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Introduction

What is a complex number?

All complex numbers form a field that is an extension of the real
number field.

Definition

A complex number is an expression of the form z = x + iy, where
x,y € R. Components defined as x = R(z), y = S(z2), 2 = —1

Thus, we identify the bijection from R? to C as

X .
= Z=X-+1y N
|:y:| \F
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The complex field C is the set of pairs (x, y) with addition and
multiplication defined by

z4+w = (x1,y1) + (x2,y2) = (x1 + x2, y1 + y2)
zxw = (x1,y1) (%2, y2) = (x1x2 — y1y2, x1y2 + y1x2)

The following laws also holds
Q@ z+w=w+ z and zw = wz (commutative)
Q@ (z+w)+p=2z+(w+p) and (zw)p = z(wp)(associative)
© z(w + p) = zw + zp (distributive)
The complex conjugate of a complex number z = x + iy is
defined to be z = x — iy.
R@)= 2 9 = & A
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Complex plane

The set of complex numbers forms the complex plane C. To each
complex number z = x + iy we associate the point (x,y) in the
Cartesian plane. Also a complex number can be represented by a
vector (r,0) in polar coordinates.

A modulus of z is

r = \/X2 —|—y2 e ’Z‘ . /rﬂy_,e..

From x = rcos® and y = rsinf it !
follows / J

(]

z =r(cosf + isinf), TYSH

where 60 is called an argument of z.
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Introduction

Definition

A function F : C +— C is called a complex function of a complex

variable.

F(z) = F(x+iy) = R(F(2)) + iS(F(2)) = Fu(x, ) + iFa(x, y),

where fi(x, y), f2(x, y) are two real functions of two real variables
x and y.

Also can be represent in the following way

F R R2 - [X] . [Fl(xd/)] _ [%(F(X‘f‘ ’IY))}

vy [ROay)]  [S(F(x+iy)) 1S
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Differentiability

Definition
A complex-valued function F(z) is called a differentiable in a point
Zg if exist

F(z)=F(z0)

lim;_ 4, s

Thus, the complex derivative of F(z) at z is

i(zo) = F'(z) = lim M — im F(zo + Az) — F(z)

dz z—20 z—Z Az—0 Az

The point zyg + Az may approach the point zy along an arbitrary
curve ending at zg. The limit is the same regardless of the path am
along which zy is approached.
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Cauchy-Riemann equations

It follows limit should exist and is the same for z approaching z
through the paths parallel to the coordinate axes.
First, let z = x4+ iygp and x — xp. Then

F/(Zo) = 8XF1 + i8yF1
For z = xp + iy and y — yp we will have
F,(Z()) = 8XF2 — i8yF2

Comparing the real and the imaginary parts of two equations, we
get Cauchy-Riemann equations

y N
OxF1 =0y F> dyF1 = —0yF (1) CAED
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Analytic function

Equations (1) can also be rewritten as
OF = —id,F

Satisfying these equations is a necessary condition for F(z) to be
differentiable at point z = zy, but not a sufficient condition.

Definition

We say that the complex function F is analytic at the point z,
provided there is some € > 0 such that F’(z) exist for all

z € De(zp). In other words, F must be differentiable not only at
2o, but also at all points in some € neighborhood of zj.

If F is analytic at each point in the region D, then we say that F is
analytic on D. \Ed
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Analytic function

The necessary and sufficient condition for a function

F(z) = F1 + iF to be analytic on a region D is that F1 and F
have first order continuous partial derivatives on D and satisfy C-R
equations(1)

If F(z) is analytic in a region D, then the derivative of F(z) is also
an analytic function on D. Hence, the second order partial
derivatives of F; and F» are also continuous. Using the C-R
equations, we get the Laplace equations

R | PR _ 0 9?Fy N 0’F _ 0 am
Ox?2 Oy? Ox? Oy?
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Analytic function

Thus, the real part and the imaginary part of an analytic function
F = F1 + iFy are harmonic functions.
We have that

1 1
x=o(z42),  y=-3ilz-2) 2)
By the rules of derivative, we have
OF 1 Bi OF OF 1 oF OF

oz~ 28x oy @ 2lex Ty
This implies that, a function is analytic if and only if 9F /0z = 0. am
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Laplace and Euler operators

Multiplying the last two relations we can easily derive the Laplace
operator of function F

OF OF
AF =4

The following properties of Laplace operator holds
AR = RA = 4R0,0; AS = SA = 430,05

The complex representation of the Euler operator is the following

OF _OF
-V g S > o
x-VF(x) =25 +25; LIS
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Anti-analytic function

Definition

An anti-analytic function is a function F satisfying the condition

oF

E_O

Using the result

OF OF0x OF OF
9z ox0z Dy oy
gives the anti-analytic version of the Cauchy-Riemann equations as
oh _ 0k 0ROk A
Ox dy ox Oy
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Harmonic conjugate

Definition

If the function F;(x, y) is harmonic in a domain D, we can
associate with it another function F»(x,y) by means of C-R
equations. The function Fy(x, y) defined by this equations is
harmonic in D and is called harmonic conjugate of Fi(x,y).

It is clear that harmonic conjugate is unique up to the constant.
If on a simply connected domain G, with 0 € G, a harmonic
function Fi(x) € R is given, a harmonic conjugate is constructed
by

Fa(x) = /O Y (0, F1 (x(5))% + 0 Fi (x(5))7)ds

VN
CAER
The result doesn’t depend on the path of integration.
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Harmonic conjugate

L2(S') is a Hilbert space on the unit circle S' C C. Let
fi € Lp(S') and its Fourier expansion is

f"-l(g) =ag+ Z(an cos(nf) — b, sin(nf))

n=1

Extend Fl to a harmonic function f; on the unit disc D C C by
solving the Dirichlet problem. Let f,, the harmonic conjugate of fi,
be fixed by taking £(0) = 0. Let % denote the limit to the
boundary St of D. Then

f2(0) = Z(bn cos(nf) + ansin(nd)) agg
n=1
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Harmonic conjugate

Lo(SY; R; L 1) is the linear subspace of all & € Ly(S!) with
T E(0)dg =0
The operator
J:Lo(SLR; L 1) A — JF = fa,
is orthogonal and skew-symmetric

Jr=—J=J1 P =1

Note that J{R(a, + ib,)e™} = R{—i(a, + ib,)e™}. .
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Harmonic conjugate

The operator N : Lp(SY; R; L 1) — Lo(SY; R; L 1) is defined by

o0

Nfy = Z n{b, cos(nf) + a, sin(nf)}.

n=1

We have N* = N, JOy = 0pJ = N and therefore 0y = —NJ.
For analytic functions f(z) on the unit disc D we will consider a
splitting in real series on S. We put

F(e) = (an+ ibn)e™ = fi(e”) + i (") = fi(e) + iU (e?).
n=1 o
CAER
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On a simply connected domain G C R, with 0 € G we consider a
biharmonic function x — ¢(x). This means AA¢ = 0. Then there
exist an analytic functions p,x : C — C, such that

¢(x) = R(zp(2) + x(2)), z=x+1y
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Thank You!
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