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IA. Introduction

Euler’s Opera Omnia

Series  Subject \Vol.  Pages

| Pure Mathematics 29 13979 Complete
Il Mechanics and

Astronomy 31 11007 v.26,27 to appear
1l Physics and
Miscellanea 12 4325 v.10 to appear
IV A  Correspondences 8 1811 v.3,4,7,8 to appear
IVB  Manuscripts In progress
Total 80 31122 7 volumes

Series | — Pure Mathematics

Subject \Volumes  Pages
Number Theory 4 1955
Algebra 1 509
Combinatorics 1 577
Infinite Series 3 2022
Integraton 3 1424
Elliptic Integrals 2 750
Differential Equations 2 875
Calculus of Variations 1 342
Geometry 4 1589
Total 21 10043
Texts 8 3936

Total 29 13979
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Euler: Opera Omnia

Series | — Pure Mathematics

\ol. Pages Year Content

I 651 1911 Elements of Algebra, 1770

Il 611 1915 Number Theory

Il 543 1917  Number Theory

v 431 1941 Number Theory

\ 370 1944  Number Theory

VI 509 1921 Theory of Equations

VIl 577 1923 Combinatorics and Probability
VIl 390 1922 Introductio in Analysin Infinitorum, I, 1748
IX 402 1945 Introductio in Analysin Infinitorum, 11, 1748
X 676 1913 Differential Calculus,1755
Xl 462 1913 Integral Calculus, 1768

Xl 542 1914 Integral Calculus, 1768

X1 505 1914 Integral Calculus, 1768

XV 617 1925 Infinite Series

XV 722 1927 Infinite Series

XVI(1) 355 1933 Infinite Series

XVI(2) 328 1935 Infinite Series

XVII 457 1914 Integration

XVIII 475 1920 Integration

XIX 492 1932 Integration

XX 370 1912 Elliptic Integrals

XXI 380 1913 Elliptic Integrals

XXII 420 1936 Differential Equations

XX 455 1938 Differential Equations

XXIV 308 1952 Calculus of Variations, 1744
XXV 342 1952 Calculus of Variations

XXVI 362 1953 Geometry

XXVII 400 1954  Geometry

XXVII 381 1955 Geometry

XXIX 446 1956 Geometry
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Euler’s Elements of Algebra (1770)
Contents

Part I: Containing in Analysis of Determinate Quantities.
Section I. Of the different methods of calculating simple quantities. (23 chapters; 75 pages)

e Of impossible, or imaginary quantities, which arise from the same source. 2
Section II. Of the different methods of calculating compound quantities. (13 chapters; 50 pages)
e Chapter IV. Of the summation of arithmetical progressions.
e Chapter VII. Of the greatest common divisor of two given numbers.
e Chapter XI. Of geometrical progressions.

Section I11. Of ratios and proportions (13 chapters; 60 pages)
Section 1V. Of Algebraic equations, and of the resolution of those equations. (16 chapters; 113 pages)

e Chapter IX. Of the nature of equations of the second degree.
e Chapter X to XII. Cubic equations; of the rule of Cardan, Or of Scipio Ferreo.
e Chapter XIII to XV. Equations of fourth degree.

e Chapter XV. Of a new method of resolving equations of the fourth degree.

Part I1: Containing the Analysis of Indeterminate Quantities. (15 chapters; 164 pages)
Elementary number theory up to the solution of quadratic equations in integers.

Additions by Lagrange (9 chapters; 131 pages)

Sample exercises in Elements of Algebra

2Every body makes mistakes, even the masters. Here is an observation by Ivor Grattin - Guinness The Norton History of
Mathematical Sciences, The Rainbow of Mathematics, 1997, [W.W.Norton & Company, New York, pp. 334 — 335]. on Euler’s
Elements of Algebra:

As usual, Euler gave a reliable presentation; but he gaffed in his algebraic handling of complex numbers, by
misapplying the product rule for square roots

Vab = Vavb,

to write
V=2v/=3=+6 insteadof — V6.

[Art. 148, 149] The error was systematic: for example, he committed it for division as well, and it confused some
later writers on the subject.
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Section I, Chapter IV.

1. Required the sum of an increasing arithmetical progression, having 3 for its first term, 2 for the
common difference, and the number of terms 20. (Answer: 440).

4. One hundred stones being placed on the ground, in a straight line, at the distance of a yard from
each other, how far will a person travel who shall bring them one by one to a basket, which is placed one
yard from the first stone? (Answer: 5 miles and 1300 yards).

Section |1, Chapter VII: On finding the gcd of two numbers.

Divide the greater of the two numbers by the less; next, divide the preceding divisor by
the remainder; what remains in this second division will afterwards become a divisor for
a division, in which the remainder of the preceding divisor will be the dividend. we must
continue this operation till we arrive at a division that leaves no remainder; and this last
divisor will be the greatest common divisor of the two given numbers.

Examples: Find the gcd of (i) 252 and 576; (ii) 312 and 504; (iii) 529 and 625; (iv) 1728 and 2304.

IB. Solution of cubic equations
Euler’s Paper 30: De formis radicum agequationum cuiusque ordinis coniectatio (1732/33) 1738.

§3. Resolutionem aequationis cubicae sequenti modo a quadratic pendentm considero. Sit

aequation cubica

2> =ax+b

in qua secunda terminus deest; huis radicem z dico fore

=VA+ VB
existentibus A et B duabus radicibus aequationes cuiusdam quadraticae

22 =az—p.
Quamobrem ex natura aequationum erit

A+B=a et AB=20.
Sed ad a et § ex a et b definiendas sumo aequationem
r=VA+ \BVE,

guae cubice multiplicata dat

® = A+ B+3VAB(VA+VB)
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= 32VAB+ A+ B.
Quae cum proposita 23 = ax + b comparata dabit
a=3VAB=3Y3 e b=A+B=aq.

Fiet igitur
a3

«o et O o

Huis enim radicibus cognitis A et B erit
= VA+ VB.

84. Sed cum radix cubica ex quaque quantitate triplicem habeat valorem, haec formula
z = /A + /B omnes etiam radices aequationis propositae complectetur. Sint enim x et v
praeter unitatem radices cubicae ex unitate; erit etiam

z=uvA+vVB,
si modo sit uv = 1. Quamobrem p et v esse debebunt
—1++-3 I V=3
2 2

vel inverse. Praeter radicem igitur
v=VA+ B

satisfacient quoque [aequationi] propositae hae duae alterae radices

oo B ya Ly

et

-1-=3 —14++v=3
s L )
Hacque ratione aequationis cubicae etiam, in qua secundus terminus non deest, radices de-
terminiari poterunt.

IC. Solution of quartic equations
From Elements of Algebra, Sect. 1V, Chapter XV, Of a new method of resolving equations of the fourth
degree.

§774. We will suppose that the root of an equation of the fourth degree has the form

=P+ 7+ Vr
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in which the letters p, q, r, express the roots of an equation of the third degree, such as

23— f22 4 gz —h=0;

so that
ptq+r = f,
pq+pr+qr = g,
pgr = h.

[§722.] This being laid down, we square the assumed formula, = =/p + /g + /r, and we obtain
22 =p+q+r+2ypq + 2/pr + 2/q7;

and, since p + g + r = f, we have

a? — [ =2pq+2y/pr +2/qr.

We again take the squares, and find

2t —2f 2% + F% = dpq + dpr + 4qr + 8\/p2qr + 8\/pq2r + 8\/pqr2.

Now, 4pq + 4pr + 4qr = 4g; so that the equation becomes

o' —2fa% + 2 —dg = SVRT (/B + I+ V)

but \/p+ \/q+/r = z,and pgr = h, or \/pqr = v/'h; wherefore we arrive at this equation of the fourth
degree,
a2t —2fx? —8xvVh + f2 — 49 =0,

% one of the roots of which is z = ,/p + /g + /r; and in which p, ¢, r, are the roots of the equation of
the third degree,
23— 224+ g2 —h=0.

§775. The equation of the fourth degree, at which we have arrived, may be considered as general,
although the second term 23y is wanting; for we shall afterwards shew, that every complete equation
may be transformed into another, from which the second term has been taken away.

Let there be proposed the equation

t—ar? —br—c=0,

3The English translation prints the term 2 twice.
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in order to determine one of its roots. We will first compare it with the formula,
' — 222 —8avVh+ f2— 49 =0,

in order to obtain the values of f, g, and h; and we shall have
1.2f = a, and consequently f = g;
2.8Vh =b,s0that h = g—z;
3. f2—4g=—cor(as f=2),
a? — 49 +c =0,

or 1a? + ¢ = 4g; consequently, g = =a? + Lc.

I1A. Factorization of a quartic as a product of two real quadratics

§777. This method appears at first to furnish only one root of the given equation; but if we consider
that every sign ,/ may be taken negatively, as well as positively, we immediately perceive that this
formula contains all the four roots. Farther, if we chose to admit all the possible changes of the signs,
we should have eight different values of z, and yet four only can exist. But it is to be observed, that the
product of those three terms, or , /pgr, must be equal to Vh = %b, and that if %b be positive, the product
of the terms /p, /q, /r; must likewise be positive, so that all the variations that can be admitted are
reduced to the four following:

= P+ VIt
VB = Vi = VT,
_\/]3+f_\/;7
= VPVt

In the same manner, when %b is negative, we have only the four following values of x:

= VP+Va-Vr,
= —VPH+Va+r,
— Vi Vi VF

This circumstance enables us to determine the four roots in all cases; as may be seen in the following
example.
§778. Solve the equation

8 8 8 8

8 8 8 8

a* — 2522 + 602 — 36 = 0.
Hint: The resulting cubic equation has a root 9.

Solve the quartic equations
Q) y* —4y® —3y2 —4y +1=0.
(2) z* — 322 — 4z = 3.
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Answer: (1) £V=3 and 5£¥2L: (2) 1Y13 and —1EV35

Paper 170: Recherches sur les Racines I maginaires des Equations (1749) 1751.
In §89 — 13, Euler solved explicitly the fourth degree equation:

2t +22° + 42 + 22 +1=0.

He factored this into
(2 + (A 4z +1) (2 + (1 —i)z +1) =0,

4 and obtained the four simple factors

1 1
x+§(1—|—i)—§\/2i—4,

1 1
$+%(1—2)+? —Q’i—4,
T g(l=i) = 5vV=2i -4

Then he proceeded to rewrite these ... by setting
V2i—4=u+vi and —-2i—4=u—wvi.

From these,
v —u? =4 and wv=1.

v:\/\/g—l-Q and u=1\/V5—2.

In terms of « and v, Euler rewrote the above four simple factors, and presented the product of the first
and the third factors as

Now, it is easy to find

(ot 51+ )+ 3140

while that of the second and fourth as

(2421 —w)2+ (1 =)
2 4
“When did Euler begin to use ¢ for /—1? According to F. Cajori, History of Mathematical Notations, §498: It was Euler
who first used the letter i for /—1. He gave it in a memoir presented in 1777 to the Academy at St. Petersburg, and entitled
De formulis [differentialibus angularibus, 1777, 1.19,129-140; p.130], but it was not published until 1794 after the death of
Euler. As far as is now known, the symbol i for v/—1 did not again appear in print for seven years, until 1801. In that year
Gauss [in his Disg. Arith.] began to make systematic use of it; ...
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Symmetric equations
Then he discussed (§514 — 18) the general problem of factoring a quartic of the form

et 4+ azd + (b+2)2? +ar+1=0

into two quadratic factors with real coefficients. The case & > 4b is easy. In §18, he gave an explicit
factorization for the case a® < 4b.

This is the beginning of a series of examples for what he aimed at to establish finally.

Theorem 4 (§27).  Every quartic equation can be decomposed into two quadratic factors of real coef-
ficients.

Euler’s 1748 Introductio in Analysin Infinitorum, |
§31. If () is the real product of four complex linear factors, then this product can also be represented
as the product of two real quadratic factors.

Now @ has the form 2* + Az3 + Bz? + Cz + D and if we suppose the Q cannot be represented as
the product of two real quadratic factors, then we show that i[t] can be represented as the product of two
complex quadratic factors having the following forms:

22 —2(p+qi)z + 1+ si

and
22 —2(p—qi)z +r — si.

No other form is possible, since the product is real, namely, z* + Az> + Bz% + Cz + D. From these
complex quadratic factors we derive the following four complex linear factors:

z—(p—i—qi)—l—\/p2—|—2pqi—q2—r—si,
II. z—(p+qz')—\/p2+2pqi—q2—r—sz’,
z—( )
z—( )

II1. + /P — 2qi — ¢ — 7 + i,
1V. p— qi —\/p2—2pqi—q2—r+si.

p—qi

For the sake of brevity we let ¢t = p? — ¢*> — r and u = 2pq — s. When the first and third of these
factors are multiplied, the product is equal to

24 2p—V2A+2V2 +u)z+pP+ @ —p\V2A+ 2V +u V2 ud q\/—2t + 2V + 2,
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which is real. In like manner the product of the second and fourth factors is the real

22— (2p+ V242V +u)z+ pP + @+ p\V 2+ 2V +ud + V2 + 2 +q\/—2t + 2VE2 + 2.

Thus the proposed product @, which we supposed could not be expressed as two real factors, can be
expressed as the product of two real quadratic factors.

11B. Euler’s proof of the FTA for quartic polynomials

Paper 170. Theoreme 4
§27. Toute équation du quartriéme degré, comme

*+ A+ B2+ Cx+d=0

se peut toujours déomposer en deux facteurs réels du second degré.
Demonstration

On said que posant x = y — %A, cette équation se change dans une autre du méme degré, ol le
second terms manque; et comme cette transofmation se peut toujours faire, supposens que dans léquation
proposée le second manque déja, et que nous ayons cette équation

*+ B2’ +Cr+ D=0

a résoudre en deux facteurs réels du second degré; et il est d’abord clair que ces deux facteurs seront de
cette forme

(z* 4+ uz + a)(2® —ux + §) =0,

dont comparant le produit avec I’équation proposée, nous aurons
B=a+p-u* C=(f-a)u, D=ap,

d’ol nous tirerons

C
Oé+/6:B+u2, 5—042—
u
et partant
C C
26=u*4+B+—, 2a=u’+B-—;
u u

ayant donc 4a8 = 4D, nous obtiendrons cette équation

2

C
u' +2Bu* + B> — — = 4D
u

ou bien
u® + 2But + (B? — 4D)u* — C? = 0,
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d’ou il faut chercher la valeur de u. Or puisque le terme absolu —C? est essentiellement négatif, nous
venons de démonstrer, que cette équation a au moins deux racines réelles; prenant donc I’'une ou I’autre
pour u, les valeurs « et 3 seront également réeles, et par conséquent les deux facteurs supposés du second
degré 22 + ux + a et 22 — ux + [ seront réels. C.Q.FD.

Fundamental Theorem of Algebra as a theorem in Complex Analysis
Every nonconstant polynomial with complex coefficients must have a complex zero.

Liouville’s Theorem A bounded, analytic function in the whole complex plane must be constant.
Liouville’s Theorem —> FTA

Let f(z) be a polynomial of degree n > 1.

It is clearly nonconstant.

If f(2) is never zero, then ﬁ is an analytic function.

Since f(z) — o0 as z — 00, 715 — 0.

Since its absolute value is continuous on the Riemann sphere (= complex plane together with the
point at infinity), which is compact, the function ﬁ is bounded.

By Liouville’s theorem, ﬁ must be constant.

This contradicts the assumption that f(z) is non-constant.

I1C. Relations between roots and coefficients
General polynomial equation of degree n:

2" — A" '+ BV 22— Ca" P+ D" —Ex" 0+ Mz FN=0=0.

Roots «, 3, ..., 1.
Relations between roots and coefficients:

A = a+pfB+~v+d+ - =sumof roots

B = af+ay+ ad+ By + - =sum of products of roots taken two at a time
C = afy+---=sum of products of roots taken three at a time

D = «afvyd+ .- =sum of products of roots taken four at a time

E = afvyde+ - =sum of products of roots taken five at a time

Consider the sums of powers of the roots:

SEuler wrote £ N instead of £ MzTF.
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dYa = a+f+y+0+et--+v,

Za2 — 4B LR E 2
Yool = P+ 48+
ZO‘4 N . CRNIPVC T L I I
Yook = &+ P+ 10
Zaﬁ — oS BSOS S

Newton’s Theorem

Za = A,

ZaQ = AZQ—QB,

S0 = AY o BY a3,

Za4 = A2a3—BZa2+CZa—4D,

Yo’ = AY o'-BY ’+C> a*-DY a+5E,

Za6 = A2a5—B2a4+02a3—DZa2+EZa—6F,

Euler’s first proof (§85 - 7).
Write
Z=a"—Az" '+ Ba"?4+...£N

which, when set to zero, gives the n roots o, 3,7, ..., v.
Z=(x—a)(z—pF)(x—-7)(x—20)-(z—v),
and taking logarithms,
log Z =log(z — a) + log(z — ) + log(x — ) + log(x — §) + - - - + log(z — v),
6 Differentiating,
@ _dx dx dx dx dx

Z x—a+x—ﬂ+x—'y+x—5+.”+:c—y'

®Euler used ¢ for natural (hyperbolic) logarithms.
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Converting into infinite geometric series

1 - 1+a+a2+a3+a4+a5+
r—a  x  x2 x3  af 6 " 46
1 1 B g o pt B
2B 1 2 B A B s
1 L e e A A
o T Ty tmtatEtEt
1 _ 1 1% V2 V3 A VP
——— = gt gttt gt

Adding these, we have

dz n 1 1 1 1 1
Zzriairi-D Dl DU DIL =D Dl g DULIE S

§6. From the other expression of Z, namely,
Z=a"—Az" '+ Ba"?4+...£N

we have

4z _
dr
This should be the same as the product of

n 1 1 1 1 1
E—’_Pza—'_EZCF—'—EZQS—’_EZO/I—'—EZQS—'—“'

nz"t — (n —1)Az" 2 4+ (n — 2)B2" 3 — (n — 3)Ca" ™1 + (n — 4)Dz" 5 —

and
2" — A" '+ B2 2 4. £ N.
Therefore,
nz" ' — (n—-1A2"2 + (n—-2)Bz"3 — (n—3)Ca"* 4+ (n—4)Dz"®
— nxn—l + xn—? Z « + xn—3 Z a2 + xn—4 Z Oé3 + xn—S Z O[4 +
— nAx" 2 — A" 3Ya — A" Y a? — A" Y o8
+ nBz™ 3 + Bax"*Ya - Ba"dYa? 4+ .-
— annfll — anfs) Z o — e e e e

_|_ annff) — ciiee.
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Therefore,

—(n—1DA = Ya — nA

+(n—2)B = Ya? — AYa + nB,

—-n—-2)C = Ya® — AY.a®> — BYa - nC,

+(n—3)D = Ya* — AYa® + BY.a? — CXa + nD,
From these,

ZO( = Av

Sa? = AYa — 2B

Sad = AYe? — BY.a + 3C,

Sat = AYa® — BY.o? + CYa — 4D,

Sab = AYa?* - BY.a® + CXa? — DY a + 5E,

From the rightmost column we have

Za”_l = AZa”_Q - BZa”_?’ —1—0204”_4 —t(n—-1)M
In a later paper (406), Observationes circa radices aequationum, 1770, Euler went further and
wrote these explicitly in terms of A, B, C etc.

Yo = A
Sao? = A2 + 2B
Sad = A3 + 34AB  + 3C,
Sat = A* + 4A’B + 4AC + 4D
+ 2B?
S = A° + 5A3B + 5A2°C  + B5AD + b5E
+ 5AB?> 4+ 5BC
Saf = A5 + 64'B + 643C 4+ 6A%D + 6AFE + 6F
+ 9A42B? 4+ 124ABC + 6BD
+ 2B3 + 3C?
Saof = AT + TASB + TA'C 4+ TA3D + TA’E  + TAF + T7G
+ 1443B?> 4+ 21A°BC + 14ABD + T7BE
+ TAB3 + TAC? 4+ 17CD
+ T7B%C
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Euler’s second proof
§11. Euler showed that it is clear from the equation

2" — A" 4+ B —Ca" P 4+ D" —Ex" P+ £ Mz FN=0
that
a"=AY """ —BY "“+CY =D " *+---FMD» atnN.
> Do =By a4 Oy "Dy o >

Multiplying by successive powers of z, we have

Za"” = AZQ"—BZO/A“l—|—C2a"72—DZO["%S—F--':FMZ&Q:I:NZ&,
Za”+2 = AZ@”H—BZa”—I—CZa”_I—DZa”_2+--'$MZa3:tNZa2,
Za"JFS = AZO/’JFQ—BZQ”H—|—CZQ"—DZO¢"71—|—--':FMZ(14:I:NZQ3,

More generally, for any positive integer m,

Z a"tm = A Z an-{—m—l — B Z O/z—l—m—2 + CZ an—l—m—?) - D Z O/z—l—m—4 4o
FMY o™ £ NS o™,

It remains to determine sums
Za, ZaQ,Zo;’,--',Za”_l.
§13-15. Euler gave the proof for n = 5. The same method naturally applies to a general n.

Given the equation
2° — Azt + b2 — C2?>+ Dx — E =0,

consider the lower degree equations “formed by retaining its coefficients”:

1. r—A=0, roots p
17 2> — Az + B =0, roots ¢
111 23— Az? + Bz —C =0, roots r
1V. 2t — Az® + Ba? — Cx+ D =0, roots s.

Earlier in §3, Euler deduced
Sa?=A2-B

from the obvious identity
(a+B+7y+d5+-)°
= P+ + S +E+
+2a8 4 20y 4 2a6 + 20y + 2066 + - - -
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Quarum aequationum radices, etiamsi inter se maxime discrepent, tamen in his singulis
aequationibus eandem consituent summan = A. Deinde remota prima summa productorum
ex binis radicibus ubique erit eadem = B. Tum summa productorum ex ternis radicibus ubique
erit = C, praeter aequationes scilicet I et /7, ubi C' non occurrit. Similiter in IV etc. proposita
summa productorum ex quaternis radicibus erit eadem = D.

§14 In quibus autem aequationibus non solum summa radicum est eadem, set etiam summa
productorum ex binis radicibus, ibi quoque summa quadratorum radicum est eadem. Sin atuem
praeterea summa productorum ex ternis radicibus fuerit eadem, tum summa quoque cuborum
omnium radicum erit eadem. Atque si insuper summa productorum ex quaternis radicibus fuerit
eadem, tum quoque summa biguadratorum omnium radicum erit eadem, atque ita porro. Hic
scilicet assumo quod facile concedetur, summam quadratorum per summam radicum et sum-
mam productorum ex binis determinari; summam cuborum autem praeterea requirere sum-
mam factorum ex ternis radicibus; ac summam biquadratorum praeterea summam factorum ex
guaternis radicibus, et ita porro; quod quidem demonstratu non esset difficile.

§15 In aequatinibus ergo inferiorum gradumm, quarum redices denotantur respective perlit-
teras p, q, r, s, dum ipsius propositae quinti gradus quaelibet radix littera « indicatur, erit

da = Y s=yr=)qa=)p
Yot = Y =)= ¢
Yoai = Y =30

Sal = 3 st

But,

Sp
>
>’
> st

It follows that

Sa
D o’
D o
D ot

A,

AY q-2B,
AZrz—BZr—i-?)C,

AY B> s+ C> s—4D.

A,

AY a-2B,
AZaQ—BZa—i—?)C,
AZa3—BZa2+CZa—4D.
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1A, Partial fraction decomposition

Partial fraction decomposition
Chapter 2 of Introductio, |

§40. A rational function % can be resolved into as many simple fractions of the form
as there are different linear factors in the denominator N.

A
pP—qz

Example (method of undetermined coefficients):

1+22 1 1 1

2—23 2z 1—2z 142

841. Since each linear factor of the denominator N gives rise to a simple fraction in the
resolution of the given function % it is shown how, from the knowledge of a linear factor of the
denominator NN, the corresponding simple fraction can be found.

Same example: N = (z — a)S

‘ a ‘z—a‘ S ‘A:M‘Aatz:a‘

2
0] = |1-22| % 1
_ 2 1422
1 |1—2z|2z42 Z+Z§ 1
—1|142]2z—22 % -1

§42. A rational function with the form m, where the degree of the numerator P is
less than the degree of the denominator (p — ¢z)™, can be transformed into the sum of partial
fractions of the following form:
4 b + ¢ g B
(p—gz)"  (p—qz)"t  (p—qz)"? p—qz

where all the numerators are constants.
§43. If the denominator N of the rational function % has a factor (p — ¢z)?, the partial
fractions arising from this factor are found in the following way.

Suppose N = (p — qz)%S. Write
M A B P

+ +
N (p—gz)? p—qz S
where % stands for the sum of all the simple fractions which arise from the factor S.

P M — AS — B(p—qz)S
S (p —qz)2S ’
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and
M — AS — B(p—qz)S

(p —q2)?
is a polynomial. Therefore, M — AS — B(p — qz)S is a polynomial divisible by (p — ¢z)?. Putting
z:g,wehaveM—AS:O, and

P=

M
A=—
S

at z =

Q|3

Now,
M — AS

p—qz

— BS

is divisible by p — gz. From this,

M-AS X-A
= = atZ:
(p—qz)S p—qz

»Q'I'U

Here, the division must first be carried out before substituting § for z

Examples. 1. Only one patrtial fractlon L corresponding to z2

1—
(1+Z )
23
2. Ty
Partial fraction corresponding to (1 — z): m — s

2
§44. Example: sy

Partial fractions corresponding to (1 — z)3:

1 1 1

2(1—2)%  2(1—2)2 4(1-2)

§45. If the denominator N of the rational function £ has a factor (p — gz)™, then the partial

fractions
A + B + ¢ +- K
(p—qz)"  (p—qz)" ! (p—qz)"2 p—qz

therefrom are calculated in the following way.

Let the denominator N = (p — ¢z)"Z. Then
A:Mwhenz:ﬂ,and

— = e b.
P= p qz Z gives B = When z=q;
Q = L=BZ gives C' = ¥ when z = ;

p—qz q
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— Q=CZ =& = b
R==—">gives D = 7 when z = [

_ R=DZ i _ S _p
S = s gives E thenz o

etc., and so we find all of the partial fractions which arise from the factor (p — ¢z)™ of the
denominator N.

646. Given any rational function whatsoever % it can be resolved into parts and trans-
formed into its simplest form in the following way.

First, one obtains all the linear factors, whether real or complex.

Of these factors, those which are not repeated are treated individually, and from each of
them a partial is obtained from §41.

If a linear factor occurs two or more times, then these are taken together, and from their
product, which will be of the form (p — ¢z)", we obtain the corresponding partial fractions from
§45.

In this way, since for each of the linear factors partial fractions have been found, the sum of
all these partial fractions will equal the given function % unless it is improper.

If it is improper, then the polynomial part must be found and then added to the computed
partial fractions in order to obtain the function % expressed in its simplest form.

This is the form whether the polynomial part is extracted before or after the partial fractions
are obtained, since the same partial fraction arises from an individual factor of the denominator
N whether the numerator M itself is used or M increased or diminished by some multiples of
N.
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1IB.
Introductio in Analysin Infinitorum, 1 (1748)
Contents
1. On functions in general
2. On the transformation of functions
3. On the transformation of functions by substitution
4. On the development of functions in infinite series
5. Concerning functions of two or more variables
6. On exponentials and logarithms
7. Exponentials and logarithms expressed through series
8. On transcendental quantities with arise from the circle
9. On trinomial factors
10. On the use of the discovered factors to sum infinite series
11. On other infinite expressions for arcs and sines
12. On the development of real rational functions
13. Onrecurrent series
14. On the multiplication and division of angles
15. On series which arise from products
16. On the partition of numbers
17. Using recurrent series to find roots of equations
18. On continued fractions.

Chapter V of Introductio, |
On the development of functions into infinite series

a
o135 can be expressed as the

infinite series

2 3 4
(e (e

This series can also be found by setting

a
a+ Bz

—A+Bz+C22+ D2+ EA+ ..

and then find the coefficients A, B, C, D, ...which give equality.

§61. In a similar way by means of a continued division procedure the rational function

a+ bz
a+ Pz + yz2

can be converted into an infinite series.
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664. A recurrent series deserves special attention if the denominator of the fraction which
gives rise to it happens to be a power.

Thus, if the rational function (fg’j)Q is expressed as a series, the result is

a + 2aaz + 3c2az®2 + 40az® + batazt +
+ bz + 2abz2 4+ 3022 4+ 4adbzt +

in which the coefficient of 2™ will be
(n +1)a™a + na™ b

But this is a recurrent series, since each term is determined by the two preceding terms. The
law of formation is clearly seen when the denominator is expanded to 1 — 2az + o222, If we let
«a =1 and z = 1, the series becomes a general arithmetic progression

a+ (2a+0b)+ (3a +2b) + (4a + 3b) + - - -

whose terms have a constant difference. Thus, every arithmetic progression is a recurrent
series, for if
A+B+C+D+E+F+---

is an arithmetic progression then

C=2B-A, D=20-B, E=2D-C,...

I11C. Exponentials and logarithms
Chapter VI of Introductio, |
On exponentials and logarithms

§106. When they are transcendental, logarithms can be only approximately represented by
decimal fractions. The discrepancy is less to the extent that more decimal places are used in
the approximation. In the following way we can find an approximation for a logarithm by only
extracting square roots.

Letlogy = z and logv = x, then log /vy = 5”2'2

If the proposed number b lies between a? and a?, whose logarithms are 2 and 3 respectively,
we look for the value of a2 . ..and then b lies either between a2 and a? or between a3 and a®.
Whichever is the case, we then take the geometric mean of these two and we have closer
bounds.

We repeat the process and the lengths of the intervals between which b lies decreases. In
this way we eventually arrive at the value of b with the desired number of decimal places. Since
the logarithm of the bounds have been computed, we finally find the logarithm of b.
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Example

we arrive at the number 5 exactly.

22

Let a = 10 be the base of the logarithm, which is usually the case in the computed
tables. We seek an approximate logarithm of the number 5. Since 5 lies between 1 and 10,
whose logarithms are 0 and 1, in the following manner we take successive square roots until

A = 1.000000;
B = 10.000000;
C = 3.162277;
D = 5.623413;
E = 4.216964;
I = 4.869674;
G = 5.232991;
H = 5.048065;
I = 4.958069;
K = 5.002865;
L = 4.980416;
M = 4.991627
N = 4.997242;
O = 5.000052;
P = 4.998647;
Q = 4.999350;
R = 4.999701;
S = 4.999876;
T = 4.999963;
V' = 5.000008;
W = 4.999984;
X = 4.999997;
Y = 5.000003;
Z = 5.000000;

log A = 0.0000000;

log B = 1.0000000;
log C' = 0.5000000;
log D = 0.7500000;
log £ = 0.6250000;
log F' = 0.6875000;
log G = 0.7187500;
log H = 0.7031250;
log I = 0.6953125;

log K = 0.6992187;
log L = 0.6972656;

log M = 0.6982421;
log N = 0.6987304;
log O = 0.6989745;
log P = 0.6988525;
log @) = 0.6989135;
log R = 0.6989440;

log S = 0.6989592;

log T' = 0.6989668;

log V' = 0.6989707;
log W = 0.6989687;
log X = 0.6989697;
log Y = 0.6989702;
log Z = 0.6989700.

12}
o
=+

=
g

ﬁ

&

38355505

~
o o oy

NNXI TSmO WO=zEg =X
I

Thus the geometric means finally converge to z = 5.000000 and so the logarithm of 5 is
0.6989700 when the base is 10.

§110. Example I11.
Since after the flood all men descended from a population of six, if we suppose that the
population after two hundred years was 1,000,000, we would like to find the annual rate of

1

growth. We suppose that each year the increase is -, so that after two hundred years the
population is

1+x

200
) -6 = 1,000, 000.
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It follows that

T

l+z (1000000)ﬁ
= ; ,
and so

1+2 1 1000000 1
1 - — . 5.2218487 = 0.0261092.
8 ( = ) 200 27 6 200

From this, we have 112 — 106195 "and so 1000000 = 61963z and finally z is approximately 16.

We have shown that if each year the population increases by % the desired result takes place.
Now, if the same rate holds over an interval of four hundred years, then the population becomes

1000000 - m = 166666666666.

However, the whole earth would never be able to sustain that population.

Chapter VII of Introductio, |
Exponential and logarithms expressed through series

§114.  Euler starts with ¢ > 1, and write
a¥ =14+ kw

for “infinitely small” numbers w. He immediately gave an example to illustrate how k& depends
on a.

Let « = 10. From the table of common logarithms, we look for the logarithm of a

number which exceeds 1 by the smallest possible amount, for instance, 1 + m

so that kw:m.Then
1 1000001
log(l + —— ) = - —=0. 43429 = w.
o1 + 7550000’ = '8 Toonoop — 00000043429 = w

From this, ..., k = 2.30258.

§115.  Since a* = 1 + kw, we have a’* = (1 + kw)’, whatever value we assign to j.

; J JG =1 2 o JUG-1D(—2)
W =1="2k —~ Lk A
“ T T T e W
Note: Here, Euler is not using the general binomial theorem, but rather the usual binomial
theorem for a large exponent j, and then think of j as large, resulting in an infinite series.

If now we let j = £, where z is any finite number, since w is infinitely small, then j is infinitely

w

large. Then we have w = ? .

Kuwd + -
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kz. 1
a® = (1+—,Z)] = 1—|—Ik:z+
J

1(7 -1 17— —2 1G-1D)(—2)(y —
(J ')k:222+ U )(J )k;3z2+ U )(J )(J 3)k4z4+---
1-2j 1-25-35 1-25-35-4y

This equation is true provided an infinitely large number is substituted for j, but then & is a finite
number depending on a.

§116.  Since j is infinitely large, % = 1, and the larger the number we substitute for j, the
closer the value of the fraction Jj;l comes to 1. Therefore, if j is a number larger than any

assignable number, then %1 is equal to 1. For the same reason, =2 = 1, %3 =1, and so

J
forth. It follows that ] )
j—1 1 35-=2

j—3

1 1
25 20 3 3 4y 40
When we substitute these values, we obtain

kz+k222+ k323 n kA4
1 1-2 1-2-3 1-2-3-4

a* =1 + 4+ ..
This equation expresses a relationship between the numbers « and k, since whenwe let z = 1,
we jave
14y i + i + i +
a = p— oo
1 1.2 1.-2.3 1-2-3-4

When a = 10, then & is necessarily approximately equal to 2.30258 as we have already seen.

§119.  Since we have let (1 + kw)’ = 1 + 2, we have
1+ kw = (1+x)% and kw = (1—|—x)% -1

so that

(1+2)7 —1).

jw =

A

Since jw = log(1 + x), it follows that

log(1+z) = %(1 + )

1
J

.

where j is a number infinitely large. But we have

1 1 1(—-1 1 —1)(25 — 1 15 —1)(25 —1)(3 — 1
(1+x);:1+.__ (q .)x2+ (J. ).(J. )g;?’— (j .)(:7 .)(; )x4+
Jjx J-2j J2j-3j J-2j-3j-4j
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Since j is an infinite number,

j—1 1 2j-1 2 3j—1 3
25 2 3j 3 4j 4"
Now it follows that
.(1+ )% +$ {L‘2+$3 x4+
)7 = r_orx. v _r .
J O N

As a result we have

1 2 3 4
1Og(1+x)zg<z_x_+x__m_+...),

where « is the base of the logarithm and
E o k2 k3 k4

1
e=lty ot o3 1 234"

§122.  Since we are free to choose the base « for the system of logarithms, we now choose a
in such a way that k£ = 1. Suppose that £ = 1, then the series found above

Ly oL
1.2 1-2.3 1-2-3-4

1
1 —
+1+

is equal to a. If the terms are represented as decimal fractions and summed, we obtain the
value for
a = 2.71828182845904523536028 - - -

When this base is chosen, the logarithms are called natural or hyperbolic. The latter name is
used since the quadrature of a hyperbola can be expressed through these logarithms. For the
sake of brevity for this number 2.718281828459 - - - we will use the symbol e, which we denote
the base for natural or hyperbolic logarithms, ...

§120.  Euler ran into the paradox

230258 = - — = 4 T ...

He remarked “but it is difficult to see how this can be since the terms of this series continually
grow larger and the sum of several terms does not seem to approach any limit. We will soon
have to answer to this paradox.”

In the following section (§121), Euler displayed the series

log =% -+ +=—+=+--

1+ 2(3: x5 2 )
1—=x 1 3 5 7
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and used this to get

k2(9+ ik + > + i + )

S S\11 0 3-113  5-115 © 7-117

“and the terms of this series decrease in a reasonable way so that soon a satisfactory approxi-
mation for k£ can be obtained.

§123.  Natural logarithms have the property that the logarithm of 1 + w is equal to w, where
w is an infinitely small quantity. From this it follows that £ = 1 and the natural logarithm of all
numbers can be found. Let e stand for the number found above. Then

2 3 4

S A
a 1 12 1-2:3 1-2-3-4 ’

and the natural logarithms themselves can be found these series, where

22 23 ot 2d S

log(1 —p_ 2 T
og(l+z)==x 2+3 4+5 6+

and
10g1+x :2_x+2x3+E+2x7+2_x9
11—z 1 3 5 7 9
This last series is strongly convergent if we substitute an extremely small fraction for x.
§123 (continued) Euler applied this last series to find

log§ = 2 + 2 + 2 + 2 + e
2 1-5 3-5% 5.5 7.57
logé = 2 + 2 + 2 + 2 + -
3 1.7 3.7 5.7 777
log — = 2 + 2 + 2 + 2 + e
4 1-9 3-9% 5.9  7.97

Then he made use of these to find the logarithms of integers from 1 to 10:

log2 = 0.69314 71805 59945 30941 72321
log3 = 1.09861 22886 68109 69139 52452

logd = 1.38629 43611 19890 61883 44642
log5 = 1.60943 79124 34100 37460 07593
log6 = 1.79175 94692 28055 00081 24773
log7 = 1.94591 01490 55313 30510 54639

log8 = 2.07944 15416 79835 92825 16964
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log9 = 2.19722 45773 36219 38279 04905
log 10 2.30258 50929 94045 68401 79914

Euler commented that “[a]ll of these logarithms are computed from the above three series,
with the exception of log 7, which can be found as follows.”

When in the last series we let z = % we obtain

100 50
log 08 = log - 0.02020 27073 17519 44840 78230.

When this is subtracted from
log 50 = 2log 5 + log 2 = 3.91202 30054 28146 05861 87508

we obtain log 49. But log 7 = 3 log 49.
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IVA. Trigonometric functions
Chapter VIII of Introductio, I: On transcendental quantities which arise from the circle

§126. After having considered logarithms and exponentials, we must now turn to circular
arcs with their sines and cosines. This is not only because these are further genera of tran-
scendental quantities, but also since they arise from logarithms and exponentials when complex
values are used.

Then Euler gives the value of 7 to 127 places after the decimal point:

m = 3.14159 26535 89793 23846 26433 83279 50288 41971 69399 37510
58209 74944 59230 78164 06286 20899 86280 34825 34211 70679
82148 08651 32723 06647 09384 46---

Note that the 113th digit after the decimal point should be 8 instead of 7. Here, as in Paper 74,
Euler cited the same value, adopted from Lagny (1660 — 1734).
Footnote 2 of paper 74.

Figuram centesimam decimam tertiam, qualem Eulerus auctores Th. F. de Lagny
tradiderat, falsam esse, quippe quae 8, non 7, esse debeat, adnotavit G. de Vega
(1756 — 1802) in libro, qui inscribitur Thesarus logarithmorum completus, Lipsiae
1794, p.633.

§130. Recall addition formulas

sin(y +z) = sinycosz + cosysin z,
cos(y £ z) = cosycosz Fsinysin z.
Convert products into sums:
. L. .
sinycosz = §[sm(y + 2) + sin(y — 2)]
. 1. . .
cosysinz = E[sm(y + 2) — sin(y — 2)]
1
cosycosz = §[cos(y + 2) + cos(y — 2)]
sinysinz = %[cos(y + z) — cos(y — 2)].

Also establish the half angle formulas:
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§131. Conversion of sums into products:

sina +sinb =
sing —sinb =
cosa+cosb =

cosa —cosb =

a+b a—>
cos

2sin

2sin cos

a+b a—>b

2 cos

—2sin sin

2

a+b . a—2>b

29

§132. Since sin?z + cos? z = 1, we have the factors (cos z + isin z)(cos z — isinz) = 1.
Although these factors are complex, still they are quite useful in combining and multiplying

arcs.

Then Euler established the formula

(cosz tisinzx)(cosy £ isiny)(cos z £ isinz) = cos(z +y + z) L isin(x + y + 2).

" and deduce (§133) de Moivre’s theorem

(cosz +isinz)" = cosnz £ isinnz.

§133 (continued) It follows that

cosnz =

sinnz = —=[(cosz+isinz)" — (cosz —isinz)"].

N~ N~

[(cos z +isinz)" + (cos z — isin z)"],

Expanding the binomials we obtain the following series

n(n—1)

_ n__
cosnz = (cosz) 15

nn—1)(n—2)(n —3)(n —4)(n —5)

(cos )" %(sin 2)% +

n(n—1)(n —2)(n — 3)

1-2-3-4-5-6

and

"[sic] The correct formula should read

(cosx +isinx)(cosy +isiny)(cosz +isinz) = cos(zx £y £ 2) +isin(z +y =+ 2).

1-2.3-4

(cos 2)" O(sin2)® 4 - -

(cos 2)" 4 (sin 2)*
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sinnz = ?(cos 2)" lsinz — nin 112)(2_ 2) (cos z)"3(sin z)?
nin—1)(n—2)(n—3)(n —4) N5/ .
+ 1 9.3 4.5 (cos 2)"O(sinz)® — - --

§134. Let the arc z be infinitely small, then sinz = z and cosz = 1. If n is an infinitely large
number, so that nz is a finite number, say nz = v, then, since sin z = z = £, we have

n

_ 02t oS
cosv = l—pdp—o
. B v T
sinv = v ot s

It follows that if v is a given arc, by means of these series, the sine and cosine can be found.

§135. Once sines and cosines have been computed, tangents and cotangents can be found in the or-
dinary way. However,, since the multiplication and division of such gigantic numbers is so inconvenient,
a different method of expressing these functions is desirable.

§138. Once again we use the formulas in §133, where we let =z be an infinitely small arc and let n be
an infinitely large number j, so that jz has a finite value v. Now we have nz = v and z = g so that
sinz = ? and cos z = 1. With these substitutions,

(L+5)Y+(1-%2)
2

COSV =

and o o
(+2y-0-%y
2i
In the preceding chapter we saw that (1 + ?)j = e where e is the base of the natural logarithm. When
we let z = iv and then z = —¢v we obtain

sinv =

eiv + efiv e~V — efiv
cosy =— and sinv=—"7-—
2 21
From these equations we understand how complex exponentials can be expressed by real sines and
cosines, since

e =cosv+isinv and e " =cosv —isinw.
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IVB. Logarithms of complex numbers
Dunham, pp.98 — 102 on the controversy of Johann Bernoulli and Leibniz on the logarithms of negative
numbers.

Paper 170  Recherches sur les racines ... (1749)8

Probleme 1.  §79. Un quantité imaginaire &tant élevée a une puissance dont I’exposant est une quantié
réelle quelconque, déterminer la forme imaginaire qui en résult.
Solution: Soit a + bi la quantité imaginaire, et m I’exposant réel de la puissance, de sorte qu’il s’agit de
déterminer M et N pour qu’il soit

(a+bi)™ = M + Ni.
Posons

Vaz+b2=c

et ¢ sera toujours une quantité réelle et positive, car nous ne regardons pas ici I’ambiguité du signe\/.
Ensuite cherchons I’angle ¢ tel que son sinus soit = IE’ et le cosinus = ¢, ayant ici égard a la nature des
quantités a et b, si elles sont affirmatives ou négatives; et il est certain, qu’on pourra toujours asigner et
angle ¢, quelles que soient les quantités a, b, pourvu qu’elles soient r’eelles, comme nous le supposons.
Or ayant trouvé cet angle ¢, qui sera toujours réel, on aura en méme tems tous les autres anagles dont le
sinus IE’ et le cosinus ¢ sont les mémes; car posant 7 I’angle de 18(°, tous ces angles seront

w, 2m+o, 4dr+¢@, 6b6m+¢, 8T+ o,...
auxquels on peut ajouter ceux-cy
=24+, —Arn4+p, —bm4+¢p, 8T+ p,....

Cela posé il sera
a+ bi = c¢(cos ¢ + isin ),

et la puissance proposée
(a+bi))™ =c"(cosp+isinp)™,

ol ¢™ aura toujours une valeur réelle positive, qu’il faut lui donner préféfablement a toutes les autres
valeurs, qu’il pourroit avoir. Ensuite il est démontré que

(cos ¢ + isin )™ = cos mep + i sin mep;

ou it faut remarquer, que puisque m est une quantité r’eelle, I’angle my sera assi rée;, et partant aussi
son sinus et son cosinus. Donc nous aurons

(a+ bi)™ = ™ (cos mp + isinmep),

8See also Paper 168: De la Controverse Entre Mrs. Leibniz et Bernoulli sur les Logarithmes des Nombres Negatifs et
Imaginaires (1749) and Paper 807: Sur les logarithmes des nombres negatifs et imaginaires (1749)
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ou bien la puissance (a + bi)™ est contenue dan la forme M + N4, en prenant
M =c"cosmy et N =c"sinmyp,
ouilya

b
c=Va2+b et coscp:% et sincp:E.

Probleme 2.  §87. Une quantité réelle positive étant élevée a une puissance dont I’exposant est une
quantité imaginaire, trouver la valeur imaginaire de cette puissance.

Solution. Soit la quantité réelle positive et m + ni I’exposant de la puissance, de sorte qu’il faut chercher
la valeur imaginaire de ™. Soit donc a™*™ = x + yi, et il sera

(m + ni)log a = log(x + yi),

dont prenant les différentiels en posant a, x et y variable, nous aurons

mda . nda . dr+idy axdr+ydy xdy—ydx.
1= = i.
a a T +yi z? +y? z? + y?

Egalant donc séparément ensemble les membres réels et imaginaires, nous aurons ces deux équations

mda  xdr + ydy ; nda  xdy — ydx

a x2 + 2 a x2 + 92

i

dont les intégrales prises, comme il faut, seront

Va2 +y2=am, et arctang:nloga oug:tannloga,
x x

ou la maque le logarithme hyperbolique de la quantit’e réelle positive a, lequel aura par conséquent
aussi une valeur réelle. Prenant donc dans un cercle dont le rayon = 1, un arc = nloga, a cause de

V2 + y? = a™, nous obtiendrons

x=a"cosnloga et y=a"sinnloga,

et ces valeurs étant posées pour x et y, on aura

m—+ni

a =z + yi.

Probleme 3.  §93. Une quantité imaginaire étant élevée a une puissance dont I’exposant est aussi
imaginaire, trouver la valeur imaginaire de cette puissance.
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Solution: To express (a + bi)™ ™™ in the form x + yi for real x and y, write a + bi = c(cos ¢ + isin ).
Then,

x = "e " cos(my +nloge),
y = c"e "Psin(mp 4+ nlogc).

Probleme 4.  §100. Une nombre imaginaire quelconque étant proposé, trouver son logarithme hyper-

bolique.
Solution:
log(a+bi) = log+va?+ b?+ iarccos L, ou
a2b+ b2
log(a+bi) = logva?+ b?+iarcsin ——.
g(a + bi) Y N

- - ' - . s y ’ A~ - b -
§101. (Corollaire 1) Puisqu’il y a une infinité d’angles auxquels répond de méme sinus ——— et cosinus

ﬁ, chaque nombre, tant réel qu’imaginaire, a une infinité des logarithmes, dont tous sont imagi-
naires a I’exception d’un seul, lorsque b = 0 et a un nombre positif.

§102. (Corollaire 2) Si nous posons va? + b? = ¢, et I’angle trouvé = ¢, a cause de a = ccos p et
b = csin g, il seralog c(cos ¢ + isin ) = log ¢ + ip; ou au lieu de ¢ il est permis de mettre

£27 + ¢, 4w + ¢, £67 + ¢, etc.
le charactére = marquant la somme de deux angles droits. On aura donc
log(cos ¢ + isiny) = pi.
Probleme 5.  §103. Un logarithme imaginaire étant donné, trouver le nombre qui lui convient.
Solution: If log(z + yi) = a + bi, then

x = e*cosb y = e*sinb.

Probleme 6.  §106. Un angle ou arc de cercle imaginaire quelconque étant proposé, trouver son sinus
et cosinus et tangente.
Solution:
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sin bi bi 4+ b n boi N eb —e7b
inbi = bi .
1-2-3 1-2-3-4-5 2
From these,
1 .
sin(a + bi) = 5( bt e bysina + %(eb —e Y cosa,
g :
cos(a +bi) = 5( btebycosa— %(eb — e Ysina.

Probleme 7. §112. Le sinus d’un angle étant réel, mais plus grand que le sinus total, de sorte que
I’angle soit imaginaire, trouver la valeur de cet angle.

Probleme 8.  §113 Le cosinus d’un angle étant réel, mais plus grand que le sinus total = 1, trouver la
valeur de cet angle.

Probleme 9.  §114[a] Le sinus d’un angle étant imaginaire, trouver la valeur de I’angle ou I’arc
imaginaire qui lui répond.
sin(a + bi) = p + qi.

Probleme 10.  §116. Le cosinus d’un angle étant imaginaire, trouver la valeur de I’angle ou I’arc
imaginaire qui lui répond.

cos(a + bi) = p + qi.
Probleme 11 §119. Une tangente imaginaire étant donnée, trouver la valeur imaginaire de I’angle ou

de I’arc qui lui répond.
Solution. If tan(a + bi) = p + qi, then

9 2p
sin2a = ,
VAap? + (1 —p* — ¢%)?
1— 2 2
cos2a = 5 P 2q 5>
Vap?+ (1 —p? — ¢?)
- 1 P>+ (1 +q)?

—lo .
2 VAP T (2 PP
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VA. Euler’s works on infinite series  Volumes 1.14, 15, 16 (2 parts) of Series prima, Opera Omnia.

e Euler’s summation formula, the series n% and the Bernoulli numbers, (14 papers).

On trigonometric functions and trigonometric series (13 papers).

Infinite products and continued fractions, (11 papers)

On the calculation of «, (7 papers).
e The binomial series and the binomial coefficients, (9 papers)

Interpolation, the Gamma function, and the Euler constant, (10 papers).

various functions and series, (17 papers).

Paper 25. Methodus Generalis Summandi Progressiones (1732/3) 1738
84 begins with a review on the summation of a geometric progression

x
1—ab

a xa-‘,—nb
z% 4+ 2otb + 2ot+20 4ot anr(nfl)b _

[Just write s for the sum.
s — g% — gotb + 20120 4t ‘,L,a-l—(n—l)b.

Adding z*t"* and dividing by z?, we get s again. From this, s can be found.]
65 considers summation of a more general series

2% 4 22010 4 302 L 4 ot (Db,

Write s for the sum.
(1) Write down s — z°.
(2) Add the “next” term (n + 1)2%*" to it and divide by z°.
(3) Compare the result with s and obtain
s — 2%+ (n 4 1)zotnd x¢ — gotnb

S =
(L'b 1—$b

Solving for s:
T — anrnb nanrnb
(1—2%2  1—ab

§7 sums a special case by a different method:

S =

s =z +2x% 4 323 +dat + -+ na®
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Divide by = and then integrate:

/idf’: = /(1+2x+3x2—|—4x3—|—---+nx"’1)d:r
T

= z+2°+- +a"

T — xn—f—l

1—=x

Differentiating,

s d(x—2""\  (1—(n+1)2")(1—-z)—(z—a")
- _< > B 1 —a)? '
From this,
z— (n+ 1)z 4 nant?

(1—x)?
§19. Euler considered the more general series [hypergeometric series]

S =

a—l—bgc+ (a+b)(a + 2b) 2y (a+b)(a+2b)---(a+ (n—1)b)

at 8"t B)at 2 (atB)at2d)(atm_no"

and obtained the sum as

§20 considers a particular example in detail:

L 3 5
8.—$+5$ +§x e o T,

Multiply by px? and integrate:

p 2 3p 3 (2n—1)p n+1
Ugdy = —— 971 _TF put P Sl e ST b O
p/xsx (q+2):): —I—(q+3)2!x + +(q—|—n—|—1)n!x

Now choose p and ¢ so that
2k—1)p=q+k+1
foreach k = 1,...,n. This requires p = 3 and ¢ = —3. From this we obtain

1 3 5
1

_3 x2 A
E/x 2sdr = —+ -+ o+ + .

36
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Multiply by 22
1%/ 7%d_x+x2+x3+ +x”
2$ X Sar = 3| n' .
Calculation of this sum y.
dy T 2 xn—l
e pu— 1 _
dz +1+2'+ +(n—1)!

n

.

2 4"t
(1—2:):)/:5 2sd:):—4:):§——f— °
T3 n!

For large n, one obtains the infinite sum
2n —1

n

3 5
si=x+ —2®+ a4

TR TR
as a solution of the linear differential equation
/ -3 d 4x — 2s
X SaAr = V¥/——————.
(1—2z)\/x
Differentiate and obtain
ds (14 2x) 1+ 2z
— 4+ s = .
dx 1—2zx 1—2x
Multiply by ﬁe‘x and integrate [integrating factor] to obtain
s=1—(1—-2z)e"
In particular, putting = = 3,
TR IS, SRR Sk
2 21.4 3.8 n!.2n

At the end of this paper, Euler mentioned the following two series:

IS SR
377 15 201

finite

and
1+1+1+1+1+1+
3 7 8 15 26

whose general term is the reciprocal of a® — 1, a, o greater than 1. The sum of the series is 1, demon-
strated by Goldbach. This series is the subject of paper 72.
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VB. An Example from Euler’s earliest paper on infinite series
VB. Paper 20: De summatione innumerabilium progressionum (1730/31) 1738.

Euler evaluates, for an arbitrary

«, the integral

/—y“’Q log(1 — y)dy

in two ways.
(1) Using the series expansion for log(1 — y), he obtains the integral as
« a+1 a+2
v v
a  2a+1)  3(a+2)
(2) On the other hand, writing y = 1 — z, and using
Zn-‘,—l Zn—f—l
n] =C — 1
/z ogz=0C (n+1)2+n+1ogz,

the integral can be written as a “trium sequentium serierum”:

_a—2+(a—2)(a—3)_

(a=2)(a—3)(a—4)

1
1-4 21-9 3!-16
a=2, (a=2)(a=3) 5 (a—2)(a=3)(a—4) 4
ST 29~ 3116 ‘
— —2)(a—3 —2)(a—3)(a—4
+zlogz—a zﬁogz—szﬁogz—(a e e )z4logz+---
2! 3! 4!
In §22, Euler puts o = 1, and obtains, for the trium sequentium serierum,
IR
4 9 16
1 2 1 2 1 2
—Z—ZZ —§z _EZ -
1 2 1 3 1 4
+zlogz+§z logz+§z logz+Zz logz+---
_ Lo, 13, 14
ST T Tt T
Note that . 1
z+§z2+§zg+~':—log(l—z):—logy.
He was indeed aiming at:
1 1 1 1 y+z P +22 P2 oyt
14— -4 — 4 — 4= s 4 logyl
+4+9+16+25+ 1 + 1 + 9 + 16 + + log y log 2z

38
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where y + z = 1. In particular, if y = 2 = 3,

iyl 1 iy + (log 2)
— — JR— J— e e — — R - e (o) .
179716 2 8 36 ' 128 &
Euler was trying to evaluate the sum
I
4 9 16
He did some numerical calculations, making use of
log2=—— 4+ ¢t L o
®fT 12724738 416
with
(log 2)? ~ 0.480453,
and
1+1+1+1+ ~ 1.164481
8 ' 36 128 o '
From this, he obtained .
1 1
14-4+-4+—+4 -+~ 1.644934.
+ 1 + 9 + 16 + 64493

Si quis autem huis seriei summam addendis aliquot terminis initialibus determinare voluert,
plus quam mille terminos addere deberet, quo nostrum inventum numerum reperieret.

VC. Euler’s Paper 72: Variae Observationes Circa Series Infinitas (1737) 1744.

Theorem 1.
The sum of the series 2

T A
37 8 15 24 26 31 35

where the denominators are numbers of the form m* — 1, m, n both greater than 1, is unity.

Proof. Write
—1+1+1+1+1+1+1+1+1+
T3 T T T T T T ‘

[But this is a divergent series!]

From
1—1+1+1+1+1+
2 4 8 16 32

®Communicated by Goldbach.
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we have
L NUE - SIS IS S
T T3 E T T T T T 10

Here the denominators of the fractions on the right sides exclude powers of 2. From

171+1+1+1+ 1+
2 3 9 27 81 243

we have
ity r o1
o 2 T 71010

Now, the powers of 3 are excluded from the denominators on the right hand side. From

L S U U
4 5 25 125
we have
T S S
v 2 4 6 7 1
Proceeding, we have
b1 11 .
v 15 -

or

Comparing with
—1+1+1+1+1+1+1+1+1+
T T3 T T T T T T
we have
1—1+1+1+1+1—%1+
3 7 8 15 24 26

Theorem 2
LTRSS S I R o
377715731 35 " 63 Ch

Here, the denominators are m™ — 1 for m even.
1 1 1 1 1 B

b4t =1—log2.
172w T TR o8

Theorem 3.
1 1 1 1 1 1 1 1 1 1

1
S 24738 18 %0 120 124 168 224 244 288
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Theorem 4.
T 3 1 1 N 1 N 1 N
4 4 28 124 244 344
Corollary 5.
73+1 1+1+1+1+1 1+1
T 7 31 61 86 333 547 549 781 844
Theorem 5. ) ) ) ) ) )
T
Z log?2 =(— 4+ — 4 S
g o= (5t 0)t gttt t
where

27 = 33, 243 = 37, 343 = 73,

are odd powers of an odd number of the form 4k — 1.

Now, Euler made use of the sensational formula he found earlier in Paper 41 De Summis Serierum
Reciprocarum (1734):

QNI SV N S
49 16 25 6
to obtain
Theorem 6.
LESE SIS SN SIS SO | L
15 63 80 255 624 4 6
Theorem 7.
2.3.5-7-11-13-17-19--- 71+1+1+1+1+
1-2-4-6-8-10-12-16-18--- 2 3 4 5
P 1 1 1 1
— =l
11 o ttzt st

p prime

In a somewhat more familiar form, this reads

. 1 . .
H p prime = harmonic series
11

Theorem 8.
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Corollaries
™ 2-2-3-3-5-5-7-7-11-11
6 1-3-2-4-4-6-6-8-10-12

Theorem 9.
5-13-25-61-85-145--- 3
4-12-24-60-84-144--- 2°

Theorema 19. Summa seriei reciprocae numerorum primorum

ORI I I
23 5 7 7 11" 13

ist infinite magna, infinites tamen minor quam summa seriei harmonicae

(UL P U
2345

Atque illius summa est huis summae quasi logarithmus.
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VIA. Euler’s first calculation of

1 1 1

Euler’s papers on these series:

e \olume 14: 41(1734/5), 61(1743), 63(1743), 130(1740).
e \olume 15: 393(1769), 597(1785).

e \Volume 16 (part 1): 664(1790),

e \olume 16 (part 2): 736(1809), 746(1812).

Paper 41: De Summis Serierum Reciprocarum (1734)

In this paper, Euler used p to denote 7, and ¢ for 2. 10 11
§83,4 begin with the series for sine and cosine.

. 83 85 87
Yy = S— 37 + 5o +ey
. 1 82 84 86
ST TR T
§5. If, for a fixed y, the roots of the equation
3 5
S S S
0O=1—-——-—+— — —
Y + 3ly  Bly +
are A, B, C, D, I etc., then the “infinite polynomial” factors into the product of
-2 1-2 1212

A B C DT

OFirst occurrence of the sign 7. According to Cajori, History of Mathematical Notations, Art. 396, “[t]he modern notation
for 3.14159 - - - was introduced in 1706. It was in that year that William Jones made himself noted, without being aware that
he was doing anything noteworthy, through his designation of the ratio of the length of the circle to its diameter by the letter .
He took this step with ostentation”.

YEuler’s use of 7. Ibid., Art. 397: In 1734 Euler employed p instead of 7 and g instead of 7. In a letter of April 16, 1738,
from Stirling to Euler, as well as in Euler’s reply, the letter p is used. But in 1736 he designated the ratio by the sign 1 : =
and thus either consciously adopted the notation of Jones or independently fell upon it. ... But the letter is not restricted to this
use in his mechanica, and the definition of 7 is repeated when it is taken for 3.14159.... He represented 3.1415...again by 7
in 1737 (in a paper printed in 1744), in 1743, in 1746, and in 1748. Euler and Goldbach used = = 3.1415. .. repeatedly in
their correspondence in 1739. Johann Bernoulli used in 1739, in his correspondence with Euler, the letter ¢, (circumferentia),
but in a letter of 1740 he began to use 7. Likewise, Nikolaus Bernoulli employed 7 in his letters to euler of 1742. Particularly
favorable for wider adoption was the appearance of 7 for 3.1415 ... in Euler’s Introductio in analysin infinitorum (1748). In
most of his later publications, Euler clung to = as his designation of 3.1415....
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By comparing coefficients,

y ATBYEeTD
§7. If A is an acute angle (smallest arc) with sin A = y, then all the angles with sine equal to y are

A +m— A 2+ A, £3n— A, 4w+ A, ...

The sums of these reciprocals is é Sum of these reciprocals taking two at a time is 0, taking three at a
time is 3. etc.
y i
68. In general, if

a+b+c+d+e+f+--- = a
ab+ac+bc+--- = [,
abc+abd +bed + -+ = 7,
then
A+ =025
G+ 4+ 4 =0’ 308+ 3,
and
b+ttt = ot — 4028 + day + 287 — 46.

Euler denotes by @ the sum of the squares, R the sum of cubes, S the sum of fourth powers etc. and
wrote

P = q,
Q - POé—2/6,
R = Qa-— PS+ 3y,
S = Ra-—Qp+ Py—46,
T = Sa— RB+ Qvy— Pd+ be,
Now he applies these to
1 -1
a y? /B b 3!y7 b E 5'y7
and obtains 1 1 R P
P:_a Q:_Qv RZQ ) = T
Yy (0 y 2y y 3y
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and
T = §_Q+L’
y 3y 4dly
T R P
vV = — -4
y 3!y+5!y’
Vv S 1
Wo— -t

§10. Now Euler takes y = 1. All the angles with sines equal to 1 are

T 7T =3 37 b7 bw —T7m —Tm 97 97
2’227 92792792 27 927 92797

From these,

4 11 1 1 1
;<1——+———+———+---):1.

This gives Leibniz’s famous series

§11. Noting that P = o« = 1, 8 = 0, so that Q = P = 1, Euler proceeded to obtain

1+1+1 1 s
32 e -8

From this, he deduced that

1+1+1+1+1+1+1+ ™
32 62 72 ~ 6
Continuing with
1 1 5 2 6 17
e —_— = T:— = — = — X:— PO
R 2’S 3’ 24’V 15’W 720’ 315’
Euler obtained
1 1 1 1 73
]. + —a - o0
3 5 793 32
14 + e ! + o1 ! i _
34 tm 96’
1+1+1+1+1+ -
24 34 g4 T 54 90’
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oty 11 5m
B H o 1536’
1+i+i+i+i+... — 7T_6
36 756 76 gp 960
1+i+i+i+i+... — 7T_6
26 " 36 T 46 " 5P 945’
oLty 1 Gl
37 5 7o 184320
1_|_1_|_1 1_|_1_|_... — Lﬂg
BB 161280
1+1+1+1+i+m::1:
38 58 9450

Then Euler remarked that the general values of

1 1 1
I TR i
can be determined from the sequence
11 11 5 2 61 17
72737247 157 7207 315

In the remaining articles, §16 — 18, Euler gave an alternative method of determining these sums. This
time, he considered y = 0 and made use of

SN
are
+m, +27w, +3m,
% that 82 84 86 82 82 82 82
T T (1_n2>0"_55>(1 mr)( mW>
§17. With
R R
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and
p=t oy Ly Ly 1y
w2 4x?2 0 972 1672 ’

@ the sum of the squares of these terms, R the sum of the cubes, etc., Euler now obtained

1 1

Po= “TE T

Q = Pa—QQ—%

R = Qa—Pﬂ—l—S’y:%,

S = Ra—-QB+ Py— 46—9450

T = Sa—Rﬁ+Q’y—P5+5e:m,

V = Ta—Sﬂ—FR’y—Qé—FPe—GC:&.
6825 - 93555

In §18, he summarized the formulas which made him famous throughout Europe (for the first time):

1 1 1 1 2
1+22+3 +42+§+--- = 5
1 1 1 1 4
Ittt g gt = —
24 1 34 0 44 pd 90’
11 1 1 o x®
1+—+@+—+@+--- = o
11,1 1 o
1+—+3—8+E+§+"' = m,
1 1 1 1 10
1_|___|___|___|___|_... — 7r—
210 7 310 © 410 © 510 93555’
1 1 1 1 691712
1+2ﬁ+@+4ﬁ+ + - ==

512 6825 - 93555
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VIB. Chapter X of Introductio ad Analysin Infinitorum, |
§165. Euler started with

1+ Az 4+ B2+ CA+ DA+ = (1 +az)(1+ B2)(1 +72)(1 +62) -
and write

= at+f+y+dt+e+ -,

= P+ ++ 8+l A+,
e oo G S S S S
= o'+ +y o e
= "+ +++E+ -,
= "4+ 470+ + O+

SHud
I

He stated the relations

= A,
AP — 2B,

AQ — BP +3C,

AR — BQ + CP — 4D,

— AS—BR+CQ— DP +5E,

= AT — BS+CR-DQ + EP — 6F.

SHuwxO Y
I

The truth of these formulas is intuitively clear, but a rigorous proof will be given in the
differential calculus.

§167. Then he applied to

e — e~ % .’E2 .’E4 .CC6
x? x? x? x? x?
— e+ S 1+ 1 V(1 ) (1 ) -
x< +7r2)< +47r2>< +97r2)< +167r2)< +257r?)
22 at 1S x2 x2 x2 x2 x2
AT TR [ R I (TG | (R I (I (6 A D
+ 3! + 5! + 7! + ( +7T2)( +47T2>( +97T2)( + 1671'2)( +257T2)

Write 22 = 72z,

7'('2 7'('4 7T6 z z z z
1+ =24 —22+=22+...=(1 I+3)(1+3)(1+=)(1+=2) -
TR T (—I—z)(+4>(—|—9)(+16)(+25>
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From these

1 1 1 1 201,

11 1 1 22 1

1+ +34+ +54+ — 5.5.7{-,

1 1 1 1 o2t 1

ettty = 73 ™

1+1+1+1+1+ 23

P —_— _'_'7T

38 48 58 9 5 7

1 1 1 22 5
1"'@"‘@"’410"'510"' - 13"t
L 1 1 1 20691,
TmtmtmE T T o3 T

Not only these, he continued up to the 26th powers. Writing for k = 1,2,...,13,

1 1 1 1 22%k=2 x

1+2ﬂ+

EE e A 6T s TR

We could continue with more of these, but we have gone far enough to see a sequence which
at first seems quite irregular,

1 1
17 9 o
373
but it is of extraordinary usefulness in several places.

The remaining numbers are

3617 43867 122277 854513 1181820455 76977927
157 217 55 7 3 7 273 ’ 1 '

VIC. Euler’s “forgotten” Paper 63: Demonstration de la somme de cette suite

RSO SR
— 4+ —=+ — +etc
479716 25 " 36

Euler begins by integrating the series

1 1+1 N -34+1-3-56+135-7
y— X X X
V1—22 2 2.4 2:4-6 2.4-6-8
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to obtain
N 1 B4 1-3 . 1-3-5 o7 1-3-5-7 9
S =X —_—
2.3 2.4.5 2:4-6-7 2:4-6-8-9

The function s is, of course, arcsin . But Euler continues to write s and considers

0+

xdx n 1 x3dx n 1-3 xodr . 1-3-5 x7dx . 1-3-5-7 2dx .
MA—_22 2-3V1—22 2451 —22 2:4-6-T+1—22 2-4-6-8-9 /1_ 22

An easy integration by parts gives

sds =

2" 2dr n41 x"dx [k =2
- — — z2.
Vi—z2 n+4+2J) VJ1—22 n+2

Consequently,
| Y Lant2de n+1 1 2"dz

0 \/1—:):2:n+2 0 V1—22

Since s .
/om‘[l‘”“ﬂo‘l’
we have
L 23dx 2
i
L 25de 24
o Vi—z2 3.5
VogTde 2-4.6
/0 1—22 357
Uog%e 2-4-6-8
/0\/1—352 - 3.5-7-9
Therefore,
s=1 2
/ sds = —
s=0
is equal to
1+L'g+ 1-3 2-4+ 1-3-5 '2-4-6 1-3:-5-7 2-4-6-8+
2-3 3 2-4-5 35 2-4-6-7 3-5-7 2-4-6-8-9 3-5-7-9
1 1 1 1
= ltgtgtatgt
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From this, it is easy to obtain

1 1 1 1

s
1+?+§+E+§+‘“:

2
F .
Euler next proceeds to sum the series

1 1 1 1

Ittt tgt

by considering the series expansion Of%(arcsin x)2. This he writes as y = %52, and assumes

y=ax? + Bzt + ya2b 4628 + -

By differentiation, % = s42. This gives
y/ — S - S/ — L
V1—=22
I\ /1 — 2
no S 1 e+ \/13187 _ 1 +xy/
4 1 — 22 1 =22

Therefore,
(1—aby —ay —1=0.

By differentiating the series, we obtain

y = 2ax+462° + 6vy2° + 86z + - -
y' = 2a+3-482° 4+ 5 -6yt +7-8625 + - --

2y’ = 20a® +3-4B2" +5- 672 +7-852% + .-

From these,
1 = 2a + 3-4p22 + 5-6yz* + 7-852% +
— 202 — 3-4pz% — 5-6928 —
— 2az® — 4pz*  — 6yx® —
Therefore,
1
oa = -
27
2.2 2.2
b= 3% 330
—44w—2244
T T 56" 23456
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Simplifying these fractions, Euler obtains

1, 1
= -85 = —XI
Y7395 73

Therefore,

can also be obtained as

1 1 22dx xdx 2.4 1 (v 284z 2
5, vt Ve A i) v
2-4-6-8 210z
3.5-7-9 o2
Now,
L dx o
fi= -3
L 22dx 1yt de 1w
/0 1—22 5/0 VIi-z2 2 2
L ptdx 3t x?dx 13 7
/om - 1/0 Vi—z? 24 2
Uoabde 5 ! ztdx 135«
/0 Vi—a? 6/0 Vi—a2 2:4:6 2
It follows that
L r, 1t s, 1 7, 17
48 2 4.4 2 6-6 2 8-8 2

™~

66  2.2.4.4.6-6
7.8 T 2.3.4.5.6-7-8

8.8, 2:2.4:4:6:6-8-8
9-10°72.3.4.56-7-8-9-10’
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From this, we conclude, once again,

L LS S
S TEtEtET
Ces deux méthodes, toutes faciles qu’elles mériteroient une plus grande attention, si elles se pou-
voient employer égalment pour trouver les sommes des plus hautes puissances paires, qui sont toutes
comprises dans mon autre méthode générale tirée de la considération des racines dine équation infinie.
Mais malgré toute la peine que je me suis donnée pour trouver seulement la somme des bigarrés

11 1 1 1
tatatata

14 T4 T3ty T

je n’ai pas encore pu réussir dans cette recherche, quoique la somme par I’autre méthodes me soit
4
connue; laquelle est = g—o.

R B S 21,
fEtEtETRT T o3
T S S S 21y
tatmtatat = g
1 11 1 25 1
Ittt Tt = 5 ™
1 1 1 1 27 3
Ittt TsT " = g1 ™
11 11 2 5
1—1_210—1_310+410+510+“ - 11!-6-7r7
1o 1 1 1 o2t e,
TmtmtmE Tt T oo T
11 11 C 2% T69TTI2T o
1+ 596 T 326 T T 526 +oe = o7l 9 T
Thus,
Ly L 1 1 1 2
L T R oY DA

For 2k = 14,16, 18, 20, 22, 24, this factor ? is

35 3617 43867 1222277 854513 1181820455
27307 42 7 110 7 6 546 '
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VIIA. Jacob Bernoulli’s summation of the powers of natural numbers
Ars Conjectandi (1713)

[Bernoulli arranged the binomial coefficients in the table below and made use of them to sum the
powers of natural numbers.]

10 0 0 0O 0O
11 0 0 0 0O
12 1 0 0 00
13 3 1 0 00
14 6 4 1 00
1 5 10 10 5 1 O
1 6 15 20 15 6 1
1 7 21 3 35 21 7

Let the series of natural numbers 1, 2, 3, 4, 5, etc. up to n be given, and let it be required to find their
sum, the sum of the squares, cubes, etc. [Bernoulli then gave a simple derivation of the formula

Jreps
n=gn"+n,

for the sum of the first » natural numbers. He then continued]. A term in the third column is generally

taken to be
(n—1)(n—-2) n?-3n+2

1-2 B 2 ’
and the sum of all terms (that is, of all %) is

nin—1)(n—2) n®>—3n*+2n

1-2-3 B 6 ’
and
1 5, n3—=3n2+2n 3
g = [ g [
but [ 2n =3 [n=3n?+ 2nand [ 1= n. Substituting, we have
1, n3=3n2+2n 3n%2+3n 15 1,5, 1
En: 6 = n —nzan —i—Zn —I—En,

of which the double [ n? (the sum of the squares of all n) *?

1 1 1
=-n’+-n’+-n.

3 2 6
2More generally, k + K : ! + -+ Z = <Zii) This identity can be established by considering the
number of (k + 1)—element subsets of {1, 2,3, ...,n + 1}, noting that the greatest element m of each subset must be one of

k+1,k+2..., n + 1, and that there are exactly (m -

k 1) subsets with greatest element m.
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A term of the fourth column is generally

(n—1)(n—2)(n—3) n*—6n’+1ln—6

1-2-3 6 ’

and the sum of all terms is

n(n—1)(n—2)(n—3) n*—6n®+11n% —6n
1-2-3-4 B 24 ‘

/ +/_n_/1n4—6n2+11n2—6n
- 24 '

1 5 n*—6nd+11n?

- — 1.

6" 24 / /6”+/

And before it was found that ... When all substitutions are made, the following results:

it must certainly be that

Hence,

1 1 1
3 3, +. 2
/n —4n +2n +24n
Thus, we can step by step reach higher and higher powers and with slight effort form the following

table:

[nl= 1in?2  +in,

[n?= 1p3 +%n2 +in,

[n3 = gn‘l +1p3 —|—§n2

[nt= inb +in4 +1in3 —%n

[n® = %n‘S —%n‘r’ +?5—2n4 —4n?

R e e L S

=y g tpnocwn tpnt

T L L (S L
fnloi @nn —|—?n10 +%n9 —1—07n +§? %02 5
[nP= gnt 30’ 40’ - +n —5n°  +gen.

Whoever will examine the series as to their regularity may be able to continue the table. Taking ¢ to
be the power of any exponent, the sum of all »° or
1 1)(c—2)

1 c(c —
¢ _ c+1 cl
/n c—l—l —|-2n—|— .An W

cle=1(e=2c=3)(c—4), s
2-3-4-5-6

Bnc—?)

_|_
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clc—=1)(c—2)(c—3)(c—4)(c—5)(c—6)

Dnc 7 4 ...
2.3-4-5-6-7-8 n

_|_

the exponents of n continually decreasing by 2 until n or 17 is reached. The capital letters A, B, C, D
denote in order the coefficients of the last terms in the expressions for [ n2, [n?, [nS, [ n® etc., namely,

1 1 1 1
= — B = —— C = — D = ——.
A 6’ 30’ 42’ 30
The coefficients are such that each one completes the others in the same expression to unity. Thus, D

must have the value —55, because

Euler on the Bernoulli numbers
Paper 642: De Singulari Ratione Differentiandi et Integrandi quae in Summis Serierum Occurrit.
8l > " = 1" 4+ 2" 4 .- 4™,

Sa2l= o
Mult. %x;
Sat= 1127 +iz,
Mult. %x, %x;
ZZE2 = §$3 +%.’E2 —I—%ZE,
Mult. %x, %x, %x;
Sad= ot +12% +12? O
! ! 7 !
Mult. §x, 1T, 3T, 5T;
St = 5965 +%x4 +%x3 022 —%x
5 5 5 5 .
Mult. §x, 536, Zx, gx, Qx,
5_ 1,6 1.5 5,4 3 1.2
Sa® = gx 2_2x 2—1290 %)x 5r° 0z
Mult. ?x, 8T, 2T, 1%, 37, 55
6 _ 1.7 1.6 1.5 4 ~1.3 2 1
St = ;x —71—236 —71—21: (;a: 7636 (;x +5%
Mult. §x, =T, 5T, T, 7T, 3T, 3T;
Zx7: §x8 —|—%x7 +1—72x6 0x® —2—74x4 03 +%$2 Oz
8 8 g 8 8 g 8 g
Y.u° = gr’ +g2° +3x’ 02° —g2° 02" +grx° Or —g5w

Here, each rightmost coefficient is determined by the condition that the sum of the coefficients on
the same line should be equal to 1.



YIU: Elementary Mathematical Works of Euler 57

VIIB. Euler’s summation formula 13
Institutiones Calculi Differentialis, Part Il, Chapter V: Investigatio summae serierum ex termino
generali

Euler establishes his famous summation formula.
668105 — 106. Let y be a function of z. Then

)=y B Ly Ly 1y 1 by
U=y YT 0 T2 02 T 6 dad T 24 dat T 120 dad

Summation gives

dy 1 _d*y 1 _dy 1 dy 1 d®y
Sv=Sy—S§2 +-.29 - .g%J - g2d _~- gZI . ..
VY T T 2 T 6 P T2 Tt 120 Cdad

Since Sv = Sy — y + A for some constant A, this can be rewritten as

dy 1 _d’y 1 _d%y 1 d*y 1 d®y
A= g2 g gt - g2 - g2 T
y dr 2 Pdz? 76 ad 2 Cdet T 120 Cdwd

or
dy 1 d*y 1 _d 1 d*y 1 d®y
A DT Rl A St AR ~flit AN Sl TP
de VAT T8 Vs T Y@t 120 Van
Putting » = %, we have

1 dz 1 d?z 1 d3z 1 d*z
Se= [adz At g ST g ST g S St

In §§107 — 108, Euler illustrated with the example y = 2**!, leading to formulas for the sums of
powers of consecutive integers.

Sz" = %_Hx"“ + gS:):"*l — LZ '_31)5:):"2 + nin ;13(71_ 2)an,3 —
Specifically, since Sz° = =,
St = %:):2 + %Swo = %xQ + %:):;
Sz? = %x?’ + Sx — %Sxo = éxi)’ + %x2 + éx;
Szd = ile + ngQ — Sz + inO = %x‘l + %xg + ixQ;

133ee also G. Ferraro, Some aspects of Euler’s theory of series: inexplicable functions and the Euler - MacLaurin summation
formula, Hist. Math., 25 (1998) 290 — 317.
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1 4 4 1 1 1 1 1
Szt 5:1;’5 + 55903 - 55902 + Sz — ES:):O = 5:1;’5 + 5:):4 + §x3 ~ 35
§6110 — 111. Euler seeks to rewrite the formula
1 dz 1 _d*z 1 d3z 1 d*z
— A+ .§¥ _Z.gicy - g2~ gl
5z /Zd'z T3 5% 6 a2 T im0 Saa T
in the form of
dz d?z d3z d*z d®
SZ:/ZdZ—A'FC!Z—l-ﬂ%+’Y@+5w+5@+€ﬁ+
Applying the first formula in §109 repeatedly,
dz 1 d?z 1 d3z 1 d*z
f Sl S <A bt R _
dx x+2 dz2 6 dad® 24 dzt
Pro_ e LoPs 1o 1P
dz2  dx 2 Tdxd3 6 Tdxt 24 T dad
R R SOV R G S S
dz3  dx? 2 Tdz* 6 Tdx® 24 T dab
R N WO GO R
de*  dxd 2 Tdx® 6 T dab 24 T da”
§111. By comparison,
Jedz = Sz — §-SE + §5GF — 5 SEH t mSEE -
oz + aS¥ — g.gf: 4 a.gd:  agds
dx 2 dx? 6 dx3 24"~ dz?
% B-5% - 5-S@ + §5& -
i Lz -84z

58
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he obtains the following relations

1 1
a_§:07 [e’] — 57

@ 1 _ — a_ 1 _ 1
ﬁ_g"i_é—ola ﬂ - % 6_112’

@ _ — P _ & I Sp—
’Y_§+§_ﬂ—017 7= 3 3+24_01’ .
_ g _ a 1 - J2_ B o 1 1
0 62"’6 %4"'120—017 o = 2 6+2ﬁ4 120 =~ 720"
b,y _ B4 a 1 _ S _ 4B a 1 _
€ 2""% 24"‘1%0 720—071 € 56T 351 10 T =0
_€e,.0_ vy, B o 1 _

(—5+6— 21+ 10 720 1+ 510 =0

§113. From the recurrence relations defining «, 3, v, §, Euler observes that the series
14 au + Bu? + yud + du + eu® + Cub + - -

is actually the series of

v 1 U
11 1,3 1,34 1.4 . 1_e-u’
1 U+ gu 31U° + TogU 1—ce

VIIC. Euler’s summation formula (continued)
§114. Euler observes that the function V' is almost an even function. More precisely, V—%u contains

only even powers of w, since

and each of the numerator and the denominator clearly contains only even powers of .
This means that

and
1
V:1—|-§u+ﬁu2+5u4+Cu6+9u8+xu10+---

§116. Now, 1 + Bu? + du* + Cu® + 6u® + - - - is the quotient

4 u6 u8

68 T 21681012 T 326810021816 T
u? u U u8 :

I+ 16 T 16810 © 368101214 T 7681012141618 T

1+ 4+ 52

From these, he obtains
1 1
ST ey}
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5 _ 1 B 1
2.4-6-8 4-6 4-6-8-10
B 1 5 3 1
¢ = 54612 1.6 46810 1.6 .14
b _ 1 ¢ 5 B 1
2.4-6---16 4.6 4-6-8-10 4-6---14 4-6---18’

These give the coefficients in Euler’s summation formula

dz d3z ddz d’z

!

Sz:/zdz—A—i—

§117. To identify these with the Bernoulli numbers, Euler now changes the signs in this formula
alternately. In other words, he replaces the above formula by

1 dz d3z ddz dz
S:/d—A———é——— —_— —
& 2z +22 5d:):+ da3 Cdx5+ dx”
Now, these new coefficients are given by
1+ Bu® 4+ 6u® + (ul + 6u® + - -
2 4 6 8
1 - ﬁ + 2-411{6-8 - 2-4-6-%-10-12 + 2-4-6-8-116-12-14-16 -
- 1_u_2+ u - ub + u8 o
16 " 16810 468101214 " 4-6-8-10-12:14-16-18
Specifically,
1 1
b= 7 6 2-4°
I6] 1 1
6 = —
4-6 4-6-8-10+2-4-6-8’
0 15} 1 1
C J—

§118. Euler notes that the rational function in the preceding section is actually

oS 5 U U
= —cot —.
26in% 2 2

u
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§124. To identify the coefficients in the series expansion of § cot 5, Euler invokes a formula estab-
lished earlier (§43):

1 n 1 n 1 n 1 n 1 T ¢
o= — — —_cotmz.
1—22  4—22 9—22 16— 22 2

Resolving each of these into series,

1
— 2 = 1+22 424+ 254284
1 1 22 24 25 28
1-2 ~ EratmiEtam
1 1 22 2 45 28
92 _ miI T IETIm
1 1 22 2 45 28
622 2 @ prEptmt
§135. Writing
1L+ 5 + 3 + 3 + = a,
1 + % + 31 + = + = b,
1 + % + % + % + = ¢
1 + % + % + 3w + = d,
1 + 50 + 30 + g0 + = e
we have 1
a4+ b22 + ezt +d8 +ed + Zlo+“':——1COt7TZ,
2
2z 2z
which, upon putting z = 5=, becomes
b o C 4 d g € 8 f 10
a—+ 227T2u + 247T4u + 26776“’ + 28778“’ + 2107T10u +
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o2 272w U

= 2 w2 2%
2 2 4 6 8
= —F(ﬁu + 0u” + Cu’ + +0u® + - --)

= —21%(B+ 0u® + Cut + 0ub 4 ).
By comparison,
a=—21243, b= —2374, c=—2°75¢, d=—-2"7%, ...

Recalling the relation among 3, 6, ¢, 6, ...,and A, B,C, D, ..., we have

1 + 5 + & + 5 + - =a= -2 = Zin?

L+ 5+ &+ 4+ =0b = -2l = _Zfx

L+ % + 3 + % + - = ¢ = =219¢ = xS,

L+ 5 + 5 + 7 + = d = 2% = -—ZPx,
and more generally,

X 1 1 1 B 22k=1 .|k — th Bernoulli number| 2%k

Toor Tam T T T (2k)! T

VIIIA. The series expansions of cotangent, tangent, and secant

In Chapter 2 of Institutes, De investigatione serierum summabilium, Euler actually explains in
several ways the expansion of the cotangent function. In §42, Euler recalls from Chapter X of Introduc-
tio, | the expression
1—2% 4—22 9—22 16 — 22

sinTx = wx -

1 4 9 16
taking logarithms,
| silr17r:):71 1 1—x2+1 4—x2+1 9—x2+1 16—:);’2+
og _— ogx + log 1 og 1 og 9 og 6
and differentiating,
T COS XL l 2x 2z 2x 2x

sinmr oz 1—x2 4—22 9—22 16—22
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From this,

1 n 1 + 1 n 1 + 1 ™ ¢
o= — " cotmz.
1—22 4—22 9—22 16—22 22 2z

Institutiones Calculi Differentialis
Part 11, Chapter VIII: De usu calculi differentialis in formandis seriebus

§221. Ex his seriebus pro sinu et cosinu notissimis deducuntur series pro tangente, cotan-
gente, secante et cosecante cuiusvis angulis. Tangens enim prodit, si sinus per cosinum,
cotangens si cosinus pere sinum, secans, si radius 1 per cosinum, et cosecans, si radius per
sinum dividatur. Series autem ex his divisionibus ortae maxime videntur irregulares; verum
excepta serie secantem exhibente reliquae per numeros Bernoullianos supra definitos A, B, C,
D etc. ad facilem progressionis legem reduci possunt. Quoniam enim supra (§127) invenimus
esse

Auv? Bu* Cu®  Dud U 1
T‘l‘jﬁ-ﬁﬁ-?ﬁ-"':l—gco’ciu,

. . 1 _
erit posito U =T

2 Ax  2'Ba3 26Cx®  28Di7
x 21 4! 6! 8l ’

cotxr =

atque si ponatur %x pro z, erit

2Ax  2Bx3  2Cx®  2Da”
cot —xr = — — — — — —

2 x 2! 4! 6! 8!

§222. Hinc autem tangens cuiusvis arcus sequenti modo per seriem exprimetur. Cum sit*

2tan x
tan2x:72,
1 —tan“zx
erit
‘9 1 tan x 1 ¢ 1t
cot 2z = — = —cotx — —tanx
2tanx 2 2 2
ideoque

tanx = cot x — 2 cot 2z.
Cum igitur sit

1 22Ax  2'Bz®  26Cz® 28Da’
T 21 4! 6! 8l ’

cotx =

YEuler wrote tang x for tan = and tang 22 for tan? z.
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1 2%Ax  28Bx®  212¢z5  216Dy7
2cot2z = — — — — — —
x 2! 4! 6! 8!

erit hanc seriem ab illa subtrahendo

22(22 — 1) Ax N 2424 — 1)Ba? N 26(26 —1)Ca® N 28(28 — 1)Da”

tana = 21 Al 6l 8l

§224. Per hos autem numeros Bernoullianos secans exprimi non potest, sed requirit alios
numeros, qui in summas potestatum reciprocarum imparium ingrediuntur. Si enim ponatur

1 1 1 1 _
1 - 3+ 5 - 7 + 5 — = gz
3
I I R A i
5
R JEIE R T
7
I Ok 2R I ST 3%
9
I R A TN SESIE Y
11
1 — gt + st — st + gt - = 1o 3o
erit
a = 1,
/8:17
vo= 9,
5§ = 6l,
e = 1385,
¢ = 50521,
n = 2702765,
# = 199360981,
. = 19391512145,
Kk = 2404879661671,

ex hisque valoribus obtienbitur

. B o, 74, 0 ¢, €3
secx—a—kgx +Ix +ax +§x + -
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§226. Euler obtained the series expansion of sec z by forming the reciprocal of

22 2t 2

cosr=1— —+———+---

1 = a + 522 + Zat + Jab 4+ Sab o+
a .2 B .4 6 5 .8
) ) ) 2_;%‘%) - get

_ %xfi _ %xS _
+  §a2¥ +
Euler obtains a set of recurrence relations for the coefficients.
a = 1,
2-1
B = ﬁav
_ 435 43201
R L U S R
5 — 6-5 _6-5-4-3ﬁ+6-5-4~3'2-1a
T 127 1. 234" "1 2.3.45.6"
8-75 8-7-6-5 +8-7-6-5-4-3B 8-7-6-5-4-3-2-1a
€ = — —
1.2° 1.2.3.4'71.2.3.4.5.6° 1.2.3.4.56-7-8"

Euler actually explained in §225 the connection of the series of sec z and the sums 1°

1 1 1

L— 32k+1 + 52k+1  72k+1 L

Bprecisely, this sum is (—1)1“22,?%%77%“. This is actually positive since E, is positive or negative according as k is
even or odd.
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VIIIB. Euler’s constant ~
Paper 43: De Progressionibus Harmonicis Observationes (1734/5)

Euler begins by explaining the divergence of the harmonic series.

§8. Ex hac consideratione innumerabiles oriuntur series ad logarithmos quarumvis numero-
rum disignandos. Summamus primo hanc progressionem harmonicam

T
2 3 4 5
.... Differentia igitur inter hanc seriem
LTI S
2 3 )
ad terminum indicis ¢ continuatam et eandem
I
2 3 ni

ad terminum indicis ni continuatam erit = log n. Quare ille seriesab hac subtracta relinquit log n.
Quia autem huius seriei numerus terminorum est n vicibus maior quam illius, ab n terminis
seriei

LI
2 3 ni
subtrachi oportet unicum alterius seriei
LTI S
2 3 1

quo subtractio in infinitum eodum modo possit perfici. Quare erit

logn=1+3+ - +5 475+ +35 togmgt+- +35 +o-

-1 —

[N

Siigitur inferiois seriei singuli termini a suprascriptis terminis superioris serier actu subtrahantur
et pro n numeri integri scribantur 2, 3, 4, etc.

10g2 — 1_1+1_1+1_1+1_1+1_i i_i_|_..
2 3 4 5 6 7 8 9 10 11 12
| _ 1 2 1 1 2 1 1 2 1 1 2
g3 = Ity gttty sttt e Tt T
logd = 1+l+l—§+1 l+l_§+1+i+i_i+
2 3 4 5 6 7 8 9 10 11 12
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1 1 1 4 1 1 1 1 4 1 1
logh = 1do+ot —ctotototg—prpte T

234 6 7 8 9 10 11 ' 12
log6 — 1454+ aHts— b ditob g
°8b = 27345 678" 9" 10 11 12
§11.
1 = log2 + 35 - % + i - % + 6 N %
5 = log3 + 55 - 355 + % - 3m t & — Tim
1 4 1 1 1 1 1 L
3 = logz + 55 — 3w t 1w - st oo~ Tam
1 5 1 1 1 1 1 !
i = log3 + o5 — 3@ *t Tme — som T Gaws — Tiosed
1 _ i+1 1 1 1 1 L L
- = S A - S S = A =

Adding these series, Euler obtains

l+i4+3+2++1=logli+1) + 21+3+L+L+)
+ 0+ Ggt+gtmstor)

From this, Euler obtains

1 1 1
1+§+§+...+_.:]og(i+1)+0.577218.
1

This is the first appearance of the Euler constant ~. 16

By i=limpoo(l1+ 2 + 2 + -+ L —logn). Itis still unknown if - is irrational.
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VIIC. Summary on Bernoulli and Euler numbers
The Bernoulli numbers B,, are the coefficients in the series expansion of

. B22 B33 Bnn
=1+ B+ e+ opat e+ a4

These can be generated recursively by
(1+B)"™ —B" =0

interpreting each B’ as B;.

1
312—5, ng+1:0fork:1,2,3,...,
1 1 1 1 5 691
Bo=-, By=—-——, Bg=—. Bg=—-—, Bjg=— =
2 6’ 4 30’ 6 42’ 8 30’ 10 66 12

These give the series expansion of

tanx =

and other functions.

The Bernoulli numbers also appear in the Euler summation formula

FO+f2) 4+ f(n) = /On f(z)dz + Euler constant

By
40

1 B B
+5f ) = S () + l

The Euler number Es,, are defined recursively by
(E4+1)"+(FE-1)"=0, Ey=1,
interpreting each E¥ as E;. These are
Ey=1, FEy,=-1, FE;=5, FIg=—-61, FEg= 1385,

These give the series expansion of sec x:

_ Ey o Ey 4 Eg ¢
secx—l—ix -1-193 _ax 4o
In terms of these numbers, Euler gave

1 1 1 1

L= 32k+1 + 52k+1  72k+1 +

_ k
g2kl ~ T (=1) 92k+2(2k)1 "

27307

7n) = GO m) +

Eyy, 2k+1

68
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IXA. Continued fractions
Paper 71: De fractionibus continuis dissertio 1 (1737)
Euler begins with a general continued fraction

(07

g

2
0

a—+
b+

c+
d—+

e+ .

and computes their convergents. For typographical reasons, we shall also write this continued fraction in

the form
a B v § €
at+— - = - = .
b+c+d+e+ f+---
The convergents are
a b c d e
1 a ab+a abc+ac+Ba abcd+acd+Bad+yab+ary
0 1 b be+3 ) bed+Bd+~b
a 0 ~ 0 €

From this Euler observes (§7) a general rule for the formation of these convergents.

Introductio, I, §361. In the above scheme each fraction has a superscript and a subscript. Again the first
fraction is % and the second is ¢. Thereafter, any fraction is formed by multiplying the numerator of the
preceding fraction by the superscript and multiplying the second predecessor by the subscript. The new
numerator is the sum of these two products. The new denominators likewise is the sum of the product
of the denominator of the predecessor by the subscript and the product of the denominator of the second
predecessor by its subscript.

superscript a b c d e

: 1 a abtla (ab+a)ct+Ba (abct+act+Ba)d+(ab+a)y
fraction 00 1° 1b+0a’ betl B (be+B)d+b~
subscript a 0 v ) €

§12. Thus, if it is proposed to change the fraction % into a continued fraction all of whose numerators
are one, | divide A by B with quotient a and remainder C; the preceding divisor B is divided by this
remainder C with quotient b and remainder D, by which D is divided, and so on until a zero remainder an
an infinitely large quotient is obtained. Moreover this operation is represented in the following manner:

Y This paper has been translated into English by Wyman and Wyman, and appeared in Math. Systems Theory, 18 (1985) 295
-328.
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B | A | a
C | B | b
D | C | ¢
—F 1D | d
F | E | e

Therefore, the quotients a, b, ¢, d, ¢, etc., will be found by this operation, and it follows that

Introductio, I, §382. 18  Since fractions arise from this operation which very quickly approximate
the value of the expression, this method can be used to express decimal fractions by ordinary fractions
which approximate them. Indeed, if the given fraction has a very large numerator and denominator, then
a fraction expressed by smaller numbers can be found which does not give the exact value, but is a very
close approximation. This is the problem discussed by Wallis and has an easy solution in that we find
fractions, expressed by smaller numbers, which almost equal the given fraction expressed in large num-
bers. Our fractions, obtained by this methods, have a value so close to the continued fraction from which
they come, that there are no other numbers, unless they be larger, which give a closer approximation.

Example I.  We would like to find a fraction which expresses the ratio of the circumference of a circle
to the diameter such that no more accurate fraction can be found unless large numbers are used. If the
decimal equivalent 3.1415926535 - - - is expressed by our method of continued division, the sequence of
guotients is

3,7,15, 1,292, 1, 1, ...

From this sequence we form the fractions

1 3 22 333 355 103993

0’1" 77106" 113" 33102 "
The second fraction already shows that the ratio of the diameter to circumference to be 1 : 3, and is
certainly the most accurate approximation unless larger numbers are used. The third fraction gives the
Archimedean ratio of 7 : 22, and the fourth fraction give the Metian ratio which is so close to the true
value that the erro is less than ngm 19 In addition, these fractions are alternately greater and less
than the true value.

8Concluding sections of Chapter X111, and of the whole book.

¥The fraction % as an approximation of 7 was used by the Chinese mathematician Zu Congzhi (430 — 501) in the fifth

century. Zu gave this as an “accurate” value (mi li), and % as a “crude” value (yue I0).
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Example Il.  We would like to express the approximate ratio of one day to one solar year in smallest
possible numbers. This year is 365 days, 5 hours, 48 minutes, and 55 seconds. That means that one year

is 365% days. We need be concerned only with the fraction, which gives the sequence of quotients

4,71, 1,6, 1, 2, 2, 4,

and the sequence of fractions
7 8 55 63 181

1

47 297 337 2277 2807 74T

The hours, minutes, and seconds which exceed 365 days make about one day in four years, and this is the
origin of the Julian calendar. More exact, however, is eight days in 33 years, or 181 days in 747 years.
For this reason, in 400 years there are 97 extra days, while the Julian calendar gives 100 extra days. This
is the reason that the Gregorian calendar in 400 years converts three years, which would be leap years,
into ordinary years.

v
17

Paper 71: §§18 — 19. We seek now the fractions which approximate /2 so closely that no fractions with
smaller denominators approach more closely. In fact,

141421356
1000000
If continuing division is carried out in the prescribed manner, this fraction gives the quotients

V2 = 1.41421356 =

1,222,222, 2 ...

from which the following fractions are formed

12 2 2 2 2 2 2
11 3 7 17 41 99 239
0 T 2 5 12 20 70 169

§19. This description of /2 has been suitably presented, since all the quotients except the first have
the value 2, so that

1 1
2=14+- =
V2 +2+2+

N =
N =

Similarly, if /3 is analyzed, the quotients
1,1,2,1,2,1,2, 1,2, 1, ...

are found, so that

11 1 1
\/§_1+I+§+I+§+
§19[a]. Then he considers the continued fraction

N —

1
1
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S|
+
S| =
+
S =
+
S =
+

which is set equal to 2. We have

1 1 1 1 1
r—a=—- - - = = —
b+b+b+b+--- bd+zxz—0a
from which
22— 2ax +br+a®>—ab=1
and
b+ 1+b2
r=a— — —.
2 4
Substituting b = 2 and a = 1, this becomes
1 1 1 1
=14+- - = = = 2.
S S, S SN, S V2

If b = 2a, we have

11 1 1
Va+l=a+—  —

20+ 20+ 2a + 2a 4+
He continued to investigate continued fractions of the types

PR
a pa— pa— pa— pa— pa— pa—
b+c+b+c+b+ec+--’
PR I
a pa— pa— p— pa— pa— p—
b+c+d+b+c+d+--’
and find that “every such value is the root of a quadratic equation”.
Appendix. §11. Every simple continued fraction
1 1 1 1 - 1
w+— — - — — —
ay+ast+aztas+---+a, +

in which the a,, are fractions, say a,, = g_fl can be converted into a generic one involving only “integers”.

n B BiBy BBy BB, Bn-1B,
O+ by + by + by o+ b, A
On the other hand, every (generic) continued fraction can be converted into a simple continued frac-
tion “whose denominators may be fractions”:

a
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a (€3] Qg Q3 Q4 - Op Qpy

o+ - - = = __ ==
a1 t+ax+aztag+---+a, +apyr +
1 1 1 1 1

= G0+ g 4+ 0163 4 agaz | G10sas | 0405
al a9 a1os a0 a1a3as

IXB. Continued fractions and infinite series

68. Euler converts the sequence of convergents into (the sequence of partial sums of) an infinite
series. More generally, every given sequence can be regarded as the sequence of partial sums of the
sequence of successive differences: given a sequence

BO, Bla 327 "'7Bn7 Bn+17 )
writing

Ay = DBy,
A1 = B;— By,
Ay = DBy — By,

Ay = Bp— By,

we easily see that
A0+A1++An:Bn

Applying this simple idea to the sequence of convergents of a continued fraction, Euler converts the
continued fraction into an infinite series. The successive differences of the convergents are

a __of aBy
b> blbc+B)" " (be+ B)(bed 4+ Bd + b))’

Therefore, 2°

a B v 0
ag+— = = -
b+c+d+te+---
20
oo
a1 a2 a3 Qg cee (079 Qnit1 n—10102 - Qn
- = = == _ = == —1 _.
a0+a1+a2+a3+a4+---+an+an+1+'“ aOJrZ( ) Qn-1Qn



YIU: Elementary Mathematical Works of Euler 74

Lo aB | o B a0 L
T bbe+B) | (be+ B)(bed+ Bd+4b)  (bed + Bd + ~b)(bede + )

Euler did not give any illustrative examples in this paper. Applied to the golden ratio
1 1 1 1 1 1 1

:1 — — — — — — —
O T+ T+ T4+ T +T 4

this procedure gives the series

1 1 1 1

E — _
N N Ty TN oy TN oy

since the convergents are

T

§ n+1
1 g Fn e

=N
N W

1
1’

i

where F,, is the n—Fibonacci number.

In the Introductio, |, Chapter 18, Euler reverts this process to write an infinite series as a contin-
ued fraction. This is also the main topics of Paper 593, De transformatione serierum in fractiones
continuas, ubi simul haec theoria non mediocriter amplificatur (1785).

Theorem1 If
1 1 n 1 1 n 1
S=———=+—-——<-+-—
a B v § € ’
then
1 n o2
— =
S 32
g—a+ 2
y—=0+
0 —+
Applying this to the series
1 1 1 1 1
log2=1—=—+-—~-+4+—-—=
08 st 15 6T
he obtained )
log2 = 2 ;
1+ 52
1+ 32
1+ JE
1+
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and to the Gregory series for 7,

T 1
4 12
1+ Y
24 =2
2+
2+ .
Euler’s proof of Theorem 1: Write
1 1 1 1 1
s = E—B—F;—gﬁ-z— 5
R U S S O
By d e ’
111
u = ;—54‘2— Ty

Now, s = 2 — = 120f sothat L = 2 = a 4 {24 Also, 125 = —2 50 that
t
042
- =a+ T-
—Oé‘i‘f
Similarly,
1 3
- = b+ ——1
¢ —B+1
r y?
” Y ’Y"‘%’

Combining these, we obtain the continued fraction expansion of%.

6369, Example IV.  Euler recalls from §178 that
mm 1 1 1 1 1

n m n—m mn+m 2n—m 2n+m

75
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and obtains
mm 1
cot — = 5
n n m
" (n—m)?
n—2m+ 3
N (n+m)
m
(2n —m)?
n—2m—|—7
2m + .,
Theorem 2. If
B S S S B
ab be  ed de ef ’
then )
a
— =}
as + be
—a+
o d—b+ cd
de
e—c+
f—d+ .
In §§24,25, Euler applies this to
1 1 1 1 1
2log2 — 1 = - — -
08 12 23734 15 56
to obtain .
2log2 —1 = ,
" 924 L2
gy 23
3-4
2+
2+ .,
and to

76
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to obtain Lo 1.3
7‘(‘ .
=4
T—2 +4+ 3-5
5.7

7-9

4+
4+

44 .

Theorem 6. |If
RS T S
"Ta ap T apy  apy

_|_...’

then

§41. From

we have

XC. Continued fraction expansion of functions
In Introductio, 1, §381, Example 11, Euler computed the continued fraction expansion ofe%1 using
the approximation 0.8591409142295, and found the quotients 1, 6, 10, 14, 18, 22. He commented that
“[i]f the value for e at the beginning had been more exact, then the sequence of quotients would have
been
1, 6, 10, 14, 18, 22, 26, 30, 34, ...,
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which form the terms of an arithmetic 2! progression. It follows that
e—1 1

2 1
1+

6+

10 +
14 +
1
18+ ———
22+ ..

This result can be confirmed by infinitesimal calculus”. The simple continued fraction expansion of e is
given in §21 of Paper 71.:

e—opr 111 1111
1+24+14+1+4+1+1+6+14
More generally, by solving differential equations (§528 — 30),
Vi=1+ -
s—1+ 1
1+ 1
1+ 1
3s —1+ 1
1+ 1
1+ 1
bs — 1+ o 1
14 !
7s—1+
1+ .

In Paper 593, §534 — 36, Euler makes use of the following theorem to express some familiar functions
as continued fractions.

Theorem 4. |If

x .IQ .Ig IE4

ay Py oyt oyt

21The English translation erroneously renders progressionem arithmeticam “geometric progression”.

S =
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then
2

aczy
—=oy+ P
By —ax + Y 5
YrY
vy — Bz + 5
6°xy
oy —yx +
€y — 0T + .
§35. From
2 3 4
X X xr xr xr
log(l+2) == — T
2 y) y 2y 3y 4yt

with s = log(1 + g),

we have
x n Ty
— - —y
log(1+ £ 4x
&l y) 2y —x + !
9xy
3y — 2z +
162y
4y — 3x +
oy —4dx + .
§36. From
U I LA
tant =t — — 4 — — — 4+ ...
arctan 3+5 7+9 ,
putting ¢* = 2, we have
¢ r  x? x3 xt
—arctan — = —
y oy 3y 5y Tyl ’
i — Jz z
andWIthS—\/;arctany,
0421, 5:37 7:57 5:77 ;
we have
/T x
t - T =yt ’ 9xy
arcan\/g Sy— x4+
25bxy
o5y — 3x +
49zy
Ty — dx +

79
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i i — — 1 _
In particular, with x = 1, y = 3, arctan 75 = 6

6 .
£:3+ 1-3
T g4+ 3-9
g4 02
3-49
16 + ——
20 +

XA. Euler’s proof of Heron’s formula
Standard notation. For triangle ABC,

a,b,c lengths of BC, CA, AB
s semiperimeter 3(a + b+ c)
R circumradius
P inradius
A area
Paper 135: Variae Demonstrationes Geometriae (1747/48)

§6. Theorema.  Area cuisque trianguli ABC aequatur rectangulo ex seimsumma laterum in radium
circuli inscripti, seu area AABC' est $(AB+ BC + BC)OP.

B P C

§6. Theorema. A = ps.
§7. Theorema. AR=AQ =s—a, BR=BP=s—b,andCP=CQ =s—c.
§9. A = /s(s —a)(s —b)(s — ¢).
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§8. Let ABC be a triangle with incenter O, P, @, and R the projections of O on the sides BC, C'A,
AB respectively. Euler first established the relation

AR-BP-CQ =s-OP?,

where s is the semiperimeter of the triangle.

Let the perpendicular from B to the line CO meet the line C'O produced at a point M, and the line
PO produced at another point N. Then Z/OBM = %, and the right triangles BOM and AOR are
similar, so that

AR: RO = BM: MO,
AR:OP = BM :MO.

Now, also the right triangles CBM, NBP and NOM are similar, and

BM :BC = MO :ON,
BM : MO = BC:ON.

It follows that AR : OP = BC : ON,and AR-ON = OP - BC. Now, since ON = PN — OP, we
have
AR-PN — AR-OP = BC-OP
and
AR-PN = AR-OP + BC-OP = (AR+ BC)OP =s-OP,
since Euler had previously established that AR + BC = s. Now, from the similar right triangles CO P

and N BP, one has
PN :BP=CP:OP,

and OP- PN = BP-CP,

AR-BP-CP = AR-OP-PN = s-OP>.

XB. Area of a cyclic quadrilateral

§13. Theorema. Si quadrilateri circulo inscripti ABC' D duo latera sibi opposita AB, DC' ad occursum
usque in E producantur, erit area quadrilateri ABC D ad aream trianguli BCE ut AI* — BC? ad BC?.
Notation: Q@ = area ABCD; A = ABEC

Corollary 4. 16Q? is the product of the following 4 factors

(AD — BC)(BE + CE + BC)
BC ’
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(AD — BC)(BE + CE — BC)

I1.

BC ’
11 (AD + BC)(BC + BE — CE)
. BC )
(AD 4+ BC)(BC — BE + CFE)
V. .
BC
§618,21. Theorema.
BE+CE:BC = AB+CD:AD - BC,

CE—-BE:AB—-DC = BC:AD+ BC.
§619,20,22,23. Corollaria:

I. BE+CE+BC : BC = AB+CD+ AD-BC : AD - BC,
II. BE+CE—-BC : BC AB+CD—-AD —-BC : AD - BC,
II1. BC+CE—-BE : BC AD+ BC+AB—-CD : AD+ BC,
IV. BC-CE+BE : BC = AD+BC—-AB+CD : AD+ BC.

§24. Theorema. Quadrilateri circulo inscripti ABC D area invenitur, si a semisumma omnium eius
laterum singula latera seorsim subtrahantur, haec quatuor residua in se invicem multiplicentur atque ex
producto radix quadrata extrahatur.

Q=/(s — a)(s — b)(s — ¢)(s — d).

XC. The excircles and Heron’s formula
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Euler’s proof of Heron’s formula, like those given by Heron 2% and Newton, 2> made use of the
incircle and an ingenious construction of similar triangles. In modern geometry textbooks, the Heron
formula is proved elegantly by considering the incircle together with an excircle.?* Suppose the excircle
on the side BC has radius p,.

From the similarity of triangles AIZ and AI'Z’,

p __s—a

Pa s
Also, from the similarity of triangles BIZ and ' BZ',

P pa=(s—b)(s—c)
It is easy to see that

p:\/(s—a)(s—b)(s—c) and gy — |2 =W =0)

S s—a

22| Thomas, Greek Mathematical Works, I, Aristarchus to Pappus of Alexandria, Loeb Classical Library, number 362,
Harvard University Press, 1941; pp. 472 — 477.

2D T.Whiteside, The Mathematical Papers of Issac Newton, V, 1683 — 1684, pp. 50 — 53. This is part of Newton’s prelimi-
nary notes and drafts for his Arithmetica. See also Problem 23 of his Lectures on Algebra, ibid. pp.224 — 227.

24gee, for example, John Casey, A sequel to the first six books of the Elements of Euclid, (Part 1), 1904 edition.
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The Heron formula now follows easily from A = ps.

Was Euler aware of the excircles of a triangle? When did the excircles first appear? In 1822,
K.W. Feuerbach ?° , in the monograph 28 proving his celebrated theorem on the nine-point circle, be-
gan with a description of the four circles tangent to the sides of a triangle, marking their centers as the
points of intersection of the bisectors of the angles, and gave the radii of these circles as?’

A , 2/ , 2/ " 2/

atb+c P T axbt+e P T P s ¥b—c

p= a—b+c’

The excircles were not mentioned in some of the important popular geometry textbooks in the 18th
and 19th centuries, including Robert Simson’s The Elements of Euclid, (9th edition, 1793), John Play-
fair’s Elements of Geometry (1840 edition), and A.M.Legendre’s Elements of Geometry and Trigonome-
try, (English translation by Charles Davis, 1855 edition).

In Heath’s Euclid, the Thirteen Books of the Elements, the escribed circles are mentioned only in
the remarks following Book IV, Propositions 3, 4. Euclid V.4 constructs the inscribed circle of a given
triangle. Heath states “this problem in the more general form: to describe a circle touching three given
straight lines which do not all meet in one point, and of which not more than two are parallel”. Then he
proceeds to describe the construction of the escribed circles. 28

More interesting is Heath’s remark on Euclid 1V.3: “about a given circle to circumscribed a triangle
equiangular with a given triangle™:

Peletarius 2° and Borelli 3 gave an alternative solution, first inscribing a triangle equiangular
to the given triangle, by 1V.2, and then drawing tangents to the circle parallel to the sides of
the inscribed triangle respectively. This method will of course give two solutions, since two
tangents can be drawn parallel to each of the sides of the inscribed triangle.

If the three pairs of parallel tangents be drawn and produced far enough, they will form eight
triangles, two of which are the triangles circumscribed to the circle in the manner required in
the proposition. The other six triangles are so related to the circle that the circle touches two
of the sides in each produced, i.e., the circle is an escribed circle to each of the six triangles.

A proof of Heron’s formula strikingly similar to the proof given above can be found in MEI Wending

% Karl Wilhelm Feuerbach (1800 — 1834).

%Ejgenschaften einiger merkwiirdigen Punkte des geradlingen Dreirecks, und mehrerer durch Sie bestimmten Linen und
Figuren.

2'D.E.Smith, A Source Book of Mathematics, p. 339.

2Following this, Heath gives Heron’s proof of his formula.

2 Jacques Peletier published “Demonstrations to the geometrical elements of Euclid, six books” in 1557.

% Giovanni Alfonso Borelli (1608 — 1679) published Euclides restitutus in 1658.
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N

31 Elements of Plane Trigonometry, 32 but without the excircle. MEI first used the similarity of triangles
ADF and AIN to write down

AF  DF?
AN IN-DF’
Then he asserted that the quadrilaterals JINC and HC F' D are similar. From this,
DF CN
FC IN’
sothat DF - IN =CN - FC, and
AF DF?

AN ~ FC-CN’
From the lengths of these segments, we have

s—a p?

s (s—a)(s—0b)

This determines the inradius p, and hence the area.

311633 — 1721. On MEI, see J.C. Martzloff, A History of Chinese Mathematics, Springer, 1997.
%2pin san jiao ju yao, Book 1V, pp.12 — 13. In earlier Chinese literature, (QIN Jiushao, Shushu jiuzhang (13th century), the
area formula of a triangle appeared in the form

2
R R a2 + b2 — 2
A—\/—4{ab <72
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XIA. Triangle centers
Paper 325: Solutio facilis problematum quorumdam geometricorum difficillimorum (1765)

In this interesting paper, Euler analyzed and solved the construction problem a triangle with given
orthocenter, circumcenter, and incenter. The Euler line and the famous Euler formula OF = R? — 2Rr
emerged from this analysis.

§1. Review of the collinearity of the following triples of lines associated with a triangle ABC:

1. the altitudes intersecting at the orthocenter H,

2. the medians intersecting at the centroid G,

3. the angle bisectors intersecting at the incenter I,

4. the perpendicular bisectors intersecting at the circumcenter O.33

. b2+c2—a?)(c24a?—b2
6. Orthocenter [Figure 1]. HP = ( 80& ),

Proof. AM =22,

V- a? BM_02+a2—b2

AP ,
2c 2a

BEuler used E, F, G, H for the orthocenter, the centroid, the incenter, and the circumcenter respectively.
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C C
M
b a
G
N
A P B A P Q B
(c) Figure 1 (d) Figure 2

Similarity of right triangles ABM and AH P gives
AM : BM = AP : HP

from which H P can be found.
§7. Centroid [Figure 2]. AQ = 3+V— = G = 22,
§8. Incenter [Figure 3]. IR = —24&

a+b+c’
C
b ? ; i a
A R c B
(e) Figure 3 (f) Figure 4

R : c(a®+b2—c?
§9. Circumcenter [Figure 4]. OS = %.
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XIB. Distances between various centers

§10.
C
O
I G
H
A P RQ S B
HG? = (AP — AQ)?+ (PH — QG)?,
HI? = (AP - AR)*>+ (PH — RI)?,
HO? = (AP - AS)?+ (PH — SO)?,
GI? = (AQ - AR)’> + (QG — RI)?,
GO? = (AQ — AS)? + (QG — S0O)?,
I0? = (AR - AS)? + (RO — SO)>.

§11. Distances in terms of elementary symmetric functions of side lengths. Write
a+b+c=p, ab+bc+ ca = q, abc = r.
The side lengths are the roots of the cubic equation

23—pz2—|—qz—r:0.

P+ = p?—2g,
A’ + 02 + Pa® = ¢ —2pr,
a4+ v+t = pt—apPq+ 24 + dpr.

1
A = 1—6(2a2b2 +20%¢2 + 2¢%a® — a* — bt — )

88
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1
= (P e —spr).

§18. Summary of square distances.

HG* = 4722_%(]72_2@7
HI? = Lo-4_p243
HO? = 25 —p*+2,
GI? = %(—p3+5pq—18r),
GO? = lggz—%(ﬁ—?q),
10* = gxz =5

The Euler line

§18. ubi evidens est esse HO = %HG et GO = %HG, sicque punctum O per puncta H,
G sponte determinatur, scilicet si tria puncta H, G, I forment triangulum HGI, tum quartum
punctum O ita in rect HG producta erit situm, ut sit

GO = %HG ideoque HO = gHG.

Hinc vero deducitur
4I10% + 2HI? = 3HG? + 6GI?,
quod cum valoribus inventis apprime congruit.

§19. Quo nunc has formulas ad maiorem simplicitatem recocemus, ponamus

4pq — p® — 8r = 48,

ut sit 49
AN? =pS, et 4q= 2+—r+?,
tum vero faciamus:
T2 T 2
p_S:Rv ;ZQ, p” =P,
2 _ 2 16 892
HG* = R - P + TQ + oK
HI? = R - ip 4+ 20 4+ 3£,
HO?* = %R — 1lp 4+ 40 + 22,
2 1 8 502
L [ R )
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Euler’s formula

Note that
R = '0_2 - (abc)2 - <a_bc)2 — R?
4pS 162 4A
Also, ) e A
T aoc aoc
Q=T T a2k

This is the famous Euler’s formula:
OI* = R* —2Rp = R(R — 2p).

Note: R > 2p, with equality for equilateral triangles.

XIC. The nine - point circle and Feuerbach’s theorem

The nine - point circle of a triangle is the circle passing through the midpoints of the three sides, the
perpendicular feet of the vertices on their opposite sides, and the midpoints between the orthocenter and
each of the vertices. It was discovered by C.J. Brianchon 34 and J.V. Poncelet % , one year before %
K.W. Feuerbach proved ¥’ that this nine - point circle is tangent internally to the incircle, and externally
to each of the excircles. He begins by showing that the center N of the nine - point circle is the midpoint
of the segment joining the circumcenter O to the orthocenter H. The proof given by Feuerbach is
computational in nature, similar in spirit to Euler’s Paper 325.

The nine-point circle is indeed simply the circumcircle of the triangle DEF, D, E, F being the mid-
points of the sides of triangle ABC. The two triangles ABC and D EF' are similar, with corresponding
sides parallel and similarity ratio 2 : 1, and sharing a common centroid. The nine-point circle, therefore,
has radius  R.

Triangle Circumcenter Centroid Orthocenter
ABC (@) G H
DEF N G (@)

From this table, it is clear that the two triangles have the same Euler line. Since the distance from
the centroid to the orthocenter is always twice that from the centroid to the circumcenter, OG = 2GN.

It follows that
3 1 1
2 3

ON:OG—FGN:;-OG: OH:2'OH,

and N is the midpoint of OH.

% Charles Jules Brianchon (1785 — 1864).

%Jean Victor Poncelet (1788 — 1867).

%Recherches sur la détermination d’une hyperbole équilatére, au moyen de quatre conditions données, Gergonne’s Annales,
11 (1820-21) 205 — 220. See D.E.Smith, A Source Book of Mathematics, pp. 337 — 338.

%"See D.E.Smith, A Source Book in Mathematics, pp. 339 — 345.
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Ta

Once it is known that NV is the midpoint of O H, Feuerbach’s theorem can be proved by computing
the length of the median I NV in triangle IO H, making use of Apollonius’ theorem, 8 3 and the distances

%The sum of the squares on two sides of a triangle is equal to twice the square on half the base, together with twice the
square on the median on this base. This is an easy consequence of Eucl. 11.9, 10. Euler makes use of this in his Paper 135
Variae demonstrationes geometriae to prove that for a quadrilateral ABC' D with midpoints P, @ of the diagonals,

AB? + BC? + CD? + DA? = AC? + BD? + 4PQ>.

®More generally, if D is a point outside a line ABC, then
AD? . BC + BD? - CA+CD*-AB+ BC-CA-AB =0.

This is usually referred to as Stewart’s theorem. Howard Eve, An Introduction to the History of Mathematics, (6th ed.) p. 183,
states that Robert Simson (1687 — 1768) anticipated M. Stewart (1717 — 1785) in the discovery of the theorem.. Euler stated
this as a lemma in his 1780 Paper 543, Problematis cuiusdam Pappi Alexandrini constructio.
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that Euler had determined. In his monograph, Feuerbach re-established the distance formulae that Euler
obtained, expressing each of them in terms of R, p, and a third quantity » = 2R cos A cos B cos C. Here,
we make use of Euler’s formulae.

IN? = %-HIQ % 10? — (1.011)2
1 1 30?2 19 20?2
= §(7%—173+2Q+7) ( R-9Q)-4(; R——P+4Q+7)
1 1 1., 9 2
T _EQ _ZR —Rp+p —<§R—p>

since R = 4R? and Q = 2Rp. The distance between the centers of the nine-point circle and the incircle
is equal to the difference between their radii. The two circles are therefore tangent internally. This is the
first part of Feuerbach’s theorem.

The proof of the tangency of the nine-point circle with each of the excircles is along the same line.
Feuerbach obtained the distance between O and the excenter I4:

OI% = R? + 2Rp,,

and in a historical note attributed this to Euler. However, the excircles do not seem to have appeared in
Euler’s work.
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Referring to the Feuerbach theorem, Uta Merzbach, in her revision of Boyer’s A History of Mathe-
matics, 4° wrote:

One enthusiast, the American geometer Julian Lowell Coolidge (1873 — 1954), called this
“the most beautiful theorem in elementary geometry that has been discovered since the time
of Euclid”. #! It should be noted that the charm of such theorems supported considerable
investigation in the geometry of triangles and circles throughout the nineteenth century.

XIIA. Euler’s construction of a triangle with given circumcenter, incenter, and orthocenter
§20. Problema: Datis positione his quatuor punctis in quolibet triangulo assignabilibus
1. Intersectione perpendicularium ex singulis angulis in latera opposita ductarum H,
2. Centro gravitatis G,
3. Centro circuli inscripti I et
4. Centro circuli circumscripti O.
Quod problema ex hactenus erutis horum punctorum affectionibus satisconcinne resolvere

licebit.

I f o]

Solutio: Cum positio horum quatuor punctorum per eorum distantias detur, vocemus:
10 = f, GO=g et GI=h.

novimusque fore

HG =2g, HO =3gitemque HI = \/692 + 3h% —2f2.

Nunc igitur statim habemus has tres aequationes

492nd ed. p.537.
41].L. Coolidge, The Heroic Age of Geometry, Bull. Amer. Math. Soc., 35 (1929) 19 — 37.
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1 1 4 202

2 f— — —_ — _—

g = zR 18P+9§2+ IR’
1 8 5

2 f— —_— _ _—

o= 36P 9Q+ IR’

ex quarum resolutione colligimus:

44
392 + 6h2 — 22’
o — 3f2(f% — g% — 20
392 +6h2 —2f2 '
27 f4

— 2 2 2
= sorae o 12015060

unde fit
%2 B 9(f2 _gQ o 2h2)2

R 4(3g2 +6h% — 2f2)’
§22. His valoris inventis investigentur tre sequentes expressiones:
QQ

1
p=VP, q=,P+2Q+—, r=QVP

indeque formetur haec aequatio cubica:

2 —p2+qz—1r=0,

94

cuius tres radices debunt tria latera trianguli quaesiti, quo pacto eius constructio facillima ha-

betur.
§622, 23: Example. a = 5,b=6,c = 7: A = 616.

2 __ 155 2 __ 11 2 __ 155
HG? =2 grr=1 HO?=

IG?=35, GO*=§2, 10?=35.

9> — 288 — 32
35 155 1
2 _ 2Y 2 _ v 2 —
F=3 9= "=y
From these,
3 1
397 + 61" —2f* = =, fP—g" =27 =2, 4f7 459" -2
and 1225 35
R=—— Q=" P = 324

24 7 37

_ 219,
327
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Q2 _ 8
and = = 3.

35
p=VP =18, ¢=107, r="18=210

leading to the cubic equation z* — 1822 + 107z — 210 = 0, whose roots are 5, 6, 7.

XI1B. Special cases
§25. Triangles with the incenter on the Euler line.

29—h h g
H I G O
GO =g, GI = h, I0 = f,
HG = 2g, HO = 3g, HI =2g—h.
Putting g = f — h, we have
At _ 3f?h(2f — 3h) _ 3h(4f — 3h)?
Reg—ap °" -z 77 G-
Q?  9h*(2f — 3h)?
R~ A(f —3h)?
(4f — 3h)/3h(4f — 3h)
f—3h ’
_ 3fh(4f —3h)(5f — 6h)
v (F—sh?
3f2h(2f — 3h)(4f — 3h)\/3h(4f — 3h)
' (F — 3h)2 '

§26. Solution of the cubic equation 23 — pz% + gz —r = 0.
Euler puts z = 7”};@;:% -y and transforms the equation into
y’ — (4f = 3h)y* + f(5f — 6h)y — f*(2f — 3h) = 0.

The roots of this equation are f, f, and 2f — 3h. The triangle is isosceles, with sides

oy b= JV/3hAf —3h) . _ (2f = 3h) /3] —3h)

f—3h f—3h
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630. Euler takes HI = ¢, IO = f, HO = k, and writes

1 2 1
= —k HG = =k == 2 2 _9k2.
GO = Sk, G=ck G 3\/36+6f
Here,
4 4
R A
2f2 +2e2 — k2
Q B f2(k2—f2—2€2
o 2e242f2 2
At 111 4 3k — 12e2 f2 + 22k — 8e2k?
N 2e2 4 2f2 — k2 ’
%2 B (k2—f2—262)2_
R 4(2e2+2f2—k2)’
p = VP,
2t U kY — 6?2 — 36k + 22K
¢ = 2e2 +2f2 — k2 ’
r = QVP.

The sides of the triangle have lengths /P, where y satisfies the cubic equation

(2e! 4+ f* + kY — 6% f? — 32k + 22Ky — f2(K* —2¢* — [?)
et + 1114 4 3k% — 12e2f2 + 2f2k2 — 8e2k?2

Y-yt +

=0
Then Euler works out the condition for the existence of such a triangle.

Example Triangle OIH isosceles. e = f

V3(K = f?)
/4f2 k2’
k‘4 _ f2k2 _ 3f4
4f2 _ kQ )
V32K = 3f%) (K — f?)
(Af2 - VAP =12

If z = \/ﬁ, y satisfies
Y3 = 3(k? — f2)y? + 3(k* — 2K = 3fy — 93 (k* — 3f3)(K* — f?) = 0.
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Euler observes that one of the roots is y = 3 2. The other two therefore satisfy the quadratic
y? = 3(k* = 2f%)y + 3(k* = 3f%)(k* — f) =0

and are

)= 3(k? — 2f%) £ k\/3(4f? — k?)
— 5 .

The sides of the triangle have lengths

V3(K* - 2f?) L1 V3f?
2/Af2— k2 T 27 VA2 — k2

634. Example €% = 3, f2 = 2, k2 = 9. The sides of the triangle are the roots of
22— V7122 + 222 — 271 = 0.

Euler ends the paper with the remark that the roots of this equation can be expressed in terms of an angle

71
— arccos —.
T ARCCOS\ o8

1 2 1
a = §m+ g\/g - cos(60° — §a)’

1 2 1
b = g\/ﬁ—i‘ g\/g'COS(inO—FgCK),

1 2 1
c = g\/ﬁ—g\/g’COS§Oé,

The side lengths are

ubi est proxime a = 41°5’30” sicque per anguli trisectionem problema semper satis expedite
resolvetur.

XIIC. Constructions
Given the triangle OIH, it is indeed possible to construct the circumcircle, and the incircle of the
triangle ABC'. This is possible by making use of Feuerbach’s theorem.

The nine-point center NV is the midpoint of the segment OH. According to Feuerbach’s theorem,
IN = (R — 2p). On the other hand, by Euler’ formula, OI* = R(R — 2p). From these, R and p can
be determined. Since OI? = 2R - IN, if we construct the circle through N, tangent to OI at O, and
extend I N to intersect the circle again at M, then IM = 2R. (Eucl. 111.36). From this, the circumcircle
and the nine-point circle can be constructed.
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The fact that the side lengths of triangle ABC satisfy a cubic equation shows that the triangle in
general cannot be using ruler and compass. This was not confirmed in Euler’s time. But Euler has
reduced the problem to the trisection of an angle. Since it is always true that the lines joining a vertex to
the circumcenter and the orthocenter are symmetric with respect to the bisector of the angle at that vertex,
42 the line AT should bisect angle OAH. While in general such a point cannot be constructed (using
ruler and compass only), the special case when JOH is isosceles does admit a euclidean construction.
The intersection of the half - line NI with the circumcircle is one vertex A. If the half line AH intersects
the nine-point circle at X, the perpendicular at X to AX would intersect the circumcircle at the other
vertices of the required triangle.

Cubic equations and geometric constructions

A geometric solution of a cubic equation 22 = az + b can be reduced to one of the ancient problems
of trisection of an angle or duplication of a cube. With the notation of Euler’s paper 20, §3, in writing a
root in the form /A + /B, A and B are the roots of the quadratic

CLS

2— PR —
z°=bz T

“2This is usually summarized by saying that the circumcenter and the orthocenter are isogonal conjugates.
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If % — ‘21—; > 0, Aand B are real, and exactly one of the roots is real, and the other two are imaginary.
The construction of these roots depends on the extraction of the cube roots of the real, constructible

numbers A and B.

If, however, % — g—i < 0, Aand B are imaginary, and the three roots of the cubic equation are indeed
real. Note that a must be positive. These can be found by rewriting the cubic equation 22 = ax + b to
bring to the form

4cos® 0 — 3cos f = cos 30 = constant.

To this end, put = = r cos # and choose r such that

r3iar=4:3.

This means r? = 43—“. With r = 2\/5, the cubic equation becomes

3
b—:):?’—az—Q(g)Qcos?)H,

and ,
b (3\2
30=-(~—
Ccos B <a>
3\ 2
Since (& - (2 = % - 2L < 1, there is a unique angle « in the range 0 < o < 18(° so that

cos 30 = cos(180° — ). Consequently,

1 1 1
0 = 60° — gOZ, —60° — gOé, 180° — gOé

The corresponding x are then

1 1 1
rcosf = 2\/§COS(GOO - ga), 2\/§COS(GOO + 504), —2\/§cos 3%
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XIHA. Euler and the Fermat numbers
References on Euler’s number theory works

1. Andre Weil, Number Theory, An Approach Through History, from Hammurapi to Legendre,
Birkh&user, 1983.

2. Winfred Scharlau and Hans Opolka, From Fermat to Minkowski, Lectures on the theory of num-
bers and its historical development, Springer, 1984.

The number theory works of Euler are contained in volumes 2 — 5 of the Opera Omnia. It started
with the correspondences with Christian Goldbach in 1729. Goldbach remarked to Euler*?, “Is Fermat’s
observation known to you, that all numbers 22" + 1 are primes? He said he could not prove it; nor has
anyone else done so to my knowledge”.

Paper 26: Observationes de Theoremate quodam Fermatiano aliisque ad numeros primos
spectantibus  (1732/33)

In this short paper, Euler began by examining when a number of the form d* + 1 can be prime. He
quickly established that this must be of the form 2™ + 1. Then he quoted Fermat:

Cum autem numeros a binario quadratice in se ductos et unitate auctos esse sem-
per numeros primos apud me constet et iam dudum Analystis illius theorematis
veritas fuerit significata, nempe esse primos 3, 5, 17, 257, 65537 etc. in infinit.,
nullo negotio etc.

and Euler continued

Veritas istius theorematis elucet, ut iam dixi, si pro m ponatur 1, 2, 3 et 4; prode-
unt enim hi numeri 5, 17, 257 et 65537, qui omnes inter numeros primos in tabula
reperiuntur. Sed nescio, quo fato eveniat, ut statim sequens, nempe 22 4 1, ces-
set esse numerus primus; observavi enim his diebus longe alia agens posse hunc
numerum dividi per 641, ut cuique tentanti statim patebit. Est enim

92" 11 =232 1 1 = 4204967297.

Ex quo intelligi potest theorema hoc etiam in aliis, qui sequuntur, casibus fallere
et hanc ob rem problema de invenidendo numero primo quovis dato maiore etiam
nunc non esse solutum.

How did Euler find the divisor 641? In his paper 134: Theoremata circa divisores numerorum
(1747/48), he studied in detail the factorization of numbers of the form d* + b™.

§29. Theorema 8. Summa duarum huiusomdi potestatum «>" + ", quarum exponens est
dignitas binarii, alios divisores non admittit, nisi qui contineantur in hac forma 2™+1n + 1.

B\Weil, p.172.



YIU: Elementary Mathematical Works of Euler 101

§32. Scholion 1. * Fermat affirmaverat, etiamsi id se demonstrare non posse ingenue esset
confessus, omes numeros ex hac forma 22” + 1 ortos esse primos; hincque problema alias
difficillimum, quo quaerebatur numerus primus dato numero maior, resolvere est conatus. Ex
ultimo theoremate autem perspiccum est, nisi numerus 22" + 1 sit primus, eum alios divisores
haberes non posse praeter tales, qui in forma 2™+!n 4 1 contineantur. Cum igitur veritatem
huius effati Fermatiani pro casu 232 + 1 examinare voluissem, ingens hinc compendium sum
nactus, dum divisionem aliis nuermis primis praeter eos, quos formula 64n + 1 suppeditat,
tentare non opus habebam. Huc igitur inquisitione reducta mox deprehendi ponendo n = 10
numerum primum 641 esse divisorem numeri 23241, unde problema memoratum, quo numerus
primus dato numero maior requiritur, etiamnum manet insolutum.

Thus,
Fy =232 41 =641 x 6700417.

Euler did not mention if the other divisor is prime or not. But using the same theorem, he could easily
have decided that it is indeed prime. All he needed was to test for divisibility by primes less than the
square root of 6700417, (between 641 and 2600), and of the form 64n + 1. Such are

641, 769, 1153, 1217, 1409, 1601, and 2113.
It is routine to check that none of these divides 6700417.

In 1742, Euler wrote to Goldbach that 4m + 1 is prime if and only if it can be written as & + b in
one and only one way. He illustrated this by exhibiting

Fs =232 11 =(219)2 + 12 = 62264? 4 20449°.
Appendix. Fermat on the primality of F,,, = 22" + 1%
Fermat to Frenicle, 1640:

3. Mais voici ce que j’admire le plus : c’est que je suis quasi persuack (1) que tous les
nombres progressifs augmentés de I’unité, desquels les exposants sont des nombres de la
progression double, sont nombres premiers, comme

3, 5, 17, 257, 65537, 4294967297
et le suivant de 20 lettres

18 446 744 073 709 551 617, etc.

#gee XIIIC below for more details of this paper.
“M.S. Mahoney, The Mathematical Career of Pierre de Fermat, 2nd ed. Princeton University Press, 1994.
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Je n’en ai pas la démonstration exacte, mais j’ai exelu si grande quanti€ de diviseurs par
démonstrations infaillibles, et j’ai de si grandes lumires, qui établissent ma pensée, que
j’aurois peine & me dédire. 46

Mahoney comments that “[i]n the years that followed, Fermat’s conviction of the validity of his
conjecture grew, while a proof continued to elude him. The primality of all numbers of the form 2" + 1
undelay the climax toward which he steered Part 111 of the Tripartite Dissertation, and it figured among
the first propositions with which he tried to engage Blaise Pascal’s interest in number theory in 1654. At
each mention of the conjecture, Fermat bemoaned his inability to find a proof, and his tone of growing
exapseration suggests that he was continually trying to do so. In view of Euler’s disproof of the conjecture
by counterexample in 1732, Fermat’s quandary is understandable in retrospect. So much more surprsing,

then, is his claim in the “Relation” to Carcavi*’ in 1659 to have found the long - elusive demonstration.
48

5. J’ai ensuite considéré certaines questions qui, bien que régatives, ne restent pas de
recevoir trés grande difficulté, la méthode pour y pratiquer la descente étant tout fait diverse
des précédentes, comme il sera aisé d’éprouver. Telles sont les suivantes:

Toutes les puissances quarrées de 2, argumentées de I’unité, sont nombres premiers.

Cette derniére question est d’une tres subtile et tres ingénieuse recherche et, bien qu’elle
soit conue affirmativement, elle est négative, puisque dire qu’un nombre est premier, c’est
dire qu’il ne peut étre divisé par aucun nombre. 4°

“6Mahoney, p.301: “But here is what | admire most of all: it is that | am just about convinced that all progressive numbers
augmented by unity, of which the exponents are numbers of the double progression, are prime numbers, such as 3, 5, 17, 257,
65537, 4294967297, and the following of twenty digits: 18446744073709551617, etc. | do not have an exact proof of it, but
I have excluded such a large quantity of divisors by infallible demonstrations, and my thoughts rest on such clear insights, that
I can hardly be mistaken.”

“"Pierre de Carcavi, 1600? — 1684.

“®Mahoney, pp.301, 356.

94| have then considered some questions that, although negative, do not remain to receive very great difficulty, the method
for there to practice the descent being entirely various precedents, as it will be well-off to feel. Such are following: ... All
square powers of 2, argmented by the unit, are prime numbers. This last problem results from very subtle and very ingenious
research and, even though it is conceived affirmatively, it is negative, since to say that a number is prime is to say that it cannot
be divided by any number.”
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XI1IB. Perfect numbers and Mersenne primes °
Eucl. VII. Definition 22: A perfect number is that which is equal to its own parts.

Eucl.1X.36: If as many numbers as we please beginning from an unit be set out continuously into double
proportion, until the sum of all becomes prime, and if the sum multiplied into the last make some number,
the product will be perfect.

In response to Frenicle’s question of finding a perfect number between 1(*° and 10?2, Fermat dis-
covered in 1640, that 1037 — 1 is not a prime:

237 _ 1 = 137438953471 = 223 - 616318177.

Fermat’s factorization depended on three basic observations:
(1) If nis not a prime, then 2" — 1 is not a prime.
(2) If n is a prime, then 2™ — 2 is a multiple of 2n.
(3) If nis a prime, and p is a prime divisor of 2 — 1, then p — 1 is a multiple of n.
In the same paper 26, Euler claimed that 2* — 1 are prime for n = 19,31, 41,47: 5

Dat autem 2"~1(2" — 1) numerum perfectum, quoties 2" — 1 est primus; debet ergo
etiam n esse numerus primus. Operae igitur pretium for existimavi eos notare ca-
sus, quibus 2" — 1 non est numerus primus, quamvis n sit talis. Inveni autem hoc
semper fieri, si sit n = 4m — 1 atque 8m — 1 fuerit numerus primus; tum enim 2™ — 1
semper poterit dividi per 8 — 1. Hinc excludendi sunt casus sequentes: 11, 23,
83, 131, 179, 191, 239 etc., qui numeri pro n substituti reddunt 2™ — 1 numerum
compositum. Neque tamen reliqui numeri primi omes loco n positi satisfaciunt, sed
plures insuper excipiunter; sic obsrvavi 237 — 1 dividi posse per 223, 243 — 1 per 431,
229 _1 per 1103, 27 — 1 per 439; omnes tamen excludere non est in primos minores
quam 50 et forte quam 100 efficere 27~1(2" — 1) esse numerum perfectum sequen-
tibus numeris pro n positis 1, 2, 3, 5, 7, 13, 17, 19, 31, 41, 47, unde 11 proveniunt
numeri perfecti. Deduxi has observationes ex theoremate quodam non ineleganti,
cuius quidem demonstrationem quoque non habeo, varum tamen de eius veritate
sum certissimus. Theorema hoc est: o™ — b"™ semper potest dividi pern+1, sin+1
fuerit numerus primus atque a et b non possint per eum dividi, ... 2

According to Dickson, 53 Euler, in a letter to Goldbach on October 28, 1752, stated that he knew

%Dunham, Chapter 1.

194l _ 1 = 2199023255551 = 13367 - 164511353; 247 — 1 = 140737488355327 = 2351 - 4513 - 13264529.

2Translation in Dickson, History of the theory of numbers, vol. 1 (1919) p.17: “However, | venture to assert that aside from
the cases noted, every prime less than 50, and indeed than 100, makes DA (2™ — 1) a perfect number, ... | derived these results
from the elegant theorem, of whose truth | am certain, although I have no proof: o™ — b™ is divisible by the prime n + 1, if
neither a nor b is”.

$History, vol.l, p.18.
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only of seven perfect numbers, and was uncertain whether 22! — 1 is prime or not. Later that same year,
54 Euler wrote to Goldbach again, confirming the primality of 23 — 1:

Der folgende [Ausdruck, der eine vollkommene Zahl liefern konnte,] ware 20(22! — 1),
wenn nur 231 — 1 ein numerus primus wire, welches aber weder behauptet noch untersucht
werden kann. So viel ist gewiR, daR diese Zahl 22! — 1 keine andere divisores haben kann,
als welche in dieser Formul 62n + 1 enthalten sind, woraus ich so viel gefunden, dal kein
divisor unter 2000 Statt findet.

The primality test was more efficient in a later letter > to Jean 111 Bernoulli °® in 1771, Euler remarked
that he had verified that 23! — 1 = 2147483647 is prime by examining primes (up to 46339) of the form
248n + 1 and 248n + 63. > %8

Euler’s proof of Euclid’s expression of even perfect numbers
Paper 798: De numeris amicabilibus (1849).

§8. Hinc inventio numerorum perfectorum nulla laborat difficultate; cum enim numerus
perfectus vocetur, qui aequalis summae suarum partium aliquotarum, si numerus perfectus
ponatur = a, oportebit esse a« = A — q, ideoque A = 2a. *° lam numerus perfectus o vel
est par vel impar; priori casu ergo factorem habebit 2 eiusque quampiam dignitatem. Sit igitur
a = 2", erit A = (2" — 1)B, ideoque (2"*! — 1)B = 2"+1b, unde fit £ = ;2. Cum igitur
fractio 23:—1“,1 ad minores numeros reduci nequeat, necesse est, ut sit vel b = 2"+ — 1 vel
b = (2" — 1)c. Prius autem fieri nequit, nisi sit 2"*! — 1 numerus primus, quia summa divi-
sorum esse debet = 2! ideoque summa partium aliquotarum = 1; quoties vero est 2"+! — 1
numerus primus, toties posito b = 2"+ — 1, erit B = 2"*!: hincque numerus perfectus erit
a = 2"(2"*t —1). Sin autem pro b sumeretur multiplum ipsius 2"*! — 1, puta (2! — 1)¢, eius
pars aliquota foret 2"+ —1 et ¢; unde omnium divisorum summa B certe non minor esset quam
27+ + ¢+ b; talis enim foret, si tam ¢ quam 2" — 1 essent numeri primi. Fracto ergo £ non mi-
nor esset futura quam % hoc est quam ?;L:%T) ob b = (2"*! — 1)c. At fractio ?;::17(1;;2

)e
. . 2n+1 . . . 1 .. .
necessario maior est quam 52—, unde pro numero b multiplum ipsius 2! — 1 accipi nequit.

Quamobrem alii numeri perfecti pares reperir non possunt, nisi qui contineantur in formula prius
inventa a = 2"(2"*! — 1) existente 2"*! — 1 numero primo; haecque est ipsa regula ab Euclide
praescripta.

%16 Dezember.

Paper 461: Extract d’une lettre ...a M. Bernoulli concernant le memoire imprime parmi ceux de 1771, p.318.

% Jean 111 Bernoulli (1744 — 1807), son of Jean |1 Bernoulli (710 — 1790) and grandson of Jean | Bernoulli (1667 — 1748).

" There are 145 primes of the form 248n 4 1 and 143 primes of the form 248n 4 63.

8 At the end of the same letter, Euler remarked that Cette progression 41, 43, 47, 53, 61, 71, 83, 97, 113, 131, ...dont le
terme général est 41 — z + z* est d’autant plus remarkquable que les quarante premiers terms sont tous des nombres premiers.

SEditor’s footnote: Si a, b, c ...denotant numeros quoscunque integros, litterae maiusculae A, B, C, ]dots ex-
priment summas omnium numerorum a, b, ¢, .... Eulerus in posterioribus commentationibus hanc notationem per

Ja, [b [c, ... supplevit.
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Then Euler stated that an odd perfect number must be of the form®® (4m + 1) +122, with 2 odd

and 4m + 1 prime:

Utrum autem praeter hos dentur numeri perfecti impare necne, difficillima est quaes-
tio; neque quisquam adhuc talem numerum invenit, neque nullum omnino dari
demonstravit. Sin autem huiusmodi numeri perfecti derentur, ii necessario in hac
formula:

(4m + 1)*+122 continerentur, ubi 4m + 1 denotat numerum primum et z numerum
imparem.

In his long paper 792, Tractatus de numerorum doctrina, (1849), Euler gave another proof of the

euclidean expression for even perfect numbers.

§106. Numerus perfectus est, cuius summa divisorum ipsi duplo est aequalis. Ita si fuerit
J N = 2N, erit N numerus perfectus. Qui si sit par, erit huiusmodi 2" A existente A numero
impari sive primo sive composito. Cum ergo sit N = 2" A, erit

2n+1

_ n+1 __ on+1 . fAi
/N—(2+ —1)/A—2+A, undeflt T—W

§107. Quia huius fractionis 2n+1 7 Numerator unitate tantum superat denominatorem, ex-
cedere nequit summam divisorum denomlnatorls erit ergo vel aequalis vel minor. Posteriori
casu nulla datur solutio, prior vero existere nequit, nisi sit 221 — 1 numerus primus. Quare
quoties 271 — 1 fuerit numerus primus, ei A aequalis capi debet, eritque numerus perfectus
2n(2ntl 1),

§108. Omnes ergo numeri perfecti pares in hac formula 2*(2"*+! — 1) continentur, siquidem
2n+1 1 fuerit numerus primus, quod quidem evenit nequit, nisi n + 1 sit numerus primus;
etiamsi non omes primi pro n + 1 assumti praebeant 2°+! — 1 primum. Utrum vero praeter
hos numeros perfecti pares dentur quoque impares necne, nemo adhuc demonstravit.

Dickson 8 commented that this proof is not complete. It can be easily salvaged by writing, at the

end of §106,

2n+1 A
/A7WH—1A2A+WH—1

instead. The latter summand must an integer, so that 2**! — 1 is a divisor of A4, and [ A is the sum of
A and its divisor 2n+—f}_1. This means that A has exactly two divisors. It must be prime, and is equal to

2n+1 —1.

®9The existence of an odd perfect number is still an open problem.
®History, vol.l, p.19.
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Appendix: Records of Mersenne primes.  The primality of M, for k£ = 2,3, 5,7, 13 has been known
since antiquity. The following Mersenne numbers M, = 2F — 1 are known to be primes. 62

| k| Digits | Year | Discoverer |
17 6 | 1588 | P.A.Cataldi
19 6 | 1588 | P.A.Cataldi
31 10 | 1752 | L.Euler
61 19 | 1883 | I.M.Pervushin
89 27 | 1911 | R.E.Powers
107 33 | 1913 | E.Fauquembergue
127 39 | 1876 | E.Lucas
521 157 | 1952 | R.M.Robinson
607 183 | 1952 | R.M.Robinson
1279 386 | 1952 | R.M.Robinson
2203 664 | 1952 | R.M.Robinson
2281 687 | 1952 | R.M.Robinson
3217 969 | 1957 | H.Riesel
4253 1281 | 1961 | A.Hurwitz
4423 1332 | 1961 | A.Hurwitz
9689 2917 | 1963 | D.B.Gillies
9941 2993 | 1963 | D.B.Gillies
11213 3376 | 1963 | D.B.Gillies
19937 6002 | 1971 | B.Tuckerman
21701 6533 | 1978 | C.Noll, L.Nickel
23209 6987 | 1979 | C.Noll
44497 13395 | 1979 | H.Nelson, D.Slowinski
86243 25962 | 1982 | D.Slowinski
110503 33265 | 1988 | W.N.Colquitt, L.Welsch
132049 39751 | 1983 | D.Slowinski
216091 65050 | 1985 | D.Slowinski
756839 227832 | 1992 | D.Slowinski, P.Gage
859433 258716 | 1993 | D.Slowinski
1257787 | 378632 | 1996 | D.Slowinski and Gage
1398269 | 420921 | 1996 | Armengaud, Woltman et al.
2976221 | 895932 | 1997 | Spence, Woltman et al.
3021377 | 909526 | 1998 | Clarkson, Woltman, Kurowski et. al.
6972593 | 2098960 | 1999 | Hajratwala, Woltman, Kurowski et. al.

This last entry was announced early this month (July, 1999).

825ee, for example, the webpage of Chris K. Caldwell, http://www.utm.edu/research/primes/mersenne.shtml
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XIIC. Euler’s proof of Fermat’s little theorem
Paper 54: Theorematum quorundam ad numeros primos spectantium demonstratio (1736)

§3. Significante p numerum primum formula a?~! — a semper per p dividi poterit, nisi a per
p dividi queat.

§4. Significante p numerum primum imparem quemcunque formula 27~! — 1 semper per p
dividi poterit.
Demonstatio. Loca 2 ponatur 1+1 eritque
-1 —1(p—-2 —Dp—-2)p-3 —1D(p—-2)p—-3)(p—4
p p=Dp=2) p=Dp=-2p-3) p-DE-2)p-3)p-4)

1+1)P 1 =1
(1+1) Tt 1-2 1-2-3 1-2-3-4

cuius seriei terminorum numerus est —p et proinde impar. Pareterea quilibet terminus, quamvis
habeat fractionis speciem, debit numerum integrum; quisque enim numerator, uti satis constat,
per suum denominatorem dividi potest. Demto igitur seriei termino primo 1 erit

(1+1)Pt—1 = 20711
p—1 (-1DE-2) @-DE-2)FE-3)
T 1-2 + 1-2-3

guorum numerus est = p — 1 et propterea par. Colligantur igitur bini quique termini in umam
summam, quo terminorum numerus fiat duplo minor; erit

plp—1) N plp—1)p—2)(p—3) N plp =1 —2)(p—3)(p—4)(p—5)

20l 1=
1-2 1-2-3-4 1.2:3-4-5-6

cuius seriei ultermis terminus ob p numerum imparem erit

plp—1(p—2)---2
1-2:3---(p—1)

:p'

Apparet autem singulos terminos per p esse divisibiles; nam cum p sit numerus primus et
maior quam ullus denominatorum factor, nusquam divisione tolli poterit. Quamobrem si fuerit p
numerus primus impar, per illum semper 2P~! — 1 dividi poterit.

Theorema Denotante p numerum primum si a? — a per p dividi potest, tum per idem p quoque
formula
(a+1)P —a—1
dividi poterit.
Demonstratio: Resolvatur (1 + )P consueto more in seriem; erit
(p—=1) 5 pp—1P-2) 5

p_14P,. P g Pt e
(1+a) —1+1a+ 51 a” + a0 a” + +1a +ad?,
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cuius seriei singuli termini per p dividi possuntpraeter primum et ultimum, si quidem p fuerit
numerus primus. Quamobrem (1 = a)? — a? — 1 divisionem per p admittet; haec autem formula
congruit cum hac (14 a)? —a — 1 — a? + a. At a? — a per hypothesin per p dividi potest, ergo et
(14 a)? —a—1. Q.E.D. %

Paper 134 Theoremata circa divisores numerorum (1747/48)

§1. Theorema 1. Si p fuerit numeris primus, omnis numerus in hac forma (a + b)? — a? — b?
contentus divisibilis erit per p.

§4. Theorema 2. Siutraque harum formularum a? —a et b” —b fuerit divisibilis per numerorum
primus p, tum quoque ista formula (a 4 b)? — a — b divisibilis erit per eundem numerum primum
p.

§7. Theorema 3. Si p fuerit numerus primus, omnis numerus huius formae c¢? — ¢ per p erit
divisibilis.

§10. Si ergo p fuerit numerus primus, omnes numeri hac forma contenti a?~! — 1 erunt
divisibiles per p exceptis iis casibus, quibus ipse numerus a per p est divisibilis.

§11. Theorema 4. Si neuter numerorum a et b divisibilis fuerit per numerum primum p, tum
omnis numerus huius formae a?~' — P~ erit divisibilis per p.

§15. Corollarium 4. Si m sit numerus par, puta m = 2n, atque a™ — b™ seu a®® — b*"
divisibilis per 2m + 1 = 4n + 1, tum ob eandem rationem vel a™ — b™ vel o™ + b™ divisibilis erit
per numerum primum 4n + 1.

§16. Summa duorum quadratorum a2 4 b2 per nullum numerum primum huius formae 4n — 1
unguam dividi potest, nisi utriusque radix seorsim a et b sit divisibilis per 4n — 1.

§21. Theorema 6. Omnes divisores summae duorum biquadratorum inter se primorum sunt
vel 2 vel numeri huius formae 8n + 1.

§26. Theorema 7. Omnes divisores huiusmodi numerorum «® + b%, si quidem « et b sunt
numeri inter se primorum, sunt vel 2 vel in hac formae 16n + 1.

§29. Theorema 8. Summa duarum huiusmodi potestatum 2" + 52", quarum exponens est
dignitas binarii, alios divisores non admittit, nisi qui contineantur in hac formae 2™ *1n + 1.

%Quod erat demonstrandum
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XIVA. Euler’s Tractatus de Numerorum Doctrina
Caput 2: De divisoribus numerorum

§77. Hinc patet regula facilis multitudinem divisorum cuiucuno numeri definiendi: Sit enim
prghrYs¢ forma numeri propositi; et quia numeri mutlitudo divisorum est A + 1, erit numeri p*g*
multitudo divisorum (A+1)(x + 1), huius vero numeri p*g“r" erit (A +1)(u+1)(v + 1), porroque
huius prgtr?s¢ erit (A + 1)(p + 1)(v + 1)(¢ + 1). Classis autem ad quam hic numerus est
referendus, indicatur numero A + p + v + ¢, est summa exponentium.

Caput 3: De summa divisorum cuiusque numeri
§82. Proposito quocunque numero n summam omnium eius divisorum hoc modo | n de-
signemus, ita ut haec scriptura [ n denotet summam divisorum numeri n.

§84. Pro numeris primis p, quia alios non agnoscunt divsores praeter se ipsos et unitatem,
erit [ p = p+ 1. Tum vero pro potestatibus numerorum primorum erit

2
—1

/ﬁ': p+1="L
p—1

)
3

-1
/ﬁ — Papr1=2—
p—1
4
-1
/p3 = Papttprli=t—r,
p—1
et in genere
pn+1—].
/pn_pn+pnl+pn2+,,,+1_ﬁ

§90. Proposito ergo numero N, cuius summam divisorum assignari oporteat, resolvatur is
in suos factores primos, sitque N = p*¢*r”s¢, quo facto erit

e oo [«

This chapter concludes with a proof of the euclidean expression for even perfect numbers.5*

Caput 4. De numeris inter se primis et compositis

§111. Duo numeri, qui praeter unitatem nullum alium habent factores seu divisorem com-
munem, vacantur numeri primi inter se; qui autem praeter unitatem alium habent divisorum
communem, vocantur compositi inter se. lam 8 et 15 sunt numeri inter se primi, et 9 et 15
numeri inter se compositi.

§117. Si ergo a Sit numerus primus = p, quia omnes numeri ipso minores ad eum sunt
primi, horum multitudo est p — 1.

§121. Generalius, si sit ¢ = pq existente utroque factore p et ¢ primo, ab unitate ad a dantur p
numeri per ¢ divisibiles scilicet ¢, 2q, 3q, ..., pq; deinde dantur ¢ numeri per p divisibiles, scilicet

645ee XI1IB.
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p, 2p, 3p, ..., gp, quorum ultimus pq iam est numeratus. Multitudo ergo omnium numerorum a
non superantium, qui ad a sunt compositi, erit = p + ¢ — 1, unde reliqui, quorum multitudo est

=pg—p—q+1=(p—1)(¢g—1),

ad a erunt primi.

§122. Hic autem pro p et ¢ numeros primos diversos sumsimus. Namque esset a = p?. alii
numeri ad a non essent compositi, nisi qui sunt per p divisibles, quorum multitudo cum sit —p,
reliquorum, qui ad a sunt praeter multitudo erit = p? — p = p(p — 1).

§124. Hinc in genere patet, si a fuerit potestas quaecunque p™ numerus primi p, multi-
tudinem numerorum ad a primorum, qui quidem ipso a non maiores, fore = p"~!(p — 1).

§132. Cum ergo multitudo numerorum ad p™ primorum ipsoque minorum sit = p"~!(p — 1),
ex praecedente propositione summo rigore concludin. Si numerus propositus sit = p*g#rVs¢ - - -,
for multitudinem omnium numerorum ad eum primorum ipsoque minorum

= - Hg—Dr = 1) (s —1) - -

XIVB. Euler’s extraordinary relation involving sums of divisors
Paper 175: Decouverte d’une loi tout extraordinaire des nombres par rapport a la somme de leurs
diviseurs %° (1751)

Euler begins by explaining the sum of divisors function® [ n, the multiplicative property, and tabu-
lating [ nforn =1,2,...,100.

n 0 1 2 3 4 5 6 7 8 9
0| —— 1 3 4 7 6 12 8§ 15 13
10 18 12 28 14 24 24 31 18 39 20
200 42 32 36 24 60 31 42 40 56 30
30 72 32 63 48 54 48 91 38 60 56
40| 90 42 96 44 84 78 72 48 124 57
50 93 72 98 54 120 72 120 80 90 60
60| 168 62 96 104 127 84 144 68 126 96
70144 72 195 74 114 124 140 96 168 80
80| 186 121 126 84 224 108 132 120 180 90
90| 234 112 168 128 144 120 252 98 171 156

§5. Néanmoins, j’ai remarqué que cette progression suit une loi bien régal’ee est méme comprise dans
I’ordre des progressions que les Geometres nomment recurrentes, de sorte qu’on peut toujours former

85English translation by G. Polya, Mathematics and Plausible Reasoning, volume I. Induction and Analogy in Mathematics,
Princeton University Press, 1954.
8 Modern notation: o (n) = sum of all divisors of n, including 1 and .
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chacun de cces termes par quelques - uns des précédens, suivant une régle constante. Car si [ n marque
un terme quelconque de cette irréguliere progression, et [(n — 1), [(n — 2), [(n — 3), [(n — 4),
J(n —5), etc. des termes précédens, je dis que la valeur de [ n est toujours composée de quelques - uns
des précédens suivant cette formule:

/n = /n—l +/n— —/n—5)—/(n—7)+/(n—12)+/(n—15)

/(n—22 /(n—26) /(n—35)—|—/(n—40)—/(n—51)—/(n—57)

—I—/(n—?O)—i—/(n—??)—/(n—92)—/(n—100)—|—

Of this formula we must make the following remarks:

I. In the sequence of the signs + and -, each arises twice in succession.

I1. The law of the numbers 1, 2, 5, 7, 12, 15, ... which we have to subtract from the proposed humber
n, will become clear if we take their differences:

Num. 1, 2, 5, 7, 12, 15, 22, 26, 35, 40, 51, 57, 70, 77, 92, 100,
Diff. 1, 3, 2, 5 3,7, 4, 9 5 11, 6, 13, 7, 15 8,

In fact, we have here, alternately, all the integers 1, 2, 3, 4, 5, 6, ...and the odd numbers 3, 5, 7, 9, 11
., and hence we can continue the sequence of these numbers as far as we please.
I11. Although this sequence goes to infinity, we must take, in each case, only those terms for which
the numbers under the sign [ are still positive and omit the [ for negative values.
IV. If the sign [ 0 turns up in the formula, we must, as its values in itself is indeterminate, substitute
for [0 the number n proposed.

Euler then gave illustrative examples in §56, 7.

diff 3 2 5

3
J299 - [206 - 294 + [289 + [286 - [279

+

J301 = 300 ~ Jors 4
5 11 6 13 7 15 8 17
+ f 266 + f 261 — f 250 — f 244 + f 231 + f 224 — f 209 — f 201 +
9 19 10 21 11 23 12 25
+ f184 + f175 - f156 - f146 + f125 + f114 - f91 - f79 +
13 27 14
+ f 54 + f 41 - f 14 - f 0

§9. In considering the partitions of numbers, | examined, a long time ago,%” the expression
1—2)1-2H)1-232 -2H1 -2 (1 - 252 —2)(1 —2¥) -

87See also Paper 158 Observationes analyticae variae de combinationibus (1741/3), 191 De partitione numerorum
(1750/1), 243 Observatio de summis divisorum (1754/5), 244 Demonstratio theorematis circa ordinem in summis
divisorum observatum (1754/5).
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in which the product is assumed to be infinite. In order to see what kind of series will result, I multiplied
actually a great number of factors and found

l—z—a? 420 +a2" —a'2 a1 422 4226 — 23 404 ...

The exponents of x are the same which enter into the above formula; also the signs + and - arise twice
in succession. It suffices to undertake this multiplication and to continue it as far as it is deemed proper
to become convinced of the truth of this series. Yet | have not other evidence for this, except a long
induction which | have carried out so far that | cannot in any way doubt the law governing the formation
of these terms and their exponents. | have long searched in vain for a rigorous demonstration of the
equation between the series and the above infinite product (1 — x)(1 — 2?)(1 — 23)---, and | have
proposed the same question to some of my friends with whose ability in these matters | am familiar, but
all have agreed with me on the truth of this transformation of the product into a series, without being able
to unearth any clue of a demonstration. Thus, it will be a known truth, but not yet demonstrated, that if
we put
s=(1-z)(1-2)1—-2>)1 —2h(1 - 251 —2%)---

the same quantity s can also be expressed as follows:
s=l-a—a?+2°+a2" —a2 — P 4222 4226 — 2% 404 ...

For each of us can convince himself of this truth by performing the multiplication as far as he may wish;
and it seems impossible that the law which has been discovered to hold for 20 terms, for example, would
not be observed in the terms that follow.

§10. As we have thus discovered that those two infinite expressions are equal even though it has
not been possible to demonstrate their equality, ® all the conclusions which may be deduced from it
will be of the same nature, that is, true but not demonstrated. Or, if one of these conclusions could be
demonstrated, one could reciprocally obtain a clue to the demonstration of that equation and it was with
this purpose in mind that I maneuvered those two expressions in many ways, and so | was led among
other discoveries to that which | explained above; its truth, therefore, must be as certain as that of the
equation between the two infinite expressions. | proceeded as follows. Being given the two expressions

= (1-2)(1 =21 -2’1 -1 —2°)(1 —2®)(1 —2T)- -
= l-z—2?+2° 42" — a2 — 2P 4222 4 220 — 235 240 ...

are equal, 1 got rid of the factors in the first by taking logarithms
log s = log(1 — z) + log(1 — z?) + log(1 — 23) 4+ log(1 — z*) + - --
In order to get rid of the logarithms, | differentiate and obtain the equation

1 ds B 1 2z 32 43 5t
l—2 1—22 1—23 1—2¢ 1—25

883ee XIC below; also G.E.Andrew, Euler’s pentagonal number theorem, Math. Magazine, 56 (1983) pp. 279 — 284,

s dr
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or

T ds x 222 33 4t 5x°

_;'%:1—x+1—x2+1—x3+1—x4+1—x5+.”

From the second expression for s, as infinite series, we obtain another value for the same quantity

v ds x4+ 22? —52° — Tx" 4 1227 + 15215 — 22222 — 26270 4 - -

s dxr l—z—2?2+2°+ 27— 212 — 21 + 222 4 226 — ...

§11. Letus put —%- j—; = t. We have above two expressions for the quantity ¢. In the first expression,
I expand each term into a geometric series and obtain

t =z 4+ 22 + 22 + 2 + 2 4+ 25 + 27 + B +
+ 222 + 2z + 226 + 228 4+

+ 323 + 3z +

+ 4z + 428 4+

+ 52 -

+ 625 +

+ 72T -

+ 8x® +

Here, we see easily that each power of z arises as many times as its exponent has divisors, and that each
divisior arises as a coefficient of the same power of z. Therefore, if we collect the terms with like powers,
the coefficients of each power of = will be the sum of the divisors of its exponent. And, therefore, using
the above notation | n for the sum of the divisors of n, | obtain

t:/1-x+/2-x2+/3'x3+/4-x4+/5-x5+/6-x6+/7~x7+---

The law of the series is manifest. And although it might appear that some induction was involved in the
determination of the coefficients, we can easily satisfy ourselves that this law is a necessary consequence.
§12. By virtue of the definition of ¢, the last formula of §10 can be written as follows:

t(l—x—x2+x5+x7—x12—x15+x22+x26—---)
—x — 222 +52° + 72" — 12212 — 1521 + 22222 + 26226 — ... = 0.

Substituting for ¢ the value obtained at the end of §11, we find

0 = [l + [2-22 + [3-2°3 + [d-2* + [5.25 + [6-20 +
-z — [1.-22 — [2.2° — [3.2% — [4.2° — [5.20 —

- 202 — [1-23 — [2-2% — [3.25 — [4.20 —

+ 50° 4+ [1-2% +
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Collecting the terms, we find the coefficient for any given power of z. This coefficient consists of several
terms. First comes the sum of the divisors of the exponent of z, and then sums of divisors of some
preceding numbers, obtained from that exponent by subtracting successively 1, 2, 5, 7, 12, 15, 22, 26,
.... Finally, if it belongs to this sequence, the exponent itself arises. We need not explain again the signs
assigned to the terms just listed. Therefore, generally, the coefficient of 2 is

/n—/(n—1)—/(n—2)+/(n—5)+/(n—7)—/(n—12)—/(n—15)+---

This is continued as long as the numbers under the sign [ are not negative. Yet, if the term | O arises, we
must substitute n for it.

XIVC. Euler’s pentagonal number theorem
The infinite series expansion that Euler made use of to establish his extraordinary relation involving
the sum of divisors function can be written as

[ee] +oo

H (1 — x”) = Z (—1)711’%”(3”""1),

n=1 n=-—o00

This is usually called Euler’s pentagonal number theorem, since for negative values of n, upon writing
n = —m, the exponent becomes the pentagonal number%m(Sm —1).

@Gy

Euler proved this theorem in Paper 244: Demonstratio theorematis circa ordinem in summis
divisorum observatum, (1754). After a brief explanation of how to form the infinite series from the
sequence of differences °

1,1,3,2,5,3,7,4,9,5, 11, 6, 13, 7, 15, 8, ...
he gave the proof in three propositions.
Propositiol  Si sit

s=([1+a)1+8)1+7)A+0)1A+e)A+)(L+n)--

895ee §5, 11 of Paper 175, XIVB above.
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productum hoc ex infinitis factoribus constans in seriem sequentum convertitur

s = 1+a)+604+a)+71+a)1+8)+51+a)(1+6)(1+7)
+e(l+ )1+ +NA+8) +C(1+a)1+B)A+NA+8)1L+e) + -

Propositio 2 Si fuerit
s=(1-z)(1-2)1-231 -2H1 - 21 - 2% -
productum hoc ex infinitis factoribus constans reducetur ad hanc seriem

s=1l—z—2?’(1—2z)—2*(1-2)(1-2?) —2*Q—2)1 -2)1—23) — -

Propositio 3 Si fuerit
s=1-z)1-2)1-2%)(1 - 21 - 251 —2%1 —27) -

erit hoc productum infinitum per multiplicationem evolvendo terminoque secundum potestes
ipsius z disponendo

s=1l—z—a?+ad +a" —a1?2 — 2l 4222 4 220 — 235 — 280 L o5 4 5T ...
cuius seriei ratio est ea ipsa, quae supra est exposita.
Demonstratio. Cum sit

s=1-2)(1-2)1-2>)1 -2H(1 -251 -2%01 —-z7) -

erit
s=1-z—2?(1—2)—231-2)(1-2?) 2?1 —2)1 —2H(A —23) —---.
Ponatur
s=1-—xz— Az?;
erit

A=1-z+z(1-2)1—-22)+ 221 —2)(1 — 21 —23) + -
Evolvantur singuli termini tantum secundum factorem 1 — x ac sequenti modo disponantur

Ao -z —22(1 — 2 —23(1 — 2?)(1 — 23) —
N { 1+z(1—-2?) +22(1—2H)(1—-2%) 4231 -2H)Q-23)1-2*) +---

~—

eritque terminis subscriptis colligendis

A=1-2> -2’1 -2?) —2"(1 —2?)(1 —23) - 2°(1 — 22)(1 - 231 — ) — - -
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Ponatur
A=1-2%— Ba’;

erit
B=1-2*4+2°(1 -2 —2*) +2*1 - 21 - 2®) (1 —2*) + - -
in quibus terminis singulis 1 — z? tantum evolvatur, ac fiet
5 —z? —zt(1 — 23) —z°(1 —2°)(1 —
Tl 14221 -2 21 231 -2t 4281 -2 - 2M) (1 —2®) +---
denuoque terminis subscriptis colligendis habetitur
B=1-2°—2%1—-2%) — 2" (1 - 231 - 2% - 21 - 2Ha - 2Ha - 2°) — - -
Ponatur
B=1-2"—-Ca%

erit
C=1-a3+231 -1 —2H+2°0 - 231 —2M)(1 - 25) 4 -

ubi in singulis terminis factor 1 — 2 evolvatur, ut fiat scribendo ut supra

C —a3 —28(1 — 2%) —29(1 — 2" (1 — 29) —
N { T+23(1 —2%) 4251 —2Y(1 —25) +2°(1 —2Y) (1 —2)(1 —25) +---

unde colligetur
C=1-2"—z"1—aY) - 21 - 2" - 2%) — 201 —2H (1 - 2% —25) — - ..

Ponatur
0:1—:):7—Dx11;

erit
D=1-z'+2*1 2N - 2°) + 281 —2MH (1 - 2°)(1 - 25) + - -

guae abit in hanc formam

—CC4 —.’ES

b= (1% )1 -
L+24(1 -2 4281 —2°)(1 —25) +22(1 —25)(1 —2%)(1 —27) +---

sicque erit
D=1-2"—2"1-25% 291 - 21 — 25 — 21 - 2>)1 - 251 - 27) — - -

Quodsi porro ponatur
D=1-2°— Ez',
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reperietur simili modo

E=1-z21—Fg7

hincque ultra

F = 1—z%—Ga®,
G = 1—z - Ha?,
H = 1—2'—12%,

Restituamus iam successive hos valores eritque

S = 1—=z
Ax? = 2%(1 —23)
Bz = 2'(1—2a%)
Cx = 21 —27)
Dx* = x%(l — xg)

Quamobrem habebimus

s=1-z—2?1-2%)+2"1—-2°) — 21 —2") + 22°(1 — 2% — 21 —2t) 4 ...

sive id ipsum, quod demonstrari oportet,

s=1—o—a24tad Lol 12 ;15 22, 26

unde simul lex exponentium supra indicata per differentias luculenter perspicitur.

—Az?,

T A L

117
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XVA. The Pell equation z? — Ny? =1
Andre Weil on the Pell equation 7°:

Fermat had stated that a triangular number %n(n + 1) cannot be a fourth power. Goldbach
thought he had proved, in the Acta Eruditorum of 1724, that such a number cannot even be
a square, and he had communicated his “proof” to Nicolas to Daniel Bernoulli in 1725 and
to Euler in 1730. Euler pointed out the error at once; if one puts x = 2n + 1, the question
amounts to 22 — 8y? = 1 and is thus a special case of “Pell’s equation”. “Such problems,” he
writes, “have been agitated between Wallis and Fermat .. .and the Englishman Pell devised
for them a peculiar method described in Wallis’s works.” Pell’s name occurs frequently in
Wallis’s Algebra, butnever in connection with the equation 22 — Ny? = 1 to which his
name, because of Euler’s mistaken attribution, has remained attached.

Paper 29: De solutione problematum Diophanteorum per numeros integros (1732/33);
Paper 279: De resolutione formularum quadraticarum indeterminatarum per numeros integros
(1762/63);

Paper 323  De usu novi algorithmi in problemate pelliano solvendo (1765)
Continued fraction expansion of square roots of integers
» 1 1 1 1 1 1 1 1 1 1
\/ﬁ_“I+I+I+I+6+I+I+I+I+6+m
§10. Quo indoles harum operationum melius perspicatur, aliud exemplum prolixiorem calcu-
lum postulans adiungam. Proposita scilicet sit v/61; cuius valor proxime minor cum sit 7, pono

V6l =7+ % et operationes sequenti modo erut instituendae:

Loa = «/&4 - @ 1+3

L b =2 = 12(/o1+5) VL |
M. ¢ = 2= = SWELYT) VBl g )
Vood o= g = MG = v 141
VI f x/g—ﬁ @ @% 2+§
VIL g = #— = CICAIER) R/ RS S N
VIIL & —— AV6L+5) VoT+5 341
X i = Z= = @ T
Xk o= gy o= MG o g o 14
XL (= 2= = LOGBIHD T4 7 = 14+ 1
XIL m = =

O\Weil, Number Theory, pp.173-174.
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ergo m = a hincque porro n = b, o = c etc. Ex quo indices pro fractione continua erunt
7,1,4,3,1,2,2,1,3,4,1,14,1,4,3,1,2, . ..

neque opus est ipsam fractionem continuam hic exhibere.

§15 gives the continued fraction expansions of sqrtn forn = 2,3, ..., 120. For examples,
V6 = [2,2,4,2,4,2,4,...],
v19 = [4,2,1,3,1,2,8,2,1,3,1,2,8,...],

§17. Euler gives the continued fraction expansions of several sequences of square roots:

vn?+1 [n,2n],
Vn2+2 = [n,n,2n]|,
vn?2+n = [n,2,2n],
vn2+2n—1 = [n,1,n—1,1,2n],
Van?+4 = [2n,n,4n],
VIn2+3 = [3n,2n,6n],
Von? +6 [3n,n, 6n]

Euler’s solution of Pell’s equation  Expositio calculi pro quolibet numero z ut fiat p> = z¢% + 1
§38(Examples) I. Si z = 6, sunt indices 2, 2, 4; hinc operatio:

2, 2
1 2 5.
0 1 2
z=1-540-2, p =25,
ergo
y=1-2+0-1, q="2.
Il. Si z =19, suntindices 4, 2, 1, 3,1, 2, 8:
4, 2, 1, 3
1 4 9 13 48
o0 1 20 30 10
r=3-48+2-13, p = 170,
ergo

y=3-11+2-3, q = 39.
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§39. Alterius vero generis, quo bini dantur indices medii in qualibet periodo, hace adiungo
exempla. Il. Si z = 29, sunt indices 5, 2,1, 1, 2, 10:

OIHQOT
TIU!J[\’)
N gl
w5

hinc

z = 3-16+2-11 =10,
y = 3.-3+2.-2=13.

Ergo

p = 222 +1=09801,
q = Z2xy = 1820.

IV.Siz =61, indicessunt7,1,4,3,1,2,2,1, 3,4, 1, 14:

7, 1, 4, 3, 1, 2

1 7 8 39 125 164 453,

00 1> 1> B» 16° 21’ 58
hinc fit

x = b58-453 421164 = 29718,

y = 08-58+21-21 = 3805.
Ergo

p = 22%+1=1766319049,
¢ = 2zy = 226153980.

At the end of the paper, Euler lists the smallest positive solution of 7 = ¢¢? 4 1 for ¢ between 1 and
100, and also those for ¢ = 103, 109, 113, 157 and 367. These solutions are very large.

¢t p q

103 227528 22419

109 158070671986249  15140424455100
113 1204353 113296

157 46698728731849 3726964292220
367 19019995568 992835687



YIU: Elementary Mathematical Works of Euler 121

XVB. Euler’s proof of Fermat’s Last Theorem for n = 4. '

Elements of Algebra, Part 11, Chapter XII1: Of some expressions of the form aa® + by* , which are not
reducible to squares (§5202 — 205).

Paper 98: Theorematum quorundam arithmeticorum demonstrationes (1738)

Theorema 1. Summa duorum biquadratorum ut a* + b* non potest esse quadratum, nisi
alterum biguadratum evanescat.
Demonstratio In theoremate hoc demonstrando ita versabor, ut ostendam, si uno casu fuerit
a*+b* quadratum, quantumvis etiam magni fuerint numeri a et b, tum continuo minores numeros
loca a et b assignhari posse atque tandem ad minimos numeros integros perveniri oportere.
Cum autem in minimis numeris tales non dentur, quorum biquadratorum summa quadratum
constitueret, concludendum erit nec inter maximos numeros tales extare.

Ponamus ergo a* + b* esse quadratum atque a et b inter se esse numMeros primos; nisi enim
primi forent, per divisionem ad primos reduci possent. Sit ¢ humerus impar, b vero par, quia
necessario alter par, alter impar esse debet. Erit ergo

a2=p*—¢* et b =2pq

numerique p et ¢ inter se erunt primi eorumque alter par, alter impar. Cum autem sit a? = p?—¢?,
necess est, ut p sit numerus impar, quia alias p> — ¢> quadratum esse non posset. Erit ergo p
numerus impar et ¢ numerus par. Quia porro 2pg quadratum esse debet, necesse est, ut tam p
quam 2¢ sit quadratum, quia p et 2¢ sunt numeri inter se primi. Ut vero p? — ¢2 sit quadratum,
necesse est, ut sit

p=m?+n® et q=2mn

existentibus iterum m et n numeris inter se primis eorumque altero pari, altero impari. Sed
guaniam 2¢ quadratum est, erit 4mn seu mn quadratum; unde tam m quam n quadrata erunt.
Posito ergo

m=a? et n:y2

erit
p=m?+n?=a"+y*

quod quadratum pariter esse deberet. Hinc ergo sequitur, si a* + b* foret quadratum, tum
quoque z* + y* fore quadratum; manifestum autem est numerous = et y longe minores fore
quam a et b. Pari igitur via ex biquadratis z* + y* denuo minora orientur, quorum summa esset
guadratum, atque pergendo ad minima tandem biquadrata in integris pervenietur. Cum ergo
non dentur minima biquadrata, quorum summa efficieret quadratum, palam est nec in maximis
numeris talia dari. Si autem in uno biquadratorum pari alterum sit = 0, in omnibus reliquis
paribus alterum evanescet, ita ut hinc nulli novi casus oriantur. Q.E.D.

™See also Laubenbacher and Pengelley, Mathematical Expeditions, Chronicles by the Explorers, Springer, 1999, pp.179 —
185.



YIU: Elementary Mathematical Works of Euler 122

XVC. Sums of two squares
Paper 228: De numeris qui sunt aggregata duorum quadratorum (1752/3)

65. Theorema  Sip et ¢ sint duo numeri, quorum uterque est summa duorum quadratorum,
erit etiam eorum productum pg summa duorum quadratorum.

Proof. Ifp=a®+b?and g = 2 + d?, then pqg = (a® + b2)(c? + d?) = (ac + bd)? + (ad — be)?.

§8. Propositio 1.  Si productum pq sit summa duorum quadratum et alter factor p sit
numerus primus pariterque duorum quadratorum summa, erit quoque alter factor ¢ summa
duorum quadratorum.

[If the product pq is a sum of two squares, and the factor p is a prime number which is a sum of two
squares, then the quotient ¢ is a sum of two squares.]

§14. Propositio 2.  Si productum pq sit summa duorum quadratorum, eius factor autem ¢
non sit summa duorum quadratorum, tum alter factor p, si sit numerus primus, non erit summa
duorum quadratorum, sin autem non sit primus, saltem factorem certe habebit primum, qui non
sit summa duorum quadratorum.

[If the product pq is a sum of two squares, and the factor ¢ cannot be a sum of two squares, then the
other factor p contains a prime factor which is not a sum of two squares.]

§19. Propositio 3. Si summa duorum quadratorum inter se primorum a? + b divisibilis sit
per numerum p, semper exhiberi poterit summa duorum aliorum quadratorum ¢? + d? divisibilis
per eundem numerum p, ita ut ista summa c? + d? non sit maior quam %pz.

[If a sum of two squares a? + b2 (in which a and b are relatively prime) is divisible by a prime p,
there are c and d such that ¢ + d? is divisible by p, and is not more than 3p?.]

§22. Propositio 4. Summa duorum quadratorum inter se primorum dividi nequit per ullum
numerum, qui ipse non sit summa duorum quadratorum.

[A sum of two squares of relatively prime integers is not divisible by a number which is not a sum of
two squares.]

§28[a] Propositio 5.  Omnis numerus primus, qui unitate excedit multiplum quaternarii, est
summa duorum quadratorum.

[Every prime number of the form 4n+1 is a sum of two squares.] The demonstration that Euler gives
for this proposition is tentamen ( = temptamen), “attempting”. An exact proof of this proposition is
given in Paper 241, Demonstratio theorematis Fermatiani omnem numerum primum formae 4n-+1
esse summam duorum quadratorum, (1754/55). See below.

§35. Propositio 6.  Si numerus formae 4n + 1 unico modo in duo quadrata inter se prima
resolvi queat, tum certe est numerus primus.

[If a number 4n + 1 is a sum of two relatively prime squares in a unique way, then it must be a prime
number.]

640. Propositio 7. Qui numerus duobus pluribusve diversis modis in duo quadrata resolvi
potest, ille non est primus, sed ex duobus ad minimum factoribus compositus.

[If a number is a sum of two squares in more than one way, then it is not a prime, and is the product
of at least two factors.]
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Euler’s proof that every prime 4n + 1 is a sum of two squares
Paper 241: Demonstratio theorematis Fermatiani omnem numerum primum formae 4n + 1 esse
summam duorum quadratorum, (1754/55).

§3. Quodsi iam 4n + 1 sit numerus primus, per eum omnes numeri in hac forma a 4" — b*"
contenti erunt divisibiles, siquidem neuter numerorum a et b seorsim per 4n + 1 fuerit divisibilis.
Quare si a et b sint numeri minores quam 4n+1 (cyphra tamen excepta), numeris inde formatus
a*™ — b*" sube ykka kunuatuibe oer byneryn orunyn orioisutyn 4n + 1 erit divisibilis. Cum autem
a*™ — b sit productum horum factorum a?” + v*" et a®® — b>", necesse est, ut alteruter horum
factorum sit per 4n + 1 divisibilis; fieri enim nequit, ut vel neuter vel uterque simul divisorem
habeat 4n + 1. Quodsi iam demonstrari posset dari casus, quibus forma a2 + 52" sit divisibilis
per 4n + 1, quoniam a?" + " ob expoenentem 2n parem est summa duorum quadratorum,
quorum neutrum seorsim per 4n + 1 divisibile existit, inde sequeretur hunc numerum 4n + 1
esse summam duorum quadratorum.

4. Verum summa a®" + b*" toties erit per 4n + 1 divisibilis, quoties differentia a>® — v?"
per eundem numerum non est divisibilis. Quare qui negaverit numerum primum 4n + 1 esse
summam duorum quadratorum, is nagare cogitur ullum numerum huius formae a 2" + b>" per
4n + 1 esse divisibilem; eundem propterea affirmare oportet omnes numeros in hac forma
a®™ — b contento per 4n + 1 esse divisibies, siquidem neque a neque b per 4n1 sit divisible.
Quamobrem mihi hic demonstrandum est non omnes numeros in forma a?" — b?" contento
per 4n + 1 esse divisibles; hoc enim si praetitero, certum erit dari casus seu numeros pro a
et b subtituendos, quibus forma a?"* — b*" non sit per 4n + 1 divisiblis; illis ergo casibus altera
forma a®" 4 b*>" necessario per 4n + 1 erit divisibilis. Unde, cum a?" et b2 sint numeri quadrati,
conficietur id, quod proponitur, scilicet numerum 4n + 1 esse summam duorum quadratorum.

§5. Ut igitur demonstrem non omnes numeros in hac forma a?" — b?" contento seu non
omnes differentias inter binas potestates dignitatis 2n esse per 4n + 1 divisibiles, considerabo
seriem harum potestatum ab unitate usque ad eam, quae a radice 4n formatur,

1, 227, 32 420 5262 (4n)n

ac iam dico non omnes differentias inter binos terminos huius seriei esse per 4n + 1 divisibiles.
Si enim singulae differentiae primae

22n _ 1’ 32n _ 2271’ 42n _ 3271’ 52n _ 42n’ . (477,)2” _ (4n _ 1)2n

per 4n + 1 essent divisibiles, eetiam differentiae huius progressionis, quae sunt differentiae
secundae illius seriei, per 4n + 1 essent divisibiles; atque ob eandem rationem differentiae
tertiae, quartae, quintae etc. omnes forent per 4n + 1 divisibiles ac denique etiam differentiae
ordinis 2n, quae sunt, ut constat, omnes inter se aequales. Differentiae autem ordinis 2n sunt
=1-2-3-4---(2n), quae ergo pre numerum primum 4n + 1 non sunt divisibiles, ex quo vicissim
sequitur ne omnes quidem differentias primas per 4n + 1 esse divisibiles.
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XVIA. Euler’s proof of Fermat’s Last Theorem for n = 3
Elements of Algebra, Part 11, Chapter XV, §243.
Theorem. It is impossible to find any two cubes, whose sum, or difference, is a cube.

[Introduction to Steps 3.]  Euler begins with the equation 22 + ¢ = 23, observes that 2 and y can
be assumed to be odd numbers without common divisors, so that if p = %Q and ¢ = 5%, then
2 +y* = 2p(p® + 3¢%)
. It is sufficient to demonstrate the impossibility of 2p(? + 3¢2) being a cube.

[Step 4.]  If therefore 2p(p? + 3¢%) were a cube, that cube would be even, and therefore divisible
by 8. ... p? + 3¢> must be an odd number, ..., # must be a whole number.

[Step 5.] Butin order that the product %(pQ +3¢?%) may be a cube, each of these factors, unless they
have a common divisor, must separately be a cube. ...[T]he question here is, to know if the factros p and
p? + 3¢, might not have a common divisor. ... [s]ince p and ¢ are prime to each other, these numbers
...can have no other common divisor than 3, which is the case when p is divisible by 3.

Case 1. p not divisible by 3.
[Step 7.] [The] two factors & and p? + 3¢ are prime to each other; so that each must separately by
a cube. Now, in order that p* + 3¢> may become a cube, we have only, as we have seen before 2 1o

suppose
p+qvV-3=(t+u/=3)* and p—qvV-3=(t —uv/-3)°

which gives p? + 3¢% = (¢* + 3u?)3, which is a cube, and gives us
p=t>—9tu? = t(t* — 9u?),

also,
q = 3t%u — 3u® = 3u(t? — u?).

Since therefore ¢ is an odd number, v must be odd, and ..., ¢ must be even.

[Step 8.] Having transformed p? + 3¢? into a cube, and having found p = #(# — 9u?) = t(t +
3u)(t — 3u), itis also required that £, and consequently, 2p be a cube; or, which comes to the same, that
. 2t(t + 3u)(t — 3u) be a cube.

But here it must be observed that ... the factors 2¢t, ¢ + 3u, and ¢ — 3u, are prime to each other, and
each of them must separately be a cube. If...,¢t+3u = f3,and t —3u = ¢>, we shall have 2t = f3 + ¢>.

2The principle here that Euler used is stated in Part Il, Chapter X1, §182. §182: Let the formula 2 + cy? be proposed, and
let it be required to make it a square. As it is composed of the factors (x + y/—c) x (z — y+/—c), these factors must either
be squares, or squares multiplied by the same number. The explicit formulas for cubes are given in §189. Euler here assumes
the unique prime factorization property of numbers of the form = + y/—c, which mathematicians in the 19th century realized
do not always hold. However, for the proof of Fermat’s Last Theorem, numbers of the type = 4+ y/—3 do have the unique
factorization property, though it needs a justisfication.
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So that, if 2¢ is a cube, we shall have two cubes, f2 and g3, whose sum would be a cube, and which would
evidently be much less than the cube 23 and y> assumed at first.

[Step 9.] If, therefore, there could be found in great numbers two such cubes as we require, we should
also be able to assign in less numbers two cubes, whose sum would make a cube, and in the same manner
we shoud be led to cube always less. Now, as it is very certain that there are no such cubes among small
numbers, it follows, that there are not any among greater numbers. This conclusion is confirmed by that
which the second case furnishes, and which will be seen to be the same.

Case 2. p divisible by 3.
[Step 10.] Suppose that p is divisible by 3, and that ¢ is not so, and ... p = 3r; our formula will then
become

3 9
T 3¢ = T3+ ),

and the two factors are prime to each other, since 312 + ¢ is neither divisible by 2 nor 3, and » must be
even as well as p; therefore each of these two factors must separately be a cube.

[Step 11.] Now by transforming the second factor 312 + ¢2, we find, in the same manner as before,
q=1t{t*—9u?), and 7r=3u(t®—u?);

and ...since ¢ was odd, t must be ... odd ...and « must be even.

[Step 12.] But 2 must also be a cube, or 2u(t + u)(t — u) a cube; and as these three factors are
prime to each other, each must of itself be a cube. Suppose therefore t +u = 2 and t —u = ¢, we shall
have 2u = f3 — ¢3; that is to say, if 2u were a cube, f3 — ¢ would be a cube. We should consequently
have two cube, f* and g2, much smaller than the first, whose difference would be a cube, and that would
enable us also to find two cubes whose sum would be a cube. ... Thus, the foregoing conclusion is fully
confirmed.

XVIB. Sums of fourth powers
Euler opens Paper 428 " with the statement

Inter theoremata, quae circa proprietates numerorum versantur, id quidem demon-
stratrari solet trium biguadratorum summam nullo modo quoque esse biquadratum
sive

at + bt + ¢t = at

aequationem esse impossibilem.

®Observationes circa bina biquadrata quorum summam in duo alia biquadrata resolvere liceat, Nova commentarii
academiae scientiarum Petropolitanae 17 (1772), 1773, pp.64-69; 13, 211-217.
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He immediately proceeded to consider the equation
A+ B =t + D
§3. Rewriting the equation as A* — D* = C* — B*, and writing
A=p+yq, D=p-—q, C=r+s, B=r-—s,
he transforms the equation into
pa(p® + ¢*) = rs(r? + 7).

84. He writes
p=azx, q:byv T:kxv s=1Y,

to bring the equation into the form
ab(a®z? + b*y?) = k(k*2? + )

so that
y2 ]{:3 o a3b

22 a3 —k

§5. In this expression, set k = ab(1 + z) ' to transform it into

y? 5 b —1—3b%2 + 30222 4 b?23
— =qa° -

22 b2 —1—2 ’
and
y_ P P OEE s 1R - 2 P - D) - P
z 2 —-1—2z2 '

Now, we try to make the expression under the v sign a square, say, the square of (¥ — 1) + fz + gz?
for some appropriate choice of f and g. The square of such a quadratic is

(B2 —1)2 + 22 —1)fz + 2(b*>—1)gz%2 + 2fgz® + g> 2t

Comparison of the second terms suggests putting

3t -1
=5

f

and the third terms determines g:

9p* — 6b% + 1
B0 —2) =2~ 1)g+ —— *

™1n the preceding section, Euler had observed that k& = ab would lead to a trivial solution.
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from which
3t —18b% — 1

I= T80 - 1)
Now determine the value of z for which the sum of the last two terms in the two expressions are equal:

(9% + %)z = b*(b° — 4) — 2fyg,

from which
b (b2 —4) —2fg
v +g%
§6. Euler now makes a summary: from a value of b we determine f, g, z as above, and choose

z =

r=0b—1-z, y=a(b® -1+ fz+ g2°),
leading to
p=a(b*~1-2), q=ab(b®—1+fz+g2?); r=ab(142)(b*—1-2), s=a(b’—1+fz4+g2%).
Since these are all divisible by a, we simply take
p=b—1—2q=0bb*>—1+ fz+4 g2?); r=b14+2)b*—1—2), s=0b"—14 fz+gz>

These leads to a set of rational numbers p + ¢, p — q, » + s, r — s. Dividing by the gcd, one obtains a set
of integers satisfying A* + B* = C* + D*.

Then Euler gave some numerical examples. In §7. With b = 2,

11 = 6600
T=% 9% T o
from which
2187 173369646 41679846 86684823
P= 99290 97 "g579041 © " T 8579041 ° T 8579041 °
These give

(A, B,C, D) = (2219449, —555617, 1584749, —2061283).

The signs certainly can be dropped.
§8. With b = 3, we have f =13, g = 2, h = 233, and

1152 2153664 1275264 717888

160" 17 Toss61 0 T 28561 0 T 28561

From these, °
(A, B,C, D) = (12231,2903, 10381, —10203).

SEuler actually made some mistakes in his computation, and obtained A = 477069, B = 8497, C' = 310319, D = 428397.
These were corrected by the editor Ferdinand Rudio.
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In Paper 776 ’® , Euler found a smaller set A = 542, B = 359, C' = 514, D = 103.

Exercise  Find a set of integers 4, B, C, D satisfying A* + B* = C* + D* by using b = 5. 7’

Euler begins his paper 716 '@ with

Pluribus autem insignibus Geometris visum est haec theoremata latius extendi posse.
Quemadmodum enim duo cubi exbiberi nequeunt, quorum summa vel differentia
sit cubus, ita etiam certum est nequidem exhiberi posse tria biguadrata, quorum
summa sit pariter biquadratum, sed ad minimum quatuor bigquadrata requiri, ut
eorum summa prodire queat biquadratum, quamguam nemo adhuc talia quatuor
biquadrata assignare potuerit. Eodem modo etiam affirmari posse videtur non
exhiberi posse guatuor potestates quintas, quarum summa etiam esset potestas
quinta; similique modo res se habebit in altioribus potestatibus; unde sequentes
quoque postiones omnes pro impossibilibus erunt habendae:

a+b = &

A+t = &
A®+0++d = €
A+ 00+ +d+ef = f,

Plurimum igitur scientia numerorum promoveri esset censenda, si demonstrationem
desideratam etiam ad has formulas extendere liceret. ®

In 1911, R.Norrie found a sum of four biquadrates equal to a biquadrate:
30% + 120 + 272* + 315* = 353"
In 1966, L.J. Lander and T.R. Parkin found a counterexample of Euler’s conjecture for fifth powers:

27° + 84° +110° 4 133° = 1445,

®Dijlucidationes circa binas summas duorum biquadratorum inter se aequales, Mémoires de I’académie des sciences
de St. Pétershourg (11), 1830, pp.49-57; 15, 135-145.

(A, B,C, D) = (2367869, 1834883, 2533177, —1123601).

"®Resolutio formulae diophanteae ab(maa + nbb) = cd(mcec + ndd) per numeros rationales, Nova acta academiae
scientiarum Petropolitanae 13 (1795/6), 1802, pp.45-63; 14, 329-351.

Translation in Dickson, History, vol. 11, P.648: “It has seemed to many geometers that this (Fermat’s last) theorem may be
generalized. Just as there do not exist two cubes whose sum or difference is a cube, it is certain that it is impossible to exhibit
three biquadrates whose sum is a biquadrate, but that at least four biquadrates are needed if their sum is to be a biquadrate,
although no one has been able up to the present to assign four such biquadrates. In the same manner it would seem to be
impossible to exhibit four fifth powers whose sum is a fifth power, and similarly for higher powers”.
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Much more sensational was the discovery in 1988 of Noam Elkies ® of a counterexample for fourth
powers:
2682440* 4 15365639 + 18796760* = 20615673,

by studying elliptic curves.

XVIC. On Euler’s fearsome foursome

Over the course of his career, Euler addressed number theoretic matters of profound impor-
tance as well as those of considerably less significance. Among the latter was a challenge to
find four different whole numbers, the sum of any two of which is perfect square. With his
fearsome foursome of 18530, 38114, 45986 and 65570, Euler supplied a correct, if utterly
non - intuitive answer. 8

This fearsome foursome appeared in Opera Omnia, vol. 5, pp. 337 — 339, as a supplement to Paper
796, 8 To find four numbers A, B, C, D the sum of any two of which is a perfect square, Euler wrote®8?

A+ B =12 A+C = ¢, B+C =p*
Then,

B —p2+q2+r2
- 2

7p2—q2—|—7“2
- 2

7p2—|—q2—r2

A
2

; B , C
Now, if B + D = v2, then

I e Al e i

D
2
We require
A+D = —p 4+ +0v° =4,
C+D = ¢ —r*+v°=u?

for integers  and w. From this,
p2+u2 :q2+v2 = 7%+ w?.

It is therefore enough to find a number which can be decomposed into a sum of two squares in three
different ways.

®Noam Elkies, On A* + B* + C* = D*, Math. Comput., 51 (1988) pp. 825-835.

8 Dunham, p.7.

82Recherches sur le probléme de trois nombres carrés tels que la somme de deux quelconques moins le troisiéme fasse un
nombre carré, published in 1781.

8] am here making a slight change of the notation so that the final result may appear more symmetric.
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A convenient way to picture the situation is to think of a tetrahedron ABC' D with a base triangle of
sides p, ¢, , and opposite edges u, v, w (satisfying the condition above). Now, we require ¢#, ¢2, 2
to satisfy the triangle inequality. This means that the base is an acute - angled triangle. The other faces
of the tetrahedron have sides (p, v, w), (¢, w,u), and (r,u,v) respectively. Each of these should be an
acute - angled triangle.

B r C

This is a familiar theme since ancient times. Diophantus had addressed the problem of writing a
number as a sum of two squares in two different ways, and made use of the composition formula

(a® 4+ b*)(2® + 9°) = (az — by)? + (bx + ay)*.

Now, Euler knew that every prime of the form 4k + 1 is a sum of two squares in a unique way. The
product of two primes of this form would be a sum of two squares in two different ways. To achieve an
expression in three different ways, it is enough to take three such numbers. He made use of the numbers

5,13,17,29,37,41,53,61,73,89,97 ...
and produced numerous examples.
Euler began with
5=1%+2% 13 =22 + 32, 17 =12 + 42,

By repeatedly using the composition formula, we find the different ways of writing 5 - 13 - 17 = 1005 as
a sum of two squares:
42 +33% = 9% + 322 = 122 + 317 = 23% - 242

More than enough! There are even four pairs. However, it is easy to see that there is no way to form an
acute - angled triangle with these edges, one with length 4.
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We are therefore limited to
9% + 322 = 122 + 312 = 232 + 242

Again, it is not possible to form from these two acute - angled triangles with one edge of length 9. Here,
Euler doubled each of these sums, rewriting them using

2(a* + b*) = (a +b)? + (a — b)*

In other words,
292 + 372 = 232 + 412 = 192 + 43% = 12 + 47%.

Obviously, he discarded the last pair and considered
297 4 372 = 232 + 41% = 19% 4 432,
Now, this time, there is an acute tetrahedron:
(19,23,29; 43,41, 37).

From these, Euler obtained

A:_pQ_’_qQ_’_TQ’ B:p2_q2+r2’ C:p2+q2_r2, D:U2+’U2—T2
2 2 2 2
These are 1009 673 49 2689
(Aanch) = (—7 5 9 o —)

2 2727 2

Magnifying by a factor 4, he finally obtained
(A, B,C,D) = (2018, 1346, 98, 5378),

with
B+C =38, C+A=146% A+ B =58,
A+ D =286% B+D=2822% (C+ D ="74%

Using the same method, Euler then obtained a few more examples.

A B C D

18 3231 7378 30258
10018 19566 32418 101538
4482 6217 8514 21762
18 882 2482 4743
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The “fearsome foursome” mentioned by Dunham Euler considered in a subsequent note,®* in which
he dealt with the same problem with one extra requirement, namely, A + B = C + D. & This means
w =r,and

p? +u? =g +0v* =27 @

Here, it is enough to find a number expressible in two ways as a sum of two squares. Euler made use of
65 =5-13 = 1% 4 8% = 4% +- 7°.
From this,
65% = (12 + 8%)(4* + 7%) = 39? + 52 = 25% + 60°.

Then,
2.65% = 132 + 912 = 35 + 85°.

Euler actually used
652 = (124 8%)2 =16 + 632,
(4% + 7°)% = 33% 4 56,
and subsequently
2-65% =477 + 79% = 232 + 89°.
Here, we would require all four triangles

(65,47,23), (65,47,89), (65,79,23), (65,79,89)

to be acute - angled. But only the last one is!
Therefore, Euler tried another pair. This time, » = 5 - 17 = 85, but to no avail. Then, he tried the
next pair: r = 5-29 = 12 4 122 = 82 + 92,
1452 = (124 122)%2 = 242 4 1432,
= (82 +9%)? =177 + 144%,
Thus,
2-145% = 119 + 167% = 127% + 1612

This time, the four triangular faces of the tetrahedron

(119,127, 145; 167, 161, 145)

8 0Opera Omnia, vol. 5, pp. 337 — 339.
8 Again, | am changing notation.
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are all acute - angled. These lead to

22993 19057 9265 32785
2 72 7 27 2

(A,B,C,D) = ( ).
Magnifying by a factor 4, Euler obtained the fearsome foursome

(A, B,C, D) = (45986, 38114, 18530, 65570),
with

A+B=C+D=290° A+C =254, A+ D =23342, B+ (C =238

9

133

B+ D = 3222
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Further Reading

Now that the technical mathematics in Euler’s works being over, you should continue keeping the
wonderful book

e \W. Dunham, Euler, the Master of Us All, Math. Assoc. Amer., 1999

under your pillow, and from time to time enjoy the stories and mathematics there more leisurely. After
all, learning from a master is a life long endeavour. The modern English edition of Euler’s

e Elements of Algebra, translated by John Hewlett, (1840), Springer, 1984
begins with an essay by C. Trusdell,
e Leonard Euler, Supreme Geometer, reprinted from C. Trusdell, An Idiot’s Fugitive Essays on Science,
Springer, 1984.
In this article, Trusdell points out that

It was Euler who first in the western world wrote mathematics openly, so as to make it easy
to read. He taught his era that the infinitesimal calculus was something any intelligent person
could learn, with application, and use. He was justly famous for his clear style and for his
honesty to the reader about such difficulties as there were.

Practically, every history of mathematics book contains a chapter or at least long sections on Euler.
More noteworthy are

e C.B.Boyer (2nd ed, revised by U.Merzbach) A History of Mathematics, Wiley, 1991.

¢ M.Kline, Mathematics from Ancient to Modern Times, Oxford University Press, 1972. Now available
in 3 paperback volumes.

e E.T.Bell, Men of Mathematics, Simon Schuster, 1937.
While my own copy of Euler’s biography
e E.A. Fellman, Leonhard Euler, Taschenbuch, 1995
is still on the way, there is a short introduction to Euler’s work in
e R. Fueter, Leonhard Euler, Beihefte Nr. 3, Elemente der Mathematik, Birkhduser, 1948.

The entire November issue of Mathematics Magazine, Volume 56, 1983, was devoted to commem-
orate of bicentenary of Euler’s death. There, you find articles like

J.J. Burckhardt, Leonard Euler, 1707 — 1783, pp. 262 — 273.

G.L. Alexanderson, Euler as Writer and Teacher, pp. 274 — 278.

P. Erdds and U. Dudley, Some remarks and problems in number theory related to the work of Euler,
pp. 292 — 298.

M. Kline, Euler and infinite series, pp.307-315.
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It even contains a 10-page glossary of mathematical terms, equations, formulas, techniques, and theorems
attributed to Euler.

On number theory, one can gain a sense of Euler’s vast contribution by looking up the indices of the
3 monumental volumes of

e L.E. Dickson, History of the Theory of Numbers, 3 volumes, Chelsea, 1919, 1920, 1923.
A major portion of the classic work

e A. Weil, Number Theory, an Approach through history, from Hammurapi to Legendre, Birkhauser,
1984

is devoted to Euler. Here, one finds a comprehensive survey of Euler’s work in number theory by a 20th
century master. Weil’s

e Two Lectures in Number Theory, past and present, L’Enseignement Mathématique, 20 (1974) 87 —
110; reprinted in Collected Works, volume 2, pp. 279 — 302

begins with interesting accounts of Euler’s work.

The introductions to the volumes in Euler’s Opera Omnia by the various editors put Euler’s works
in excellent historical perspective. The most interesting of all is certainly the Opera Omnia itself. Here
is how Trusdell ends his article on Euler:

Only recently have we been able, by study of the manuscripts he left behind, to determine
the course of Euler’s thought. We now know, for example, that many of the manuscript
memoirs published in the two volumes of posthumous works in 1862 he wrote while still
a student in Basel and himself withheld from publication for a reason — which usually was
some hidden error or an unacceptable or unconvincing result. ...The most interesting of
all Euler’s remains is his first notebook, written when he was eighteen or nineteen and still
a student of John Bernoulli. It could nearly be described as being all his 800 books and
papers in little. Much of what he did in his long life is an outgrowth of the projects he
outlined in these years of adolescence. Later, he customarily worked in some four domains
of mathematics and physics at once, but he kept changing these from year to year. Typically
he would develop something as far as he could, write eight or ten memoirs on various aspects
of it, publish most of them, and drop the subject. Coming back to it ten or fifteen years later,
he would repeat the pattern but from a deeper point of view, incorporating everything he had
done before but presenting it more simply and in a broader conceptual framework. Another
ten or fifteen years would see the pattern repeated again. To learn the subject, we need
consult only his last works upon it, but to learn his course of thought, we must study the
earliest ones, especially those he did not himself publish.
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Topics in History of Mathematics (Yiu) Summer B 1999
The Elementary Mathematical Works of Leonhard Euler
Exercises

I.1.  Solve the cubic equation 2% + 122 + 12 = 0 completely.

1.2. If a cubic equation az® + ba? + cx + d = 0 has a rational root, this must be of the form g,
where p divides d and ¢ divides a. Each of the following cubic equations Euler gave has a rational root.
Make use of this fact to solve the equations completely. 86

(A) 23 — 622 + 132 — 12 =0.

(B) 3 + 30y = 117.

(C) y* — 36y = 91.

1.3.  Solve the system of equations for z, v, and z: &’

z(y + z) = a, y(z+x) = b, 2(x+y)=c

1.4.  The following are worked examples on cubic equations in Cardano’s Ars Magna. The area of
a triangle, in terms of its sides a, b, ¢, is given by the Heron formula:

A= \/s(s —a)(s —b)(s—c),

where s = (a + b+ c).

(A) There is a triangle the difference between the first and second sides of which is 1 and between
the second the third side of which is also 1, and the area of which is 3. Find the sides of the triangle.

(B) ABC'is a right triangle and AD is perpendicular to its base. Its side, AB plus BD is 36, and
AC plus C'D is 24. Find its area.

(C) Let, again, ABC be a right triangle and let AD be its perpendicular, and let AB + CD = 29,
and AC' + BD = 31. The area is to be found.

I1.1.  Decompose each of the following quartic polynomials into the product of two quadratic
polynomials, each with real coefficients.

(A) x4 4 a4_ 88

(B) 2% +42% + 822 +42+1. %

(C) z* — 42> + 222 + 4o + 4.

8 Elements of Algebra, Sect. IV, Chap. XII., §747 and Questions for Practice.
81n a posthumous paper (808), Euler solved the system of equations

vEty+z)=a awtytz)=b ywtzt+z)=c zv+y+z)=d

8J.Bernoulli, letter to Euler, 1742.
89 A. de Moivre, 1730.
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11.2. In §§765 — 770 of the Elements of Algebra, Euler taught the solution of fourth degree equations
by “the rule of Bombelli” % and with an illustrative example. The basic idea is to rewrite a given fourth
degree equation

e+ b+ ex+d=0
in the form of

1
(2% + 0t +p)? = (qgz+7)*=0
for appropriate choice of p, g, .

(@) For f(z) = 2* — 1023 + 3522 — 50 + 24 = 0, write the difference (z? — 52 + p)? — f(z) asa
quadratic function, in descending order of x.
(b) Show that the quadratic in (a) is the square of a linear function if and only if

2p3 — 35p% + 202p — 385 = 0.

(c) The cubic equation in (b) has three positive rational roots. What are these?
(d) Make use of any one of the rational roots you found in (c) to solve the fourth degree equation in
(a) completely.

11.3(a). Construct a cubic equation whose roots «, 3 and -y satisfy
a+ B+ =3, o® + B2+ ~% =5, A+ + =7

Find the value of o* + 5* + 4%

11.3(b)*.  More generally, given the sum S; of n numbers, the sum S, of their squares, the sum S
of their cubes, and so on, up to S's,, the sum of their n—th powers, find the sum S's,, 1 of their (n41)—st
powers (in terms of S1, S, ..., Sp).

I11.1.  Follow Euler’s method to resolve m completely into partial fractions.
I11.2(a)  Follow Euler’s method of undetermined coefficients to express

1422
1—2—22

as an infinite series.
(b) Find the recurrent relation for the coefficients of this series.

I11.3.  Find the series expansion of ﬁ by resolving it into partial fractions. What is the
coefficient of the general term?

I11.4  If the human population increases annually bywlo, we would like to know how long it will
take for the population to become ten times as large.

%The editor remarked that “[t]his rule rather belongs to Louis Ferrari. It is improperly called the Rule, in the same manner
as the rule discovered by Scipio Ferreo has been ascribed to Cardan.
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IV.1(=I11.5) (a) In §123 of Introductio, |, Euler used the series for
3 4 5
a—10g§, b—logg, and c—logZ

to compute the logarithms of the integers from 2 to 10, except log 7. Explain how these can be done.

(b) In the same section, Euler gave the value of log 7 as

1.94591 01490 55313 30510 54639

Here, the last 4 digits are not correct. What should these be?

IV.2.  Use division to find the series of tan x = ig;f; up to the term of z°.

IV.3(a) Express 5(2° +277) and o (2" — 277) as real numbers.
(b) Find the values of 7".
(c) Show that if log(z + yi) = a + bi, then 2 = e® cosband y = e?sinb.
IV.4.  Show that
2e?’ sin 2a + (e — 1)i
et + 2e2bcos2a +1

tan(a + bi) =
V.1. Justify Euler’s claim that

/1+\/_dx—2f—210g(1+\/_)

by using the substitution u = 1 + /z.

V.2.  Show that
o+l ont1 |
"logzdz = C — .
/z ogzdz = C (n+1)2+n+1ogz

V.3.  In his paper 20, Euler made use of

log2 = — 4+ 4+ b
BCT T 9T 1" 3.8 116

What is the general term of this series? How did this series arise?

VI.1. Show that %
RN +] 1 e s
33 5 - 327

%'paper 170, §103.
%2811 of Paper 41.
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VI.2.  Use the general binomial theorem to show that %3

Find the general term of the series.

VI.3*.  Follow Euler’s method in his Paper 73 to show that

QLI S B S
24 3% 44t - 90
Hint: Find the series expansion for ¢ (arcsin z)3.

VIIL.1. Bernoulli noted that with his table (Note, p.55), it took him less than half of a quarter of an
hour to find the sum the tenth powers of the first 1000 numbers. What is this sum precisely?

VIl.2.  Prove that )
cscx = cot ix —cotzx,
and make use of it to find the series expansion of csc z. %
VIII.1. Use the recurrence for the Bernoulli numbers to determine the value of B 4.
VIIIL.2.  Use the recurrence for the Euler numbers to determine the values of Eo, E12 and E14.
VIII.3.  Find the sum

1 1 1

Lt oo+ oo T o0

in terms of Bernoulli numbers.

VIIl.4. Make use of the relation

x
cotx +tan — = —
2 sinx

to show that
22k BQk ok
—_— X .

+Z

sinx

IX.1. Write the partial quotients of the continued fraction

041 042 Ckg Ck4 s Ckn Op+1
a1+a2+a3+a4+ -t an, +apyr

ao

%8Euler integrated this to obtain s = arcsin « in his “forgotten” paper 73.
%Euler’s Institute de Calculi Differentialis, §223. Euler wrote cosec « for csc .
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in the form
Po_ o o 02 a3 w0
Qn Ol +as+az+as+ -+ a,
Itis clear that By = ag and Qg = 1. Set P_; = 1 and (Q_; = 0. Write down the recurrence relations for
Pz and Qpa.

IX.2.  What is the number represented by the periodic continued fraction®

11 1 1 1 1

_ — _ — _ - ?
P +3a+b+2a+b+2a+ -

1X.3.  Show that the continued fraction

FE S
a p— p— J— p— p— J—
btc+d+b+c+d+ -

is a root of the quadratic equation %

(1 + cd)x? — (bed + 2acd + 2a + b — ¢ + d)x + (abed + a*cd + a* + ab — ac + ad — be — 1) = 0.

IX.4.  Convert a series for 7 to show that

T 1
4 12
1+

32

2+ 52

2+

2+ .

X.1. Arectangle ADFE B is constructed externally on the hypotenuse AB of a right triangle ABC.
The line CD and C'E intersect the line AB in the points F and G respectively. %’

(@) If DE = AD+/2, show that AG? 4+ FB? = AB>.

(b) If AD = DE, show that FG? = AF - GB.

X.2(a) Calculate the area of the triangle with sides 13, 14, 15, and determine the altitudes.
(b) Calculate the area of the triangle with sides 25, 34, 39, and determine the altitudes.
(c) Calculate the area of the triangle with sides 9, 10, and 17.

%paper 71, §20.

%This has been corrected.

°"Pi Mu Epsilon Journal, Problem 317 (1974 Spring), proposed by Leon Bankoff. Part (a) is Fermat’s theorem. Euler solved
(a) in the beginning of his paper 135, Variae demonstrationes geometriae.
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X.3*.  Heronian triangles with 3 consecutive integers as sides. Examples:
(3,4,5;6), (13,14,15; 84), (51,52, 53; 1170), . ..

More generally, these triangles form a recurrent sequence: if (b — 1,b,b + 1; AA) is a Heronian triangle,
then b is a term of the sequence

bn+2 - 4bn+1 - bn, bl - 4, b2 - ].4

What is the recurrent relation for the area of such triangles?

Xl.1(a) Show that a triangle is equilateral if and only if two of its orthocenter, centroid, and cir-
cumecenter coincide.
(b) What can you say about a triangle whose incenter also lies on the Euler line?

X1.2.  Let O and H be respectively the circumcenter and orthocenter of triangle ABC. Show that
the bisector of angle BAC also bisects angle OAH.

X1.3. Let R, p and s denote the circumradius, inradius, and semiperimeter of a triangle with
orthocenter H, centroid G, circumcenter O, and incenter 1. Show that Euler’s distance formulas can be
rewritten as

4
HG? = 5(932 + 8Rp + 2p* — 25%),
HI? = 4R?>+4Rp+3p* — s,

HO?* = 9R?+8Rp+2p* —25%

1
GI? = §(5p2 —16Rp + s?),

1
GO* = §(9R2 + 8Rp + 2p° — 25%),

I0> = R?-2Rp.

Xl1l.1(a) Describe precisely the steps for the ruler - and - compass construction of a triangle ABC'
given its centroid G, circumcenter O, and vertex A.

(b) Same as (a), but with given orthocenter H, circumcenter O, and vertex A.

(c) Same as (a), but with given incenter I, circumcenter O, and vertex A.

XI1.2.  Let ABC be an isosceles triangle. Show that the incenter lies between the orthocenter and
the centroid. %

XI1.3  Make use of Euler’s solution to show that if triangle OI H is isosceles, triangle ABC con-
tains a 60 degree angle.

%Make use of the proportions of the side lengths in §25 of Euler’s paper 135.
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XIlI.1(a)  Euler had found that 22 — 1 = 536870911 is divisible by 1103. Find a smaller prime
divisor.

(b) Find a prime divisor of 233 — 1.

XI1I1.2.  In the beginning of his paper 26, Euler observed that if ' + 1 is prime, then n must be a
power of 2. Justify this.

X11.3.  Complete the following steps thow that if /V is an odd perfect number, it cannot be a
square.

(i) The sum of all divisors of NV, including 1 and N itself, is even.
(ii) If V is a square, the number of divisors, including 1 and [V itself, is odd.

XIV.1(a) Make use of the multiplicative property of the sum of divisor function to find the sum of
all divisors of 100.

(b) Make use of Euler’s “extraordinary relation” to compute the sum of divisors of 100.
XV.1. Follow Euler’s presentation to find the continued fraction expansion of/67.
XV.2.  Show that the continued fraction expansion of v/n2 + 2n — 1 is

1

n +
1+

n—1+4

1+

2n +

1+

n—1+
1+
2n +

XV.3. Make use of the continued fraction expansion

V31 =1[51,1,3,5,3,1,1, 10]

to find the smallest positive solution of > — 31¢% = 1.



YIU: Elementary Mathematical Works of Euler (Solution to Exercises) viii

Solution to Exercises

1.1, Writtz = VA4 V/B. Then AB = (—12)3 = —64and A+ B = —12. The numbers A and B are the roots
of x24+122—64 = 0; (z+16)(z—4) = 0. We choose A = —16 and B = 4, and obtain the real root —2 /2 + v/4.
The other two roots are the imaginary numbers —2 ¥/2w + ¥/4w? and —2/2w? + /4w, where w = 1(—1+ /3i)

and w? = (-1 — V/3i).

1.2.
rational root Factorization Remaining roots
(a) 3 (z — 3)(2® — 3z +4) 1(3+VTi)
(b) 3 (y=3) (2 +3y+39) | 3B=7V3i)
() 7 -7 +7y+13) | I(7£V3)

1.3.  Adding the three equations together, we have 2(zy + yz + zz) = a + b + ¢. Thismeans zy + yz + za =
1(a+b+c). Bywriting s = 1(a + b+ ¢), we obtain

Yz =5—a, zx =5 —0b, Ty =S8—c.

Multiplying these together, z2y22% = (s —a)(s — b)(s — ¢), and zyz = ++/(s — a)(s — b)(s — ¢). It follows that

A (s—sb)_(sa—c), y—+ (s—sc)_(sb—a)7 S (s—s)_(sc—b).

1.4(A) Cardano, Ars Magna, Chapter XXXII, Problem I. Now assume x to be the second side. The first side
will be z — 1 and the third = + 1. Follow the rule for the triangles given in the following book %, and this makes

3

3 4 3,2
st — 722 equal to 3. Therefore

3
=~ 4 _ = 2
163: 43: +9
and, therefore,
ot = 422 + 48,
and x will be .../ v/52 + 2, and this is the second side. Add and subtract 1, therefore, and you will have the

remaining sides.

1.4(B)  Cardano, Ars Magna, Chapter XXXVIII, Problem XIII. The hypotenuse BC' is 25; the sides of the
triangles are 15 and 20, and the area is 150.
Suppose AB =z, AC = y. Then BD = 36 — x and CD = 24 — y. By computing the length of AD in two
ways, we have
2t — (24— x)? = y* — (36 — y)?,

®Heron’s formula.
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and 576 — 48z = 1296 — 72y, or 3y = 2 + 30. Now, the length of BC' = (24 — 2) + (34 — y) = (60 — z — y).
We have (60 — z — y)? = 22 + y2, from which 3600 — 120(z + y) + 2zy = 0. Substituting = = 15 — 2, we have
(y — 20)(y — 90) = 0. Clearly, y must be 20. From this, z = 15, and BC = 60 — 15 — 20 = 25. The triangle
being right angled, its area is % -15-20 = 150.

A A

B 36—z D2—y C B 31—y D29—o C

1.4(C). Cardano, Ars Magna, Chapter XXXVIII, Problem XIII1. The same triangle as in the preceding problem.
Again, let AB = z and AC = ysothat BD = 31 — y and CD = 29 — x. From the length of AD, we have
2?2 — (31 —y)? =9? — (29 — x)?, and 222 — 2y? + 58z — 62y = 31% — 292,

22 —y? + 292 — 31y = 60. 2

Also, since the length of BC' is 60 —x —y, we again have 3600 —120(z+y) +2zy = 0, xy —60(z+y)+ 1800 = 0,

y = %301 substituting into equation (1), we have

2(z — 20) (23 — 12922 + 2700z + 54000)
(60 — x)?2

?

from which = = 20, and we obtain the same triangle as in (B).
Remark. If we put = y + 43 into the cubic factor, this becomes y3 — 2847y + 11086. With a = 2847 and

b = —11086, we have ‘2’—; + % > 0. This means that the cubic polynomial has one real and two imaginary roots.
Their product being -11086, the real root cannot be positive. Thus, there is only one admissible solution to the
problem, namely, x = 20.

L. (A z*+a* = (22 4+ a?)? — 2a%2% = (2% — V2az + a?)(2? + V2az + a?).
(B) The roots of the quartic equation z* + 423 + 822 + 42+ 1 = 0O are

a= -1+ -0y, 2= —1+ L iy /822,
g =—1— ds—iy /322, a=—1— iy /P2

The real quadratic factors are

<z—z1><z—z2>=<z+1——>2+¥=z2+<2—ﬁ>z+<3—2ﬂ>,
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and /3
1 3422
z—z)(z—z)=(z4+1+—=)*+ =
(2 = 25)(z = 24) = ( 5+
(C) Proposed by Nicholas Bernoulli (1687 — 1759) to Euler, in letters dated October 24, 1742 and April 6,
1743. Euler communicated his results to Christian Goldbach on December 15, 1742 and February 26, 1743.

Answer: 22 — (24+ V4 + 2V z + 1+ VT + V4 +2VTand 22 — (2 — V4 +2VT)z + 1+ V7 — V4 + 27,

2. (a

224 (2+V2)z+ (3+2V2).

(2° = 52 +p)? = f(x)
= (2% =52 +p)? — (2* — 102° + 3527 — 502 + 24)
= (2* —102% + (2p + 25)2” — 10px + p?) — (z* — 1023 + 3522 — 50z + 24)
= 2(p—>5)z% —10(p — 5)x + (p* — 24)

(b) The quadratic in (a) is a perfect square if and only if 0 = 100(p — 5)2 — 8(p — 5)(p? — 24) = —4(p —
5)[2(p? — 24) — 25(p — 5)] = —4(p — 5)(2p* — 25p + 77) = 0.

(c) This further factors as —4(p — 5)(p — 7)(2p — 11). The quadratic has three rational roots 5, 7, and 1!

(d) By taking p = 5, we have

flx) = (@ —-5z+5)7%—1
= (2® =52 +4)(2* — 52+ 6)
(x = 1)(x —4)(z —2)(x — 3).

It follows that the roots are z = 1,2, 3, 4.

Remark:  The rational roots p = 7 and 1—21 would certainly lead to the same rational roots.

11.3(a)
o1 = %+ﬁ+7:&
o2 = Slla+B+7)’ = (" +5+%)] =2

Since S5 — 0152 + 0251 — 303 = 0,
1 1 3 1 2
o3 = 5[33 — 0155 —l—O’gSl] = 6(253 —3515—2+Sl) == 5[7—35—‘1-23] = —g.

Also,

2
5420'153—0'252+0351:3'7—2'5-1—(—5)'3:9.

(b) More generally, given S, Ss, ..., S, of n quantities a1, as, ..., a,, we use Newton’s relations to find the
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elementary symmetric functions:

Jl P— Sl)
5101 — 20’2 — SQ,
Seop  — Si09 + 303 = S3,
Sso1 —  Szo2 4+ Sios — 404 = Ss,
Sn_101 — Sp_o092 + Sp_303 — Sp_404 + - + (—1)”_1710" = S,
From these, o1, o9, ..., o, can be successively determined, and

Sn-i—l = Snal - Sn—102 + 571,—20'3 - 571,—30'4 + -+ (_1)n_1510n-

Here are S,,+1 interms of Sy, ..., Sy, forn < 5:
n SnJrl
1S3
2 —%Sl(sf —3853)
3 %(Sil — 631232 + 3322 + 83133)
4 £9(=57 + 10855, — 15515% — 205755 + 205253 + 305154)
5 m(Sf — 155185 + 455253 — 1553 + 405753 — 120515253 + 4052 — 90525, + 90525, + 1445, S5)

I11.1.  Introductio, |, §46, Example.

First we take the singular factor of the denominator 1 + z, which gives § = —1,while M = 1and Z =
23 —22% + 2%, In order to find the fraction ﬁ, we let
1
A= ———
23 — 224 4 25
when z = —1. Hence A = —% and from the factor 1 + = there arises the partial fraction 4(1*—;). Now, take the

quadratic factor (1 — 2)?2, which gives P=1,M=1adZ= 23 + 2%, We let the partial fractions arising from
this be 745> + 125, then A = - when z = 1,50 that A = . We let
M—%Z_ 113 _ 1,4

1
pP— _ 2 2”4 2, 1.3
1—=2 1—2z +Z+Z+ZZ

so that
B:E: 1+z+22+%z3
Z 23 4 24

when z = 1, hence B = % and the desired partial fractions are

1 7
2(1 — z)? i 4(1—2)
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Finally, the cubic factor 23 gives P=0,M=lLadZ=1-2z— 22 + z3. We let the corresponding partial
fractionsbe 4 + £ + €. Then 4 = £ = ——Lr=sothat B = £ when z = 0, hence B = 1. We let

l—z—z

P-Z
z

=222

Q=

sothat C' = % when z = 0, hence C' = 2. Thus, the given function m is expressed in the form

1 1 2 1 7 1

PR s PR T s TR

There is no polynomial part since the given function is not improper.

111.2.  Introductio, I, §61, Example.

If the given function is 122, and this is set equal to the series

A+ Bz+C224+ D22+ .-,
sincea=1,b=2,a=1,=—-1,andy=—1,wehave A =1, B = 3. Then
C=B+A, D=C+B, E=D+C, F=E+D,...,

so that any coefficient is the sum of the two immediately preceding it. If P and @) are known successive coefficients
and R is the next coefficient, then R = P + (). Since the first two coefficients A and B are known, the given
rational function 22 is transformed into the infinite series

1—2—22

143244224723 + 1124 +182° + - - -,

which can be continued as long as desired with no trouble.

111.3.  Introductio, I, §216, Example 1.

1—2 1/ 2 1 1/ & o0 =
=3 =3(2 =1)"2" 2" ) == 2" 4 2(—1)")2".
1— 2 — 222 3<1+z+1—az> 3< g;( DY Z) 3§:( +2(=1)")z

n=0 n=0

Remark. Euler expresses the coefficient of 2™ as 1 (2" + 2), where the positive sign is used when n is even and
the negative sign when n is odd.

111.4.  Introductio, 1, §111, Example I: We suppose that this will occur after  years and that the initial population
is n. Hence after 2 years the population will be (19)#5, = 10n, so that (22L)? = 10, and z log 19 = log 10. 1%

. 100 100 100
From this we have
log 10 10000000

YT log101 —log 100 43214
After 231 years the human population will be ten times as large with an annual increase of only ﬁ.

= 231.

1001 pgarithms of any base would work. Here, Euler uses the common logarithms, base 10.
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Xiii

Euler further remarks: “It also follows that after 462 years the population will be one hundred times as large,
and after 693 years the population will be one thousand time as large”.

IV.1.

log2 =
log 3

logd =
logh =

log 6
log8 =
log 9
logl0 =

(@) Leta = log %, b = log %, and ¢ = log %.

log

=a+b,

ol
RIS

log2- - =(a+b)+a=2a+Db,
2log2 = 2a + 20,

log4 - 1 =2a+2b+c,

log 2 + log 3 = 3a + 2b,

log 23 = 31log 2 = 3a + 3b,
log 32 = 2log 3 = 4a + 20,

log2 +logh =3a+ 3b+ c.

(b) The value of log 7, to 22 places of decimal, is

1.94591 01490 55313 30510 53527 43443 - - -

Euler’s 4639 should be 3527.

1V.2
12
1 - £ 4
Remark. The nexttermis =7
V3. (a)
1 . .
5(21_’_272)
Similarly,
1 ,
— (2" =27" =
22'( )

3

T + = + &b

z! 25 | = — z7 z°
24 720 6 120
| r - z? + x

2; 24

> oz

3 3

o2

3 ~— 6

2z°

15

2z°

1 .
= 5(6”%2 +e7M1982) — coslog 2.

1 . .
y(e“og2 — e t1°82) — sinlog 2.
i

(b) Begin with the value of log i. Since i = cos(% + 2k) + isin(Z + 2kn) = e(3+2k™) for integers k, we
have logi = (5 + 2kn)i. It follows that i logi = — (% + 2km). This gives i’ = e~ (3+2k7) for integer values of k.

Remark.
§97.

In particular, with & = 0, Euler gave the real value i* = e~% = 0.2078795763507 in Introductio, |,

(©) z +yi = ettt = e . eb? = e%(cos b + i sin b). From this the result is clear.
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IV.4. Beginning with

cos(a+ bi) +isin(a +bi) = @I = ¢=0+ai — o=b(co5q 4 isina),
cos(a + bi) —isin(a + bi) = e (@) = b= — ¢b(cosq — isina),
we have
cos(a +bi) = %((e*b +e®) cosa+i(e™® —eb)sina) = 2—61)[(6% +1)cosa —i(e* —1)sinal,
sin(a + bi) = %(—(e_b +e¥)sina —i(e™® — eb) cosa) = %[(6% + 1)sina +i(e*® — 1) cosal.

From these, we have

(€?®* +1)sina +i(e? — 1) cosa
(e?® +1)cosa —i(e?® — 1)sina
-1
- 1)

tan(a + bi) =

[(e® + 1) sina + i(e?® cosal[e?® 4+ 1) cosa + i(e?* — 1) sinal

[e2b + 1) cosa — i(e?® sinal[e?® + 1) cosa + i(e?* — 1) sinal

[(e?’ + 1) sina + i(e?® — 1) cosal[e®® + 1) cosa + i(e?® — 1) sina]

(€20 +1)2cos2a + (e2b — 1)2sin’a
(€2’ +1)2 — (% — 1)?]sinacosa + (e 4+ 1)(e?® — 1)(cos? a + sin? a)
(e + 1)(cos? a + sin” a) + 2e2°(cos? a — sin® a)
2¢?bsin 2a + (e® — 1)i
et +2e2bcos2a+1 -

V.1.  With this substitution, du = ﬁdm, and dz = 2(u — 1)du. It follows that the integral

:/Mdu:/@—%)du:2u—2logu:2(1+\/E)—2log(1+\/5)-1—0

u

for some constant C.

V2. Inthe method of integration by parts, set u = logz and dv = z"dz. We have du = 1dzand v = 52"t
Thus,

/z" log zdz = LGﬂ log z — / 1 2"dz = Lz”'|r1 log z — #Z"H +C

n+1 n+1 n+1 (n+1)2 '
V.3. The n—th term of the series is n% This series results from putting x = % in the expansion of log(1 — ).
VI.1. §11 of Paper 41.
1 1 1 1 w3
1 +

_3_3 53_%_’_@_4_...:_.
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Solution.  The roots of sin z = 1 are, according to Note, p.45,

T —3n —3w bw bw —Twm —7w 97w 9m

If P = sum of the reciprocals of the roots, Q = sum of the reciprocals of the squares of the roots, and R = sum of
the reciprocals of the cubes of the roots, with y = 1 from the relations on p.45,

1 1
P = 1 = 1 R et —_ - = —
) Q ) Q 2 27
It follows that
Q(E 8 8 8 P 1
w3 3373 53x3 T3p3 S’
and the result follows.
VI1.2. By the binomial theorem,
L _qoa o143y (‘%) 22"
]‘ - (EQ n=1 n
Here,
n ) n! B 2m . ) N 2:4-6---(2n)
From this the result follows.
VIIL.1. 91409924 241 424 243 424 241 924 242 500.
VIL.2.  We begin with an expression for cot 1z:
1 2cos? 1 1
Cotfch)s%x: : CIOS 2$1 = fcosm:cscx—i—cotm.
2 sin =& 2sin =x cos =x sinx

2
This establishes the required relation. From the formulas in Note, p.63,
1 22 Az B 24Bz3 B 26045 B 28D

cotr = E o] m ol 3 —,

2 2

24z 2Bx®  2Cz® 2Dz
cot—x = — — - - - — ey
2 T 2! 4! 6! 8!

we obtain

202 -1 Ax = 2(22 —1)Bx®  2(25 —1)CaP
T 6!

1
cscxr = — +
x

VIIL.1.  The recurrence relation to obtain B4 is (1 + B)*® — B! = 0. Since B; = —%, B; =By =--- =
B3 = 0, this gives

1+ 1581 + 105 Ba 4 136554 + 5005 B¢ + 643585 + 3003810 + 455812 + 15 B14 = 0.
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Using the values

from p.68, we obtain B4 = £.

VIII.2.  The beginning Euler numbers are, from Notes, p.68,
Ey=1, FEy=-1, E;=5, FEg=—-61, Eg=1385.

The subsequent Euler numbers are generated from the relations

0 = FEi10+45FE3+ 210Fs + 210E4 + 45F5 + Ey,
0 = E12 + 66E10 + 495E8 —|— 924E6 —|— 495E4 —|— 66E2 —|— E(),
0 = FEi14+91FE15+1001FE19 + 3003Es + 3003FEg + 1001 E4 + 91 FE5 + Ejp.

From these, we obtain, in succession,

Ei0 = —50521, B9 = 2702765, B4 = —199360981.

VIIL3. According to Note, p.62,

o0 .
1 22k—1
—_ B 2k
2 P
n=1
We have
1 1 1 =1 =1
1+32k+52k+72k+"' = an _Z(zn)Qk
n=1 n=1
1

VIIL.4.  Making use of Notes, pp. 63-64,
1 22Ax  24Bx3  26C25  28Da"

cotr = Ty 41 6! TR
) L2222 1)Azx 2424 —1)Ba® | 26(26— 1)Ca®  28(2° — 1)Da’
anz = BT + 1 + 61 + i T
we have
22 Ax2  2%Bx*  26Cx6  28Dg8
rcotx = 1-— — — — —

2! 4! 6! 8!

XVi
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ton & 2(22 — 1) Az? N 2(24 — 1)Bz* N 2(26 —1)Ca® N 2(28 — 1)Da8 N
n— = -
Tty 2 41 6! 8!
From this,
T rtztan® =14 (22 — 2) Az? N (24 — 2)Bz* N (26 — 2)Ca® N (28 — 2)Da® N
sing L orrTatanyg 2 41 6! 8!
I1X.1.
Pn+2 = Qp41- P, + An+42 - Pn+1;
Qn-{-Q = Qp41- Qn + An+42 - Qn-{-l-

IX.2.  The number x + a has continued fraction expansion

1 1 1 1 1 1

:2 —_ —_— f— JES— — PR .
Tt b+ 2at b+ 2t
Thus,
1 r+a
T+a=2a+ — =20+ ——.
b+ o blx +a)+1

It follows that
(x —a)[bx + (ab+1)] =z + a,

and —2a — a?b + bx? = 0. Thus, z = /a2 + QT“.

IX.3.  The number z — a has periodic continued fraction expansion [b, ¢, d].

b c d r—a
0 1 b bec+1 bed+b+d (bed+b+d)(z—a)+(bc+1)1 0 1 ¢ cd+1 (cd+1)(z—a)+c

It follows that
(bed+ b+ d)(x —a) + (bc+ 1)
r—a= ,
(cd+1)(x —a)+c

from which
(cd+1)(z —a)? — (bed +b+d —c)(x —a) — (bc+ 1) = 0.

Expanding, we have

(1 + cd)z? — (bed + 2acd + 2a + b — ¢ + d)x + (abed + a*cd + a* + ab — ac 4+ ad — bec — 1) = 0.

IX.4. Use the Gregory series
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101 and follow Theorem 1 of Notes, p.74 to obtain

XVili

o1y I
T 32
2+ 52
24 7
24
24,
From this,
T 1
4 12
1+ 32
2+ 52
24
2+ .
X.1.
Solution.  Let the perpendiculars to AB at F' and G intersect AC and BC respectively at J and K respec-
tively.

D E
(i) By the similarity of triangles C'JF and C AD, and of CF'G and CDE, we have
AD:JF=CD:CF =DE:FG.
Similarly,
BE: KG=DEFE:FQG.

1011 Paper 71, Euler pointed out that this expression for 7 was given by Brouncker.
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It follows that JF = GK. Also, JF : FG = AD : DE.
Now, the right triangles AJ F and K BG are similar. JF : AF = GB : KG = GB : JF. Therefore,

AG? + BF? = (AF+FG)?+(GB + FG)?
= AF? + GB? +2(AF + FG + GB)FG
(AF + GB)?> —2AF -GB +2AB - FG
= (AB-FG)*-2FG?+2AB-FG
AB%? + FG? —2JF2.

(a) is clear now. If DE = v/2AD, then FG = /2JF, and AG? + BF? = AB>.
() If AD = DE, then JF = FG, and AF - GB = JF? = FG2.

X.2. (a) 84. The altitudes are 281 = 108 281 — 168 _ 19 gpg 284 — 56,
(b) 420. The altitudes are $10 = 168 840 — 420 ‘and 30 — 280,
Remark. Since none of the altitudes is an integer, this Heronian triangle cannot be constructed by glueing two
Pythagorean triangles along a common side.
(c) The area is 36.

Remark. Fermat, however, has shown that there is no Pythagorean triangle whose area is a square.

X.3.  Thenexttriangle has by = 4 - 52 — 14 = 194. It is the Heron triangle (193,194, 195 with area 16296.
Assuming the areas also satisfy a second order linear recurrence relation of the form

DNpgo = pApg1 + gl
Then from Ay = 6, Ay = 84, A3 = 1170, and A4 = 16296, we have

84p + 6¢ = 1170,
1170 + 84g = 16296.

Solving these, p = 14, ¢ = —1.

X1.1 (&) The necessity part (=) is trivial.

Suppose two of the points H, G, and O coincide. Since HG : GO : HO = 2 : 1 : 3, the three points all
coincide. This means each altitude is also a median, and is therefore the perpendicular bisector of a side. From
this, any two sides are equal in length, and the triangle is equilateral.

(b) A triangle with incenter on the Euler line is necessarily isosceles. To justify this, we make use of the result
of XI.2. Suppose A and B are acute angles. Let H be the orthocenter. Then AH = 2R cos A. Since AH and AO
are symmetric about the bisector of angle A, HI : O = AH : AO = 2Rcos A : R. Likewise, for angle B, we
have HI : OI = 2R cos B : R. From this it follows that cos A = cos B, and the triangle is isosceles.

X1.2. Let O and H be respectively the circumcenter and orthocenter of triangle ABC. Show that the bisector
of angle BAC also bisects angle OAH.

In both cases, /AOE = /ABC. It follows that if /A is acute, /BAH = /EAQO, and the lines AH and AO
are symmetric about the bisector of angle A.

If /A isobtuse, then /HAZ = /BAX = 90° — /B = /OAE. It follows that AH and AO are symmetric
about the external bisector of angle A.
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X1.3.  Use the relations given in Notes, p.90.

XIL.1.  (a) (i) Construct the circle, center O, passing through A. This is the circumcircle.

(ii) Extend AG to D such that AG : GD =2 : 1.

(iii) Construct the perpendicular to OD at D, to intersect the circumcircle at B and C, the remaining two
vertices of the required triangle.

(b) (i) Construct the circle, center O, passing through A. This is the circumcircle.

(i) Mark the midpoints X and IV of the segments AH and O H respectively.

(iii) Extend X N to D so that XN = N D.

(iv) Construct the perpendicular to OD at D, to intersect the circumcircle at B and C, the remaining two
vertices of the required triangle.
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(c) (i) Construct the circle, center O, passing through A. This is the circumcircle.

(ii) Mark a point P on the circumcircle such that I P has the same length as the radius of the circumcircle.

(iii) Extend P1 to intersect the circumcircle again at ), and mark the midpoint of the segment OQ.

(iv) Construct the circle, center I, passing through M. This is the incircle, since the radius p of this circle
satisfies OI? = R(R — 2p).

(v) Construct the tangents from A to the incircle, and let these tangents intersect the circumcircle again at B
and C', the remaining two vertices of the required triangle.

P
A

N

Q

XI1.2. Iftriangle ABC is isosceles, thena :b:c= f: f:2f — 3h,where f = IO and h = IG. (See Notes,
p.96). By the triangle inequality, A must be positive. This means that I is between G and H.

XI1.3. Iftriangle OIH is isosceles, the lengths of the sides of triangle ABC are

a—\/g(k2_2—f2)+ﬁ b—i\/g(kQ_QF)—E 0—7\/§f2
N N CJAf? = 2

as given in Notes, p.98. Here,

V3(k® - 2f?) 2 —2/)\*  (k\?
(Simr) () - (=) + ()
- (“3““2‘”2) (ﬁ)
= e

B ok T i (i 1 N

AA4f—k?) 4 A(4f? - k?) Af? — k2

From the cosine formula, the angle between ¢ and b is 60°.

a®>+ b2 — ab
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X1  (a) A prime divisor of 229 — 1 is of the form 58k + 1. For k = 1, 4, these are 59 and 233 respectively.
Now, 233 divides 536870911. This gives a prime smaller than the one Euler found, namely, 1103.
Remark: Since 536870911 = 233 x 1103 x 2089, and it is easy to check that 2089 is a prime, this gives a complete
factorization of Mog.

(o) A prime divisor of Mgz = 283 — 1 is of the form 166k + 1. Now,

283 — 1 = 9671406556917033397649407 = 167 x 57912614113275649087721.

Remark. (1) To check that Mg3 is indeed divisible by 167, we make use of the following

k 124 8]16]32]64
2"mod 167 [ 2[4 [ 16 |89 [ 72| 7 [ 49

Since 83 =64 + 16+ 2 + 1,
288 =49 x 72x4x2=1 (mod 167).

(2) It is much harder to confirm that the second factor is a prime.

XII1.2.  Suppose n is not a power of 2, it must have an odd divisor. Write n = mk for an odd number & > 1.
Thena™ +1 = (a™)* + 1 is divisible by the smaller number a™ + 1 > 1. This shows that a™ + 1 cannot be prime.

XI.3. If N is an odd square, it has exactly an odd number of divisors, each of which is odd. The sum of
divisors is therefore an odd number, and cannot be 2V. This means that IV cannot be a perfect number.

XIV.1.  (a)Since 100 =2%-5%and [2% =1+2+44 =17,5% = 1+ 5+ 25 = 31, by the multiplicative property

of the sum of divisor function,
/100:/22./52:7.31:217.

(b) Making use of Euler’s extraordinary relation, and the data on Note, p.113, we have

/100 /99+/98—/95—/93+/88+/85—/78—/74+/65+/60—/49—/43
+ 30+/23—/8—/0
= 156+ 171 —120— 1284+ 180+ 108 — 168 — 114+ 84 + 168 — 57 — 44+ 72+ 24 — 15— 100
963 — 746 = 217.
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XV.1. Firstofall, V67 =8 + % Following Euler’s calculation, we have

_ 1 _ V67+8 _ 1
L a = V6T—8 \/1 o oty
3 _ 3(/67+7) 67+7) _ V6747 _ 1
b Ver—T W_ N 2+
_ 6 6 +5) 6745 1
M.oe = Fs = F = 7 = 1+3
7 _ TVeT+2) V6742 _ 1
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From these,
V67 =[8,5,2,1,1,7,1,1,2,5,16].
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At this point, the pattern recurs, and we obtain the continued fraction expansion of

VvVn2+2n—1=[n,1,n—1,1,2n].

XV.3.  We compute the convergents of the continued fraction of /31.

5 1 1 3 ) 3 1 1 10
0 1 5 6 11 39 206 657 863 1520
1 01 1 2 7T 37 118 155 273

Here, p = 1522 and ¢ = 273 satisfy
p2 — 31q2 = 2310400 — 31 - 74529 = 2310400 — 2310399 = 1.

(p, q) = (1520, 273) is the smallest positive solution of the given Pell equation.



