Complex Analysis revisited

Volha Shchetnikava

Department of Mathematics and Computer Science TU EINDHOVEN

February 24, 2010

イロン イヨン イヨン イヨン

Introduction Field of complex numbers Complex plane

Introduction

What is a complex number?

All complex numbers form a field that is an extension of the real number field.

Definition

A complex number is an expression of the form z = x + iy, where $x, y \in \mathbb{R}$. Components defined as $x = \Re(z)$, $y = \Im(z)$, $i^2 = -1$ Thus, we identify the bijection from \mathbb{R}^2 to \mathbb{C} as

$$\begin{bmatrix} x \\ y \end{bmatrix} \mapsto z = x + iy$$

SA

Introduction Field of complex numbers Complex plane

The complex field \mathbb{C} is the set of pairs (x, y) with addition and multiplication defined by

$$z + w = (x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

$$z * w = (x_1, y_1)(x_2, y_2) = (x_1x_2 - y_1y_2, x_1y_2 + y_1x_2)$$

The following laws also holds

The **complex conjugate** of a complex number z = x + iy is defined to be $\overline{z} = x - iy$.

$$\Re(z) = \frac{(z+\overline{z})}{2}$$
 $\Im(z) = \frac{(z-\overline{z})}{2i}$

Introduction Field of complex numbers Complex plane

Complex plane

The set of complex numbers forms the **complex plane** \mathbb{C} . To each complex number z = x + iy we associate the point (x, y) in the Cartesian plane. Also a complex number can be represented by a vector (r, θ) in polar coordinates.

A modulus of z is

$$r=\sqrt{x^2+y^2}=|z|\,.$$

From $x = r \cos \theta$ and $y = r \sin \theta$ it follows

$$z = r(\cos\theta + i\sin\theta),$$

where θ is called an argument of z.

Complex Analysis revisited

Co Cor	mplex Numbers nplex Functions	Introduction Differentiability Cauchy-Riemann equations Analytic function Laplace and Euler operators Anti-analytic function Harmonic conjugate Lemma

Introduction

Definition

A function $F : \mathbb{C} \mapsto \mathbb{C}$ is called a complex function of a complex variable.

 $F(z) = F(x + iy) = \Re(F(z)) + i\Im(F(z)) = F_1(x, y) + iF_2(x, y),$ where $f_1(x, y), f_2(x, y)$ are two real functions of two real variables x and y.

Also can be represent in the following way

$$F: \mathbb{R}^2 \mapsto \mathbb{R}^2: \begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} F_1(x, y) \\ F_2(x, y) \end{bmatrix} = \begin{bmatrix} \Re(F(x + iy)) \\ \Im(F(x + iy)) \end{bmatrix}$$

イロン イヨン イヨン イヨン

Complex	Numbers
Complex	Functions

Introduction Differentiability Cauchy-Riemann equations Analytic function Laplace and Euler operators Anti-analytic function Harmonic conjugate Lemma

Differentiability

Definition

A complex-valued function F(z) is called a differentiable in a point z_0 if exist

$$\lim_{z \to z_0} \frac{F(z) - F(z_0)}{z - z_0}$$

Thus, the complex derivative of F(z) at z_0 is

$$\frac{dF}{dz}(z_0) = F'(z_0) = \lim_{z \to z_0} \frac{F(z) - F(z_0)}{z - z_0} = \lim_{\Delta z \to 0} \frac{F(z_0 + \Delta z) - F(z_0)}{\Delta z}$$

The point $z_0 + \Delta z$ may approach the point z_0 along an arbitrary curve ending at z_0 . The limit is the same regardless of the path along which z_0 is approached.

Introduction Differentiability Cauchy-Riemann equations Analytic function Laplace and Euler operators Anti-analytic function Harmonic conjugate Lemma

Cauchy-Riemann equations

It follows limit should exist and is the same for z approaching z_0 through the paths parallel to the coordinate axes. First, let z = x + iy, and x + y. Then

First, let $z = x + iy_0$ and $x \to x_0$. Then

$$F'(z_0) = \partial_x F_1 + i \partial_y F_1$$

For $z = x_0 + iy$ and $y \to y_0$ we will have

$$F'(z_0) = \partial_x F_2 - i \partial_y F_2$$

Comparing the real and the imaginary parts of two equations, we get Cauchy-Riemann equations

$$\partial_x F_1 = \partial_y F_2 \qquad \partial_y F_1 = -\partial_x F_2 \tag{1)}$$

Complex Numbers Complex Functions	Differentiability Cauchy-Riemann equations Analytic function Laplace and Euler operators Anti-analytic function	
Complex Numbers Complex Functions	Analytic function Laplace and Euler operators Anti-analytic function Harmonic conjugate Lemma	

Analytic function

Equations (1) can also be rewritten as

$$\partial_x F = -i\partial_y F$$

Satisfying these equations is a necessary condition for F(z) to be differentiable at point $z = z_0$, but not a sufficient condition.

Definition

We say that the complex function F is analytic at the point z_0 , provided there is some $\epsilon > 0$ such that F'(z) exist for all $z \in D_{\epsilon}(z_0)$. In other words, F must be differentiable not only at z_0 , but also at all points in some ϵ neighborhood of z_0 . If F is analytic at each point in the region D, then we say that F is analytic on D.

SA

Introduction Differentiability Cauchy-Riemann equations Analytic function Laplace and Euler operators Anti-analytic function Harmonic conjugate Lemma

Analytic function

Theorem

The necessary and sufficient condition for a function $F(z) = F_1 + iF_2$ to be analytic on a region D is that F_1 and F_2 have first order continuous partial derivatives on D and satisfy C-R equations(1)

If F(z) is analytic in a region D, then the derivative of F(z) is also an analytic function on D. Hence, the second order partial derivatives of F_1 and F_2 are also continuous. Using the C-R equations, we get the Laplace equations

$$\frac{\partial^2 F_1}{\partial x^2} + \frac{\partial^2 F_1}{\partial y^2} = 0 \qquad \frac{\partial^2 F_2}{\partial x^2} + \frac{\partial^2 F_2}{\partial y^2} = 0$$
Volta Shchetnikava
Complex Analysis revisited

			Complex Numbers Complex Functions	Introduction Differentiability Cauchy-Riemann equations Analytic function Laplace and Euler operators Anti-analytic function Harmonic conjugate Lemma

Analytic function

Thus, the real part and the imaginary part of an analytic function $F = F_1 + iF_2$ are harmonic functions. We have that

$$x = \frac{1}{2}(z + \bar{z}), \qquad y = -\frac{1}{2}i(z - \bar{z})$$
 (2)

By the rules of derivative, we have

$$\frac{\partial F}{\partial z} = \frac{1}{2} \left(\frac{\partial F}{\partial x} - i \frac{\partial F}{\partial y} \right), \qquad \frac{\partial F}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial F}{\partial x} + i \frac{\partial F}{\partial y} \right)$$

This implies that, a function is analytic if and only if $\partial F/\partial \bar{z} = 0$.

Complex Numb Complex Function	Introduction Differentiability Cauchy-Riemann equations ers Analytic function ns Laplace and Euler operators Anti-analytic function Harmonic conjugate Lemma

Laplace and Euler operators

Multiplying the last two relations we can easily derive the Laplace operator of function ${\cal F}$

$$\Delta F = 4 \frac{\partial F}{\partial z} \frac{\partial F}{\partial \overline{z}}$$

The following properties of Laplace operator holds

$$\Delta \Re = \Re \Delta = 4 \Re \partial_z \partial_{\bar{z}} \qquad \Delta \Im = \Im \Delta = 4 \Im \partial_z \partial_{\bar{z}}$$

The complex representation of the Euler operator is the following

$$\mathbf{x} \cdot \nabla F(\mathbf{x}) = z \frac{\partial F}{\partial z} + \bar{z} \frac{\partial F}{\partial \bar{z}}$$

Introduction Differentiability Cauchy-Riemann equations Analytic function Laplace and Euler operators Anti-analytic function Harmonic conjugate Lemma

Anti-analytic function

Definition

An anti-analytic function is a function F satisfying the condition

$$\frac{\partial F}{\partial z} = 0$$

Using the result

$$\frac{\partial F}{\partial z} = \frac{\partial F}{\partial x}\frac{\partial x}{\partial z} + \frac{\partial F}{\partial y}\frac{\partial F}{\partial y}$$

gives the anti-analytic version of the Cauchy-Riemann equations as

Introduction Differentiability Cauchy-Riemann equations Analytic function Laplace and Euler operators Anti-analytic function Harmonic conjugate Lemma

Harmonic conjugate

Definition

If the function $F_1(x, y)$ is harmonic in a domain D, we can associate with it another function $F_2(x, y)$ by means of C-R equations. The function $F_2(x, y)$ defined by this equations is harmonic in D and is called **harmonic conjugate** of $F_1(x, y)$.

It is clear that harmonic conjugate is unique up to the constant. If on a simply connected domain G, with $0 \in G$, a harmonic function $F_1(x) \in \mathbb{R}$ is given, a harmonic conjugate is constructed by

$$F_2(x) = \int_0^x (-\partial_y F_1(x(s))\dot{x} + \partial_x F_1(x(s))\dot{y})ds$$

The result doesn't depend on the path of integration.

Introduction Differentiability Cauchy-Riemann equations Analytic function Laplace and Euler operators Anti-analytic function Harmonic conjugate Lemma

Harmonic conjugate

 $\mathbb{L}_2(\mathbb{S}^1)$ is a Hilbert space on the unit circle $\mathbb{S}^1 \subset \mathbb{C}$. Let $\tilde{f}_1 \in \mathbb{L}_2(\mathbb{S}^1)$ and its Fourier expansion is

$$\widetilde{f}_1(\theta) = a_0 + \sum_{n=1}^{\infty} (a_n \cos(n\theta) - b_n \sin(n\theta))$$

Extend \tilde{f}_1 to a harmonic function f_1 on the unit disc $D \subset \mathbb{C}$ by solving the Dirichlet problem. Let f_2 , the harmonic conjugate of f_1 , be fixed by taking $f_2(0) = 0$. Let \tilde{f}_2 denote the limit to the boundary \mathbb{S}^1 of D. Then

$$\tilde{f}_2(\theta) = \sum_{n=1}^{\infty} (b_n \cos(n\theta) + a_n \sin(n\theta))$$

Complex Numbers Complex Functions	Introduction Differentiability Cauchy-Riemann equations Analytic function Laplace and Euler operators Anti-analytic function Harmonic conjugate Lemma
	Lemma

Harmonic conjugate

 $\mathbb{L}_2(\mathbb{S}^1; \mathbb{R}; \bot 1)$ is the linear subspace of all $\tilde{g} \in \mathbb{L}_2(\mathbb{S}^1)$ with $\int_0^{2\pi} \tilde{g}(\theta) d\theta = 0$ The operator

$$J: \mathbb{L}_2(\mathbb{S}^1; \mathbb{R}; \perp 1): \widetilde{f}_1 \mapsto J\widetilde{f}_1 = \widetilde{f}_2,$$

is orthogonal and skew-symmetric

$$J^* = -J = J^{-1}, J^2 = -I.$$

Note that $J\{\Re(a_n + ib_n)e^{in\theta}\} = \Re\{-i(a_n + ib_n)e^{in\theta}\}.$

Complex Numbers Complex Functions	Introduction Differentiability Cauchy-Riemann equations Analytic function Laplace and Euler operators Anti-analytic function Harmonic conjugate	
	Harmonic conjugate Lemma	

Harmonic conjugate

The operator $N: \mathbb{L}_2(\mathbb{S}^1; \mathbb{R}; \bot 1) \to \mathbb{L}_2(\mathbb{S}^1; \mathbb{R}; \bot 1)$ is defined by

$$Nf_1 = \sum_{n=1}^{\infty} n\{b_n \cos(n\theta) + a_n \sin(n\theta)\}.$$

We have $N^* = N$, $J\partial_{\theta} = \partial_{\theta}J = N$ and therefore $\partial_{\theta} = -NJ$. For analytic functions f(z) on the unit disc D we will consider a splitting in real series on S. We put

$$f(e^{i\theta}) = \sum_{n=1}^{\infty} (a_n + ib_n)e^{in\theta} = f_1(e^{i\theta}) + if_2(e^{i\theta}) = f_1(e^{i\theta}) + iJf_1(e^{i\theta}).$$

白 ト イヨト イヨト

Complex Numbers Complex Functions Complex Functions Complex Functions Complex Functions Complex Functions Complex Functions Harmonic conjugate Lemma

Lemma

Lemma

On a simply connected domain $G \subset \mathbb{R}$, with $0 \in G$ we consider a biharmonic function $x \mapsto \phi(x)$. This means $\Delta \Delta \phi = 0$. Then there exist an analytic functions $\varphi, \chi : \mathbb{C} \mapsto \mathbb{C}$, such that

$$\phi(x) = \Re(\bar{z}\varphi(z) + \chi(z)), \qquad z = x + iy$$

イロト イヨト イヨト イヨト

Introduction Differentiability Cauchy-Riemann equations Analytic function Laplace and Euler operators Anti-analytic function Harmonic conjugate Lemma

Thank You!

æ

・ロン ・回 と ・ ヨン ・ ヨン