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Abstract

In 1973, E. J. McShane proposed an alternative definition of the Lebesgue inte-
gral based on Riemann sums, where gauges are used decide what tagged partitions
are allowed. Such an approach does not require any preliminary knowledge of
Measure theory. We investigate in this paper a definition of measurable functions
also based on gauges. Its relation to the gauge-integrable functions that satisfy Mc-
Shane’s definition is obtained using elementary tools from Real Analysis. We show
in particular a dominated integration property of gauge-measurable functions.

1 Introduction

In its classical original setting, the Lebesgue integral of a function f is defined in
terms of the outer Lebesgue measure of the measurable sublevel sets of f [2, 11, 15].
Compared to the definition of the integral by Cauchy or Riemann as a limit of Riemann
sums [4, 25], the definition of the Lebesgue integral seems somehow indirect: it is a
limit of a sum of measures, where these measures are themselves computed as the
infima or suprema of volumes.

This issue has led to the definition of gauge integrals as a way of recovering the origi-
nal approach based on Riemann sums, without the defects associated to the Riemann
integral of Riemann-integrable functions [20]. Around 1960, Kurzweil and Henstock
independently defined a gauge integral which allows one to integrate more func-
tions than the Lebesgue-integrable ones [10, 14]. A few years later, in 1973, McShane
presented the Lebesgue integral itself as a gauge integral [22, 23]. We can rephrase
McShane’s definition as follows:

Definition 1.1 (Gauge integrability). A function f : Rd → Rp is gauge-integrable
whenever there exists I ∈ R verifying the following property: for every ε > 0, there exists a
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gauge γ on Rd and a compact set K ⊂ Rd such that, for every finite set of disjoint rectangles
(Ri)i∈{1,...,k} in Rd that covers K and every finite set of points (ci)i∈{1,...,k} in Rd satisfying

Ri ⊂ γ(ci) for every i ∈ {1, . . . , k},

one has ∣∣∣
k∑

i=1

f(ci) vol (Ri)− I
∣∣∣ ≤ ε.

In this definition, a gauge γ on Rd is a function mapping each point of x ∈ Rd to
an open set γ(x) ⊂ Rd such that x ∈ γ(x); for example γ(x) might be taken to be a
non-empty open ball centered at x. A rectangle R ⊂ Rd is a set that can be written as
R = [a1, b1)× · · · × [ad, bd), where a1 < b1, . . . , ad < bd are all real numbers; its volume
is the positive number vol (R) = (b1− a1) · · · (bd− ad). Rectangles are disjoint whenever
there intersection is empty, and the family (Ri)i∈{1,...,k} covers K if

k⋃

i=1

Ri ⊃ K.

The compact set K corresponds in McShane’s original definition to the complement
of his gauge at infinity; the equivalent formulation above avoids compactifying the
Euclidean space Rd and considering unbounded rectangles.

By Cousin’s lemma, which is a variant of the Heine–Borel theorem, for any gauge
γ on Rd and any compact set K ⊂ Rd, there always exist some finite set of disjoint
rectangles (Ri)i∈{1,...,k} that covers K and points (ci)i∈{1,...,k} such that Ri ⊂ γ(ci) for
every i [23, Theorem IV-3-1]. This fact ensures the uniqueness of the integral I of f ,
which entitles one to adopt the usual notation

∫

Rd

f := I.

A non-intuitive feature of the definition of the gauge integral above is that each
tag ci need not belong to the rectangle Ri. Adding this restriction gives the broader
definition of integral of Kurzweil and Henstock, which is a gauge definition of the
Denjoy–Perron integral for which all derivatives of one-dimensional functions are
integrable on bounded intervals [8, 17, 24]. This Kurzweil–Henstock integral has been
taught by Jean Mawhin at the Université catholique de Louvain (UCL) for thirty years
[18,19], continuing the Louvain tradition of cutting-edge lectures on integration theory
initiated by Ch.-J. de la Vallée Poussin with the Lebesgue integral at the beginning
of the 20th century [5–7, 21]. The further restriction that the gauge γ(x) contain some
uniform ball Bδ(x) for some radius δ > 0 independent of x ∈ Rd yields the classical
Riemann integral.

Measurability of functions is not a prerequisite of McShane’s definition of gauge
integrability. This is an important aspect one should not neglect about the gauge
integral that makes the Lebesgue integral readily available, without the need of any
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preliminary development of tools from Measure theory. This is an approach we have
been pursuing at UCL since 2009.

When measurability is needed to state some integrability conditions, measurable
functions have been defined as pointwise limits of integrable functions [23, Defini-
tion III-10-1] or almost everywhere limits of locally integrable step functions [1, §19;
16, Definition 3.5.3], or in terms of measurable sets whose characteristic function are,
by definition, locally integrable functions [18, §6.B; 19, §13.7]. It thus seems that the
straightforwardness of McShane’s definition of the integral is lost in an ad hoc indirect
definition of measurability based on the integral itself.

In order to remedy to this issue, we introduce here a direct definition of measurability
of functions in terms of gauges inspired by Lusin’s property for Lebesgue-measurable
functions.

Definition 1.2 (Gauge measurability). A function f : Rd → Rp is gauge-measurable
whenever, for every ε > 0 and every η > 0, there exists a gauge γ on Rd such that, for every
finite set of disjoint rectangles (Ri)i∈{1,...,k} in Rd and finite sets of points (ci)i∈{1,...,k} and
(c′i)i∈{1,...,k} in Rd satisfying

|f(ci)− f(c′i)| ≥ η and Ri ⊂ γ(ci) ∩ γ(c′i) for every i ∈ {1, . . . , k},

one has
k∑

i=1

vol(Ri) ≤ ε.

The goal of this paper is to provide various properties of gauge-measurable functions
that can be deduced using elementary ideas of Real Analysis. These are well-known
properties of Lebesgue-measurable functions, and both notions of measurability are
equivalent, but the main message we want to emphasize is that one can obtain these
properties in a self-contained approach based on gauge integrability and gauge mea-
surability. As an example, we show in Section 5 below that these two concepts are
related through the following dominated integrability criterion for a function to be
gauge-integrable:

Theorem 1.3. A function f : Rd → Rp is gauge-integrable if and only if f is gauge-
measurable and there exists a gauge-integrable function h : Rd → R such that |f | ≤ h
in Rd.

The paper is organized as follows. In Sections 2 and 3, we prove properties of gauge-
measurable functions that can be straightforwardly obtained from the definition.
Some of them will be superseded in later sections using two important properties of
the gauge integral: the Absolute Cauchy criterion and the Dominated convergence
theorem. In Section 4, we prove Lusin’s theorem for gauge-measurable functions using
an alternative formulation of the gauge measurability based on the inner measure of
open sets in Rd. We then prove Theorem 1.3 in Section 5. In Section 6, we prove the
stability of gauge measurability under pointwise convergence. In Sections 7 and 8, we
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define gauge-measurable sets in the same spirit as for functions, and then we prove
that every gauge-measurable function is the pointwise limit of gauge-measurable step
functions. We thus recover the approach which leads to the Lebesgue integral.

2 Elementary properties

The goal of this section is to present some properties of gauge measurability that
readily follows from its definition. We begin by noting that every continuous function
is gauge-measurable.

Proposition 2.1 (Gauge measurability of continuous functions). If the function f : Rd →
Rp is continuous, then f is gauge-measurable.

Proof. Given a pair of points ci, c′i ∈ Rd, by the triangle inequality for every z ∈ Rd we
have

|f(ci)− f(c′i)| ≤ |f(z)− f(ci)|+ |f(z)− f(c′i)|. (2.1)

Using the continuity of f , we choose a gauge γ in such a way that the right-hand side
is always less than η > 0 provided that γ(ci)∩ γ(c′i) 6= ∅. Indeed, given η > 0, for every
x ∈ Rd we define

γ(x) =
{
z ∈ Rd

∣∣ |f(z)− f(x)| < η

2

}
.

In particular, x ∈ γ(x); since the function f is continuous, the set γ(x) is open. If there
exists z ∈ γ(ci) ∩ γ(c′i), then by the choice of γ we have simultaneously

|f(z)− f(ci))| <
η

2
and |f(z)− f(c′i)| <

η

2
.

In view of (2.1), we then have

|f(ci)− f(c′i)| < η.

Therefore, no matter what ε > 0 we take, there is no finite family of rectangles
(Ri)i∈{1,...,k} that needs to be checked in Definition 1.2, so the latter is automatically
satisfied by the continuous function f .

Proposition 2.2 (Composition with uniformly continuous functions). If the function
f : Rd → Rp is gauge-measurable and the function Φ : Rp → R` is uniformly continuous,
then the composition Φ ◦ f : Rd → R` is gauge-measurable.

This property is reminiscent of the integrability of compositions with Lipschitz
functions for the gauge integral [23, Theorem II-3-1]; the class of admissible functions
is larger here because the gauge measurability is a more qualitative property than the
gauge integrability. As for the gauge integrability, Proposition 2.2 is not the end of
the story: we will prove is Section 6 with more elaborate tools that the proposition
remains true when the function g is merely continuous; see Proposition 6.5 below.
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Proof of Proposition 2.2. Given η > 0, by definition of uniform continuity there exists
δ > 0 such that, for every y, z ∈ Rd satisfying |y − z| < δ, one has |Φ(y) − Φ(z)| < η.
This is equivalent to saying that if |Φ(y)−Φ(z)| ≥ η, then |y − z| ≥ δ. Hence, for every
pair of points ci, c′i ∈ Rd such that

|(Φ ◦ f)(ci)− (Φ ◦ f)(c′i)| ≥ η, (2.2)

we have
|f(ci)− f(c′i)| ≥ δ. (2.3)

Given ε > 0, by Definition 1.2 of gauge measurability of f with parameter δ there
exists a gauge γ on Rd such that, for every finite set of disjoint rectangles (Ri)i∈{1,...,k}
and finite sets of points (ci)i∈{1,...,k} and (c′i)i∈{1,...,k} in Rd satisfying (2.2) and Ri ⊂
γ(ci)∩γ(c′i) for every i, we have that (2.3) also holds for every i, and then by the choice
of the gauge γ,

k∑

i=1

vol (Ri) ≤ ε.

The function Φ ◦ f is thus gauge-measurable.

An interesting consequence of Proposition 2.2 is that the family of gauge-measurable
functions forms a vector space, and the product of two bounded gauge-measurable
functions is also gauge-measurable. We provide an independent proof of these facts
in the next section for the sake of clarity. The latter property concerning the product
will be superseded later on by using the measurable stability under pointwise conver-
gence, which allows one to remove the boundedness assumption of the functions; see
Corollary 6.4. For the moment, we shall restrict ourselves to the case of uniform limits
of gauge-measurable functions:

Proposition 2.3 (Uniform limit). Let (fn)n∈N be a sequence of gauge-measurable functions
from Rd to Rp. If the sequence (fn)n∈N converges uniformly to the function f : Rd → Rp, then
f is gauge-measurable.

Proof. For every pair of points ci, c′i ∈ Rd and n ∈ N, by the triangle inequality we have

|fn(ci)− fn(c′i)| ≥ |f(ci)− f(c′i)| − |fn(ci)− f(ci)| − |fn(c′i)− f(c′i)|.

Given η > 0, by the definition of uniform convergence there exists n ∈ N such that, for
every x ∈ Rd, |fn(x)− f(x)| ≤ η/4. Hence, assuming that

|f(ci)− f(c′i)| ≥ η, (2.4)

we have
|fn(ci)− fn(c′i)| ≥

η

2
. (2.5)

Given ε > 0, let γ be a gauge on Rd given by the definition of gauge measurability
of fn with parameter η/2. For every finite set of disjoint rectangles (Ri)i∈{1,...,k} and
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points (ci)i∈{1,...,k} and (c′i)i∈{1,...,k} satisfying (2.4) and Ri ⊂ γ(ci) ∩ γ(c′i) for every i, we
then have that (2.5) is satisfied by fn for every i, and then, by the choice of γ,

k∑

i=1

vol (Ri) ≤ ε.

The function f is thus gauge-integrable.

3 Algebraic stability

We show that the class of gauge-measurable functions forms a vector space:

Proposition 3.1 (Linearity). If the functions f : Rd → Rp and g : Rd → Rp are gauge-
measurable and λ ∈ R, then f + g and λf are gauge-measurable.

Proof. We focus on the proof that the function f + g is gauge measurable; the case of
λf is left as an exercise (see also Proposition 2.2). For every pair of points ci, c′i ∈ Rd,
by the triangle inequality we have

|(f + g)(ci)− (f + g)(c′i)| ≤ |f(ci)− f(c′i)|+ |g(ci)− g(c′i)|.

Given η > 0, and assuming that

|(f + g)(ci)− (f + g)(c′i)| ≥ η, (3.1)

then we necessarily have

|f(ci)− f(c′i)| ≥
η

2
or |g(ci)− g(c′i)| ≥

η

2
. (3.2)

Given ε > 0, let γ1 and γ2 be two gauges on Rd arising from the definitions of
gauge measurability of f and g, respectively, with parameters ε/2 and η/2. Consider
the gauge γ defined for x ∈ Rd by γ(x) = γ1(x) ∩ γ2(x). For a finite collection of
disjoint rectangles (Ri)i∈{1,...,k} and finite sets of points (ci)i∈{1,...,k} and (c′i)i∈{1,...,k} in
Rd verifying (3.1) and Ri ⊂ γ(ci)∩ γ(c′i) for every i ∈ {1, . . . , k}, let us denote by I1 the
set of indices i for which the first inequality in (3.2) holds for f and by I2 the set of
indices i for which the second inequality in (3.2) holds for g. We can thus assert that

{1, . . . , k} = I1 ∪ I2. (3.3)

We have in particular Ri ⊂ γ1(ci) ∩ γ1(c′i) for every i ∈ I1, and thus by the choice of
γ1, ∑

i∈I1
vol (Ri) ≤

ε

2
.

We also have Ri ⊂ γ2(ci) ∩ γ2(c′i) for every i ∈ I2, and thus by the choice of γ2,
∑

i∈I2
vol (Ri) ≤

ε

2
.
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Since the sets I1 and I2 cover {1, . . . , k}, we deduce that

k∑

i=1

vol (Ri) ≤
ε

2
+
ε

2
= ε.

Therefore, the function f + g is gauge-measurable.

Using a similar idea, one shows that the product of bounded gauge-measurable
functions is also gauge-measurable. The conclusion is still true without assuming the
functions are bounded, but the proof is more subtle and will be presented in Section 6
below.

Proposition 3.2 (Product of bounded functions). If the functions f : Rd → Rp and
g : Rd → R are gauge-measurable and bounded, then fg is also gauge-measurable.

Proof. Take M > 0 and N > 0 such that |f | ≤M and |g| ≤ N in Rd. Given finite sets of
points (ci)i∈{1,...,k} and (c′i)i∈{1,...,k} in Rd, by the triangle inequality for every x ∈ Rd we
have

|(fg)(ci)− (fg)(c′i)| ≤ |f(ci)− f(c′i)| |g(ci)|+ |f(c′i)| |g(ci)− g(c′i)|
≤ N |f(ci)− f(c′i)|+M |g(ci)− g(c′i)|.

Given η > 0, if for every i ∈ {1, . . . , k}we have

|(fg)(ci)− (fg)(c′i)| ≥ η,

then necessarily

|f(ci)− f(c′i)| ≥
η

2N
or |g(ci)− g(c′i)| ≥

η

2M
.

As in the previous proof, one defines the subsets of indices I1 and I2 accordingly, so
that the counterpart of (3.3) also holds in this case. One can now proceed along the
lines of the proof of Proposition 3.1 to deduce that fg is gauge-measurable.

4 Lusin’s theorem

We now relate the notion of gauge measurability with Lusin’s theorem, which trivially
extends Proposition 2.1 for continuous functions:

Proposition 4.1 (Lusin’s theorem). A function f : Rd → Rp is gauge-measurable if and
only if, for every ε > 0, there exists a closed set C ⊂ Rd such that the restriction f |C is
continuous and the inner measure of the open set Rd \ C satisfies µ(Rd \ C) ≤ ε.
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We recall the notion of inner measure of an open set U ⊂ Rd:

µ(U) := sup
{ k∑

i=1

vol(Ri)
∣∣ (Ri)i∈{1,...,k} is a finite disjoint family of rectangles

such that R̄i ⊂ U for every i ∈ {1, . . . , k}
}
.

Observe that µ is nondecreasing and countably subadditive.
Lusin’s theorem above gives the equivalence between gauge measurability and

the measurability in the sense of Bourbaki, defined in terms of Lusin’s property
[3, Definition IV-§5-1]. To prove Proposition 4.1 above, we rely on the following lemma
which reformulates Definition 1.2 without relying on tagged partitions:

Lemma 4.2 (Gauge-intersection characterization). The function f : Rd → Rp is gauge-
measurable if and only if, for every ε > 0 and every η > 0, there exists a gauge γ on Rd such
that the open set

Uγ,η :=
⋃

x,z∈Rd

|f(x)−f(z)|≥η

(
γ(x) ∩ γ(z)

)

satisfies µ(Uγ,η) ≤ ε.

A byproduct of Lemma 4.2 is the invariance of gauge measurability under bi-
Lipschitz homeomorphisms of Rd, which includes isometries.

Proof of Lemma 4.2. “⇐=”. Given η > 0 and a gauge γ on Rd, take a finite disjoint
family of rectangles (Ri)i∈{1,...,k} and finite sets of points (ci)i∈{1,...,k} and (c′i)i∈{1,...,k} in
Rd such that

|f(ci)− f(c′i)| ≥ η and Ri ⊂ γ(ci) ∩ γ(c′i) for every i.

In particular, Ri ⊂ γ(ci)∩ γ(c′i) ⊂ Uγ,η, hence by definition of the inner measure µ(Uγ,η)
we have

k∑

i=1

vol (Ri) ≤ µ(Uγ,η).

To conclude it suffices to choose the gauge γ so that, for any given ε > 0, we have
µ(Uγ,η) ≤ ε.

“=⇒”. Assume that the function f is gauge-measurable, and let γ be a gauge on
Rd given by Definition 1.2 for some ε > 0 and η > 0. If (Ri)i∈{1,...,k} is a finite disjoint
family of rectangles such that R̄i ⊂ Uγ,η for every i, then, by compactness of R̄i, the
rectangleRi can be covered by a finite collection of sets of the form γ(x)∩γ(z) such that
x, z ∈ Rd and |f(x)− f(z)| ≥ η. By a suitable subdivision of the rectangles (Ri)i∈{1,...,k}
into smaller rectangles, which does not change their total volume, we can thus assume
without loss of generality that, for every i ∈ {1, . . . , k}, there exist points x, z ∈ Rd

such that
Ri ⊂ γ(x) ∩ γ(z) and |f(x)− f(z)| ≥ η.
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[Such a subdivision is allowed since the points x and z are not required to belong
to Ri.] We then choose ci = x and c′i = z. The finite sets of points (ci)i∈{1,...,k} and
(c′i)i∈{1,...,k} satisfy the conditions of Definition 1.2, and we deduce that

k∑

i=1

vol (Ri) ≤ ε.

Since the family of rectangles (Ri)i∈{1,...,k} is chosen arbitrarily, we thus have that
µ(Uγ,η) ≤ ε.

Proof of Proposition 4.1. We first observe that given η > 0, a gauge γ on Rd, and z ∈ Rd,
then for every x ∈ γ(z) \ Uγ,η we have

|f(x)− f(z)| < η. (4.1)

Indeed, since x ∈ γ(x) ∩ γ(z) and x 6∈ Uγ,η, the set γ(x) ∩ γ(z) is not contained in Uγ,η,
hence x and z are not admissible indices in the union that defines the set Uγ,η. We
deduce that (4.1) holds.

Proceeding with the proof of the proposition, we now assume that the function f is
gauge-measurable and let ε > 0. For each n ∈ N, by Lemma 4.2 there exists a gauge γn
on Rd such that

µ
(
Uγn,1/2n

)
≤ ε

2n+1
.

We set C = Rd \ ⋃
n∈N

Uγn,1/2n . By countable subadditivity of µ, we have

µ(Rd \ C) ≤
∑

n∈N
µ
(
Uγn,1/2n

)
≤
∑

n∈N

ε

2n+1
= ε.

It remains to prove that the restricted function f |C is continuous at any point z ∈ C.
For every x ∈ γn(z) ∩ C ⊂ γn(z) \ Uγn,1/2n , we deduce from estimate (4.1) above that

|f(x)− f(z)| < 1

2n
.

Since this estimate holds on the relatively open subset γn(z) ∩ C of C and n ∈ N is
arbitrary, we deduce that the function f |C is continuous at z.

Conversely, take a closed set C such that the restriction f |C is continuous. For every
η > 0, the set

γ(x) = Rd \
{
w ∈ C

∣∣ |f(x)− f(w)| ≥ η

2

}

contains x and is open in Rd, since the function f |C is continuous and the setC is closed.
Hence, γ is a gauge on Rd. We now observe that if x, z ∈ Rd and |f(x)− f(z)| ≥ η, then

γ(x) ∩ γ(z) ∩ C = ∅.
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Indeed, if this were not true, there would exist w ∈ γ(x) ∩ γ(z) ∩ C. Since w ∈ C, we
would have, by definition of γ, |f(x)− f(w)| < η/2 and |f(z)− f(w)| < η/2 and thus
by the triangle inequality |f(x)− f(z)| < η, which would be a contradiction.

We thus have Uγ,η ⊂ Rd \ C, and then by monotonicity of the inner measure µ,

µ(Uγ,η) ≤ µ(Rd \ C).

Given ε > 0, by the Lusin property satisfied by the function f , we may choose the
closed set C so as to have µ(Rd\C) ≤ ε. We conclude from Lemma 4.2 that the function
f is gauge-measurable.

5 Gauge measurability and integrability

The goal of this section is to establish Theorem 1.3. The relationship between gauge
measurability and gauge integrability relies on the following Absolute Cauchy crite-
rion for gauge-integrable functions [23, Theorem II-2-4] (see also [13, Lemma 5.13]).

Proposition 5.1 (Absolute Cauchy criterion). The function f : Rd → Rp is gauge-
integrable if and only, for every ε > 0, there exist a gauge γ on Rd and a compact subset
K ⊂ Rd such that the following properties hold:

(i) for every finite set of disjoint rectangles (Ri)i∈{1,...,k} in Rd and every finite sets of points
(ci)i∈{1,...,k} and (c′i)i∈{1,...,k} satisfying Ri ⊂ γ(ci) ∩ γ(c′i) for every i, one has

k∑

i=1

|f(ci)− f(c′i)| vol (Ri) ≤ ε.

(ii) for every finite set of disjoint rectangles (Ri)i∈{1,...,k} in Rd \K and every finite set of
points (ci)i∈{1,...,k} such that Ri ⊂ γ(ci) for every i, one has

k∑

i=1

|f(ci)| vol (Ri) ≤ ε.

This condition is a Cauchy criterion because it is an integrability criterion that does
not require nor gives the value of the integral. It is an absolute Cauchy condition
because the norm is taken inside the Riemann sum. An important consequence
of Proposition 5.1 is the fact that if f : Rd → Rp is gauge-integrable and if Φ is a
Lipschitz function such that Φ(0) = 0, then the composite function Φ ◦ f is also gauge-
integrable [23, Theorem II-3-1]. In particular, |f | is gauge-integrable whenever f is
gauge-integrable.

We first consider the question of the gauge measurability of gauge-integrable func-
tions.

10
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Proposition 5.2 (Gauge measurability). If f : Rd → Rp is gauge-integrable, then f is
gauge-measurable.

Proof. Let η > 0 and take a finite set of disjoint rectangles (Ri)i∈{1,...,k} and finite sets of
points (ci)i∈{1,...,k} and (c′i)i∈{1,...,k} in Rd such that

|f(ci)− f(c′i)| ≥ η for every i.

Then, we have
k∑

i=1

vol (Ri) ≤
1

η

k∑

i=1

|f(ci)− f(c′i)| vol(Ri). (5.1)

Applying Property (i) of the Absolute Cauchy criterion with parameter ηε, there exists
a gauge γ on Rd such that if Ri ⊂ γ(ci) ∩ γ(c′i), then the sum in the right-hand side of
(5.1) is smaller than ηε, and we get

k∑

i=1

vol (Ri) ≤
1

η
· ηε = ε.

We deduce that the function f is gauge-measurable in view of Definition 1.2.

We now handle the reverse implication of Theorem 1.3 under the additional assump-
tion that f is a bounded function.

Proposition 5.3 (Dominated integrability for bounded functions). If f : Rd → Rp is
gauge-measurable and bounded and if |f | ≤ h in Rd for some gauge-integrable function
h : Rd → R, then f is gauge-integrable.

Proof. Property (ii) of the Absolute Cauchy criterion is satisfied by h, hence also by f .
We now focus on Property (i). For this purpose, let (Ri)i∈{1,...,k} be a finite collection
of disjoint rectangles, and let (ci)i∈{1,...,k} and (c′i)i∈{1,...,k} be finitely many points in Rd.
Given η > 0 and a compact subset K ⊂ Rd, we can relabel the rectangles and points
simultaneously so as to have

(a) for every i ∈ {1, . . . ,m}, |f(ci)− f(c′i)| ≥ η,

(b) for every i ∈ {m+ 1, . . . , l}, |f(ci)− f(c′i)| < η and Ri ∩K 6= ∅,

(c) for every i ∈ {l + 1, . . . , k}, |f(ci)− f(c′i)| < η and Ri ∩K = ∅,

for some integers 0 ≤ m ≤ l ≤ k; some of these condition might be empty, and in this
case one simply ignores them.

By the assumption of boundedness of f , there exists M > 0 such that, for every
x ∈ Rd, |f(x)| ≤M . By the triangle inequality, we then have

m∑

i=1

|f(ci)− f(c′i)| vol (Ri) ≤ 2M
m∑

i=1

vol (Ri),

11
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and, by (b),
l∑

i=m+1

|f(ci)− f(c′i)| vol (Ri) ≤ η

l∑

i=m+1

vol (Ri).

Since |f | ≤ h in Rd, we also have

k∑

i=l+1

|f(ci)− f(c′i)| vol (Ri) ≤
k∑

i=l+1

(
|f(ci)|+ |f(c′i)|

)
vol (Ri)

≤
k∑

i=l+1

(
h(ci) + h(c′i)

)
vol (Ri).

These are the three main estimates that we need in the sequel. We now proceed to
choose the gauge γ that yields the Absolute Cauchy criterion for f .

Given ε > 0, by Property (ii) of the Absolute Cauchy criterion satisfied by h with
parameter ε/6, we can take the compact set K ⊂ Rd and a gauge γ1 on Rd such that if
Ri ⊂ γ1(ci) ∩ γ1(c′i) for every i ∈ {l + 1, . . . , k}, then we have

k∑

i=l+1

|f(ci)− f(c′i)| vol (Ri) ≤
k∑

i=l+1

(
h(ci) + h(c′i)

)
vol (Ri) ≤

ε

6
+
ε

6
=
ε

3
.

Fix a bounded open set U ⊂ Rd that containsK, and take the gauge γ2 on Rd defined by
γ2(x) = U if x ∈ U and γ2(x) = Rd \K if x 6∈ U . Observe that if Ri ⊂ γ2(ci) ∩ γ2(c′i) for
every i ∈ {m+1, . . . , l}, then since Ri∩K 6= ∅, we necessarily have γ2(ci) = γ2(c

′
i) = U ,

and thus Ri ⊂ U . By the definition of the inner measure µ, and choosing η > 0 so as to
have ηµ(U) ≤ ε/3, we then get

l∑

i=m+1

|f(ci)− f(c′i)| vol (Ri) ≤ η

l∑

i=m+1

vol (Ri) ≤ η µ(U) ≤ ε

3
.

By the definition of gauge measurability of f with ε/6M and η chosen as above, there
exists a gauge γ3 on Rd such that if Ri ⊂ γ3(ci) ∩ γ3(c′i) for every i ∈ {1, . . . ,m}, then
we have

m∑

i=1

|f(ci)− f(c′i)| vol (Ri) ≤ 2M
m∑

i=1

vol (Ri) ≤ 2M · ε

6M
=
ε

3
.

Combining these three estimates, we get

k∑

i=1

|f(ci)− f(c′i)| vol (Ri) ≤
ε

3
+
ε

3
+
ε

3
= ε,

and thus f satisfies the Absolute Cauchy criterion with the gauge γ defined for x ∈ Rd

by γ(x) = γ1(x) ∩ γ2(x) ∩ γ3(x). Hence, f is gauge-integrable by Proposition 5.1.

12
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The boundedness assumption of f can be removed using the Dominated conver-
gence theorem for gauge-integrable functions [23, Theorem II-10-1]:

Proposition 5.4 (Dominated convergence). Let (fn)n∈N be a sequence of gauge-integrable
functions from Rd to Rp. If (fn)n∈N converges pointwise to the function f : Rd → Rp, and if
there exists a gauge-integrable function h : Rd → R such that |fn| ≤ h in Rd for every n ∈ N,
then f is gauge-integrable and

lim
n→∞

∫

Rd

fn =

∫

Rd

f.

Proof of Theorem 1.3. If f is gauge-integrable, then f is gauge-measurable by Proposi-
tion 5.2, and it follows from the Absolute Cauchy criterion above that the function
h := |f | is gauge-integrable.

Conversely, if f is gauge-measurable, then by Proposition 2.2, for every n ∈ N
the truncated function Tn ◦ f is also gauge-measurable, where Tn : Rp → Rp is the
truncation function defined for w ∈ Rp by

Tn(w) =

{
w if |w| ≤ n,
nw/|w| if |w| > n,

Since the function Tn ◦ f is bounded and satisfies |Tn ◦ f | ≤ |f | ≤ h in Rd, it follows
from Proposition 5.3 that Tn ◦ f is gauge-integrable, and we conclude applying the
Dominated convergence theorem for gauge integrals as n tends to infinity.

6 Pointwise limit

A crucial feature of Lebesgue-measurable functions is its stability under pointwise
convergence. Up to now, we only have proved the stability of gauge measurability
under uniform convergence (Proposition 2.3). Thanks to the relationship that we have
established between gauge measurability and gauge integrability, we now obtain a
pointwise convergence property.

Proposition 6.1 (Pointwise limit). Let (fn)n∈N be a sequence of gauge-measurable functions
from Rd to Rp. If (fn)n∈N converges pointwise to the function f : Rd → Rp, then f is
gauge-measurable.

We first prove two particular cases of this proposition, which as we shall see yield
the general case. We denote the characteristic function of a set A ⊂ Rd by χA, that is
χA : Rd → R is the function defined for each x ∈ Rd by

χA(x) =

{
1 if x ∈ A,
0 if x 6∈ A.

Lemma 6.2. Let (Al)l∈N be an increasing sequence of open subsets which cover Rd with
Al−1 ⊂ Al for every l ∈ N∗. If a function f : Rd → Rp is such that fχAl

is gauge-measurable
for every l ∈ N, then f is also gauge-measurable.

13
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Proof. Given l,m ∈ N∗ with l ≤ m, we first observe that if

(Al \ Al−2) ∩ (Am \ Am−2) 6= ∅, (6.1)

then by monotonicity of the sequence (Al)l∈N we have m = l or m = l + 1. Here, we
use the convention that A−1 = ∅. Now let (γl)l∈N\{0,1} be a sequence of gauges on Rd

to be chosen later on. We define a new gauge γ on Rd as follows: for every x ∈ Rd,
denote by l the smallest integer in N∗ such that x ∈ Al and let

γ(x) = γl(x) ∩ γl+1(x) ∩ (Al \ Al−2).

Since Al−2 ⊂ Al−1 by assumption, we have x 6∈ Al−2, and then the open set Al \ Al−2
contains x. Thus, γ is a well-defined gauge on Rd.

Given η > 0, we claim that
Uγ,η ⊂

⋃

l∈N∗
Vl+1, (6.2)

where
Vl :=

⋃

x,z∈Rd

|fχAl
(x)−fχAl

(z)|≥η

(
γl(x) ∩ γl(z)

)
.

Indeed, assume that x, z ∈ Rd are such that |f(x) − f(z)| ≥ η. Let l and m be the
smallest integers in N∗ such that x ∈ Al and z ∈ Am; we may assume without loss of
generality that l ≤ m. If γ(x) ∩ γ(z) 6= ∅, then (6.1) holds, and thus m = l or m = l + 1.
Hence, we have

|fχAl+1
(x)− fχAl+1

(z)| = |f(x)− f(z)| ≥ η

and
γ(x) ∩ γ(z) ⊂ γl+1(x) ∩ γl+1(z) ⊂ Vl+1,

which implies (6.2).
Let ε > 0. Since the function fχAl

is gauge-measurable, by Lemma 4.2 we can
choose the gauge γl on Rd such that µ(Vl) ≤ ε/2l−1. Thus, by the inclusion (6.2) and
the countable subadditivity of the inner measure µ we get

µ(Uγ,η) ≤
∑

l∈N∗
µ(Vl+1) ≤

∑

l∈N∗

ε

2l
= ε.

By Lemma 4.2, we deduce that f is gauge-measurable.

Lemma 6.3. If the function f : Rd → Rp is such that the truncation Tj◦f is gauge-measurable
for every j ∈ N, then f is gauge-measurable.

Proof. Given a sequence of gauges (γj)j∈N∗ on Rd, consider the gauge γ defined for
x ∈ Rd by

γ(x) = γ0(x) ∩ · · · ∩ γj+1(x),

14
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where j ∈ N is the smallest integer such that |f(x)| ≤ j. For every 0 < η ≤ 1, we claim
that

Uγ,η ⊂
⋃

j∈N
Wj+1, (6.3)

where
Wj :=

⋃

x,z∈Rd

|Tj◦f(x)−Tj◦f(z)|≥η

(
γj(x) ∩ γj(z)

)
.

For this purpose, for every x, z ∈ Rd such that |f(x)−f(z)| ≥ η, which we may assume
that |f(z)| ≥ |f(x)|, let j ∈ N be the smallest integer such that |f(x)| ≤ j. Since η ≤ 1,
we also have

|Tj+1 ◦ f(x)− Tj+1 ◦ f(z)| ≥ η.

From the choice of the gauge γ, we deduce that

γ(x) ∩ γ(z) ⊂ γj+1(x) ∩ γj+1(z) ⊂ Wj+1,

and the inclusion (6.3) follows.
Let ε > 0. Since the function Tj ◦ f is gauge-measurable, by Lemma 4.2 we can

choose the gauge γj on Rd such that µ(Wj) ≤ ε/2j . Proceeding as in the previous
lemma, we have µ(Uγ,η) ≤ ε, hence f is gauge-measurable.

Proof of Proposition 6.1. We first assume that there exists a gauge-integrable function
h : Rd → R such that |fn| ≤ h in Rd for every n ∈ N. By Theorem 1.3, each function
fn is gauge-integrable, and it then follows from the Dominated convergence theorem
that f is gauge-integrable, hence also gauge-measurable.

In the general case where the sequence (fn)n∈N need not be bounded by an integrable
function, for every n, l, j ∈ N we consider the function

gn,l,j = (Tj ◦ fn)χBl+1(0).

These functions are all gauge-measurable. Indeed, Tj ◦ fn is gauge-measurable by
composition with the uniformly continuous function Tj (Proposition 2.2), and thus
gn,l,j is gauge-measurable as the product of bounded gauge-measurable functions
(Proposition 3.2).

Since |gn,l,j| ≤ jχBl+1(0) in Rd and the characteristic function χBl+1(0) is gauge-
integrable, as n tends to infinity it follows from the first case we considered above that
the functions (Tj ◦ f)χBl+1(0) are gauge-measurable for every l, j ∈ N. By Lemma 6.2,
as l tends to infinity we deduce that Tj ◦ f is gauge-measurable for every j ∈ N. The
conclusion then follows from Lemma 6.3 as j tends to infinity.

A consequence of Propositions 3.2 and 6.1 is that the product of gauge-measurable
functions is also gauge-measurable:

Proposition 6.4 (Product). If the functions f : Rd → Rp and g : Rd → R are gauge-
measurable, then their product fg is also gauge-measurable.

15
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More generally, we can weaken the assumptions of Proposition 2.2 on the gauge
measurability of composite functions:

Proposition 6.5 (Composition with continuous functions). If the function f : Rd → Rp

is gauge-measurable and the function Φ : Rp → R` is continuous, then the composition
Φ ◦ f : Rd → R` is gauge-measurable.

Proof. We consider a continuous function ϕ : Rp → R with compact support, and
we define Φn : Rp → R` for each n ∈ N∗ and y ∈ Rp by Φn(y) = ϕ(y/n)Φ(y). Since
the function Φn is continuous and has compact support, Φn is uniformly continuous,
and thus, in view of Proposition 2.2, the function Φn ◦ f is gauge-measurable. We
conclude by observing that, for every x ∈ Rn, the sequence (Φn(f(x)))n∈N∗ converges
to Φ(f(x)) provided that ϕ(0) = 1, and thus by Proposition 6.1 the function Φ ◦ f is
gauge-measurable.

The proof of Proposition 6.5 shows that the class of functions Φ : Rp → R` such that
for every gauge-measurable function f : Rd → Rp, the composition Φ◦ f is measurable
is stable under pointwise convergence. This class thus forms a Baire system and
contains in particular all Baire (or analytic representable) functions, which coincide
by the Lebesgue–Hausdorff theorem with all Borel-measurable functions [9, Theorem
43.IV; 12, §31].

Another consequence of Proposition 6.1 combined with the gauge measurability of
gauge-integrable functions (Proposition 5.2) is that the pointwise limit of a sequence
of gauge-integrable functions is always gauge-measurable. This implies in particular
that measurable functions in the sense of McShane [23, Definition III-10-1] are indeed
gauge-measurable. Conversely, every gauge-measurable function f : Rd → Rp in
the sense of Definition 1.2 is the limit of a sequence of gauge-integrable functions.
This assertion follows from a diagonalization procedure using the functions gn,l,j
which are used in the proof of Proposition 6.1 above. For example, the sequence of
gauge-integrable functions (gn,n,n)n∈N converges pointwise to the measurable function
f . Another pointwise approximation of f in terms of gauge-measurable step functions
is pursued in Section 8.

7 Gauge-measurable sets

We define gauge measurability of a set in the spirit of its counterpart for functions:

Definition 7.1. A set A ⊂ Rd is gauge-measurable whenever, for every ε > 0, there exists a
gauge γ on Rd such that, for every finite set of disjoint rectangles (Ri)i∈{1,...,k}, every finite set
of points (ci)i∈{1,...,k} contained in A, and every finite set of points (c′i)i∈{1,...,k} contained in
Rd \ A that satisfy Ri ⊂ γ(ci) ∩ γ(c′i) for every i ∈ {1, . . . , k}, one has

k∑

i=1

vol (Ri) ≤ ε.
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It follows from this definition that A is gauge-measurable if and only if its comple-
ment Rd \ A is gauge-measurable. Also observe that for any 0 < η < 1 we have

|χA(x)− χA(z)| ≥ η

if and only if x ∈ A and z ∈ Rd \ A, or x ∈ Rd \ A and z ∈ A. In view of Definitions 1.2
and 7.1, it thus follows that the set A ⊂ Rd is gauge-measurable if and only if the
characteristic function χA is gauge-measurable.

As in Lemma 4.2, the definition above can be reformulated by replacing the tagged
partitions with the inner measure of an open set:

Lemma 7.2 (Gauge-intersection characterization). The set A ⊂ Rd is gauge-measurable if
and only if, for every ε > 0, there exists a gauge γ on Rd such that the open set

UA,γ :=
⋃

x∈A,
z∈Rd\A

(
γ(x) ∩ γ(z)

)

satisfies µ(UA,γ) ≤ ε.

This characterization can be established along the lines of the proof of Lemma 4.2.
The family of gauge-measurable sets forms an algebra:

Proposition 7.3. If the sets A1, A2 ⊂ Rd are gauge-measurable, then A1 ∪ A2, A1 ∩ A2, and
A1 \ A2 are also gauge-measurable.

Proof. We prove that A1 ∪ A2 is gauge-measurable. For this purpose, observe that
every z ∈ Rd \ (A1 ∪ A2) satisfies z ∈ Rd \ A1 and z ∈ Rd \ A2. Thus, given a gauge γ
on Rd, we have

UA1∪A2,γ = UA1,γ ∪ UA2,γ

Given ε > 0, let γ1 and γ2 be two gauges on Rd satisfying the conclusion of Lemma 7.2
for A1 and A2, respectively, with parameter ε/2. Take the gauge γ defined for x ∈ Rd

by γ(x) = γ1(x) ∩ γ2(x). Thus,

UA1∪A2,γ = UA1,γ ∪ UA2,γ ⊂ UA1,γ1 ∪ UA2,γ2 ,

and by subadditivity of µ we then get

µ(UA1∪A2,γ) ≤ µ(UA1,γ1) + µ(UA2,γ2) ≤
ε

2
+
ε

2
= ε.

Hence, A1 ∪ A2 is gauge-measurable.
Since we have

Rd \ (A1 ∩ A2) = (Rd \ A1) ∪ (Rd \ A2)

and both sets Rd\A1 and Rd\A2 are gauge-measurable, we deduce that Rd\(A1∩A2) is
gauge-measurable, and thus the intersection A1 ∩A2 is also gauge-measurable. Finally,
since

A1 \ A2 = A1 ∩ (Rd \ A2)

is the intersection of two gauge-measurable sets, A1 \A2 is also gauge-measurable.
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Using the equivalence between the gauge measurability of the set A and the gauge-
measurability of the characteristic function χA, we deduce that the family of gauge-
measurable sets forms a σ-algebra:

Proposition 7.4 (Countable union). If (An)n∈N is a sequence of gauge-measurable sets in
Rd, then the set

⋃
k∈N

Ak is also gauge-measurable.

Proof. The sequence of characteristic functions (fn)n∈N defined for each n ∈ N by
fn = χ⋃n

k=0 Ak
converges pointwise to the characteristic function χ⋃

k∈N Ak
in Rd. By

induction using Proposition 7.3, each set
n⋃
k=0

Ak is gauge-measurable and thus each

function fn is gauge-measurable. From the stability of gauge measurability under
pointwise convergence (Proposition 6.1), we deduce that the function χ⋃

k∈N Ak
is also

gauge-measurable, hence the set
⋃
k∈N

Ak is gauge-measurable.

Let us now prove Lebesgue’s regularity property which provides one with a neces-
sary and sufficient condition for a set to be gauge-measurable, and also implies that a
set is gauge-measurable if and if it is Lebesgue-measurable [26, Lemma 3.22].

Proposition 7.5 (Regularity). The set A ⊂ Rd is gauge-measurable if and only if, for every
ε > 0, there exist an open set V ⊂ Rd and a closed set C ⊂ Rd such that C ⊂ A ⊂ V and
µ(V \ C) ≤ ε.

Proof. Given a gauge γ on Rd, set

V =
⋃

x∈A
γ(x) and C =

⋂

z∈Rd\A

(
Rd \ γ(z)

)
.

Observe that V is open, C is closed, and V \C = UA,γ . Thus, given ε > 0, if the set A is
gauge-measurable and one takes a gauge γ such that µ(UA,γ) ≤ ε, then the sets V and
C above satisfy the requirements.

Conversely, if the set A satisfies the regularity condition, then given ε > 0 we take
the sets V and C as in the statement. The gauge γ defined on Rd by setting γ(x) = V
if x ∈ A and γ(x) = Rd \ C if x ∈ Rd \ A satisfies UA,γ = V \ C, and thus µ(UA,γ) ≤ ε.
Hence, the set A is gauge-measurable by Lemma 7.2.

8 Pointwise approximation

We conclude with the pointwise approximation of a gauge-measurable function by
step functions. We recall that g : Rd → Rp is a step function if the image g(Rd) is a
finite set.

Proposition 8.1. If a function f : Rd → Rp is gauge-measurable, then there exists a sequence
of gauge-measurable step functions (fn)n∈N from Rd to Rp which converges pointwise to f in
Rd and satisfies |fn| ≤ |f | in Rd for every n ∈ N.
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This statement allows one to recover the usual strategy to define the Lebesgue
integral via measurable step functions. In our case, if f is gauge-integrable, and thus
|f | is also gauge-integrable by the Absolute Cauchy criterion, then from the Dominated
convergence theorem (Proposition 5.4) we indeed have that

∫

Rd

f = lim
n→∞

∫

Rd

fn.

The difference here is that this is a property of the gauge integral, rather than a defini-
tion.

Before proving Proposition 8.1, we first study the inverse image of rectangles by
gauge-measurable functions:

Proposition 8.2. If a function f : Rd → Rp is gauge-measurable, then, for every rectangle
R ⊂ Rp, the set f−1(R) is gauge-measurable.

Proof. Observe that χR ◦ f = χf−1(R). To prove the proposition, it thus suffices to prove
that the function χR ◦ f is gauge-measurable. For this purpose, take a sequence of
uniformly continuous functions (Φn)n∈N from Rp to R which converges pointwise to
χR. Then, by Proposition 2.2 the function Φn ◦ f is gauge-measurable for every n ∈ N,
and the sequence (Φn ◦ f)n∈N converges pointwise to χR ◦ f . By the stability property
of sequences of gauge-measurable functions (Proposition 6.1), we deduce that χR ◦ f
is gauge-measurable, and the conclusion follows.

The converse of Proposition 8.2 is also true: if f−1(R) is gauge-measurable for every
rectangle R ⊂ Rp, then f is gauge-measurable. This assertion can be deduced from
the proof of Proposition 8.1 below, since under such an assumption the functions fn
which are defined in (8.1) below are all gauge-measurable and the function f is the
pointwise limit of the sequence (fn)n∈N.

Proof of Proposition 8.1. Take a sequence of positive numbers (εn)n∈N that converges
to 0. For each n ∈ N, let (Ri,n)i∈{1,...,kn} be a finite family of disjoint rectangles whose
diameters do not exceed εn that covers the ball Bn+1(0) in Rp. For each i ∈ {1, . . . , kn},
let ai be a point with smallest norm in Ri,n, and define

fn :=
kn∑

i=1

ai χf−1(Ri,n). (8.1)

For every x ∈ f−1(Bn+1(0)), we then have

|fn(x)− f(x)| ≤ εn,

hence the sequence (fn)n∈N converges pointwise to f in Rd. [The convergence is
uniform when f is a bounded function.] By the choice of the point ai, we also have

|fn(x)| ≤ |f(x)|
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if f(x) ∈
kn⋃
i=1

Ri,n, while the left-hand side vanishes otherwise. This estimate thus holds

for every x ∈ Rd.
Assuming that the set f−1(R) is gauge-measurable for every rectangle R ⊂ Rp,

which by Proposition 8.2 is the case when the function f is gauge-measurable, it
follows from the linear stability of gauge-measurable functions (Proposition 3.1) that
fn is a gauge-measurable step function, and this gives the conclusion.
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