
Parallel and Distributed Data Mining:

An Introduction

Mohammed J. Zaki

Computer Science Department
Rensselaer Polytechnic Institute

Troy, NY 12180
zaki@cs.rpi.edu

http://www.cs.rpi.edu/~zaki

Abstract. The explosive growth in data collection in business and sci-
entific fields has literally forced upon us the need to analyze and mine
useful knowledge from it. Data mining refers to the entire process of ex-
tracting useful and novel patterns/models from large datasets. Due to the
huge size of data and amount of computation involved in data mining,
high-performance computing is an essential component for any successful
large-scale data mining application. This chapter presents a survey on
large-scale parallel and distributed data mining algorithms and systems,
serving as an introduction to the rest of this volume. It also discusses
the issues and challenges that must be overcome for designing and im-
plementing successful tools for large-scale data mining.

1 Introduction

Data Mining and Knowledge Discovery in Databases (KDD) is a new interdis-
ciplinary field merging ideas from statistics, machine learning, databases, and
parallel and distributed computing. It has been engendered by the phenomenal
growth of data in all spheres of human endeavor, and the economic and scientific
need to extract useful information from the collected data. The key challenge in
data mining is the extraction of knowledge and insight from massive databases.

Data mining refers to the overall process of discovering new patterns or build-
ing models from a given dataset. There are many steps involved in the KDD
enterprise which include data selection, data cleaning and preprocessing, data
transformation and reduction, data-mining task and algorithm selection, and
finally post-processing and interpretation of discovered knowledge [1,2]. This
KDD process tends to be highly iterative and interactive.

Typically data mining has the two high level goals of prediction and descrip-
tion [1]. In prediction, we are interested in building a model that will predict
unknown or future values of attributes of interest, based on known values of some
attributes in the database. In KDD applications, the description of the data in
human-understandable terms is equally if not more important than prediction.
Two main forms of data mining can be identified [3]. In verification-driven data
mining the user postulates a hypothesis, and the system tries to validate it.

M.J. Zaki, C.-T. Ho (Eds.): Large-Scale Parallel Data Mining, LNAI 1759, pp. 1–23, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

http://www.cs.rpi.edu/~zaki


2 Mohammed J. Zaki

The common verification-driven operations include query and reporting, multi-
dimensional analysis or On-Line Analytical Processing (OLAP), and statistical
analysis. Discovery-driven mining, on the other hand, automatically extracts
new information from data, and forms the main focus of this survey. The typical
discovery-driven tasks include association rules, sequential patterns, classifica-
tion and regression, clustering, similarity search, deviation detection, etc.

While data mining has its roots in the traditional fields of machine learning
and statistics, the sheer volume of data today poses the most serious problem.
For example, many companies already have data warehouses in the terabyte
range (e.g., FedEx, UPS, Walmart). Similarly, scientific data is reaching gigantic
proportions (e.g., NASA space missions, Human Genome Project). Traditional
methods typically made the assumption that the data is memory resident. This
assumption is no longer tenable. Implementation of data mining ideas in high-
performance parallel and distributed computing environments is thus becoming
crucial for ensuring system scalability and interactivity as data continues to grow
inexorably in size and complexity.

Parallel data mining (PDM) deals with tightly-coupled systems including
shared-memory systems (SMP), distributed-memory machines (DMM), or clus-
ters of SMP workstations (CLUMPS) with a fast interconnect. Distributed data
mining (DDM), on the other hand, deals with loosely-coupled systems such as a
cluster over a slow Ethernet local-area network. It also includes geographically
distributed sites over a wide-area network like the Internet. The main differences
between PDM to DDM are best understood if view DDM as a gradual transition
from tightly-coupled, fine-grained parallel machines to loosely-coupled medium-
grained LAN of workstations, and finally very coarse-grained WANs. There is
in fact a significant overlap between the two areas, especially at the medium-
grained level where is it hard to draw a line between them.

In another view, we can think of PDM as an essential component of a DDM
architecture. An individual site in DDM can be a supercomputer, a cluster of
SMPs, or a single workstation. In other words, each site supports PDM locally.
Multiple PDM sites constitute DDM, much like the current trend in meta- or
super-computing. Thus the main difference between PDM and DDM is that of
scale, communication costs, and data distribution. While, in PDM, SMPs can
share the entire database and construct a global mined model, DMMs generally
partition the database, but still generate global patterns/models. On the other
hand, in DDM, it is typically not feasible to share or communicate data at all;
local models are built at each site, and are then merged/combined via various
methods.

PDM is the ideal choice in organizations with centralized data-stores, while
DDM is essential in cases where there are multiple distributed datasets. In fact, a
successful large-scale data mining effort requires a hybrid PDM/DDM approach,
where parallel techniques are used to optimize the local mining at a site, and
where distributed techniques are then used to construct global or consensus pat-
terns/models, while minimizing the amount of data and results communicated.
In this chapter we adopt this unified view of PDM and DDM.



Parallel and Distributed Data Mining 3

This chapter provides an introduction to parallel and distributed data min-
ing. We begin by explaining the PDM/DDM algorithm design space, and then
go on to survey current parallel and distributed algorithms for associations, se-
quences, classification and clustering, which are the most common mining tech-
niques. We also include a section on recent systems for distributed mining. After
reviewing the open challenges in PDM/DDM, we conclude by providing a road-
map for the rest of this volume.

2 Parallel and Distributed Data Mining

Parallel and distributed computing is expected to relieve current mining meth-
ods from the sequential bottleneck, providing the ability to scale to massive
datasets, and improving the response time. Achieving good performance on to-
day’s multiprocessor systems is a non-trivial task. The main challenges include
synchronization and communication minimization, work-load balancing, finding
good data layout and data decomposition, and disk I/O minimization, which is
especially important for data mining.

2.1 Parallel Design Space

The parallel design space spans a number of systems and algorithmic components
including the hardware platform, the kind of parallelism exploited, the load
balancing strategy, the data layout and the search procedure used.

Distributed Memory Machines vs. Shared Memory Systems. The performance
optimization objectives change depending on the underlying architecture. In
DMMs synchronization is implicit in message passing, so the goal becomes com-
munication optimization. For shared-memory systems, synchronization happens
via locks and barriers, and the goal is to minimize these points. Data decom-
position is very important for distributed memory, but not for shared memory.
While parallel I/O comes for “free” in DMMs, it can be problematic for SMP
machines, which typically serialize I/O. The main challenge for obtaining good
performance on DMM is to find a good data decomposition among the nodes, and
to minimize communication. For SMP the objectives are to achieve good data
locality, i.e., maximize accesses to local cache, and to avoid/reduce false sharing,
i.e., minimize the ping-pong effect where multiple processors may be trying to
modify different variables which coincidentally reside on the same cache line.
For today’s non-uniform memory access (NUMA) hybrid and/or hierarchical
machines (e.g., cluster of SMPs), the optimization parameters draw from both
the DMM and SMP paradigms.

Another classification of the different architectures comes from the database
literature. Here, shared-everything refers to the shared-memory paradigm, with a
global shared memory and common disks among all the machines. Shared-nothing
refers to distributed-memory architecture, with a local memory and disk for each
processor. A third paradigm called shared-disks refers to the mixed case where
processors have local memories, but access common disks [4,5].



4 Mohammed J. Zaki

Task vs. Data Parallelism. These are the two main paradigms for exploiting al-
gorithm parallelism. Data parallelism corresponds to the case where the database
is partitioned among P processors. Each processor works on its local partition
of the database, but performs the same computation of evaluating candidate
patterns/models. Task parallelism corresponds to the case where the processors
perform different computations independently, such as evaluating a disjoint set
of candidates, but have/need access to the entire database. SMPs have access
to the entire data, but for DMMs this can be done via selective replication or
explicit communication of the local data. Hybrid parallelism combining both
task and data parallelism is also possible, and in fact desirable for exploiting all
available parallelism in data mining methods.

Static vs. Dynamic Load Balancing. In static load balancing work is initially
partitioned among the processors using some heuristic cost function, and there
is no subsequent data or computation movement to correct load imbalances
which result from the dynamic nature of mining algorithms. Dynamic load bal-
ancing seeks to address this by stealing work from heavily loaded processors
and re-assigning it to lightly loaded ones. Computation movement also entails
data movement, since the processor responsible for a computational task needs
the data associated with that task as well. Dynamic load balancing thus incurs
additional costs for work/data movement, but it is beneficial if the load imbal-
ance is large and if load changes with time. Dynamic load balancing is especially
important in multi-user environments with transient loads and in heterogeneous
platforms, which have different processor and network speeds. These kinds of en-
vironments include parallel servers, and heterogeneous, meta-clusters. With very
few exceptions, most extant parallel mining algorithms use only a static load
balancing approach that is inherent in the initial partitioning of the database
among available nodes. This is because they assume a dedicated, homogeneous
environment.

Horizontal vs. Vertical Data Layout. The standard input database for mining
is a relational table having N rows, also called feature vectors, transactions, or
records, and M columns, also called dimensions, features, or attributes. The data
layout can be row-wise or column-wise. Many data mining algorithms assume a
horizontal or row-wise database layout, where they store, as a unit, each trans-
action (tid), along with the attribute values for that transaction. Other methods
use a vertical or column-wise database layout, where they associate with each at-
tribute a list of all tids (called tidlist) containing the item, and the corresponding
attribute value in that transaction. Certain mining operations a more efficient
using a horizontal format, while others are more efficient using a vertical format.

Complete vs. Heuristic Candidate Generation. The final results of a mining
method may be sets, sequences, rules, trees, networks, etc., ranging from simple
patterns to more complex models, based on certain search criteria. In the inter-
mediate steps several candidate patterns or partial models are evaluated, and



Parallel and Distributed Data Mining 5

the final result contains only the ones that satisfy the (user-specified) input pa-
rameters. Mining algorithms can differ in the way new candidates are generated
for evaluation. One approach is that of complete search, which is guaranteed
to generate and test all valid candidates consistent with the data. Note that
completeness doesn’t mean exhaustive, since pruning can be used to eliminate
useless branches in the search space. Heuristic generation sacrifices completeness
for the sake of speed. At each step, it only examines a limited number (or only
one) of “good” branches. Random search is also possible. Generally, the more
complex the mined model, the more the tendency towards heuristic or greedy
search.

Candidate and Data Partitioning. An easy way to discuss the many parallel
and distributed mining methods is to describe them in terms of the computa-
tion and data partitioning methods used. For example, the database itself can
be shared (in shared-memory or shared-disk architectures), partially or totally
replicated, or partitioned (using round-robin, hash, or range scheduling) among
the available nodes (in distributed-memory architectures).

Similarly, the candidate concepts generated and evaluated in the different
mining methods can be shared, replicated or partitioned. If they are shared
then all processors evaluate a single copy of the candidate set. In the replicated
approach the candidate concepts are replicated on each machine, and are first
evaluated locally, before global results are obtained by merging them. Finally, in
the partitioned approach, each processor generates and tests a disjoint candidate
concept set.

In the sections below we describe parallel and distributed algorithms for some
of the typical discovery-driven mining tasks including associations, sequences,
decision tree classification and clustering. Table 1 summarizes in list form where
each parallel algorithm for each of the above mining tasks lies in the design
space. It would help the reader to refer to the table while reading the algorithm
descriptions below.

2.2 Association Rules

Given a database of transactions, where each transaction consists of a set of
items, association discovery finds all the item sets that frequently occur together,
the so called frequent itemsets, and also the rules among them. An example of
an association could be that, “40% of people who buy Jane Austen’s Pride and
Prejudice also buy Sense and Sensibility.” Potential application areas include
catalog design, store layout, customer segmentation, telecommunication alarm
diagnosis, etc.

The Apriori [6] method serves as the base algorithm for the vast majority
of parallel association algorithms. Apriori uses a complete, bottom-up search,
with a horizontal data layout and enumerates all frequent itemsets. Apriori is an
iterative algorithm that counts itemsets of a specific length in a given database
pass. The process starts by scanning all transactions in the database and com-
puting the frequent items. Next, a set of potentially frequent candidate itemsets



6 Mohammed J. Zaki

A
lg

o
ri

th
m

B
a
se

A
lg

o
ri

th
m

M
a
ch

in
e

P
a
ra

ll
el

is
m

L
o
a
d
B

a
l

D
B

L
ay

o
u
t

C
o
n
ce

p
ts

D
a
ta

b
a
se

A
ss

o
c
ia

ti
o
n

R
u
le

M
in

in
g

C
D

,
P

E
A

R
,
P

D
M

,
F
D

M
,
N

P
A

A
p
ri

o
ri

D
M

M
D

a
ta

S
ta

ti
c

H
o
ri

zo
n
ta

l
R

ep
li
ca

te
d

P
a
rt

it
io

n
ed

D
D

,
S
P
A

,
ID

D
A

p
ri

o
ri

D
M

M
T
a
sk

S
ta

ti
c

H
o
ri

zo
n
ta

l
P
a
rt

it
io

n
ed

P
a
rt

it
io

n
ed

H
D

A
p
ri

o
ri

D
M

M
H

y
b
ri

d
H

y
b
ri

d
H

o
ri

zo
n
ta

l
H

y
b
ri

d
P
a
rt

it
io

n
ed

C
C

P
D

A
p
ri

o
ri

S
M

P
D

a
ta

S
ta

ti
c

H
o
ri

zo
n
ta

l
S
h
a
re

d
P
a
rt

it
io

n
ed

C
a
n
d
D

,
H

P
A

,
H

P
A

-E
L
D

A
p
ri

o
ri

D
M

M
T
a
sk

S
ta

ti
c

H
o
ri

zo
n
ta

l
P
a
rt

it
io

n
ed

P
a
rt

ia
ll
y

R
ep

li
ca

te
d

P
C

C
D

A
p
ri

o
ri

S
M

P
T
a
sk

S
ta

ti
c

H
o
ri

zo
n
ta

l
P
a
rt

it
io

n
ed

S
h
a
re

d

A
P

M
D

IC
S
M

P
T
a
sk

S
ta

ti
c

H
o
ri

zo
n
ta

l
S
h
a
re

d
P
a
rt

it
io

n
ed

P
P
A

R
P
a
rt

it
io

n
D

M
M

T
a
sk

S
ta

ti
c

H
o
ri

zo
n
ta

l
R

ep
li
ca

te
d

P
a
rt

it
io

n
ed

P
E

,
P

M
E

,
P

C
,
P

M
C

E
cl

a
t,

C
li
q
u
e

C
L
U

M
P

S
T
a
sk

S
ta

ti
c

V
er

ti
ca

l
P
a
rt

it
io

n
ed

P
a
rt

ia
ll
y

R
ep

li
ca

te
d

S
e
q
u
e
n
c
e

M
in

in
g

N
P

S
P

M
G

S
P

D
M

M
D

a
ta

S
ta

ti
c

H
o
ri

zo
n
ta

l
R

ep
li
ca

te
d

P
a
rt

it
io

n
ed

S
P

S
P

M
G

S
P

D
M

M
T
a
sk

S
ta

ti
c

H
o
ri

zo
n
ta

l
P
a
rt

it
io

n
ed

P
a
rt

it
io

n
ed

H
P

S
P

M
G

S
P

D
M

M
T
a
sk

S
ta

ti
c

H
o
ri

zo
n
ta

l
P
a
rt

it
io

n
ed

P
a
rt

ia
ll
y

R
ep

li
ca

te
d

p
S
P
A

D
E

S
P
A

D
E

S
M

P
T
a
sk

D
y
n
a
m

ic
V

er
ti

ca
l

P
a
rt

it
io

n
ed

S
h
a
re

d

D
-M

S
D

D
M

S
D

D
D

M
M

T
a
sk

S
ta

ti
c

H
o
ri

zo
n
ta

l
P
a
rt

it
io

n
ed

R
ep

li
ca

te
d

D
e
c
is
io

n
T
re

e
C

la
ss

ifi
c
a
ti
o
n

S
P

R
IN

T
,
S
L
IQ

/
R

,
S
L
IQ

/
D

,
S
ca

lP
a
rC

S
L
IQ

/
S
P

R
IN

T
D

M
M

D
a
ta

S
ta

ti
c

V
er

ti
ca

l
R

ep
li
ca

te
d

P
a
rt

it
io

n
ed

D
P

-a
tt

,
D

P
-r

ec
,
P

D
T

C
4
.5

D
M

M
D

a
ta

S
ta

ti
c

H
o
ri

zo
n
ta

l
R

ep
li
ca

te
d

P
a
rt

it
io

n
ed

M
W

K
S
P

R
IN

T
S
M

P
D

a
ta

D
y
n
a
m

ic
V

er
ti

ca
l

S
h
a
re

d
S
h
a
re

d

S
U

B
T

R
E

E
S
P

R
IN

T
S
M

P
H

y
b
ri

d
D

y
n
a
m

ic
V

er
ti

ca
l

P
a
rt

it
io

n
ed

P
a
rt

it
io

n
ed

H
T

F
S
P

R
IN

T
D

M
M

H
y
b
ri

d
D

y
n
a
m

ic
V

er
ti

ca
l

P
a
rt

it
io

n
ed

P
a
rt

it
io

n
ed

p
C

L
O

U
D

S
C

L
O

U
D

S
D

M
M

H
y
b
ri

d
D

y
n
a
m

ic
H

o
ri

zo
n
ta

l
P
a
rt

it
io

n
ed

P
a
rt

it
io

n
ed

C
lu

st
e
ri

n
g

P
-C

L
U

S
T

E
R

K
-M

ea
n
s

D
M

M
D

a
ta

S
ta

ti
c

H
o
ri

zo
n
ta

l
R

ep
li
ca

te
d

P
a
rt

it
io

n
ed

M
A

F
IA

-
D

M
M

T
a
sk

S
ta

ti
c

H
o
ri

zo
n
ta

l
P
a
rt

it
io

n
ed

P
a
rt

it
io

n
ed

T
ab

le
1.

D
es

ig
n

Sp
ac

e
fo

r
P
ar

al
le

lM
in

in
g

A
lg

or
it

hm
s:

A
ss

oc
ia

ti
on

s,
Se

qu
en

ce
s,

C
la

ss
ifi

ca
ti

on
an

d
C

lu
st

er
in

g.



Parallel and Distributed Data Mining 7

of length 2 is formed from the frequent items. Another database scan is made
to obtain their supports. The frequent itemsets are retained for the next pass,
and the process is repeated until all frequent itemsets (of various lengths) have
been enumerated.

Other sequential methods for associations that have been parallelized, in-
clude DHP [7], which tries to reduce the number of candidates by collecting
approximate counts (using hash tables) in the previous level. These counts can
be used to rule out many candidates in the current pass that cannot possibly be
frequent. The Partition algorithm [8] minimizes I/O by scanning the database
only twice. It partitions the database into small chunks which can be handled in
memory. In the first pass it generates a set of all potentially frequent itemsets,
and in the second pass it counts their global frequency. In both phases it uses a
vertical database layout. The DIC algorithm [9] dynamically counts candidates
of varying length as the database scan progresses, and thus is able to reduce the
number of scans.

A completely different design characterizes the equivalence class based algo-
rithms (Eclat, MaxEclat, Clique, and MaxClique) proposed by Zaki et al. [10].
These methods utilize a vertical database format, complete search, a mix of
bottom-up and hybrid search, and generate a mix of maximal and non-maximal
frequent itemsets. The algorithms utilize the structural properties of frequent
itemsets to facilitate fast discovery. The items are organized in a subset lattice
search space, which is decomposed into small independent chunks or sub-lattices,
which can be solved in memory. Efficient lattice traversal techniques are used,
which quickly identify all the frequent itemsets via tidlist intersections.

Replicated or Shared Candidates, Partitioned Database. The candidate
concepts in association mining are the frequent itemsets. A common paradigm for
parallel association mining is to partition the database in equal-sized horizontal
blocks, with the candidate itemsets replicated on all processors. For Apriori-
based parallel methods, in each iteration, each processor computes the frequency
of the candidate set in its local database partition. This is followed by a sum-
reduction to obtain the global frequency. The infrequent itemsets are discarded,
while the frequent ones are used to generate the candidates for the next iteration.

Barring minor differences, the methods that follow this data-parallel ap-
proach include PEAR [11], PDM [12], Count Distribution (CD) [13], FDM [14],
Non-Partitioned Apriori (NPA) [15], and CCPD [16]. CCPD uses shared-memory
machines, and thus maintains a shared candidate set among all processors. It
also parallelizes the candidate generation.

The other algorithms use distributed-memory machines. PDM, based on
DHP, prunes candidates using approximate counts from the previous level. It
also does parallelizes candidate generation, at the cost of an extra round of
communication. The remaining methods simply replicate the computation for
candidate generation. FDM is further optimized to work on distributed sites. It
uses novel pruning techniques to minimize the number of candidates, and thus
the communication during sum-reduction.



8 Mohammed J. Zaki

The advantage of replicated candidates and partitioned database, for Apriori-
based methods, is that they incur only a small amount of communication. In
each iteration only the frequencies of candidate concepts are exchanged; no data
is exchanged. These methods thus outperform the pure partitioned candidates
approach described in the next section. Their disadvantage is that the aggregate
system memory is not used effectively, since the candidates are replicated.

Other parallel algorithms, that use a different base sequential method in-
clude APM [17], a task-parallel, shared-memory, asynchronous algorithm, based
on DIC. Each processor independently applies DIC to its local partition. The
candidate set is shared among processors, but is updated asynchronously when
a processor inserts new itemsets.

PPAR [11], a task-parallel, distributed-memory algorithm, is built upon Par-
tition, with the exception that PPAR uses the horizontal data format. Each
processor gathers the locally frequent itemsets of all sizes in one pass over their
local database (which may be partitioned into chunks as well). All potentially
frequent itemsets are then broadcast to other processors. Then each processor
gathers the counts of these global candidates in the second local pass. Finally a
broadcast is performed to obtain the globally frequent itemsets.

Partitioned Candidates, Partitioned Database. Algorithms implementing
this approach include Data Distribution (DD) [13], Simply-Partitioned Apriori
(SPA) [15], and Intelligent Data Distribution (IDD) [18]. All three are Apriori-
based, and employ task parallelism on distributed-memory machines. Here each
processor computes the frequency of a disjoint set of candidates. However, to
find the global support each processor must scan the entire database, both its
local partition, and other processor’s partitions (which are exchanged in each it-
eration). The main advantage of these methods is that they utilize the aggregate
system-wide memory by evaluating disjoint candidates, but they are impractical
for any realistic large-scale dataset.

The Hybrid Distribution (HD) algorithm [18] adopts a middle ground be-
tween Data Distribution and Count Distribution. It utilizes the aggregate mem-
ory, and also minimizes communication. It partitions the P processors into G
equal-sized groups. Each of the G groups is considered a super-processor, and
applies Count Distribution, while the P/G processors within a group use Intel-
ligent Data Distribution. The database is horizontally partitioned among the G
super-processors, and the candidates are partitioned among the P/G processors
in a group. HD cuts down the database communication costs by 1/G.

Partitioned Candidates, Selectively Replicated or Shared Database. A
third approach is to evaluate a disjoint candidate set and to selectively replicate
the database on each processor. Each processor has all the information to gener-
ate and test candidates asynchronously. Methods in this paradigm are Candidate
Distribution (CandD) [13], Hash Partitioned Apriori (HPA) [15], HPA-ELD [15],
and PCCD [16], all of which are Apriori-based. PCCD uses SMP machines, and



Parallel and Distributed Data Mining 9

accesses a shared-database, but is not competitive with CCPD. Candidate Dis-
tribution is also outperformed by Count Distribution. Nevertheless, HPA-ELD,
a hybrid between HPA and NPA, was shown to be better than NPA, SPA, and
HPA.

Zaki et al. [19] proposed four algorithms, ParEclat (PE), ParMaxEclat
(PME), ParClique (PC), and ParMaxClique (PMC), targeting hierarchical sys-
tems like clusters of SMP machines. The data is assumed to be vertically parti-
tioned among the SMP machines. After an initial tidlist exchange phase and class
scheduling phase, the algorithms proceed asynchronously. In the asynchronous
phase each processor has available the classes assigned to it, and the tidlists for
all items. Thus each processor can independently generate all frequent itemsets
from its classes. No communication or synchronization is required. Further, all
available memory of the system is used, no in-memory hash trees are needed,
and only simple intersection operations are required for itemset enumeration.

Most of the extant association mining methods use a static load balancing
scheme; a dynamic load balancing approach on a heterogeneous cluster has been
presented in [20]. For more detailed surveys of parallel and distributed associa-
tion mining see [21] and the chapter by Joshi et al. in this volume.

2.3 Sequential Patterns

Sequence discovery aims at extracting frequent events that commonly occur over
a period of time [22]. An example of a sequential pattern could be that “70% of
the people who buy Jane Austen’s Pride and Prejudice also buy Emma within
a month”. Sequential pattern mining deals with purely categorical domains, as
opposed to the real-valued domains used in time-series analysis. Examples of
categorical domains include text, DNA, market baskets, etc.

In essence, sequence mining is “temporal” association mining. However, while
association rules discover only intra-transaction patterns (itemsets), we now also
have to discover inter-transaction patterns (sequences) across related transac-
tions. The set of all frequent sequences is an superset of the set of frequent
itemsets. Hence, sequence search is much more complex and challenging than
itemset search, thereby necessitating fast parallel algorithms.

Serial algorithms for sequence mining that have been parallelized include
GSP [23], MSDD [24], and SPADE [25]. GSP is designed after Apriori. It com-
putes the frequency of candidate sequences of length k in iteration k. The can-
didates are generated from the frequent sequences from the previous iteration.
MSDD discovers patterns in multiple event sequences; it explores the rule space
directly instead of the sequence space. SPADE is similar to Eclat. It uses verti-
cal layout and temporal joins to compute frequency. The search space is broken
into small memory-resident chunks, which are explored in depth- or breadth-first
manner.

Three parallel algorithms based on GSP were presented in [26]. All three
methods use the partitioned database approach, and are distributed-memory
based. NPSPM (with replicated candidates) is equivalent to NPA, SPSPM (with
partitioned candidates) the same as SPA and HPSPM is equivalent to HPA,



10 Mohammed J. Zaki

which have been described above. HPSPM performed the best among the three.
A parallel and distributed implementation of MSDD was presented in [27].

A shared-memory, SPADE-based parallel algorithm, utilizing dynamic load
balancing is described by Zaki, and new algorithms for parallel sequence mining
are also described by Joshi et al. in this volume.

2.4 Classification

Classification aims to assign a new data item to one of several predefined cat-
egorical classes [28,29]. Since the field being predicted is pre-labeled, classifica-
tion is also known as supervised induction. While there are several classification
methods including neural networks [30] and genetic algorithms [31], decision
trees [32,33] are particularly suited to data mining, since they can be constructed
relatively quickly, and are simple and easy to understand. Common applications
of classification include credit card fraud detection, insurance risk analysis, bank
loan approval, etc.

A decision tree is built using a recursive partitioning approach. Each internal
node in the tree represents a decision on an attribute, which splits the database
into two or more children. Initially the root contains the entire database, with
examples from mixed classes. The split point chosen is the one that best separates
or discriminates the classes. Each new node is recursively split in the same
manner until a node contains only one or a majority class.

Decision tree classifiers typically use a greedy search over the space of all
possible trees; there are simply too many trees to allow a complete search. The
search is also biased towards simple trees. Existing classifiers have used both the
horizontal and vertical database layouts. In parallel decision tree construction
the candidate concepts are the possible split points for all attributes within a
node of the expanding tree. For numeric attributes a split point is of the form
A ≤ vi, and for categorical attributes the test takes the form A ∈ {v1, v2, ...},
where vi is a value from the domain of attribute A.

Below we look at some parallel decision tree methods. Recent surveys on
parallel and scalable induction methods are also presented in [34,35].

Replicated Tree, Partitioned Database. SLIQ [36] was one of the earliest
scalable decision tree classifiers. It uses a vertical data format, called attribute
lists, allowing it to pre-sort numeric attributes in the beginning, thus avoiding the
repeated sorting required at each node in traditional tree induction. Nevertheless
it uses a memory-resident structure called class-list, which grows linearly in the
number of input records. SPRINT [37] removes this memory dependence, by
storing the classes as part of the attribute lists. It uses data parallelism, and a
distributed-memory platform.

In SPRINT and parallel versions of SLIQ, the attribute lists are horizontally
partitioned among all processors. The decision tree is also replicated on all pro-
cessors. The tree is constructed synchronously in a breadth-first manner. Each
processor computes the best split point, using its local attribute lists, for all the



Parallel and Distributed Data Mining 11

nodes on the current tree level. A round of communication takes place to de-
termine the best split point among all processors. Each processor independently
splits the current nodes into new children using the best split point, setting
the stage for the next tree level. Since a horizontal record is split in multiple
attribute lists, a hash table is used to note which record belongs to which child.

The parallelization of SLIQ follows a similar paradigm, except for the way
the class list is treated. SLIQ/R uses a replicated class list, while SLIQ/D uses
a distributed class list. Experiments showed that while SLIQ/D is better able
to exploit available memory, SLIQ/R was better in terms of performance, but
SPRINT outperformed both SLIQ/R and SLIQ/D.

ScalParC [38] is also an attribute-list-based parallel classifier for distributed-
memory machines. It is similar in design to SLIQ/D (except that it uses hash
tables per node, instead of global class lists). It uses a novel distributed hash
table for splitting a node, reducing the communication complexity and memory
requirements over SPRINT, making it scalable to larger datasets.

The DP-rec and DP-att [39] algorithms exploit record-based and attribute-
based data parallelism, respectively. In record-based data parallelism (also used
in SPRINT, ScalParC SLIQ/D and SLIQ/R), the records or attribute lists are
horizontally partitioned among the processors. In contrast, in attribute-based
data parallelism, the attributes are divided so that each processor is responsible
for an equal number of attributes. In both the schemes processors cooperate to
expand a tree node. Local computations are performed in parallel, followed by
information exchanges to get a global best split point.

Parallel Decision Tree (PDT) [40], a distributed-memory, data-parallel algo-
rithm, splits the training records horizontally in equal-sized blocks, among the
processors. It follows a master-slave paradigm, where the master builds the tree,
and finds the best split points. The slaves are responsible for sending class fre-
quency statistics to the master. For categorical attributes, each processor gathers
local class frequencies, and forwards them to the master. For numeric attributes,
each processor sorts the local values, finds class frequencies for split points, and
exchanges these with all other slaves. Each slave can then calculate the best local
split point, which is sent to the master, who then selects the best global split
point.

Shared Tree, Shared Database. MWK (and its precursors BASIC and
FWK) [41], a shared-memory implementation based on SPRINT uses this ap-
proach. MWK uses dynamic attribute-based data parallelism. Multiple proces-
sors co-operate to build a shared decision tree in a breadth-first manner. Using
a dynamic scheduling scheme, each processor acquires an attribute for any tree
node at the current level, and evaluates the split points, before processing an-
other attribute. The processor that evaluates the last attribute of a tree node,
also computes the best split point for that node. Similarly, the attribute lists are
split among the children using attribute parallelism.



12 Mohammed J. Zaki

Hybrid Tree Parallelism. SUBTREE [41] uses dynamic task parallelism (that
exists in different sub-trees) combined with data parallelism on shared-memory
systems. Initially all processors belong to one group, and apply data parallelism
at the root. Once new child nodes are formed, the processors are also partitioned
into groups, so that a group of child nodes can be processed in parallel by a
processor group. If the tree nodes associated with a processor group become
pure (i.e., contain examples from a single class), then these processors join some
other active group.

The Hybrid Tree Formulation (HTF) in [42] is very similar to SUBTREE.
HTF uses distributed memory machines, and thus data redistribution is required
in HTF when assigning a set of nodes to a processor group, so that the processor
group has all records relevant to an assigned node.

pCLOUDS [43] is a distributed-memory parallelization of CLOUDS [44]. It
does not require attribute lists or the pre-sorting for numeric attributes; instead
it samples the split points for numeric attributes followed by an estimation step
to narrow the search space for the best split. It thus reduces both computation
and I/O requirements. pCLOUDS employs a mixed parallelism approach. Ini-
tially, data parallelism is applied for nodes with many records. All small nodes
are queued to be processed later using task parallelism. Before processing small
nodes the data is redistributed so that all required data is available locally at a
processor.

2.5 Clustering

Clustering is used to partition database records into subsets or clusters, such
that elements of a cluster share a set of common properties that distinguish
them from other clusters [45,46,47,48]. The goal is to maximize intra-cluster
and minimize inter-cluster similarity. Unlike classification which has predefined
labels, clustering must in essence automatically come up with the labels. For this
reason clustering is also called unsupervised induction. Applications of clustering
include demographic or market segmentation for identifying common traits of
groups of people, discovering new types of stars in datasets of stellar objects,
and so on.

The K-means algorithm is a popular clustering method. The idea is to ran-
domly pick K data points as cluster centers. Next, each record or point is assigned
to the cluster it is closest to in terms of squared-error or Euclidean distance. A
new center is computed by taking the mean of all points in a cluster, setting the
stage for the next iteration. The process stops when the cluster centers cease to
change. Parallelization of K-means received a lot of attention in the past. Differ-
ent parallel methods, mainly using hypercube computers, appear in [49,50,51,52].
We do not describe these methods in detail, since they used only small memory-
resident datasets.

Hierarchical clustering represents another common paradigm. These methods
start with a set of distinct points, each forming its own cluster. Then recursively,
two clusters that are close are merged into one, until all points belong to a
single cluster. In [49,53], parallel hierarchical agglomerative clustering algorithms



Parallel and Distributed Data Mining 13

were presented, using several inter-cluster distance metrics and parallel computer
architectures. These methods also report results on small datasets.

P-CLUSTER [54] is a distributed-memory client-server K-means algorithm.
Data is partitioned into blocks on a server, which sends initial cluster centers and
data blocks to each client. A client assigns each record in its local block to the
nearest cluster, and sends results back to the server. The server then recalculates
the new centers and another iteration begins. To further improve performance
P-CLUSTER uses that the fact that after the first few iterations only a few
records change cluster assignments, and also the centers have less tendency to
move in later iterations. They take advantage of these facts to reduce the number
of distance calculations, and thus the time of the clustering algorithm.

Among the recent methods, MAFIA [55], is a distributed memory algorithm
for subspace clustering. Traditional methods, like K-means and hierarchical clus-
tering, find clusters in the whole data space, i.e., they use all dimensions for dis-
tance computations. Subspace clustering focuses on finding clusters embedded
in subsets of a high-dimensional space. MAFIA uses adaptive grids (or bins) in
each dimension, which are merged to find clusters in higher dimensions. Parallel
implementation of MAFIA is similar to association mining. The candidates here
are the potentially dense units (the subspace clusters) in k dimensions, which
have to be tested if they are truly dense. MAFIA employs task parallelism,
where data as well as candidates are equally partitioned among all processors.
Each processor computes local density, followed by a reduction to obtain global
density.

The paper by Dhillon and Modha in this volume presents a distributed-
memory parallelization of K-means, while the paper by Johnson and Kargupta
describes a distributed hierarchical clustering method.

2.6 Distributed Mining Frameworks

Recently, there has been an increasing interest in distributed and wide-area data
mining systems. The fact that many global businesses and scientific endeavors
require access to multiple, distributed, and often heterogeneous databases, un-
derscores the growing importance of distributed data mining.

An ideal platform for DDM is a cluster of machines at a local site, or cluster
of clusters spanning a wide area, the so-called computational grids, connected
via Internet or other high speed networks. As we noted earlier, PDM is best
viewed as a local component within a DDM system. Further the main differences
between the two is the cost of communication or data movement, and the fact
that DDM must typically handle multiple (possibly heterogeneous) databases.
Below we review some recent efforts in developing DDM frameworks.

Most methods/systems for DDM assume that the data is horizontally par-
titioned among the sites, and is homogeneous (share the same feature space).
Each site mines its local data and generates locally valid concepts. These con-
cepts are exchanged among all the sites to obtain the globally valid concepts.
The Partition [8] algorithm for association mining is a good example. It is in-
herently suitable for DDM. Each site can generate locally frequent itemsets at a



14 Mohammed J. Zaki

given threshold level. All local results are combined and then evaluated at each
site to obtain the globally frequent itemsets.

Another example is JAM [56,57], a java-based multi-agent system utilizing
meta-learning, used primarily in fraud-detection applications. Each agent builds
a classification model, and different agents are allowed to build classifiers using
different techniques. JAM also provides a set of meta-learning agents for combin-
ing multiple models learnt at different sites into a meta-classifier that in many
cases improves the overall predictive accuracy. Knowledge Probing [58] is another
approach to meta-learning. Knowledge probing retains a descriptive model af-
ter combining multiple classifiers, rather than treating the meta-classifier as a
black-box. The idea is to learn on a separate dataset, the class predictions from
all the local classifiers.

PADMA [59] is an agent based architecture for distributed mining. Individual
agents are responsible for local data access, hierarchical clustering in text doc-
ument classification, and web based information visualization. The BODHI [60]
DDM system is based on the novel concept of collective data mining. Naive min-
ing of heterogeneous, vertically partitioned, sites can lead to an incorrect global
data model. BODHI guarantees correct local and global analysis with minimum
communication.

In [61] a new distributed do-all primitive, called D-DOALL, was described
that allows easy scheduling of independent mining tasks on a network of work-
stations. The framework allows incremental reporting of results, and seeks to
reduce communication via resource-aware task scheduling principles.

The Papyrus [62] java-based system specifically targets wide-area DDM over
clusters and meta-clusters. It supports different data, task and model strate-
gies. For example, it can move models, intermediate results or raw data between
nodes. It can support coordinated or independent mining, and various meth-
ods for combining local models. Papyrus uses PMML (Predictive Model Markup
Language) to describe and exchange mined models. Kensignton [63] is another
java-based system for distributed enterprise data mining. It is a three-tiered sys-
tem, with a client front-end for GUI, and visual programming of data mining
tasks. The middle-layer application server provides persistent storage, task exe-
cution control, and data management and preprocessing functions. The third-tier
implements a parallel data mining service.

Other recent work in DDM includes decision tree construction over dis-
tributed databases [64], where the learning agents can only exchange summaries
instead of raw data, and the databases may have shared attributes. The main
challenge is to construct a decision tree using implicit records rather than ma-
terializing a join over all the datasets. The WoRLD system [65] describes an
inductive rule-learning program that learns from data distributed over a net-
work. WoRLD also avoids joining databases to create a central dataset. Instead
it uses marker-propagation to compute statistics. A marker is a label of a class
of interest. Counts of the different markers are maintained with each attribute
value, and used for evaluating rules. Markers are propagated among different
tables to facilitate distributed learning.



Parallel and Distributed Data Mining 15

For more information on parallel and distributed data mining see the book
by Freitas and Lavington [66] and the edited volume by Kargupta and Chan [67].
Also see [68] for a discussion of cost-effective measures for assessing the perfor-
mance of a mining algorithm before implementing it.

3 Research Issues and Challenges

In this section we highlight some of the outstanding research issues and a number
of open problems for designing and implementing the next-generation large-scale
mining methods and KDD systems.

High Dimensionality. Current methods are only able to hand a few thousand
dimensions or attributes. Consider association rule mining as an example. The
second iteration of the algorithm counts the frequency of all pairs of items,
which has quadratic complexity. In general, the complexity of different mining
algorithms may not be linear in the number of dimensions, and new parallel
methods are needed that are able to handle large number of attributes.

Large Size. Databases continue to increase in size. Current methods are able
to (perhaps) handle data in the gigabyte range, but are not suitable for terabyte-
sized data. Even a single scan for these databases is considered expensive. Most
current algorithms are iterative, and scan data multiple times. For example, it
is an open problem to mine all frequent associations in a single pass, although
sampling based methods show promise [69,70]. In general, minimizing the num-
ber of data scans is paramount. Another factor limiting the scalability of most
mining algorithms is that they rely on in-memory data structures for storing
potential patterns and information about them (such as candidate hash tree [6]
in associations, tid hash table [71] in classification). For large databases these
structures will certainly not fit in aggregate system memory. This means that
temporary results will have to be written out to disk or the database will have
to be divided into partitions small enough to be processed in memory, entailing
further data scans.

Data Location. Today’s large-scale data sets are usually logically and phys-
ically distributed, requiring a decentralized approach to mining. The database
may be horizontally partitioned where different sites have different transactions,
or it may be vertically partitioned, with different sites having different attributes.
Most current work has only dealt with the horizontal partitioning approach. The
databases may also have heterogeneous schemas.

Data Type. To-date most data mining research has focused on structured data,
as it is the simplest, and most amenable to mining. However, support for other
data types is crucial. Examples include unstructured or semi-structured (hy-
per)text, temporal, spatial and multimedia databases. Mining these is fraught
with challenges, but is necessary as multimedia content and digital libraries pro-
liferate at astounding rates. Techniques from parallel and distributed computing
will lie at the heart of any proposed scalable solutions.



16 Mohammed J. Zaki

Data Skew. One of the problems adversely affecting load balancing in paral-
lel mining algorithms is sensitivity to data skew. Most methods partition the
database horizontally in equal-sized blocks. However, the number of patterns
generated from each block can be heavily skewed, i.e., while one block may con-
tribute many, the other may have very few patterns, implying that the processor
responsible for the latter block will be idle most of the time. Randomizing the
blocks is one solution, but it is still not adequate, given the dynamic and inter-
active nature of mining. The effect of skewness on different algorithms needs to
be further studied (see [72] for some recent work).

Dynamic Load Balancing. Most extant algorithms use only a static par-
titioning scheme based on the initial data decomposition, and they assume a
homogeneous, dedicated environment. This is far from reality. A typical parallel
database server has multiple users, and has transient loads. This calls for an in-
vestigation of dynamic load balancing schemes. Dynamic load balancing is also
crucial in a heterogeneous environment, which can be composed of meta- and
super-clusters, with machines ranging from ordinary workstations to supercom-
puters.

Incremental Methods. Everyday new data is being collected, and existing
data stores are being updated with the new data or purged of the old one. To-
date there have been no parallel or distributed algorithms that are incremental
in nature, which can handle updates and deletions without having to recompute
patterns or rules over the entire database.

Multi-table Mining, Data Layout, and Indexing Schemes. Almost no
work has been done on mining over multiple tables or over distributed databases
which have different schemas. Data in a warehouse is typically arranged in a star
schema, with a central fact table (e.g., point-of-sales data), and associated dimen-
sion tables (e.g., product information, manufacturer, etc.). Traditional mining
over these multiple tables would first require us to create a large single table that
is the join of all the tables. The joined table also has tremendous amounts of re-
dundancy. We need better methods for processing such multiple tables, without
having to materialize a single large view. Also, little work has been done on the
optimal or near-optimal data layout or indexing schemes for fast data access for
mining.

Parallel DBMS/File Systems. To-date most results reported have hand-
partitioned the database, mainly horizontally, on different processors. There has
been very little study conducted in using a parallel database/file system for
managing the partitioned database, and the accompanying striping, and lay-
out issues. Recently there has been increasing emphasis on tight database in-
tegration of mining [73,74,75,76], but it has mainly been confined to sequential
approaches. Some exceptions include Data Surveyor [77], a mining tool that
uses the Monet database server for parallel classification rule induction. Also,
generic set-oriented primitive operations were proposed in [78] for classification
and clustering. These primitives were fully integrated with a parallel DBMS.



Parallel and Distributed Data Mining 17

Interaction, Pattern Management, and Meta-level Mining. The KDD
process is highly interactive, as the human participates in almost all the steps.
For example, the user is heavily involved in the initial data understanding, se-
lection, cleaning, and transformation phases. These steps in fact consume more
time than mining per se. Moreover, depending on the parameters of the search,
mining methods may generate too many patterns to be analyzed directly. One
needs methods to allow meta-level queries [79,80,81] on the results, to impose
constraints that focus on patterns of interest [82,83], to refine or generalize
rules [84,85], etc. Thus there is a need for a complete set of tools that query
and mine the pattern/model database as well. Parallel methods can be success-
ful in providing the desired rapid response in all of the above steps.

4 Book Organization

This book contains chapters covering all the major tasks in data mining including
parallel and distributed mining frameworks, associations, sequences, clustering
and classification. We provide a brief synopsis of each chapter below, organized
under four main headings.

4.1 Mining Frameworks

Graham Williams et al. present Data Miner’s Arcade, a java-based platform-
independent system for integrating multiple analysis and mining tools, using a
common API, and providing seamless data access across multiple systems. Com-
ponents of the DM Arcade include parallel algorithms (e.g., BMARS - multiple
adaptive regression B-splines), virtual environments for data visualization, and
data management for mining.

Bailey et al. describe the implementation of Osiris, a data server for wide-
area distributed data mining, built upon clusters, meta-clusters (with commodity
network like Internet) and super-clusters (with high-speed network). Osiris ad-
dresses three key issues: What data layout should be used on the server? What
tradeoffs are there in moving data or predictive models between nodes? How data
should be moved to minimize latency; what protocols should be used? Experi-
ments were performed on a wide-area system linking Chicago and Washington
via the NSF/MCI vBNS network.

Parthasarathy et al. present InterAct, an active mining framework for dis-
tributed mining. Active mining refers to methods that maintain valid mined pat-
terns or models in the presence of user interaction and database updates. The
framework uses mining summary structures that are maintained across updates
or changes in user specifications. InterAct also allows effective client-server data
and computation sharing. Active mining results were presented on a number of
methods like discretization, associations, sequences, and similarity search.



18 Mohammed J. Zaki

4.2 Association Rules and Sequences

Joshi et al. open this section with a survey chapter on parallel mining of as-
sociation rules and sequences. They discuss the many extant parallel solutions,
and give an account of the challenges and issues for effective formulations of
discovering frequent itemsets and sequences.

Morishita and Nakaya describe a novel parallel algorithm for mining corre-
lated association rules. They mine rules based on the chi-squared metric that
optimizes the statistical significance or correlation between the rule antecedent
and consequent. A parallel branch-and-bound algorithm was proposed that uses
a term rewriting technique to avoid explicitly maintaining lists of open and
closed nodes on each processor. Experiments on SMP platforms (with up to 128
processors) show very good speedups.

Shintani and Kitsuregawa propose new load balancing strategies for general-
ized association rule mining using a gigabyte-sized database on a cluster of 100
PCs connected with an ATM network. In generalized associations the items are
at the leaf levels in a hierarchy or taxonomy of items, and the goal is to discover
rules involving concepts at multiple (and mixed) levels. They show that load
balancing is crucial for performance on such large-scale clusters.

Zaki presents pSPADE, a parallel algorithm for sequence mining. pSPADE
divides the pattern search space into disjoint, independent sub-problems based
on suffix-classes, each of which can be solved in parallel in an asynchronous
manner. Task parallelism and dynamic inter- and intra-class load balancing is
used for good performance. Results on a 12 processor SMP using up to a 1 GB
dataset show good speedup and scaleup.

4.3 Classification

Skillicorn presents parallel techniques for generating predictors for classification
and regression models. A recent trend in learning is to build multiple prediction
models on different samples from the training set, and combine them, allowing
faster induction and lower error rates. This framework is highly amenable to
parallelism and forms the focus of this paper.

Goil and Choudhary implemented a parallel decision tree classifier using the
aggregates computed in multidimensional analysis or OLAP. They compute ag-
gregates/counts per class along various dimensions, which can then be used for
computing the attribute split-points. Communication is minimized by coalescing
messages and is done once per tree level. Experiments on a 16 node IBM SP2
were presented.

Hall et al. describe distributed rule induction for learning a single model
from disjoint datasets. They first learn local rules from a single site; these are
merged to form a global rule set. They show that while this approach promises
fast induction, accuracy tapers off (as compared to directly mining the whole
database) as the number of sites increases. They suggested some heuristics to
minimize this loss in accuracy.



Parallel and Distributed Data Mining 19

4.4 Clustering

Johnson and Kargupta present the Collective Hierarchical Clustering algorithm
for clustering over distributed, heterogeneous databases. Rather than gathering
the data at a central site, they generate local cluster models, which are subse-
quently combined to obtain the global clustering.

Dhillon and Modha parallelized the K-means clustering algorithm on a 16
node IBM SP2 distributed-memory system. They exploit the inherent data par-
allelism of the K-means algorithm, by performing the point-to-centroid distance
calculations in parallel. They demonstrated linear speedup on a 2GB dataset.

5 Conclusion

We conclude by observing that the need for large-scale data mining algorithms
and systems is real and immediate. Parallel and distributed computing is es-
sential for providing scalable, incremental and interactive mining solutions. The
field is in its infancy, and offers many interesting research directions to pur-
sue. We hope that this volume, representing the state-of-the-art in parallel and
distributed mining methods, will be successful in bringing to surface the require-
ment and challenges in large-scale parallel KDD systems.

References

1. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge
discovery: An overview. [86]

2. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: The KDD process for extracting
useful knowledge from volumes of data. Communications of the ACM 39 (1996)

3. Simoudis, E.: Reality check for data mining. IEEE Expert: Intelligent Systems
and Their Applications 11 (1996) 26–33

4. DeWitt, D., Gray, J.: Parallel database systems: The future of high-performance
database systems. Communications of the ACM 35 (1992) 85–98

5. Valduriez, P.: Parallel database systems: Open problems and new issues. Dis-
tributed and Parallel Databases 1 (1993) 137–165

6. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discovery
of association rules. In Fayyad, U., et al, eds.: Advances in Knowledge Discovery
and Data Mining, AAAI Press, Menlo Park, CA (1996) 307–328

7. Park, J.S., Chen, M., Yu, P.S.: An effective hash based algorithm for mining
association rules. In: ACM SIGMOD Intl. Conf. Management of Data. (1995)

8. Savasere, A., Omiecinski, E., Navathe, S.: An efficient algorithm for mining asso-
ciation rules in large databases. In: 21st VLDB Conf. (1995)

9. Brin, S., Motwani, R., Ullman, J., Tsur, S.: Dynamic itemset counting and im-
plication rules for market basket data. In: ACM SIGMOD Conf. Management of
Data. (1997)

10. Zaki, M.J., Parthasarathy, S., Ogihara, M., Li, W.: New algorithms for fast dis-
covery of association rules. In: 3rd Intl. Conf. on Knowledge Discovery and Data
Mining. (1997)



20 Mohammed J. Zaki

11. Mueller, A.: Fast sequential and parallel algorithms for association rule mining: A
comparison. Technical Report CS-TR-3515, University of Maryland, College Park
(1995)

12. Park, J.S., Chen, M., Yu, P.S.: Efficient parallel data mining for association rules.
In: ACM Intl. Conf. Information and Knowledge Management. (1995)

13. Agrawal, R., Shafer, J.: Parallel mining of association rules. IEEE Trans. on
Knowledge and Data Engg. 8 (1996) 962–969

14. Cheung, D., Han, J., Ng, V., Fu, A., Fu, Y.: A fast distributed algorithm for mining
association rules. In: 4th Intl. Conf. Parallel and Distributed Info. Systems. (1996)

15. Shintani, T., Kitsuregawa, M.: Hash based parallel algorithms for mining associa-
tion rules. In: 4th Intl. Conf. Parallel and Distributed Info. Systems. (1996)

16. Zaki, M.J., Ogihara, M., Parthasarathy, S., Li, W.: Parallel data mining for asso-
ciation rules on shared-memory multi-processors. In: Supercomputing’96. (1996)

17. Cheung, D., Hu, K., Xia, S.: Asynchronous parallel algorithm for mining asso-
ciation rules on shared-memory multi-processors. In: 10th ACM Symp. Parallel
Algorithms and Architectures. (1998)

18. Han, E.H., Karypis, G., Kumar, V.: Scalable parallel data mining for association
rules. In: ACM SIGMOD Conf. Management of Data. (1997)

19. Zaki, M.J., Parthasarathy, S., Ogihara, M., Li, W.: Parallel algorithms for fast
discovery of association rules. Data Mining and Knowledge Discovery: An Inter-
national Journal 1(4):343-373 (1997)

20. Tamura, M., Kitsuregawa, M.: Dynamic load balancing for parallel association rule
mining on heterogeneous PC cluster systems. In: 25th Intl Conf. on Very Large
Data Bases. (1999)

21. Zaki, M.J.: Parallel and distributed association mining: A survey. IEEE Concur-
rency 7 (1999) 14–25

22. Agrawal, R., Srikant, R.: Mining sequential patterns. In: 11th Intl. Conf. on Data
Engg. (1995)

23. Srikant, R., Agrawal, R.: Mining sequential patterns: Generalizations and perfor-
mance improvements. In: 5th Intl. Conf. Extending Database Technology. (1996)

24. Oates, T., Schmill, M.D., Jensen, D., Cohen, P.R.: A family of algorithms for
finding temporal structure in data. In: 6th Intl. Workshop on AI and Statistics.
(1997)

25. Zaki, M.J.: Efficient enumeration of frequent sequences. In: 7th Intl. Conf. on
Information and Knowledge Management. (1998)

26. Shintani, T., Kitsuregawa, M.: Mining algorithms for sequential patterns in paral-
lel: Hash based approach. In: 2nd Pacific-Asia Conf. on Knowledge Discovery and
Data Mining. (1998)

27. Oates, T., Schmill, M.D., Cohen, P.R.: Parallel and distributed search for structure
in multivariate time series. In: 9th European Conference on Machine Learning.
(1997)

28. Weiss, S.M., Kulikowski, C.A.: Computer Systems that Learn: Classification and
Prediction Methods from Statistics, Neural Nets, Machine Learning, and Expert
Systems. Morgan Kaufman (1991)

29. Michie, D., Spiegelhalter, D.J., Taylor, C.C.: Machine Learning, Neural and Sta-
tistical Classification. Ellis Horwood (1994)

30. Lippmann, R.: An introduction to computing with neural nets. IEEE ASSP
Magazine 4 (1987)

31. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Morgan Kaufmann (1989)



Parallel and Distributed Data Mining 21

32. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regres-
sion Trees. Wadsworth, Belmont (1984)

33. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufman (1993)
34. Provost, F., Aronis, J.: Scaling up inductive learning with massive parallelism.

Machine Learning 23 (1996)
35. Provost, F., Kolluri, V.: A survey of methods for scaling up inductive algorithms.

Data Mining and Knowledge Discovery: An International Journal 3 (1999) 131–169
36. Mehta, M., Agrawal, R., Rissanen, J.: SLIQ: A fast scalable classifier for data

mining. In: Proc. of the Fifth Intl Conference on Extending Database Technology
(EDBT), Avignon, France (1996)

37. Shafer, J., Agrawal, R., Mehta, M.: Sprint: A scalable parallel classifier for data
mining. In: 22nd VLDB Conference. (1996)

38. Joshi, M., Karypis, G., Kumar, V.: ScalParC: A scalable and parallel classifica-
tion algorithm for mining large datasets. In: Intl. Parallel Processing Symposium.
(1998)

39. Chattratichat, J., Darlington, J., Ghanem, M., Guo, Y., Huning, H., Kohler, M.,
Sutiwaraphun, J., To, H.W., Dan, Y.: Large scale data mining: Challenges and
responses. In: 3rd Intl. Conf. on Knowledge Discovery and Data Mining. (1997)

40. Kufrin, R.: Decision trees on parallel processors. In Geller, J., Kitano, H., Suttner,
C., eds.: Parallel Processing for Artificial Intelligence 3, Elsevier-Science (1997)

41. Zaki, M.J., Ho, C.T., Agrawal, R.: Parallel classification for data mining on shared-
memory multiprocessors. In: 15th IEEE Intl. Conf. on Data Engineering. (1999)

42. Srivastava, A., Han, E.H., Kumar, V., Singh, V.: Parallel formulations of decision-
tree classification algorithms. Data Mining and Knowledge Discovery: An Interna-
tional Journal 3 (1999) 237–261

43. Sreenivas, M., Alsabti, K., Ranka, S.: Parallel out-of-core divide and conquer
techniques with application to classification trees. In: 13th International Parallel
Processing Symposium. (1999)

44. Alsabti, K., Ranka, S., Singh, V.: Clouds: A decision tree classifier for large
datasets. In: 4th Intl Conference on Knowledge Discovery and Data Mining. (1998)

45. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice Hall (1988)
46. Cheeseman, P., Kelly, J., Self, M., et al.: AutoClass: A Bayesian classification

system. In: 5th Intl Conference on Machine Learning, Morgan Kaufman (1988)
47. Fisher, D.H.: Knowledge acquisition via incremental conceptual clustering. Ma-

chine Learning 2 (1987)
48. Michalski, R.S., Stepp, R.E.: Learning from observation: Conceptual clustering.

In Michalski, R.S., Carbonell, J.G., Mitchell, T.M., eds.: Machine Learning: An
Artificial Intelligence Approach. Volume I. Morgan Kaufmann (1983) 331–363

49. Li, X., Fang, Z.: Parallel clustering algorithms. Parallel Computing 11 (1989)
270–290

50. Rivera, F., Ismail, M., Zapata, E.: Parallel squared error clustering on hypercube
arrays. Journal of Parallel and Distributed Computing 8 (1990) 292–299

51. Ranka, S., Sahni, S.: Clustering on a hypercube multicomputer. IEEE Trans. on
Parallel and Distributed Systems 2(2) (1991) 129–137

52. Rudolph, G.: Parallel clustering on a unidirectional ring. In et al., R.G., ed.:
Transputer Applications and Systems ’93: Volume 1. IOS Press, Amsterdam (1993)
487–493

53. Olson, C.: Parallel algorithms for hierarchical clustering. Parallel Computing 21
(1995) 1313–1325

54. Judd, D., McKinley, P., Jain, A.: Large-scale parallel data clustering. In: Intl Conf.
Pattern Recognition. (1996)



22 Mohammed J. Zaki

55. S. Goil, H.N., Choudhary, A.: MAFIA: Efficient and scalable subspace cluster-
ing for very large data sets. Technical Report 9906-010, Center for Parallel and
Distributed Computing, Northwestern University (1999)

56. Stolfo, S., Prodromidis, A., Tselepis, S., Lee, W., Fan, W., Chan, P.: Jam: Java
agents for meta-learning over distributed databases. In: 3rd Intl. Conf. on Knowl-
edge Discovery and Data Mining. (1997)

57. Prodromidis, A., Stolfo, S., Chan, P.: Meta-learning in distributed data mining
systems: Issues and approaches. [67]

58. Guo, Y., Sutiwaraphun, J.: Knowledge probing in distributed data mining. In: 3rd
Pacific-Asia Conference on Knowledge Discovery and Data Mining. (1999)

59. Kargupta, H., Hamzaoglu, I., Stafford, B.: Scalable, distributed data mining using
an agent based architecture. In: 3rd Intl. Conf. on Knowledge Discovery and Data
Mining. (1997)

60. Kargupta, H., Park, B.H., Hershberger, D., Johnson, E.: Collective data mining:
A new perspective toward distributed data mining. [67]

61. Parthasarathy, S., Subramonian, R.: Facilitating data mining on a network of
workstations. [67]

62. Grossman, R.L., Bailey, S.M., Sivakumar, H., Turinsky, A.L.: Papyrus: A system
for data mining over local and wide area clusters and super-clusters. In: Super-
computing’99. (1999)

63. Chattratichat, J., Darlington, J., Guo, Y., Hedvall, S., Kohler, M., Syed, J.: An
architecture for distributed enterprise data mining. In: 7th Intl. Conf. High-
Performance Computing and Networking. (1999)

64. Bhatnagar, R., Srinivasan, S.: Pattern discovery in distributed databases. In:
AAAI National Conference on Artificial Intelligence. (1997)

65. Aronis, J., Kolluri, V., Provost, F., Buchanan, B.: The WoRLD: Knowledge discov-
ery from multiple distributed databases. In: Florida Artificial Intelligence Research
Symposium. (1997)

66. Freitas, A., Lavington, S.: Mining very large databases with parallel processing.
Kluwer Academic Pub., Boston, MA (1998)

67. Kargupta, H., Chan, P., eds.: Advances in Distributed Data Mining. AAAI Press,
Menlo Park, CA (2000)

68. Skillicorn, D.: Strategies for parallel data mining. IEEE Concurrency 7 (1999)
26–35

69. Toivonen, H.: Sampling large databases for association rules. In: 22nd VLDB Conf.
(1996)

70. Zaki, M.J., Parthasarathy, S., Li, W., Ogihara, M.: Evaluation of sampling for data
mining of association rules. In: 7th Intl. Wkshp. Research Issues in Data Engg.
(1997)

71. Shafer, J., Agrawal, R., Mehta, M.: SPRINT: A scalable parallel classifier for data
mining. In: Proc. of the 22nd Intl Conference on Very Large Databases, Bombay,
India (1996)

72. Cheung, D., Xiao, Y.: Effect of data distribution in parallel mining of associations.
Data Mining and Knowledge Discovery: An International Journal 3 (1999) 291–314

73. Agrawal, R., Shim, K.: Developing tightly-coupled data mining applications on
a relational database system. In: 2nd Intl. Conf. on Knowledge Discovery in
Databases and Data Mining. (1996)

74. Meo, R., Psaila, G., Ceri, S.: A new SQL-like operator for mining association rules.
In: 22nd Intl. Conf. Very Large Databases. (1996)

75. Meo, R., Psaila, G., Ceri, S.: A tightly-coupled architecture for data mining. In:
Intl. Conf. on Data Engineering. (1998)



Parallel and Distributed Data Mining 23

76. Sarawagi, S., Thomas, S., Agrawal, R.: Integrating association rule mining with
databases: alternatives and implications. In: ACM SIGMOD Intl. Conf. Manage-
ment of Data. (1998)

77. Holsheimer, M., Kersten, M.L., Siebes, A.: Data surveyor: Searching the nuggets
in parallel. [86]

78. Lavington, S., Dewhurst, N., Wilkins, E., Freitas, A.: Interfacing knowledge discov-
ery algorithms to large databases management systems. Information and Software
Technology 41 (1999) 605–617

79. Kamber, M., Han, J., Chiang, J.Y.: Metarule-guided mining of multi-dimensional
association rules using data cubes. In: 3rd Intl. Conf. on Knowledge Discovery and
Data Mining. (1997)

80. Klemettinen, M., Mannila, H., Ronkainen, P., Toivonen, H., Verkamo, A.I.: Finding
interesting rules from large sets of discovered association rules. In: 3rd Intl. Conf.
Information and Knowledge Management. (1994) 401–407

81. Shen, W.M., Ong, K.L., Mitbander, B., Zaniolo, C.: Metaqueries for data mining.
[86]

82. Ng, R.T., Lakshmanan, L., Jan, J., Pang, A.: Exploratory mining and prun-
ing optimizations of constrained association rules. In: ACM SIGMOD Intl. Conf.
Management of Data. (1998)

83. Srikant, R., Vu, Q., Agrawal, R.: Mining Association Rules with Item Constraints.
In: 3rd Intl. Conf. on Knowledge Discovery and Data Mining. (1997)

84. Matheus, C., Piatetsky-Shapiro, G., McNeill, D.: Selecting and reporting what
is interesting. In Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy,
R., eds.: Advances in Knowledge Discovery and Data Mining. AAAI/MIT Press
(1996)

85. Toivonen, H., Klemettinen, M., Ronkainen, P., Hätönen, K., Mannila, H.: Prun-
ing and grouping discovered association rules. In: MLnet Wkshp. on Statistics,
Machine Learning, and Discovery in Databases. (1995)

86. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R., eds.: Advances in
Knowledge Discovery and Data Mining. AAAI Press, Menlo Park, CA (1996)


	Introduction
	Parallel and Distributed Data Mining
	Parallel Design Space
	Association Rules
	Sequential Patterns
	Classification
	Clustering
	Distributed Mining Frameworks

	Research Issues and Challenges
	Book Organization
	Mining Frameworks
	Association Rules and Sequences
	Classification
	Clustering

	Conclusion

