FLORENTIN SMARANDACHE A Function in the Number Theory

In Florentin Smarandache: "Collected Papers", vol. II. Chisinau (Moldova): Universitatea de Stat din Moldova, 1997.

A FUNCTION IN THE NUMBER THEORY

Summary

In this paper I shall construct a function η having the following properties:

$$
\begin{equation*}
\forall \eta \in Z \quad n \neq 0 \quad(\eta(n))!=M \cdot n \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\eta(n) \text { is the smallest natural number with the property(1). } \tag{2}
\end{equation*}
$$

We consider: $N=\{0,1,2,3, \ldots\}$ and $N^{*}=\{1,2,3, \ldots\}$.
Lema 1. $\forall k, p \in N^{*}, p \neq 1, k$ is uniquely written under the shape: $k=t_{1} a_{n_{1}}^{(p)}+\ldots+t_{l} a_{n_{2}}^{(p)}$ where $a_{n_{1}}^{(p)}=\frac{p^{n_{i-1}}}{p-1}, \quad i=\overline{1, l}, \quad n_{1}>n_{2}>\ldots>n_{l}>0$ and $1 \leq t_{j} \leq p-1, j=\overline{1, l-1}, 1 \leq t_{l} \leq p$, $n_{j}, t_{j} \in N, \quad i=\overline{1, l} l \in N^{*}$.

Proof. The string ($\left.a_{n}^{(p)}\right)_{n \in N^{*}}$ consists of strictly increasing infinite natural numbers and $a_{n+1}^{(p)}-1=p \cdot a_{n}^{(p)}, ; \forall n \in N^{*}, p$ is fixed,

$$
a_{1}^{(p)}=1, a_{2}^{(p)}=1+p, a_{3}^{(p)}=1+p+p^{2}, \ldots \Rightarrow N^{*}=\bigcup_{n \in N^{*}}\left(\left[a_{n}^{(p)}, a_{n+1}^{(p)}\right) \cap N^{*}\right)
$$

where $\left[a_{n}^{(p)}, a_{n+1}^{(p)}\right) \cap\left[a_{n+1}^{(p)}, a_{n+2}^{(p)}\right)=\emptyset$ because $a_{n}^{(p)}<a_{n+1}^{(p)}<a_{n+2}^{(p)}$.
Let $k \in N^{*}, N^{*}=\bigcup_{n \in N^{*}}\left(\left[a_{n}^{(p)}, a_{n+1}^{(p)}\right) \cap N^{*}\right) \Rightarrow \exists!n_{1} \in N^{*}: k \in\left(\left[a_{n_{1}}^{(p)}, a_{n_{1}+1}^{(p)}\right) \Rightarrow k\right)$ is uniquely written under the shape $k=\left[\frac{k}{a_{n_{1}}^{(p)}}\right] a_{n_{1}}^{(p)}+r_{1}$ (integer division theorem). We note $k=\left[\frac{k}{a_{n_{1}}^{(p)}}\right]=t_{1} \Rightarrow k=t_{1} a_{n_{1}}^{(p)}+r_{1}, r_{1}<a_{n_{1}}^{(p)}$.

If $r_{1}=0$, as $a_{n_{1}}^{(p)} \leq k \leq a_{n_{1}+1}^{(p)}-1 \Rightarrow 1 \leq t_{1} \leq p$ and Lemma 1 is proved.
If $r_{1} \neq 0 \Rightarrow \exists!n_{2} \in N^{*}: r_{1} \in\left[a_{n_{2}}^{(p)}, a_{n_{2}+1}^{(p)}\right) ; \quad a_{n_{1}}^{(p)}>r_{1} \Rightarrow n_{1}>n_{2}, r_{1} \neq 0$ and $a_{n_{1}}^{(p)} \leq k \leq$ $\leq a_{n_{1}+1}^{(p)}-1 \Rightarrow 1 \leq t_{1} \leq p-1$ because we have $t_{1} \leq\left(a_{n_{1}+1}^{(p)}-1-r_{1}\right): a_{n}^{(p)}<p_{1}$.

The procedure continues similarly. After a finite number of steps l, we achieve $r_{l}=0$, as $k=$ finite, $k \in N^{*}$ and $k>r_{1}>r_{2} \ldots>r_{l}=0$ and between 0 and k there is only a finite number of distinct natural numbers.

Thus:
k is uniquely written: $k=t_{1} a_{n_{1}}^{(p)}+r_{1}, 1 \leq t_{1} \leq p-1, r$ is uniquely written: $r_{1}=\dot{t}_{2} a_{n_{2}}^{(p)}+r_{2}$, $n_{2}<n_{1}$,

$$
1 \leq t_{2} \leq p-1
$$

r_{l-1} is uniquely written: $r_{l-1}=t_{l} a_{n_{l}}^{(p)}+r_{l}$ and $r_{l}=0$,

$$
n_{l}<n_{l-1}, 1 \leq t_{l} \leq p
$$

$\Rightarrow k$ is uniquely written under the shape $k=t_{1} a_{n_{1}}^{(p)}+\ldots+t_{l} a_{n_{l}}^{(p)}$ with $n_{1}>n_{2}>\ldots>n_{l} ; n_{l}>0$ becuase $n_{l} \in N^{*}, \quad 1 \leq t_{j} \leq p-1, j=\overline{1, l-1}, 1 \leq t_{l} \leq p, l \geq 1$.

Let $k \in N^{*}, k=t_{1} a_{n_{1}}^{(p)}+\ldots+t_{l} a_{n_{l}}^{(p)}$, with $a_{n_{i}}^{(p)}=\frac{p^{n_{i}}-1}{p-1}, i=\overline{1, l}, l \geq 1, \quad n_{i} ; t_{i} \in N^{*}$, $i=\overline{1, l}, n_{1}>n_{2}>\ldots>n_{1}>0,1 \leq t_{j} \leq p-1, j=\overline{1, l-1}, 1 \leq t_{l} \leq p$.

I construct the function $\eta_{p}, p=$ prime $>0, \eta_{p}: N^{*} \rightarrow N^{*}$ thus:

$$
\begin{gathered}
\forall n \in N^{*} \eta_{p}\left(a_{n}^{(p)}\right)=p^{n}, \\
\eta_{p}\left(t_{1} a_{n_{1}}^{(p)}+\ldots+t_{l} a_{n_{1}}^{(p)}\right)=t_{1} \eta_{p}\left(a_{n_{1}}^{(p)}\right)+\ldots+t_{i} \eta_{p}\left(a_{n_{l}}^{(p)}\right) .
\end{gathered}
$$

Note 1. The function η_{p} is well defined for each natural number.
Proof.
Lema 2. $\forall k \in N^{*} \Rightarrow k$ is uniquely written as $k=t_{1} a_{j}^{(p)}+\ldots+t_{1} a_{n_{2}}^{(p)}$ with the conditions from Lemma $1 \Rightarrow \exists!t_{1} p^{n_{1}}+\ldots+t_{l} p^{n_{l}}=\eta_{p}\left(t_{1} a_{n_{1}}^{(p)}+\ldots+t_{l} a_{n_{l}}^{(p)}\right)$ and $t_{1_{p}}^{n_{1}}+t_{l p}^{n_{l}} \in N^{*}$.

Lema 3. $\forall k \in N^{*}, \forall p \in N, p=p r i m e \Rightarrow k=t_{1} a_{n_{1}}^{(p)}+\ldots t_{1} a_{n_{2}}^{(p)}$ with the conditions from Lemma $2 \Rightarrow \eta_{p}(k)=t_{1} p^{n_{1}}+\ldots+t_{l} p^{n_{1}}$.

It is known that $\left[\frac{a_{1}+\ldots+a_{n}}{b}\right] \geq\left[\frac{a_{1}}{b}\right]+\ldots+\left[\frac{a_{n}}{b}\right] \forall a_{i}, b \in N^{*}$ where through $[\alpha]$ we have written the integer side of number α. I shall prove that p 's powers sum from the natural numbers make up the result factors $\left(t_{1} p^{n_{i}}+\ldots+t_{i} p^{n_{i}}\right)!$ is $\geq k$;

$$
\begin{aligned}
& {\left[\frac{t_{1} p^{n_{1}}+\ldots+t_{l} p^{n_{i}}}{p}\right] \geq\left[\frac{t_{1} p^{n_{i}}}{p}\right]+\ldots+\left[\frac{t_{l} p^{n_{2}}}{p}\right]=t_{1} p^{n_{i}-1}+\ldots+t_{l} p^{n_{i}-1}} \\
& \vdots \\
& {\left[\frac{t_{1} p^{n_{1}}+\ldots+t_{l} p^{n_{i}}}{p^{n_{i}}}\right] \geq\left[\frac{t_{1} p^{n_{2}}}{p^{n_{l}}}\right]+\ldots+\left[\frac{t_{l} p^{n_{l}}}{p^{n_{i}}}\right]=t_{1} p^{n_{1}-n_{l}}+\ldots+t_{l} p^{0}} \\
& \vdots \\
& {\left[\frac{t_{1} p^{n_{1}}+\ldots+t_{l} p^{n_{1}}}{p^{n_{l}}}\right] \geq\left[\frac{t_{1} p^{n_{1}}}{p^{n_{1}}}\right]+\ldots+\left[\frac{t_{l} p^{n_{i}}}{p^{n_{l}}}\right]=t_{1} p^{0}+\ldots+\left[\frac{t_{l} p^{n_{i}}}{p^{n_{l}}}\right] .}
\end{aligned}
$$

Adding $\Rightarrow p$'s powers sum is $\geq t_{1}\left(p^{n_{1}-1}+\ldots+p^{0}\right)+\ldots+t_{l}\left(p^{n_{2}-1}+\ldots+p^{0}\right)=t_{1} a_{n_{1}}^{(p)}+\ldots t_{l} a_{m_{l}}^{(p)}=$ k.

Theorem 1. The function $n_{p}, p=p r i m e, ~ d e f i n e d ~ p r e v i o u s l y, ~ h a s ~ t h e ~ f o l l o w i n g ~ p r o p e r t i e s: ~$
(1) $\forall k \in N^{*},\left(n_{p}(k)\right)!=M p^{k}$.
(2) $\pi_{p}(k)$ is the smallest number with the property (1).

Proof.

(1) results from Lemma 3.
(2) $\forall k \in N^{*}, p \geq 2 \Rightarrow k=t_{1} a_{n_{2}}^{(p)}+\ldots+t_{1} a_{n_{l}}^{(p)}$ (by Lemma 2) is uniquely written, where:

$$
\begin{aligned}
& \quad n_{i}, t_{i} \in N^{*}, n_{1}>n_{2}>\ldots>n_{l}>0, \quad a_{n_{i}}^{(p)}=\frac{p^{n_{1}}-1}{p-1} \in N^{*}, i=\overline{1, l}, 1 \leq t_{j} \leq p-1, \\
& j=\overline{1, l-1}, 1<t_{l}<p . \\
& \quad \Rightarrow \eta_{p}(k)=t_{1} p^{n_{1}}+\ldots+t_{l} p^{n_{i}} . \text { I note: } z=t_{1} p^{n_{1}}+\ldots t_{l} p^{n_{i}} .
\end{aligned}
$$

Let us prove the z is the smallest natural number with the property (1). I suppose by the method of reduction ad absurdum that $\exists \gamma \in N, \gamma<z$:

$$
\begin{aligned}
& \gamma!=M p^{k} ; \\
& \gamma<z \Rightarrow \gamma \leq z-1 \Rightarrow(z-1)!=M p^{k} . \\
& z-1=t_{1} p^{n_{1}}+\ldots+t_{l} p_{l}^{n_{i}}-1 ; n_{1}>n_{2}>\ldots>n_{l} \geq 0 \text { and } n_{j} \in N, j=\overline{1, l} ; \\
& {\left[\frac{z-1}{p}\right]=t_{1} p^{n_{1}-1}+\ldots+t_{l-1} p^{n_{i-1}-1}+t_{i} p^{n_{i}-1}-1 \text { as }\left[\frac{-1}{p}\right]=-1 \text { because } p \geq 2 \text {, }} \\
& {\left[\frac{z-1}{p^{n_{l}}}\right]=t_{1} p^{n_{1}-n_{l}}+\ldots+t_{l-1} p^{n_{l}-1}-n_{l}+t_{l} p^{0}-1 \text { as }\left[\frac{-1}{p^{n_{l}}}\right]=-1 \text { as } p \geq 2, n_{l} \geq 1 \text {, }} \\
& {\left[\frac{z-1}{p^{n_{i}+1}}\right]=t_{1} p^{n_{1}-n_{i}-1}+\ldots+t_{i-1} p^{n_{i-1}-n_{i}-1}+\left[\frac{t_{l} p^{n_{i}}-1}{p^{n_{i}+1}}\right]=t_{1} p^{n_{1}-n_{l}-1}+\ldots+t_{l-1} p^{n_{l}-1}-n_{l}-1}
\end{aligned}
$$ because $0<t_{l} p^{n_{l}}-1 \leq p \cdot p^{n_{l}}-1<p^{n_{l}+1}$ as $t_{l}<p$;

$$
\begin{aligned}
& {\left[\frac{z-1}{p^{n_{i}-1}}\right]=t_{1} p^{n_{1} n_{i-1}}+\ldots+t_{l-1} p^{0}+\left[\frac{t_{1} p^{n_{t}}-1}{p^{n_{i}-1}}\right]=t_{1} p^{n_{1}-n_{i-1}}+\ldots+t_{l-1} p^{0} \text { as } n_{l-1}>n_{l}} \\
& {\left[\frac{z-1}{p^{n_{1}}}\right]=t_{1} p^{0}+\left[\frac{t_{2} p^{n_{2}}+\ldots+t_{t} p^{n_{i}}-1}{p^{n_{1}}}\right]=t_{1} p^{0}}
\end{aligned}
$$

Because $0<t_{2} p^{n_{2}}+\ldots+t_{i} p^{n_{1}}-1 \leq(p-1) p^{n_{2}}+\ldots+(p-1) p^{n_{1}-2}+p \cdot p^{n_{1}}-1 \leq(p-1) \times$ $\times \sum_{i=n_{t-2}}^{n_{2}} p^{i}+p^{n_{1}+1}-1 \leq(p-1) \frac{p^{n_{2}+1}}{p-1}=p^{n_{2}+1}-1<p^{n_{1}}-1<p^{n_{1}} \Rightarrow\left[\frac{t_{2} p^{n_{2}}+\ldots t_{l} p^{n_{2}}-1}{p^{n_{2}}}\right]=0$ $\left[\frac{z-1}{p^{n_{1}+1}}\right]=\left[\frac{t_{1} p^{n_{1}}+\ldots t_{t} p^{n_{i}}-1}{p^{n_{1}+1}}\right]=0$
because: $0<t_{1} p^{n_{1}}+\ldots+t_{l} p^{n_{1}}-1<p^{n_{1}+1}-1<p^{n_{1}+1}$ according to a reasoning similar to the previous one.

Adding $\Rightarrow p$'s powers sum in the natural numbers which make up the product factors $(z-1)$! is:

$$
t_{1}\left(p^{n_{2}-1}+\ldots+p^{0}\right)+\ldots+t_{l-1}\left(p^{n_{l-1}-1}+\ldots+p^{0}\right)+t_{l}\left(p^{n_{l}-1}+\ldots+p^{0}\right)-1 \cdot n_{l}=k-n_{l}<k-1<k
$$ because $n_{i}>1 \Rightarrow(z-1)!\neq M p^{k}$, this contradicts the supposition made.

$\Rightarrow \eta_{p}(k)$ is tha smailest natural number with the property $\left(\eta_{p}(k)\right)!=M p^{k}$.
I construct a new function $\eta: Z \backslash\{0\} \rightarrow N$ as follows:

$$
\left\{\begin{array}{l}
\eta(\pm 1)=0 \\
\forall n=\epsilon p_{1}^{\alpha_{1}} \ldots p_{s}^{\alpha_{s}} \text { with } \epsilon= \pm 1, p_{i}=\text { prime } \\
p_{i} \neq p_{j} \text { for } i \neq j, \alpha_{i} \geq 1, i=\overline{1, s} ; \eta(n)=\max _{i=\overline{1, z}}\left\{\eta_{p_{i}}\left(\alpha_{i}\right)\right\}
\end{array}\right.
$$

Note 2. η is well defined and defined overall.

Proof.

(a) $\forall n \in Z, n \neq 0, n \neq \pm 1, n$ is uniquely written, independent of the order of the factors, under the shape of $n=\epsilon p_{1}^{\alpha_{3}} \ldots p_{s}^{\alpha_{s}}$ with $\epsilon= \pm 1$ where $p_{i}=$ prime, $p_{i} \neq p_{j}, \alpha_{i} \geq 1$ (decompose into prime factors in $Z=$ factorial ring).
$\Rightarrow \exists!\eta(n)=\max _{i=1, s}\left\{\eta_{p_{i}}\left(\alpha_{i}\right)\right\}$ as $s=$ finite and $\eta_{p_{i}}\left(\alpha_{i}\right) \in N^{*}$ and $\exists \max _{i=1, s}\left\{\eta_{p_{i}}\left(\alpha_{i}\right)\right\}$
(b) $n= \pm 1 \Rightarrow \exists!\eta(n)=0$.

Theorem 2. The function η previously defined has the following properties:
(1) $(\eta(n))!=M n, \forall n \in Z \backslash\{0\} ;$
(2) $\eta(n)$ is the smallest natural number with this property.

Proof.

(a) $\eta(n)=\max _{i=1, s}\left\{\eta_{p_{i}}\left(\alpha_{i}\right)\right\}, n=\epsilon \cdot p_{1}^{\alpha_{i}} \ldots p_{s}^{\alpha_{s}},(n \neq \pm 1) ;\left(\eta_{p_{1}}\left(\alpha_{1}\right)\right)!=M p_{1}^{\alpha_{1}}, \ldots\left(n_{p,}\left(\alpha_{s}\right)\right)!=$ $=M p_{s}^{\alpha_{s}}$.

Supposing $\max _{i=1, s}\left\{\eta_{p_{i}}\left(\alpha_{1}\right)\right\}=\eta_{p_{i_{0}}}\left(\alpha_{i_{0}}\right) \Rightarrow\left(\eta_{p_{i 0}}\left(\alpha_{i 0}\right)\right)!=M p_{i_{0}}^{\alpha_{i_{0}}}, \eta_{p_{i_{0}}}\left(\alpha_{i_{0}}\right) \in N^{*}$ and because $\left(p_{i}, p_{j}\right)=1, i \neq j$,
$\Rightarrow\left(\eta_{p_{i_{0}}}\left(\alpha_{i_{0}}\right)\right)!=M p_{j}^{\alpha_{j}}, j=\overline{1, s}$.
$\Rightarrow\left(\eta_{p_{i_{0}}}\left(\alpha_{i_{0}}\right)\right)!=M p_{1}^{\alpha_{1}} \ldots p_{s}^{\alpha_{3}}$.
(b) $n= \pm 1 \Rightarrow \eta(n)=0 ; 0!=1,1=M \epsilon \cdot 1=M n$.

$$
\text { (2) }(a) n \neq \pm 1 \Rightarrow n=\epsilon p_{1}^{\alpha_{1}} \ldots p_{s}^{\alpha_{s}} \Rightarrow \eta(n)=\max _{i=1, \overline{1}_{2}} \eta_{p_{i}}
$$

Let $=\max _{i=\overline{1, s}}\left\{\eta_{p_{i}}\left(\alpha_{i}\right)\right\}=\eta_{p_{i o}}\left(\alpha_{i_{0}}\right), 1 \leq i \leq s ;$
$\eta_{p_{i_{0}}}\left(\alpha_{i_{0}}\right)$ is the smallest natural number with the property:

$$
\begin{aligned}
\left(\eta_{p_{i_{0}}}\left(\alpha_{i_{0}}\right)\right)! & =M p_{i_{0}}^{\alpha_{i_{0}}} \Rightarrow \forall \gamma \in N, \gamma<\eta_{p_{i_{0}}}\left(\alpha_{i_{0}}\right) \Rightarrow \gamma!\neq M p_{i_{0}}^{\alpha_{i 0}} \Rightarrow \\
& \Rightarrow \gamma^{!} \neq M \epsilon \cdot p_{1}^{\alpha_{i}} \ldots p_{i_{0}}^{\alpha_{i 0}} \cdots p_{a}^{\alpha_{s}}=M n .
\end{aligned}
$$

$\eta_{p_{i_{0}}}\left(\alpha_{i_{0}}\right)$ is the smallest natural number with the property.
(b) $n= \pm 1 \Rightarrow \eta(n)=0$ and it is the smallest natural number $\Rightarrow 0$ is the smallest natural number with the property $0!=M(\pm 1)$.

Note 3. The functions η_{p} are increasing, not injective, on $N^{*} \rightarrow\left\{p^{k} \mid k=1,2, \ldots\right\}$ they are surjective.

The function η is increasing, not injective, it is surjective on $Z \backslash\{0\} \rightarrow N \backslash\{1\}$.
CONSEQUENCE. Let $n \in N^{*}, n>4$. Then $n=$ prime $\Leftrightarrow \eta(n)=n$.
Proof.
$" \Rightarrow " \quad n=$ prime and $n \geq 5 \Rightarrow \eta(n)=\eta_{n}(1)=n$.
$" \Leftarrow "$ Let $\eta(n)=n$ and suppose by absurd that $n \neq$ prime \Rightarrow
(a) or $n=p_{1}^{\alpha_{1}} \ldots p_{s}^{\alpha_{4}}$ with $s \geq 2, \alpha_{i} \in N^{*}, i=\overline{1, s}$,
$\eta(n)=\max _{i=1, s}\left\{\eta_{p_{i}}\left(\alpha_{i}\right)\right\}=\eta_{p_{i}}\left(\alpha_{i_{0}}\right)<\alpha_{i_{0}} p_{i_{0}}<n$
contradicts the assumtion; or
(b) $n=p_{1}^{\alpha_{1}}$ with $\alpha_{1} \geq 2 \Rightarrow \eta(n)=\eta_{p_{1}}\left(\alpha_{1}\right) \leq p_{1} \cdot \alpha_{1}<p_{1}^{\alpha_{1}}=n$
because $\alpha_{1} \geq 2$ and $n>4$ and it contradicts the hypothesis.

Application

1. Find the smallest natural number with the property: $n!=M\left(\pm 2^{31} \cdot 3^{27} \cdot 7^{13}\right)$.

Solution

$\eta\left(\pm 2^{31} \cdot 3^{27} \cdot 7^{13}\right)=\max \left\{\eta_{2}(31), \eta_{3}(27), \eta_{7}(13)\right\}$.
Let us calculate $\eta_{2}(31)$; we make the string $\left(a_{n}^{(2)}\right)_{n \in N^{*}}=1,3,7,15,31,63, \ldots$
$31=1 \cdot 31 \Rightarrow \eta_{2}(31)=\eta_{2}(1 \cdot 31)=1 \cdot 2^{5}=32$.
Let's calculate $\eta_{3}(27)$ making the string $\left(a_{n}^{(3)}\right)_{n \in N^{*}}=1,4,13,40, \ldots ; 27=2 \cdot 13+1 \Rightarrow$ $\eta_{3}^{(27)}=\eta_{3}(2 \cdot 13+1 \cdot 1)=2 \cdot \eta_{3}(13)+1 \cdot \eta_{3}(1)=2 \cdot 3^{3}+1 \cdot 3^{1}=54+3=57$.

Let's calculate $\eta_{7}(13)$; making the string $\left(a_{n}^{(7)}\right)_{n \in N^{*}}=1,8,57, \ldots ; 13=1 \cdot 8+5 \cdot 1 \Rightarrow \eta_{7}(13)=$ $1 \cdot \eta_{7}(8)+5 \cdot \eta_{7}(1)=1 \cdot 7^{2}+5 \cdot 7^{1}=49+35=84 \Rightarrow \eta\left(\pm 2^{31} \cdot 3^{27} \cdot 7^{13}\right)=\max \{32,57,84\} \cdot=$ $84 \Rightarrow 84!=M\left(\pm 2^{31} \cdot 3^{27} \cdot 7^{13}\right)$ and 84 is the smallest number with this property.
2. Which are the numbers with the factorial ending in 1000 zeros?

Solution

$n=10^{1000},(\eta(n))!=M 10^{1000}$ and it is the smallest number with this property.
$\eta\left(10^{1000}\right)=\eta\left(2^{1000} \cdot 5^{1000}\right)=\max \left\{\eta_{2}(1000), \eta_{5}(1000)\right\}=\eta_{5}(1 \cdot 781+1 \cdot 156+2 \cdot 31+1)=1 \cdot 5^{5}+$ $1 \cdot 5^{4}+2 \cdot 5^{3}+1 \cdot 5^{7}=4005,4005$ is the smallest number with this property. $4006,4007,4008,4009$ verify the property but 4010 does not because $4010!=4009!4010$ has 1001 zeros.

Florentin Smarandache
University of Craiova
Nature Science Facuity
[Published on "An. Univ. Timişoara", seria Şt. Matematice, vol.XVIII, fasc. 1, pp. 79-88, 1980; See Mathematical Reviews: 83c: 10008.]

