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Introduction

What is a complex number?

All complex numbers form a field that is an extension of the real
number field.

Definition

A complex number is an expression of the form z = x + iy , where
x , y ∈ R. Components defined as x = <(z), y = =(z), i2 = −1

Thus, we identify the bijection from R2 to C as[
x
y

]
7→ z = x + iy
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The complex field C is the set of pairs (x , y) with addition and
multiplication defined by

z + w = (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2)

z ∗ w = (x1, y1)(x2, y2) = (x1x2 − y1y2, x1y2 + y1x2)

The following laws also holds

1 z + w = w + z and zw = wz (commutative)

2 (z + w) + p = z + (w + p) and (zw)p = z(wp)(associative)

3 z(w + p) = zw + zp (distributive)

The complex conjugate of a complex number z = x + iy is
defined to be z̄ = x − iy .

<(z) = (z+z̄)
2 =(z) = (z−z̄)

2i
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Complex plane

The set of complex numbers forms the complex plane C. To each
complex number z = x + iy we associate the point (x , y) in the
Cartesian plane. Also a complex number can be represented by a
vector (r , θ) in polar coordinates.

A modulus of z is

r =
√

x2 + y 2 = |z | .

From x = r cos θ and y = r sin θ it
follows

z = r(cos θ + i sin θ),

where θ is called an argument of z .
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Introduction

Definition

A function F : C 7→ C is called a complex function of a complex
variable.

F (z) = F (x + iy) = <(F (z)) + i=(F (z)) = F1(x , y) + iF2(x , y),
where f1(x , y), f2(x , y) are two real functions of two real variables
x and y .

Also can be represent in the following way

F : R2 7→ R2 :

[
x
y

]
7→
[

F1(x , y)
F2(x , y)

]
=

[
<(F (x + iy))
=(F (x + iy))

]
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Differentiability

Definition

A complex-valued function F (z) is called a differentiable in a point
z0 if exist

limz→z0

F (z)−F (z0)
z−z0

Thus, the complex derivative of F (z) at z0 is

dF

dz
(z0) = F ′(z0) = lim

z→z0

F (z)− F (z0)

z − z0
= lim

∆z→0

F (z0 + ∆z)− F (z0)

∆z

The point z0 + ∆z may approach the point z0 along an arbitrary
curve ending at z0. The limit is the same regardless of the path
along which z0 is approached.
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Cauchy-Riemann equations

It follows limit should exist and is the same for z approaching z0

through the paths parallel to the coordinate axes.
First, let z = x + iy0 and x → x0. Then

F ′(z0) = ∂xF1 + i∂y F1

For z = x0 + iy and y → y0 we will have

F ′(z0) = ∂xF2 − i∂y F2

Comparing the real and the imaginary parts of two equations, we
get Cauchy-Riemann equations

∂xF1 = ∂y F2 ∂y F1 = −∂xF2 (1)
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Analytic function

Equations (1) can also be rewritten as

∂xF = −i∂y F

Satisfying these equations is a necessary condition for F (z) to be
differentiable at point z = z0, but not a sufficient condition.

Definition

We say that the complex function F is analytic at the point z0,
provided there is some ε > 0 such that F ′(z) exist for all
z ∈ Dε(z0). In other words, F must be differentiable not only at
z0, but also at all points in some ε neighborhood of z0.
If F is analytic at each point in the region D, then we say that F is
analytic on D.
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Analytic function

Theorem

The necessary and sufficient condition for a function
F (z) = F1 + iF2 to be analytic on a region D is that F1 and F2

have first order continuous partial derivatives on D and satisfy C-R
equations(1)

If F (z) is analytic in a region D, then the derivative of F (z) is also
an analytic function on D. Hence, the second order partial
derivatives of F1 and F2 are also continuous. Using the C-R
equations, we get the Laplace equations

∂2F1

∂x2
+
∂2F1

∂y 2
= 0

∂2F2

∂x2
+
∂2F2

∂y 2
= 0
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Analytic function

Thus, the real part and the imaginary part of an analytic function
F = F1 + iF2 are harmonic functions.
We have that

x =
1

2
(z + z̄), y = −1

2
i(z − z̄) (2)

By the rules of derivative, we have

∂F

∂z
=

1

2
(
∂F

∂x
− i

∂F

∂y
),

∂F

∂z̄
=

1

2
(
∂F

∂x
+ i

∂F

∂y
)

This implies that, a function is analytic if and only if ∂F/∂z̄ = 0.
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Laplace and Euler operators

Multiplying the last two relations we can easily derive the Laplace
operator of function F

∆F = 4
∂F

∂z

∂F

∂z̄

The following properties of Laplace operator holds

∆< = <∆ = 4<∂z∂z̄ ∆= = =∆ = 4=∂z∂z̄

The complex representation of the Euler operator is the following

x · ∇F (x) = z
∂F

∂z
+ z̄

∂F

∂z̄
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Anti-analytic function

Definition

An anti-analytic function is a function F satisfying the condition

∂F

∂z
= 0

Using the result

∂F

∂z
=
∂F

∂x

∂x

∂z
+
∂F

∂y

∂F

∂y

gives the anti-analytic version of the Cauchy-Riemann equations as

∂F1

∂x
= −∂F2

∂y

∂F2

∂x
=
∂F1

∂y
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Harmonic conjugate

Definition

If the function F1(x , y) is harmonic in a domain D, we can
associate with it another function F2(x , y) by means of C-R
equations. The function F2(x , y) defined by this equations is
harmonic in D and is called harmonic conjugate of F1(x , y).

It is clear that harmonic conjugate is unique up to the constant.
If on a simply connected domain G , with 0 ∈ G , a harmonic
function F1(x) ∈ R is given, a harmonic conjugate is constructed
by

F2(x) =

∫ x

0
(−∂y F1(x(s))ẋ + ∂xF1(x(s))ẏ)ds

The result doesn’t depend on the path of integration.
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Harmonic conjugate

L2(S1) is a Hilbert space on the unit circle S1 ⊂ C. Let
f̃1 ∈ L2(S1) and its Fourier expansion is

f̃1(θ) = a0 +
∞∑

n=1

(an cos(nθ)− bn sin(nθ))

Extend f̃1 to a harmonic function f1 on the unit disc D ⊂ C by
solving the Dirichlet problem. Let f2, the harmonic conjugate of f1,
be fixed by taking f2(0) = 0. Let f̃2 denote the limit to the
boundary S1 of D. Then

f̃2(θ) =
∞∑

n=1

(bn cos(nθ) + an sin(nθ))
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Harmonic conjugate

L2(S1; R;⊥ 1) is the linear subspace of all g̃ ∈ L2(S1) with∫ 2π
0 g̃(θ)dθ = 0

The operator

J : L2(S1; R;⊥ 1) : f̃1 7→ Jf̃1 = f̃2,

is orthogonal and skew-symmetric

J∗ = −J = J−1, J2 = −I .

Note that J{<(an + ibn)e inθ} = <{−i(an + ibn)e inθ}.
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Harmonic conjugate

The operator N : L2(S1; R;⊥ 1)→ L2(S1; R;⊥ 1) is defined by

Nf1 =
∞∑

n=1

n{bn cos(nθ) + an sin(nθ)}.

We have N∗ = N, J∂θ = ∂θJ = N and therefore ∂θ = −NJ.
For analytic functions f (z) on the unit disc D we will consider a
splitting in real series on S. We put

f (e iθ) =
∞∑

n=1

(an + ibn)e inθ = f1(e iθ) + if2(e iθ) = f1(e iθ) + iJf1(e iθ).
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Lemma

Lemma

On a simply connected domain G ⊂ R, with 0 ∈ G we consider a
biharmonic function x 7→ φ(x). This means ∆∆φ = 0. Then there
exist an analytic functions ϕ, χ : C 7→ C, such that

φ(x) = <(z̄ϕ(z) + χ(z)), z = x + iy
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Thank You!

Volha Shchetnikava Complex Analysis revisited


	Complex Numbers
	Introduction
	Field of complex numbers
	Complex plane

	Complex Functions
	Introduction
	Differentiability
	Cauchy-Riemann equations
	Analytic function
	Laplace and Euler operators
	Anti-analytic function
	Harmonic conjugate
	Lemma


