
Toward AI for Lean, via metaprogramming

Robert Y. Lewis

Vrije Universiteit Amsterdam

March 28, 2018



Introduction

What this talk is not about:

I novel AI techniques

I novel AI applications

I finished work

What this talk is about:

I “easy” AI applications in ITP

I stress-testing Lean’s tactic framework

I components of something larger



Introduction

What this talk is not about:

I novel AI techniques

I novel AI applications

I finished work

What this talk is about:

I “easy” AI applications in ITP

I stress-testing Lean’s tactic framework

I components of something larger



Table of Contents

Introduction

Lean and metaprogramming

An internal relevance filter

Connecting Lean and Mathematica

An external relevance filter



Background: Lean

Lean is a new interactive theorem prover, developed principally by
Leonardo de Moura at Microsoft Research, Redmond.

Calculus of inductive constructions with:

I non-cumulative hierarchy of universes

I impredicative Prop

I quotient types and propositional extensionality

I axiom of choice available

See http://leanprover.github.io

http://leanprover.github.io


Expression evaluation

Lean pre-expression
1 + 1

Lean expression
add nat nat.has_add (one nat nat.has_one) (. . .)

Trusted type-checked expression

Trusted reduced expression
nat.succ (nat.succ nat.zero)

Compiled VM code

Untrusted reduced expression
2

elaborator

kernel

kernel

compiler

VM



The Lean VM

I The VM can evaluate anything in the Lean library, as long as
it is not noncomputable.

I It substitutes native nats, ints, arrays.

I It has a profiler and debugger.

I The VM is ideal for non-trusted execution of code.



Lean as a Programming Language

Definitions tagged with meta are “VM only,” and allow unchecked
recursive calls.

meta def f : N → N
| n := if n=1 then 1

else if n%2=0 then f (n/2)

else f (3*n + 1)

#eval (list.iota 1000).map f



Metaprogramming in Lean

Question: How can one go about writing tactics and automation?

Lean’s answer: go meta, and use Lean itself.

Advantages:

I Users don’t have to learn a new programming language.

I The entire library is available.

I Users can use the same infrastructure (debugger, profiler,
etc.).

I Users develop metaprograms in the same interactive
environment.

I Theories and supporting automation can be developed
side-by-side.



Metaprogramming in Lean

The strategy: expose internal data structures as meta declarations,
and insert these internal structures during evaluation.

meta constant expr : Type

meta constant environment : Type

meta constant tactic_state : Type

meta constant to_expr : expr → tactic expr



Tactic proofs

meta def p_not_p : list expr → list expr → tactic unit

| [] Hs := failed

| (H1 :: Rs) Hs :=

do t ← infer_type H1,

(do a ← match_not t,

H2 ← find_same_type a Hs,

tgt ← target,

pr ← mk_app ‘absurd [tgt, H2, H1],

exact pr)

<|> p_not_p Rs Hs

meta def contradiction : tactic unit :=

do ctx ← local_context,

p_not_p ctx ctx

lemma simple (p q : Prop) (h1 : p) (h2 : ¬p) : q :=

by contradiction



Applications of metaprogramming

How far can we push this framework?

I simplification and normalization

I decision procedures

I connections to external software

I superposition prover

Target: a sledgehammer for Lean, without touching the Lean
source code.



Relevance filtering

Given P : Prop, produce a list of declarations likely to be used to
prove P.

We need to:

I map over the environment

I build a database of declarations

I define a relevance function

I find the top k matches

meta def k_relevant_facts (target : expr) (k : N) :

tactic (list name) := . . .



Relevance filtering

Lean provides:

I meta constant get_env : tactic environment

I meta constant environment.fold : environment → α →
(declaration → α → α) → α

I meta constant rb_map : Type → Type → Type

I meta def array : Type → N → Type

I a VM implementation of arrays with destructive updates

For convenience, we add:

I meta constant float : Type and associated operations



Relevance filtering

Following Czajka and Kaliszyk (2018) we implement k nearest
neighbors and sparse naive Bayes classifiers.

meta def feature_distance (f1 f2 : name_set) : float :=

let common := f1.inter f2 in

(common.map compute_feature_weight).sum

meta def nearest_k (features : name_set) . . .

{n} (names : array n name) (k : N) :

list (name × float) :=

let arr_prs : array n (name × float) := 〈λ i, . . .〉,
sorted := partial_sort

(λ n1 n2 : name × float, float.lt n2.2 n1.2)

arr_prs k in

if h : k ≤ n then (sorted.take k h).to_list else

sorted.to_list



Relevance filtering

Downsides:

I inefficient (4-5 sec to build data structures)

I underdeveloped libraries

I depends on “hacked” version of Lean

Upsides:

I portable

I integrates with Lean library

I could potentially verify parts of the process



Computer algebra

Computer algebra systems offer many things that proof assistants
lack:

I fast computation

I huge(r) libraries of functions

I ease of use

I visualization and display



Connecting Lean and Mathematica

We1 provide:

I an extensible procedure to interpret Lean in Mathematica

I an extensible procedure to interpret Mathematica in Lean

I a link allowing Lean to evaluate arbitrary Mathematica
commands, and receive the results

I tactics for certifying results of particular Mathematica
computations

I a link allowing Mathematica to execute Lean tactics and
receive the results

1RL + Minchao Wu (Australia National University)



Connecting Lean and Mathematica

The idea: many declarations in Lean correspond roughly to
declarations in Mathematica.

We can do an approximate translation back and forth and verify
post hoc that the result is as expected.

Correspondences, translation rules, checking procedures are part of
a mathematical theory.



Calling Mathematica from Lean

Lean expr
Lean expr in
MM syntax

Lean expr in
MM syntax

MM expr
MM expr in
Lean syntax

Lean expr

verification
tactics



A relevance filter via Mathematica

Mathematica has various tools for “black box” machine learning.

We can build the data structures in Lean and send them to
Mathematica for processing.



Calling Lean from Mathematica

Lean expr in
MM syntax

Lean expr in
MM syntax

MM expr

MM expr
MM expr in
Lean syntax

Lean expr

display or
compute



Calling Lean from Mathematica

We can add rules to (try to) translate
the resulting proof.

DiagramOfFormula[
ForAll[{P, Q},

Implies[
Or[P, Q],
Not[And[Not[P], Not[Q]]]

]
]

]



Calling Lean from Mathematica

With this link, we can access either relevance filter from within
Mathematica.

I State a theorem in Mathematica, translate to Lean, and get
relevant facts.

I Idea: make CAS useful for proof exploration instead of just
computational exploration.



Calling Lean from Mathematica



Thanks for listening!

Questions, then skiing.


	Introduction
	Lean and metaprogramming
	An internal relevance filter
	Connecting Lean and Mathematica
	An external relevance filter

