HOUR 21: Reading and Writing XML Data

26: Element low = day.getFirstChildElement(“low”);
27: Element lowF = low.getFirstChildElement(“fahrenheit”);
28: // get current <icon>
29: Element icon = day.getFirstChildElement(“icon”);
30: // store values in object variables
31: lowTemp[current] = -1;
32: highTemp[current] = -1;
33: try {
34: lowTemp[current] = Integer.parseInt(lowF.getValue());
35: highTemp[current] =

➥Integer.parseInt(highF.getValue());
36: } catch (NumberFormatException nfe) {
37: // do nothing
38: }
39: conditions[current] = icon.getValue();
40: }
41: }
42:
43: public void display() {
44: for (int i = 0; i < conditions.length; i++) {
45: System.out.println(“Period “ + i);
46: System.out.println(“\tConditions: “ + conditions[i]);
47: System.out.println(“\tHigh: “ + highTemp[i]);
48: System.out.println(“\tLow: “ + lowTemp[i]);
49: }
50: }
51:
52: public static void main(String[] arguments) {
53: try {
54: WeatherStation station = new WeatherStation();
55: station.display();
56: } catch (Exception exception) {
57: System.out.println(“Error: “ + exception.getMessage());
58: }
59: }
60: }

The WeatherStation application, which requires no command-line argu-
ments, produces seven forecasts for Wasilla, Alaska, as in the following
output:

Output ▼

Period 0
Conditions: rain
High: 56
Low: 40

Period 1
Conditions: partlycloudy
High: 59
Low: 40

LISTING 21.3 Continued

ptg7068951

Reading RSS Syndication Feeds 307

Period 2
Conditions: partlycloudy
High: 61
Low: 41

Period 3
Conditions: chancerain
High: 67
Low: 43

Period 4
Conditions: chancerain
High: 67
Low: 47

Period 5
Conditions: chancerain
High: 65
Low: 49

Reading RSS Syndication Feeds
There are hundreds of XML dialects out there representing data in a plat-
form-independent, software-independent manner. One of the most popular
XML dialects is RSS, a format for sharing headlines and links from online
news sites, weblogs, and other sources of information.

RSS makes web content available in XML form, perfect for reading in soft-
ware, in web-accessible files called feeds. RSS readers, called news aggrega-
tors, have been adopted by several million information junkies to track all
their favorite websites. There also are web applications that collect and
share RSS items.

The hard-working Builder class in the nu.xom package can load XML over
the Internet from any URL:

String rssUrl = “http://feeds.drudge.com/retort”;
Builder builder = new Builder();
Document doc = builder.build(rssUrl);

This hour’s workshop employs this technique to read an RSS file, present-
ing the 15 most recent items.

Open your editor and enter the text from Listing 21.4. Save the result as
Aggregator.java.

LISTING 21.4 The Full Text of Aggregator.java
1: import java.io.*;
2: import nu.xom.*;
3:
4: public class Aggregator {

NOTE

The Java class library includes
the Java API for XML Processing
(JAXP), a set of classes that
serve the same purpose as
XOM. JAXP can represent XML
data as an object or a stream
of events, giving a programmer
more control over how the data
is parsed. XOM is easier to
learn and requires properly for-
matted and valid XML at all
times. More information on
JAXP can be found on the Web
at http://jaxp.java.net.

http://jaxp.java.net

ptg7068951

308 HOUR 21: Reading and Writing XML Data

5: public String[] title = new String[15];
6: public String[] link = new String[15];
7: public int count = 0;
8:
9: public Aggregator(String rssUrl) {
10: try {
11: // retrieve the XML document
12: Builder builder = new Builder();
13: Document doc = builder.build(rssUrl);
14: // retrieve the document’s root element
15: Element root = doc.getRootElement();
16: // retrieve the root’s channel element
17: Element channel = root.getFirstChildElement(“channel”);
18: // retrieve the item elements in the channel
19: if (channel != null) {
20: Elements items = channel.getChildElements(“item”);
21: for (int current = 0; current < items.size(); current++) {
22: if (count > 15) {
23: break;
24: }
25: // retrieve the current item
26: Element item = items.get(current);
27: Element titleElement = item.getFirstChildElement(“title”);
28: Element linkElement = item.getFirstChildElement(“link”);
29: title[current] = titleElement.getValue();
30: link[current] = linkElement.getValue();
31: count++;
32: }
33: }
34: } catch (ParsingException exception) {
35: System.out.println(“XML error: “ + exception.getMessage());
36: exception.printStackTrace();
37: } catch (IOException ioException) {
38: System.out.println(“IO error: “ + ioException.getMessage());
39: ioException.printStackTrace();
40: }
41: }
42:
43: public void listItems() {
44: for (int i = 0; i < 15; i++) {
45: if (title[i] != null) {
46: System.out.println(“\n” + title[i]);
47: System.out.println(link[i]);
48: i++;
49: }
50: }
51: }
52:
53: public static void main(String[] arguments) {
54: if (arguments.length > 0) {

LISTING 21.4 Continued

ptg7068951

Summary 309

55: Aggregator aggie = new Aggregator(arguments[0]);
56: aggie.listItems();
57: } else {
58: System.out.println(“Usage: java Aggregator rssUrl”);
59: }
60: }
61: }

Before running the application, set up a command-line argument for the
feed you’d like to read, which can be any RSS feed. If you don’t know any,
use http://feeds.drudge.com/retort, which contains headlines from the
Drudge Retort, an online news site that I publish.

Sample output from the feed is shown in Figure 21.1.

LISTING 21.4 Continued

FIGURE 21.1
Running the Aggregator
application.

BY THE WAY

You can find out more about
the RSS XML dialect from the
RSS Advisory Board website at
www.rssboard.org. I’m the chair-
man of the board, which offers
guidance on the format and a
directory of software that can
be used to read RSS feeds.

Summary
The Java language liberates software from dependence on a particular oper-
ating system. The program you write with the language on a Windows box
creates class files that can be run on a Linux server or a Mac OS X computer.

XML achieves a similar liberation for the data produced by software. If XML
data follows the simple rules required to make it well formed, you can read
it with any software that parses XML. You don’t need to keep the originating
program around just to ensure there’s always a way to access it.

The XOM library makes it easy to read and write XML data.

When you’re using Java and XML, you can declare your independence
from two of the major obstacles faced by computer programmers for
decades: obsolete data and obsolete operating systems.

http://feeds.drudge.com/retort
www.rssboard.org

ptg7068951

310 HOUR 21: Reading and Writing XML Data

Q&A
Q. What’s the purpose of the DOCTYPE statement in the XML file produced

by the PropertyFileCreator application?

A. That’s a reference to a document type definition (DTD), a file that
defines the rules XML data must follow to be considered valid in its
dialect.

If you load the web page referred to in that statement,
http://java.sun.com/dtd/properties.dtd, you find references to each of
the elements and attributes contained in the XML file produced by the
Java library’s Properties class.

Although Sun provides this DTD, Java’s official documentation indicates
that it shouldn’t be relied upon when evaluating property configuration
data. Parsers are supposed to ignore it.

Q. Are the Hatfields and McCoys still feuding?

A. The West Virginia and Kentucky families are on good terms 121 years
after the last casualty in their infamous 35-year conflict.

In 1979, Hatfields and McCoys got together to play the TV game show
Family Feud for a week. A pig was kept on stage and awarded to the
winning family.

In 2003, a formal peace treaty was reached between the families in
Pikeville, KY.

The Hatfield-McCoy Trails, 500 miles of trails for recreational off-road
driving, were established in West Virginia in 2000 and expanded over
the next decade.

Workshop
To see whether your knowledge of XML processing in Java is well-formed,
answer the following questions.

Quiz
1. Which of the following terms should not be used to complement XML

data that is properly formatted?

A. This data is well formed.

B. This data is valid.

C. This data is dy-no-mite!

http://java.sun.com/dtd/properties.dtd

ptg7068951

Workshop 311

2. What method reads all the elements that are enclosed within a parent
element?

A. get()

B. getChildElements()

C. getFirstChildElement()

3. What method of the Elements class can be used to determine the num-
ber of elements that it contains?

A. count()

B. length()

C. size()

Answers
1. C. Well-formed data has properly structured start and end tags, a single

root element containing all child elements, and an ?XML declaration at
the top. Valid data follows the rules of a particular XML dialect. “Dy-no-
mite!” is the catchphrase of the comedian Jimmie “J.J.” Walker.

2. B. The getChildElements() method returns an Elements object holding
all the elements.

3. C. Just like vectors, Elements uses a size() method that provides a
count of the items it holds.

Activities
To extend your knowledge of XML, parse the following activities:

. Revise the WeatherStation application to display an additional element
from the Weather Underground forecast data.

. Write a program that displays the data contained in shortChanges.xml,
an XML document of weblog information available at
www.weblogs.com/shortChanges.xml.

To see Java programs that implement these activities, visit the book’s website
at www.java24hours.com.

www.weblogs.com/shortChanges.xml
www.java24hours.com

ptg7068951

This page intentionally left blank

ptg7068951

WHAT YOU’LL LEARN IN
THIS HOUR:

. Defining a Java interface
for a web service

. Applying this interface to a
Java class

. Deploying a web service on
the Internet

. Viewing a web service
contract

. Creating a web service
client

Now that the Internet is everywhere, driving millions of desktop comput-
ers, web servers, phones, videogame consoles, and other devices, the
desire to connect them all together has given rise to web services, software
that communicates with other software over HTTP, the protocol of the
Web.

One of the most exciting new features of Java is the Java API for XML Web
Services (JAX-WS). JAX-WS is a set of packages and classes that create
clients that make requests of web services and services that take those
requests.

JAX-WS supports web services that are implemented using the Simple
Object Access Protocol (SOAP) and Representational State Transfer (REST).
JAX-WS greatly simplifies the task of supporting these protocols. As a pro-
grammer, you create Java objects and call methods to use web services and
the rest is taken care of behind the scenes.

Defining a Service Endpoint
Interface
The first step in the creation of a JAX-WS web service is to create a Service
Endpoint Interface, a Java interface that defines the methods that clients can
call when they’re using the web service.

The SquareRootServer web service you are developing this hour is a serv-
ice that can handle two simple tasks:

. Calculating the square root of a number

. Displaying the current date and time

HOUR 22
Creating Web Services

with JAX-WS

ptg7068951

314 HOUR 22: Creating Web Services with JAX-WS

An interface is a set of methods that provides names, arguments, and
return types but does not contain code that implements the methods. The
interface serves as a contract between objects—if an object implements an
interface, other objects know they can call all the interface’s methods on
that object.

In Hour 15, “Responding to User Input,” you had to implement the
ActionListener interface in any Java class that needed to receive action
events when a button was clicked.

For this project, you’re handling the other side of the contract. The
SquareRootServer interface defines two methods that must be present in a
class that implements the web service: squareRoot(double) and getTime().

The following statements define the interface:

public interface SquareRootServer {
double getSquareRoot(double input);
String getTime();

}

The method definitions in an interface are followed by a semicolon rather
than { and } characters around a block statement. Interfaces don’t define the
behavior of methods; that’s handled by classes that implement the interface.

Because these methods can be called as a JAX-WS web service, an extra
modifier must be added in front of each one, the annotation @WebMethod:

public interface SquareRootServer {
@WebMethod double getSquareRoot(double input);
@WebMethod String getTime();

}

Using Annotations to Simplify Java Code
Annotations are a smarter form of comments that can be understood by
the Java interpreter, compiler, and programming tools. They provide a way
to define information about a program that’s not part of the program itself
but which can trigger actions when the program is compiled or run.

Annotations begin with an @ sign followed by the name of the annotation.

One of the most common annotations is @Override, which indicates a
method overrides a superclass method. Here’s an example:

@Overrides public void paintComponent(Graphics comp) {
// definition of method here

}

ptg7068951

Defining a Service Endpoint Interface 315

If you’ve made an error and it does not override a method—which would
happen if you used the wrong type or number of parameters—the compil-
er can catch the error.

The @WebMethod annotation indicates that a method can be called as a web
service. The SquareRootServer interface also uses an @WebService annota-
tion that indicates the interface defines a service endpoint interface.

Annotations can take parameters that provide further customization.
SquareRootServer includes one final annotation:

@SOAPBinding(style = Style.RPC)

This annotation helps define the contract between the web service and the
client programs that call the service. You learn more about this later in the
hour.

For now, it’s time to begin coding the web service. Create a new empty Java
file in NetBeans with the class name SquareRootServer and the package
name com.java24hours.ws. Enter the contents of Listing 22.1 into the file.

LISTING 22.1 The Full Text of SquareRootServer.java
1: package com.java24hours.ws;
2:
3: import javax.jws.*;
4: import javax.jws.soap.*;
5: import javax.jws.soap.SOAPBinding.*;
6:
7: @WebService
8:
9: @SOAPBinding(style = Style.RPC)

10:
11: public interface SquareRootServer {
12: // get the square root of a number
13: @WebMethod double getSquareRoot(double input);
14:
15: // get the current time and date as a string
16: @WebMethod String getTime();
17:
18: }

This class has been placed in the com.java24hours.ws package, a design
decision that makes it easier for the web service to be deployed for other
software to access over the Internet.

Now that you’ve finished defining this interface, you’re ready to write the
code that implements its two methods: getSquareRoot() and getTime().

ptg7068951

316 HOUR 22: Creating Web Services with JAX-WS

Creating a Service Implementation
Bean
The Java class that implements the Service Endpoint Interface is called the
Service Implementation Bean. Learning odd new bits of jargon is an
unavoidable part of JAX-WS.

The SquareRootServerImpl class implements the SquareRootServer inter-
face, as stated in the class declaration:

public class SquareRootServerImpl implements SquareRootServer {

This means the class you’re creating must contain all the methods in the
interface, each with the proper parameters.

The getSquareRoot(double) and getTime() methods are implemented
using techniques you’ve learned previously.

The only new aspect of the class is the following annotation, which appears
before the class statement:

@WebService(endpointInterface = “com.java24hours.ws.SquareRootServer”)

This annotation indicates the class is a service implementation bean for a
service endpoint interface named com.java24hours.ws.SquareRootServer.
You must use the full class name, including the name of its package.

Take note of the fact that annotations are not followed by semicolons, unlike
statements.

Start coding this class: Create a new empty Java file named
SquareRootServerImpl in the package com.java24hours.ws, and then fill it
with the contents of Listing 22.2.

LISTING 22.2 The Full Text of SquareRootServerImpl.java
1: package com.java24hours.ws;
2:
3: import java.util.*;
4: import javax.jws.*;
5:
6: @WebService(endpointInterface = “com.java24hours.ws.SquareRootServer”)
7:
8: public class SquareRootServerImpl implements SquareRootServer {
9:
10: public double getSquareRoot(double input) {
11: return Math.sqrt(input);
12: }

ptg7068951

Publishing the Web Service 317

13:
14: public String getTime() {
15: Date now = new Date();
16: return now.toString();
17: }
18: }

With the two classes you’ve created, you’re ready to launch the web serv-
ice so it can be called by other software.

Publishing the Web Service
JAX-WS web services can be deployed by Java application servers such as
BEA WebLogic, GlassFish, JBoss, and Jetty. If you had created the
SquareRootServer web service in a development environment that sup-
ported those servers, you’d be ready at this point to launch it.

You also can write your own Java application that loads a web service and
makes it available over the Internet.

The SquareRootServerPublisher application handles this task, which
requires only two steps:

. Load the class that implements the web service

. Publish that object at an address accessible to the Internet

The EndPoint class in the javax.xml.ws package has a class method,
publish(String, Object), that deploys a web service.

This method’s first argument is the web address where the service can be
accessed, which for this project is http://127.0.0.1:5335/service. This
web address begins with a host name, 127.0.0.1, that’s called the local-
host because it’s the local computer you’re using to create and run your
Java programs.

The second part of the address is the port number on the localhost where
the web service waits for connections. The port 5335 has been chosen arbi-
trarily because it’s not likely to be in use by other Internet-aware programs
on your computer.

LISTING 22.2 Continued CAUTION

The name of Service
Implementation Beans refers to
JavaBeans, special Java class-
es designed to function as
reusable software components
in the Java Enterprise Edition.
However, the reference to
beans is a bit of a misnomer
when it comes to JAX-WS. Any
Java object can be a Service
Implementation Bean as long
as it follows the rules for web
service methods and has been
created with the proper annota-
tions.

ptg7068951

318 HOUR 22: Creating Web Services with JAX-WS

The final part of the address, /service, is the path. Every web service
must have a unique path. If you run any other web services on your com-
puter, they can’t have the same path as SquareRootServer.

To deploy the web service, create an empty Java file called
SquareRootServerPublisher in the com.java24hours.ws package. Enter
the text of Listing 22.3 in this file.

LISTING 22.3 The Full Text of SquareRootServerPublisher.java
1: package com.java24hours.ws;
2:
3: import javax.xml.ws.*;
4:
5: public class SquareRootServerPublisher {
6: public static void main(String[] arguments) {
7: SquareRootServerImpl srsi = new SquareRootServerImpl();
8: Endpoint.publish(
9: “http://127.0.0.1:5335/service”,

10: srsi
11:);
12: }
13: }

When you run the application, it waits for connections on port 5335 of
your computer. You can call the methods of the web service from any pro-
gram that supports SOAP- or REST-based web services, whether the pro-
gram is written in Java or another language. As long as your web service
is on the Internet, any other Internet-connected software can call the
methods.

Using Web Service Definition
Language Files
Before trying out this web service, you can test the availability of the
SquareRootServerPublisher application with any web browser.

Open a browser and load the address http://127.0.0.1:5335/
service?wsdl. The browser displays the XML file shown in Listing 22.4.
This file is being served by the application that you just created.

This file is a service contract that’s written in Web Service Description
Language (WSDL), an XML dialect for spelling out exactly how a web
service functions so that servers and clients can make full use of it.

ptg7068951

Using Web Service Definition Language Files 319

You don’t have to understand WSDL to create JAX-WS services and clients
to access those services. It’s worthwhile to take a cursory look at the con-
tents to get a picture for how SOAP- and REST-based web services operate.

LISTING 22.4 A Web Service Description Language Contract
1: <?xml version=”1.0” encoding=”UTF-8”?>
2: <!— Published by JAX-WS RI at http://jax-ws.dev.java.net. RI’s version
3: is JAX-WS RI 2.2.2 in JDK 7. —>
4: <!— Generated by JAX-WS RI at http://jax-ws.dev.java.net. RI’s version
5: is JAX-WS RI 2.2.2 in JDK 7. —>
6: <definitions xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”
7: xmlns:tns=”http://ws.java24hours.com/”
8: xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
9: xmlns=”http://schemas.xmlsoap.org/wsdl/”

10: targetNamespace=”http://ws.java24hours.com/”
11: name=”SquareRootServerImplService”>
12: <types></types>
13: <message name=”getSquareRoot”>
14: <part name=”arg0” type=”xsd:double”></part>
15: </message>
16: <message name=”getSquareRootResponse”>
17: <part name=”return” type=”xsd:double”></part>
18: </message>
19: <message name=”getTime”></message>
20: <message name=”getTimeResponse”>
21: <part name=”return” type=”xsd:string”></part>
22: </message>
23: <portType name=”SquareRootServer”>
24: <operation name=”getSquareRoot” parameterOrder=”arg0”>
25: <input message=”tns:getSquareRoot”></input>
26: <output message=”tns:getSquareRootResponse”></output>
27: </operation>
28: <operation name=”getTime” parameterOrder=””>
29: <input message=”tns:getTime”></input>
30: <output message=”tns:getTimeResponse”></output>
31: </operation>
32: </portType>
33: <binding name=”SquareRootServerImplPortBinding”
34: type=”tns:SquareRootServer”>
35: <soap:binding transport=”http://schemas.xmlsoap.org/soap/http”
36: style=”rpc”></soap:binding>
37: <operation name=”getSquareRoot”>
38: <soap:operation soapAction=””></soap:operation>
39: <input>
40: <soap:body use=”literal”
41: namespace=”http://ws.java24hours.com/”></soap:body>
42: </input>
43: <output>
44: <soap:body use=”literal”
45: namespace=”http://ws.java24hours.com/”></soap:body>
46: </output>

ptg7068951

320 HOUR 22: Creating Web Services with JAX-WS

47: </operation>
48: <operation name=”getTime”>
49: <soap:operation soapAction=””></soap:operation>
50: <input>
51: <soap:body use=”literal”
52: namespace=”http://ws.java24hours.com/”></soap:body>
53: </input>
54: <output>
55: <soap:body use=”literal”
56: namespace=”http://ws.java24hours.com/”></soap:body>
57: </output>
58: </operation>
59: </binding>
60: <service name=”SquareRootServerImplService”>
61: <port name=”SquareRootServerImplPort”
62: binding=”tns:SquareRootServerImplPortBinding”>
63: <soap:address location=”http://127.0.0.1:5335/service”></soap:address>
64: </port>
65: </service>
66: </definitions>

A WSDL file is called a service contract because it stipulates how a web
service can be reached, the messages that can be exchanged with the service,
and the data types of the information being transferred.

Lines 13–22 of the WSDL contract define the web service’s methods, the
parameters of those methods, and the data returned in response. Take a
look over those lines to see if you can determine where it states that the
getSquareRoot() method takes a double parameter and returns a double
value.

The data types referenced in the contract are not Java data types. They’re
data types that are generalized for use by any programming language that
supports SOAP. (There’s nothing about web services that’s tailored specifi-
cally to Java.)

Creating a Web Service Client
In this section, you create SquareRootClient, a Java application that can call
the methods of the web service you just created. The service must, of
course, be running for the client to connect to it.

LISTING 22.4 Continued

NOTE

Because a WSDL contract
defines a web service in such
specific detail, you can use it to
automate much of the process
of programming web services.
The Java Development Kit (JDK)
includes a command-line tool,
wsimport, that takes a WSDL file
as input and writes Java classes
to access the web service.

ptg7068951

Creating a Web Service Client 321

Because web service technology like the JAX-WS library supports stan-
dards such as SOAP, REST, HTTP, and XML, you don’t have to use a Java
program to connect to the square root web service. Perl, Python, Ruby and
other languages all have libraries that support web services.

The JAX-WS library offers the Service class in the javax.xml.ws package,
a factory that creates objects that can call a web service.

The class method Service.create(URL, QName) creates the factory. The
arguments are a URL object from java.net and a QName from
javax.xml.namespace.

The URL must be the address of the web service’s WSDL contract:

URL url = new URL(“http://127.0.0.1:5335/service?wsdl”);

The QName is a qualified name, an XML identifier that’s associated with the
provider of the web service. A qualified name consists of a namespace URI
and a local identifier.

Namespace URIs are similar to URLs but do not necessarily work as a web
address. Because the package name of the square root web service is
com.java24hours.ws, which by convention in Java associates it with the
Internet host name ws.java24hours.com, the namespace URI for this web
service is http://ws.java24hours.com.

The local identifier for the web service is the name of the Service
Implementation Bean with the word “Service” appended. Here’s the state-
ment that creates the qualified name:

QName qname = new QName(
“http://ws.java24hours.com/”,
“SquareRootServerImplService”

);

With the URL and qualified name, you can create the web service client
factory:

Service service = Service.create(url, qname);

The factory has a getPort(Class) method that creates an object of the
specified class. To identify a Java class for use as a method argument, use a
class variable of the class named class. Confusing? It makes more sense
when you see it in a Java statement:

SquareRootServer srs = service.getPort(SquareRootServer.class);

CAUTION

As stated, a URI does not have
to be a working web address.
Although http://ws.
java24hours.com looks like
one, it’s used here simply as a
unique identifier. I own the
domain name java24hours.com
and control how its subdomains
are used. So when I designate
http://ws.java24hours.com
as a URI, I can be reasonably
assured that no other web serv-
ice provider would take that
identification.

http://ws.java24hours.com
http://ws.java24hours.com
http://ws.java24hours.com
http://ws.java24hours.com

ptg7068951

322 HOUR 22: Creating Web Services with JAX-WS

The call to getPort() with SquareRootServer.class as the argument causes
the factory to create a SquareRootServer object. This object is stored in the
srs variable.

Call the methods of the SquareRootServer object as you would any other
object in Java:

System.out.println(srs.getTime());
System.out.println(srs.getSquareRoot(625D));

The JAX-WS library packages these method calls as SOAP messages, sends
them over the Internet to the web service, and transmits the calls.

When the service responds to the calls, it packages the responses as SOAP
messages, sends them back over the Internet, and they’re converted back to
Java data types.

Put all these together by creating an empty Java file named
SquareRootClient and entering the text from Listing 22.5 in the file.

LISTING 22.5 The Full Text of SquareRootClient.java
1: package com.java24hours.ws;
2:
3: import java.net.*;
4: import javax.xml.namespace.*;
5: import javax.xml.ws.*;
6:
7: class SquareRootClient {
8: public static void main(String[] arguments) throws Exception {
9: URL url = new URL(“http://127.0.0.1:5335/service?wsdl”);
10: QName qname = new QName(
11: “http://ws.java24hours.com/”,
12: “SquareRootServerImplService”
13:);
14: Service service = Service.create(url, qname);
15: SquareRootServer srs = service.getPort(SquareRootServer.class);
16:
17: System.out.println(srs.getTime());
18: System.out.println(srs.getSquareRoot(625D));
19: }
20: }

When you run the client application, you see the output shown in
Figure 22.1 if the SquareRootPublisher application is running.

ptg7068951

Summary 323

Summary
The JAX-WS set of packages and classes is the successor to the Java API for
XML-based RPC (JAX-RPC), a technology for making remote procedure
calls from one Java object to another over the Internet.

The ability to call other software, regardless of its location and the pro-
gramming language in which it’s written, is one of the building blocks of a
software development trend called Web 2.0.

Web 2.0 enables software to take as much advantage of the Internet’s ubiq-
uitous connectivity as humans have enjoyed since the Web became popular
in the mid-1990s.

This hour’s covered all four steps of creating and using a web service
using JAX-WS. You can create an interface for the service (a Service
Endpoint Interface), implement the service (a Service Implementation
Bean), publish the service on the Internet, and create a client to access it.

Many programming tools, including NetBeans and the JDK, make it possi-
ble to create code automatically to simplify the job of creating and access-
ing web services.

FIGURE 22.1
Calling a web service and display-
ing the response.

ptg7068951

324 HOUR 22: Creating Web Services with JAX-WS

Q&A
Q. How does XML-RPC fit in with SOAP web services?

A. XML-RPC is a protocol for calling methods and receiving data in an XML
format over HTTP, the protocol of the Web. SOAP is all those things as
well, and in fact the two web service protocols share a common origin.

XML-RPC was created from a draft version of the protocol that eventual-
ly became SOAP. Because XML-RPC was out first and is simpler to
implement, it developed its own following and remains popular today.
The Apache XML-RPC Java library, available from http://ws.apache.org/
xmlrpc, supports the creation of web services and clients that employ
XML-RPC.

SOAP’s a more sophisticated web service protocol that supports a
wider range of client/service interactions.

Q. I’m not clear on why a package named com.java24hours.ws is asso-
ciated with the Internet host ws.java24hours.com. How does that
work?

A. Java package names are created by the programmers who developed
the package. Oracle starts the names of Java packages from the Java
class library with either java or javax, such as java.util and
javax.swing. When other programmers create package, they follow a
convention that prevents two entities from choosing the same package
name and being confused with each other.

The convention is to choose a package name that’s based on some-
thing the entity owns—a domain name. As the owner of the domain
name cadenhead.org, I’ve created Java classes with package names
that begin with org.cadenhead, such as org.cadenhead.web. The
Apache Software Foundation, which owns apache.org, calls its XML-RPC
package org.apache.xmlrpc.

Q. What was the first website on the Internet?

A. The first site was http://info.cern.ch, which is still online today. Tim
Berners-Lee, a physicist at the European Organization for Nuclear
Research (CERN), used the site to describe his new invention, the
World Wide Web.

The first webpage was at http://info.cern.ch/hypertext/WWW/
TheProject.html and was updated daily as the Web attracted users, pub-
lishers, and software developers.

The site defined the web as a “a wide-area hypermedia information
retrieval initiative aiming to give universal access to a large universe of
documents.”

http://ws.apache.org/
http://info.cern.ch
http://info.cern.ch/hypertext/WWW/TheProject.html
http://info.cern.ch/hypertext/WWW/TheProject.html

ptg7068951

Workshop 325

Workshop
See how many facts about web services have filled your bean by answering
the following questions.

Quiz
1. What is a Service Implementation Bean?

A. An interface that identifies the methods reachable over a web
service

B. A class that implements a web service

C. A service contract between a web service and clients that call the
service

2. When text such as @WebMethod or @Override appears in a method dec-
laration, what is it called?

A. An annotation

B. An assertion

C. An aggravation

3. What does WSDL stand for?

A. Web Services Deployment Language

B. Web Services Description Language

C. Lucy in the Sky with Diamonds

Answers
1. B. Answer A. refers to a Service Endpoint Interface.

2. A. Though I guess answer C. is also potentially true, depending on how
much trouble you had in that section of the hour.

3. B. It’s often mistakenly called Web Services Definition Language.

ptg7068951

326 HOUR 22: Creating Web Services with JAX-WS

Activities
To further service your knowledge of this hour’s topic, do the following activi-
ties:

. Add a method to the square root web service that multiplies a number
by 10, and modify the SquareRootClient application to call that
method.

. Create a new web service that uses the WeatherStation class from
Hour 21, “Reading and Writing XML Data,” and makes the current high
temperature, low temperature, and weather conditions accessible
through a web service.

To see Java programs that implement these activities, visit the book’s website
at www.java24hours.com.

www.java24hours.com

ptg7068951

WHAT YOU’LL LEARN IN
THIS HOUR:

. Setting the font and color
of text

. Setting up a container’s
background color

. Drawing lines, rectangles,
and other shapes

. Drawing GIF and JPEG
graphics

. Drawing filled and unfilled
shapes

During this hour, you learn how to turn Swing containers—the plain gray
panels and frames that hold graphical user interface (GUI) components—
into an artistic canvas on which you can draw fonts, colors, shapes, and
graphics.

Using the Font Class
Colors and fonts are represented in Java by the Color and Font classes in
the java.awt package. With these classes, you can present text in different
fonts and sizes and change the color of text and graphics. Fonts are created
with the Font(String, int, int) constructor, which takes three argu-
ments:

. The typeface of the font as either a generic name (“Dialog,”
“DialogInput,” “Monospaced,” “SanSerif,” or “Serif”) or an actual
font name (“Arial Black,” “Helvetica,” or “Courier New”)

. The style as one of three class variables: Font.BOLD, Font.ITALIC, or
Font.PLAIN

. The size of the font in points

The following statement creates a 12-point italic Serif Font object:

Font current = new Font(“Serif”, Font.ITALIC, 12);

If you use a specific fonts rather than one of the generic ones, it must be
installed on the computer of users running your program. You can com-
bine the font styles by adding them together, as in the following example:

Font headline = new Font(“Courier New”, Font.BOLD + Font.ITALIC, 72);

HOUR 23
Creating Java2D Graphics

ptg7068951

328 HOUR 23: Creating Java2D Graphics

When you have a font, you call the Graphics2D component’s
setFont(Font) method to designate it as the current font. All subsequent
drawing operations use that font until another one is set. Statements in the
following example create a “Comic Sans” font object and designate it as
the current font before drawing text:

public void paintComponent(Graphics comp) {
Graphics2D comp2D = (Graphics2D) comp;
Font font = new Font(“Comic Sans”, Font.BOLD, 15);
comp2D.setFont(font);
comp2D.drawString(“Potrzebie!”, 5, 50);

}

Java supports antialiasing to draw fonts and graphics more smoothly and
less blocky in appearance. To enable this functionality, you must set a ren-
dering hint in Swing. A Graphics2D object has a setRenderingHint(int,
int) method that takes two arguments:

. The key of the rendering hint

. The value to associate with that key

These values are class variables in the RenderingHints class of java.awt.
To activate antialiasing, call setRenderingHint() with two arguments:

comp2D.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
RenderingHints.VALUE_ANTIALIAS_ON);

The comp2D object in this example is the Graphics2D object that represents
a container’s drawing environment.

Using the Color Class
Colors in Java are represented by the Color class, which includes the fol-
lowing constants as class variables: black, blue, cyan, darkGray, gray,
green, lightGray, magenta, orange, pink, red, white, and yellow.

In a container, you can set the background color of the component using
these constants by calling the setBackground(Color) method like this:

setBackground(Color.orange);

The current color, like the current font, must be set before drawing takes
place using the setColor(Color) method. The following code includes a
statement to set the current color to orange and draw text in that color:

ptg7068951

Drawing Lines and Shapes 329

public void paintComponent(Graphics comp) {
Graphics2D comp2D = (Graphics2D) comp;
comp2D.setColor(Color.orange);
comp2D.drawString(“Go, Buccaneers!”, 5, 50);

}

Unlike the setBackground() method, which you can call directly on a con-
tainer, you must call the setColor() method on a Graphics2D object.

Creating Custom Colors
You can create custom colors in Java by specifying their Standard Red
Green Blue (sRGB) value. sRGB defines a color by the amount of red,
green, and blue present in the color. Each value ranges from 0 (none of that
color) to 255 (the maximum amount).

The constructor Color(int, int, int) takes arguments representing the
red, green, and blue values. The following code draws a panel that dis-
plays light orange text (230 red, 220 green, 0 blue) on a dark red (235 red,
50 green, 50 blue) background:

import java.awt.*;
import javax.swing.*;

public class GoBucs extends JPanel {
Color lightOrange = new Color(230, 220, 0);
Color darkRed = new Color(235, 50, 50);

public void paintComponent(Graphics comp) {
Graphics2D comp2D = (Graphics2D) comp;
comp2D.setColor(darkRed);
comp2D.fillRect(0, 0, 200, 100);
comp2D.setColor(lightOrange);
comp2D.drawString(“Go, Buccaneers!”, 5, 50);

}
}

This example calls the fillRect() method of Graphics2D to draw a filled-
in rectangle using the current color.

Drawing Lines and Shapes
Drawing shapes such as lines and rectangles is as easy in a Java program
as displaying text. All you need is a Graphics2D object to define the draw-
ing surface and objects that represent things to draw.

NOTE

sRGB values enable the cre-
ation of 16.5 million possible
combinations, though most
computer monitors only offer a
close approximation for most of
them. For guidance on whether
burnt-midnight blue goes well
with medium-faded-baby green,
read Sams Teach Yourself Color
Sense While Waiting in Line at
This Bookstore.

ptg7068951

330 HOUR 23: Creating Java2D Graphics

The Graphics2D object has methods used to draw text with a command
such as the following:

comp2D.drawString(“Draw, pardner!”, 15, 40);

This draws the text “Draw, pardner!” at the coordinates (15,40). Drawing
methods use the same (x,y) coordinate system as text. The (0,0) coordinate
is at the upper-left corner of the container, x values increase to the right,
and y values increase as you go down. You can determine the maximum
(x,y) value you can use in an applet with the following statements:

int maxXValue = getSize().width;
int maxYValue = getSize().height;

With the exception of lines, shapes you draw can be filled or unfilled. A
filled shape is drawn with the current color completely filling the space
taken up by the shape. Unfilled shapes draw a border with the current
color.

Drawing Lines
A 2D drawing of an object is created and represents the shape that is being
drawn.

The objects that define shapes belong to the java.awt.geom package of
classes.

The Line2D.Float class creates a line connecting a beginning (x,y) point
and an ending (x,y) point. The following statement creates a line from the
point (40,200) to the point (70,130):

Line2D.Float line = new Line2D.Float(40F, 200F, 70F, 130F);

The arguments are followed by the letter F to indicate they are floating-
point values. If this was omitted, Java would treat them as integers.

All shapes except for lines are drawn by calling a method of the
Graphics2D class—draw() for outlines and fill() for filled shapes.

The following statement draws the line object created in the previous
example:

comp2D.draw(line);

NOTE

Line2D.Float has a period in
the middle of its class name,
which differs from most classes
you’ve worked with before.
That’s because Float is an
inner class of the Line2D class,
a subject covered in Hour 11,
“Describing What Your Object Is
Like.”

ptg7068951

Drawing Lines and Shapes 331

Drawing Rectangles
Rectangles can be filled or unfilled and have rounded or square corners.
They are created using the Rectangle2D.Float(int, int, int, int)
constructor with these arguments:

. The x coordinate at the upper left of the rectangle

. The y coordinate at upper left

. The width of the rectangle

. The height

The following statement draws an unfilled rectangle with square corners:

Rectangle2D.Float box = new
Rectangle2D.Float(245F, 65F, 20F, 10F);

This statement creates a rectangle with its upper-left corner at the (x,y)
coordinate (245,65) with a width of 20 pixels and a height of 10. To draw
this rectangle as an outline, you could use the following statement:

comp2D.draw(box);

If you want to make the rectangle filled in, use the fill() method instead:

comp.fill(box);

You can create rectangles with rounded corners instead of square ones by
using the RoundRectangle2D.Float class.

The constructor to this class starts with the same four arguments as the
Rectangle2D.Float class and adds the following two arguments:

. A number of pixels in the x direction away from the corner of the rec-
tangle

. A number of pixels in the y direction away from the corner

These distances are used to determine where the rounding of the rectan-
gle’s corner should begin.

The following statement creates a rounded rectangle:

RoundRectangle2D.Float ro = new RoundRectangle.Float(
10F, 10F,
100F, 80F,
15F, 15F);

ptg7068951

HOUR 23: Creating Java2D Graphics

This rectangle has its upper-left corner at the (10,10) coordinate. The third
and fourth arguments specify how wide and tall the rectangle should be.
In this case, it should be 100 pixels wide and 80 pixels tall.

The last two arguments to drawRoundRect() specify that all four corners
should begin rounding 15 pixels away from the corner at (10,10).

Drawing Ellipses and Circles
You can create ellipses and circles with the same class, Ellipse2D.Float,
which takes four arguments:

. The x coordinate of the ellipse

. The y coordinate of the ellipse

. Its width

. Its height

The (x,y) coordinates do not indicate a point at the center of the ellipse or
circle, as you might expect. Instead, the (x,y) coordinates, width, and
height describe an invisible rectangle inside which the ellipse fits. The (x,y)
coordinate is the upper-left corner of this rectangle. If it has the same
width and height, the ellipse is a circle.

The following statement creates a circle inside the rectangle at the (245,45)
coordinate with a height and width of 5 pixels each:

Ellipse2D.Float cir = new Ellipse2D.Float(
245F, 45F, 5F, 5F);

Drawing Arcs
Another circular shape you can draw in Java is an , a partial ellipse or
circle. Arcs are created using the Arc2D.Float class, which has a construc-
tor method with many of the same arguments. You draw the arc by speci-
fying an ellipse, the portion of the ellipse that should be visible (in
degrees), and the place the arc should begin on the ellipse.

To create an arc, specify the following integer arguments to the constructor:

. The x coordinate of the invisible rectangle that the ellipse fits into

. The y coordinate of the rectangle

. The width of the rectangle

ptg7068951

Baking a Pie Graph

. The height of the rectangle

. The point on the ellipse where the arc should begin (in degrees from
0 to 359)

. The size of the arc (also in degrees)

. The type of arc it is

The arc’s starting point and size range from 0 to 359 degrees in a counter-
clockwise direction, beginning with 0 degrees at the 3 o’clock position, as
shown in Figure 23.1.

The type of arc is specified using class variables: PIE for pie graph slices,
CLOSED if the endpoints are connected with a straight line, and OPEN if the
endpoints should not be connected.

The following statement draws an open arc at (100,50) that is 120 degrees
long, begins at the 30-degree mark, and has a width of 65 and a height of 75:

Arc2D.Float smile = new Arc2D.Float(100F, 50F, 65F, 75F,
30F, 120F, Arc2D.Float.OPEN);

Baking a Pie Graph
To draw this hour to a close, you create PiePanel, a GUI component that
displays a pie graph. This component is a subclass of JPanel, a simple
Swing container that’s useful as a place to draw something.

One way to begin creating a class is to define the way objects of the class
are created. Programs that use the PiePanel class must undertake the fol-
lowing steps:

. Create a PiePanel object by using the constructor method
PiePanel(int). The integer specified as an argument is the number
of slices the pie graph contains.

. Call the object’s addSlice(Color, float) method to give a slice the
designated color and value.

The value of each slice in PiePanel is the quantity represented by that
slice.

For example, Table 23.1 displays data about the status of student loan
repayments in the United States for the first 38 years of the program,
according to the Office of Postsecondary Education.

90

180

90

0180

270

How arcs are defined in degrees.

ptg7068951

334 HOUR 23: Creating Java2D Graphics

TABLE 23.1 U.S. Student Loan Repayments

Amount repaid by students $101 billion

Amount loaned to students still in school $68 billion

Amount loaned to students making payments $91 billion

Amount loaned to students who defaulted $25 billion

You could use PiePanel to represent this data in a pie graph with the fol-
lowing statements:

PiePanel loans = new PiePanel(4);
loans.addSlice(Color.green, 101F);
loans.addSlice(Color.yellow, 68F);
loans.addSlice(Color.blue, 91F);
loans.addSlice(Color.red, 25F);

Figure 23.2 shows the result in an application frame that contains one com-
ponent: a PiePanel created with the student loan data.

Repaid

Loaned to Repayers

Loaned to
Students Loaned to Defaulters

FIGURE 23.2
Displaying student loan data on a
pie graph.

When a PiePanel object is created, the number of slices is specified in the
constructor. You need to know three more things to be able to draw each
slice:

. The color of the slice, represented by a Color object

. The value represented by each slice

. The total value represented by all slices

ptg7068951

Baking a Pie Graph 335

A new helper class, PieSlice, is used to represent each slice in the pie
graph:

import java.awt.*;

class PieSlice {
Color color = Color.lightGray;
float size = 0;

PieSlice(Color pColor, float pSize) {
color = pColor;
size = pSize;

}
}

Each slice is constructed by calling PieSlice(Color, float). The com-
bined value of all slices is stored as a private instance variable of the
PiePanel class, totalSize. There also are instance variables for the panel’s
background color (background) and a counter used to keep track of slices
(current):

private int current = 0;
private float totalSize = 0;
private Color background;

Now that you have a PieSlice class to work with, you can create an array
of PieSlice objects with another instance variable:

private PieSlice[] slice;

When you create a PiePanel object, none of the slices have an assigned a
color or size. The only things that you must do in the constructor are
define the size of the slice array and save the background color of the
panel:

public PiePanel(int sliceCount) {
slice = new PieSlice[sliceCount];
background = getBackground();

}

Use the addSlice(Color, float) method to add a slice of the pie to the
panel:

public void addSlice(Color sColor, float sSize) {
if (current <= slice.length) {

slice[current] = new PieSlice(sColor, sSize);
totalSize += sSize;
current++;

}
}

ptg7068951

336 HOUR 23: Creating Java2D Graphics

The current instance variable is used to put each slice into its own ele-
ment of the slice array. The length variable of an array contains the num-
ber of elements the array has been defined to hold; as long as current is
not larger than slice.length, you can continue adding slices to the panel.

The PiePanel class handles all graphical operations in its
paintComponent() method, as you might expect. The trickiest thing about
this task is drawing the arcs that represent each slice of the pie.

This is handled in the following statements:

float start = 0;
for (int i = 0; i < slice.length; i++) {

float extent = slice[i].size * 360F / totalSize;
comp2D.setColor(slice[i].color);
Arc2D.Float drawSlice = new Arc2D.Float(

xInset, yInset, width, height, start, extent,
Arc2D.Float.PIE);

start += extent;
comp2D.fill(drawSlice);

}

The start variable keeps track of where to start drawing an arc, and
extent keeps track of the size of an arc. If you know the total size of all pie
slices and the size of a specific slice, you can figure out extent by multi-
plying the arc’s size by 360 and dividing that by the total of all slices.

All the arcs are drawn in a for loop: After each arc’s extent is calculated,
the arc is created and then extent is added to start. This causes each slice
to begin right next to the last one. A call to the Graphics2D method fill()
draws the arc.

To bring all this together, create a new empty Java file named PiePanel
and enter into it the full text from Listing 23.1.

LISTING 23.1 The Full Text of PiePanel.java
1: import java.awt.*;
2: import javax.swing.*;
3: import java.awt.geom.*;
4:
5: public class PiePanel extends JPanel {
6: private PieSlice[] slice;
7: private int current = 0;
8: private float totalSize = 0;
9: private Color background;
10:
11: public PiePanel(int sliceCount) {
12: slice = new PieSlice[sliceCount];

ptg7068951

Baking a Pie Graph 337

13: background = getBackground();
14: }
15:
16: public void addSlice(Color sColor, float sSize) {
17: if (current <= slice.length) {
18: slice[current] = new PieSlice(sColor, sSize);
19: totalSize += sSize;
20: current++;
21: }
22: }
23:
24: public void paintComponent(Graphics comp) {
25: super.paintComponent(comp);
26: Graphics2D comp2D = (Graphics2D) comp;
27: int width = getSize().width - 10;
28: int height = getSize().height - 15;
29: int xInset = 5;
30: int yInset = 5;
31: if (width < 5) {
32: xInset = width;
33: }
34: if (height < 5) {
35: yInset = height;
36: }
37: comp2D.setColor(background);
38: comp2D.fillRect(0, 0, getSize().width, getSize().height);
39: comp2D.setColor(Color.lightGray);
40: Ellipse2D.Float pie = new Ellipse2D.Float(
41: xInset, yInset, width, height);
42: comp2D.fill(pie);
43: float start = 0;
44: for (int i = 0; i < slice.length; i++) {
45: float extent = slice[i].size * 360F / totalSize;
46: comp2D.setColor(slice[i].color);
47: Arc2D.Float drawSlice = new Arc2D.Float(
48: xInset, yInset, width, height, start, extent,
49: Arc2D.Float.PIE);
50: start += extent;
51: comp2D.fill(drawSlice);
52: }
53: }
54: }
55:
56: class PieSlice {
57: Color color = Color.lightGray;
58: float size = 0;
59:
60: PieSlice(Color pColor, float pSize) {
61: color = pColor;
62: size = pSize;
63: }
64: }

LISTING 23.1 Continued

ptg7068951

338 HOUR 23: Creating Java2D Graphics

Listing 23.1 defines a PiePanel class in lines 1–54 and a PieSlice helper
class in lines 56–64. The PiePanel class can be used as a component in any
Java program’s GUI. To test PiePanel, you need to create a class that uses it.

Listing 23.2 contains an application that uses these panels, PieFrame.
Create a new empty Java file and enter the source code for this class from
the listing.

LISTING 23.2 The Full Text of PieFrame.java
1: import javax.swing.*;
2: import javax.swing.event.*;
3: import java.awt.*;
4:
5: public class PieFrame extends JFrame {
6: Color uneasyBeingGreen = new Color(0xCC, 0xCC, 0x99);
7: Color zuzusPetals = new Color(0xCC, 0x66, 0xFF);
8: Color zootSuit = new Color(0x66, 0x66, 0x99);
9: Color sweetHomeAvocado = new Color(0x66, 0x99, 0x66);
10: Color shrinkingViolet = new Color(0x66, 0x66, 0x99);
11: Color miamiNice = new Color(0x33, 0xFF, 0xFF);
12: Color inBetweenGreen = new Color(0x00, 0x99, 0x66);
13: Color norwegianBlue = new Color(0x33, 0xCC, 0xCC);
14: Color purpleRain = new Color(0x66, 0x33, 0x99);
15: Color freckle = new Color(0x99, 0x66, 0x33);
16:
17: public PieFrame() {
18: super(“Pie Graph”);
19: setLookAndFeel();
20: setSize(320, 290);
21: setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
22: setVisible(true);
23:
24: PiePanel pie = new PiePanel(10);
25: pie.addSlice(uneasyBeingGreen, 1337);
26: pie.addSlice(zuzusPetals, 1189);
27: pie.addSlice(zootSuit, 311);
28: pie.addSlice(sweetHomeAvocado, 246);
29: pie.addSlice(shrinkingViolet, 203);
30: pie.addSlice(miamiNice, 187);
31: pie.addSlice(inBetweenGreen, 166);
32: pie.addSlice(norwegianBlue, 159);
33: pie.addSlice(purpleRain, 139);
34: pie.addSlice(freckle, 127);
35: add(pie);
36: }
37:
38: private void setLookAndFeel() {
39: try {
40: UIManager.setLookAndFeel(
41: “com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel”
42:);

ptg7068951

Baking a Pie Graph 339

43: } catch (Exception exc) {
44: // ignore error
45: }
46: }
47:
48: public static void main(String[] arguments) {
49: PieFrame pf = new PieFrame();
50: }
51: }

The PieFrame class is a simple graphical user interface that contains one
component, a PiePanel object created in line 24. The object’s addSlice()
method is called 10 times in lines 25–35 to add slices to the pie graph.

When you run the application, PieFrame displays a pie graph showing the
population of the 10 most populated countries (in millions), using figures from
a July 2011 U.S. Census International Data Base report. In order, they are China
(1.337 billion), India (1.189 billion), United States (311 million), Indonesia (246
million), Brazil (203 million), Pakistan (187 million), Nigeria (166 million),
Bangladesh (159 million), Russia (139 million), and Japan (127 million).

Because Java only has a few colors defined in the Color class, 10 new ones are
created for use here and given descriptive names. The colors are expressed as
hexadecimal values—in Java, hexadecimal numbers are preceded by 0x—but
they also could have been specified as decimal values in each Color() con-
structor.

Figure 23.3 shows this application running.

LISTING 23.2 Continued

China

United States

India
Japan

Russia

Bangladesh

Nigeria

Pakistan

Brazil

Indonesia

FIGURE 23.3
Displaying population figures in a
pie graph.

NOTE

You can find the current U.S.
Census world population figures
by visiting www.cadenhead.org/
census.

www.cadenhead.org/census
www.cadenhead.org/census

ptg7068951

340 HOUR 23: Creating Java2D Graphics

Summary
By using fonts, colors and graphics, you can draw more attention to ele-
ments of your programs and make them more compelling for users.

Drawing something using the shapes available with Java might seem like
more trouble than it’s worth. However, graphics depicted with polygons
have two advantages over graphics that are loaded from image files:

. Speed—Even a small graphic, such as an icon, would take longer to
load and display than a series of polygons.

. Scaling—You can change the size of an entire image that uses poly-
gons simply by changing the values to create it. For example, you
could add a function to the Sign class that multiplies all (x,y) points
in each shape by two before they are created, and it would result in
an image twice as large. Polygon images scale much more quickly
than image files and produce better results.

ptg7068951

341

Q&A
Q. How can I draw arcs that go clockwise rather than counterclockwise?

A. You can accomplish this by specifying the size of the arc as a negative
number. The arc begins at the same point, but goes in the opposite
direction in an elliptical path. For example, the following statement draws
an open arc at (35,20) that is 90 degrees long, begins at the 0 degree
mark, goes clockwise, and has a height of 20 and a width of 15:

Arc2D.Float smile = new Arc2D.Float(35F, 20F, 15F, 20F,
0F, -90F, Arc2D.Float.OPEN);

Q. Ellipses and circles don’t have corners. What are the (x,y) coordinates
specified with the Ellipses.Float constructor method?

A. The (x,y) coordinates represent the smallest x value and smallest y
value of the oval or circle. If you drew an invisible rectangle around it,
the upper-left corner of the rectangle would be the x and y coordinates
used as arguments to the method.

Q. How can I use XRender with Java?

A. Java 7 adds support for drawing Java2D graphics with the XRender ren-
dering engine in X11-based environments, typically on Linux. This func-
tionality is off by default and must be turned on using a command-line
option: Dsun.java2d.xrender=true. XRender enables Java programs to
employ the capabilities of modern graphics processing units (GPUs).

In NetBeans, you can set these options by choosing Run, Set Project
Configuration, Customize. Use the VM Options field to set this option
and click OK.

Q. Why do photographers ask you to say “cheese”?

A. The word cheese forces your mouth into a smile, as do the words
“whiskey,” “breeze,” and “money.” Words that end with a long “e” gener-
ally cause the sides of your lips to curl upward and your teeth to show.

Another word that photographers sometimes use is “grin.” Though it
doesn’t end in an “e,” it contorts the mouth and the meaning makes
people smile.

Workshop
Test whether your font and color skills are MAH-ve-lous by answering the
following questions.

Workshop

ptg7068951

342 HOUR 23: Creating Java2D Graphics

Quiz
1. Which one of the following is not a constant used to select a color?

A. Color.cyan

B. Color.teal

C. Color.magenta

2. When you change the color of something and redraw it on a container,
what must you do to make it visible?

A. Use the drawColor() method.

B. Use the repaint() statement.

C. Do nothing.

3. What do the initials RGB stand for?

A. Roy G. Biv

B. Red Green Blue

C. Lucy in the Sky with Diamonds

Answers
1. B. The primary color of the Jacksonville Jaguars, teal, has gone unrepre-

sented in Color.

2. B. The call to repaint() causes the paintComponent() method to be
called manually.

3. B. If C. were the right answer, you could use colors that would only be
visible years later during flashbacks.

Activities
To further explore the spectrum of possibilities when using fonts and color in
your programs, do the following activities:

. Create a version of the PieFrame class that takes color values and pie
slice values as command-line arguments instead of including them in
the source code of the application.

. Create an application that draws a stop sign on a panel using colors,
shapes, and fonts.

To see Java programs that implement these activities, visit the book’s website
at www.java24hours.com.

www.java24hours.com

ptg7068951

WHAT YOU’LL LEARN IN
THIS HOUR:

. Why Android was created

. How to create an Android
app

. How an Android app is
structured

. How to run an app on an
emulator

. How to run an app on an
Android phone

Java’s a general-purpose programming language that can run on a wide
variety of platforms. One of those platforms has arisen in the past four
years to become an enormously successful spark for new Java development.

The Android operating system, which started out on cell phones and has
spread to a variety of other devices, exclusively runs programs written in
Java.

These programs, called apps, are built on an open-source mobile platform
that’s completely free for developers to build on. Anyone can write,
deploy, and sell Android apps.

During this hour, you learn about how Android came about, what makes it
special, and why tens of thousands of programmers are developing on the
platform. You also create an app and run it on an Android phone (if you
own one) and an emulator (if you don’t).

Introduction to Android
Android was launched by Google in 2007, two years after it acquired the
technology, as part of industrywide effort to establish a new mobile phone
platform that was nonproprietary and open, unlike the technology that
drives RIM BlackBerry and Apple iPhone. Some of the biggest names in
mobile phones and technology—Google, Intel, Motorola, Nvidia, Samsung,
and other companies—formed the Open Handset Alliance to promote the
new platform for mutual benefit.

Google released the Android Software Development Kit (SDK), a free set of
tools for developing Android apps. The first phone running Android, the
T-Mobile G1, came out in June 2008.

HOUR 24
Writing Android Apps

ptg7068951

344 HOUR 24: Writing Android Apps

This effort started slowly, but since early 2010 it has exploded and become
a genuine rival to iPhone and other mobile platforms. All major phone car-
riers now offer Android phones. There’s also a growing market for tablet
and e-book readers.

Before Android, mobile application development required expensive pro-
gramming tools and developer programs. The makers of the phone had
control over who’d be allowed to create apps for them and whether the
apps could be sold to users.

Android tears down that wall.

The open-source and non-proprietary nature of Android means that any-
one can develop, release, and sell apps. The only cost involved is a nomi-
nal fee to submit apps to Google’s marketplace. Everything else is free.

The place to download the Android SDK and find out more about creating
programs for the platform is the Android Developer site at http://
developer.android.com. You will consult it often as you write your own
apps because it documents every class in Android’s Java class library and
serves as an extensive online reference.

Writing Android apps is easier if you’re using an integrated development
environment (IDE) that’s equipped to support the Android SDK. The most
popular IDE for Android programming is Eclipse, which also is free and
open source. An Android Plug-in for Eclipse makes the SDK function
seamlessly inside the IDE.

You can use Eclipse to write Android apps, test them in an emulator that
acts like an Android phone and even deploy them on an actual device.

For most of its existence, the Java language has been used to write pro-
grams that run in one of three places: a desktop computer, a web server, or
a web browser.

Android puts Java everywhere. Your programs can be deployed on mil-
lions of phones and other mobile devices.

This fulfills the original design goal of Java back when James Gosling
invented the language while working at Sun Microsystems in the mid
1990s. Sun wanted a language that could run everywhere on devices such
as phones, smart cards, and appliances.

Java’s developers set aside those dreams when the language became popu-
lar first as a means of running interactive web programs and then as a
general-purpose language.

http://developer.android.com
http://developer.android.com

ptg7068951

Creating an Android App 345

Fifteen years later, the Android platform is hosting as many as a billion
Java programs around the world, according to one industry estimate.

Android has the potential to be the most pervasive—and lucrative—area of
Java programming for years to come.

It may also be the most fun.

Creating an Android App
Android apps are ordinary Java programs that use an application frame-
work, a core set of classes and files that all apps have in common. The
framework embodies a set of rules for how apps must be structured in
order to run properly on Android devices.

To get started writing apps, you must install and configure the Android
SDK, the Eclipse IDE, and the Android Plug-in for Eclipse.

If this is your first experience with Android programming, you can find
out how to acquire and set up these tools in Appendix D, “Setting Up an
Android Development Environment.”

Go ahead and do that. I’ll wait for you here and catch up with some
friends on Facebook.

Done? Good.

The first project you undertake is to write a SalutonMondo app, a modest
program that displays a single line of text on the screen of an Android device.

1. Run the Eclipse IDE, which looks and acts a lot like NetBeans.

2. Choose File, New, Android Project. The New Android Project Wizard
opens, as shown in Figure 24.1.

3. In the Project Name field, enter SalutonMondo.

4. In the Contents section, click Create New Project in Workspace.

5. The Use Default Location checkbox determines where the project is
stored. If you’re happy with the default, keep this selected.
Otherwise, deselect the checkbox, click the Browse button, and
choose the folder where the project is stored.

6. Every Android project requires a build target. The target represents
the oldest version of Android that can run your app. Because each
new Android release has enhanced features, your target choice deter-
mines which features you can use.

CAUTION

This hour is the longest in the
book because there’s a lot to
cover when getting your start as
an Android app developer and
future millionaire. It would have
been split over two hours if my
publisher had not vetoed the
prospective title Sams Teach
Yourself Java in 25 Hours.

ptg7068951

346 HOUR 24: Writing Android Apps

For a simple app like this one, an early target is OK. Choose
Android 2.2.

7. In the Application name field, give the app the name Saluton
Mondo!. This name will be displayed on Android devices.

8. The Package name field should contain the name of the Java package
to which the classes of this app belong. Enter
org.cadenhead.android.

9. The Create Activity checkbox indicates whether the new app will be
created with an Activity class. An activity is a task the app can
accomplish. Keep this checkbox selected and enter SalutonActivity
in the adjacent text field.

10. Click Finish. The new app is created and a SalutonMondo item
appears in the Package Explorer pane.

Exploring a New Android Project
A new Android project consists of around 20 files and folders that always
are organized the same way in an Android app. There might be more files

FIGURE 24.1
Creating a new Android project in
Eclipse.

ptg7068951

Creating an Android App 347

you add depending on the capabilities of the app, but these starting files
and folders always must be present.

Figure 24.2 shows the Eclipse Package Explorer after a new Android proj-
ect has been created.

Package Explorer

FIGURE 24.2
Viewing the parts of an Android
project.

You can use the folder to explore the file and folder structure of the project.
The new SalutonMondo app starts out with the following components:

. /src folder—The root folder for the app’s Java source code.

. /src/org.cadenhead.android/SalutonActivity.java—The class
for the activity that launches by default when the app is run.

. /gen folder—The folder for generated Java source code you do not
edit manually.

. /gen/org.cadenhead.android/R.java—The automatically generated
resource management source code for the app. (Never edit this!)

. /assets—The folder for file resources that will not be compiled into
the app.

. /res—The folder for application resources such as strings, numbers,
layout files, graphics and animation. There are subfolders for specific
resource types: layout, values, drawable-hdpi, drawable-ldpi, and
drawable-mdpi. These folders contain five resource files: three ver-
sions of icon.png, main.xml and strings.xml.

. AndroidManifest.xml—The app’s primary configuration file.

ptg7068951

348 HOUR 24: Writing Android Apps

. default.properties—A build file generated by the Android Plug-in
that you should not edit.

. proguard.cfg—A configuration file for ProGuard, a tool that optimizes
an app and makes the source code harder for others to decompile.

These files and folders form the application framework. The first thing you
undertake as an Android programmer is to learn how to modify the frame-
work so you can discover what each component can accomplish.

There are additional files that are added to the framework to suit specific
purposes.

Creating an App
Although you haven’t done anything to it yet, you could successfully run
the new Android project. The framework functions as a working app.

Because there’s no fun in that, you customize the SalutonMondo app to
offer the traditional computer programming greeting “Saluton Mondo!”

In Hour 2, “Writing Your First Program,” you displayed the text “Saluton
Mondo!” as a string by calling the method System.out.println().

Android apps display strings that have been stored first in a resource file
called strings.xml. You can find this file in the /res/values folder.

Use the Package Explorer to navigate to this folder. Double-click
strings.xml. A Resources editor opens, as shown in Figure 24.3.

strings.xml

FIGURE 24.3
Editing an Android app’s string
resources.

ptg7068951

Creating an Android App 349

Strings and other resources are given a name and a value, just like a vari-
able in Java. There are two string resources listed in the Resources ele-
ments pane: hello and app_name.

The names of resources follow three rules:

. They must be all lowercase.

. They must have no spaces.

. They must use only the underscore character (“_”) as punctuation.

Click a string in the Resources elements pane. Name and Value text fields
appear along with some guidance on how to edit strings (which also is
shown in Figure 24.3).

The app_name string resource was something you chose when running the
New Android Project Wizard. The name should match what you gave it
earlier, but you can make changes at any time by editing this string.

The hello string contains text to display on the app’s main (and only)
screen when it is run. Click the name of this string to bring it up for editing.

In the Value field, enter Saluton Mondo!.

Resources are stored in XML files. The Resources editor is a simple XML
editor. You also can directly edit the XML itself. Click the strings.xml tab
at the bottom of the editor to load this file for direct editing. (Refer to
Figure 24.3 where this tab is identified.)

Here’s what strings.xml looks like at the moment:

Output ▼

<?xml version=”1.0” encoding=”utf-8”?>
<resources>

<string name=”hello”>Saluton Mondo!</string>
<string name=”app_name”>Saluton Mondo!</string>

</resources>

This editor allows everything in the XML file to be edited, even the markup
tags. The string element contains a name attribute that identifies the name
of the resource. The value is enclosed within the tag as character data.

To go back to the Resources editor, click the Resources tab. Click the Save
button in the Eclipse toolbar to save your change to the file strings.xml.

With that modification, you’re almost ready to run the app.

CAUTION

Although you can edit XML
directly, don’t. There’s usually
no need to do it when creating
resources for an Android app.
The exception is when the
Eclipse editor doesn’t support
something you want to do in
defining a resource. This isn’t
the case with strings, so it’s
better to stick to the Resources
editor. You’re more likely to
make errors editing the XML
files directly.

ptg7068951

350 HOUR 24: Writing Android Apps

Setting Up an Android Emulator
Before you can build an Android app, you must set its debugging environ-
ment. This can be handled within Eclipse. You must set up an Android
Virtual Device (AVD) that can run the app on your desktop as an emulator.
You also must create the project’s debug configuration. When you’re done,
you can build the app and run it in the emulator.

To configure an Android Virtual Device, first click the green Android icon
with a down arrow in the Eclipse toolbar, which is shown in Figure 24.4.

Android SDK and AVD ManagerFIGURE 24.4
Configuring an Android Virtual
Device.

This launches the Android SDK and AVD Manager, one of the tools in the
Android SDK. Click the Virtual Devices item in the left pane. The emula-
tors that you’ve created are listed to the right. The manager is shown in
Figure 24.5.

To add a new emulator, click New and follow these steps:

1. In the Name field, give it the name SimpleAVD.

2. In the Target field, you must choose a target version of Android from
the drop-down menu. Choose Android 2.2 - API Level 8.

3. In the Size field, choose a size for the fake SD card. Enter 1024 and
choose MiB from the associated drop-down for an SD card that’s
1024MB in size. You must have this much available space on your
computer, so choose smaller if you’d prefer not to take up that much
space. The minimum size is 9MB.

ptg7068951

Creating an Android App 351

4. Click Create AVD. The new emulator is created, which might take a
little while (no longer than a minute, generally).

You can create as many emulators as you need. They can be customized for
different versions of Android and different kinds of displays.

Close the Android SDK and AVD Manager to return to the main Eclipse
interface.

Creating a Debug Configuration
The last thing required before you can launch the SalutonMondo app is to
create a debug configuration in Eclipse. Follow these steps:

1. Choose Run, Debug Configurations. The Debug Configurations
window opens.

2. In the left pane, double-click the Android Application item (shown in
Figure 24.6). A new entry called New_configuration is created as its
subitem. The right pane displays some configuration options for the
new item.

FIGURE 24.5
Creating a new Android emulator.

ptg7068951

352 HOUR 24: Writing Android Apps

3. In the right pane, in the Name field, change it to SalutonDebug.

4. Click the Browse button. The Project Selection dialog opens.

5. Choose the project SalutonMondo and click OK.

6. Click the Target tab.

7. Under Deployment Target Selection Mode, choose Automatic (if it
isn’t already chosen). A table enables you to select a target AVD.

8. In the table, select the checkbox for the SimpleAVD emulator.

9. Click Apply to save your changes and then click Close.

Running the App
Now that you have an Android emulator and a debug configuration, you
can run your first app. Click SalutonMondo, the top item in the Package
Explorer, and then click the bug icon in the Eclipse toolbar.

Android Application itemFIGURE 24.6
Creating an Android debug
configuration.

ptg7068951

Running the App 353

The Android emulator loads in its own window. This can take a minute or
more, so wait patiently as the fake phone boots up. (The emulator is so
slow to load it gives you time to ponder this Chinese proverb: “The oxen
are slow but the earth is patient.”)

The emulator displays “Saluton Mondo!” as the text and title bar of the
app, as shown in Figure 24.7. Controls enable the emulator to be used like
a phone, but with a mouse instead of your finger. Click the back button to
close the app and see how the Android device is emulated.

Back

FIGURE 24.7
Running an app in the Android
emulator.

An emulator can do many of the things a real device can do, including
connect to the Internet if the computer has an active connection. It also can
receive fake phone calls and SMS messages.

Because it’s not a fully functional device, the apps that you develop must
be tested on actual Android phones and tablets.

If you can connect an Android phone (or other device) to your computer
using a USB cord, you should be able to run the app if the phone is set in
debugging mode. Apps developed with the Android SDK can be deployed
only on a phone in this mode.

ptg7068951

354 HOUR 24: Writing Android Apps

On the phone, enter this mode by choosing Home, Settings, Applications,
Development. The Development settings are displayed. Choose the USB
debugging option.

Next, in Eclipse, follow these steps:

1. Choose Run, Debug Configurations. The Debug Configurations win-
dow opens.

2. Click the Target tab in the right pane to bring it to the front.

3. Change Deployment Target Selection Mode from Automatic to Manual.

4. Click Apply and Close.

Connect your Android phone with the USB cord. An Android bug icon
should appear on the bar at the top of the screen. If you drag this bar
down, you should see the message “USB Debugging Connected.”

Back in Eclipse, click the bug icon in the toolbar. The Android Device
Chooser dialog opens (see Figure 24.8).

FIGURE 24.8
Deploying an app on an Android
phone.

If the Android phone has been detected, it appears in the top table in
Figure 24.5 under the Choose a Running Device option.

Select this option, click the device, and click OK. The app runs on the
phone as it did on the emulator.

Like the first program you wrote in Java back in Hour 2, the first app you
created on Android is exceptionally unexceptional. The next project is
more ambitious.

ptg7068951

Designing a Real App 355

Designing a Real App
Android apps can exploit all the device’s functionality, such as SMS messag-
ing, location-based services, and touch input. In this book’s final program-
ming project, you create a real app called Take Me To Your Leader.

This app takes advantage of an Android phone’s capabilities to make a phone
call, visit a website, and load a location in Google Maps. The app puts you in
touch with the White House via phone, Web, and maps. (If the president of the
United States is not your leader, the app can be customized.)

To get started, you create a new project in Eclipse by performing these steps:

1. Click File, New, Android Project. The New Android Project Wizard opens.

2. In the Project Name field, enter Leader.

3. Make sure Create New Project in Workspace is selected.

4. Choose the Build Target Android 2.2.

5. In the Application Name field, enter Take Me To Your Leader.

6. In the Package Name field, enter org.cadenhead.android.

7. Make sure Create Activity is selected, and enter LeaderActivity in the
adjacent text field. The wizard should resemble Figure 24.9.

8. Click Finish.

FIGURE 24.9
Creating a new Android project.

ptg7068951

356 HOUR 24: Writing Android Apps

The project appears in the Eclipse Package Explorer, as does the
SalutonMondo project. To avoid confusion, you should close SalutonMondo
before proceeding. Right-click SalutonMondo in the Package Explorer, and
then choose Close Project from the pop-up menu.

Organizing Resources
Creating an Android app requires Java programming, but a lot of the work
is done in the Eclipse interface. When you are fully versed in the capabili-
ties of the Android SDK, you can accomplish a great deal without writing
a single line of Java code.

One thing you do without programming is create resources that will be
used by the app. Every new Android project starts out with several folders
where resources are placed. To see these folders, expand the Leader folder
in the Package Explorer, and then expand the /res folder and all of its sub-
folders (as shown in Figure 24.10).

TIP

This project covers a lot of
ground. As you work through it,
you’ll find it handy to keep a
browser open to the Android
Developer site’s reference sec-
tion at http://developer.
android.com/reference. You can
search for the Java classes in
the Android class library and
the filenames of the files in the
project to learn more.

FIGURE 24.10
Examining an app’s resource
folders.

Resources consist of graphics in the PNG, JPG, or GIF format, strings
stored in a file called strings.xml, user interface layout files in XML for-
mat, and other files you can create. Two you add often to projects are
colors.xml for colors used in the app and dimens.xml for dimensional
measurements that set text size and other things that are displayed.

http://developer.android.com/reference
http://developer.android.com/reference

ptg7068951

Designing a Real App 357

The /res folder of a new project contains folders called drawable-hdpi,
drawable-mdpi, and drawable-lpdi that have three different versions of
icon.png, the app’s icon. The icon is the small graphic used to launch
the app.

The three versions of icon.png are the same graphic sized for high-
resolution, medium-resolution, and low-resolution displays. You won’t be
using these icons, so it’s OK to delete them: Click one of the icon.png files
in Package Explorer, and then press the Delete key. You’ll be asked to con-
firm each deletion.

Deleting these files causes two red X’s to appear in Package Explorer: One
over AndroidManifest.xml and another over the top-level Leader item
(which are identified in Figure 24.11). These X’s indicate that the app now
has errors that will prevent it from being compiled and run.

The errors cropped up because the app now lacks an icon. A new graphics
file, appicon.png, will be added to the project and designated as its icon in
the file AndroidManifest.xml, the app’s main configuration file.

This book’s website contains appicon.png and four other graphics files
needed by this app: browser.png, maps.png, phone.png, and
whitehouse.png. Visit www.java24hours.com and go to the Hour 24 page
for this edition of the book. Download all five files and save them in a tem-
porary folder on your computer.

Android’s support for multiple resolutions is handy, but it’s not necessary
here. Instead of using the existing drawable folders, a new one will be cre-
ated by following these steps:

1. Click the /res folder in Package Explorer to select it.

2. Choose File, New, Folder. The New Folder dialog opens.

3. Enter drawable in the Folder Name field.

4. Click Finish.

A new folder will be created inside /res called drawable. All the graphics
needed by the app can be stored here without consideration of their
resolution.

FIGURE 24.11
Detecting and fixing errors in
the app.

www.java24hours.com

ptg7068951

358 HOUR 24: Writing Android Apps

Files can be added to resources using drag and drop. Open the temporary
folder containing the five files, select them, and drag them to the drawable
folder in Package Explorer.

Now that the project has a new icon, you can set it as the app’s icon and
get rid of the errors noted in Package Explorer. This will be handled by
editing AndroidManifest.xml.

Configuring the App’s Manifest File
The primary configuration tool in an Android app is a file called
AndroidManifest.xml in the main app folder. All XML files utilized by an
app can be edited manually or by using the built-in editor in Eclipse. The
latter is easier and less error prone. Unless you’re extremely comfortable
editing XML, you should stick to the editor until you’ve gained more expe-
rience as an Android programmer.

To choose the proper icon for the app, do the following:

1. Double-click AndroidManifest.xml in Package Explorer. The file
opens for editing in the main Eclipse window using the built-in editor.

2. Several tabs run along the bottom edge of the editor. Click the
Application tab to see settings related to the app (see Figure 24.12).

CAUTION
Resources are identified in an app
using an ID formed from their file-
name with the extension removed.
appicon.png has the ID appicon,
browser.png has the ID browser,
and so on. No two resources can
have the same ID (with the excep-
tion of the same graphic being
stored at different resolutions in
the three drawable-*dpi folders,
because they count as a single
resource).

If two resources have the same
name without the extension, such
as appicon.png and
appicon.gif, Eclipse will flag the
error and the app won’t compile.

Resources also must have names
that contain only lowercase let-
ters, numbers, underscores (_),
and periods (.). The files in this
project follow these rules.

FIGURE 24.12
Editing the app’s
AndroidManifest.xml file.

ptg7068951

Designing a Real App 359

3. The Icon field identifies the app’s icon, which currently has the incor-
rect value @drawable/icon. Click the Browse button next to this field.
A Resource Chooser dialog appears listing the five “drawable”
resources contained in the app.

4. Choose appicon and click OK. The Icon field now has the correct
value.

5. Save the file: Click the Save button in the main Eclipse toolbar or
choose File, Save.

The red X’s disappear from the Package Explorer, indicating that the app
now has a properly designated icon.

Designing a User Interface
An app’s graphical user interface consists of layouts, which are containers
that hold widgets such as text fields, buttons, graphics, and custom widgets
of your own design. Each screen displayed to a user can have one layout or
multiple layouts within each other. There are layouts to stack components
vertically or horizontally, organize them in a table, and other arrangements.

An app can be as simple as a single screen or contain multiple screens. A
game could be organized into these screens:

. A splash screen that displays as the game is loading

. A main menu screen with buttons to view the other screens

. A help screen explaining how to play

. A scores screen that lists the highest player scores

. A credits screen naming the game’s developers

. A game screen for actual play

The Leader app consists of a single screen, which holds buttons for con-
tacting the president of the United States or a leader to be named later.

All of an app’s screens are kept in the /res/layout folder. A new project
has a main.xml file in this folder that’s already designated as the screen to
display when the app loads.

To begin editing this screen’s layout, double-click main.xml in Package
Explorer. The screen opens in the main Eclipse window, as shown in
Figure 24.13.

ptg7068951

360 HOUR 24: Writing Android Apps

The editing window includes a Palette pane with several folders that can
be expanded. The Form Widgets subpane, which is likely to be expanded,
displays some simple widgets that can be dragged and dropped onto the
screen at right.

Follow these steps to add three graphical buttons to the screen:

1. Delete the textview widget that displays the “Hello World” text.
Click this widget on the screen and press Delete.

2. Double-click the Images & Media folder in the Palette pane. The sub-
pane expands.

3. Drag an ImageButton widget from the Palette to the screen. A narrow
blue box appears on the screen and an error message appears below
the screen. The error is flagged because the button lacks an image—
don’t worry about it.

4. Drag two more ImageButton widgets to the screen. They will be
stacked vertically.

5. An Outline pane lists the widgets on the screen. Select the
imageButton1 item. The properties of the button open in the
Properties pane (see Figure 24.14).

Set Horizontal Orientation

ScreenScreen
ImageButton

widget

FIGURE 24.13
Editing the app’s
AndroidManifest.xml file.

ptg7068951

Designing a Real App 361

6. Scroll down the Properties pane until you see an ID property. Its
value currently is set to @+id/imageButton1. Change this to
@+id/phonebutton.

7. Scroll down to the Src property, which currently equals
drawable/icon. Click this value. An ellipse (...) button appears.

8. Click the ... button. A Reference Chooser dialog opens.

9. Expand the Drawable heading to see a list of the app’s graphics,
which are the resources you added earlier. Choose phone and click
OK. The button now has a graphic of a phone.

10. In the On Click property, enter the value processClicks. (This is
explained in the next section.)

11. Repeat steps 5–10 for imageButton2, giving it the ID @+id/webbutton
and the Src drawable/browser.

12. Repeat steps 5–10 for imageButton3, giving it the ID @+id/mapbutton
and the Src drawable/maps.

13. Click the Set Horizontal Orientation button above the screen (refer to
Figure 24.13). The buttons now are lined up side by side.

14. Click the LinearLayout item in the Outline. The properties for the
screen appear in the Properties pane.

15. Click the value for Background, and then click the ... button. The
Reference Chooser opens.

ImageButton1

ID value

FIGURE 24.14
Customizing a widget’s properties.

ptg7068951

362 HOUR 24: Writing Android Apps

16. Expand Drawable, choose whitehouse, and click OK. A graphic of
the White House becomes the screen’s background.

17. Click the Save button.

The finished screen appears in Figure 24.15.

FIGURE 24.15
Previewing an app’s graphical user
interface.

Writing Java Code
At this point you’ve done the bulk of the work on the new app, but you
haven’t written a single line of Java code. App development is easier when
you utilize as many capabilities of the Android SDK as possible without
resorting to programming.

Apps are organized into Activities, which represent things an app can do.
Each Activity is defined by its own Java class. When you created this app,
you specified that an Activity named LeaderActivity should be created. A
class matching this name runs automatically when the app is loaded.

The source code for LeaderActivity.java can be found in Package
Explorer in the /src/org.cadenhead.android folder. Double-click this file
to edit it.

When you start, the class has the code in Listing 24.1.

ptg7068951

Designing a Real App 363

LISTING 24.1 The Starting Text of LeaderActivity.java
1: package org.cadenhead.android;
2:
3: import android.app.Activity;
4: import android.os.Bundle;
5:
6: public class LeaderActivity extends Activity {
7: /** Called when the activity is first created. */
8: @Override
9: public void onCreate(Bundle savedInstanceState) {
10: super.onCreate(savedInstanceState);
11: setContentView(R.layout.main);
12: }
13: }

Like all Activities, the LeaderActivity class is a subclass of Activity in
the android.app package, which contains the behavior necessary to dis-
play a screen, collect user input, save user preferences, and so on.

The onCreate() method defined in lines 9–12 is called when the class is
loaded. The first thing the method does is use super() to call the same
method in its superclass. Next, it calls setContentView(), a method that
selects the screen that will be displayed. The argument to this method is an
instance variable, R.layout.main, that refers to the file main.xml in
/res/layout. As you may recall, the ID of a resource is its filename with-
out the extension.

The first thing you must do in the LeaderActivity class is give it a class
variable. Add the following statement right below the class definition:

public static final String TAG = “Leader”;

This variable serves as an identifier for the class, which you use to log
events that occur as it runs. Android classes can log their activities to let
you know what’s happening in the app. Here’s one of the log statements
you will add later:

Log.i(TAG, “Making call”);

This statement displays a log message tagged with the name “Leader.”

The Log class in the android.util package displays messages in the log.
This class has five different methods to log messages, each of which indi-
cates what type of message it is, such as a warning, debugging message, or
error. The i() method is for info messages—information that explains
what’s going on in the app.

NOTE

You can open the R.java file
for editing in the /res/gen/
org.cadenhead.android folder
to learn more about why the
main resource is referred to as
R.layout.main. The R class is
generated automatically by the
Android SDK to enable
resources to be referenced by
their IDs. You never should edit
this class yourself.

ptg7068951

364 HOUR 24: Writing Android Apps

The first argument to Log.i() identifies the app and the second contains
the message.

When you designed the app’s user interface earlier, you set the On Click
property of each button to processClicks. This indicated that a method
called processClicks() would be called when a user clicked a widget on
the screen. Now it’s time to implement that method. Add these statements
to LeaderActivity below the onCreate() method:

public void processClicks(View display) {
Intent action;
int id = display.getId();

}

This method is called with one argument, a View object from the
android.view package. A View is a visual display of some kind in an app.
In this case, it’s the screen containing the Dialer, Browser, and Maps but-
tons.

The View object’s getId() method returns the ID of the button that was
clicked: phonebutton, webbutton, or mapbutton.

This ID is stored in the id variable so it can be used in a switch statement
to take action based on the click:

switch (id) {
case (R.id.phonebutton):

// ...
break;

case (R.id.webbutton):
// ...
break;

case (R.id.mapbutton):
// ...
break;

default:
break;

}

This code will take one of three actions, using the integer of each ID as the
conditional in the switch. The first statement in the processClicks()
method creates a variable to hold an Intent object, a class in Android’s
android.content package:

Intent action;

Intents in Android are how Activities tell another Activity what to do.
They’re also the way an app communicates with the Android device.

ptg7068951

Designing a Real App 365

Here are the three Intents employed in this method:

action = new Intent(Intent.ACTION_DIAL, Uri.parse(“tel:202-456-1111”));

action = new Intent(Intent.ACTION_VIEW,
➥ Uri.parse(“http://whitehouse.gov”));

action = new Intent(Intent.ACTION_VIEW, Uri.parse(“geo:0,0?q=White House,
➥ Washington, DC”));

The Intent() constructor takes two arguments:

. The action to take, represented by one of its class variables

. The data associated with the action

These three Intents tell the Android device to set up an outgoing phone call
to the White House public phone line at (202) 456-1111, visit the website
http://whitehouse.gov, and load Google Maps with the partial address
“White House, Washington, DC,” respectively.

After you have created an Intent, the following statement makes it do some-
thing:

startActivity(action);

The full text of the LeaderActivity class is in Listing 24.2. Add the import
statements in lines 3–8 and the processClicks() method to what you
already have entered. Make sure your code matches the entire listing.

LISTING 24.2 The Full Text of LeaderActivity.java
1: package org.cadenhead.android;
2:
3: import android.app.Activity;
4: import android.content.Intent;
5: import android.net.Uri;
6: import android.os.Bundle;
7: import android.util.Log;
8: import android.view.View;
9:
10: public class LeaderActivity extends Activity {
11: public static final String TAG = “Leader”;
12:
13: /** Called when the activity is first created. */
14: @Override
15: public void onCreate(Bundle savedInstanceState) {
16: super.onCreate(savedInstanceState);
17: setContentView(R.layout.main);
18: }
19:

http://whitehouse.gov

ptg7068951

366 HOUR 24: Writing Android Apps

20: public void processClicks(View display) {
21: Intent action;
22: int id = display.getId();
23: switch (id) {
24: case (R.id.phonebutton):
25: Log.i(TAG, “Making call”);
26: action = new Intent(Intent.ACTION_DIAL,
27: Uri.parse(“tel:202-456-1111”));
28: startActivity(action);
29: break;
30: case (R.id.webbutton):
31: Log.i(TAG, “Loading browser”);
32: action = new Intent(Intent.ACTION_VIEW,
33: Uri.parse(“http://whitehouse.gov”));
34: startActivity(action);
35: break;
36: case (R.id.mapbutton):
37: Log.i(TAG, “Loading map”);
38: action = new Intent(Intent.ACTION_VIEW,
39: Uri.parse(“geo:0,0?q=White House, Washington, DC”));
40: startActivity(action);
41: break;
42: default:
43: break;
44: }
45: }
46: }

Save the file when you’re done. It should compile successfully (something
Eclipse does automatically)—if not, the familiar red X’s appear in the Package
Explorer, identifying the files in the project where the errors were found.

When there are no errors, you’re almost ready to run the app.

You must create a new debug configuration for the project first:

1. Click the arrow next to the Debug button in the main Eclipse toolbar,
then choose Debug Configurations. The Debug Configurations dialog
opens.

2. Double-click Android Application in the left pane. A new
configuration called New_configuration (1) is created.

3. Enter LeaderDebug as the Name.

4. Click the Browse button, choose the project Leader, and click OK.

5. Click the Target tab to bring it to the front.

LISTING 24.2 Continued

ptg7068951

Designing a Real App 367

6. With Automatic selected as the Deployment Target Selection Mode,
select the SimpleAVD Android virtual device.

7. Change Deployment Target Selection Mode to Manual, click Apply,
and then click Close.

A new debug configuration called LeaderDebug is created.

To run the app, click the arrow next to the Debug button and choose
LeaderDebug (if it is present). If not, choose Debug Configurations, choose
LeaderDebug, and click Debug. The Android Device Chooser opens. Select
Launch a New Android Virtual Device, select SimpleAVD, and click OK.

The emulator loads over the next few minutes, then automatically runs
the app.

An emulator does not emulate everything an Android device can do. The
Leader app’s Dialer and Browser buttons should work properly, but you
might encounter problems with Maps.

The app also can be run on an Android phone, if you have one working
with the Android SDK and the phone has been set to debugging mode.
Click the arrow next to Debug and choose LeaderDebug, which definitely
should be present this time. Select Choose a Running Android Device,
select your phone in the list, and then click OK.

Figure 24.16 shows the app running on my phone. When the phone is
shifted from portrait mode to landscape mode, the app shifts accordingly.
(The figure also shows that I have 141 new voicemail messages. I probably
should check those.)

FIGURE 24.16
Take me to your leader!

ptg7068951

368 HOUR 24: Writing Android Apps

The Leader app also has been added to the phone’s applications with its
own “Take Me to Your Leader” icon. It will stay on the phone even after
you disconnect the USB cable.

Congratulations! The world now has one billion and one Android apps.

Summary
The goal of Sams Teach Yourself Java in 24 Hours has been to help you become
comfortable with the concepts of programming and confident in your abili-
ty to write your own applications, whether they run on a desktop comput-
er, web page, web server, or even a phone. Java has an approach that is
somewhat difficult to master. (Feel free to scratch out the word “somewhat”
in the previous sentence if it’s a gross misstatement of the truth.)

As you build experience in Java, you’re building experience that grows
increasingly relevant, because concepts such as object-oriented program-
ming, virtual machines, and secure environments are on the leading edge
of software development.

If you haven’t already, you should check out the appendixes for additional
useful information.

At the conclusion of this hour, you can explore Java in several different
places. Programmers are discussing the language on the weblogs at
http://weblogs.java.net. Numerous Java job openings are displayed in the
database of employment websites such as http://www.careerbuilder.com.
There’s also a website for this book at http://www.java24hours.com where
you can send email to the author and read answers to reader questions,
clarifications to the book, and (gulp) corrections.

One way to continue building your skills as a Java programmer is to read
Sams Teach Yourself Java in 21 Days. I wrote that book also, and it expands
on the subjects covered here and introduces new ones, such as JDBC, Java
servlets, and network programming.

There’s also more coverage of Android.

If you didn’t skip ahead and have just completed all 24 hours, kudos.
Please use your newfound programming skills to get a good job and
rebuild the world economy.

NOTE

As you might have surmised,
there’s a lot more to Android
programming than can be cov-
ered in a single hour, even by
an author of such remarkable
experience, enormous talent,
and unsurpassed humility as
myself. Sams offers another
book that takes the Java pro-
gramming you’ve learned here
and extends it with another 24
hours of Android-specific cover-
age: Sams Teach Yourself
Android Application
Development, 2nd Edition, by
Lauren Darcey and Shane
Conder (ISBN 978-0-13-
278686-7). This hour was writ-
ten to be fully compatible with
how Darcey and Conder cover
Android.

http://weblogs.java.net
http://www.careerbuilder.com
http://www.java24hours.com

ptg7068951

Q&A 369

Q&A
Q. Why is Eclipse used to create Android apps instead of NetBeans?

A. You can use NetBeans to develop apps, but it’s a more cumbersome
and less well-supported IDE for Android programming. Eclipse has been
designated by Google as the preferred Android IDE. The official docu-
mentation and tutorials on the Android Developer site at http://
developer.android.com all use Eclipse.

Most programming books for Android also employ Eclipse. Although
there’s a learning curve required to switch from NetBeans to Eclipse
when you dive into Android, after you master the basics of writing,
debugging, and deploying an app, you should find Eclipse easier to use
because it’s so much better supported by programmers and technical
writers.

Q. How does ProGuard make it harder for an app’s source code to be
decompiled?

A. Java class files are susceptible to being reverse engineered, which is
the process of taking executable code and figuring out the source code
that was used to create it. Because the designers of Android apps
might not want other developers to copy their source code in their own
apps, ProGuard is available in every Android project you create.

ProGuard optimizes an app by removing unused code from its class
files when they’re compiled. ProGuard also obfuscates code by chang-
ing the names of classes, fields, and methods to something meaning-
less and obscure. That way, even if someone decompiles the Java
code, the source code is a lot harder to figure out.

The obfuscation feature only is applied when an app is built in release
mode. Doing it earlier than that would make debugging much more diffi-
cult.

Q. Why do so many movies have the same exact sound of a man scream-
ing in anguish?

A. That sound’s the Wilhelm scream, a sound effect that was heard first in
the 1951 movie Distant Drums. It turns up most often when somebody
falls from a great height, is shot by a gun, or knocked back by an explo-
sion. Two famous uses are in the original Star Wars, when a stormtrooper
is shot by Luke Skywalker and falls off a ledge, and in the animated movie
Toy Story when Sheriff Woody knocks Buzz Lightyear out the window.

http://developer.android.com
http://developer.android.com

ptg7068951

370 HOUR 24: Writing Android Apps

The sound was popularized by movie sound designer Ben Burtt, who
found it in a Warner Brothers stock library when developing sound for
Star Wars and included it in every Steven Spielberg and George Lucas
movie he worked on. It has since become a tradition among sound
designers and can be heard in more than 140 movies.

The voice actor who screamed is believed to be Sheb Wooley, an actor
and singer who recorded the 1958 novelty song “Purple People Eater.”

The name Wilhelm comes from the third movie to use the sound effect.
In the 1953 film The Charge at Feather River, Private Wilhelm yells in
anguish as he’s shot by an Indian’s arrow.

Workshop
If you would like to dial up the knowledge you’ve just acquired in Android
development, answer the following questions.

Quiz
1. Which of the following companies was not part of the Open Handset

Initiative, the group that championed Android?

A. Google

B. Apple

C. Motorola

2. What tool makes it harder for developers to snoop on a Java program’s
source code?

A. A decompiler

B. A recompiler

C. An obfuscator

3. Which of the following tasks can an Android emulator not perform?

A. Receiving an SMS message

B. Connecting to the Internet

C. Making a phone call

ptg7068951

Workshop 371

Answers
1. B. Apple, because Android was created in part as an open source, non-

proprietary alternative to the Apple iPhone.

2. C. Trips off the tongue, doesn’t it? Say obfuscator five times fast.

3. C. Emulators can’t do everything an actual device can do, so they’re
only part of the testing process for apps.

Activities
To make your Android knowledge go for longer distance, undertake the follow-
ing activities:

. Change the text of the SalutonMondo app to “Hello, Android” and run
the app in the emulator and on an Android device (if one is available to
you).

. Create a new version of Take Me To Your Leader for a different world
leader, customizing the phone, Web, and map destinations.

To see Java programs that implement these activities, visit the book’s website
at www.java24hours.com.

www.java24hours.com

ptg7068951

This page intentionally left blank

ptg7068951

Although it’s possible to create Java programs with nothing more than the
Java Development Kit and a text editor, the experience is considerably less
masochistic when you use an integrated development environment (IDE).

The first 23 hours of this book employ NetBeans, a free IDE offered by
Oracle for Java programmers. NetBeans is a program that makes it easier
to organize, write, compile, and test Java software. It includes a project and
file manager, graphical user interface designer, and many other tools. One
killer feature is a code editor that automatically detects Java syntax errors
as you type.

Now in version 7.0, NetBeans has become a favorite of professional Java
developers, offering functionality and performance that would be worth
the money at 10 times the price. It’s also one of the easiest IDEs for Java
novices to use.

In this appendix, you learn enough about NetBeans to install the software
and put it to use in all of the projects in this book.

Installing NetBeans
From inauspicious beginnings, the NetBeans IDE has grown to become one
of the leading programming tools for Java developers. James Gosling, the
creator of the Java language, gave it the ultimate vote of confidence in his
Foreword to the book NetBeans Field Guide: “I use NetBeans for all my Java
development.” I’ve become a convert as well.

NetBeans supports all facets of Java programming for the three editions of
the language—Java Standard Edition (JSE), Java Enterprise Edition (JEE),
and Java Mobile Edition (JME). It also supports web application develop-
ment, web services, and JavaBeans.

APPENDIX A
Using the NetBeans Integrated

Development Environment

ptg7068951

374 APPENDIX A: Using the NetBeans Integrated Development Environment

FIGURE A.1
The NetBeans user interface.

You can download the software, available for Windows, MacOS, and
Linux, from www.netbeans.org. NetBeans is available for download bun-
dled with the Java Development Kit, which is the option to choose if you
don’t already have the kit on your computer.

If you’d like to ensure that you’re downloading the same version of
NetBeans used in the preparation of this book, visit the book’s website at
www.java24hours.com. Click the cover of this book to open the site for this
edition, and then look for the Download JDK and Download NetBeans 7.0
links. You’ll be steered to the proper file.

Creating a New Project
The JDK and NetBeans are downloaded as installation wizards that set up
the software on your system. You can install the software in any folder and
menu group you like, but it’s best to stick with the default setup options
unless you have a good reason to do otherwise.

When you run NetBeans for the first time after installation, you see a start
page that displays links to news and programming tutorials (see Figure A.1).
You can read these within the IDE using NetBeans’ built-in web browser.

New Project

www.netbeans.org
www.java24hours.com

ptg7068951

Creating a New Project 375

A NetBeans project consists of a set of related Java classes, files used by
those classes, and Java class libraries. Each project has its own folder,
which you can explore and modify outside of NetBeans using text editors
and other programming tools.

To begin a new project, click the New Project button shown in Figure A.1
or choose the File, New Project menu command. The New Project Wizard
opens, as shown in Figure A.2.

FIGURE A.2
The New Project Wizard.

NetBeans can create several different types of Java projects, but during this
book you can focus on just one: Java Application.

For your first project (and most of the projects in this book), choose the
project type Java Application and click Next. The wizard asks you to
choose a name and location for the project.

The Project Location text field identifies the root folder of the program-
ming projects you create with NetBeans. On Windows, this is a subfolder
of My Documents called NetBeansProjects. All projects you create are
stored inside this folder, each in its own subfolder.

In the Project Name text field, enter Java24. The Create Main Class text
box changes in response to the input, recommending java24.Java24 as the
name of the main Java class in the project. Change this to Spartacus and
click Finish, accepting all other defaults. NetBeans creates the project and
its first class.

ptg7068951

376 APPENDIX A: Using the NetBeans Integrated Development Environment

Creating a New Java Class
When NetBeans creates a new project, it sets up all the necessary files and
folders and creates the main class. Figure A.3 shows the first class in your
project, Spartacus.java, open in the source editor.

Save All Files

Project Pane

FIGURE A.3
The NetBeans source editor.

Spartacus.java is a bare-bones Java class that consists only of a main()
method. All the light gray lines in the class are comments that exist to
explain the purpose and function of the class. Comments are ignored when
the class is run.

To make the new class do something, add the following line of code on a new
line right below the comment // TODO code application logic here:

System.out.println(“I am Spartacus!”);

The method System.out.println() displays a string of text, in this case
the sentence “I am Spartacus!”

Make sure to enter this exactly as it appears. As you type, the source editor
figures out what you’re doing and pops up helpful information related to
the System class, the out instance variable, and the println() method.
You’ll love this stuff later, but for now try your best to ignore it.

ptg7068951

Creating a New Java Class 377

After you make sure you typed the line correctly and ended it with a semi-
colon, click the Save All Files toolbar button to save the class.

Java classes must be compiled into executable bytecode before you can run
them. NetBeans tries to compile classes automatically. You also can manu-
ally compile this class in two ways:

. Choose the menu command Run, Compile File.

. Right-click Spartacus.java in the Project pane to open a pop-up
menu, and choose Compile File.

If NetBeans doesn’t allow you to choose either of these options, that means
it already has compiled the class automatically.

If the class does not compile successfully, a red exclamation point appears
next to the filename Spartacus.java in the Project pane. To fix the error,
compare what you’ve typed in the text editor to the full source code of
Spartacus.java in Listing A.1 and save the file again.

LISTING A.1 The Java Class Spartacus.java
1: /*
2: * To change this template, choose Tools | Templates
3: * and open the template in the editor.
4: */
5:
6: /**
7: *
8: * @author User
9: */
10: public class Spartacus {
11:
12: /**
13: * @param args the command line arguments
14: */
15: public static void main(String[] args) {
16: // TODO code application logic here
17: System.out.println(“I am Spartacus!”);
18:
19: }
20:
21: }

The class is defined in lines 10–21. Lines 1–9 are comments included by
NetBeans in every new class

ptg7068951

378 APPENDIX A: Using the NetBeans Integrated Development Environment

Running the Application
After you’ve created the Java class Spartacus.java and compiled it suc-
cessfully, you can run it within NetBeans in two ways:

. Choose Run, Run File from the menu.

. Right-click Spartacus.java in the Projects pane, and choose Run
File.

When you run a Java class, its main() method is called by the compiler.
The string “I am Spartacus!” appears in the Output pane, as shown in
Figure A.4.

FIGURE A.4
Output of the Spartacus
application.

A Java class must have a main() method to be run. If you attempt to run a
class that lacks one, NetBeans responds with an error.

Fixing Errors
Now that the Spartacus application has been written, compiled, and run,
it’s time to break something to get some experience with how NetBeans
responds when things go terribly wrong.

ptg7068951

Fixing Errors 379

Like any programmer, you’ll have plenty of practice screwing things up on
your own, but pay attention here anyway.

Return to Spartacus.java in the source editor, and take the semicolon off
the end of the line that calls System.out.println() (line 17 in Listing A.1).
Even before you save the file, NetBeans spots the error and displays a red
alert icon to the left of the line (see Figure A.5).

Error Icon

FIGURE A.5
Flagging errors in the source
editor.

Hover over the alert icon to see a dialog appear that describes the error
NetBeans thinks it has spotted.

The NetBeans source editor can identify most of the common program-
ming errors and typos that it encounters as you write a Java program. It
stops the file from being compiled until the errors have been removed.

Put the semicolon back at the end of the line. The error icon disappears,
and you can save and run the class again.

These basic features are all you need to create and compile the Java pro-
grams in this book.

ptg7068951

380 APPENDIX A: Using the NetBeans Integrated Development Environment

NetBeans is capable of a lot more than the features described here, but you
should focus on learning Java before diving too deeply into the IDE. Use
NetBeans as if it were just a simple project manager and text editor. Write
classes, flag errors, and make sure you can compile and run each project
successfully.

When you’re ready to learn more about NetBeans, Oracle offers training
and documentation resources at www.netbeans.org/kb.

www.netbeans.org/kb

ptg7068951

After you have finished this book, you might be wondering where you can
turn to improve your Java programming skills. This appendix lists some
books, websites, Internet discussion groups, and other resources you can
use to expand your Java knowledge.

Other Books to Consider
Sams Publishing and other publishers offer several useful books on Java
programming, including some that follow up on the material covered in
this book. Use these ISBN numbers at bookstores if they don’t currently
carry the book that you’re looking for:

. Sams Teach Yourself Java in 21 Days, by Rogers Cadenhead (me! me!
me!), ISBN: 0-672-33574-3. Though some of the material in the first
half of this book is redundant, it covers Java in more depth and adds
a lot of advanced topics. If you’re ready to make another 504-hour
commitment to learning Java, this should be a suitable book.

. The Java EE 6 Tutorial: Basic Concepts, Fourth Edition, by Eric Jendrock
and others, ISBN 0-13708-185-5. This book introduces the Java
Enterprise Edition (JEE), an extended form of the Java class library
for use in large businesses in large-scale computing environments.

. Java Phrasebook, by Timothy R. Fisher. ISBN 0-67232-907-7. A collec-
tion of more than 100 snippets of code for use in your own Java proj-
ects, created by a professional programmer and Java Developer’s
Journal contributor.

. Agile Java Development with Spring, Hibernate and Eclipse by Anil
Hemrajani. A book for Java Enterprise Edition that shows how to use
the Spring framework, Hibernate library, and Eclipse IDE to reduce
the complexity of enterprise application programming.

APPENDIX B
Where to Go from Here:

Java Resources

ptg7068951

382 APPENDIX B: Where to Go from Here: Java Resources

Chapters and other material from many Sams Publishing Java books have
been made freely available on www.informit.com, a website for informa-
tion technology professionals produced in collaboration with Sams.

The Sams Publishing website, www.informit.com/sams, is a good place to
see what’s coming from Sams Publishing and other imprints of the Pearson
Technology Group.

Oracle’s Official Java Site
The Java software division of Oracle maintains three websites of interest to
programmers and users of its language.

The Oracle Technology Network for Java Developers, which is published
at http://www.oracle.com/technetwork/java, is the first place to visit
when looking for Java-related information. New versions of the Java
Development Kit and other programming resources are available for
download, along with documentation for the entire Java class library.
There’s also a bug database, a user group directory, and support forums.

Java.net at www.java.net is a large community of Java programmers. You
can start your own weblog focused on the language, create a new open-
source project and host it for free on the site, and collaborate with other
programmers.

Java.com at www.java.com promotes the benefits of the language to con-
sumers and nonprogrammers. You can download the Java runtime envi-
ronment from the site, which enables users to run programs created with
Java on their computers. There’s also a gallery showing examples of where
Java is being used today.

Java Class Documentation
Perhaps the most useful part of Oracle’s Java site is the documentation for
every class, variable, and method in the Java class library. Thousands of
pages are available online at no cost to you to show you how to use the
classes in your programs.

To visit the class documentation for Java 7, go to
http://download.oracle.com/javase/7/docs/api.

http://www.oracle.com/technetwork/java
www.java.net
www.java.com
http://download.oracle.com/javase/7/docs/api
www.informit.com
www.informit.com/sams

ptg7068951

Other Java Websites 383

Other Java Websites
Because so much of the Java phenomenon was originally inspired by its use on
web pages, a large number of websites focus on Java and Java programming.

This Book’s Official Site
This book’s official website is www.java24hours.com and is described fully
in Appendix C, “This Book’s Website.”

Café au Lait
Elliotte Rusty Harold, the author of several excellent books on Java pro-
gramming, offers Café au Lait, a long-running weblog covering Java news,
product releases, and other sites of interest to programmers. The site is a ter-
rific resource for people interested in Java and is published at
www.cafeaulait.org. Harold also offers a list of frequently asked questions
related to Java. Updates have been infrequent since he began an overhaul of
the site, but it may have been relaunched by the time of this writing.

Workbench
I also publish a weblog, Workbench, which covers Java, Internet technology,
computer books, and similar topics along with other subjects. You can find it
at http://workbench.cadenhead.org.

Java 7 Developer Blog
Java developers Ben Evans and Martijn Verburg have been following the
progress of Java 7 on their Java 7 Developer Blog, which is online at
www.java7developer.com. There are code examples that demonstrate new
features of the current language release, tips for using them effectively, and
discussion of features expected to be in Java 8.

Other Java Weblogs
Hundreds of other weblogs cover Java programming, either as their primary
focus or part of more diverse subject matter. The search engine IceRocket
provides a tagged list of the latest weblogs to write about Java at
www.icerocket.com/tag/java.

http://workbench.cadenhead.org
www.java7developer.com
www.cafeaulait.org
www.java24hours.com
www.icerocket.com/tag/java

ptg7068951

384 APPENDIX B: Where to Go from Here: Java Resources

InformIT
The tech reference site InformIT, available at www.informit.com, is a com-
prehensive resource supported by the publisher of this book. The site
devotes sections to more than a dozen subjects related to software develop-
ment and the Internet. InformIT’s Java section includes how-to articles and
a beginner’s reference.

Stack Overflow
The online community Stack Overflow is a place where programmers can
ask questions and rate the answers provided by other users. The site is
tagged, so you can narrow your search to the language or topic that’s of
interest. To see Java-related questions, visit http://stackoverflow.com/
questions/tagged/java.

Java Review Service
The Java Review Service reviews new programs, components, and tools
that are published on the Web, recognizing some as Top 1%, Top 5%, or
Top 25%. Resources also are categorized by topic with a description of each
resource and links to download the source code, if it is available. To visit,
direct your web browser to www.jars.com.

JavaWorld Magazine
A magazine that has been around since the inception of the language,
JavaWorld, publishes frequent tutorial articles along with Java development
news and other features. There’s also video and audio podcasts. Visit
www.javaworld.com.

www.informit.com
http://stackoverflow.com/questions/tagged/java
http://stackoverflow.com/questions/tagged/java
www.jars.com
www.javaworld.com

ptg7068951

Job Opportunities 385

Developer.com’s Java Directory
Because Java is an object-oriented language, it’s easy to use resources creat-
ed by other developers in your own programs. Before you start a Java proj-
ect of any significance, you should scan the Web for resources you might
be able to use in your program.

A good place to start is Developer.com’s Java directory. This site catalogs
Java programs, programming resources, and other information at
www.developer.com/java.

Twitter
For a more interactive place to seek guidance from Java programmers, try
Twitter, the popular microblog service used by millions of people to send
short messages to their friends and others who follow them.

The #java hashtag identifies messages related to Java—though some might
reference the island of Java or coffee because hashtags are informal and
user-created.

To search Twitter for the most recent messages about Java, load
http://search.twitter.com in a web browser and search for #java.

Job Opportunities
If you’re one of those folks learning Java as a part of your plan to become a
captain of industry, several of the resources listed in this appendix have a
section devoted to job opportunities. Check out some of the Java-related
job openings that might be available.

The job posting search engine indeed has a section devoted to Java jobs.
Visit www.indeed.com/q-Java-jobs.html to see the latest help-wanted ads
for programmers proficient in the language. Another good job site for Java
programmers is Dice at www.dice.com.

Although it isn’t specifically a Java employment resource, the CareerBuilder
website enables you to search the job classifieds of more than two dozen job
databases, including newspaper classifieds and many other sources. You
can search more than 100,000 job postings using keywords such as Java,
Internet, or snake charmer. Go to www.careerbuilder.com.

http://search.twitter.com
www.dice.com
www.careerbuilder.com
www.indeed.com/q-Java-jobs.html
www.developer.com/java

ptg7068951

This page intentionally left blank

ptg7068951

As much as I’d like to think otherwise, there are undoubtedly some things
you’re not clear about after completing the 24 hours of this book.

Programming is a specialized technical field that throws strange concepts
and jargon at you, such as “instantiation,” “ternary operators,” and “big-
and little-endian byte order.”

If you’re unclear about any of the topics covered in the book, or if I was
unclear about a topic (sigh), visit the book’s website at
www.java24hours.com for assistance (see Figure C.1).

APPENDIX C
This Book’s Website

FIGURE C.1
The website for this book.

www.java24hours.com

ptg7068951

388 APPENDIX C: This Book’s Website

The website offers the following:

. Error corrections and clarifications—When errors are brought to my
attention, they are described on the site with the corrected text and
any other material that could help.

. Answers to reader questions—If readers have questions that aren’t
covered in this book’s Q&A sections, many are presented on the site.

. The source code, class files, and resources required for all programs
you create during the 24 hours of this book.

. Sample Java programs—Working versions of some programs fea-
tured in this book are available on the site.

. Solutions, including source code, for activities suggested at the end
of each hour.

. Updated links to the sites mentioned in this book: If sites mentioned
in the book have changed addresses and I know about the new link,
I’ll offer it on the website.

You also can send me email by visiting the book’s site. Click the Feedback
link, and you are taken to a page where you can send email directly from
the Web.

Feel free to voice all opinions positive, negative, indifferent, undecided,
enraged, enthused, peeved, amused, irked, intrigued, bored, captivated,
enchanted, disenchanted, flummoxed, and flabbergasted.

—Rogers Cadenhead

ptg7068951

Although Android apps are written in Java, they require more than just stan-
dard Java programming tools. Apps require the Java Development Kit, the
Android Software Development Kit (SDK), an integrated development envi-
ronment tailored to Android programming, and drivers for Android devices.

Eclipse is the most popular and best-supported integrated development
environment (IDE) for Android.

In this appendix, you set up all of these tools and make sure they can work
together to run an Android app. Each of the tools is free and can be down-
loaded over the Internet.

Getting Started
You can accomplish Android programming on the following operating
systems:

. Windows XP or later

. Mac OS X 10.5.8 or later (x86)

. Linux

You need to have around 600MB of disk space to install the Android SDK
and another 1.2GB for the Eclipse IDE.

At this point you already should have the Java Development Kit installed
because it was used throughout the hours of the book in conjunction with
NetBeans to run Java programs. Android requires JDK 5.0 or later.

If you still need the JDK for some reason, you can download it from
http://oracle.com/technetwork/java/javase.

APPENDIX D
Setting Up an Android

Development Environment

http://oracle.com/technetwork/java/javase

ptg7068951

390 APPENDIX D: Setting Up an Android Development Environment

Installing Eclipse
Though other IDEs such as NetBeans offer Android development support,
Eclipse has emerged as the most common choice for writing apps for
Android. Android’s developers have designated Eclipse as the preferred
environment and employ it throughout their official documentation and
tutorials.

Eclipse, like NetBeans, provides a graphical user interface for writing Java
programs. You can use it to create any kind of Java program (and it sup-
ports other programming languages as well).

Android requires Eclipse 3.5 or later.

To download Eclipse, visit http://eclipse.org/downloads.

Several different versions of the IDE are available. Pick the Eclipse IDE for
Java EE Developers. Java EE is the Java Enterprise Edition, and this version
of Eclipse includes two things you use on Android projects: Eclipse’s Java
Development Tools (JDT) plug-in and the Web Tools Platform (WTP).

Eclipse is packaged as a ZIP archive file. There’s no installation program to
guide you through the process of setting it up on your computer. The ZIP
archive contains a top-level eclipse folder that holds all of the files you
need to run Eclipse.

Unzip this to the folder where you store programs. On my Windows sys-
tem, I put it in the Program Files (x86) folder.

After unzipping the files, go to the eclipse folder you just created and
look for the executable Eclipse application. Create a shortcut to this appli-
cation and put it in your menu or somewhere else where you run pro-
grams, such as the desktop or taskbar.

Before launching Eclipse, you should install the Android SDK.

Installing Android SDK
The Android SDK is a free set of tools used to create, debug, and run
Android applications. The SDK is used by Eclipse as you’re working on
Android apps.

You can download the SDK from the official Android website at
http://developer.android.com/sdk. It’s available for Windows, Mac OS,
and Linux.

NOTE

Eclipse also is used in popular
tutorials for Android program-
ming such as Sams Teach
Yourself Android Application
Development in 24 Hours,
Second Edition, by Lauren
Darcey and Shane Conder
(ISBN 0-672-33569-7). You can
move from this book straight
into that one because the tools
being set up in this appendix
are used in that book as well.
I’ve read the book and recom-
mend it highly as a follow-up to
this one.

http://eclipse.org/downloads
http://developer.android.com/sdk

ptg7068951

Installing the Android Plug-in for Eclipse 391

The Windows version is available as an installation wizard that walks you
through the process of setting it up. The others, at the time of this writing,
are a ZIP archive (Mac OS) or a TGZ archive (Linux).

Either with the installation wizard or a program that handles archives, put
Android in a folder where you store programs—presumably the same par-
ent folder where Eclipse’s folder was placed. On my computer, I put it in
Program Files (x86).

The SDK includes an SDK and AVD Manager that will be used to update
and enhance the SDK after it has been installed.

The manager, which is run from a menu command in Eclipse, makes it easy
to keep the SDK current with each new release of the Android.

After you’ve installed the SDK, you’re ready to run Eclipse for the first time.

Installing the Android Plug-in for
Eclipse
The Eclipse IDE supports numerous programming languages and technolo-
gies, but all of them are not supported right away. The IDE is enhanced with
plug-ins that provide the functionality you need.

Eclipse needs a plug-in to integrate the IDE with the Android SDK. The
plug-in adds menu commands to the IDE interface related to Android and
makes it possible to create and manage Android apps.

Follow these steps:

1. Launch Eclipse by using the shortcut you created or opening the fold-
er where it was installed and running the executable application. The
program loads with several windows and a menu bar and toolbar run-
ning across the top.

2. Select the menu command Help, Install New Software. The Install
Wizard opens, which enables you to find and install plug-ins for Eclipse.
The plug-ins are downloaded from software repositories, but Eclipse
must know the location of a repository before it can find plug-ins there.

3. Click the Add button. The Add Repository dialog opens.

4. Leave the Name field blank. In the Location field, enter the web
address http://dl-ssl.google.com/android/eclipse/ and click OK.
A Developer Tools item should appear in the Install window, as
shown in Figure D.1.

http://dl-ssl.google.com/android/eclipse/

ptg7068951

392 APPENDIX D: Setting Up an Android Development Environment

5. Expand this item by clicking the arrow next to it. You see several
subitems for Android-related tools you can add to Eclipse, as shown
in Figure D.1.

FIGURE D.1
Adding new plug-ins to Eclipse.

6. Select the checkboxes for Android DDMS and Android Development
Tools. (You also can add the other tools such as the Android
Hierarchy Viewer, but you won’t see them at the start of your
Android programming.)

7. Click Next to review the licensing agreement and check whether any-
thing else needs to be installed. When you reach the end of the wiz-
ard, click Finish.

After the plug-in has been installed, close Eclipse and run it again.

Your preferences in Eclipse must be checked to make sure the IDE can find
the Android SDK.

To check this, undertake the following:

1. Choose the menu command Window, Preferences. The Preferences
dialog opens with a list of categories running along the left side.

2. Click Android to see the general Android preferences.

ptg7068951

Installing the Android Plug-in for Eclipse 393

3. Make sure the SDK Location field contains the folder where the
Android SDK was installed. If it doesn’t, click Browse to navigate to
that folder and choose it with a file folder dialog.

4. After the SDK has been located, you see a table with a list of SDK
targets, as depicted in Figure D.2.

FIGURE D.2
Setting Android preferences in
Eclipse.

These targets are the versions of Android you can create apps for with the
SDK. Android apps must designate the earliest version of Android they are
created to work on.

Click OK to close the dialog and save your preferences.

With the Android plug-in installed and the SDK located properly, you
should find new menu commands in Eclipse. One of them is Window,
Android SDK, and AVD Manager.

If this command is absent, close Eclipse and restart it.

You can use the manager to keep the SDK up to date. Choose Window,
Android SDK, and AVD Manager. The manager opens.

Click Installed Packages in the left pane to see which SDK components are
installed on your computer.

ptg7068951

394 APPENDIX D: Setting Up an Android Development Environment

Click Available Packages to see what else is available that hasn’t been
installed yet.

Check a box for one of the packages. Eclipse checks the contents of that
package and presents check boxes for the specific things you need to
install, as shown in Figure D.3.

FIGURE D.3
Installing new packages for the
Android SDK.

When you have checked the boxes for packages you want and have
unchecked the ones you don’t, click Install Selected.

You should periodically check for new updates. Android is being devel-
oped at a furious pace as new phones and other devices hit the market and
the SDK must support them.

Setting Up Your Phone
The Android SDK includes an emulator that acts like an Android phone
and can run the apps you create. This comes in handy as you’re writing an
app because you can get it working in a test environment, but at some
point you need to see how it works on an actual Android phone (or other
device).

You can deploy apps you write with the SDK on an Android device over
your computer’s USB connection. You can use the same cord you use to
transfer files to and from the device.

Before connecting the cord, you must enable USB debugging on the phone
by following these steps:

ptg7068951

Setting Up Your Phone 395

1. On the phone’s Home screen, choose Menu, Settings. The Settings
app opens.

2. Choose Applications, Development and check the USB debugging
box.

Other devices might have this option elsewhere in the settings. It is called
something like USB connection mode, USB debugging, or the like. The
Android site at http://developer.android.com has documentation for how
to set this for different Android devices.

Connect the USB cord to your computer and the other end to your phone.
A small bug-like Android icon should appear along the top edge of the
device alongside the time and icons for connection bars and the battery.

Drag the top bar down. You should see the USB Debugging Connected
and USB Connected messages (see Figure D.4).

This sets up your phone, but your computer also might require configura-
tion to be able to connect to the device. If you have never connected to the
phone over a USB cord, check your phone’s documentation for how to do
this. You might need to install a driver from a CD that came with the
phone or the manufacturer’s website.

On Windows, the Android SDK and AVD Manager run from within
Eclipse, and you can use them to download the USB Driver Package, a col-
lection of drivers for various phones and other devices, and other packages
related to your device. Choose Window, Android SDK, and AVD Manager
to see what’s available.

During Hour 24, you use the Android development tools to create and run
an Android app. If everything’s set up correctly, it should run properly on
both the emulator and an Android phone.

FIGURE D.4
Using an Android phone in USB
debugging mode.

http://developer.android.com

ptg7068951

This page intentionally left blank

ptg7068951

INDEX

+ (plus sign)

addition operator (+), 56

concatenation operator, 68-69

+= operator, 69

–– (decrement operator), 56

- (minus sign), 56

/ (division operator), 56

/ (forward slash) character, 284

// (double slashes), 17

// (two slash characters), 258

= (equal sign), 52, 54

== (equality operator), 81

? (question mark), 86-87

@Override annotation, 314

@WebMethod annotation, 315

A

Absolute program, 34

Abstract Windowing Toolkit. See AWT

access control

definition of, 138

methods, 142

variables, 138

default, 139

private variables, 139

protected variables, 139

NUMERICS

2D graphics, 330

arcs, 332-333, 341

circles, 332

ellipses, 332

lines, 330

PiePanel application, 333

PiePanel.java source
code, 338

PieSlice class, 335-336

rectangles, 331

SYMBOLS

< > (angle brackets), 238

; (semicolon), 17, 22, 102

!= (inequality operator), 81

$ (dollar sign), 54

% operator, 56

’ (single quotation mark), 51, 67

/ (backslash), 67

“ (double quotation mark), 51

> (greater than operator), 81

\n (newline character), 180

(_) (underscore) character, 53

* (multiplication operator), 56

accessor methods, 142

ActionListener interface, 202, 271

actionPerformed() method, 202-203,
212, 276

activities

Hour 1, 12

Hour 2, 24

Hour 3, 38

Hour 4, 48

Hour 5, 64

Hour 6, 77

Hour 7, 94

Hour 8, 106

Hour 9, 119

Hour 10, 136

Hour 11, 154

Hour 12, 168

Hour 13, 186

Hour 14, 200

Hour 15, 218

Hour 16, 233

Hour 17, 248

Hour 18, 264

Hour 19, 281

Hour 20, 297, 311

Hour 21, 326, 342

Activity class, 346

Add Library dialog box, 303

ptg7068951

Add Repository dialog box398

Annotations, applying, 314-315

apostrophes (‘), 51

Apple iPhones, 343

APPLET tag (HTML), 238-239

ALIGN attribute, 239

CODE attribute, 239

CODEBASE attribute, 239, 247

HEIGHT attribute, 239

WIDTH attribute, 239

applets, 25, 42, 235

class files, 236

compared to applications, 236

definition of, 25, 39, 235

displaying

drawString() method, 240

paint() method, 236-237

repaint() method, 236

event handling, 201

actionPerformed() method, 202

check boxes, 204

combo boxes, 204

event listeners, 201-202

keyboard events, 206

events, 236

HTML markup, 238-239

initializing, 237-238

Java Boutique, 33-35

JTicker website, 32-33

LinkRotator, 273

methods, 235-236

destroy(), 238

init(), 237-238

paint(), 236-237

repaint(), 236

start(), 238

stop(), 238

object tags, applying, 245-246

parameters

naming, 243

passing, 243

Add Repository dialog box, 391

add() method, 157

add(Component) method, 228

addActionListener() method, 202

addChangeListener() method, 223

adding

emulators, 350

plug-ins, Eclipse, 392

addItemListener() method, 204, 206

addition operator (+), 56

addKeyListener() method, 204

addOneToField() method, 212

addSlice() method, 335

Aggregator application, 307, 309

Agile Java Development with Spring,
Hibernate and Eclipse, 381

ALIGN attribute (APPLET tag), 239

Android

applications

configuring AVDs, 350-351

creating, 345-349

Debug Configurations,
351-352

debugging, 366

design, 355-358

interface design, 359-362

manifest files, 358-359

navigating, 346-348

running, 352-354

writing Java code, 362-368

Java on phones, running, 35

overview, 343-345

phones, configuring, 394-395

plug-ins, installing, 344, 391-393

programming, 389-390

resources, 358

SDKs, 390

Android Virtual Devices. See AVDs

AndroidManifest.xml file, 347,
357-360

Angry Birds application, 35

receiving, 243

ShowWeight applet
example, 244

WeightScale applet example,
243-245

real-word examples, Visible
Human Project website, 27

Revolve, 270

class declaration, 271

error handling, 272

event handling, 276

initializing, 272

screen updates, 273

threads, 274-275

variables, 271

RootApplet, 43-44

SalutonApplet

displaying, 240

HTML markup, 241

source code listing, 240

saving, 7

security, digital signatures, 30

starting, 238

stopping, 238

structure, 43

threaded, 270

class declarations, 271

error handling, 272

event handling, 276

initializing, 272

running, 274-275

screen updates, 273

starting, 274

stopping, 275

variables, 271

WeightScale source code,
243-245

windows, sizing, 239

appletviewers, 44

applications. See also applets

Aggregator, 307, 309

ptg7068951

applications 399

ID3Reader, 286-288

Java Boutique, 33-35

KeyViewer.java, 205-206

LeaderActivity, 362-368

LottoMadness, 192-193, 196-197

applet version, 216

event listeners, 208

LottoEvent.java class, 209-211

methods, 212-213

source code listing, 213-215

multithreading, 31

Name

output, 113

source code, 112

NetBeans

running, 378

troubleshooting, 378-380

NewCalculator, 252

NewRoot, 41, 130

Nines, 97

NumberDivider, 254-255

Organizing block statements,
81-83

PageCatalog, 258-261

PieFrame, 338-339

PiePanel, 333

PiePanel.java source code,
338

PieSlice class, 335-336

PlanetWeight, 60-61

PrimeFinder, 268-269

properties.xml, 301

PropertyFileCreator.java, 300

ReadConsole, 289

Root

compiling, 40

source code, 39

running, 7

Saluton

class declarations, 15

class statements, 16

Android

configuring AVDs, 350-351

creating, 345-349

Debug Configurations,
351-352

debugging, 360

design, 355-358

interface design, 359-362

manifest files, 358-359

navigating, 346-348

overview of, 343-345

running, 352-354

writing code, 362-368

Angry Birds, 35

applets, creating, 42-44

arguments, 46

autodialers, 123

Benchmark, 103-104

Calculator, 251

Clock

output, 90

source code, 89-90

ClockFrame, 183

colors, 313, 327

RGB values, 329

setting, 329

compared to applets, 236

compiling, 19, 40

Configurator.java, 294-295

Console, 289

creating, 39-42

Credits, code listing, 72

Crisis, 188-189

definition of, 39

deploying, 394

Fonts, 313, 327

formatting, 192, 196-197

Game

output, 82

source code, 82

compiling, 19

greeting variable, 17-18

line-by-line breakdown, 18

main() block, 16

running, 20

saving, 18

source code, 15

troubleshooting, 19-20

writing, 14-15

SalutonApplet, 241-242

saving, 7

SpaceRemover, 110

SquareRootClient, 320-323

SquareRootServer, 315

SquareRootServerImpl, 316

SquareRootServerPublisher, 318

stock analysis, 32-33

StringLister.java, 162-163

strings, viewing, 66-67

Tool, 228, 230

troubleshooting, 8

Variable

char variables, 51

code listing, 52

floating-point variables, 51

int statement, 50

integer variables, 51

string variables, 51

Virus, 148

class constructor, 143

getSeconds() method, 142

setSeconds() method, 142

showVirusCount(), 144

tauntUser() method, 143

VirusLab

output, 150

source code, 149-150

WeatherStation, 304-307

Wheel of Fortune, 113

character arrays, 115

integer arrays, 115

ptg7068951

applications400

Wheel of Fortune application, 113

output, 114

source code, 113

Arrays class, applying, 112-113

/assets, 347

assigning variables

types, 50

values, 54-55

asterisk (*), 56

attributes, 122, 137

ALIGN, 239

CODE, 239

CODEBASE, 239, 247

HEIGHT, 239

HTML, 238

inheritance, 125-126

SRC, 238

WIDTH, 239

autoboxing, 131

autodialers, 123

AVDs (Android Virtual devices),
350-351

AWT (Abstract Windows Toolkit), 169

Insets class, 191-192

B

backslash (/), escape code, 67

backspaces, escape code, 67

BASIC (Beginner’s All Symbolic
Instruction Code), 4, 10

behavior

hierarchy, 125-126

inheritance, 125

Bell, Joshua, 6

Benchmark application, 103-104

benchmarks, 102

BlackBerrys, 343

blank spaces in source code, 22

letterCount array, 115

nested loops, 115

output, 114

source code, 113

writing, 13

applying

annotations, 314-315

arrays, 109

Arrays class, 112-113

Color class, 328

expressions, 59-60

Font class, 327-328

NetBeans, 373

creating new projects, 374-375

formatting classes, 376-377

installing, 373

running, 378

troubleshooting, 378, 380

objects

existing, 159-160

tags, 245-246

Package Explorer, 348

threads, 270, 272

app_name string resource, 349

Arc2D class, 332-333

arcs, drawing, 332-333, 341

arguments, 46

applications, 41

methods, 142-143

ArrayIndexOutOfBoundsException, 250

arrayoutofbounds errors, 109

arrays, 109, 111

declaring, 108

definition of, 107

elements, 108

initial values, 108

multidimensional, 111

sample application, 110

sorting, 111-113

upper limits, checking, 109

block statements, 49, 81-83

blocks, 16-17

books, Java-related, 381

Boole, George, 53

Boolean variables, 53

BorderLayout manager, 190-191

borders, Insets class, 191-192

braces ({}), 16-17, 49, 82, 92

brackets ({}), 82, 92

break statement, 84, 92, 100

breaking loops, 100-101

Browser JAR/Folder dialog box, 303

browsers

Java Plug-in, 28

downloading, 242

buffered input streams, 288-290

Console application, 289

creating, 288

ReadConsole application, 289

reading, 288

bugs, 8. See also debugging

Builder class, 304

buttons, creating, 174-176

bytecode, 284

bytes, 284, 296

C

C++, 5, 10

CableModem class, 133

Cadenhead, Rogers, 381

Cafe au Lait website, 383

Calculator application, 251

calling web services, 323

cannot resolve symbol (error
message), 20

career opportunities, 385

carriage returns, escape code, 67

ptg7068951

classes 401

choice lists, event handling, 204. See
combo boxes

choosing programming languages,
interpreted languages, 7

Chrome browser, 44. See also Google;
interfaces

circles, drawing, 332

classes, 122

Activity, 346

Applet methods, 156-157

Arc2D, 332-333

ArrayIndexOutOfBounds
Exception, 250

Arrays, applying, 112-113

CableModem, 133

Color, 329

Console, 289-290

declaring, 15-16

documentation, 382

DslModem, 133

Ellipse2D, 332

encapsulation, 142

Exception, 250

file, 133, 284-285

FileInputStream, 290

FileOutputStream, 290

Graphics, 237

Graphics2D, 330

arcs, 332-333, 341

circles, 332

ellipses, 332

lines, 330

rectangles, 331

hierarchy, 155, 167

inheritance, 125-126, 135,
155-158

inner classes, 146-147

Insets, 191-192

JApplet, 155-156, 235

inheritance, 156-157

methods, 157

subclasses, 157

case

changing strings, 71, 75

sensitivity, variable names, 54

statements, 84

casting, 127

definition of, 127

destinations, 127

objects, 132

sources, 127

variables, 127-128

catch statement, 272, 280

catching

Calculator application, 251-252

DivideNumbers sample
application, 254

errors, 272

exceptions, 249-255

NewCalculator application, 253

NumberDivider sample applica-
tion, 254-255

PageCatalog sample application,
258-261

SumNumbers sample application,
251, 261

try-catch blocks, 250-255, 261

try-catch-finally blocks, 255

cell phones, 343. See also Android

CENTER tag (HTML), 238

change listeners, 223

ColorSlide sample application, 227

registering objects as, 223-224

changing string case, 71, 75

char variables, declaring, 51, 65

characters

definition of, 51, 65

special, escape codes, 67-68

strings, counting, 113-115

charts, pie, 121

check boxes

creating, 177-178

event handling, 204

checkAuthor() method, 148

JButton, 174

JCheckBox, 177-178

JComboBox, 178-179

JFrame, 171

JLabel, 176-177

JPanel, 180

JScrollPane, 219

JSlider, 222

JTextArea, 179

JTextField, 176-177

Line2D, 330

LottoEvent, 209, 211

methods, 144

Modem, 124, 132

ModemTester, 133-134

nesting, 146

NetBeans, 376-377

objects

looping, 162-163

storing, 160-162

PieSlice, 335-336

Point, 164

Point3D, 164

code listing, 164

creating, 164-165

testing, 165-166

private, 135

R, 363

ReadConsole, 289

Rectangle2D, 331

Revolve, 271

statement, 15-16, 124

subclasses, 126, 133, 157-159,
164-165

superclasses, 126

testing, 165-166

Thread, 265

variables

creating, 139-140

values, 140

Virus, 137

ptg7068951

clearAllFields() method402

PageCatalog application, 260

PiePanel.java source code,
336-338

PlanetWeight application, 60

Point3D class, 164

PointTester.java program, 165-166

PrimeFinder application, 268-269

Root application, 40

RootApplet application, 43

Saluton application, 15, 18

SalutonApplet

HTML file, 241

source code, 240

ShowWeight applet, 244

SpaceRemover.java
application, 110

StringLister.java, 162-163

Tool application, 229

Variable application, 52

Virus application, 149

VirusLab application, 149-151

WeightScale applet

HTML file, 245

Java source code, 244

Wheel of Fortune application

output, 114

source code, 114

WriteMail application, 221

CODEBASE attribute

APPLET tag, 239, 247

OBJECT tag, 247

Color class, 328-329

colors, 313, 327

Color class, 328

displaying RGB values, 329

Font class, 327-328

RGB values, 329

setting, 329

ColorSliders application, 227

com object, creating, 124-125

clearAllFields() method, 212

clients, 320-322

Clock application

output, 90

source code, 89-90

ClockFrame application, 183

clocks, 87. See also Clock application

close() method, 291

closing streams, 291

code

annotations, formatting, 314-315

writing Android applications,
362-368

CODE attribute (APPLET tag), 239

code listings

Benchmark application, 103

CableMode class, 133

Calculator application, 251

Clock application, 88-89

ColorSliders application, 224

Commodity program, 85-86

Console application, 289

Credits application, 72-73

Crisis application, 188-189

DslModem class, 133

Game program, 82

HomePage.java, 259

ID3Reader application, 286-288

KeyViewer.java, 205-206

LinkRotator applet, 276-279

LottoEvent.java class, 209, 211

LottoMadness application,
193-195, 213-215

MailWriter application, 220

Modem class, 132

ModemTester class, 133-134

Name application, 112

NewCalculator application, 252

NewRoot application, 41, 130

Nines application, 97-98

NumberDivider application, 254

combo boxes

creating, 178-179

event handling, 204

commands, javac, 40. See also
methods

comments, 17, 22, 304

comparing strings, 70

equal/not equal comparisons, 81

less/greater than comparisons,
80-81

compiled languages, performance, 10

compilers

definition of, 7

javac, error messages, 20

compiling applications, 19, 40

complex for loops, 102

components, 170, 219

arranging, 185

buttons, creating, 174-176

change listeners, 223

ColorSliders sample
application, 227

registering objects as,
223-224

check boxes

creating, 177-178

event handling, 204

ClockFrame application, 183

combo boxes, 178-179, 204

creating, 180-183

disabling, 206-207

enabling, 206-207

frames, 170-171

adding components to, 174

creating, 171, 174

sizing, 172

image icons, 227-228

creating, 227

Tool sample application,
228-230

labels, 176-177

ptg7068951

defining 403

Configurator.java application,
294-295

configuring

AVDs (Android Virtual Devices),
350-351

Debug Configurations, 351-352

phones, 394-395

ConfigWriter.java application, 291

Console application, 289

constants, 55

constructor methods, 143

arguments, 144

declaring, 143

inheritance, 144

containers, 170, 180

continue statement, 100

contracts, WSDL (Web Service
Description Language), 318

controlling access. See access control

converting

objects, 127

variables to objects, 129-131

counter variables, 96

counting characters in strings,
113-115

Create Activity checkbox, 346

Create New Library dialog box, 303

createNewFile() method, 285

Credits application code listing, 72

Crisis application, 188-189

currentThread() method, 275

customizing properties, 361

D

Darcey, Lauren, 390

data types. See also type values

Boolean, 53

byte, 52

char, 51

panels, 180

scroll panes, 219

adding components to, 220

creating, 219-220

MailWriter sample
application, 221

WriteMail sample
application, 222

sliders

creating, 222-223

labels, 223

text

areas, 179

fields, 176-177, 198

TextField, 176

toolbars, 227

creating, 228

dockable toolbars, 228

Tool sample application,
228-230

windows, 170-172, 174

computer speed, testing, 103-104

concatenating strings, 68

concatenation operator (+), 68-69

Conder, Shane, 390

conditionals, 79

Clock application

output, 90

source code, 89-90

if, 79-81, 83, 92

blocks, 81-83

equal/not equal
comparisons, 81

less than/greater than
comparisons, 81

less/greater than
comparisons, 80

if-else, 83

switch, 84, 86

ternary operator (?), 86-87

configuration properties, reading/
writing, 292-295

long, 52

short, 52

String, 17

date/time, displaying, 183

Debug Configurations, creating,
351-352

debugging

Android applications, 357, 366

definition of, 8

OOP applications, 123

phones, 395

declaring

arrays, 108, 111

classes

class statement, 15-16

subclasses, 157-159, 164-165

methods, 141

class methods, 144

constructors, 143

public methods, 142

variables, 17, 50

Boolean, 53

char, 65

char variables, 51

class variables, 139-140

floating-point, 51

integers, 50

long, 52

object variables, 137-138

Revolve applet, 271

Revolve program, 271

short, 52

strings, 51, 66

decrement operator (––), 56

decrementing variables, 56-58

default statement, 84

default.properties file, 348

defining

classes, inner classes, 146-147

services, 313

ptg7068951

deleting files404

dollar sign ($), 54

double quotation mark (“), 51

double slashes (//), 17

draw() method, 330

drawing

arcs, 332-333, 341

circles, 332

ellipses, 332

lines/shapes, 329-330

pie graphs, 333

PiePanel.java source code,
338

PieSlice class, 335-336

rectangles, 331

drawRoundRect() method, 331-332

drawString() method, 141, 240

DslModem class, 133

E

EarthWeb’s Java directory, 385

Eclipse

Android plug-ins, 344. See also
Android

installing, 390

plug-ins, 392

projects, creating, 355

editing

NetBeans, 376-377

string resources, 348

XML, 349

editors, text, 13

educational applications, 27

elements, 108

comment, 304

forecastday, 305

initial values, 108

Ellipse2D class, 332

ellipses, drawing, 332

deleting files, 285

deploying

Android applications, 354

applications, 394

Deployment Target Selection
Mode, 352

design

Android, 355-358

interfaces, 359-362

destinations (casting), 127

destroy() method, 238

detecting errors in Android
applications, 357

determining string lengths, 70-71

development history of Java, 27

Development settings, 354

dialects, 302

dialog boxes, Add Repository, 391

digital signatures, 30

disabling components, 206-207

displaying

applets

drawString() method, 240

paint() method, 236-237

repaint() method, 236

colors, 329

pie graphs, 339

revolving links, 279

strings

println() method, 66-67

special characters, 67-68

text areas, 179

variable contents, 18

web services, 323

displaySpeed() method, 124-125

division, 59

division operator (/), 56

do-while loops, 99-101

dockable toolbars, 228

docking toolbars, 230

documentation, 9, 232, 382

else statements, 83

employment opportunities, 385

emulators (Android), configuring,
350-351

enabling components, 206-207

encapsulation, 142

endless loops, 105

Endpoint Interfaces, 317

annotations, 314-315

creating, 313

equal sign (=), 52, 54

equality operator (==), 81

equals() method, 70, 156

error handling, 249

catching exceptions, 249-250

multiple exceptions, 253-255

PageCatalog sample applica-
tion, 258-261

try-catch blocks, 250-255, 261

try-catch-finally blocks, 255

creating exceptions, 262

ignoring exceptions, 258

memory errors, 262

stack overflows, 262

throwing exceptions, 250,
256-258

PageCatalog sample applica-
tion, 258-261

throw statements, 256

try-catch statements, 272

errors

Android applications, 357

arrayoutofbounds, 109

bugs, 8

cannot resolve symbol
message, 20

exceptions, 109, 117

handling. See error handling

javac error messages, 20

logic errors, 8

NetBeans, 379

ptg7068951

frames 405

executing. See starting

existing objects, 159-160

exists() method, 284

exiting loops, 100-101

expressions, 49-50, 55, 59-61. See
also operators

advantages, 60

operator precedence, 58-59

extends statement, 132, 157

extensions (file), .class, 22

F

File class, 284-285

File.pathSeparator, 284

FileInputStream class, 290-292

FileOutputStream class, 290

files

checking existence of, 284

creating, 284

deleting, 285

File class, 284-285

file extensions, .class, 22

finding size of, 285

manifest, Android applications,
358-359

reading

ID3Reader application,
286-288

streams, 285-286

renaming, 285

writing to, 290-291

XML

creating, 299-302

reading, 302-307

RSS syndication feeds, 307-309

fill() method, 330

fillRect() method, 329-331

fillRoundRect() method, 331

finding strings within strings, 71-72

Saluton program, troubleshooting,
19-20

syntax errors, 8

escape codes, 67-68

evaluating expressions, operator
precedence, 59

Evans, Ben, 383

event handling, 201

actionPerformed() method,
202, 276

check boxes, 204

combo boxes, 204

event listeners, 201-202

ActionListener interface, 202

LottoMadness application,
208-211

keyboard events, 206

event listeners, 201-202

ActionListener interface, 202

actionPerformed() method, 202

adding, 201

LottoMadness application,
208-209, 211

EventListener interfaces, 201-202

Everlong.mp3 file, 287-288

Exception class, 250

exceptions, 109, 117

ArrayIndexOutOfBounds
Exception, 250

catching, 249-250

multiple exceptions, 253-255

PageCatalog sample applica-
tion, 258-261

try-catch blocks, 250-255, 261

try-catch-finally blocks, 255

creating, 262

ignoring, 258

NumberFormatException, 253-254

throwing, 250, 256-258

PageCatalog sample
application, 258-261

throw statements, 256

Fisher, Timothy R., 381

float statement, 51

floating-point variables, declaring, 51

FlowLayout manager, 176, 187

folders, viewing, 356. See also files

Font class, applying, 327-328

fonts, 327

for loops, 95-97

complex for loops, 102

counter variables, 96

empty sections, 102

exiting, 100-101

sample application, 97

syntax, 96-97

vectors, 162-163

forecastday element, 305

formatting. See also configuring;
design

annotations, 314-315

applications, 39, 192, 196-197

Android, 345-352

creating applets, 42-44

sending arguments to, 41-42

classes, NetBeans, 376-377

Color class, 328

components, 180-183

Font class, 327-328

interfaces

annotations, 314-315

Endpoint Interfaces, 313

threads, 266

variables, 137-140

web service clients, 320-322

XML files, 299-302

formfeeds, escape codes, 67

forward slash (/) character, 284

frames, 170

adding components to, 174

creating, 170-171

SalutonFrame.java example, 174

sizing, 172

ptg7068951

Game application406

Gosling, James, 4, 26, 303, 344, 373

graphics, 330

arcs, 332-333, 341

circles, 332

color, 313, 327

RGB values, 329

setting, 329

ellipses, 332

fonts, 313, 327

Graphics class, 237

icons, 227-228

creating, 227

Tool sample application,
228-230

lines, drawing, 330

PiePanel application, 333

PiePanel.java source code, 338

PieSlice class, 335-336

rectangles, drawing, 331

Graphics class, 237

Graphics2D class, 330

arcs, 332-333, 341

circles, 332

ellipses, 332

lines, 330

rectangles, 331

graphs, pie, 333, 339

PiePanel.java source code, 338

PieSlice class, 335-336

greater than operator, 81

greeting variables

declaring, 17

displaying contents of, 18

GridLayout manager, 189-190

GridLayout() method, 197

GUIs (graphical user interfaces),
170, 219

AWT (Abstract Windowing
Toolkit), 169

buttons, creating, 174-176

change listeners, 223

G

Game application

output, 82

source code, 82

Gamelan website, 385

games

lotto. See LottoMadness
application

running on phones, 35

/gen folder, 347

/gen/org.cadenhead.android/
R.java, 347

get(int) method, 304

getActionCommand() method,
203, 212

getAttribute() method, 304-305

getChildElements() method, 304

getFirstChildElement() method, 304

getId() method, 364

getInsets() method, 192

getKeyChar() method, 205

getKeyCode() method, 205

getKeyText() method, 205

getName() method, 284

getParameter() method, 243

getPort() method, 322

getProperty() method, 293

getSeconds() method, 142

getSource() method, 203, 223

getSquareRoot() method, 315, 320

getStateChange() method, 204

getTime() method, 315

getURL() method, 272

getValue() method, 304-305

getValueIsAdjusting() method, 224

getVirusCount() method, 149

GNU Lesser General Public License
(LGPL), 303

Google

Android. See Android

Chrome browser, 44

ColorSliders sample
application, 227

registering objects as,
223-224

check boxes

creating, 177-178

event handling, 204

ClockFrame application, 183

combo boxes

creating, 178-179

event handling, 204

enabling/disabling components,
206-207

event handling, 201

event listeners, 201-202

ActionListener interface, 202

actionPerformed() method, 202

adding, 201

frames, 170

adding components to, 174

creating, 170-171

SalutonFrame.java
example, 174

sizing, 172

image icons, 227-228

creating, 227

Tool sample application,
228, 230

Insets, 191-192

labels, creating, 176-177

layout managers, 187

BorderLayout, 190-191

FlowLayout, 187

GridLayout, 189-190

LottoMadness sample applica-
tion, 192-197

panels, creating, 180

scroll panes, 219

adding components to, 220

creating, 219-220

MailWriter sample
application, 221

ptg7068951

interfaces 407

I

I/O (input/output)

streams, 283-284, 299

buffered input streams,
288-290

byte streams, 284

closing, 291

defined, 283-284

reading data from, 285-288

writing data to, 290-291

IceRocket, 383

icons, 227-228

creating, 227

Tool sample application, 228, 230

ID3Reader application, 286-288

IDEs (integrated development environ-
ments), 344, 373

if statements, 79-81, 83, 92

blocks, 81-83

equal/not equal comparisons, 81

less than/greater than compar-
isons, 80-81

if-else statements, 83

ignoring exceptions, 258

ImageIcon constructor, 227

ImageIcon() method, 227

implementing Service
Implementation Beans, 316-317

import statement, 237

incrementing variables, 56-58

indexOf() method, 71-72

inequality operator (!=), 81

infinite loops, 105

InformIT, 384

website, 382

inheritance, 125, 135, 155-157

classes, 155-158

constructors, 144

hierarchy, 125-126

sliders, 222-223

WriteMail sample
application, 222

Swing, 169

text

areas, 179

fields, 176-177

write-protecting, 198

toolbars, 227

creating, 228

dockable toolbars, 228

Tool sample application,
228, 230

windows, 170-172, 174

H

handling errors. See error handling

Harold, Elliote, 303, 383

HEIGHT attribute (APPLET tag), 239

“Hello world!”, 20

Hemrajani, Anil, 381

hierarchies, Java classes, 155

history of Java, 26-27

HomePage.java listing, 259

horizontal sliders

creating, 222

labels, 223

HTML (Hypertext Markup
Language), 238

angle brackets (< >), 238

APPLET, 238-239

CENTER, 238

P, 238

hyphen (-), subtraction operator, 56

init() block statements, 43

init() method, 237-238, 272

initializing

applets, 237-238, 272

definition of, 105

inner classes, 146-147

input/output. See I/O

Insets class, 191-192

installing

Android

plug-ins, 391-393

SDKs, 390

Eclipse, 390

NetBeans, 373

programming tools, 9

int statement, 50

integers

arrays, creating, 108

variable types, 50

integrated development environ-
ments. See IDEs

Intel, 343

Intent() method, 365

interfaces, 227. See also GUIs

ActionListener, 202, 271

AWT (Abstract Windowing
Toolkit), 169

buttons, 174, 176

ChangeListener, 223

check boxes, 177-178

combo boxes, 178-179

components, 170, 180-183

defined, 201

design, Android applications,
359-362

Endpoint Interfaces

annotations, 314-315

creating, 313

EventListener, 201-202

frames, 170-173

ptg7068951

interfaces408

overriding, 157

setBackground(), 157

setLayout(), 157

subclasses, 157

JAR (Java Applet Ratings Service), 34

JARS (Java Review Service), 384

Java 7 Developer Blog, 383

Java Applet Ratings Service. See JAR

Java Boutique website, 33-35

Java Development Kits. See JDKs

Java Development Tools. See JDTs

Java EE 6 Tutorial, The Basic
Concepts, 381

Java Enterprise Edition. See JEE

Java Mobile Edition. See JME

Java Phrasebook, 381

Java Plug-in, 28, 242

Java Review Service, 384

Java Standard Edition. See JSE

Java Virtual Machines. See JVMs

Java website, 382

Javac

commands, 40

compilers, error messages, 20

JavaWorld website, 29-30

javax.xml.ws, 317

JAX-WS library packages, 322

JButton objects, 174

JCheckBox class, 177-178

JComboBox class, 178-179

JDKs (Java Development Kits), 8, 320

applications

Saluton program, 14-15

writing, 13

installing, 9

JDTs (Java Development Tools), 390

JEE (Java Enterprise Edition), 373

Jendrock, Eric, 381

JFrame class, 171

GUIs (graphical user interfaces).
See GUIs

ItemListener, 204

KeyListener, 204, 206

labels, 176-177

layout managers, 187-189

BorderLayout manager,
190-191

BoxLayout manager, 191

GridLayout manager, 189

separating components, 191

NetBeans, 374

panels, 180

Runnable, 265

scroll panes, 219, 222

Service Implementation Bean,
316-317

text areas, 179-180

text fields, 176-177

windows, 170-173

Internet Explorer, 242

interpreted languages, 7, 10

interpreters, 28

definition of, 7

Java Plug-in, 28

ItemListener interface, 204

itemStateChanged() method,
204, 212

iteration, 97. See also loops

iterators, 97

J

JApplet class, 155-156, 235

inheritance, 156-157

methods

add(), 157

equals(), 156

JLabel class, 176-177

JME (Java Mobile Edition), 373

job opportunities, 385

Joy, Bill, 26

JPanel class, 180

JScrollPane class, 219

JScrollPane() method, 219

JSE (Java Standard Edition), 373

JSlider class, 222

JSlider() method, 222

JTextArea class, 179

JTextField class, 176-177

JTicker website, 32-33

JToolBar() method, 228

JVMs (Java Virtual Machines), 20, 28

K

keyboards, event handling, 206

KeyListener interface, 204-206

KeyViewer.java application, 205-206

keywords, this, 147-148

L

Label() method, 176

labels

creating, 176-177

sliders, 223

languages

OOP. See OOP

selecting, 4-5

layout managers, 187

FlowLayout, 187

GridLayout, 189-190

LottoMadness sample application,
192-197

ptg7068951

methods 409

PropertyFileCreator.java applica-
tion, 300

SalutonFrame.java application, 173

SquareRootClient application,
320-323

SquareRootServer application, 315

SquareRootServerImpl.
application, 316

SquareRootServerPublisher appli-
cation, 318

WeatherStation.java application,
305-307

Web Service Description
Language Contract
application, 319

lists, choice lists, 204

load() method, 292

loading applets, 43

Log.i() methods, 364

logic errors, 8

long variable type, 52

loops

Benchmark application, 103-104

definition of, 95

do-while, 99

exiting, 100-101

for, 95-97

complex for loops, 102

counter variables, 96

empty sections, 102

sample application, 97

syntax, 96-97

vectors, 162-163

infinite loops, 105

naming, 101

nesting, 101

while, 98-99

LottoEvent.java class, 209-211

LottoMadness application, 192-193,
196-197

applet versions, 216

event listeners, 208

LeaderActivity application, 362-368

length variable, 109, 117

length() method, 70, 285

lengths of strings, determining, 70-71

LGPL (GNU Lesser General Public
License), 303

libraries, XOM, 303. See also XOM

Line2D class, 330

lines, drawing, 329-330

LinkRotator applet, 273

links

revolving, displaying, 279

variables with strings, 68-69

listeners, 201-202

ActionListener interface, 202

actionPerformed() method, 202

adding, 201

change listeners, 223

ColorSliders sample applica-
tion, 227

registering objects as,
223-224

LottoMadness application,
208-211

listFiles() method, 285

listings. See also code listings

Aggregator application, 307-309

ClockFrame application, 183

ClockPanel application, 181

Configurator.java application,
294-295

ConfigWriter.java application, 291

HomePage.java application, 259

LeaderActivity application,
362-368

NumberDivider application,
254-255

PageCatalog application, 260

PieFrame application, 338-339

Playback application, 175

properties.xml application, 301

LottoEvent.java class, 209, 211

methods

actionPerformed(), 212

addOneToField(), 212

clearAllFields(), 212

getActionCommand(), 212

itemStateChanged(), 212

matchedOne(), 212

numberGone(), 212

source code listing, 213, 215

LottoMadness() method, 197

lowercase, changing strings to, 71

M

magazines, JavaWorld, 29-30

MailWriter application, 221

main() blocks, Saluton program, 16

MalformedURLException errors,
258, 273

managers. See layout managers

managing resources, 356-358

manifest files, Android applications,
358-359

matchedOne() method, 212

memory errors, 262

messages, SOAP, 322

methods, 137, 140, 236

accessor, 142

actionPerformed(), 202-203,
212, 276

add(), 157

add(Component), 228

addActionListener(), 202

addChangeListener(), 223

addItemListener(), 204

addKeyListener(), 204

addOneToField(), 212

addSlice(), 335

ptg7068951

methods410

getStateChange(), 204

getTime(), 315

getURL(), 272

getValue(), 304-305

getValueIsAdjusting(), 224

getVirusCount(), 149

GridLayout(), 197

ImageIcon(), 227

indexOf(), 71-72

init(), 237-238, 272

init() blocks, 43

Intent(), 365

itemStateChanged(), 204, 212

JScrollPane(), 219

JSlider(), 222

JToolBar(), 228

Label(), 176

length(), 70, 285

listFiles(), 285

load(), 292

Log.i(), 364

LottoMadness(), 197

main() blocks, 16

matchedOne(), 212

numberGone(), 212

overriding, 157-158

pack(), 172

paint(), 43, 157-158, 236-237

parseInt(), 130, 152

println(), 61, 66-67, 141

public, 142

read(), 285

readLine(), 290

renameTo(), 285

repaint(), 236, 273

return values, 75, 141

run(), 267, 274-275

setBackground(), 157

setColor(), 273

setContentView(), 363

setDefaultCloseOperation(), 172

applets, 235

arguments, 142-143

checkAuthor(), 148

class methods, declaring, 144

clearAllFields(), 212

close(), 291

constructors, 143

arguments, 144

declaring, 143

inheritance, 144

createNewFile(), 285

currentThread(), 275

declaring, 141

definition of, 70

destroy(), 238

displaySpeed(), 124-125

draw(), 330

drawRoundRect(), 332

drawString(), 141, 240

equals(), 70, 156

exists(), 284

fill(), 330

fillRect(), 329, 331

fillRoundRect(), 331

get(int), 304

getActionCommand(), 203, 212

getAttribute(), 304-305

getChildElements(), 304

getFirstChildElement(), 304

getId(), 364

getInsets(), 192

getKeyChar(), 205

getKeyCode(), 205

getKeyText(), 205

getName(), 284

getParameter(), 243

getPort(), 322

getProperty(), 293

getSeconds(), 142

getSource(), 203, 223

getSquareRoot(), 315, 320

setEditable(), 179, 198

setEnabled(), 206

setLayout(), 157, 188

setLayoutManager(), 175

setProperty(), 293

setSeconds(), 142

setSize(), 172

setText(), 217

setTitle(), 171

showDocument(), 276

showVirusCount(), 144

skip(), 286

sleep(), 266

sort(), 112

start(), 238, 274

stateChanged(), 223

stop(), 238, 270, 275

storeToXML(), 300

substring(), 287

System.out.println(), 127, 376

tauntUser(), 143

TextArea(), 180

toCharArray(), 110

toLowerCase(), 71

toUpperCase(), 71, 75

variable scope, 145-146

void keyPressed(), 204

void keyReleased(), 204

void keyTyped(), 205

write(), 290

mfl arrays, 111

minus sign (-)

decrement operator (––), 56

subtraction operator, 56

Modem class, 124, 132

Modem objects, 123

modems

CableModem class, 133

DslModem class, 133

Modem class, 132

ModemTester class, 133-134

ptg7068951

operators 411

NetBeans Field Guide, 373

NetBeansProjects, 375

Netscape Navigator, downloading Java
Plug-ins, 242

New Android Project Wizard, 345,
349, 355

New File Wizard, 14

New Project button, 375

New Project Wizard, 375

new statements, 108, 143

NewCalculator application, 252

newline characters, 180

escape codes, 67

NewRoot application, 130

source code, 41

news aggregators, 307. See also RSS
syndication feeds

newSuffix variable, 129

Nines application, 97

nu.xom package, 304

NumberDivider application, 254-255

NumberFormatException, 253, 256

numberGone() method, 212

numbers, displaying sequence of
prime numbers, 268-269

numeric variable types, 52

Nvidia, 343

O

Oak language, 27

OBJECT tag (HTML), CODEBASE attrib-
ute, 247

object-oriented programming, See
OOP

objects, 137. See also classes

attributes, 122, 137

behavior, 122

casting, 132

classes, 122

converting, 127-131

ModemTester class, 133-134

modifying strings, case, 71

modulus operator (%), 56

Monitor objects, 123

Motorola, 343

mouse clicks, handling, 276

multidimensional arrays, 111

multiplication, 56, 59

multitasking, 265

multithreading, 31, 265

My Documents, 375

N

Name application

output, 113

source code, 112

names

file extensions, .class, 22

naming conventions

loops, 101

parameters, 243

variables, 54, 62

resources, 349

navigating Android applications,
346-348

Navigator, downloading Java
Plug-ins, 242

nesting

classes, 146-147

loops, 101

NetBeans, 8. See also IDEs (integrat-
ed development environments)

applying, 373

classes, creating, 376-377

errors, Saluton program, 19-20

installing, 9, 373

projects, creating, 374-375

running, 378

troubleshooting, 378, 380

creating, 124-125, 132-134

existing, 159-160

inheritance, 125-126, 155-157

Modem, 123

Monitor, 123

PieChart, 122

referencing, 147-148

storing, 160-163

tags, 245-246

variables, 137-139

private, 139

protected, 139

onCreate() method, 363

online communities, Stack
Overflow, 384

OOP (object-oriented programming),
33, 121-122, 170. See also classes

advantages of, 122-123

applications, debugging, 123

autoboxing/unboxing, 131

encapsulation, 142

inheritance, 125-126, 135,
155-157

objects

casting, 132

creating, 124-125, 132, 134

objects. See objects

overview, 33, 121

Open Handset Alliance, 343

operators

addition (+), 56

concatenation (+), 68-69

decrement (– –), 56

division (/), 56

equality (==), 81

greater than (>), 81

inequality (!=), 81

modulus (%), 56

multiplication (*), 56

precedence, 58-59

subtraction (-), 56

ternary (?), 86-87

ptg7068951

Oracle412

parseInt() method, 130, 152

passing

arguments

to applications, 41

to methods, 142-143

parameters to applets, 243

pasting

into strings, 69

strings together, 68

percent sign (%), modulus operator, 56

performance, interpreted languages, 10

phones. See also Android

configuring, 394-395

running Java on, 35

pie charts, 121

pie graphs, creating, 333

PiePanel.java source code, 338

PieSlice class, 335-336

viewing, 339

PieChart object, 122

PieFrame application, 338-339

PiePanel application, 333

PiePanel.java source code, 338

PieSlice class, 335-336

PieSlice class, 335-336

pipe (|) characters, 254

PlanetWeight application code listing,
60-61

platform independence, 29

Playback.java, 175

plug-ins

Android, 344, 391-393

definition of, 242

Java Plug-in, 242

plus signs (+)

addition operator, 56

concatenation operator, 68-69

increment operator (++), 56

Point class, 164

Oracle, 25

Oracle Technology Network for Java
Developers, 382

order of precedence, operators, 58-59

organizing

applications, block statements,
81-83

resources, 356-358

output. See I/O (input/output)

@Override annotation, 314

overriding methods, 157-158

P

P tag (HTML), 238

pack() method, 172

Package Explorer, applying, 348

packages, 139

Android SDKs, installing, 394

javax.xml.ws package, 317

JAX-WS library, 322

PageCatalog application, 258-261

pageTitle array, 271

paint() method, 236-237, 273

block statements, 43

overriding, 157-158

panels, creating, 180

PARAM tag (HTML), 242

NAME attribute, 243

VALUE attribute, 243

parameters

handling

ShowWeight applet, 244

WeightScale applet, 243-245

naming, 243

passing to applets, 243

receiving in applets, 243

values, assigning, 243

Point3D class, 164

creating, 164-165

testing, 165-166

postfixing, 57

precedence, operators, 58-59

preferences, configuring Android, 393

prefixing, 57

prime numbers, displaying sequence
of, 268-269

PrimeFinder application, 268-269

printing strings

println() method, 66-67

special character, 67-68

println() method, 61, 66-67, 141

private classes, 135

private variables, 139

program listings. See code listings

programming

Android, 389

configuring phones, 394-395

Eclipse, 390

plug-ins, 391-393

SDKs, 390

languages, selecting, 4-5

OOP (object-oriented program-
ming). See also OOP

advantages of, 122-123

casting, 129

creating objects, 124, 132-134

overview of, 121

Saluton program

creating, 14-15

running, 20

tools

installing, 9

selecting, 8-9

programs. See applications; software

proguard.cfg file, 348

Project Location text field, 375

Project Properties dialog box, 303

Project Selection dialog box, 352

ptg7068951

rounded rectangles, drawing 413

Hour 17, 247

Hour 18, 263

Hour 19, 280

Hour 20, 296-297, 310-311

Hour 21, 341-342

quotation marks

double (“), 51

escape codes, 67

single (‘), 51

R

R class, 363

R.java file, 363

read() method, 285

ReadConsole application, 289

reading

configuration properties, 292-295

files, 285

ID3Reader application,
286-288

read() method, 285

skip() method, 286

RSS syndication feeds, 307, 309

streams, buffered input
streams, 288

XML files, 302-307

readLine() method, 290

real-word Java projects

JavaWorld website, 29-30

Visible Human Project website,
27, 29

receiving parameters to applets, 243

recommended reading, 381

Rectangle2D class, 331

rectangles, drawing, 331

Red, Green Blue (RGB) color
system, 329

Reference Chooser dialog box, 361

projects

Android applications, navigating,
346-348

creating, 355

NetBeans, 374-375

properties

configuration, reading/writing,
292-295

customizing, 361

Properties object, 293, 299

properties.xml application, 301

PropertyFileCreator.java
application, 300

protected variables, 139

public methods, 142

public statements, 124

publishing web services, 317-318

Q

QName, 321

question mark (?), 86-87

quizzes

Hour 1, 11

Hour 2, 23

Hour 3, 37

Hour 4, 47

Hour 5, 63

Hour 6, 76

Hour 7, 93-94

Hour 8, 105-106

Hour 9, 118

Hour 10, 135-136

Hour 11, 153

Hour 12, 167-168

Hour 13, 185-186

Hour 14, 199

Hour 15, 217-218

Hour 16, 232-233

referencing objects, this statement,
147-148

registering objects as change listen-
ers, 223-224

renameTo() method, 285

renaming files, 285

repaint() method, 236, 273

/res folder, 347, 357

resources, 381. See also websites

Android, 358

folders, viewing, 356

Java-related books, 381

job opportunities, 385

managing, 356-358

naming, 349

strings, editing, 348

restricting access, 138. See also
access control

return values (methods), 75, 141

Revolve applet, 270

class declaration, 271

error handling, 272

event handling, 276

methods

actionPerformed(), 276

init(), 272

run(), 274-275

start(), 274

stop(), 275

screen updates, 273

threads

running, 274-275

starting, 274

stopping, 275

variables, 271

Revolve class, creating, 271

revolving links, displaying, 279

RGB values (red, green, blue), 329

Root application, 40

RootApplet applet, 43-44

rounded rectangles, drawing, 331

ptg7068951

RSS syndication feeds, reading414

Sams Teach Yourself Java 2 in 21
Days, 381

Sams Teach Yourself Java 2 in 24
Hours website, 387-388

Sams Teach Yourself Java in 24 Hours
website, 383

Samsung, 343

saving

applications, 7

Saluton programs, 18

scope (variables), 145-146

screens, updating, 273

scroll panes, 219

adding components to, 220

creating, 219-220

MailWriter sample application, 221

WriteMail sample application, 222

SDKs (Software Development Kits),
343, 390

searching strings, 71-72

searchKeywords variable, 69

security, 30

digital signatures, 30

trusted developers, 30

selecting

languages, 4-5

programming tools, 8-9

semicolon (;), 17, 22, 102

Service Implementation Bean,
316-317

services

clients, creating, 320-322

defining, 313

publishing, 317-318

SquareRootServer, 313

setBackground() method, 157

setColor() method, 273

setContentView() method, 363

setDefaultCloseOperation()
method, 172

setEditable() method, 179, 198

setEnabled() method, 206

RSS syndication feeds, reading,
307-309

run() method, 267, 274-275

RuneScape, 26

Runnable interface, 265

running

Android, 352-354

applications, 7

Java on phones, 35

NetBeans, 374-375, 378

Saluton program, 20

threads, 274-275

S

Saluton application

classes

declarations, 15

statements, 16

code listings, 18

compiling, 19

creating, 14-15

main() block, 16

running, 20

saving, 18

troubleshooting, 19-20

variables

declaring, 17

displaying, 18

SalutonApplet applet

displaying, 240

HTML markup, APPLET tag, 241

source code listing, 240

testing, 241-242

SalutonFrame.java, 174

Sams Publishing website, 382

Sams Teach Yourself Android
Application Development in 24
Hours, 390

setLayout() method, 157, 188

setLayoutManager() method, 175

setProperty() method, 293

setSeconds() method, 142

setSize() method, 172

setText() method, 217

setTitle() method, 171

shapes

arcs, 332-333, 341

circles, 332

drawing, 329-330

ellipses, 332

lines, 330

PiePanel application, 333

PiePanel.java source code, 338

PieSlice class, 335-336

rectangles, 331

short variable type, 52

showDocument() method, 276

showVirusCount() method, 144

signatures (digital), 30

single quotation marks (‘), escape
code, 67

sizing applet windows, 239

skip() method, 286

SkyWatch, 31-32

slashes (//), 17

sleep() method, 266

sliders

creating, 222-223

labels, 223

slowing down threads, 266

SOAP messages, 322

software

Absolute program, 34

overview, 5-6

strings, viewing, 66-67

troubleshooting, 8

Software Development Kits. See SDKs

sort() method, 112

ptg7068951

strings 415

continue, 100

default, 84

definition of, 5

example, 6

expressions, 50, 59-61

extends, 132, 157

float, 51

if, 79-80, 83, 92

blocks, 81-83

equal/not equal comparisons,
81

less/greater than compar-
isons, 80-81

if-else, 83

import, 237

init(), 43

int, 50

loops

definition of, 95

do-while, 99

exiting, 100-101

for, 95-97, 102

infinite loops, 105

naming, 101

nesting, 101

while, 98-99

new, 108, 143

paint(), 43

public, 124

static, 140, 144

super, 158-159, 165

switch, 84, 86

this, 158, 165

throw, 256

try-catch, 250-255, 261, 272

try-catch-finally blocks, 255

void, 141

static statement, 140, 144

stock analysis applications, 32-33

sorting arrays, 111-113

source code

black spaces, 22

code listings. See code listings

editors, 13

sources (casting), 127

SpaceRemover application, 110

spacing in source code, 22

Spartacus.java class, 377

special characters, escape codes,
67-68

speed, testing computer, 103-104

square brackets ([]), 108

SquareRootClient application,
320-323

SquareRootServer application,
313-315

SquareRootServerImpl
application, 316

SquareRootServerPublisher
application, 317-318

/src folder, 347

/src/org.cadenhead.android/
SalutonActivity.java, 347

sRGB, 329

stack overflows, 262, 384

standard applet methods, 235

Standard RGB, 329

start() method, 238, 274

starting

applets, 238

threads, 274

variables, 55

stateChanged() method, 223

statements, 49, 79. See also condi-
tionals

blocks, 16-17, 49, 81-83

break, 84, 92, 100

case, 84

catch, 280

class, 15-16, 124

stop() method, 238, 270, 275

stopping

applets, 238

threads, 275

storeToXML() method, 300

storing

looping, 162-163

objects, 160-162

variables, 54-55

streams, 283-284, 299

buffered input streams, 288-290

Console application, 289

creating, 288

ReadConsole application, 289

reading, 288

byte streams, 284

closing, 291

defined, 283-284

reading data from, 285

ID3Reader application,
286-288

read() method, 285

skip() method, 286

writing to, 290-291

String data type, 17

StringLister.java source code,
162-163

strings, 65-66

adding to, 69

arrays, 108. See also arrays

changing case of, 71, 75

characters, counting, 113-115

comparing, 70

equal/not equal
comparisons, 81

less/greater than
comparisons, 80-81

concatenating, 68

definition of, 51, 66

determining length of, 70-71

ptg7068951

strings416

LottoMadness application,
208-211

image icons, 227-228

creating, 227

Tool sample application,
228, 230

JApplet class, 235

labels, creating, 176-177

layout managers, 187

BorderLayout, 190-191

FlowLayout, 187

GridLayout, 189-190

LottoMadness sample applica-
tion, 192-197

panels, creating, 180

scroll panes, 219

adding components to, 220

creating, 219-220

MailWriter sample
application, 221

WriteMail sample
application, 222

sliders

creating, 222-223

labels, 223

text

areas, 179

fields, 176-177

write protecting, 198

toolbars, 227

creating, 228

dockable toolbars, 228

Tool sample application,
228-230

switch statements, 84-86

syndication feeds, reading RSS,
307-309

syntax errors, 8

System.out.println() method,
127, 376

displaying

println() method, 66-67

special characters, 67-68

finding within other strings, 71-72

resources, editing, 348

variables, 51

declaring, 66

linking, 68-69

strings.xml file, 349

Stroustrop, Bjarne, 5

subclasses, 126

creating, 133, 157-159, 164-165

substring() method, 287

subtraction operator (-), 56

Sun website, 25-26, 382

super statement, 165

class declarations, 158-159

superclasses, 126

Swing, 169, 219

buttons, creating, 174-176

change listeners, 223

ColorSliders sample applica-
tion, 224-227

registering objects as,
223-224

check boxes

creating, 177-178

event handling, 204

combo boxes

creating, 178-179

event handling, 204

documentation, 232

enabling/disabling components,
206-207

event listeners, 201-202

ActionListener interface, 202

actionPerformed() method, 202

adding, 201

T

T-Mobile G1s, 343

tabs, escape code, 67

tags

angle brackets (< >), 238

APPLET, 238-239

ALIGN attribute, 239

CODE attribute, 239

CODEBASE attribute, 239, 247

HEIGHT attribute, 239

WIDTH attribute, 239

CENTER, 238

HTML, 238, 242-243

objects

applying, 245-246

CODEBASE attribute, 247

P, 238

PARAM, 242

NAME attribute, 243

VALUE attribute, 243

tauntUser() method, 143

ternary operator (?), 86-87

testing

computer speed, 103-104

Points3D class, 165-166

SalutonApplet program, 241-242

SquareRootServerPublisher appli-
cation, 318

text

areas, 179

Color class, 328

editors, 13

fields

creating, 176-177

write-protecting, 198

Font class, 327-328

pasting into strings, 69

TextArea() constructor method, 180

this keyword, 147-148

ptg7068951

variables 417

tools

appletviewer, 44

programming

installing, 9

selecting, 8-9

toUpperCase() method, 71, 75

travel Java Boutique, 33-35

troubleshooting

Android applications, 357

exceptions, 249-253. See also
exceptions

NetBeans, 378, 380

Saluton program, 19-20

software, 8

trusted developers, 30

try-catch blocks, 250-255, 261, 273

Calculator application, 251-252

DivideNumbers sample applica-
tion, 254

NewCalculator application, 253

NumberDivider sample applica-
tion, 254-255

SumNumbers sample application,
251, 261

try-catch statement, 272

try-catch-finally blocks, 255

TryPoints.java listing, 165

Twitter, 385

two slash characters (//), 258

type values (variables), casting, 127

types

Boolean, 53

byte, 52

char, 51

long, 52

short, 52

variables, 50

this statements, 165

class declarations, 158

Thread class, 265

threaded applets, 270

class declarations, 271

error handling, 272

event handling, 276

initializing, 272

screen updates, 273

threads

running, 274-275

starting, 274

stopping, 275

variables, 271

threaded classes, 266-270

threads, 265. See also threaded
applets

creating, 266-270

multithreading, 31

Runnable interface, 265

running, 274-275

slowing down, 266

starting, 274

stopping, 275

Thread class, 265

throw statements, 256

throwing exceptions, 250, 256-258

PageCatalog sample application,
258-261

throw statements, 256

time, displaying, 183

titles, frames, 171

toCharArray() method, 110

toLowerCase() method, 71

Tool application, 228-230

toolbars, 227

creating, 228

dockable toolbars, 228

docking, 230

Tool sample application, 228-230

U

Udovydchenko, Aleksey, 34

unboxing, 131

underscore (_) characters, 53, 54

University of British Columbia, 28

updating screens, 273

upper limits of arrays, checking, 109

uppercase, changing strings to,
71, 75

user events, 201

ActionListener interface, 202

combo boxes, 204

components, 206

handling, 202-203

keyboard events, 204-206

LottoMadness application,
207-208, 212-213

V

validity, 302

van de Panne, Michiel, 28

Variable application

code listing, 52

int statement, 50

variables

characters, 51

floating-point, 51

integers, 51

strings, 51

variables

access control, 138

arrays, 109, 111

declaring, 108

definition of, 107

elements, 108

initial values, 108

multidimensional, 111

ptg7068951

variables418

integers, 50

long, 52

short, 52

strings, 51

values

assigning, 55

decrementing, 56-58

incrementing, 56-58

starting values, 55

vectors, objects

looping, 162-163

storing, 160-162

Verburg, Martijn, 383

VeriSign website, 30

vertical sliders, creating, 223

viewing

Android projects, 347

appletviewers, 44

pie graphs, 339

resources, 356

revolving links, 279

strings, 66-67

text areas, 179

web services, 323

Virus application, 148

class constructor, 143

methods

getSeconds(), 142

setSeconds(), 142

tauntUser(), 143

showVirusCount(), 144

Virus class, 137

VirusLab application

output, 150

source code, 149-150

Visual Basic, 4

void keyPressed() method, 204

void keyReleased() method, 204

void keyTyped() method, 205

void statement, 141

sample application, 110

sorting, 111-113

assigning values, 54-55

casting, 127-128

converting to objects, 129-131

counter variables

definition of, 96

initializing, 96

data types, String, 17

declaring, 17, 50

class variables, 139-140

object variables, 137-138

definition of, 49

displaying contents of, 18

initializing, definition of, 105

length, 117

naming conventions, 54, 62

newSuffix, 129

private, 139

protected, 139

referencing, this statement,
147-148

Revolve applet, 271

Revolve program, 271

scope, 145-146

searchKeywords, 69

strings, 66

changing case, 71, 75

comparing, 70

concatenating, 68

declaring, 66

determining length, 70-71

displaying, 66-67

escape codes, 67-68

linking, 68-69

types

assigning, 50

Boolean, 53

char, 51, 65

floating-point, 51

W

WeatherStation.application, 304-307

Web Service Description Language,
See WSDL

web services

clients, creating, 320-322

publishing, 317-318

SquareRootServer, 313

Web Tools Platform. See WTP

weblogs, 383

@WebMethod annotation, 315

websites

Cafe au Lait, 383

Gamelan, 385

InformIT, 382

JARS (Java Review Service), 384

Java Boutique, 33-35

JTicker, 32-33

JavaWorld, 29-30

Liberty BASIC interpreter, 6

Sams Publishing, 382

Sams Teach Yourself Java 2 in 24
Hours, 387-388

Sams Teach Yourself Java in 24
Hours, 383

Sun, 25-26, 382

VeriSign, 30

Workbench, 383

WeightScale applets, source code,
243-245

well-formed data (XML
formatting), 302

Wheel of Fortune application, 113

character arrays, 115

integer arrays, 115

letterCount array, 115

nested loops, 115

output, 114

source code, 113

while loops, 98-101

widgets, customizing properties, 361

ptg7068951

Zamenhof, Ludwig 419

X-Y

XML (Extensible Markup Language)

editing, 349

files

creating, 299-302

reading, 302-307

RSS syndication feeds, 307-309

XOM (XML Object Model), 303

Z

Zamenhof, Ludwig, 20

WIDTH attribute (APPLET tag), 239

windows, 170-172, 174

Debug Configurations, 351

wizards

New Android Project Wizard,
345, 349

New File Wizard, 14

New Project Wizard, 375

Workbench website, 383

write protecting text fields, 198

write() method, 290

WriteMail application, 222

writing

applications, 13, 39

creating applets, 42-44

Saluton programs, 14-15

sending arguments to, 41-42

code, Android applications,
362-368

Color class, 328

configuration properties, 292-295

Font class, 327-328

streams, 290-291

WSDL (Web Service Description
Language), 318-320

WTP (Web Tools Platform), 390

	TABLE OF CONTENTS
	INTRODUCTION
	PART I: Getting Started
	HOUR 1: Becoming a Programmer
	Choosing a Language
	Telling the Computer What to Do
	How Programs Work
	When Programs Don’t Work
	Choosing a Java Programming Tool
	Installing a Java Development Tool

	HOUR 2: Writing Your First Program
	What You Need to Write Programs
	Creating the Saluton Program
	Beginning the Program
	Storing Information in a Variable
	Saving the Finished Product
	Compiling the Program into a Class File
	Fixing Errors
	Running a Java Program

	HOUR 3: Vacationing in Java
	First Stop: Oracle
	Going to School with Java
	Lunch in JavaWorld
	Watching the Skies at NASA
	Getting Down to Business
	Stopping by Java Boutique for Directions
	Running Java on Your Phone

	HOUR 4: Understanding How Java Programs Work
	Creating an Application
	Sending Arguments to Applications
	Creating an Applet

	PART II: Learning the Basics of Programming
	HOUR 5: Storing and Changing Information in a Program
	Statements and Expressions
	Assigning Variable Types
	Naming Your Variables
	Storing Information in Variables
	All About Operators
	Using Expressions

	HOUR 6: Using Strings to Communicate
	Storing Text in Strings
	Displaying Strings in Programs
	Using Special Characters in Strings
	Pasting Strings Together
	Using Other Variables with Strings
	Advanced String Handling
	Presenting Credits

	HOUR 7: Using Conditional Tests to Make Decisions
	if Statements
	if-else Statements
	switch Statements
	The Conditional Operator
	Watching the Clock

	HOUR 8: Repeating an Action with Loops
	for Loops
	while Loops
	do-while Loops
	Exiting a Loop
	Naming a Loop
	Testing Your Computer Speed

	PART III: Working with Information in New Ways
	HOUR 9: Storing Information with Arrays
	Creating Arrays
	Using Arrays
	Multidimensional Arrays
	Sorting an Array
	Counting Characters in Strings

	HOUR 10: Creating Your First Object
	How Object-Oriented Programming Works
	Objects in Action
	What Objects Are
	Understanding Inheritance
	Building an Inheritance Hierarchy
	Converting Objects and Simple Variables
	Creating an Object

	HOUR 11: Describing What Your Object Is Like
	Creating Variables
	Creating Class Variables
	Creating Behavior with Methods
	Putting One Class Inside Another
	Using the this Keyword
	Using Class Methods and Variables.

	HOUR 12: Making the Most of Existing Objects
	The Power of Inheritance
	Establishing Inheritance
	Working with Existing Objects
	Storing Objects of the Same Class in Vectors
	Creating a Subclass

	PART IV: Programming a Graphical User Interface
	HOUR 13: Building a Simple User Interface
	Swing and the Abstract Windowing Toolkit
	Using Components
	Creating Your Own Component

	HOUR 14: Laying Out a User Interface
	Using Layout Managers
	Laying Out an Application

	HOUR 15: Responding to User Input
	Getting Your Programs to Listen
	Setting Up Components to Be Heard
	Handling User Events
	Completing a Graphical Application

	HOUR 16: Building a Complex User Interface
	Scroll Panes
	Sliders
	Change Listeners
	Using Image Icons and Toolbars

	PART V: Moving into Advanced Topics
	HOUR 17: Creating Interactive Web Programs
	Standard Applet Methods.
	Putting an Applet on a Web Page
	Creating an Applet
	Sending Parameters from a Web Page
	Handling Parameters in an Applet
	Using the Object Tag

	HOUR 18: Handling Errors in a Program
	Exceptions
	Throwing Exceptions
	Throwing and Catching Exceptions

	HOUR 19: Creating a Threaded Program
	Threads
	Working with Threads
	Starting with init()
	Catching Errors as You Set Up URLs
	Handling Screen Updates in the paint() Method
	Starting the Thread
	Handling Mouse Clicks
	Displaying Revolving Links

	HOUR 20: Reading and Writing Files
	Streams
	Writing Data to a Stream
	Reading and Writing Configuration Properties

	PART VI: Writing Internet Applications
	HOUR 21: Reading and Writing XML Data
	Creating an XML File
	Reading an XML File
	Reading RSS Syndication Feeds

	HOUR 22: Creating Web Services with JAX-WS
	Defining a Service Endpoint Interface
	Creating a Service Implementation Bean
	Publishing the Web Service
	Using Web Service Definition Language Files
	Creating a Web Service Client

	HOUR 23: Creating Java2D Graphics
	Using the Font Class
	Using the Color Class
	Creating Custom Colors
	Drawing Lines and Shapes
	Baking a Pie Graph

	HOUR 24: Writing Android Apps
	Introduction to Android
	Creating an Android App
	Running the App
	Designing a Real App

	PART VII: Appendixes
	APPENDIX A: Using the NetBeans Integrated Development Environment
	Installing NetBeans
	Creating a New Project
	Creating a New Java Class
	Running the Application
	Fixing Errors

	APPENDIX B: Where to Go from Here: Java Resources
	Other Books to Consider
	Oracle’s Official Java Site
	Other Java Websites
	Job Opportunities

	APPENDIX C: This Book’s Website
	APPENDIX D: Setting Up an Android Development Environment
	Getting Started
	Installing Eclipse
	Installing Android SDK
	Installing the Android Plug-in for Eclipse
	Setting Up Your Phone

	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

