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Property Tester I

Definiton
A Tester T for property P is an algorithm

for given ε and input x ,

I if P holds for x , then

Pr[T (x , ε) = YES] ≥ 2
3

I if d(x , P) ≥ ε, then

Pr[T (x , ε) = NO] ≥ 2
3

where the d(·, ·) is the distance function. ♦
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Property Tester II

I Query complexity:

We aim at spending time that

is sublinear in or even

independent of the size of

graph.

I Distance function d(·, ·) Hamming
dist., Edit dist. etc.

I ε-close
I ε-far
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Testing Connectivity of Graphs I.

I How to solve this problem?

I What is the time complexity?

I Good enough?
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Testing Connectivity of Graphs II.

I Graph representation matters!
I Is the former algorithm good for adjacent

matrix?
I Is the former algorithm good for adjacent

linked list?

I What are the suitable algorithms for

such graph representations?
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Testing Connectivity of Graphs III.

I Graph representation matters for
property testing, too!

I for adjacent matrix?
I for adjacent linked list?

I It is not trivial! Different graph

representation might make the

same problem un-testable.
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Testing Connectivity of Graphs VI.

I Related Work
I Goldreich et. al., 1997[4], 2002[5]

O
(

log2(1/εd)
ε

)
, Undirected bounded

degree model.
I Blender et. al., 2000[1], 2002[2]

Ω
(√

n
)
, adjacency matrix.

I Chen’s Contributions
I On adjacency matrix
I No restriction on degree.

I Time complexity O
(

1
ε log(1−ε)

)
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For Undirteced Graphs I.

Figure: The disconnected graph and connected
components 10 / 54



For Undirteced Graphs II.

Figure: The connected graph with as spanning tree
of connected components 11 / 54



For Undirteced Graphs III.

Lemma
If a graph G, is ε-far from the class of

connected graphs, then it has more than ε
(

n
2

)
connected components.

Thus its distance measure is

# of adding edges

# of edges of Kn
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For Undirteced Graphs IV.

Figure:
(
11
2

)
= 55, 55× ε = 3, ∴ ε = 3

55 .
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For Undirteced Graphs V.

Lemma
If a graph G, is ε-far from the class of

connected graphs, then it has at least εn

connected components each containning less

than d 2
n−3(

1
ε − 1)e vertices.
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For Undirteced Graphs VI.

Proof.
Assume it is wrong

n ≥ {ε
(

n

2

)
+ 1− εn} · d 2

n − 3
(
1

ε
− 1)e + εn

> (
εn(n − 1)

2
− εn) · 2

n − 3
(
1

ε
− 1) + εn

= εn(
1

ε
− 1) + εn

= n,
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For Undirteced Graphs VII.

Roughly speaking, we want to find some

small connected components as the evidence

of disconnectivity.
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Algorithm

I S ← ∅, M ← dlog1−ε
1
3e, X ← d

2
n−3(

1
ε − 1)e

I While |S | < M do

I pick u from V then add it to S . Perform
BFS from u and stop as reach X vertices
or run out of vertices (REJECT)

I ACCEPT
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For Undirteced Graphs VIII.

Theorem
If a graph G is connectivity, then it must

accept. If G is ε-far from the class of

connected graphs, then it has reject with

probability at least 2
3. The query complexity

and time complexity are O( 1
ε log(1−ε)).

Obviously it is one-side error:

P ≤ (1− ε)dlog1−ε
1
3e ≤ 1

3
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For Undirteced Graphs IX.

Since it costs n to find all neigbhors on
adjacency matrix for each vertex, we have
time complexity:

dlog1−ε

1

3
e · d 2

n − 3
(
1

ε
− 1)e · n

< [
1

log 1
3
(1− ε)

+ 1] · [ 2

n − 3
(
1

ε
− 1) + 1] · n

= O(
1

ε log(1− ε)
)
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For Digraphs I.

Recall some terminolgies of Digraph

I strongly connected: ∀u, v ∈ V ,∃ a

directed path u → v in G ,

I source: node with only out-degree,

I sink: node with only in-degree,

I isolation: node without in-degree and

out-degree,

I transferrer: node with in-degree and

out-degree,
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For Digraphs II.

Lemma
If a graph G, is ε-far from the class of

strongly connected graphs, then the number

of source, sink, and isolation

components in G will be larger than εn2.

Note: Chen assumed that all components are

strongly connected.
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For Digraphs III.

The idea of proof is similar to undirected one.

if no transferrer, the case is the follwoing

Figure: strongly
connected components
without transferrers

Figure: As directed
cycle of strongly
connected components
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For Digraphs IV.

If transferrers exist, the case is the

follwoing

Figure: strongly
connected components
of several types

Figure: As directed
cycle of strongly
connected components
which are not
transfeffers
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For Digraphs V.

Lemma
If a graph G, is ε-far from the class of

strongly connected graphs, then it has at

least εn strongly connected components each

containing less than d 1
n−2(

1
ε − 1)e vertices.

24 / 54



For Digraphs VI.

Proof.
Assume it is wrong

n ≥ {εn2 + 1− εn} · d 1

n − 2
(
1

ε
− 1)e + εn

> (εn2 − εn) · 1

n − 2
(
1

ε
− 1) + εn

=
n − 1

n − 2
(n − εn) + εn

> (n − εn) + εn

= n 25 / 54



For Digraphs VII.

Roughly speaking, we want to find some

small connected components as the evidence

of disconnectivity.

But we need to check two directions,

in-degree and out-degree.
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Algorithm

I S ← ∅, M ← dlog1−ε
1
3e, X ← d

1
n−2(

1
ε − 1)e

I While |S | < M do

I pick u from V then add it to S . Perform
BFS from u using in-degree and stop as
reach X vertices or run out of vertices
(REJECT)

I If it reach X vertices
I Perform BFS from u using out-degree and

stop as reach X vertices or run out of
vertices (REJECT)

I ACCEPT
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Why do we need to check two directions?
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For Digraphs VIII.

Theorem
If a digraph G is connectivity, then it must

accept. If G is ε-far from the class of

connected graphs, then it has reject with

probability at least 2
3. The query complexity

and time complexity are O( 1
ε log(1−ε)).

Obviously it is one-side error:

P ≤ (1− ε)dlog1−ε
1
3e ≤ 1

3
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For Digraphs IX.

Since it costs n to find all neigbhors on
adjacency matrix for each vertex, we have
time complexity:

dlog1−ε

1

3
e · 2 · d 1

n − 2
(
1

ε
− 1)e · n

< [
1

log 1
3
(1− ε)

+ 1] · [ 2

n − 2
(
1

ε
− 1) + 2] · n

= O(
1

ε log(1− ε)
)
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Some questions!

Is Chen’s algorithm a property tester?

I For given undirected disconnected graph
G (V , E ), |V | = n, |E | = m, one add k − 1
edges to make G connected, therefore

ε

(
n

2

)
= ε

n(n − 1)

2
= k

ε =
2(k)

n(n − 1)
≤ 2

n

It is not independent from input.
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Some questions!

If ε→ 0, then 1
ε →∞, but 1

log(1−ε) → −∞.
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Some questions!

What’s the contribution of previous
wroks?

I Goldreich et. al., 1997[4], 2002[5].

Their algorithm could test the

k-connectivity, and in O
(

log2(1/εd)
ε

)
for

k = 1 on bounded degree model.

I dist(G , P) = 2ρd(G , P)/dn, i.e.,

ρd(G , P) the edit distance to closest

connected graph P .
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Goldreich et. al. 2002

Figure: bounded degree model
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Goldreich et. al. 2002

Connectivity Testing Algorithm
1 For i from 1 to log(8/(εd)) do:

I Uniformly and independently select
mi = 32 log(8/(εd))/(2i · ε · d) vertices
in the graph.

I For each vertex s selected, perform a
BFS starting from s until 2i vertices have
been reached or no more new vertices
can be reached (REJECT).

2 ACCEPT.
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Goldreich et. al. 2002

Lemma
Let d ≥ 2. If a graph G is ε-far from the

class of n-vertex connected graphs with

maximum degree d, then it has more than

(ε/4)dn connected components.
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Goldreich et. al. 2002

Lemma
If a graph G is ε-far from the class of

n-vertex connected graphs of degree bound

d ≥ 2, then G has at least dnε/8 connected

components each containing less than

8/(dε) vertices.
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Goldreich et. al. 2002

Lemma
If G is ε-far from the class of connected

graphs with maximum degree d, then

Algorithm rejects it with probability at least

2/3. The query complexity and running time

of the algorithm are O
(

log2(1/εd)
ε

)
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Goldreich et. al. 2002

PROOF:
Since it is ε-far, there are at least dnε/8

connected components. Let Bi be the set of

connected components in G which contain at

most 2i − 1 vertices and at least 2i−1

vertices.
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Goldreich et. al. 2002

The probability that a uniformly selected

vertex resides in one of these components is

at least

2i−1|Bi |
n

≥ 2i−1

n

dnε

(8 log(8/(εd)))
=

2

mi

Thus 1− (1− 2
mi

)mi ≥ 1− e−2 ≥ 2
3.
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Goldreich et. al. 2002

Roughly speaking, for each turn,

O(mi × TimeBFS) = 32
log( 8

εd )

(2i · ε · d)
· 2id

=
32 log( 8

εd )

ε

, Thus it costs O
(

log2(1/εd)
ε

)
.

End of Proof
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Blender et. al., 2002

Blender et. al. proposed two algorithms for

testing connectivity on digraph.

1 The informations of outgoing edges and

incoming edges of a vertex are available.

Note that Chen’s algorithm for digraph is this

type.

2 Only the information of outgoing edges

of a vertex is available.
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Blender et. al., 2002

I The first one is very similar to Chen’s

algorithm, but it is based on bounded

degree graph

I The time complexity is in O( 1
ε2d

),

I Chen found a better “small size”
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Are those algorithms testers?

Is the ε independnet from G? No!

Goldreich:

εdn
2 ≤ n − 1⇒ ε < 2

d , εdn
2 ≥ 1⇒ ε ≥ 2

dn

O

(
log2(1/εd)

ε

)
⇒

(
d log2(d)

2

)
, dn log2(

n

2
)
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Review the Property Tester

Property tester behaves as an algorithm with

constant parameter ε.

Chen’s ε is not independnet, too!

Does there exist indepednet tester?
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Testing Monotonicity

Q: Dose a sequence be sorted?

I Any deterministic decision algorithm

runs in Ω(n) to read the input and make

a decision.

I Ergun et. al. 2000[3] proposed an

algorithm to solve it in sublinear time.
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Ergun et. al. 2000

Monotonicity Testing Algorithm
I For j from 1 to O(1/ε) do:

I Query xi from sequence x1x2 · · · xn,
uniformly at random.

I Perform binary search for xi . If the
search does not found xi , return “No”.

I “YES”
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Ergun et. al. 2000

I Their algorithm runs in time O( log n
ε )

since each binary search costs O(log n).

I It is in BPP.

I ε-far for εn elements that BSearch fails,

I (1− ε)c/ε < ec/ε < 1/3 for some c

I ε is independnet from n.
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Summary

I Graph
representations,

I Randomized
sampling,

I Query complex-
ity,Oblivious
Tester[6]

I Parameter ε
matters!

Decision

version PTAS?
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