Complex Analysis revisited

Volha Shchetnikava
Department of Mathematics and Computer Science TU EINDHOVEN

February 24, 2010

Introduction

What is a complex number?

All complex numbers form a field that is an extension of the real number field.

Definition

A complex number is an expression of the form $z=x+i y$, where $x, y \in \mathbb{R}$. Components defined as $x=\Re(z), y=\Im(z), i^{2}=-1$
Thus, we identify the bijection from \mathbb{R}^{2} to \mathbb{C} as

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right] \mapsto z=x+i y
$$

The complex field \mathbb{C} is the set of pairs (x, y) with addition and multiplication defined by

$$
\begin{gathered}
z+w=\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{1}+x_{2}, y_{1}+y_{2}\right) \\
z * w=\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)=\left(x_{1} x_{2}-y_{1} y_{2}, x_{1} y_{2}+y_{1} x_{2}\right)
\end{gathered}
$$

The following laws also holds
(1) $z+w=w+z$ and $z w=w z$ (commutative)
(2) $(z+w)+p=z+(w+p)$ and $(z w) p=z(w p)$ (associative)
(3) $z(w+p)=z w+z p$ (distributive)

The complex conjugate of a complex number $z=x+i y$ is defined to be $\bar{z}=x-i y$.

$$
\Re(z)=\frac{(z+\bar{z})}{2} \quad \Im(z)=\frac{(z-\bar{z})}{2 i}
$$

Complex plane

The set of complex numbers forms the complex plane \mathbb{C}. To each complex number $z=x+i y$ we associate the point (x, y) in the Cartesian plane. Also a complex number can be represented by a vector (r, θ) in polar coordinates.

A modulus of z is

$$
r=\sqrt{x^{2}+y^{2}}=|z| .
$$

From $x=r \cos \theta$ and $y=r \sin \theta$ it follows

$$
z=r(\cos \theta+i \sin \theta)
$$

CASA
where θ is called an argument of z.

Introduction

Definition

A function $F: \mathbb{C} \mapsto \mathbb{C}$ is called a complex function of a complex variable.
$F(z)=F(x+i y)=\Re(F(z))+i \Im(F(z))=F_{1}(x, y)+i F_{2}(x, y)$, where $f_{1}(x, y), f_{2}(x, y)$ are two real functions of two real variables x and y.

Also can be represent in the following way

$$
F: \mathbb{R}^{2} \mapsto \mathbb{R}^{2}:\left[\begin{array}{l}
x \\
y
\end{array}\right] \mapsto\left[\begin{array}{l}
F_{1}(x, y) \\
F_{2}(x, y)
\end{array}\right]=\left[\begin{array}{l}
\Re(F(x+i y)) \\
\Im(F(x+i y))
\end{array}\right]
$$

Differentiability

Definition

A complex-valued function $F(z)$ is called a differentiable in a point z_{0} if exist

$$
\lim _{z \rightarrow z_{0}} \frac{F(z)-F\left(z_{0}\right)}{z-z_{0}}
$$

Thus, the complex derivative of $F(z)$ at z_{0} is

$$
\frac{d F}{d z}\left(z_{0}\right)=F^{\prime}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{F(z)-F\left(z_{0}\right)}{z-z_{0}}=\lim _{\Delta z \rightarrow 0} \frac{F\left(z_{0}+\Delta z\right)-F\left(z_{0}\right)}{\Delta z}
$$

The point $z_{0}+\Delta z$ may approach the point z_{0} along an arbitrary curve ending at z_{0}. The limit is the same regardless of the path along which z_{0} is approached.

```
Analytic function
Laplace and Euler operators
Anti-analytic function
Harmonic conjugate
Lemma
```


Cauchy-Riemann equations

It follows limit should exist and is the same for z approaching z_{0} through the paths parallel to the coordinate axes.
First, let $z=x+i y_{0}$ and $x \rightarrow x_{0}$. Then

$$
F^{\prime}\left(z_{0}\right)=\partial_{x} F_{1}+i \partial_{y} F_{1}
$$

For $z=x_{0}+i y$ and $y \rightarrow y_{0}$ we will have

$$
F^{\prime}\left(z_{0}\right)=\partial_{x} F_{2}-i \partial_{y} F_{2}
$$

Comparing the real and the imaginary parts of two equations, we get Cauchy-Riemann equations

$$
\partial_{x} F_{1}=\partial_{y} F_{2} \quad \partial_{y} F_{1}=-\partial_{x} F_{2}
$$

Analytic function

Equations (1) can also be rewritten as

$$
\partial_{x} F=-i \partial_{y} F
$$

Satisfying these equations is a necessary condition for $F(z)$ to be differentiable at point $z=z_{0}$, but not a sufficient condition.

Definition

We say that the complex function F is analytic at the point z_{0}, provided there is some $\epsilon>0$ such that $F^{\prime}(z)$ exist for all $z \in D_{\epsilon}\left(z_{0}\right)$. In other words, F must be differentiable not only at z_{0}, but also at all points in some ϵ neighborhood of z_{0}. If F is analytic at each point in the region D, then we say that F is analytic on D.

Analytic function

Theorem

The necessary and sufficient condition for a function $F(z)=F_{1}+i F_{2}$ to be analytic on a region D is that F_{1} and F_{2} have first order continuous partial derivatives on D and satisfy $C-R$ equations(1)

If $F(z)$ is analytic in a region D, then the derivative of $F(z)$ is also an analytic function on D. Hence, the second order partial derivatives of F_{1} and F_{2} are also continuous. Using the C-R equations, we get the Laplace equations

$$
\frac{\partial^{2} F_{1}}{\partial x^{2}}+\frac{\partial^{2} F_{1}}{\partial y^{2}}=0 \quad \frac{\partial^{2} F_{2}}{\partial x^{2}}+\frac{\partial^{2} F_{2}}{\partial y^{2}}=0
$$

Analytic function

Thus, the real part and the imaginary part of an analytic function $F=F_{1}+i F_{2}$ are harmonic functions.
We have that

$$
\begin{equation*}
x=\frac{1}{2}(z+\bar{z}), \quad y=-\frac{1}{2} i(z-\bar{z}) \tag{2}
\end{equation*}
$$

By the rules of derivative, we have

$$
\frac{\partial F}{\partial z}=\frac{1}{2}\left(\frac{\partial F}{\partial x}-i \frac{\partial F}{\partial y}\right), \quad \frac{\partial F}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial F}{\partial x}+i \frac{\partial F}{\partial y}\right)
$$

This implies that, a function is analytic if and only if $\partial F / \partial \bar{z}=0$. CASA

Laplace and Euler operators

Multiplying the last two relations we can easily derive the Laplace operator of function F

$$
\Delta F=4 \frac{\partial F}{\partial z} \frac{\partial F}{\partial \bar{z}}
$$

The following properties of Laplace operator holds

$$
\Delta \Re=\Re \Delta=4 \Re \partial_{z} \partial_{\bar{z}} \quad \Delta \Im=\Im \Delta=4 \Im \partial_{z} \partial_{\bar{z}}
$$

The complex representation of the Euler operator is the following

$$
\mathbf{x} \cdot \nabla F(\mathbf{x})=z \frac{\partial F}{\partial z}+\bar{z} \frac{\partial F}{\partial \bar{z}}
$$

Anti-analytic function

Definition

An anti-analytic function is a function F satisfying the condition

$$
\frac{\partial F}{\partial z}=0
$$

Using the result

$$
\frac{\partial F}{\partial z}=\frac{\partial F}{\partial x} \frac{\partial x}{\partial z}+\frac{\partial F}{\partial y} \frac{\partial F}{\partial y}
$$

gives the anti-analytic version of the Cauchy-Riemann equations as

$$
\frac{\partial F_{1}}{\partial x}=-\frac{\partial F_{2}}{\partial y} \quad \frac{\partial F_{2}}{\partial x}=\frac{\partial F_{1}}{\partial y}
$$

Harmonic conjugate

Definition

If the function $F_{1}(x, y)$ is harmonic in a domain D, we can associate with it another function $F_{2}(x, y)$ by means of C-R equations. The function $F_{2}(x, y)$ defined by this equations is harmonic in D and is called harmonic conjugate of $F_{1}(x, y)$.

It is clear that harmonic conjugate is unique up to the constant. If on a simply connected domain G, with $0 \in G$, a harmonic function $F_{1}(x) \in \mathbb{R}$ is given, a harmonic conjugate is constructed by

$$
F_{2}(x)=\int_{0}^{x}\left(-\partial_{y} F_{1}(x(s)) \dot{x}+\partial_{x} F_{1}(x(s)) \dot{y}\right) d s
$$

The result doesn't depend on the path of integration.

Harmonic conjugate

$\mathbb{L}_{2}\left(\mathbb{S}^{1}\right)$ is a Hilbert space on the unit circle $\mathbb{S}^{1} \subset \mathbb{C}$. Let $\tilde{f}_{1} \in \mathbb{L}_{2}\left(\mathbb{S}^{1}\right)$ and its Fourier expansion is

$$
\tilde{f}_{1}(\theta)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos (n \theta)-b_{n} \sin (n \theta)\right)
$$

Extend \tilde{f}_{1} to a harmonic function f_{1} on the unit disc $D \subset \mathbb{C}$ by solving the Dirichlet problem. Let f_{2}, the harmonic conjugate of f_{1}, be fixed by taking $f_{2}(0)=0$. Let \tilde{f}_{2} denote the limit to the boundary \mathbb{S}^{1} of D. Then

$$
\tilde{f}_{2}(\theta)=\sum_{n=1}^{\infty}\left(b_{n} \cos (n \theta)+a_{n} \sin (n \theta)\right)
$$

Harmonic conjugate

$\mathbb{L}_{2}\left(\mathbb{S}^{1} ; \mathbb{R} ; \perp 1\right)$ is the linear subspace of all $\tilde{g} \in \mathbb{L}_{2}\left(\mathbb{S}^{1}\right)$ with $\int_{0}^{2 \pi} \tilde{g}(\theta) d \theta=0$
The operator

$$
J: \mathbb{L}_{2}\left(\mathbb{S}^{1} ; \mathbb{R} ; \perp 1\right): \tilde{f}_{1} \mapsto J \tilde{f}_{1}=\tilde{f}_{2}
$$

is orthogonal and skew-symmetric

$$
J^{*}=-J=J^{-1}, J^{2}=-I
$$

Note that $J\left\{\Re\left(a_{n}+i b_{n}\right) e^{i n \theta}\right\}=\Re\left\{-i\left(a_{n}+i b_{n}\right) e^{i n \theta}\right\}$.

Harmonic conjugate

The operator $N: \mathbb{L}_{2}\left(\mathbb{S}^{1} ; \mathbb{R} ; \perp 1\right) \rightarrow \mathbb{L}_{2}\left(\mathbb{S}^{1} ; \mathbb{R} ; \perp 1\right)$ is defined by

$$
N f_{1}=\sum_{n=1}^{\infty} n\left\{b_{n} \cos (n \theta)+a_{n} \sin (n \theta)\right\}
$$

We have $N^{*}=N, J \partial_{\theta}=\partial_{\theta} J=N$ and therefore $\partial_{\theta}=-N J$. For analytic functions $f(z)$ on the unit disc D we will consider a splitting in real series on \mathbb{S}. We put

$$
f\left(e^{i \theta}\right)=\sum_{n=1}^{\infty}\left(a_{n}+i b_{n}\right) e^{i n \theta}=f_{1}\left(e^{i \theta}\right)+i f_{2}\left(e^{i \theta}\right)=f_{1}\left(e^{i \theta}\right)+i J f_{1}\left(e^{i \theta}\right)
$$

Analytic function
Laplace and Euier operators
Anti-analytic function
Harmonic conjugate
Lemma

Lemma

Lemma

On a simply connected domain $G \subset \mathbb{R}$, with $0 \in G$ we consider a biharmonic function $x \mapsto \phi(x)$. This means $\Delta \Delta \phi=0$. Then there exist an analytic functions $\varphi, \chi: \mathbb{C} \mapsto \mathbb{C}$, such that

$$
\phi(x)=\Re(\bar{z} \varphi(z)+\chi(z)), \quad z=x+i y
$$

Thank You!

Volha Shchetnikava

