
TERRA: SIMPLIFYING HIGH-PERFORMANCE PROGRAMMING

USING MULTI-STAGE PROGRAMMING

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Zachary DeVito

December 2014

 http://creativecommons.org/licenses/by-nc/3.0/us/

This dissertation is online at: http://purl.stanford.edu/zt513qh3032

© 2014 by Zachary Lipner DeVito. All Rights Reserved.

Re-distributed by Stanford University under license with the author.

This work is licensed under a Creative Commons Attribution-
Noncommercial 3.0 United States License.

ii

http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/
http://purl.stanford.edu/zt513qh3032

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Pat Hanrahan, Primary Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Alex Aiken

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Oyekunle Olukotun

Approved for the Stanford University Committee on Graduate Studies.

Patricia J. Gumport, Vice Provost for Graduate Education

This signature page was generated electronically upon submission of this dissertation in
electronic format. An original signed hard copy of the signature page is on file in
University Archives.

iii

ABSTRACT

Modern high-performance computers are heterogeneous machines that contain a mixture of

multi-core CPUs, GPUs, interconnects, and other custom accelerators. The composition of

individual machines varies and will change over time, so it is important that applications

written for these machines are portable. One way to write portable high-performance

applications is to abstract the problem at a higher-level and use approaches such as auto-

tuners or domain-specific languages (DSLs) to compile the abstraction into high-performance

code using domain knowledge. These approaches require that the application generate

code programmatically. However, current state-of-the-art high-performance languages lack

support for generating code, making it difficult to design these programs.

This thesis presents a novel two-language design for generating high-performance

code programmatically. We leverage a high-level language, Lua, to stage the execution

of a new low-level language, Terra. Programmers can implement program analyses and

transformations in Lua, but use built-in constructs to generate and run high-performance

Terra code. This design reflects how programs like DSLs are often created in practice but

applies principled techniques to make them easier to create. We adapt techniques from

multi-stage programming to work within the two-language design. In particular, shared

lexical scope makes it easy to generate code, but separate execution enables the programmer

to control performance. Furthermore, we show how adding staged compilation to the

typechecking process of Terra allows for the creation of high-performance types. This

typechecking process combines meta-object protocols frequently used in dynamically-typed

languages with staged programming to produce flexible but high-performance types.

We evaluate the design presented in this thesis by implementing a number of example

programs using Lua and Terra in areas where performance is critical such as linear algebra,

iv

image processing, probabilistic programming, serialization, and dynamic assembly. We

show that these applications, which previously required many different languages and

technologies, can be implemented concisely using just Lua and Terra. They perform as well

as or better than their equivalents written using existing technologies. In some cases, we

found that the added expressiveness of using our approach made it feasible to implement

more aggressive optimizations, enabling the program to perform up to an order of magnitude

better than existing approaches.

v

ACKNOWLEDGMENTS

Creating this dissertation was only possible with the help, suggestions, and support of many

people. First, I want to thank my advisor Pat Hanrahan for always encouraging me to work

on the problems that I found most interesting, and giving me scarily accurate advice well

before I realized that I needed it. Frequently there were times that the solution to a problem

that I was working on was something Pat mentioned off-hand six months earlier.

I am also grateful to Alex Aiken for his advice over the years on the many projects I

worked on including the Terra and Liszt languages. As my interests turned to programming

languages, Alex helped me navigate the community, always asking on-point questions

that helped focus the work. I also want to thank my other Committee members — Kunle

Olukotun, Jan Vitek, and Eric Darve — for their advice and for many fruitful discussions

about how to design high-performance domain-specific languages.

My work would not have been possible without the help of many other students in the

lab at Stanford. I am grateful to James Hegarty for participating in endless discussions about

programming language design, and for using Terra even at a very early stage, and to Daniel

Ritchie and Matt Fisher for their help in crafting the design of Exotypes.

I started working on the Liszt programming language only a few months after I came to

Stanford. The project has continued up to this day, accumulating a large number of people

who have helped out over the years. I am grateful for this help, especially to Niels Joubert,

who spent long hours getting Liszt to run on large clusters and GPUs, and to Crystal Lemire,

Gilbert Bernstein, and Chinmayee Shah who are now continuing work on the project.

I also want to thank my academic “siblings” Mike Bauer, Eric Schkufza, Sharon Lin,

and Lingfeng Yang who helped me navigate the academic process, and encouraged me to

keep going on problems even when I thought it was not worth it. I am also grateful to the

vi

rest of Pat’s lab and other students I interacted with while at Stanford. Their diverse interests,

enthusiasm for problem solving, and inquisitiveness meant that meetings never had a dull

moment.

Finally, I would like to thank my mom and dad for their support and encouragement

through this process. I wouldn’t have been able to do it without you.

vii

CONTENTS

ABSTRACT iv

ACKNOWLEDGMENTS vi

1 INTRODUCTION 1

1.1 Contributions . 4

1.2 Thesis outline . 6

2 BACKGROUND 7

2.1 Practical designs of libraries that do code generation 7

2.1.1 Ad hoc templates and scripts . 8

2.1.2 Source-to-source autotuners . 9

2.1.3 Statically-compiled DSLs . 11

2.1.4 Dynamically-compiled DSLs . 14

2.1.5 Summary . 16

2.2 Existing techniques for code generation 16

2.2.1 LISP . 17

2.2.2 Partial evaluation . 19

2.2.3 Multi-stage programming . 21

2.3 Conclusion . 23

3 GENERATING CODE 25

3.1 Writing code in Terra . 26

3.2 Multi-stage programming in Terra . 30

3.3 Writing optimizations using staging . 32

viii

3.4 Generating arbitrary code using staging. 33

3.5 Design decisions for code generation . 36

3.5.1 Shared lexical environment . 36

3.5.2 Hygienic code generation . 37

3.5.3 Separate evaluation of Terra code 38

3.5.4 Eager specialization with lazy typechecking 39

4 FORMALIZING CODE GENERATION WITH TERRA CORE 41

4.1 Terra Core . 41

4.2 Design decisions as reflected in Terra Core 46

4.2.1 Terra entities are first-class . 46

4.2.2 Hygiene and shared lexical environment 47

4.2.3 Eager specialization with lazy typechecking 48

4.2.4 Separate evaluation of Terra code 50

5 BUILDING DSLS 51

5.1 Tuning DGEMM . 51

5.2 Darkroom: A stencil DSL for images . 55

5.3 Liszt: A DSL for physical simulation . 57

5.4 Quicksand: A DSL for probabilistic programming 59

6 GENERATING TYPES WITH EXOTYPES 63

6.1 Meta-object protocols . 65

6.2 Exotypes interface . 66

6.3 Example: Array(T) . 70

6.4 Composability . 72

6.5 Related Work . 74

7 FORMALIZATION OF EXOTYPES 76

8 BUILDING LIBRARIES WITH EXOTYPES 83

8.1 Class systems . 83

8.2 Data layout . 85

ix

8.3 Serialization . 87

8.4 Dynamic x86 assembly . 89

8.5 Automatic differentiation . 92

9 EMBEDDING CUSTOM DSLS IN LUA 95

9.1 Current approaches to embedding languages 95

9.2 Our language extension interface . 98

9.3 Using language extensions . 100

9.3.1 Darkroom: Lua-based meta-programming with custom syntax . . . 100

9.3.2 Liszt: Custom syntax with a language extension API 102

9.4 Comparison to other approaches to syntax extension 103

10 INTEROPERABILITY 105

10.1 With existing applications . 105

10.1.1 Embedding as a runtime . 106

10.1.2 Zero-overhead compatibility with C 107

10.2 With Lua . 111

10.3 With DSLs . 115

11 IMPLEMENTATION 117

12 DISCUSSION 121

12.1 Lessons learned from building DSLs . 121

12.2 Software development as a library . 123

12.3 Statically-typed languages as heterogeneous staged programming 124

12.4 A middle ground for static and dynamic typing 126

12.5 Applying dynamic code generation to scientific computing 128

12.6 Using high-performance staged programming to improve compiler perfor-

mance . 128

13 CONCLUSION 130

x

LIST OF FIGURES

2.1 Example Liszt code . 12

2.2 Generating code with LLVM . 15

2.3 Macro hygiene . 18

2.4 Multi-stage programming operators . 22

3.1 Phases of evaluation of a Lua-Terra program. 30

3.2 An example function that compiles a simple IR for image processing code

into a Terra function . 35

3.3 A simple autotuner for the image processing language. 36

4.1 The rules L−→ for evaluating Lua expressions. 44

4.2 The rules S−→ for specializing Terra expressions. 45

4.3 The rules T−→ for evaluating Terra expressions. 45

4.4 Typing rules for references to Terra functions. 45

5.1 Generator for matrix-multiply kernel . 52

5.2 Matrix multiply performance . 53

5.3 Darkroom compared to C . 54

5.4 Speed using Darkroom . 55

5.5 A higher-order Lua function that wraps a Terra function for use in MCMC

inference. 60

5.6 Quicksand performance . 62

6.1 Extension of Terra evaluation for exotypes 67

6.2 Example exotype properties . 67

6.3 Embedding Objective-C objects in Terra using exotypes. 70

xi

6.4 An implementation of the array constructor in Lua 71

6.5 An implementation of the array constructor using Exotypes in Terra 72

7.1 Typing rules . 77

7.2 ExoTerra Evaluation . 78

7.3 The rules for evaluating ExoLua . 78

8.1 Example code that uses our class system interface 84

8.2 Data layout performance . 86

8.3 A generator for serialization code . 88

8.4 Throughput of scene graph serialization 88

8.5 Assembler throughput . 89

8.6 Example using our dynamic assembler . 92

8.7 Automatic differentiation performance . 94

9.1 Examples of different techniques for implementing the frontend of a DSL . 96

9.2 An example language extension . 99

9.3 Embedding Darkroom in Lua . 101

10.1 Embedding Lua in C . 106

10.2 Embedding Terra in C . 107

10.3 Correspondence between Terra and C types 108

10.4 Calling external functions form different languages. 110

10.5 Converting Lua values to Terra values. 112

10.6 Inferring the types of Lua values . 113

10.7 Converting Terra values to Lua values . 113

11.1 Overview of Terra implementation . 118

xii

CHAPTER 1

INTRODUCTION

To achieve higher performance and power efficiency, modern computers are composed of a

heterogeneous mix of cores and accelerators, each specialized to achieve high efficiency

for particular tasks. A modern laptop might have multiple CPU cores, whose out-of-order

execution and large caches make them ideal for serial tasks where low-latency is important.

On the same chip, there is an integrated GPU for high-efficiency processing of throughput-

oriented tasks such as real-time rendering. For high-performance graphics processing an

additional discrete GPU may be included as well. Similar complexity is found at both the

small and large scale. Mobile phones use systems on a chip that contain many specialized

cores for tasks such as image processing, while large supercomputers often contain a mixture

of CPUs, GPUs, and high-speed interconnects across disparate memory spaces.

To write high-performance and high-efficiency applications, a programmer must take

advantage of all these devices. While an application can be written for one set of hardware,

the amount of variety across modern computers leads to an exponential number of potential

configurations. Furthermore, the particular hardware is likely to change over time, making

effort spent optimizing a single design obsolete in a few years. Some widely used appli-

cations might be worth optimizing in this way, but most programs will not be able to take

advantage of the higher-efficiency hardware.

We want to create applications that are portable across different hardware and program-

ming models. One way to achieve this portability is by raising the level of abstraction at

which applications are programmed. Rather than write a program as a stream of instructions

for a particular piece of hardware, code can be written at the level of the problem. Languages

that support this level of programming are referred to as domain-specific languages, or DSLs.

1

CHAPTER 1. INTRODUCTION 2

A compiler specialized for a particular domain is used to transform high-level code into

actual machine code for different architectures. Since problems are expressed at the level

of a domain, experts in that domain can automatically apply best-practice techniques to

get the problem to run on different hardware. Widely used domain-specific languages for

graphics programming such as OpenGL/DirectX have made it possible to run applications

across different GPUs without programming to a specific architecture. And recent work

such as OptiML for machine learning [7], or Liszt [22] for physical computation on meshes

have shown that the DSL approach can produce code that takes advantage of heterogeneous

hardware, while still being portable to different configurations or new machines.

Expressing problems as transformations on higher-level data can also be used to create

efficient and portable libraries more easily. This approach has been proven for problems such

as Fourier transforms and linear algebra, with libraries such as SPIRAL [60], FFTW [30], and

ATLAS [77] which internally use domain-specific transformations to optimize performance.

These libraries often rely on auto-tuning — trying a lot of possible optimizations on a

particular architecture — to find the best one. And although their APIs look like any other

library, internally these libraries, like DSLs, need to actually generate and run code as part

of their execution. They are often referred to as active libraries to distinguish them from

libraries that do no code generation.

Despite the promise of DSLs and active libraries, their use is limited to a few large

domains because it is currently difficult to actually create an active library or DSL. One

reason for this difficulty is that these designs need to generate code programmatically. This

need to generate or meta-program code makes their architecture fundamentally different

from typical libraries. To get peak performance on modern hardware, current programmers

use languages such as C++ or CUDA where the level of abstraction is only slightly above

the level of the hardware. These languages give the programmer a lot of control over

performance, but they lack facilities for doing code generation, forcing designers of DSLs

to use ad hoc approaches. The complexity of such designs limits adoption to only a few

experts and makes it harder to integrate the DSL into existing applications.

To make it easier to write portable high-performance applications, we need the ability

to generate code in high-performance languages. But adding support for code generation

to these languages is difficult because there is a fundamental tension between features

CHAPTER 1. INTRODUCTION 3

that make meta-programming easy and features that give the programmer control over

performance. To make code generation and code transformations easier, it is desirable

to have high-level features such as an object system for representing trees and graphs

of program representations, first-class functions to apply transformations, and garbage

collection to manage these data structures. We further need a way for the programmer to

pass these data-structures to a library that will actually compile the result. But to provide

control over performance, we need to support low-level features. The language should have

semantics that are close to the actual instruction set of the machine, which includes the

ability to manage the layout of memory to optimize memory performance. The language

also needs to be simple enough that it can easily run on smaller cores, like those found on

GPUs or embedded devices.

A single language that tries to balance the concerns of both code generation and low-level

control over performance would struggle to combine both sets of features, and could end

up being a poor fit for either problem. Instead, this thesis proposes using a two-language

design that separates the concerns of code generation and control over performance. We

use a high-level language to write program analyses and generate code, and a low-level

language to write high-performance code. The two-language design reflects the way many

DSLs and auto-tuners are designed in practice, but applies principled techniques to make

creating such designs easier.

For the two-language design to work, it is important that the languages interoperate well.

To support code generation, the high-level language must have the ability to meta-program

the low-level one. We use an existing language, Lua [39], as our high-level language since

it was designed to be used as an embedded language from C. Lua has well thought out

solutions to problems that arise when a low-level language is coupled to a high-level one,

such as the management of Lua object lifetimes, the representation of low-level data in

Lua, and how functions are evaluated across both languages. However, existing low-level

languages are not suited to working with high-level languages or being the target of code

generation. To fill this gap, this thesis presents a new low-level language Terra. Terra has

semantics that are similar to C but it is designed to be meta-programmed and evaluated from

Lua.

CHAPTER 1. INTRODUCTION 4

1.1 CONTRIBUTIONS

The proposed two-language design can simplify the process of writing portable high-

performance applications by making it easier to develop programs that require code gen-

eration. This thesis will present the contributions necessary to make this design work,

and several case studies that evaluate its ability to make the creation of high-performance

programs easier.

• We propose a two-language design for generating high-performance code that uses

Lua, a high-level language to meta-program Terra, a new low-level systems program-

ming language. Meta-programming is accomplished by adapting techniques from

multi-stage programming to work in the context of a two-language system. In particu-

lar we show how shared lexical scope makes it easy to generate code, but separate

evaluation enables the programmer to control performance.

• We evaluate our two-language design by creating example DSLs and autotuners in

the areas of linear algebra, image processing, physical simulation, and probabilistic

programming. We show that these applications, which previously required the use

of many languages and technologies, can be architected entirely in Lua and Terra

but still achieve high-performance. Our auto-tuner for matrix multiply performs

within 20% of ATLAS [77] but uses fewer than 200 lines of Terra code. Our image

processing language performs 2.3x faster than hand-written C and is comparable

to the performance of Halide [61], an existing image processing language. Our

implementation of a probabilistic programming language runs 5 times faster than

existing implementations.

• To support the creation of robust active libraries, we also propose a new system for the

runtime generation of high-performance types, called exotypes. We leverage the two-

language design of Lua and Terra to blend the flexibility of types found in dynamically-

typed programming languages with the speed of types from statically-typed low-level

languages. To do this, we combine meta-object protocols, a technique popular in

dynamically-typed languages, with traditional staged programming techniques. This

process runs during Terra’s typechecking phase.

CHAPTER 1. INTRODUCTION 5

• We show how using exotypes makes it possible to create fast, concise, and composable

libraries of types. We evaluate the use of exotypes in several performance-critical

scenarios including serialization, dynamic assembly, automatic differentiation, and

data structure layout. In the scenarios we evaluate, we show how we can achieve

expressiveness similar to libraries written in dynamically-typed languages while

matching the performance of existing implementations written in statically-typed

languages. The added expressiveness makes it feasible to implement aggressive

optimizations that were not attempted in existing static languages. Our serialization

library is 11 times faster than Kryo (a fast Java serialization library). Our dynamic x86

assembler can assemble templates of assembly 3–20 times faster than the assembler

in Google Chrome.

• To make the interactions between Lua and Terra precise, we provide formal semantics

for their evaluation, and for the evaluation of exotypes that occurs during Terra’s

typechecking. These semantics illustrate the issues and design choices that arise when

using one language to meta-program another.

• We present a method of extending Lua’s syntax that allows user-defined languages to

be embedded in Lua using the same approach we used to embed Terra. We show how

this design allows the creation of DSLs with custom syntax, while also providing the

benefits of shared lexical scoping and separate evaluation to DSLs.

• We describe the design choices used in our two-language design that make it easy

to integrate it into existing applications and have multiple languages interoperate.

We discuss how these decisions made some of our example applications easier to

architect.

Terra is open source and available online at terralang.org. In addition to our imple-

mentation, we also provide a “getting started” guide, API reference, and example code. Our

implementation of Terra is continually being updated with the intention of supporting the

ongoing development of DSLs, including those presented in later chapters.

CHAPTER 1. INTRODUCTION 6

1.2 THESIS OUTLINE

Chapter 2 describes the challenges that arise when writing high-performance applications

like DSLs and autotuners by examining a few designs used in practice and presents related

work that proposes principled techniques for code generation.

Chapters 3–5 describe Terra’s approach for generating code. Chapter 3 introduces

the Terra language and shows how we use multi-stage programming to perform the tasks

required to build portable high-performance applications. Chapter 4 describes our formal

semantics for this system, and Chapter 5 presents example designs using this system that

perform as well as or better than the previous state-of-the-art while being significantly

simpler to create. This work is based on results published in [23] with contributions from

J. Hegarty, P. Hanrahan, A. Aiken, and J. Vitek.

Chapters 6–8 describe Terra’s approach for generating types. Chapter 6 describes

our exotypes interface, which combines meta-object protocols with staged programming.

Chapter 7 provides formal semantics for the property lookups that occur during typechecking

exotypes. Chapter 8 shows example libraries of types built using exotypes that perform

better than state-of-the-art libraries while being significantly more concise. This work is

based on results published in [24] with contributions from D. Ritchie, M. Fisher, A. Aiken,

and P. Hanrahan.

Finally, Chapter 9 shows how we can extend the properties of our two-language design

to include more languages in one ecosystem using our language extension mechanism.

Chapter 10 describes the features of our two-language design that make it easy to integrate

into existing applications and have multiple languages interoperate. Chapter 11 provides

more details about how we implemented Terra. Chapter 12 concludes with a discussion of

the contributions and by presenting some interesting pathways for future work.

CHAPTER 2

BACKGROUND

There have been two lines of work on using code generation to get higher performance,

practical designs for active libraries or DSLs and research on language designs and tech-

niques for doing principled code generation. Here we examine some of the previous work in

both of these areas. Our goal when creating the two-language design of Terra was to adapt

the principled approaches from the literature to the actual patterns of DSL and library design

seen in practice.

2.1 PRACTICAL DESIGNS OF LIBRARIES THAT DO CODE GENERATION

For frequently used domains, it is worth the cost of developing a DSL or active library even

without code generation tools that make the task easier. We can use already existing tools in

these areas to examine how developers currently structure these kinds of applications, and

what challenges arise.

The DSLs and autotuners presented here all share similarities in their architecture, and

contain similar components:

1. A frontend that is used as input to the problem. For DSLs, this will be a language, but

for active libraries this may simply be a particular specialized version of a function

call.

2. A set of transformations on the input that use domain knowledge to transform the

program into high-performance code. In some systems, these transformations may be

7

CHAPTER 2. BACKGROUND 8

simple, but in others these transformations might occur in many stages and use many

different intermediate representations (IR).

3. A code generator that takes the last IR produced by the transformations and emits

code in an existing language. In the simplest designs, this may just write out strings

of a programming language such as C.

4. A runtime library that is used by the generated code. Often it is the case that the

generated code will call out to already existing library code, for loading data files or

other subtasks that do not benefit from program-specific optimizations.

To illustrate how these components are created, we can look at several different ap-

proaches found in practice.

2.1.1 Ad hoc templates and scripts

Many libraries that do auto-tuning are built out of ad-hoc scripts that do code generation by

invoking offline compilers. A widely used example of this design is ATLAS, an autotuner for

linear algebra operations supported in BLAS [77]. While it includes support for all BLAS

operations, it does most of its optimization on level 3 BLAS routines that are focused on

matrix multiply.

The architecture of ATLAS consists of a frontend that describes the desired operations

(matrix-matrix multiply, matrix-vector, etc.) and the sets of data types (float, double, com-

plex). From this high-level specification, it will apply transformations to optimize individual

operations. For instance, ATLAS breaks down a matrix multiply into smaller operations

where the matrices fit into L1 cache. Then, an optimized kernel for L1-sized multiplies

is used for each operation. To create this kernel, ATLAS uses autotuning techniques to

choose good block sizes, loop unrolling factors, and vector lengths to generate optimized

code for the L1-sized kernel. After choosing a set of parameters to try it will generate a C

or assembly program using those factors, compile it, and then time it. Once the L1-sized

kernel is generated, it is linked with a pre-existing library for handling the blocking and

parallelization across multiple cores.

While conceptually simple, it is hard to architect ATLAS using current tools. ATLAS is

focused on achieving high-performance, so it targets low-level languages such as C or x86

CHAPTER 2. BACKGROUND 9

assembly. These languages provide fine-grained control of performance, making it more

likely that ATLAS can find a high-performance solution. However, these languages lack

support for code generation, forcing ATLAS to rely on external tools to create and build

these programs. The result is a fairly complicated architecture — the frontend consists

of Makefiles and scripts that assemble the different BLAS operators. These scripts run

in different processes to actually do the code generation. Code generators themselves

are written in a mixture of languages. Some are C programs that write text of other C

programs, others are templates that use a combination of C-preprocessor macros and a

custom templating language to stitch fragments of x86 assembly together. In addition

to using many different technologies, there are many different processes running — the

top level generator, individual template generators, C compilers, and runtime timing of

generated code. Since each has a different memory space, transferring information between

processes requires explicit serialization. The combination of different tools communicating

across process boundaries makes these ad hoc designs difficult to maintain.

2.1.2 Source-to-source autotuners

Autotuners like ATLAS only need to search over a few parameters such as blocking sizes,

and loop unrolling factors, making ad hoc techniques based on pre-processors feasible.

Other autotuners search over a wider variety of fundamental algorithmic transformations.

These systems do more complicated transforms and are often architected as source-to-source

programs, where the resulting program is emitted as a string to a file, and a traditional

offline compiler is used to compile the result. One area where this approach is popular is

for discrete Fourier transforms (DFTs). The simple description of a DFT over a vector of

length N has a running time of O(N2), but can be decomposed into smaller DFTs in a way

that results in a fast Fourier transform that is O(N log N). Multiple techniques exist for

decomposing DFTs — Cooley-Tukey, Prime-factor, Rader, and Bluestein, among others

— and the applicability of each depends upon the factorization of N . So the best approach

can be very different across different values of N , and optimized FFT libraries generate

different approaches for different values of N .

FFTW [30] is one library that autotunes over different decomposition approaches. It

uses a combined offline and online approach to getting high performance. For small sizes

CHAPTER 2. BACKGROUND 10

it uses pre-generated FFT code that was autotuned offline, which they refer to as codelets.

This code unrolls most loops and performs optimization over the resulting expressions.

Larger sizes are “planned” dynamically for the particular machine they are running on using

heuristics that invoke the fast pre-generated code. At this level recursive decompositions are

chosen using an interpreter that examines the plan and invokes the right codelets.

The bifurcation between online and offline optimization is reflected in the architecture

of FFTW and the technologies it uses. The original version of FFTW performed codelet

generation with a compiler written in OCaml, and then emitted C programs which were

compiled with an external compiler and timed. The larger FFTs were then planned dynam-

ically by a library written in C and linked into user programs. Like ATLAS, this design

required moving data about the transforms through multiple technologies and processes —

the OCaml compiler, C compilation and autotuning, and data structures to represent the plan

in the FFTW C runtime.

Further work on FFT optimization in the SPIRAL [60] framework gained better per-

formance by decomposing the problem of FFT optimization into more stages. SPIRAL

introduces an intermediate language, SPL, that describes decompositions of FFTs. It can

be manipulated mathematically to optimize the code. In addition to invoking smaller FFTs,

operators in SPL also need to shuffle or permute the data for correct decompositions. For

the best memory performance, it is important that these shuffles are not performed in a

separate pass over the data but are folded into the indexing of consumers instead. In FFTW

this was achieved by unrolling the code and then performing simple straight-line optimiza-

tions to precompute most of the indexing. But this approach does not scale to larger sizes

where everything is not unrolled. In the SPIRAL framework, SPL is high-level, and does

not represent this indexing explicitly. So SPIRAL introduces a lower-level intermediate

representation, Σ-SPL, to explicitly represent these indexing operators [29]. At this level it

is possible to perform optimizations such as loop merging, and array-index simplifications

that were obscured at the level of SPL, but would not typically be optimized by low-level

compilers.

The SPIRAL design illustrates a common feature of many of these high-performance

optimization libraries, where optimizations are expressed as transformations on multiple

CHAPTER 2. BACKGROUND 11

levels of intermediate representations — SPL, Σ-SPL, and low-level code. The final

representation bears little resemblance to the original high-level description.

2.1.3 Statically-compiled DSLs

So far we have looked at the design of autotuners, where the input is a description of a

function call that we want to optimize. Domain-specific languages are also architected using

similar techniques. Liszt [22] is a DSL that we developed for doing physical simulation.

Liszt is implemented with a frontend written in Scala, but using cross-compilation to emit

C++ code that makes calls into C++ runtimes for clusters, SMPs, or GPUs. Scala was

chosen for the frontend, because of its functional language features and its ability to easily

declare tree-like datatypes that made it a productive language for writing compiler analyses.

However, we needed to emit C++ to achieve high performance in the runtime, and also

because Liszt needed to use already existing high-performance interfaces such as MPI or

CUDA, which are primarily accessed using the C ecosystem.

We originally developed Liszt as a case study in DSL design, so it is worth looking at

what it does in more detail since it can illustrate the issues that arise when designing a DSL

using static compilation.

Computation in Liszt is expressed on a mesh of topological elements such as faces

and vertices. Work is normally done in parallel across each element of the mesh using

information from a local stencil of neighboring elements. Physical simulation can be done

on a mesh with regular topology (such as a rectilinear grid), where the dependencies between

elements can be expressed as affine computations of the element coordinates. Liszt is more

general. It supports meshes of arbitrary topology and internally uses graph data structures to

track this topology.

This model of computation has large amounts of mostly-parallel work since it can

operate over all mesh elements at once. But computation on each element has dependencies

on neighboring elements in the stencil. Current state-of-the-art libraries that run these

computations on large clusters of machines use an approach based on domain decomposition.

Each machine is given a partition of the mesh elements that it is responsible for simulating.

Along the border or halo of these partitions, the stencil of individual elements will require

data from other machines. The management of what data to exchange between partitions

CHAPTER 2. BACKGROUND 12

// Fields are maps from an element of the mesh to a value.
// The Position field stores a vector of three floats at each vertex.
val Position = FieldWithLabel[Vertex,Float3]("position")
val Temperature = FieldWithConst[Vertex,Float](0.f)

5 val Flux = FieldWithConst[Vertex,Float](0.f)
val JacobiStep = FieldWithConst[Vertex,Float](0.f)

// for statements operate over the set of mesh elements in parallel
// here we operate over all the vertices in the mesh to set

10 // initial conditions
for (v <- vertices(mesh)) {

if (ID(v) == 1)
Temperature(v) = 1000.0f

else
15 Temperature(v) = 0.0f

}
// Perform Jacobi iterative solve
var i = 0;
while (i < 1000) {

20 for (e <- edges(mesh)) {
// Liszt includes built-in topological operators such as ’head(e)’
// that look up neighboring topology
val v1 = head(e)
val v2 = tail(e)

25 // Field values of neighboring topology can be read or written:
val dP = Position(v2) - Position(v1)
val dT = Temperature(v2) - Temperature(v1)
val step = 1.0f/(length(dP))
// Commutative and associative reduction like +=

30 // can be performed in parallel across the mesh:
Flux(v1) += dT*step
Flux(v2) -= dT*step
JacobiStep(v1) += step
JacobiStep(v2) += step

35 }
for (p <- vertices(mesh)) {

Temperature(p) += 0.01f*Flux(p)/JacobiStep(p)
}
for (p <- vertices(mesh)) {

40 Flux(p) = 0.f; JacobiStep(p) = 0.f;
}
i += 1

}

Figure 2.1: This Liszt example calculates the temperature equilibrium due to heat conduction on a
grid using Jacobi iteration.

CHAPTER 2. BACKGROUND 13

is tricky because it depends on the stencil of the particular algorithm being run and the

particular topological relationships in the mesh actually being used. Most pre-existing

solutions discover the halo region using a hand-written analysis of the topology of the mesh.

This approach is prone to error since this analysis has to be kept up to date with the code.

Since changing the stencil requires changing both the analysis and the simulation code, it

is difficult to prototype simulations. It also makes it difficult to experiment with different

methods of parallelization that might be more effective than the domain decomposition

approach since these would require different analyses.

The approach taken in Liszt is to represent the code at a high enough level of abstraction

such that the stencil of a piece of Liszt code could be discovered using program analysis.

An example of Liszt code is shown in Figure 2.1. To expose the parallelism in the mesh,

it provides a for statement that operates in parallel over sets of mesh elements. It also

builds information about the mesh into the language, using built-in operators to extract local

topology such as the vertices on either side of an edge (head(v) and tail(v)).

Since all data is accessed using these built-in topological operators, it is possible for

Liszt to extract the data-dependencies of a piece of code. The Liszt compiler works by

extracting this stencil using program analysis and then uses it to automate parallelization via

domain-decomposition. Since the stencil analysis is abstract, it can also be reused for other

parallelization techniques. For instance Liszt’s GPU runtime uses the results of the stencil

analysis to divide mesh elements into sets (“colors”) that do not have interfering writes,

allowing them to be run on the GPU in parallel.

Analysis of stencils in Liszt is dependent on both static information (the code being run),

and dynamic information (the mesh it is being run on). Since Liszt is an offline compiler,

the analysis of the stencil needs to be split across both phases. In the compiler, we generate

new code that would be a conservative estimate of the actual stencil by executing both sides

of divergent control flow as well as relying on language restrictions that limit the stencil to a

constant size relative to the code written. At runtime, the code is run across the mesh in a

recording mode which discovers the stencil.

The original design of Liszt has major limitations. While it makes it possible to easily

prototype the compiler and achieve high-performance, the need for multiple processes to

run the compiler and the runtime makes it more difficult to integrate into existing systems.

CHAPTER 2. BACKGROUND 14

Unlike autotuners, there is not a single API that can be distributed like a library. In a DSL,

users are expected to provide new programs to run. DSLs themselves are never entire

programs so they need to be integrated into larger applications. This means that the user of

the DSL now needs to know how to run the DSL compiler, and then link the result into their

application.

The offline compilation of Liszt strongly couples the design of the Liszt compiler and

runtime to the way that it is exposed to other applications. It complicates the stencil analysis

transform, forcing us to separate it into a conservative static part and a dynamic analysis.

The user of the DSL is then responsible for making sure the results of the compiler were

plumbed into the runtime, which runs in a different process. Re-architecting the system to

run the stencil-generating analysis dynamically might improve performance and simplify

the plumbing for the application developer, but would require compilation during runtime.

2.1.4 Dynamically-compiled DSLs

To avoid the limitations of static compilation that complicate deployment, some DSL designs

choose to generate code dynamically in the same process. In fact, the most widely adopted

DSLs, such as SQL for database processing, and OpenGL/Direct3D for graphics processing

are designed as dynamically-compiled languages.

Dynamic compilation simplifies deployment in two ways. First, since there is only one

CPU process involved, it can be linked into an existing application like a standard library.

This facet is especially important for active libraries, since it makes it possible to use an

active library as a drop-in replacement of an offline one. Second, since compilation can

occur at any time, it gives the library freedom to change when analyses are performed,

potentially specializing the program to dynamically provided information. Structures that

would more easily be handled by the compiler in a two-stage design, such as fields in

Liszt, can now be handled dynamically, making the DSL more flexible to use in an existing

application. Decisions about what code to generate (CPU or GPU, vectorized or scalar,

AMD or NVIDIA), can now be made at runtime rather than having to pre-compile all

possible combinations.

Dynamic compilation can make deployment easier, but actually compiling code dynam-

ically is more complicated. Approaches such as source-to-source compilation are harder

CHAPTER 2. BACKGROUND 15

Written directly in C:

float solve(float a, float b, float c) {
return (-b + sqrt(b*b - 4*a*c)) / 2 * a;

}

Programmatically generated using LLVM:

Value* float_mul = B.CreateFMul(float_b, float_b);
Value* float_mul1 = B.CreateFMul(float_a, const_float_3);
Value* float_mul2 = B.CreateFMul(float_mul1, float_c);
Value* float_sub3 = B.CreateFSub(float_mul, float_mul2);

5 Value* float_call = B.CreateCall(func_sqrtf, float_sub3);
Value* float_add = B.CreateFSub(float_call, float_b)
Value* float_div = B.CreateFMul(float_add, const_float_4);
Value* float_mul4 = B.CreateFMul(float_div, float_a);
B.CreateReturn(float_mul4);

Figure 2.2: Libraries to generate code such as LLVM allow arbitrary code to be created programmat-
ically, but are often much more verbose than writing the code directly. In this example, the skeleton
to set up the surrounding LLVM function that defines variables such as float_b is another 30 lines.

to use. In this case, the library must write the source, internally spawn an instance of

the compiler to write a dynamic library, and then link the dynamic library back into the

program. Since compilation is occurring dynamically, the overhead of using a separate

process becomes a concern. Additionally, the generated functions need to be accessed

using API calls to the dynamic loader. Dependencies on already loaded code need to be

explicitly managed by the DSL, and expressed to the compiler. Dynamic library loading on

current operating systems was not designed with frequent JIT compilation in mind, making

it necessary for the DSL to deal with issues such as providing globally unique names for all

generated functions.

Most dynamically compiling DSLs forgo source-to-source compilation and use another

means to JIT compile code. Widely used DSLs such as OpenGL normally use custom

compilation frameworks designed by large teams. Others such as the Halide DSL [61] for

image processing use library-based compilers such as LLVM [49]. These compilers help

manage the details of JIT compiling and linking code. But since they are libraries, actually

expressing the generated code is more verbose, as illustrated in Figure 2.2. Because of this

verbosity, runtime library code that does not need to be generated dynamically is typically

written directly in a low-level language. This split makes it more difficult to move code

CHAPTER 2. BACKGROUND 16

between runtime and compiler, a task that occurs commonly when prototyping whether

domain-specific optimizations are effective.

Furthermore, it is still desirable to express transformations using higher-level languages.

Halide, for instance, was originally written in OCaml to make prototyping easier, meaning

that three languages were used to write it — OCaml for the transformations, LLVM for

generated code, and C/C++ for the high-performance runtime.

2.1.5 Summary

A few key points are present across all of the designs used in practice:

1. Almost all techniques in practice target low-level high-performance code at the level

of C/C++, or target the assembly directly.

2. Many use high-level languages (OCaml, Scala, Makefiles) to manage their compiler

transforms.

3. Every DSL and autotuner does a sophisticated set of transformations across multiple

intermediate representations. The original program, or some subset of it, is not simply

transliterated into code.

4. Dynamically compiling code can reduce the complexity of deployment and data

propagation, but many designs use static compilation since dynamically generating

low-level code efficiently requires verbose libraries such as LLVM.

2.2 EXISTING TECHNIQUES FOR CODE GENERATION

To support how programmers design DSLs and active libraries, a tool should make it possible

to (1) use a low-level language for generated code, (2) express compiler transforms in a

high-level language, (3) substantially transform input code, and (4) perform code generation

dynamically. Currently existing language-based approaches for code generation in the

literature accomplish some but not all of these goals.

CHAPTER 2. BACKGROUND 17

2.2.1 LISP

One of the oldest designs for generating code dynamically is found in the LISP [52] language

and its derivatives. In LISP, both code and data are expressed as nested lists of elements. The

syntax of the language makes these lists explicit using s-expressions based on parentheses.

Since the syntax closely resembles the data-structure of the code itself, it is easy to reason

about code that generates code. Code is just another form of data — everything is “just

lists.” A language like LISP whose syntax for code resembles its data-structures is said to

be homeoiconic.

LISP programs use homeoiconicity to make code generation easier. Standard list

manipulation functions can construct code, and any list can be used as code by evaluating it

using the eval form. It is easy to inspect the lists that represent code, and their simple syntax

means that novice users can understand how generated code may evaluate. By default a

LISP interpreter runs eval on the file being executed. It may also run a macro processor

beforehand. This macro processor looks for special constructs that define macros, functions

that operate on unevaluated lists before evaluation. It then expands these macros by running

the code. Many constructs in LISP distributions are implemented as macros rather than

built-ins using this mechanism.

The LISP model has been used in the past to create DSLs. In particular, Racket [75]

provides an interface to the static semantics of the language using macros. Using this

interface they implement a typed variant of Racket, as well as other DSLs. The macro

system is used to translate typed Racket to standard Racket with a few extensions to support

unchecked access to fields.

LISP’s simple model for code generation is powerful, but it is not ideal for generating

high-performance code since the language itself is very high-level. In the general case, it

is dynamically typed and garbage collected. Additionally, since LISP can generate more

LISP code, it is possible that the generated LISP code might decide to create and evaluate

more code. Even when implemented well, these features may introduce unpredictable

performance overheads, making it hard to reason about lower-level details such as cache

behavior.

CHAPTER 2. BACKGROUND 18

; A macro that uses an internal temporary variable ’temp’:
> (defmacro addone (x)

8(let ((temp 1))
(+ ,x temp)))

5 ADDONE

; The macro appears to work fine for most expressions
> (let ((a 3)) (addone a))
4

10 ; But it fails when the temporary name shadows variable declarations used in the input:
> (let ((temp 3)) (addone temp))
2

; We can fix this problem by generating a unique name for the temporary with gensym
15 > (defmacro addone (x)

(let ((temp (gensym)))
8(let ((,temp 1))

(+ ,x ,temp)))

Figure 2.3: Simple meta-programming systems such as that found in Common LISP can lead to
surprising errors when a variable introduced in the implementation of a macro shadows a variable
used in an argument to the macro. In the above example, the temp variable definition in the addone
macro shadows the temp variable reference in the calling code. These macro systems are called
unhygienic since arbitrary naming choices in the macro’s implementation can change the semantics
of the caller’s code. In these systems, correctly implemented macros use uniquely generated names
(using the gensym function) to avoid accidental capture.

Some LISP derivatives [75, 65] have added escape hatches to these behaviors. For

instance Common LISP allows a programmer to forgo dynamic type checks with the right

annotations. But even if one programmer writes code without these high-level features,

libraries may still rely on them, making it hard to write large amounts of code without them.

Furthermore, features like dynamic typing, garbage collection, and code generation require

more effort to port to architectures such as GPUs and small embedded CPUs.

Another issue arises with homeoiconic forms. When variables are represented as simple

identifiers, it is easy to generate code where the value of a variable is accidentally captured

by a variable definition of the same name introduced by generated code. Figure 2.3 shows

an example in LISP. Ideally, visual inspection of the code should make the relationship

between defined and used variables clear. So some LISP derivatives, Scheme in particular,

define macro expansion in a way that is hygienic [47]. An API for dealing with identifiers

uses the special forms syntax-rules and syntax-case to match on identifiers and generate

code with them that avoids accidental capture.

CHAPTER 2. BACKGROUND 19

Macro hygiene solves the variable capture problem, but to generate code, the programmer

needs to know how to use an API for identifiers. This API is now one level removed from

the simple homeoiconic forms, reducing the benefit of having a simple data structure for

code in the first place.

2.2.2 Partial evaluation

Rather than write code generators explicitly, another approach to creating high-performance

code is to specialize generic programs using an automated process. Approaches based on

partial evaluation make some decision about which inputs to a generic function should

be fixed to a particular value and then attempt to optimize the code by pre-computing any

values possible ahead of time without modifying the semantics of the program [44, 43]. In

this model, optimizing an operation like a matrix-multiply, or an FFT might work by writing

a generic version of the algorithm that works over different block sizes or problem sizes,

followed by an automated specialization that chooses to make the block size or problem size

constant.

Partial evaluation has some advantages over direct code generation for certain tasks. Its

model for directing optimization is very lightweight and high-level. The user only needs to

specify what values should be specialized and what should remain variable at runtime. It

may be simpler to reason about the semantics of a program if it contains no explicit code

generation. If input is type-safe, then we are guaranteed that the specialized code generated

via partial evaluation is as well, something that is difficult to guarantee if generating arbitrary

code directly.

The partial evaluator can also exist as a separate pass from the language itself. The

language being specialized does not need any support for manipulating code through data

structures like lists in LISP. This allows partial specializers to work on low-level languages

where writing code generators would be tedious. In fact, many partial specialization

frameworks have been developed for C [18, 35].

Just like code generation in LISP, the process of partial specialization can be made to run

dynamically as well. For instance DyC [35], a partial specializer for C, allows specialization

to occur at runtime and uses dynamic compilation of templates to optimize performance.

CHAPTER 2. BACKGROUND 20

It may seem like some forms of code generation such as generic compilers would not be

expressible using partial evaluation. But a common approach is to use partial evaluation to

turn an interpreter into a compiler [31]. The interpreter reads an intermediate representation

of the program and evaluates the behavior described in the program. Partial evaluation is

then used to specialize on the particular input program, which effectively creates a compiler

out of an interpreter.

The disadvantage of partial evaluation is that it is not always easy to control, or even

understand, what optimizations will be done. An offline partial evaluation framework

includes some form of binding-time analysis, which marks which expressions are constant

and which are runtime dependent given some constant input values [17]. This analysis must

be conservative. The partial evaluator will not know if some expression will terminate and

typically must bound evaluation to ensure that the partial evaluator itself will terminate. The

process is also frequently path insensitive so conservative decisions are made about what

can be evaluated when different branches of control meet. The limitations about what can

be evaluated are analogous to those found in traditional compiler optimization passes such

as constant propagation and common subexpression elimination. Even in online partial

evaluation, where all specialization is done only when the input values are known, it might

still be worthwhile to speculatively execute expressions that are only evaluated under some

paths if they would reduce to simpler computations.

A compiler that is generated from an interpreter via partial evaluation may suffer from

these limitations. Compiling an interpreter loop will inline the functions that run individual

operations on each IR node. These operations in the interpreter might refer to a virtual

stack, register set, or other data-structure used to implement the interpreter. In addition to

simply evaluating the interpreter loop, a good partial evaluator needs to be able to remove

these data-structures as well, promoting accesses from the virtual stack into actual machine

registers for local values. In this case, the virtual stack is only partially known. Some of

it will become the actual function-call stack for the compiled program, which is created

dynamically. In these cases it can be difficult to perform accurate alias analysis to know the

dynamic and static parts of a data-structure. The result is that a programmer does not know

exactly what the code would look like after compilation.

CHAPTER 2. BACKGROUND 21

The uncertainties that result from performing partial evaluation on programs are not

appropriate for high-performance examples like those we examined in the previous section,

since they often rely on precise layout of data and execution order to achieve good memory

performance. Furthermore, removing the need to do explicit code generation becomes less

useful when programs already have to do substantial analysis and transformations of code to

get high performance. The DSLs we described in Section 2.1 require major transformations

before code emission. Regardless of the technique to express generated code, the majority

of the system will still require the same effort in reasoning about code transformations as a

normal compiler during its optimization. Once most of the system is compiler-like in its

functionality, it becomes awkward to use partial evaluation just to generate the code.

2.2.3 Multi-stage programming

Part of the motivation for multi-stage programming was improving the lack of control in

partial evaluation systems [73]. Rather than allow the entire program to be partially evaluated

based on a few directives about what is static and dynamic, multi-stage programming uses

specific annotations that indicate when an expression should be evaluated. These annotations

can be marked at the level of expressions or at the level of types.

MetaML [73] and Meta-OCaml [72] provide expression-based annotations for the ML

family of languages. A quote operator constructs an unevaluated fragment of ML code,

while an escape operator introduces a hole in that fragment that will be filled in by evaluating

the code in the escape at an earlier stage. Figure 2.4 shows an example of the operators

in practice. In this way, multi-stage programming is similar to constructing code in LISP.

In LISP, code was created by manipulating lists using standard operators. In multi-stage

programming, code is constructed and manipulated using built-in operators.

In multi-stage programming, staging annotations are viewed as a way to control the

optimization of code. Since high-performance code is often found through experimentation,

there is a desire to make staging decisions more modular so different ways of staging code

can be discovered. Deciding whether to unroll a loop is one example of such a choice.

In expression-based staging, the choice whether to unroll a loop is encoded in the loop

expression explicitly. A different instance of the loop needs to be written for the unrolled

case. To make the code more modular, there has been work on staging that is directed

CHAPTER 2. BACKGROUND 22

(* a quote operator < constructs a fragment of OCaml code. This form is
analogous to creating a string literal, except we are constructing code
rather than strings. In this case the code when run will produce an
integer so it has type ‘‘code of int’’ or <int> *)

5 val code = <1 + 2>;

(* an escape operator ˜ splices one fragment of OCaml code into another.
It is analogous to string interpolation, where another fragment of code
is inserted into a template *)

10 val code2 = <3 + ˜code>

(* These can be combined together to write functions that generate code.
Here we show an example that generates specialized power functions, bˆe,
for a particular exponent *)

15 fun exp (b, e) =
if e = 0 then <1.0>

else <b * ˜exp(b,e-1) >

(* run executes the staged code fragment, lowering into the current
20 stage. Running a function is analogous to compiling the code *)

val pow3 = run <fun x -> exp(b,3)>

Figure 2.4: Multi-stage programming in MetaOCaml. Operators create quotations of code, and
escapes allow the programmer to stick code together through interpolation.

by annotations on types rather than expressions, such as light-weight modular staging in

Scala [62]. In these frameworks, the type of the collection being looped over determines

whether it should be unrolled or not. The programmer can then expose the choice of whether

or not to unroll the loop as a type parameter.

In both the type-directed and expression-directed cases, staged programming focuses on

accelerating existing programs by adding annotations and making it as easy as possible to

change staging decisions. These approaches have been applied to improve the performance

of code. For instance, Carette investigates staging of Gaussian elimination in MetaOCaml

[10], while Cohen et al. investigate applying MetaOCaml to problems in high-performance

computing like loop unrolling and pipelining [16].

For the purposes of creating high-performance DSLs and active libraries this focus has

some limitations. The desire to switch what is staged and what is not staged encourages the

staged language and the staging language to be the same (homogeneous staged programming).

Attempts at low-level staged programming such as the 8C language [58] can generate low-

level code, but also require the generators for that code to be written at a low level as

well.

CHAPTER 2. BACKGROUND 23

The DSLs we examined in Section 2.1, in contrast, explicitly used different languages

to write program transformations and exert control over performance. A small amount

of work has looked at heterogeneous multi-stage programming to address this problem.

MetaOCaml can use an approach called offshoring where a subset of the original language

can be cross-compiled to a lower-level C language. For instance, Eckhardt et al. propose

implicit heterogeneous programming in OCaml with a translation into C [25]. This approach

limits what can be in the low-level language to a subset of the original language, and

it may be difficult to understand what is contained in that subset. For instance in the

system of Eckhardt et al. the type language is limited to primitive types and arrays. Other

heterogeneous systems exist as well. For instance, MetaHaskell is an extension of Haskell

for heterogeneous meta-programming that supports embedding new object languages [51].

Another limitation arises from the focus on type-correctness. Like partial evaluation,

most multi-stage programming frameworks, include MetaML, Meta-OCaml, and Meta-

Haskell statically ensure the program is type correct. In the case of explicit staging anno-

tations, this correctness both means that normal code is type-safe, and that any generated

code that might possibly be created during staging is also type-safe. Since types need to

be checked statically, it makes it more difficult for these languages to generate new types

using staging. Nevertheless, we have found that generated types can make it easy to create

concise active libraries.

2.3 CONCLUSION

In this chapter, we have seen that practical DSL and active library development uses high-

level languages to generate high-performance low-level code. These libraries perform

sophisticated transformations and analysis of intermediates, and their designs are simplified

with dynamic compilation. Each of the principled approaches to code generation—LISP,

partial evaluation, and multi-stage programming—supports only some of these design

patterns. The LISP approach provides a simple model for generating code, but only allows

the generation of high-level code limiting performance. Furthermore, the model that all

code is simply lists of symbols lacks hygiene and adding hygiene takes away some of

its simplicity. Partial evaluation approaches like DyC [35] make it possible to express

CHAPTER 2. BACKGROUND 24

optimizations even in low-level languages such as C, but actually controlling what code gets

generated can be difficult. It is hard to know what quality of code will result after partially

evaluating an interpreter into a compiler.

Multi-stage programming improves on the control of optimization that partial evaluation

lacks. It also has simple operators, and since those operators work at the level of code

fragments rather than simple lists, it is able to preserve lexical scoping by default. So far,

however, staged programming has primarily been done purely in high-level languages or

low-level languages. For most work, the focus has been type-correctness of staged code

rather than raw performance of generated code.

The design that we propose for Terra extends the techniques in previous work so that they

follow the way programmers create current designs in practice, which leads to a different

design from previous work. We explicitly use two separate languages for the compiler and

generated code. We use multi-stage programming operators to ensure the programmer has

control of what code is produced. And we architect the system so that code generation can

be performed dynamically to reduce the complexity of deploying code generators.

CHAPTER 3

GENERATING CODE

As we saw in the previous chapter, practical DSLs and autotuners used high-level languages

to generate high-performance low-level code. We support this approach by explicitly using

a two-language design. A high-level language, Lua, is used to write transformations. The

features of Lua makes it easy to manage the process of code generation. Lua has automatic

memory management, simplifying the process of storing intermediate representations which

often take the form of large self-referential graphs. Higher-order functions can be used to

optimize intermediate representations or represent other transformations.

Terra itself is a low-level language that serves as the target for code generation. The

low-level nature of Terra makes it possible to achieve high performance. It includes ways

to explicitly layout memory, and use hardware vector instructions to maximize compute

throughput. The approach of supplementing dynamically-typed languages with a high-

performance language has been used successfully before. For instance, Cython is an

extension to the Python language that allows the creation of C extensions while writing

in Python’s syntax [5] and Copperhead supplements Python with a vector-style language

that can run on GPUs [11]. But these approaches only allow the programmer to write

high-performance code directly ahead-of-time, rather than dynamically generating code at

runtime.

We support the generation of code at runtime by incorporating multi-stage programming

operators in Lua that allow it to stage Terra code in a principled way. The staged program-

ming of Terra provides interoperability between compiler, generated code, and runtime of a

DSL. We will see that many higher-level language features, such as namespaces, templating,

or autotuning simply arise from using Lua as the environment for creating Terra code.

25

CHAPTER 3. GENERATING CODE 26

In contrast to partial evaluation, the explicit staging operators make it clear what Terra

code is being produced, giving clear control over performance. Unlike most multi-stage

programming techniques, we focus on making explicit generation of next-stage code easier,

rather than making it possible to have modular annotations. This is because we believe most

existing applications that get high-performance will need significant transformation even

before code generation, making the modularity of annotations less important.

We also take a unique approach to typechecking. In LISP all code is dynamically-typed.

In multi-stage programming, all code, generated and static, is statically-typed. For Terra,

the top-level code is dynamically typed like LISP because Lua itself is a dynamically-typed

language. This dynamic typing gives the programmer the freedom to generate whatever

code and types are desired at runtime. Then, multi-stage programming operators are used

to generate the low-level Terra language. Terra does contain types, which will be checked

when Terra code is compiled (during Lua evaluation). This design allows the generation of

low-level code, and provides type errors before that code is run.

Finally, despite being different languages, we run both Lua and Terra in the same process,

allowing each language to call functions in the other.

We introduce Terra and Lua by example, starting with simple functions. We then

show how the multi-stage programming operators work in Lua and Terra, and use this

infrastructure to show how we can build and optimize a simple DSL for image processing.

We then discuss design decisions that enable the concise generation of low-level code for

building DSLs. A formal definition of the semantics for a simplified version of the languages

is presented in the next chapter.

3.1 WRITING CODE IN TERRA

At the top level, a program evaluates as Lua code. For instance, a programmer may define a

function and print the result:

function min(a, b)
if a < b then return a
else return b end

end
5 print(min(3,4)) -- 3

CHAPTER 3. GENERATING CODE 27

We augment the normal set of Lua statements and expressions with special constructs

that create Terra functions, types, variables, and expressions. The terra keyword introduces

a new Terra function and can appear where a Lua expression appears:

terra min(a: int, b: int) : int
if a < b then return a
else return b end

end
5 print(min(3,4)) -- calling Terra function from Lua

Terra functions are lexically-scoped and statically-typed, with parameters and return types

explicitly annotated. Terra functions can also be called directly from Lua.

Terra entities (functions, types, variables and expressions) are first-class Lua values. So,

for example, after we define the min Terra function, the Lua variable min’s value is a Terra

function definition. That definition can be used like any other value in Lua. It can be passed

and returned from functions or stored in Lua data structures.

Terra is also backwards-compatible with C, a feature we will use in our DSLs and is

discussed further in Chapter 10:

std = terralib.includec("stdlib.h")
terra main()

std.printf("hello, world\n")
end

5 main()

The Lua function includec imports the C functions from stdlib.h.

The programmer can use the fact that Terra entities are first-class to organize Terra

code. The function terralib.includec is itself a good example of this behavior. It creates

a Lua table, an associative map. It then fills the table with Terra functions that invoke the

corresponding C functions found in stdlib.h. In Lua, the expression table.key is syntax

sugar for table["key"]. In the above example, the call to std.printf will resolve to C’s

printf and since std is a Lua table, Terra will resolve the lookup during the compilation

process, avoiding the runtime overhead for the table lookup.

To describe user-defined Terra types, we also introduce a construct struct. Here we can

use it to hold a square greyscale image:

struct GreyscaleImage {
data : &float;
N : int;

}

CHAPTER 3. GENERATING CODE 28

GreyscaleImage is a Lua variable whose value is a Terra type. Terra’s types are similar to C’s.

They include standard base types, arrays, pointers, and nominally-typed structs. Here data is

a pointer to floats, while GreyscaleImage is a type that was created by the struct constructor.

We might want to parameterize the image type based on the type stored at each pixel

(e.g., an RGB triplet, or a greyscale value). Because all Terra entities are first-class, we

can define a Lua function Image that creates the desired Terra type at runtime. This is

conceptually similar to a C++ template:

function Image(PixelType)
struct ImageImpl {
data : &PixelType,
N : int

5 }
-- method definitions for the image:
terra ImageImpl:init(N: int): {} --returns nothing
self.data =
[&PixelType](std.malloc(N*N*sizeof(PixelType)))

10 self.N = N
end
terra ImageImpl:get(x: int, y: int) : PixelType
return self.data[x*self.N + y]

end
15 --omitted methods for: set, save, load, free

return ImageImpl
end

In addition to its layout declared on lines 2–5, each struct can have a set of methods (lines

6–15). Methods are normal Terra functions stored in a Lua table associated with each type

(ImageImpl.methods). The method declaration syntax is sugar for:

ImageImpl.methods.init =
terra(self : &ImageImpl, N : int) : {}
...

end

Method invocations (myimage:init(128)) are also just syntactic sugar:

ImageImpl.methods.init(myimage,128)}

In Chapter 6, we show how we also allow user-defined behavior in this de-sugaring process

to define custom method invocation semantics.

In the init function, we call std.malloc to allocate memory for our image. We also

define a get function to retrieve each pixel, as well as some utility functions which we omit

for brevity.

CHAPTER 3. GENERATING CODE 29

Outside of the Image function, we call Image(float) to define GreyscaleImage. We use it

to define a laplace function and a driver function runlaplace that will run it on an image

loaded from disk to calculate the Laplacian of the image:

GreyscaleImage = Image(float)
terra laplace(img: &GreyscaleImage,

out: &GreyscaleImage) : {}
--shrink result, do not calculate boundaries

5 var newN = img.N - 2
out:init(newN)
for i = 0,newN do
for j = 0,newN do
var v = img:get(i+0,j+1) + img:get(i+2,j+1)

10 + img:get(i+1,j+2) + img:get(i+1,j+0)
- 4 * img:get(i+1,j+1)

out:set(i,j,v)
end

end
15 end

terra runlaplace(input: rawstring,
output: rawstring) : {}

var i = GreyscaleImage {}
var o = GreyscaleImage {}

20 i:load(input)
laplace(&i,&o)
o:save(output)
i:free(); o:free()

end

To actually execute this Terra function, we can call it from Lua:

runlaplace("myinput.bmp","myoutput.bmp")

Invoking the function from Lua will cause the runlaplace function to be JIT compiled. A

foreign function interface converts the Lua string type into a raw character array rawstring

used in Terra code.

More generally, we treat compilation of Terra functions as an explicit operation in the

language. The same Terra function can be compiled for different purposes. For offline use,

we can save the Terra function to a shared library (.so file) which can be linked to another

process using the built-in saveobj function:

terralib.saveobj("runlaplace.so",
{runlaplace = runlaplace})

The second argument is a Lua table that contains the Terra functions we want to compile

and export. Another built-in function, cudacompile, takes Terra functions and compiles them

into CUDA kernels that can run on GPUs. In the future we imagine extending the interface

for explicit compilation to support additional architectures.

CHAPTER 3. GENERATING CODE 30

Terra
Evaluation

input

output

Lua value (converted to Terra)

Terra value (converted to Lua)

Call Lua function from Terra

Call Terra function (that is already compiled)

Terra
Specialization

input

output

Value spliced in Terra expression
(normally a quote)

Escape operator, e.g. [lua_exp]

Specialized Terra code (untyped)

terra,function or quote,operator

Typed and compiled Terra code

Terra
Typechecking/
Compilation

input

output

About to call Terra function for the first time

Value spliced in Terra expression
Type macro, e.g. printnum(3.5)

Lu
a

Ev
al

ua
tio

n

Figure 3.1: Phases of evaluation of a
Lua-Terra program.

3.2 MULTI-STAGE PROGRAMMING IN TERRA

In addition to making Terra entities first class, Terra includes explicit multi-stage program-

ming operators like those found in MetaML [73] and MetaOCaml [72]. In those languages

the staged programs are typechecked statically. In contrast, Terra code is typechecked at

runtime. To support this behavior, staged programming in Lua and Terra involves two

phases of meta-programming, illustrated in Figure 3.1. First, untyped Terra expressions

are constructed using quotations and stitched together using escapes in a process we call

specialization.1 This process is similar to what occurs in other multi-stage languages.

Second, type-level computation can be carried out during typechecking with user-defined

type-macros, which allow the programmer to generate code based on the type of an expres-

sion. This phase does not exist in other staged programming frameworks since the types

must already be determined statically. Here we focus on generating code, but in Chapter 6,

we will show how this second stage can also be used to flexibly generate high-performance

types. The interaction between these phases of meta-programming and the evaluation of

Lua and Terra code is summarized in Figure 6.1.

During specialization, a quotation (the backtick operator 8exp, or the block structured

quote <exps> end) used in Lua code creates an unevaluated Terra expression, and an escape

1So named because it is analogous to the specialization phase in partial evaluation frameworks.

CHAPTER 3. GENERATING CODE 31

(the bracket operator [lua_exp]) used in Terra code evaluates lua_exp and splices its result

(normally a Terra quotation) into the surrounding Terra code.

To understand how the phases of execution interact, we can consider how to use these

operators to generate a specialized version of powf for a particular value of N:

function genpowf(N)
local function genexp(vr)

local r = 81.0
for i = 1,N do r = 8([r] * [vr]) end

5 return r
end

local terra powfN(v : double)
return [genexp(8v)]

10 end

return powfN
end
pow2 = genpowf(2)

15 print(pow2(3)) -- ’9’

We begin by evaluating Lua expressions, invoking genpowf(2), which defines genexp and

then defines the Terra function powfN. When a Terra function or quotation is defined, it is

specialized in the local environment. Specialization resolves the escaped Lua expressions

by calling back into Lua evaluation, splicing the resulting values into the Terra code. In

powfN, it evaluates the escaped call to genexp, which will generate the body of powfN. The

loop on line 4 alternates between defining a Terra quotation 8([r] * [v]), and specializing

it with values of the Lua variables r and vr. Here r holds the power expression being built
81.0*v*..., while vr is a quotation of a variable that refers to parameter v of powfN. The result

of the loop is the Terra quotation 81.0 * v * v, which will be spliced into the body of powfN,

completing its specialization.

When a Terra function is first called, such as pow2 on line 13, it is typechecked and

compiled, producing machine code. The function is then evaluated computing the result 9.

The pow2 function does not require any meta-programming during the typechecking

process. However, in some cases, it is useful for the generating code to be aware of the type

of an expression. The type macro allows for user-defined behavior during typechecking.

These macros can be used in Terra code like a function, but they are evaluated when the

Terra code is typechecked. Unlike escapes and quotes, which are used to create and stitch

CHAPTER 3. GENERATING CODE 32

code together before typechecking, type-macros have access to their arguments’ types. They

can be used to generate behavior based on the types as shown in this example:

printnum = macro(function(num)
local format
if num:gettype() == float then
format = "%f"

5 else
format = "%d"

end
return 8C.printf([format],[num])

end)
10 terra printint(a : int) printnum(a) end

printint(1)

When printint is first called on line 11, it will be typechecked. When typechecking the

call printnum(a), the typechecker will invoke the printnum macro, which examines the type

of the argument num to generate the appropriate formatting code for the type.

3.3 WRITING OPTIMIZATIONS USING STAGING

We can also use multi-stage programming to implement higher-order Lua functions that

do performance optimizations. For instance, we may want to optimize the laplace function

from Section 3.1 by blocking the loop nests to make the memory accesses more friendly

to cache. We could write this optimization manually, but the sizes and numbers of levels

of cache can vary across machines, so maintaining a multi-level blocked loop can be

tedious. Instead, we can create a Lua function, blockedloop, to generate the Terra code

for the loop nests with a parameterizable number of block sizes. In laplace, we can

replace the loop nests (lines 7–12) with a call to blockedloop that generates Terra code

for a 2-level blocking scheme with outer blocks of size 128 and inner blocks of size 64:

[blockedloop(newN,{128,64,1}, function(i,j)
return quote
var v = img:get(i+0,j+1) + img:get(i+2,j+1)

+ img:get(i+1,j+2) + img:get(i+1,j+0)
5 - 4 * img:get(i+1,j+1)

out:set(i,j,v)
end

end)]

The escape ([]) around the expression allows the loop nest generated by blockedloop to

be spliced into the Terra expression. The function blockedloop itself is a higher-order Lua

function whose third argument is a Lua function that is called to create the inner body of

CHAPTER 3. GENERATING CODE 33

the loop. Its arguments (i,j) are the loop indices. The quote expression defines the loop

body using the loop indices. The implementation of blockedloop walks through the list of

blocksizes:

function blockedloop(N,blocksizes,bodyfn)
local function generatelevel(n,ii,jj,bb)
if n > #blocksizes then
return bodyfn(ii,jj)

5 end
local blocksize = blocksizes[n]
return quote
for i = ii,min(ii+bb,N),blocksize do
for j = jj,min(jj+bb,N),blocksize do

10 [generatelevel(n+1,i,j,blocksize)]
end

end
end

end
15 return generatelevel(1,0,0,N)

end

It uses a quote to create a level of loop nests for each entry and recursively creates the next

level using an escape.At the inner-most level, it calls bodyfn to generate the loop body. A

more general version of this function is used to implement multi-level blocking for our

matrix multiply example.

This example highlights some important features of Terra that we have presented so

far. We provide syntax sugar for common patterns in runtime code such as namespaces

(std.malloc) or method invocation (out:init(newN)). Furthermore, during the generation of

Terra functions, both Lua and Terra share the same lexical environment. For example, the

loop nests refer to blocksize, a Lua number, while the Lua code that calls generatelevel

refers to i and j, Terra variables. Values from Lua such as blocksize will be specialized in

the staged code as constants, while Terra variables that appear in Lua code such as i will

behave as variable references once placed in a Terra quotation.

3.4 GENERATING ARBITRARY CODE USING STAGING.

Staging operations allow the generation of arbitrary code, and we can use them to generate

high-performance code for DSLs. In Section 3.1, we showed a piece of image processing

code written as an explicit loop. We could instead represent this operation using a small

DSL. Image processing DSLs such as Halide [61] express image processing operations

CHAPTER 3. GENERATING CODE 34

as image-wide operations that can be composed. For our example, we might express the

Laplace operator similarly:

laplace = img(x-1,y) + img(x+1,y) + img(x,y-1) + img(x,y+1) - 4 * img(x,y)

This way of expressing the problem is advantageous because it separates the algorithm from

optimizations such as threading, blocking, or loop vectorization. It can speed up image

processing code by an order of magnitude [61]. A frontend to a DSL would typically parse

this code into an intermediate representation. Chapter 9 discusses Terra’s approach to DSL

frontends, but for now we can imagine that the frontend has converted the text into an

intermediate representation like the following, which represents the same Laplace operator

as before using Lua tables:

local laplace =
{ "-", { "+", {"+", {"load",-1,0},

{"load",1,0}},
{"+", {"load",0,-1},

5 {"load",0,1}}},
{"*", {"const",4},

{"load", 0, 0 }}}

For simplicity, we use a LISP-like style, where the first element in a Lua table indicates

the operator (e.g., "+", or "load") and arguments to that operator follow. To compile this

IR into high-performance Terra code, we can create a Lua function, compileimage, which

takes the IR as an argument and returns a Terra function that actually performs the operation

given an input image.

One possible implementation of this function in shown in Figure 3.2. It returns a Terra

function that implements the skeleton of the image processing loop, initializing the output

image and then looping over the pixels. The inner loop, however, is dependent on the IR

itself, so we use an escape operator to call the function expr which is actually responsible for

generating the computation from the IR. It matches on the type of the IR node (e.g. "+", or

"load"), and then produces a Terra quotation that implements the particular operator. Some

IR nodes such as "+", contain further expressions, so they call the expr function recursively.

We also use a local Terra function, load, to handle loading data from an image with the

correct behavior for the boundaries, returning 0 for any access outside the input image. This

illustrates how easy it is for the generated code to simply call into library functions like load.

CHAPTER 3. GENERATING CODE 35

function compileimage(ir)
-- load image with black boundary conditions
local terra load(img : &GreyscaleImage,i : int,j : int)
if i < 0 or j < 0 or i >= img.N or j >= img.N then

5 return 0
else

return img:get(i,j)
end

end
10 local function expr(node,i,j,input)

local op,e0,e1 = node[1],node[2],node[3]
if "const" == op then

return 8e0
elseif "load" == op then

15 return 8load(input,i+e0,j + e1)
elseif "+" == op then ...

end
return terra(input : &GreyscaleImage,

output: &GreyscaleImage) : {}
20 output:init(input.N)

for i = 0,output.N do
for j = 0,output.N do
var v = [expr(ir,i,j,input)]
output:set(i,j,v)

25 end
end

end
end

Figure 3.2: An example function that compiles a simple IR for image processing code into a Terra
function

Real DSLs will have larger runtime libraries, so making it easy for the generated code to

access them is important.

Now that we have a simple code generator for our imaging DSL, the DSL designer

might consider ways of optimizing the input. For instance, we could vectorize the inner

loop by running multiple pixels at a time. We can use Terra’s built-in vectors types to

accomplish this, changing the loop over j to step a vector at a time, and then changing the

implementation of load to load a vector of pixels rather than a single one. We could also

perform loop blocking using the higher-order blockedloop function presented earlier.

We can automatically tune the algorithm with another simple function. It is not clear

how long the vectors should be, or what the block size should be for a particular program.

So we can modify the compileimage function to take the block and vector sizes as parameters,

and then try different options. An example of this approach is shown in Figure 3.3.

CHAPTER 3. GENERATING CODE 36

local potentialvectorsizes = {2,4,8,16,32,64}
local potentialblocksizes = {32,64,128,256}
local function tuneimage(ir, inputimage, outputimage)

local besttiming,bestcandidate = math.huge,nil
5 for blocksize in ipairs(potentialblocksizes) do

for vectorsize in ipairs(potentialvectorsizes) do
local candidate = compileimage(ir,blocksize,vectorsize)
local timing = timerun(function()

candidate(inputimage,outputimage)
10 end)

if timing < besttiming then
besttiming,bestcandidate = timing,candidate

end
end

15 end
return bestcandidate

end

Figure 3.3: A simple autotuner for the image processing language.

Actual DSLs and auto-tuners written in Terra take the same form as these examples.

They are simply compositions of built-in operators for parameterizing, generating, and

running Terra code.

3.5 DESIGN DECISIONS FOR CODE GENERATION

In the previous section, we were able to use Lua and Terra to create a concise DSL using

just a few operators to generate, run, and auto-tune Terra code. The ability to create these

types of programs relies on a few design decisions we made to create a two-language

meta-programming system.

3.5.1 Shared lexical environment

During specialization of Terra code, Lua and Terra share the same lexical environment.

That is, variables that are lexically in scope in Lua context can be used directly inside of

Terra code, and variables introduced in Terra code are in scope in escape operators. Other

heterogeneous staged programming languages, such as MetaHaskell [51], do not have this

shared lexical scope, making it necessary for quotations in one language to always escape

any references to the surrounding environment. This design can make even simple programs

CHAPTER 3. GENERATING CODE 37

complex to read. Without shared lexical scope, for instance, the code generator for image

processing from the previous section would need many different escapes:

-- with shared scope by default:
return 8load(input,i + e0,j + e1)

-- without:
5 return 8[load]([input],[i]+[e0],[j]+[e1])

While some heterogeneous multi-stage languages with shared lexical scope have oc-

curred organically in the past [25, 76], these are achieved through offshoring—reinterpreting

the embedding language syntax using a different lower-level semantics, which limits what

can be expressed in the lower-level language. In contrast, we support a shared lexical

environment across two fully distinct languages.

The shared environment allows us to remove a surprising amount of functionality from

Terra itself that a standalone language would require. For instance, Terra itself has no syntax

for referring to other Terra functions or any global values at all! That functionality is handled

through specialization, where identifiers in Terra code are resolved to the Lua objects that

represent the functions or globals. Terra functions can be organized into tables in the Lua

environment, and shared scoping allows us to refer to them directly from Terra code without

explicit escape expressions. Specifically, we treat any reference to a variable x, as if it were

escaped by default [x]. The details of how this is accomplished are reflected in the semantics

presented in Chapter 4. We also treat table selection operators x.id1.id2...idn (where

id1...idn are valid entries in nested Lua tables) as if they were escaped. This syntactic sugar

allows Terra code to refer to functions organized into Lua tables (e.g., std.printf), removing

the need for an explicit namespace mechanism in Terra.

3.5.2 Hygienic code generation

When performing code generation, the programmer needs to understand the relationship

between variable definitions and their uses. As seen in some varieties of LISP, even simple

macros can unexpectedly capture the values of user-provided variables if not written correctly.

CHAPTER 3. GENERATING CODE 38

Terra ensures that code generation using Terra variables is hygienic by default. Variable

references are lexically scoped:

local addone = macro(function(x)
return quote

var y = 1 -- variable ’y’ covers user-provided expression ’x’
in

5 x + y
end

end)
terra test()

var y = 2 -- But this ’y’ is unique from the ’y’ in the macro
10 return addone(y) -- 3

end

Maintaining hygiene during staging ensures that it is always possible to determine the

relationship between variables and their declarations (across both Lua and Terra) using only

the local lexical scope.

3.5.3 Separate evaluation of Terra code

After Terra code is compiled, it can run independently from Lua and does not interact with its

environment.2 This is a departure from some other approaches in multi-stage programming.

For instance, in MetaOCaml [72], ref cells share the same store across different stages,

allowing mutations in staged code to be seen outside of the staged code. This alternative

makes sharing state easier, but it would couple Terra and Lua’s runtimes, which can limit

the ability to reason about Terra code independently. The approach of separating compile-

time and runtime-time environments has be used for LISP macro expansion [27] to make

components more composable. Here we apply the same technique to ensure predictable

performance.

In our case, the reliance on the Lua runtime, which includes high-level features such as

garbage collection, would make it more difficult to reason about the performance of Terra

code. Furthermore, the required runtime support would make it difficult to compile Terra

functions on architectures such as GPUs, run code in multiple threads, or link code into

existing C programs without including the Lua runtime. Currently these behaviors are all

possible because we evaluate Terra code separately.

2We do allow for this behavior when specifically requested, but do not provide it by default.

CHAPTER 3. GENERATING CODE 39

3.5.4 Eager specialization with lazy typechecking

Statically-typed languages such as Terra are normally compiled ahead-of-time, resolving

symbols, typechecking, and linking in a separate process from execution. Many staged

programming languages such as MetaOCaml maintain this static typechecking even for

staged code. However, since Lua is dynamically-typed and can generate arbitrary Terra

code, it is not possible to typecheck a combined Lua-Terra program statically. Instead, the

normal phases of Terra compilation become part of the evaluation of the Lua program, and

we must decide when those phases run in relation to the Lua program. To better understand

how Terra code is compiled in relation to Lua, consider where Terra can “go wrong.” While

specializing Terra code, we might encounter an undefined variable, resolve a Lua expression

used in an escape to a value that is not also a Terra term expression, or resolve a Lua

expression used as a Terra type to a value that is not a Terra type. While typechecking

Terra code, we might encounter a type error. And, while linking Terra code, we might

find that a Terra function refers to a declared but undefined function. In Terra, we perform

specialization eagerly (as soon as a Terra function or quotation is defined), while we perform

typechecking and linking lazily (only when a function is called, or is referred to by another

function being called).

Eager specialization prevents mutations in Lua code from changing the meaning of

a Terra function between when it is defined and when it is used. Eager specialization

requires all symbols used in a function to be defined before it is used, which can be

problematic for mutually recursive functions. In order to support recursive functions with

eager specialization, we allow the separate declaration and definition of Terra functions:

terra isodd -- function declarations

terra iseven(n : int) : bool
5 if n == 0 then return true

else return isodd(n - 1) end
end

terra isodd(n : int) : bool -- fill in isodd with a definition
10 if n == 0 then return false

else return iseven(n - 1) end
end

CHAPTER 3. GENERATING CODE 40

For simple cases where all mutually recursive functions can be defined together, we

allow both functions to be defined simultaneously:

terra iseven(n : int) : bool
if n == 0 then return true
else return isodd(n - 1) end

end
5

and terra isodd(n : int) : bool -- ‘and’ causes both definitions to occur together
if n == 0 then return false
else return iseven(n - 1) end

end

Performing typechecking lazily also provides several advantages. Forward declarations

of functions, such as the declaration of isodd, do not have to have type annotations making

them easier to maintain compared to languages such as C++ where symbols must be declared

(forward declarations), and their type provided as well (traditional declaration). Furthermore,

user-defined struct types do not need all their methods specified before being used in a

Terra function, and are only required when the function is first typechecked. Compared to

eager typechecking, it might seem like lazy checking introduces more times when errors

are reported since errors can be reported when a function is first run. However, even if we

performed type checking eagerly, we still might get linking errors when a function is first

run if a function it referred to was never defined.

Though typechecking is performed lazily, we still allow code generation to happen

during this stage through type-macros. Since type-macros are functions defined separately

from Terra code and called like functions, they do not have access to the lexical environment

where they are used so they can be delayed until typechecking without their behavior

changing when a variable in that environment is mutated.

CHAPTER 4

FORMALIZING CODE GENERATION WITH TERRA

CORE

To make the interaction between Lua and Terra precise, we formalize the essence of both

languages focusing on how Terra functions are created, compiled, and called during the

evaluation of a Lua program and in the presence of side-effects. This formalism will illustrate

how some of the design decisions discussed in the previous chapter are implemented.

4.1 TERRA CORE

The calculus, called Terra Core, is equipped with a big step operational semantics. Evaluation

starts in Lua (L−→). When a Terra term is encountered it is specialized (S−→), evaluating

any escapes in the term to produce concrete Terra terms. Specialized Terra functions can

then be executed (T−→). We distinguish between Lua expressions e, Terra expressions .
e,

and specialized Terra expressions .
e (we use a dot to distinguish Terra terms from Lua

terms, and a bar to indicate a Terra term is specialized). For simplicity we model Lua as an

imperative language with first-class functions and Terra as a purely functional language. A

namespace Γ maps variables (x) to addresses a, and a store S maps addresses to Lua values

v. The namespace Γ serves as the value environment of Lua (resolving variables to values,

v), and the syntactic environment of Terra specialization (resolving variables to specialized

Terra terms .
e, which are a subset of Lua values). In contrast, Terra is executed in a separate

environment (
.
Γ).

41

CHAPTER 4. FORMALIZING CODE GENERATION WITH TERRA CORE 42

The Lua (Core) syntax is given in the following table:

e ::= b |
.
T | x | let x = e in e | x := e | | e(e) |

fun(x){e} | tdecl | ter e(x : e) : e { .
e } | 8 .e

v ::= b | l |
.
T | 〈Γ, x, e〉 | .

e
.
T ::=

.
B |

.
T→

.
T

A Lua expression can be a base value (b), a Terra type expression (
.
T), a variable (x), a

scoped variable definition (let x = e in e), an assignment (x := e), a function call e(e), a

Lua function (fun(x){e}), or a quoted Terra expression (8 .e). We separate declaration and

definition of Terra functions to allow for recursive functions. A Terra function declaration

(tdecl) creates a new address for a Terra function, while a Terra definition (ter e1(x : e2) :

e3 {
.
e }) fills in the declaration at address e1. For example, the following declares and

defines a Terra function, storing it in x:

let x = ter tdecl(x2 : int) : int { x2 } in x

Alternatively, tdecl creates just a declaration that can be defined later:

let x = tdecl in ter x(x2 : int) : int { x2 }

In real Terra code, a Terra definition will create a declaration if it does not already exist.

Lua values range over base types (b), addresses of Terra functions (l), Terra types (
.
T), Lua

closures (〈Γ, x, e〉) and specialized Terra expressions (.
e). The syntax of Terra terms is

defined as follows:

.
e ::= b | x | .

e(
.
e) | tlet x : e =

.
e in

.
e | [e]

CHAPTER 4. FORMALIZING CODE GENERATION WITH TERRA CORE 43

A Terra expression is either a base type, a variable, a function application, a let statement, or

a Lua escape (written [e]). The syntax of specialized terms is given next:

.
e ::= b | .

x | .
e(

.
e) | tlet .

x :
.
T =

.
e in

.
e | l

In contrast to an unspecialized term, a specialized Terra term does not contain escape

expressions, but can contain Terra function addresses (l). The let statement must assign Terra

types to the bound variable and variables are replaced with specialized Terra variables .
x.

The judgment e Σ1
L−→ v Σ2 describes the evaluation of a Lua expression. It

operates over an environment Σ consisting of Γ, S, and a Terra function store F which maps

addresses (l) to Terra functions. Terra functions can be defined (〈 .x, .
T,

.
T,

.
e〉), or undefined (•).

Figure 4.1 defines the Lua evaluation rules. We use two notational shortcuts:

Σ1[x← v] = Γ2, S2, F when Σ1 = Γ1, S1, F ∧ Γ2 = Γ1[x← a]∧

S2 = S1[a← v] ∧ a fresh

Σ← Γ1 = Γ1, S, F when Σ = Γ2, S, F

Rule LTDECL creates a new Terra function at address l and initializes it as undefined (•).
Rule LTDEFN takes an undefined Terra function (e1) and initializes it. First, e2 and e3 are

evaluated as Lua expressions to produce the type of the function,
.
T1 →

.
T2. The body, .

e, is

specialized. During specialization, Terra variables (x) are renamed to new symbols (.
x) to

ensure hygiene. Renaming has been previously applied in staged-programming [73] and

hygienic macro expansion [4]. In the case of LTDEFN, we generate a fresh name .
x for

the formal parameter x, and place it in the environment. Variable x will be bound to the

value .
x in the scope of any Lua code evaluated during specialization of the function. During

specialization, Rule SVAR will replace uses of x in Terra code with the value of x in the

environment.

Rule LTAPP describes how to call a Terra function from Lua. The actual parameter e2 is

evaluated. The Terra function is then typechecked. Semantically, typechecking occurs every

time a function is run. In practice, we cache the result of typechecking. For simplicity, Terra

CHAPTER 4. FORMALIZING CODE GENERATION WITH TERRA CORE 44

v Σ
L−→ v Σ (LVAL)

Σ = Γ, S, F

x Σ
L−→ S(Γ(x)) Σ

(LVAR)

e1 Σ1
L−→ v1 Σ2 Σ2 = Γ, S, F e2 Σ2[x← v1]

L−→ v2 Σ3

let x = e1 in e2 Σ
L−→ v2 (Σ3 ← Γ)

(LLET)

e Σ
L−→ v Γ, S, F Γ(x) = a

x := e Σ
L−→ v Γ, S[a← v], F

(LASN)

Σ = Γ, S, F

fun(x){e} Σ
L−→ 〈Γ, x, e〉 Σ

(LFUN)

e1 Σ1
L−→ 〈Γ1, x, e3〉 Σ2 e2 Σ2

L−→ v1 Γ2, S, F

a fresh e3 Γ1[x← a], S[a← v1], F
L−→ v2 Σ3

e1(e2) Σ1
L−→ v2 (Σ3 ← Γ2)

(LAPP)

l fresh Σ = Γ, S, F

tdecl Σ
L−→ l Γ, S, F [l← •]

(LTDECL)

e1 Σ1
L−→ l Σ2 e2 Σ2

L−→
.
T1 Σ3 e3 Σ3

L−→
.
T2 Σ4

Σ4 = Γ1, S1, F1
.
x fresh.

e Σ4[x← .
x]

S−→ .
e Γ2, S2, F2 F2(l) = •

ter e1(x : e2) : e3 {
.
e } Σ1

L−→ l Γ1, S2, F2[l← 〈.x, .T1, .T2, .e〉]
(LTDEFN)

.
e Σ1

S−→ .
e Σ2

8 .e Σ1
L−→ .

e Σ2

(LTQUOTE)

e1 Σ1
L−→ l Σ2 e2 Σ2

L−→ b1 Σ3

Σ3 = Γ, S, F F (l) = 〈.x, .T1, .T2, .e〉 b1 ∈
.
T1

[
.
x :

.
T1], [l :

.
T1 →

.
T2], F2 `

.
e :

.
T2

.
e [

.
x← b], F

T−→ b2

e1(e2) Σ1
L−→ b2 Σ3

(LTAPP)

Figure 4.1: The rules L−→ for evaluating Lua expressions.

CHAPTER 4. FORMALIZING CODE GENERATION WITH TERRA CORE 45

b Σ
S−→ b Σ (SBAS)

.
e1 Σ1

S−→ .
e1 Σ2

.
e2 Σ2

S−→ .
e2 Σ3

.
e1(

.
e2) Σ1

S−→ .
e1(

.
e2) Σ3

(SAPP)

e Σ1
L−→

.
T Σ2

.
e1 Σ2

S−→ .
e1 Σ3

.
x fresh

Σ3 = Γ, S, F
.
e2 Σ3[x← .

x]
S−→ .

e2 Σ4

tlet x : e =
.
e1 in

.
e2 Σ1

S−→ tlet
.
x :

.
T =

.
e1 in

.
e2 (Σ4 ← Γ)

(SLET)

e Σ1
L−→ .

e Σ2

[e] Σ1
S−→ .

e Σ2

(SESC)

[x] Σ1
S−→ .

e Σ2

x Σ1
S−→ .

e Σ2

(SVAR)

Figure 4.2: The rules S−→ for specializing Terra expressions.

b
.
Γ, F

T−→ b (TBAS)

l
.
Γ, F

T−→ l (TFUN)

.
x

.
Γ, F

T−→
.
Γ(

.
x) (TVAR)

.
e1

.
Γ, F

T−→ v1
.
e2

.
Γ[

.
x← v1], F

T−→ v2

tlet
.
x :

.
T =

.
e1 in

.
e2

.
Γ, F

T−→ v2
(TLET)

.
e1

.
Γ, F

T−→ l
.
e2

.
Γ, F

T−→ v1

F (l) = 〈.x, .T1, .T2, .e3〉 .
e3

.
Γ[

.
x← v1], F

T−→ v2
.
e1(

.
e2)

.
Γ, F

T−→ v2
(TAPP)

Figure 4.3: The rules T−→ for evaluating Terra expressions.

F̂ (l) =
.
T

Γ̂, F̂ , F ` l :
.
T

(TYFUN1)

l 6∈ F̂ F (l) = 〈x,
.
T1,

.
T2,

.
e〉 [x :

.
T1], F̂ [l :

.
T1 →

.
T2], F ` .

e :
.
T2

Γ̂, F̂ , F ` l :
.
T1 →

.
T2

(TYFUN2)

Figure 4.4: Typing rules for references to Terra functions.

CHAPTER 4. FORMALIZING CODE GENERATION WITH TERRA CORE 46

Core only allows values b of base types to be passed and returned from Terra functions (full

Terra is less restricted).

Figure 4.2 defines judgment .
e Σ1

S−→ .
e Σ2 for specializing Terra code, which

evaluates all embedded Lua expressions in type annotations and escape expressions. Similar

to LTDEFN, rule SLET generates a unique name .
x to ensure hygiene. Rule SESC evaluates

escaped Lua code; it splices the result into the Terra expression if the resulting value is in

the subset of values that are Terra terms .
e (e.g., a variable .

x or base value b). Variables in

Terra can refer to variables defined in Lua and in Terra; they behave as if they are escaped,

as defined by Rule SVAR. If x is a variable defined in Terra code and renamed .
x during

specialization, then rule SVAR will just produce .
x (assuming no interleaving mutation of x).

Figure 4.3 presents the judgment .
e

.
Γ, F

T−→ v for evaluating specialized Terra

expressions. These expressions can be evaluated independently from the Lua store S,

and do not modify F , but are otherwise straightforward. A Terra function is typechecked

right before it is run (LTAPP) with the judgment Γ̂, F̂ , F ` .
e :

.
T, where Γ̂ is the typing

environment for variables and F̂ is the typing environment for Terra function references

(F is the Terra function store from before). The rules (omitted for brevity) are standard,

except for the handling of Terra function references l. If a Terra function l1 refers to another

Terra function l2, then l2 must be typechecked when typechecking l1. The rules for handling

these references in the presence of mutually recursive functions are shown in Figure 4.4.

They ensure all functions that are in the connected component of a function are typechecked

before the function is run.

4.2 DESIGN DECISIONS AS REFLECTED IN TERRA CORE

Terra Core formalizes some of the features that were presented informally in the previous

chapter. Here we describe how these features work in the calculus.

4.2.1 Terra entities are first-class

Terra types and expressions are Lua values. This is illustrated in Terra Core. Terra syntax .
e

is one type of Lua value, along with Terra types,
.
T. As an example, a Lua Core function can

CHAPTER 4. FORMALIZING CODE GENERATION WITH TERRA CORE 47

manipulate Terra types. The Lua function x3 will generate a Terra identity function for any

given type:

let x3 = fun(x1){ter tdecl(x2 : x1) : x1 { x2 }} in

x3(int)(1)

Here we call it with int, which will result in the specialized Terra function 〈 .x, int, int, .
x〉.

Chapters 6 and 7 will expand on this formalism, showing how we can use Lua to generate

arbitrary Terra types.

4.2.2 Hygiene and shared lexical environment

Terra Core illustrates how we provide a shared lexical environment and hygiene. The evalu-

ation of Lua code and the specialization of Terra code share the same lexical environment

Γ and store S. This environment and store always map variables x to Lua values v. This

example illustrates the shared environment:

let x1 = 0 in

let x2 =8 (tlet y1 : int = 1 in x1) in

let x3 = ter tdecl(y2 : int) : int { x2 } in x3

The specialization of the quoted tlet expression occurs in the surrounding Lua environment,

so Rule SVAR will evaluate x1 to 0. This results in the specialized expression:

tlet
.
y
1

: int = 1 in 0

This Terra expression will be stored as a Lua value in x2. Since the Terra function refers to

x2, specialization will result in the following Terra function:

〈 .y
2
, int, int, tlet

.
y
1

: int = 1 in 0〉

CHAPTER 4. FORMALIZING CODE GENERATION WITH TERRA CORE 48

Furthermore, during specialization variables introduced by Terra functions and Terra let

expressions are bound in the shared lexical environment. Consider this example:

let x1 = fun(x2){8tlet y : int = 0 in [x2]} in

let x3 = ter tdecl(y : int) : int { [x1(y)] } in x3

The variable y on line 2 is introduced by the Terra function definition. It is referenced by the

Lua expression inside the escape ([x1(y)]). The variable y is then passed as an argument to

Lua function x1, where it is spliced into a tlet expression.

When Terra variables are introduced into the environment, they are given fresh names

to ensure hygiene. For example, without renaming, x3 would specialize to the following,

causing the tlet expression to unintentionally capture y:

〈y, int, int, tlet y : int = 1 in y〉

To avoid this, rules LTDEFN and SLET generate fresh names for variables declared in Terra

expressions. In this case, the LTDEFN will generate a fresh name .
y
1

for the argument

y binding it into the shared environment (Σ[y ← .
y
1
]), and SLET will similarly generate

the fresh name .
y
2

for the tlet expression. Since y on line 2 has the value .
y
1

during

specialization, the variable x2 will get the value .
y
1
, and x3 will specialize to the following,

avoiding the unintentional capture:

〈 .y
1
, int, int, tlet

.
y
2

: int = 1 in
.
y
1
〉

4.2.3 Eager specialization with lazy typechecking

Eager specialization prevents mutations in Lua code from changing the meaning of a Terra

function between when it is defined and when it is used. Terra Core helps illustrate where

problems can arise. For instance, consider the following example (we use the syntax e; e as

CHAPTER 4. FORMALIZING CODE GENERATION WITH TERRA CORE 49

sugar for let = e in e):

let x1 = 0 in

let y = ter tdecl(x2 : int) : int { x1 } in
x1 := 1;

y(0)

Since specialization is performed eagerly, the statement y(0) will evaluate to 0. In contrast, if

specialization were performed once lazily, then it would capture the value of x1 the first time

y is called and keep that value for the rest of the program, which would lead to surprising

results (e.g., if y were used before x1 := 1 then it would always return 0, otherwise it would

always return 1). Alternatively, we could re-specialize (and hence re-compile) the function

when a Lua value changes, but this behavior could lead to large compiler overheads that

would be difficult to track down.

Eager specialization requires all symbols used in a function to be declared before the

function’s definition, which can be problematic for mutually recursive functions. In order

to support recursive functions with eager specialization, we separate the declaration and

definition of Terra functions:

let x2 = tdecl in

let x1 = ter tdecl(y : int) : int { x2(y) } in
ter x2(y : int) : int { x1(y) };
x1(0)

In contrast to specialization, typechecking is performed lazily. In Terra Core, it would

be possible to perform typechecking eagerly if declarations also had types. For instance,

in our previous example we could typecheck x1 when it is defined if x2 was given a type

during declaration. However, even though x1 would typecheck, we would still receive a

linking error if x1(0) occurred before the definition of x2. Terra Core helps illustrate that

performing typechecking eagerly would not reduce the number of places an error might

occur for function x1. Furthermore, unlike specialization where the result can change

arbitrarily depending on the Lua state, the result of typechecking and linking x can only

CHAPTER 4. FORMALIZING CODE GENERATION WITH TERRA CORE 50

change monotonically from a type-error to success as the functions it references are defined

(it can also stay as a type-error if the function is actually ill-typed). This property follows

from the fact that Terra functions can be defined, but not re-defined by Rule LTDEFN.

4.2.4 Separate evaluation of Terra code

After Terra code is compiled, it can run independently from Lua. This behavior is captured

in Terra Core by the fact that Terra expressions are evaluated independently from the

environment Γ and the store S, as illustrated by this example:

let x1 = 1 in

let y = ter tdecl(x2 : int) : int { x1 } in
x1 := 2; y(0)

The Terra function will specialize to 〈.x, int, int, 1〉, so the function call will evaluate to the

value 1, despite x1 being re-assigned to 2. An alternative design would allow Terra evaluation

to directly refer to x1, which is the behavior of MetaOCaml [72]. Terra evaluation would

then depend on Γ and S, coupling the runtimes of Lua and Terra together. As previously

discussed, this coupling would make it difficult to reason about performance, or run Terra

on GPUs and embedded devices.

CHAPTER 5

BUILDING DSLS

To evaluate Terra, we use it to reimplement a number of multi-language applications and

compare our implementations with existing approaches. We present evidence that the design

decisions of Terra make the implementations simpler to engineer compared to existing work

while achieving high performance.

5.1 TUNING DGEMM

BLAS routines like double-precision matrix multiply (DGEMM) are used in a wide range of

applications and form a basis for many of the algorithms used in high-performance scientific

computing. However, their performance is dependent on characteristics of the machine such

as cache sizes, vector length, or number of floating-point machine registers. In our tests, a

naı̈ve DGEMM can run over 65 times slower than the best-tuned algorithm.

The ATLAS project [77] was created to maintain high performance BLAS routines via

auto-tuning. To demonstrate Terra’s usefulness in auto-tuning high-performance code, we

implemented a version of matrix multiply, the building block of level-3 BLAS routines. We

restrict ourselves to the case C = AB, with both A and B stored non-transposed, and base

our optimizations on those of ATLAS [77]. ATLAS breaks down a matrix multiply into

smaller operations where the matrices fit into L1 cache. An optimized kernel for L1-sized

multiplies is used for each operation. Tuning DGEMM involves choosing good block sizes,

and generating optimized code for the L1-sized kernel. We found that a simple two-level

blocking scheme worked well. To generate the L1-sized kernel, we use staging to implement

several optimizations. We implement register-blocking of the inner-most loops, where a

51

CHAPTER 5. BUILDING DSLS 52

function genkernel(NB, RM, RN, V,alpha)
local vector_type = vector(double,V)
local vector_pointer = &vector_type
local A,B,C = symbol("A"),symbol("B"),symbol("C")

5 local mm,nn = symbol("mn"),symbol("nn")
local lda,ldb,ldc = symbol("lda"),symbol("ldb"),symbol("ldc")
local a,b = symmat("a",RM), symmat("b",RN)
local c,caddr = symmat("c",RM,RN), symmat("caddr",RM,RN)
local k = symbol("k")

10 local loadc,storec = terralib.newlist(),terralib.newlist()
for m = 0, RM-1 do for n = 0, RN-1 do

loadc:insert(quote
var [caddr[m][n]] = C + m*ldc + n*V
var [c[m][n]] =

15 alpha * @vector_pointer([caddr[m][n]])
end)
storec:insert(quote
@vector_pointer([caddr[m][n]]) = [c[m][n]]

end)
20 end end

local calcc = terralib.newlist()
for n = 0, RN-1 do
calcc:insert(quote
var [b[n]] = @vector_pointer(&B[n*V])

25 end)
end
for m = 0, RM-1 do
calcc:insert(quote
var [a[m]] = vector_type(A[m*lda])

30 end)
end
for m = 0, RM-1 do for n = 0, RN-1 do

calcc:insert(quote
[c[m][n]] = [c[m][n]] + [a[m]] * [b[n]]

35 end)
end end
return terra([A] : &double, [B] : &double, [C] : &double,

[lda] : int64,[ldb] : int64,[ldc] : int64)
for [mm] = 0, NB, RM do

40 for [nn] = 0, NB, RN*V do
[loadc];
for [k] = 0, NB do
prefetch(B + 4*ldb,0,3,1);
[calcc];

45 B,A = B + ldb,A + 1
end
[storec];
A,B,C = A - NB,B - ldb*NB + RN*V,C + RN*V

end
50 A,B,C = A + lda*RM, B - NB, C + RM * ldb - NB

end end end

Figure 5.1: Parameterized Terra code that generates a matrix-multiply kernel optimized to fit in L1.

CHAPTER 5. BUILDING DSLS 53

0
5

10
15
20
25
30

0 5 10 15 20

GF
LO

PS

Matrix Size (in MB)

Peak
MKL
ATLAS
Terra

Naïve
Blocked

(a) DGEMM Performance

0
10
20
30
40
50
60

0 5 10 15 20

GF
LO

PS

Matrix Size (in MB)

Peak
MKL
ATLAS (fixed)

ATLAS (orig.)

Terra

Naïve
Blocked

(b) SGEMM Performance

Figure 5.2: Performance of matrix multiply using different libraries as a function of matrix size. Size
reported is the total footprint for both input and output matrices. All matrices are square.

block of the output matrix is stored in machine registers; we vectorize this inner-most loop

using vector types; and we use prefetch intrinsics to optimize non-contiguous reads from

memory.

The code that implements our L1-sized kernel is shown in Figure 5.1. It is parameterized

by the blocksize (NB), the amount of the register blocking in 2 dimensions (RM and RN),

the vector size (V), and a constant (alpha) which parameterizes the multiply operation,

C = alpha*C + A*B. When generating code with a parameterizable number of variables (e.g.,

for register blocking) it is sometimes useful to selectively violate hygiene. Terra provides

the function symbol, equivalent to LISP’s gensym, which generates a globally unique identifier

that can be used to define and refer to a variable that will not be renamed. We use it on lines

4–9 to generate the intermediate variables for our computation (symmat generates a matrix

of symbols). On lines 10–20, we generate the code to load the values of C into registers

(loadc), and the code to store them back to memory (storec). Lines 21–31 load the A and B

matrices, and lines 32–36 generate the unrolled code to perform the outer product(calcc).

We compose these pieces into the L1-sized matrix multiply function (lines 37–51). The full

matrix-multiply routine (not shown) calls the L1-sized kernel for each block of the multiply.

In Lua, we wrote an auto-tuner that searches over reasonable values for the parameters

(NB, V, RA, RB), JIT-compiles the code, runs it on a user-provided test case, and choses the

best-performing configuration. Our implementation is around 200 lines of code.

CHAPTER 5. BUILDING DSLS 54

void diffuse(int N, int b, float* x, float* x0, float* tmp,
float diff, float dt){

int i, j, k; float a=dt*diff*N*N;
for (k = 0; k<= iter; k++){

5 for (j = 1; j <= N; j++)
for (i = 1; i <= N; i++)
tmp[IX(i,j)] = (x0[IX(i,j)] + a*(x[IX(i-1,j)]+
x[IX(i+1,j)]+x[IX(i,j-1)]+x[IX(i,j+1)]))/(1+4*a);

SWAP(x,tmp);
10 }

}

function diffuse (x, x0, diff, dt)
local a=dt*diff*N*N
for k=0,iter do
x = (x0+a*(x(-1,0)+x(1,0)+x(0,-1)+x(0,1)))/(1+4*a)

5 end
return x,x0

end

Figure 5.3: A kernel from a real-time fluid solver written in C (top) compared to Darkroom (bottom).

We evaluate the performance by comparing to ATLAS and Intel’s MKL on a single

core of an Intel Core i7-3720QM. ATLAS 3.10 was compiled with GCC 4.8. Figure 5.2

shows the results for both double- and single- precision. For DGEMM, the naı̈ve algorithm

performs poorly. While blocking the algorithm does improve its performance for large

matrices, it runs at less than 7% of theoretical peak GFLOPs for this processor. In contrast,

Terra performs within 20% of the ATLAS routine, over 60% of peak GFLOPs of the core,

and over 65 times faster than the naı̈ve unblocked code. The difference between Terra

and ATLAS is likely caused by a register spill in Terra’s generated code that is avoided

in ATLAS’s generated assembly. Terra is also competitive with Intel’s MKL, which is

considered state-of-the-art. For SGEMM, Terra outperforms the unmodified ATLAS code

by a factor of 5 because ATLAS incurs a transition penalty from mixing SSE and AVX

instructions. Once this performance bug is fixed, ATLAS performs similarly to Terra.

ATLAS is built using Makefiles, C, and assembly programs generated with a custom

preprocessor. The Makefiles orchestrate the creation and compilation of the code with dif-

ferent parameters. Code generation is accomplished through a combination of preprocessors

and cross-compilation written in C. Auto-tuning is performed using a C harness for timing.

Different stages communicate through the file system.

CHAPTER 5. BUILDING DSLS 55

Naïve C 1x (37.5 sec)
Naïve Darkroom 1x (37.7 sec)

+ Vectorization 1.9x (19.6 sec)
+ Line buffering 2.38x (15.7 sec)

Fluid Simulation:

Image Pipeline:
Vectorized 1x (22.9ms)

Inlined 3.75x (6.1ms)
Area Filter:

Vectorized N2 1x (3.9ms)
Separated 1.9x (2.1ms)

Line Buffered 3.2x (1.3ms)

Figure 5.4: Speedup from choosing different Dark-
room schedules. All results on Intel Core i7-
3720QM, 1024x1024 floating point pixels.

The design of Terra allows all of these tasks to be accomplished in one system and as

a single process. Terra provides low-level features like vectors and prefetch instructions

needed for high-performance. In contrast, ATLAS needed to target x86 directly, which

resulted in a performance bug in SGEMM. Staging annotations made it easy to write

parameterized optimizations like register unrolling without requiring a separate preprocessor.

Interoperability through the FFI made it possible to generate and evaluate the kernels

in the same framework. Finally, since Terra code can run without Lua, the resulting

multiply routine can be written out as a library and used in other programs; or, for portable

performance, it can be shipped with the Lua runtime and auto-tuning can be performed

dynamically, something that is not possible with ATLAS.

5.2 DARKROOM: A STENCIL DSL FOR IMAGES

To test Terra’s suitability for DSL development, we created Darkroom1, a DSL for 2D stencil

computations on images. Stencil computations are grid-based kernels in which each value in

the grid is dependent on a small local neighborhood. They are used in image processing and

simulation. They present a number of opportunities for optimization, but when implemented

like the C code in Figure 5.3, it is difficult to exploit the performance opportunities. For

example, fusing two iterations of the outer loop in diffuse may reduce memory traffic, but

testing this hypothesis can require significant code changes. Figure 5.3 shows the same

diffuse operation written in Darkroom. Rather than specify loop nests directly, Darkroom

programs are written using image-wide operators. For instance, f(-1,0) + f(0,1) adds the

1In our paper [23], this DSL was referred to as Orion.

CHAPTER 5. BUILDING DSLS 56

image f translated by −1 in x to f translated by 1 in y. The offsets must be constants, which

guarantees the function is a stencil.

We base our design on Halide [61], a language for the related domain of image processing.

The user guides optimization by specifying a schedule. A Darkroom expression can be

materialized, inlined, or line buffered. Materialized expressions are computed once and

stored to main memory. Inlined expressions are recomputed once for each output pixel.

Line buffering is a compromise in which computations are interleaved and the necessary

intermediates are stored in a scratchpad. Additionally, Darkroom can vectorize any schedule

using Terra’s vector instructions. Being able to easily change the schedule is a powerful

abstraction. To demonstrate this, we implemented a pipeline of four simple memory-bound

point-wise image processing kernels (blacklevel offset, brightness, clamp, and invert). In a

traditional image processing library, these functions would likely be written separately so

they could be composed in an arbitrary order. In Darkroom, the schedule can be changed

independently of the algorithm. For example, we can choose to inline the four functions,

reducing the accesses to main memory by a factor of 4 and resulting in a 3.8x speedup.

To implement Darkroom, we use operator overloading on Lua tables to build Darkroom

expressions. These operators build an intermediate representation (IR) suitable for optimiza-

tion. The user calls darkroom.compile to compile the IR into a Terra function. We then use

Terra’s staging annotations to generate the code for the inner loop.

To test that the code generated by Terra performs well, we implemented an area filter

and a fluid simulation. We compare each to equivalents hand-written in C. The area filter

is a common image processing operation that averages the pixels in a 5x5 window. Area

filtering is separable, so it is normally implemented as a 1-D area filter first in Y then in

X . We compare against a hand-written C implementation with results in Figure 5.4. Given

a schedule that matches the C code, Darkroom performs similarly, running 10% faster.

Enabling vectorization in Darkroom yields a 2.8x speedup over C, and then line buffering

between the passes in Y and X yields a 3.4x speedup. Explicit vectors are not part of

standard C, and writing line-buffering code is tedious and breaks composability, so these

optimizations are not normally done when writing code by hand.

We also implemented a simple real-time 2D fluid simulation based on an existing C

implementation [66]. We made small modifications to the reference code to make it suitable

CHAPTER 5. BUILDING DSLS 57

to a stencil language. We converted the solver from Gauss-Seidel to Gauss-Jacobi so that

images are not modified in place and use a zero boundary condition since our implementation

does not yet support more complicated boundaries. We also corrected a performance bug in

the code caused by looping over images in row-major order that were stored in column-major

order. We compare against the corrected version. With a matching schedule, Darkroom

performs the same as reference C. Enabling 4-wide vectorization results in a 1.9x speedup

over the matching code, making each materialized operation memory bound. Finally, line

buffering pairs of the iterations of the diffuse and project kernels yielded a 1.25x speedup

on the vectorized code, or a 2.3x total speedup over the reference C code.

A number of features of Terra facilitated the implementation of Darkroom. High-level

features of Lua made it easy to express transformations on the Darkroom IR. Terra’s built-in

support of vector types made it easy to vectorize the compiler by simply changing scalar

types into vectors. Backwards compatibility with C allowed us to link to an existing library

for loading images. The FFI made it possible to use Lua to implement non-performance-

critical code such as the kernel scheduler, saving development time. Furthermore, the fluid

simulation that we ported included a semi-Lagrangian advection step, which is not a stencil

computation. In this case, we were able to allow the user to pass a Terra function to do

the necessary computation, and easily integrate this code with generated Terra code. This

interoperability would have been more difficult to accomplish with a stand-alone compiler.

In contrast to Darkroom, Halide requires three different languages to provide the same

functionality as Darkroom. It uses C++ for the frontend, ML for manipulating the IR,

and LLVM for code generation [61]. When compared running the same deblurring al-

gorithm both Darkroom and Halide perform almost equivalently (.35 and .37 seconds

respectively) [37]. From our experience implementing Darkroom, using Lua to stage Terra

code accomplishes the same tasks, but results in a simpler architecture.

5.3 LISZT: A DSL FOR PHYSICAL SIMULATION

Liszt is a physical simulation language whose optimizations were covered in Section 2.1.3.

The original version of Liszt [22] produced high performance code, but it is architected out

of several technologies, making it hard to maintain. It uses Scala as a frontend and for its

CHAPTER 5. BUILDING DSLS 58

offline compiler implementation. The compiler uses a source-to-source translation step to

convert Liszt’s IR into C++ code. A runtime is written separately in C++, which provides

common functionality that the generated code could use, such as allocating fields or loading

meshes.

We implemented a new version of Liszt. We use Lua to write the compiler transforma-

tions and manage the DSL’s state, and we use Terra as the target of code generation and as

the language for writing high-performance libraries for working with mesh data structures.

Using Lua and Terra as a replacement for two separate technologies removed complexity

from Liszt’s design. The original offline compiler required careful design decisions that

were easier to make in the Lua-Terra version. Frequently, we needed to decide whether code

for part of the Liszt program should go in a runtime function or be part of the code generated

by the compiler. Writing to Liszt’s fields are a good illustration of the problem. Fields are

parameterized over the type of mesh element (e.g., vertex or edge), and the kind of data it

stores (e.g., float, int, vector). Writes might be a simple assignment, or a reduction operator

such as +=. Liszt runs on both CPUs or GPUs and the field representation on each is different

so the code to write the fields differs. One option is to generate different code for all of these

options in the code generator. This design provides maximum control and efficiency, but

results in lots of implementation details being embedded as strings in the source-to-source

code generator. Another option is to make all of these decisions in a runtime function that is

provided dynamic tags describing what operation to perform. This design is easier to read

and understand, but can incur runtime overhead if the offline compiler does not inline and

optimize the calls into the runtime (a form of partial evaluation).

After multiple iterations on design, the best solution for generating field writes is a mix

of the two extremes. But the original architecture of Liszt made these decisions difficult

to prototype. Changing where code was created required moving it from string templates

in a Scala file to C functions in the runtime. The alternative in Lua-Terra is much simpler.

Different fragments of code are first-class Lua objects, and can be managed by the code

generator. A runtime function that made decisions about fields would exist as an object in

the Lua environment. If the programmer wanted to change it to a template that specialized

some decisions, that object could simply be replaced with a Terra macro that generated the

appropriate code. Furthermore, since both exist in the same process, it is easy to debug the

CHAPTER 5. BUILDING DSLS 59

result by introspection. It is also impossible to generate code that refers to a non-existent

runtime function, something that could easily happen when generating string templates.

Since the original Liszt implementation generates C++, and Terra uses the same compiler

pipeline as traditional C compilers, the performance of Terra-generated code is comparable

to the original version of Liszt. Using Lua-Terra instead of separate processes also makes

it easier to integrate Liszt into existing applications, and to use externally created libraries

of C code. Our interface for language extensions also makes it easier to embed the Liszt

frontend in Lua, allowing the offloading of many language features to the Lua runtime.

5.4 QUICKSAND: A DSL FOR PROBABILISTIC PROGRAMMING

Probabilistic programming languages (PPLs) are a general-purpose modeling tool for arti-

ficial intelligence, machine learning, and statistics [33, 46]. Probabilistic programs define

probability distributions: the program makes random choices (such as flipping a weighted

coin), and running the program produces a sample from the marginal distribution implied by

those choices. By conditioning the output of the program on a predicate, programmers can

pose interesting queries of their models.

A universal PPL such as the probabilistic Scheme dialect Church can describe any

Turing-complete, stochastic process, including recursive processes and distributions with

infinite support [33]. These languages are expressive, but their implementations are slower

than equivalent hand-coded models. One reason for the performance gap is algorithmic:

inference algorithms (i.e., implementations of conditioning semantics) must be general-

purpose and cannot easily optimize for the statistical traits of specific models. Another

reason is computational: probabilistic inference is a numerically-intensive task, but existing

universal PPL implementations are high-level and dynamically-typed, making it harder to

control their performance.

Addressing this second problem, we implemented a Church-style universal PPL, Quick-

sand, as a library in Terra. The query “What is the chance that a patient has lung cancer,

CHAPTER 5. BUILDING DSLS 60

id = 0
function pfn(fn)

return macro(function(self, ...)
id = id + 1

5 local args = terralib.newlist({...})
local argIntermediates = args:map(

function(a) return symbol(a:gettype()) end)
return quote

var [argIntermediates] = [args]
10 callsiteStack:push(id)

var result = fn([argIntermediates])
callsiteStack:pop()

in result end
end)

15 end

Figure 5.5: A higher-order Lua function that wraps a Terra function for use in MCMC inference.

given that she has a cough?” in a simplistic medical diagnosis model is expressed in our

Terra-based language as:

terra()
var lungcancer = flip(0.01)
var cold = flip(0.2)
var cough = lungcancer or cold

5 condition(cough)
return lungcancer

end

In contrast to other DSLs, Quicksand is written in Terra functions directly using special

type-macros like flip and condition. The functionality of these operators is difficult to

implement directly in a low-level language such as C++ because it lacks sophisticated

meta-programming. This is illustrated in a few places in Quicksand’s design.

First, the Markov Chain Monte Carlo (MCMC) inference algorithm used to sample

from conditioned programs requires that every random choice in the program be given an

address that is uniquely determined by the choice’s structural position in program execution

traces [78]. Typically, addresses are managed with a global stack of function callsites: every

function call pushes a unique ID on entry and pops the stack on exit. When a random choice

is invoked, the sequence of IDs on the stack plus the number of times that sequence has

occurred in the current program execution uniquely identifies the random choice.

We implement this behavior using type-macros in Figure 5.5. The Lua function pfn

wraps a Terra function with macro code that manages the address stack. Critically, the macro

is executed during typechecking, so each callsite of the function receives a distinct ID.

CHAPTER 5. BUILDING DSLS 61

Managing random choice addresses is more complicated in non-staged languages. Previ-

ous implementations of universal PPLs use either a custom interpreter or a source-to-source

transformation [33, 78]. Interpretation is too slow for our performance goals, and source

transformation requires a complete parse of the program, which is a steep price to pay for

embedding a universal PPL in most low-level languages.

We must also define the behavior of primitive random choices (e.g., flip). These

constructs must sample a value from an underlying probability distribution (e.g., Bernoulli),

compute the probability of their values under the distribution, and propose changes to

their values for use in MCMC inference. Our implementation exposes a Lua function

makeRandomChoice for this purpose:

flip = makeRandomChoice(
-- Sampling function
terra(p: double) return (rand() < p) end,
-- Probability function

5 terra(val: bool, p: double)
if val then return log(p) else return log(1-p) end

end,
-- Proposal function
terra(currval: bool, p: double) return (not currval) end)

Internally, makeRandomChoice defines a RCRecord type that records the value and param-

eters for each invocation of this random choice. The entries of RCRecord are determined

programmatically by examining the argument and return types of the sampling function.

makeRandomChoice returns a Pfn that constructs an instance of RCRecord and stores it in a global

table mapping random choice addresses to values.

Because Terra allows reflection on functions to drive the generation of new types, we can

abstract the details of the random choice as a single library routine. The user only needs to

provide three functions, which can be overloaded to handle random choices taking different

parameter types. Without the ability to generate code with arbitrary types the behavior of

every random choice would be implemented independently for each set of parameter types,

or would require sophisticated parameterized typing.

We evaluate the performance of our Quicksand implementation on three example pro-

grams: conditioned sampling of a length-100 sequence from a Hidden Markov Model

with 9 hidden states and 10 possible observations (HMM); learning the parameters of a

three-component Gaussian Mixture Model from 1000 data points (GMM); and simulating

CHAPTER 5. BUILDING DSLS 62

0 5 10 15

HMM

GMM

Ising

Wall Clock Time (sec)

Terra PPL V8JS PPL Bher Church

40.97

Figure 5.6: Performance of different prob-
abilistic programming languages on three
example tasks. Javascript runs an order of
magnitude faster than Bher, and our Terra
implementation runs an order of magni-
tude faster than that.

a 1000-site one-dimensional Ising model (Ising). All examples were run for 5000 itera-

tions of MCMC. We compare performance to that of Bher (a compiled implementation of

Church [78]) and a probabilistic dialect of V8 Javascript actively used in teaching. We only

evaluate Church on the first example because the other two require language primitives not

available in Church.

Results are shown in Figure 5.6. The Javascript implementation is an order of magnitude

faster than Bher on the HMM example. This difference is due in part to V8’s optimization

engine, and also to the overhead of Bher’s purely functional data structures (particularly

the trie it uses for random choice addressing). Our Terra implementation is, on average, an

additional order of magnitude faster than Javascript. Terra’s static typing allows up-front

compilation of much more monomorphic code, reducing the number of virtual function calls

as well as boxing/unboxing overhead.

CHAPTER 6

GENERATING TYPES WITH EXOTYPES

We have already seen that for code generators, the two-language design produces code that

is fast and concise. Many of these applications, such as Darkroom or Liszt, include their

own frontend syntax and focus on optimizing the composition of language operators. But

others, such as ATLAS or Quicksand, expose a simpler API to the end users. One way to

support this kind of simpler library is to build code generation into the way Terra’s type

system works.

Object-oriented systems associate method calls with particular types, providing a way to

abstractly work with data. For instance, in the method invocation student:serializeTo(buffer),

the programmer can still use the serialization method even if they are not aware of the details

of the implementation. This abstraction layer of types and methods allows the library writer

to use as much complexity as they want when implementing the behavior. For instance, they

can use reflection and code generation to compile the serialization method on demand. This

complexity does not change the interface that the user of the library sees.

If a library writer can use types that do code generation internally, it allows users of the

types who are not necessarily aware of the techniques of staged programming to still benefit

from the approach. This technique is sometimes referred to as an active library since the

types in the library are internally doing dynamic compilation [20].

Unfortunately, active libraries are not widely used. One reason is that it is difficult

to deploy them in current languages. Static and dynamic approaches to type checking of

these libraries present different challenges. Statically-typed languages make it difficult or

impossible to do arbitrary computation on types. Typically, the amount of computation on

types is limited to what can be expressed in the type system itself, for example inheritance

63

CHAPTER 6. GENERATING TYPES WITH EXOTYPES 64

or parameterization. Even in cases like template meta-programming in C++ where many

computations are possible, the interface for doing sophisticated computation is so complex

that it is not typically used. Active libraries for many statically-typed languages instead

resort to pre-processors like Google’s protocol buffers [34], which provide serialization for

C++ by generating a library of C++ types based on an external description.

In contrast, dynamically-typed languages often provide the flexibility necessary to do

reflection and provide generic implementations of types. One reason is that many dynamic

languages such as Lisp, Python, or Lua support so-called meta-object protocols, meaning

there is a mechanism for the user to programmatically modify the semantics and implemen-

tation of user-defined types [3, 40, 45]. Higher-level policies such as inheritance or accessor

permissions can be defined on top of these mechanisms, giving the programmer great

flexibility in defining object behavior, including providing their own generated behavior.

However, when an object’s behavior and in-memory representation are defined dynam-

ically, it is difficult to perform some optimizations, resulting in performance losses. For

instance, in Section 6.3, we implement a microbenchmark of an Array object that forwards

methods to each of its elements. The JIT-compiled Lua version runs 18 times slower than

equivalent C++ code due to object boxing and dynamic dispatch. JIT compilers can opti-

mize some dynamic patterns [21, 38], but it is difficult to know if a pattern will result in

high-performance code.

The two-language design of Lua and Terra is nether a fully dynamically-typed nor

statically-typed language. We can use this hybrid design to combine the advantages of each

system to make it possible to do arbitrary computation on types but avoid the overhead

of runtime checks. This design makes it easy to create active libraries of concise, highly

optimized, and composable types.

Our approach is to extend the typical typechecking process that statically-typed lan-

guages undergo to include user-defined computation on types. When Terra’s typechecker

needs to know how a user-defined type should behave (e.g. what does it mean to call method

serializeTo on object student?), it calls a Lua function provided by the definer of the type.

That function can do arbitrary computation on the type, generating code that implements the

behavior, or describing other aspects of the type such as its memory layout. The result is

passed back to the typechecker. We call these types exotypes since they are defined in a Lua

CHAPTER 6. GENERATING TYPES WITH EXOTYPES 65

API that is external to Terra itself, which differs from other statically-typed languages that

include their own statements for defining types.

Exotypes combine meta-object protocols with multi-stage programming to give the

programmer more control over the code’s performance. Rather than define an object’s

behavior as a function that is evaluated at runtime, an exotype describes the behavior using

staged programming during typechecking. This design allows the programmer to optimize

behavior and memory layout before any instances of the object are used.

As a concrete example, consider joining two different employee databases that both

contain an “employee ID” field. To implement the join efficiently in a low-level language,

the structure of both databases must be described in code beforehand. In a dynamic language,

the structure can be deduced at runtime by reading a database schema, but the programmer

has less control over the layout of the objects. They may be boxed, adding an extra level

of indirection, and their fields may be stored in hash-tables rather than linearly in memory.

With exotypes, the database structure can be read at runtime while retaining a compact object

layout. The first stage of the program reads the database schema and generates exotypes

with fixed, compact data layouts. With the object layout known, the second stage actually

compiles and runs the join, exploiting the compact layout of the generated types to store

objects unboxed and access them with simple pointer arithmetic.

We introduce the concept of an exotype and present a concrete implementation based on

programmatically-defined properties queried during typechecking. We show that high-level

type features such as type constructors can be created with exotypes. In the next chapter, we

present formal semantics for the way that Terra’s typechecker interacts with Lua when eval-

uating exotype properties. When specified in a well-behaved manner, independently-defined

type constructors can be composed. In Chapter 8, we evaluate the use of exotypes in several

performance-critical scenarios: class-systems, database layout, automatic differentiation,

serialization, and dynamic assembly.

6.1 META-OBJECT PROTOCOLS

Modern dynamic languages allow programmatic definition of object behavior. For instance,

Python provides metaclasses which can override the default behaviors of method definition

CHAPTER 6. GENERATING TYPES WITH EXOTYPES 66

and invocation, and CLOS allows for the dynamic specification of all behavior of objects

using so-called meta-object protocols [45, 3]. The Lua language uses a meta-object protocol

based on metatables to extend the normal semantics of objects [40]. Metatables are Lua

tables containing functions that define new semantics for default behaviors. For instance,

we can change the behavior of the table indexing operator obj.field by setting the __index

field in a metatable:

local myobj = {}
setmetatable(myobj,
{ __index = function(self,field) return field end })

print(myobj.somefield) -- prints "somefield"

When the expression myobj.somefield is evaluated, the Lua interpreter will look for the

key "somefield" in the myobj table. If the key does not exist, it will instead call the __index

function of myobj’s metatable passing the object and the missing key as arguments and

returning the result as the value of the original expression. Metatables also contain other

functions that similarly define other behaviors such as function application and arithmetic

operators.

We use a meta-object protocol defined using Lua tables to describe the behavior of

exotypes. However, the behaviors in exotypes are expressed using staged programming and

queried before the code that uses the objects is compiled. While most meta-object protocols

are applied dynamically, some, such as those in Open-C++, are applied statically during

compilation [14]. In these systems, no new types are defined at runtime. Exotypes blend

the two approaches. New types can be created and compiled as the program runs, but since

exotype behavior is described with staged programming of a low-level language (Terra), the

programmer retains control over low-level representation and implementation.

6.2 EXOTYPES INTERFACE

We define an exotype as a tuple of functions which will be called during typechecking to

define the layout and behavior of a user-defined type:

(()→ MemoryLayout) ∗ (Op0 → Quote) ∗ ... ∗ (Opn → Quote)

CHAPTER 6. GENERATING TYPES WITH EXOTYPES 67

Terra
Evaluation

input

output

Lua value (converted to Terra)

Terra value (converted to Lua)

Call Lua function from Terra

Call Terra function (that is already compiled)

Terra
Specialization

input

output

Value spliced in Terra expression
(normally a quote)

Escape operator, e.g. [lua_exp]

Specialized Terra code (untyped)

terra,function or quote,operator

Typed and compiled Terra code

Terra
Typechecking/
Compilation

input

output

About to call Terra function for the first time

Value spliced to implement macro/
Exotype (normally a quote)

Type macro/Exotype property lookup

Lu
a

Ev
al

ua
tio

n

Terra Typechecking/
Compilation

input:

terra,example()
,,var,s,:,Student2
,,s:setname("bob")
,,s:setyear(4)
,,s:print()
end

terra,example()
,,var,s,:,Student2
,,s.name,=,"bob"
,,s.year,=,4
,,Student2.methods.print(&s)
end

output:

terra,example()
,,
,,var,s,:,Student2
,,
,,s:setname("bob")
,,
,,s:setyear(4)
,,
,,s:print()

end __getmethod("print")

quote,Student2.methods.print(&s),end

__getentries(), reads data.csv file
to generate layout: year:

int
name:

rawstring

__getmethod("setname"), not found

,quote,s.name,=,"bob",end

__methodmissing("setname",`s,`"bob")

__getmethod("setyear"), not found

,quote,s.year,=,4,end

__methodmissing("setyear",`s,`4)

Property Queries (evaluated in Lua):

Figure 6.1: Phases of evaluation of a Lua-Terra program with exotypes (left), and an example of the
typechecking process for the Student2 exotype (right). New interactions used to implement exotypes
are highlighted in red.

PROPERTY OPERATION

__getentries() Defines the in-memory representation
of T as a list of named fields.

obj.myfield

__getmethod(name) Gets the static implementation of
name for type T.

obj:mymethod()

__add(lhs,rhs) Defines the behavior of the + operator
on the object (lhs or rhs has type T).

obj + 1

__cast(from,to,exp) Defines how to convert expres-
sion exp of type from to type to.

[int](obj)

__apply(arg1,...,argN) Defines how to apply an in-
stance of T to a list of arguments.

obj(1.0, true)

Figure 6.2: A selection of exotype properties and example operations that cause the type checker to
invoke them.

The first function computes the in-memory layout of a type, which is specified with

MemoryLayout. The remaining functions describe the semantics of the type when it appears

in a primitive operation of the language such as a method invocation, binary operator, or

cast. Given an instance of a primitive operation (Opi), the corresponding function returns a

Quote, a concrete expression that implements the instance. These functions are evaluated by

CHAPTER 6. GENERATING TYPES WITH EXOTYPES 68

the typechecker whenever it encounters an operation on an exotype and may reference and

modify program state. We call these functions property functions and the results of these

functions properties of the type.

In the remainder of this section, we discuss an implementation of exotypes that uses Lua

to define types in Terra, and type-macros to define the type’s behavior. In this implementation,

exotypes are the only mechanism for creating user-defined Terra types. Terra’s struct syntax

to define types is implemented via desugaring to exotypes. An exotype is created via an API

call in Lua:

Student = terralib.types.newstruct()

Property functions are defined in the type’s metamethods table. The in-memory layout of a

type is specified with __getentries. For instance, the Student type can be defined to have

two fields – a name and a class year:

Student.metamethods.__getentries = function()
return { {field = "name", type = rawstring },

{field = "year", type = int} }
end

Since properties are defined programmatically, we are not limited to explicitly enumer-

ated entries. A type can define its layout by querying the layout of another type or accessing

external information. For example, we define Student2 by reading a comma-separated value

file of student data and inferring the type of the fields from the data:

Student2.metamethods.__getentries = function()
local file = io.open("data.csv","r") --e.g. name,year
local titles = split(",",file:read("*line"))
local data = split(",",file:read("*line"))

5 local entries = {}
for i,field in ipairs(titles) do --loop over entries in titles

--is the data a string or an integer?
local type = tonumber(data[i]) and int or rawstring
entries[i] = { field = field, type = type}

10 end
return entries

end

To keep code concise, we include simple default implementations. For __getentries in

type T, we return T.entries, which is automatically populated by Terra’s struct statement:

struct Student3 { name : rawstring, year : int }

Semantics are also specified with property functions in the metamethods table. When a

method is invoked on an instance of type T (e.g., t:mymethod(arg)), the implementation of

CHAPTER 6. GENERATING TYPES WITH EXOTYPES 69

the method is defined using the __getmethod property of type T. By default it looks up the

method in the table T.methods. But if the method being invoked does not exist, it will query

the __methodmissing property. Here is an example of using methods with the Student2 type,

in which we use the __methodmissing property to create setter methods (e.g., setname) for

each field.

Student2.methods.print = terra(self : &Student2)
C.printf("%s in year %d\n",self.name,self.year)

end
Student2.metamethods.__methodmissing = macro(function(name,self,arg)

5 local field = string.match(name,"set(.*)")
if field then
return quote self.[field] = arg end

end
error("unknown method: "..name)

10 end)

The typechecking process for example code that uses Student2 is illustrated in Figure 6.1 (right).

When the typechecker sees an instantiation of the type, it queries __getentries to get its

memory layout. For Student2 this will load the data.csv file to determine the layout. If

the typechecker sees a call to a method like setname which is not in Student2.methods, then

the __getmethod property will query the __methodmissing property for its behavior. Since

__methodmissing is defined as a type-macro, it will be evaluated during the typechecking

process to produce a Terra quotation that implements the behavior.

Other properties define the behaviors for built-in operators (e.g., __add for +), and how to

convert between user-defined types (__cast). Figure 6.2 lists some common properties and

the operations they define.

Defining behavior programmatically allows generic behaviors to be expressed concisely.

For instance, we can interface with externally-defined class systems. Objective-C is an

extension to C that adds objects similar in behavior to Smalltalk. We can embed Objective-C

objects by creating an exotype ObjC wrapper as shown in Figure 6.3. When the typechecker

sees a method called on an ObjC object (e.g., obj:init(1)), its __methodmissing property will

insert code to call the Objective-C runtime API, e.g: C.objc_msgSend(obj.handle,init_name,1)

Staging of properties gives the programmer control over the performance of the type.

Since behavior can be defined in type-macros that are evaluated during typechecking,

information known statically can be pre-computed. In the ObjC type, the method name sel is

CHAPTER 6. GENERATING TYPES WITH EXOTYPES 70

C = terralib.includec("objc/message.h") --include ObjC runtime
struct ObjC { handle : &C.objc_object } --define wrapper for ObjC types
ObjC.metamethods.__methodmissing = macro(function(sel,obj,...)

local arguments = {...}
5 local sel = C.sel_registerName(sanitizeSelector(sel,#arguments))

--generate expression to implement method call ’sel’
return 8ObjC { C.objc_msgSend([obj].handle,[sel],[arguments]) }

end)

Figure 6.3: Embedding Objective-C objects in Terra using exotypes.

known during typechecking, so we can pre-compute the Objective-C method selector (line

5), which makes the expression executed at runtime (line 7) faster.

Furthermore, __getentries provides low-level control of the memory layout of a type

similar to that of C structs. Types are laid out linearly by default and can also be overlapped

in unions. This control allows __getentries to describe more efficient memory layouts. We

implemented Student objects individually, as if they were entries in a row-oriented database.

But we can change __getentries to store students as entries in a column-oriented database

which may be more efficient.

6.3 EXAMPLE: ARRAY(T)

Exotypes allow us to express the generic behavior of objects in a way similar to meta-object

protocols in dynamic languages while still achieving the performance of low-level languages.

Consider how to represent the type constructor Array(·), which takes a type T and produces a

new type, Array(T), that holds a collection of Ts. In addition, for each method m of T, Array(T)

has its own method m that invokes the original m on each member of the array. This is a Proxy

design pattern [32], where methods on one object are forwarded to methods on another.

This specification is different from that in most functional languages, where this behavior

is implemented as a higher-order map function but is widely used in array-based languages

such as APL and R to concisely operate on collections.

Proxy patterns are difficult to express generically in many modern languages. Despite

the fact that proxies are a common pattern in object-oriented computing, programmers

using C++ or Java must duplicate the method names of the object in the proxy. Some

languages have added more advanced features to support proxies and other design patterns.

CHAPTER 6. GENERATING TYPES WITH EXOTYPES 71

local function createmethod(self,methodname)
local impl = function(self,...)

for i,element in ipairs(self.data) do
element[methodname](element,...)

5 end
end
self[methodname] = impl --cache result
return impl

end
10 local function createarray()

local arr = {data = terralib.newlist()}
return setmetatable(arr, { __index = createmethod })

end

Figure 6.4: An implementation of the array constructor in Lua

For instance, Hannemann and Kiczales show that AspectJ can automate some aspects of

proxies, but not in a way that is generically reusable [36]. Expressing proxies in Scala

requires the use of advanced features such as its macro facilities and Dynamic type trait that

were only added in version 2.10 of the language [9].

In contrast, proxies are relatively easy to implement in dynamic languages. As an

example, Array(·) can be implemented concisely using metatables in Lua as shown in

Figure 6.4. When a missing method of an array is referenced, the metatable’s __index field

(line 12) causes createmethod to be called, which generates an implementation for the method

(line 2) that loops over the objects in the array forwarding the method call to each.

While simple, it is hard to control the performance of the object. Methods are looked up

dynamically on each object in the array. The objects themselves are boxed, limiting memory

locality. We implemented a micro-benchmark that invoked a simple counter function on

each member of an array object and evaluated it using LuaJIT, a state-of-the-art tracing

JIT [2]. Despite tracing and compiling the loop, it still performs 18 times slower than

hand-written C++ that implements the proxy by hand due to the overhead of guards and

unboxing of objects.

With exotypes, we can specify Array(·) almost as concisely as the Lua code, but staging

of its behavior and layout allows us to remove the inefficiencies, as shown in Figure 6.5.

The __methodmissing type macro performs a similar purpose to the createmethod function in

the Lua example. It generates the code that loops over elements of the array and forwards

CHAPTER 6. GENERATING TYPES WITH EXOTYPES 72

Array = memoize(function(T)
local struct ArrayImpl {

data : &T,
N : int

5 }
ArrayImpl.metamethods.__methodmissing =
macro(function(methodname,selfexp,...)

local args = terralib.newlist {...}
return quote

10 var self = selfexp
for i = 0,self.N do
self.data[i]:[methodname]([args])

end
end

15 end)
--other implementation like :init()
return ArrayImpl

end)

Figure 6.5: An implementation of the array constructor using Exotypes in Terra

the method call, but it does so during typechecking rather than evaluation. Furthermore, the

declaration of ArrayImpl provides a concrete layout for the type before it is compiled.

Since the layout of ArrayImpl is described before compilation, we can store the array’s

T objects unboxed rather than as an array of pointers. Furthermore, the forwarded calls to

methodname on line 12 are resolved at compile time and inlined. In our micro-benchmark,

this staging allowed us to generically generate the same code as the hand-written C++ proxy,

and run at the same speed.

6.4 COMPOSABILITY

It is possible to apply type constructors such as Array(·) to other programmatically-defined

exotypes. To support composability, we allow an implementation of an exotype to query

the properties of other exotypes. However, type hierarchies are often recursive, making it

possible for multiple types to mutually depend on properties of each other. Consider the

following Tree type:

struct Tree { data : int, children : Array(Tree) }
Tree.methods.print = terra(self : &Tree) : {}

print(self.data)
self.children:print()

5 end

CHAPTER 6. GENERATING TYPES WITH EXOTYPES 73

The type Tree contains a type Array(Tree) that is defined programmatically with the Array(·)
function using Tree itself as an argument. The in-memory layout of Tree depends on the

layout of Array(Tree). Similarly, the method print of Array(Tree) depends on the method

print in Tree. (The layout of Array(Tree) does not depend on Tree, since it only stores a

pointer to it.)

Since the dependencies are for different properties, there is no actual circular dependence

between the types. The required type information can be determined from the specification

in steps. First, the in-memory layout is determined for Array(Tree) and then Tree, then the

two methods are defined, first print for Tree and finally print for Array(Tree).

The layout and method definitions of Array(Tree) and Tree must be interleaved to avoid

causing a cyclic dependence. In recursive cases similar to this example, eagerly defining

all the properties of one type before another can introduce a false dependency. However,

interleaving the definition of Array(Tree) and Tree makes it impossible to define a single type

constructor function Array(·) that completely defines the properties of a new type. These

type-constructors are desirable because they can be provided as libraries and composed with

other exotypes without requiring the caller to understand the specific implementation.

Our interface to exotypes resolves this problem by defining each property separately

as a lazily evaluated function. The compiler queries an individual property of a type only

when it is needed during typechecking. Evaluating properties separately and lazily allows

the compiler to interleave property queries from different types while allowing them to be

specified entirely for one type in a single function. Since typechecking and compilation of

functions are also performed lazily, type properties are not requested earlier than needed.

In an earlier version of Terra, types were described using eagerly built tables that

specified the layout and methods, in addition to ad-hoc user-defined callbacks invoked

by the typechecker. Our experience with issues causing subtle cycles while building type

constructors such as Array(·) led us to replace this design with exotypes based on lazily

queried properties.

Lazily queried properties also make it possible to create types that have an unbounded

number of behaviors. For instance, the Objective-C wrapper object presented previously can

respond to an unlimited number of messages. Despite being unbounded, these methods can

CHAPTER 6. GENERATING TYPES WITH EXOTYPES 74

compose with other type constructors. For instance, it is possible to make an Array(ObjC)

that stores OS windows and call windows:makeKeyAndOrderFront(nil) to focus them:

var windows : Array(ObjC)
var data = array(NSWindow:alloc(),NSWindow:alloc())
windows.data, windows.N = data, 2
windows:initWithContentRect_styleMask_backing_defer(

5 NSRect{{0,0},{10,10}},1,2,false)
windows:makeKeyAndOrderFront(nil)

In this case, the method makeKeyAndOrderFront is requested by the typechecker via the

__getmethod property of Array(ObjC), which will in turn query the __getmethod property of

ObjC to generate the method call. If Array required all methods to be available up-front, these

two types would not compose.

6.5 RELATED WORK

Previous work has proposed several optimizations to improve the performance of meta-object

protocols in dynamic languages. Most of this work has focused on dynamically-dispatched

protocols. For instance, Self, a language based on prototypes that was a precursor to

more general protocols, used polymorphic inline caching to optimize method dispatch [38].

Kiczales et al. propose a meta-object protocol for CLOS that uses memoization to speed up

method dispatch [45]. These approaches normally still incur some runtime overhead (e.g.,

to check the cache). In contrast, exotypes are executed during staged compilation, which

removes all runtime overhead that is not desired by the user.

There is some work on meta-object protocols that are evaluated statically [48, 14]. The

most popular of these approaches provides a meta-object protocol for C++, OpenC++, based

on source-to-source translation that allows a programmer to customize the semantics of C++

classes and functions using meta-classes that produce program fragments [14]. Since these

methods are applied ahead-of-time, they do not add any runtime overhead, but require that

all information used to create the type be available during compilation. In contrast, Terra is

a staged programming language, so new exotypes can be introduced during the execution of

a Lua-Terra program, and used in newly generated functions.

The original work on multi-stage programming such as MetaML or MetaOCaml focused

on generating new code rather than new types [73, 72]. But other systems extend this work

to object-oriented languages and provide some degree of staged type computation. Metaphor

CHAPTER 6. GENERATING TYPES WITH EXOTYPES 75

is a multi-stage language with support for type reflection on a built-in class system [55],

and Ur [15] allows first-class computation of records and names based on principles from

dependently-typed languages. Both try to guarantee that any code produced using staging

will be type correct, making it difficult to generate some types whose semantics depend on

dynamically provided data.

Other work on staged programming has focused on optimizations that can be applied to

object representations. Rompf et al. propose a system that implements internal compiler

passes that use staging to optimize the behavior and the layout of objects in an intermediate

representation suited to parallel programming embedded in the Scala language [63]. Type

signatures are originally described using Scala’s class system, but then their representation

and implementation can be optimized through staging. Exotypes additionally allow the

original type signatures and behavior to be described programmatically.

Several industrial languages also implement systems similar to exotypes [71, 9]. F#

allows type providers which can specify types and methods based on external data [71].

Like exotypes, these providers are queried lazily when an operation on the type is requested.

However, the goal of type providers is to safely type complex data representations, so

providers are normally compiled ahead-of-time rather than during program execution.

Furthermore, they normally describe types on top of the CLR’s object system rather than

have the programmer describe their own low-level implementation of types. In the Scala

language, the combination of compile-time macros and syntax sugar for supporting dynamic

objects allows some types to be described programmatically. Similar to F#, this approach

is normally applied ahead-of-time and built on top of JVM objects rather than a low-level

language. Other solutions are tailored to specific problems such as Google’s protocol buffers,

which provides a language for generating types with serialization behavior in several target

languages [34].

CHAPTER 7

FORMALIZATION OF EXOTYPES

The interaction between Terra and Lua during Terra’s typechecking phase adds additional

complexity to a typical typechecking process since it allows the execution of user-defined

code. This chapter provides additional semantics for the behavior of Lua and Terra during

this typechecking process. Because we want to reason about termination, we will use a

small step semantics for Lua-Terra that is adapted from the semantics presented earlier.

Complexity in typechecking exotypes arises from the evaluation of property functions.

Exotype property functions can directly query properties of other exotypes. Properties are

also queried indirectly by generated code. For instance, Array(ObjC) generates code that

calls a method on ObjC, querying its __getmethod property. It is possible for an exotype to

request a property resulting in true cyclic property lookups. In this case, our system emits

an error.1 Furthermore, because properties are arbitrary programs they are not guaranteed to

terminate and may have other undesirable behaviors.

In order to discuss some constraints that make properties well-behaved we formally

define the typechecking and property evaluation process for exotypes in Terra. We also

examine the consequences of relaxing these constraints to make exotypes more flexible.

Terra is evaluated in multiple phases. To keep our formalization of exotypes simple, we

focus on the typechecking and evaluation of Terra code with exotype property queries. In

particular, we omit the machinery for quotes, escapes, and specialization used to generate

Terra code, and assume that an environment P that holds a mapping between exotypes and

1Other behavior is possible. A recursively requested property could initially return the value > and iterate
property lookup until a fixed point is reached.

76

CHAPTER 7. FORMALIZATION OF EXOTYPES 77

Γ(
.
x) = T

P Γ ` .
x : T

(TYVAR)

P Γ ` .
e : T→ T′ P Γ ` .

e′ : T

P Γ ` .
e

.
e′ : T′

(TYAPP)

P Γ[
.
x← T] ` .

e : T′

P Γ ` λ.
x : T.

.
e : T→ T′

(TYFUN)
P Γ ` cInt : Int (TYINT)

P Γ ` .
e : T P runprop ∅ prop t layout −→∗L P T

P Γ ` ct
.
e : t

(TYCTOR)

P Γ ` .
e : t P runprop ∅ prop t layout −→∗L P T

P Γ ` unwrap
.
e : T

(TYUNWRAP)

P Γ ` .
e : t P Γ ` .

e′ : T′

P runprop ∅ prop t apply T′ −→∗L P
.
e′′

P Γ `′ .e′′ : t→ T′ → T′′

P Γ ` .
e

.
e′ : T′′

(TYEXOAPP)

Figure 7.1: Typing rules, P Γ ` .
e : T, for ExoTerra expressions. `′ refers to the same rules but with

TYEXOAPP removed.

their property functions is already constructed. This environment would normally be created

in Lua by API calls that create types and set entries in their metamethods table.

We model the Terra language with exotypes (ExoTerra) as the typed lambda calculus:

.
e ::= λ

.
x : T.

.
e | .

x | .
e

.
e | cInt | ct

.
e | unwrap .

e

T ::= Int | T→ T | t
.
v ::= cInt | λ

.
x : T.

.
e | ct

.
v

Types are either a base type Int, a function T→ T, or an exotype represented by a type

identifier t. An exotype constructor (ct
.
e) takes an expression .

e to initialize the internal

value of the exotype, and unwrap
.
e retrieves the internal value. The environment P holds a

mapping from an exotype t to its property lookup function, P(t) = λx.e. In real Terra, each

property is a different function, but this is only for convenience. In our formalism, the kind

of property is passed as an argument. The property lookup functions are written in ExoLua,

CHAPTER 7. FORMALIZATION OF EXOTYPES 78

.
C ::= • |

.
C

.
e | .

v
.
C | ct

.
C | unwrap

.
C

P
.
e −→T P

.
e′

P
.
C[

.
e] −→T P

.
C[

.
e′]

(TCTX)

P (λ
.
x : T.

.
e)

.
v −→T P

.
e[

.
v/

.
x]

(TAPP)
P unwrap ct

.
v −→T P

.
v

(TUNWRAP)

P ∅ ` .
v′ : T runprop ∅ prop t apply T −→∗L P

.
e

P (ct
.
v)

.
v′ −→T P

.
e (ct

.
v)

.
v′

(TEXOAPP)

Figure 7.2: Rules, P
.
e −→T P

.
e
′
, for evaluating ExoTerra expressions.

C ::= • | C e | v C | prop v0...vi−1 C ei+1...en | runprop S C

C ′ ::= • | C ′ e | v C ′ | prop v0...vi−1 C
′ ei+1...en

P e
L−→ P e′

P C[e]
L−→ P C[e′]

(LCTX)

C 6= •

P C[error]
L−→ P error

(LERROR)

P (λx.e) v
L−→ P e[v/x]

(LAPP)

P runprop S v
L−→ P v

(LRUNPROP)

(v0, ..., vn) ∈ S

P runprop S C ′[prop v0...vn]
L−→ P error

(LPROPCYCLE)

(t, v1, ..., vn) 6∈ S P(t) = λx.e

P runprop S C ′[prop t v1...vn]
L−→

P runprop S C ′[runprop (S ∪ {(t, v1, ..., vn)}) ((λx.e) v1...vn)]

(LPROP)

Figure 7.3: The rules, P e
L−→ P e′, for evaluating ExoLua.

CHAPTER 7. FORMALIZATION OF EXOTYPES 79

based on the untyped lambda calculus:

v ::= T | λx.e | .
e

e ::= v | e e | x | error | prop e0 ... en | runprop S e

ExoTerra types (T) and expressions (.e) are values in ExoLua so that they can be returned

from property queries. An exception expression, error, models the errors that occur when

we find a cyclic property query. The prop form is used to query a property of a type. Its first

argument e0 should evaluate to an exotype identifier t, and e1...en are additional arguments

describing the query. Properties are evaluated in the context of querying other properties.

This evaluation is formalized with the runprop S e expression, which evaluates a property

lookup expression e in the context S, where S is a set of properties. Each property in S is

already being queried when e is requested, and has the form (v0, ..., vn).

The rules for typechecking ExoTerra are shown in Figure 7.1. Rule TYCTOR illustrates

how the typechecking process queries the property function to retrieve information about

the type. In particular, TYCTOR asks the property function for the type of the concrete

value that will represent the exotype, and makes sure it matches the type of the expression

used to initialize it. Rule TYEXOAPP shows how a property function defines the behavior

of an exotype when it is applied like a function. It queries the exotype for its behavior

when applied to a value of type T′ (runprop ∅ prop λx.e apply T′). This query should

produce an implementation of behavior in the form of a function (.e′′). This function takes

the exotype .
e and the argument .

e′ to compute the value of the expression. We check .
e′′ with

modified typing rules `′ which omit TYEXOAPP. This change prevents the implementation
.
e′′ of an exotype from relying on exotype behavior itself, which can prevent typechecking

from terminating if, for instance, a query about exotype application included the same

application in its implementation. This behavior does not restrict what implementations can

be expressed, since the property generating the implementation function can query exotypes

for the appropriate behavior. Rules for evaluating ExoTerra are presented in Figure 7.2 and

show how the results of property queries will be applied to evaluate Terra code.

The rules for evaluating ExoLua are shown in Figure 7.3. Exceptions abort the computa-

tion (LERROR). The rules LPROP and LPROPCYCLE perform property queries. A property

CHAPTER 7. FORMALIZATION OF EXOTYPES 80

is computed as the nested application v0...vn, where v0 is the property lookup function for

type t. We say that the tuple (t, v1, ..., vn) is the property being queried. For example, the

expression P(t) apply T is a query of the (t, apply, T) property. Property statements (prop)

can only step inside of a runprop rule which specifies the set S of active property lookups.

If the same property is already being queried, it is in set S and will evaluate to error (rule

LPROPCYCLE), otherwise the property will be evaluated in a new runprop context that

records the fact that the property is currently being queried (rule LPROP). The values in

property queries can be functions; for the purposes of S, we consider two lambda terms

equal if they are equivalent up to alpha conversion. Given this formalization, we can define

sufficient conditions to ensure that a property lookup during typechecking will terminate:

• Individual termination. A property evaluation e in a program P C[runprop S e]

reduces to P C[v] or P error assuming that all of the subsequent property eval-

uations that it evaluates (P C[runprop S C ′[prop v′0, ...v
′
n]]) also reduce to values

(P C[runprop S C ′[v′]]) or P error.

• Closed universe. There exist a finite number N of unique properties of the form

(v0, ..., vm) that can be queried.

THEOREM Assuming individual termination and closed universe, a property lookup

runprop ∅ e will terminate with a value v or error.

The proof uses the fact that there is a bounded set of properties to show that a program

will eventually terminate or reach a cycle.

LEMMA Let En be a property evaluation with individual termination, P C[runprop Sn e],

that does not terminate, and |Sn| = n . ThenEn reduces to a property lookupEn −→∗L En+1,

with En+1 = P C[runprop Sn C
′[runprop Sn+1 e]] and |Sn+1| = n+ 1. Proof: from indi-

vidual termination, there must exist a sequence of steps En −→∗L En+1, where En+1 =

P C[runprop Sn C
′[prop v0...vm]] and En+1 does not terminate. Furthermore, the only rule

that applies to En+1 is LPROP, since LPROPCYCLE terminates with an error. Hence,

En+1
L−→ P C[runprop Sn C ′[runprop Sn+1 λx.e v1...vm]], where Sn+1 = Sn ∪

{(v0, ..., vm)}. From LPROP we know that the new property was not already in Sn, so

|Sn+1| = n+ 1.

CHAPTER 7. FORMALIZATION OF EXOTYPES 81

PROOF OF THEOREM Assume a property lookup P runprop ∅ e does not terminate.

By induction using the Lemma, evaluation will step to a property lookup EN+1 with

|SN+1| = N + 1 active properties. However, this contradicts the closed universe assumption,

since there are at most N properties that can be queried.

Removing either of these conditions allows properties to run forever. If we remove

individual termination then it is possible that an individual property lookup function will

not terminate. We expect programmers can debug issues that arise from non-termination

within a single property.

If we remove closed universe, it also possible to run forever. Consider a __getmethod

property that, for each method m, appends the string "foo" to m and tries to call this new

method on itself. This property will not terminate because the property being requested at

each depth is different from the previous properties. In our implementation, we track which

properties are being queried and throw an exception when a cycle is found. However, in

cases such as __getmethod, there are an unbounded number of possible method names, so

some property lookups may not terminate. In practice, we cap the depth of property lookup

and report a trace of property requests when the limit is reached to ensure termination.

The semantics of property lookup suggest a few design principles to ensure property

functions are composable. First, though Lua is not a purely functional language, property

lookup functions should be written in a functional style. The semantics show that in some

cases such as TYCTOR and TYUNWRAP, the same property will be evaluated multiple

times. Furthermore, typechecking occurs when a function is first used, so the order in which

type properties are evaluated is determined dynamically. Since the formal languages are

functional, they will always produce the same result regardless of when they are evaluated.

In our actual implementation where side effects are possible, we memoize property queries

to guarantee the same result. Since the writer of a property does not control when it is

queried, it is a good idea to write property functions so that they will produce the same result

regardless of when they are evaluated.

Furthermore, it is important to avoid creating cyclic property queries. It is sometimes

convenient to calculate a group of properties (e.g. all methods of a type) at once during

a property lookup. This approach is problematic, since querying additional properties

can cause additional cycles. Consider an analogous case when typechecking the exotype

CHAPTER 7. FORMALIZATION OF EXOTYPES 82

constructor P ct11. Using the following property lookup functions will request an additional

property causing a cycle:

P(t1) = λxname.prop t2 xname

P(t2) = λxname.first Int (prop t1 xname)

where first = λx1.λx2.x1

t1 will forward its property query to t2. t2 will first query the same property on t1, discard

the result, and return Int. This evaluation would cause a cycle on (t1, layout) that could be

avoided if t2 only queried properties it needed. This example suggests that a property should

only query other properties when they are needed to calculate the result of the original query.

Querying other properties only when needed and writing properties in a functional style

ensures that property queries are as composable as possible.

CHAPTER 8

BUILDING LIBRARIES WITH EXOTYPES

To evaluate the expressiveness and performance of libraries built with exotypes, we have

implemented example solutions for several domains where performance is critical. In

each scenario, we show how exotypes can express a solution similar to those written in

dynamic languages with meta-object protocols while matching the performance of existing

state-of-the-art implementations written in C++ or Java. In some cases, the added expres-

siveness enables more aggressive optimizations, allowing our implementations to exceed

the performance of existing libraries.

Evaluation was performed on an Intel Core i7-3720QM with 16GB of RAM running

OS X 10.8.5. Our implementation of exotypes was built by modifying the original Terra

typechecker to make user-defined property queries while tracking cyclic property lookups.

Lua’s protected call mechanism was used to recover from and report any errors in user-

defined properties.

8.1 CLASS SYSTEMS

Using exotypes we can implement class systems as a library. This approach is frequently

used in dynamically-typed languages such as Lua that do not have built-in policies for

inheritance or other familiar object-oriented features.

Using exotypes, we implement a single-inheritance class system with multiple subtyping

of interfaces similar to Java’s. We specify classes using an interface implemented in Lua.

An example that uses this interface is shown in Figure 8.1. The function interface creates

a new interface given a table of method names and types. The functions J.extends and

83

CHAPTER 8. BUILDING LIBRARIES WITH EXOTYPES 84

J = terralib.require("lib/javalike")
Drawable = J.interface { draw = {} -> {} }
struct Square { length : int; }
J.extends(Square,Shape)

5 J.implements(Square,Drawable)
terra Square:draw() : {} ... end

Figure 8.1: Example code that uses our class system interface

J.implements install property lookup functions on the Square type that will implement the

behavior of the class system.

Our implementation inside the types themselves is based on vtables, and uses the subset

of Stroustrup’s multiple inheritance [69] that is needed to implement single inheritance with

multiple interfaces. For each class, we define a __getentries property function, allowing it

to compute the layout of the type. Because this property lookup function is called only when

the actual layout is needed during typechecking, the calls to J.extends and J.implements will

have already been performed, so all the information about the type will be known. For our

class system, __getentries is responsible for calculating the concrete layout of the class,

creating the class’s vtable, and creating vtables for any interface that the class implements. If

the user specified a parent class using J.extends, then the class and its vtables are organized

such that the beginning of each object has the same layout as an object of the parent, making

it safe to cast a pointer to the class to a pointer to the parent. If the user specified an interface

using J.implements then we create a vtable that implements the interface, and insert a pointer

to the vtable in the layout of the class. Finally, for each method defined in the type’s methods

table, we create a stub method to invoke the real method through the class’s vtable:

class.metamethods.__getmethod = function(self,methodname)
local fn = self.methods[methodname]
local fntype = fn:gettype()
local params = fntype.parameters:map(symbol)

5 local self = params[1]
return terra([params]) : fntype.returntype

return self.__vtable.[methodname]([params])
end

end

At this point, child classes can access the methods and members of a parent class, but the

Terra compiler will not allow the conversion from a child to its parent or to an interface. To

enable conversions, we create a user-defined conversion that reflects the subtyping relations

CHAPTER 8. BUILDING LIBRARIES WITH EXOTYPES 85

of our class system (e.g., &Square <: &Shape). We implement the conversion generically by

defining a __cast property function:

class.metamethods.__cast = function(from,to,exp)
if from:ispointer() and to:ispointer() then
if issubclass(from.type,to.type) then
return 8[to](exp) --cast expression to ‘to’ type

5 elseif implementsinterface(from.type,to.type) then
local imd = interfacemetadata[to.type]
return 8&exp.[imd.name] --extract subobject

end end
error("not a subtype")

10 end

Since the beginning of a child class has the same layout as its parent, we can convert a

child into a parent by simply casting the object’s pointer to the parent’s type ([to](exp)).

Converting an object to one of its interfaces requires selecting the subobject that holds the

pointer to the interface’s vtable (&exp.[imd.name]). The stubs generated for the interface

restore the object’s pointer to the original object before invoking the concrete method

implementation.

The implementation requires only 250 lines of Terra code to provide much of the

functionality of Java’s class system and is comparable in size to a class system wrapper

that might be implemented in Javascript or Lua. We measured the overhead of function

invocation in our implementation using a micro-benchmark and found it performed within

1% of analogous C++ code. Users are not limited to using any particular class system

or implementation. For instance, we have also implemented a system that implements

interfaces using fat pointers that store both the object pointer and vtable together.

8.2 DATA LAYOUT

Exotypes can also help programmers create container objects that can easily adapt their

data layout to different use cases. One common problem in high-performance computing is

choosing between storing records as an array of structs (AoS, all fields of a record stored

contiguously), or as a struct of arrays (SoA, individual fields stored contiguously). We

implement a solution to this problem, and contrast it with existing languages.

Changing the layout can substantially improve performance. We implemented two

micro-benchmarks based on mesh processing. Each vertex of the mesh stores its position,

CHAPTER 8. BUILDING LIBRARIES WITH EXOTYPES 86

Benchmark Array-of-Structs Struct-of-Arrays

Calc. vertex normals 3.42 GB/s 2.20 GB/s

Translate positions 9.90 GB/s 14.2 GB/s

Figure 8.2: Performance of
mesh transformations using
different data layouts.

and the vector normal to the surface at that position. The first benchmark calculates the

vector normal as the average normal of the faces incident to the vertex. The second simply

performs a translation on the position of every vertex. Figure 8.2 shows the performance

using both AoS and SoA form. Calculating vertex normals is 55% faster using AoS form.

For each triangle in the mesh, positions of its vertices are gathered, and the normals are

updated. Since this access is sparse, there is little temporal locality in vertex access. AoS

form performs better in this case since it exploits spatial locality of the vertex data — all

elements of the vertex are accessed together. In contrast, translating vertex positions is 43%

faster using SoA form. In this case, the vertices are accessed sequentially, but the normals

are not needed. In AoS form these normals share the same cache-lines as the positions, and

memory bandwidth is wasted loading them.

To facilitate the process of choosing a data layout in Terra, we implemented a function

that can generate either version, but presents the same interface. A Lua function DataTable

takes a Lua table specifying the fields of the record and how to store them (AoS or SoA),

returning a new Terra type. For example, a fluid simulation might store several fields in a

cell:

FluidData = DataTable({ vx = float, vy = float,
pressure = float, density = float },"AoS")

The FluidData type provides methods to access a row (e.g., fd:row(i)). Each row can

access its fields (e.g., r:setx(1.f), r:x()). The interface abstracts the layout of the data, so it

can be changed just by replacing "AoS" with "SoA".

This behavior can be emulated ahead-of-time in low-level languages, for example using

X-Macros [53] in C, or template meta-programming in C++, but unlike Terra cannot be

generated dynamically based on runtime feedback. Dynamic languages such as Javascript

support this ad hoc creation of data types dynamically but do not provide the same low-level

of control.

CHAPTER 8. BUILDING LIBRARIES WITH EXOTYPES 87

8.3 SERIALIZATION

Fast serialization is necessary for implementing high-performance distributed systems.

Writing robust and efficient serialization libraries is difficult because different use-cases

often demand different features, impacting the set of implementations and optimizations

that can be used. Design choices include binary vs. text encodings, the presence of type

and versioning annotations, whether complete object graphs need to be serialized, and many

other considerations.

One solution is to provide robust libraries that attempt to address every possibility.

Google’s Protocol Buffers provide cross-language data-description and versioning [34].

Java includes a built-in library for serialization that can serialize entire object graphs and

ensure type safety [42]. To optimize performance, some libraries such as the Kryo library

for Java generate specialized serialization code for each type ahead-of-time [70]. The robust

features in these libraries often make them difficult to customize, which is unfortunate, since

advanced features such as supporting object graphs can incur runtime overhead.

Using exotypes, we can create custom serialization libraries that are generic (work on

arbitrary types) and efficient (code to serialize each object is precompiled) with very little

code. We focus on the example of serializing 3D scene data from an interactive scene editor

connected to a storage server. Scenes are trees, so the serializer must recursively serialize

sub-trees but need not handle generic graphs. Tree nodes contain a mixture of numeric and

string data. The server and client exchange a binary representation of scene data.

We created a generic exotype suited to serialize this kind of data. It responds to two

polymorphic methods write and read. A partial list of the code for the implementation of

write is shown in Figure 8.3, focusing on serialization of structs (other exotypes). Code is

generated for each type seen in the object tree. For struct objects, it queries the layout of

the struct to generate code for each of the entries.

Performance for a 1.28MB scene is shown in Figure 8.4. We compare against Java’s

native serialization, the state-of-the-art Kryo library, and Google’s C++ implementation of

protocol buffers. Objects were serialized to a pre-allocated buffer in memory so that the

benchmark would capture encoding time rather than buffer allocation/resizing time. For

Java implementations, the JIT was warmed up by serializing the entire scene 250 times

CHAPTER 8. BUILDING LIBRARIES WITH EXOTYPES 88

createwrite = memoize(function(T)
if T:isstruct() then
local function emitPointers(self,obj)
local stmts = {}

5 local function addEntry(elemtype,elemexp)
if elemtype:ispointer() then
local fn = createwrite(elemtype.type)
table.insert(stmts,quote fn(self,elemexp) end)

elseif elemtype:isstruct() then
10 local entries = elemtype:getentries()

for _,e in ipairs(entries) do
addEntry(e.type,8elemexp.[e.field])

end end end
addEntry(T,obj)

15 return stmts
end
local terra write(self : &Serializer, obj : &T)
self:writebytes([&uint8](obj),sizeof(T))
[emitPointers(self,obj)]

20 end
return write

elseif T:isarray() then ...)

Figure 8.3: Implementation of a generic serializer, focusing on code for serializing aggregate types.

THROUGHPUT OF SERIALIZATION LIBRARIES

0 2000 4000 6000

Encoding Throughput (MB/s)

Java

Protobuf
(c++)

Terra
Baseline

+ write opt.
+ fusion opt.

Built-in
Kryo

Baseline
Pre-staged

Figure 8.4: Throughput of scene
graph serialization. Our specialized
exotype implementation performs an
order of magnitude faster than exist-
ing implementations.

before timing. For Kryo, classes were pre-registered, support for object graphs was disabled,

and UnsafeMemoryOutput was used to increase performance.

Our baseline implementation can serialize input data at 627 MB/s, which is comparable

to Kryo’s 432 MB/s. This is expected since both libraries take the same approach, pre-

generating code to serialize each object up front. The Java serializer performs substantially

worse (107MB/s) since it interprets the structure of each object during serialization.

Given a specific use-case, we can apply more aggressive optimizations. Our baseline

implementation calls a user-provided function pointer to write data. We can turn our

serialization type into a type-constructor that takes the write function as an argument. This

change (write opt.) allows inlining calls to the write function, increasing performance to

2.37 GB/s. Our baseline implementation also writes each element of a struct individually,

CHAPTER 8. BUILDING LIBRARIES WITH EXOTYPES 89

ENCODING BANDWIDTH OF ASSEMBLER

0 5 10 15

add
mod
sum

meanb
mins

gather
enter
leave

emitfn
index

Encoding Bandwidth (GB/s)

Benchmark

Terra ASM

Chrome ASM

Figure 8.5: Throughput of assembler.
Benchmarks are ordered by increas-
ing template size. Larger template
sizes increase the effect of the Terra
assembler’s fusion optimization.

allowing for customized writers for specific objects. However, in this example, no custom

writers are needed, so the library can apply aggressive fusion to the writes. Rather than copy

each struct element individually, it copies the entire struct at once. Any objects pointed to

by elements of the struct are then written afterward. Using vectorization, these larger copies

are efficient, increasing the performance to 7.00GB/s (fusion opt.) or 11 times faster than

Kryo. As an upper bound on performance, simply copying 1.28MB runs at 15GB/s.

Protocol buffers use a different approach, requiring the user to translate an object into

its own object hierarchy before serialization. This translation step limits performance to

124MB/s. Serializing the protocol buffer objects directly runs at 1.5GB/s (pre-staged), but

doing so is not always possible since it prevents the programmer from using their own object

hierarchies in the rest of the program.

The combination of staged programming and meta-object protocol makes the expression

of this custom serializer concise. In the full Terra implementation, the code to implement

both serialization and deserialization is less than 200 lines. At this size, it is feasible for a

programmer to modify it to fit different serialization cases, something that is not as feasible

with much larger serialization libraries such as Kryo or protocol buffers which each contain

several thousand lines of code.

8.4 DYNAMIC X86 ASSEMBLY

Dynamic assemblers form the basis of JIT compilers. Unlike normal assemblers which

run during compilation, dynamic assemblers are used at runtime to dynamically generate

CHAPTER 8. BUILDING LIBRARIES WITH EXOTYPES 90

code. A JIT compiler uses the assembler to translate its own intermediates into executable

machine code. Higher-level JIT-compiled languages may emit templates of x86 assembly

that correspond to a single high-level instruction. For instance the Riposte JIT [74] for

vector code in R uses the following template to emit a vector gather:

void emitGather(Assembler &a,
XMMRegister RegR, XMMRegister RegA, int disp) {

a.movq(r8, RegA); a.movhlps(RegR, RegA); a.movq(r9, RegR);
a.movlpd(RegR,Operand(r12,r8,times_8,disp));

5 a.movhpd(RegR,Operand(r12,r9,times_8,disp));
}

The gather takes two addresses in RegA and then loads the two values in RegR, requiring five

instructions total.

The performance of a JIT depends on compilation speed, so it is important for the

Assembler type to be efficient. Riposte uses the assembler used in Google Chrome [1] to

get high performance. To ensure speed, each instruction is explicitly implemented as a

method on the assembler object. As an example, here is the implementation of the movlpd

instruction:

void Assembler::movlpd(XMMRegister dst,
const Operand& src) {

EnsureSpace ensure_space(this);
emit(0x66); emit_rex_64(dst, src);

5 emit(0x0F); emit(0x12); // load
emit_sse_operand(dst, src);

}

This approach is able to produce code that can assemble x86 instructions at the rate of 720

MB/s of instructions. While fast, writing the implementation of each of these functions

is tedious and prone to error. There are hundreds of x86 instructions, many with multiple

versions.

Another approach is to describe the instruction concisely in a small language, similar to

how string matching can be encoded with regular expressions. LuaJIT’s DynAsm library [2]

takes this approach to describe the movlpd instruction in a table:

movlpd_2 = "rx/oq:660F12rM|xr/qo:n660F13Rm"

Each line describes the valid arguments ("rx"), their sizes ("oq"), and a recipe to encode the

instruction (":66..."), listing multiple variants per line. When instructions share a similar

form (e.g., add and sub), meta-programming is used to generate the table entries.

CHAPTER 8. BUILDING LIBRARIES WITH EXOTYPES 91

While these tables are concise, interpreting the table to encode instructions incurs

substantial overhead. A micro-benchmark using this table directly encodes at only 336KB/s,

three orders of magnitude slower. To get high-performance, DynAsm pre-compiles the table

into fast code using a source-to-source translation of C code. It is designed to optimize

code size rather than speed, encoding the gather code at 168MB/s but using only 30 bytes to

represent it.

We can use exotypes to perform this transformation directly in the object system of

Terra without the need for preprocessors. Instead of optimizing for code size like DynAsm,

we optimize for encoding speed. Our implementation uses the __methodmissing property to

compile assembly functions on demand. For instance, a user may write:

A:movlpd(RegR,index(r12,r8,8,disp,"qword"))

This will invoke __methodmissing for the movlpd instruction. The implementation will

then examine the encoding table (adapted from DynAsm) to produce an implementation of

the instruction equivalent to C code shown previously from the Chrome assembler.

Generating the assembler implementations on demand provides more opportunities for

optimization. Only instructions that are actually used need to be generated, reducing the

total amount of code in the library. Also, we can aggressively specialize instructions to

their use. For instance, in the invocation of movlpd above, the only dynamically determined

arguments are RegR and disp. We can generate a specific version of movlpd for this invocation.

To generate specialized assembly instructions we take the following approach similar to

DynAsm. First, in __methodmissing, we determine which arguments are constants and which

are determined dynamically. We then use the constant arguments to create a template that

leaves the dynamically determined information blank. Finally, we generate code that first

copies the template into the code buffer, and then patches it up with dynamically provided

arguments. This approach keeps the code size small by separating the template from the

assembler code. Furthermore, since the template is normally multiple bytes, we can benefit

from vectorized copies. We can also use this template-based approach to generate assembler

code for multiple instructions in a single template. The programmer can call emit, which

supports multiple instructions. The gather operator expressed using this approach is shown

in Figure 8.6. This function fuses the assembly into a single template copy followed by

CHAPTER 8. BUILDING LIBRARIES WITH EXOTYPES 92

terra emitGather(RegR : O, RegA : O, disp : int)
A:emit(op.movd, r8, RegA,
op.movhlps,RegR, RegA,
op.movd,r9, RegR,

5 op.movlpd,RegR,index(r12,r8,8,disp,"qword"),
op.movhpd,RegR,index(r12,r9,8,disp,"qword"))

end

Figure 8.6: Using our dynamic assembler, we can emit multiple instructions in a single template.

patch-up instructions to insert RegR, RegA, and disp. The resulting code runs at 5.96 GB/s, or

8.3 times faster than the hand-written Chrome version.

To validate the approach, we rewrote 10 kernels taken from the Riposte JIT compiler

using our dynamic assembler written in Terra and compare their performance to those of the

original code which uses the Chrome assembler. Figure 8.5 shows the results for each kernel.

While the Chrome assembler always emits code at a rate of 700MB/s, the Terra assembler

can perform anywhere from 1.64 GB/s to 15 GB/s, depending on the amount of instruction

fusion that is possible. For instance, the add instruction only includes two x86 instructions,

and one of them is only emitted conditionally. This limits performance to 1.64 GB/s. The

emitfn kernel emits 13 instructions and does little patching, enabling it to encode at 15GB/s.

Using exotypes we were able to implement our Terra-based assembler, including the

parts of DynAsm we used to implement instruction encoding, with only 2100 lines of Lua-

Terra code—less than half the size of the Chrome assembler. Furthermore, by specializing

the assembler code for each call to the assembly object, we were able to produce assembly

code that ran up to 17 times faster than the reference code.

8.5 AUTOMATIC DIFFERENTIATION

Automatic differentiation (AD) computes derivatives of programs by differentiating ele-

mentary operations (such as multiplication) and composing those derivatives using the

chain rule [19]. It eliminates tedious and error-prone hand-authoring of derivative code,

and it gives exact derivatives, unlike finite difference approaches. AD is widely applied to

sensitivity analysis and optimization in scientific computing and engineering.

Many applications, such as optimizing an objective function, require the gradient of a

single output with respect to multiple parameters, a setting well-suited to reverse-mode AD.

CHAPTER 8. BUILDING LIBRARIES WITH EXOTYPES 93

Reverse-mode AD first runs the program forward, recording each elementary operation and

the data needed to compute its derivative on a tape. It then interprets the tape backward,

accumulating the partial derivative of the output with respect to each intermediate (the

intermediate’s adjoint), terminating with the partial derivatives for the input parameters.

Reverse-mode AD can compute arbitrarily many partial derivatives with just two sweeps

through the program (one forward and one backward), but the space overhead for the

intermediate tape may be significant.

We implemented a reverse-mode AD library with exotypes in Terra, using an approach

similar to that of Stan, a C++ library for high-performance statistical inference [67]. Pro-

grams written against this library replace floating point numbers with a custom dual number

type for which arithmetic functions and operators are overloaded. These overloaded func-

tions store their inputs in an object which is placed on an in-memory tape. The reverse pass

interprets the tape by calling virtual functions on those objects.

Our implementation uses exotypes to programmatically generate the tape object type for

each elementary operator. New operators are defined using a simple interface:

-- Defining the "__add" metamethod
addADOperator("__add",
-- Forward function code
terra(lhs: double, rhs: double) return lhs + rhs end,

5 -- Adjoint code
adjoint(function(T1, T2)
return terra(v: &TapeObjBase, lhs: T1, rhs: T2)

setadj(lhs, adj(lhs) + adj(v))
setadj(rhs, adj(rhs) + adj(v))

10 end end))

v is the output of the add operator stored on the tape. The inputs to the operator, lhs and

rhs, may be either doubles or dual numbers. adj(x) extracts the adjoint of x, and setadj(x, v)

sets the adjoint of x to v. In the above example, when lhs or rhs is a double (i.e., a program

constant), the first setadj line is unnecessary, since a has no adjoint. Our implementation

detects this at compile time (adj and setadj are macros) and does not add an entry for lhs to

the tape object type. In contrast, Stan uses a class hierarchy for tape objects: Add is a subclass

of BinaryOp, whose subclasses all have the same layout. Our approach helps alleviate the

memory overhead that is the main drawback of reverse mode AD.

We evaluate the runtime and memory performance of Terra AD and Stan C++ AD on

a standard optimization task from machine learning: maximum-likelihood training of a

CHAPTER 8. BUILDING LIBRARIES WITH EXOTYPES 94

0 1 2 3 4

Terra AD

Stan C++ AD

TerraTT AD

Stan C++ AD

0 50 100 150

Terra AD

Stan C++ AD

WALL CLOCK TIME (sec) TAPE MEMORY (GB)

Figure 8.7: Runtime performance
and peak memory usage for reverse-
mode AD in Terra and C++. Our Terra
implementation achieves comparable
speeds and a 25% smaller memory
footprint.

logistic regression classifier for hand-written digits using the MNIST dataset [50]. For each

implementation, we calculate the gradient of data log probability with respect to model

parameters using 6000 data points, and we run 100 iterations of gradient descent. Results

are shown in Figure 8.7. The Terra code achieves runtime performance comparable to C++

with 25% less peak tape memory usage.

Our Terra AD implementation takes 493 lines of code, compared to Stan’s 1187 lines.

This difference is due to programmatic type generation, instead of explicitly-defined class

hierarchies. While the core of each library (i.e., tape management and public interface) takes

roughly the same amount of code (260 vs. 318 lines), adding new elementary operators is

more concise in Terra (∼10 vs ∼60 lines for a new binary operator).

Libraries like AD can be easily integrated into existing Terra applications that use

exotypes. The dual number type used in AD, for instance, can be used in the implementation

of Quicksand’s tracing infrastructure to automatically compute derivatives of program

probabilities with respect to random choices. We have implemented an MCMC algorithm

that uses these derivatives to perform more efficient inference for programs defining mostly-

continuous distributions [54].

CHAPTER 9

EMBEDDING CUSTOM DSLS IN LUA

The two-language embedding of Terra and Lua is designed to make generating low-level

code easy. While aspects of this design are specific to the problem of embedding a system

programming language in a high-level language, many other languages can benefit from

adapting some of its designs, such as using shared lexical scoping for meta-programming

during specialization, and having a separate execution pathway for high performance. This

chapter presents our extension to the Lua language that allows programmers to embed other

languages inside Lua using the same principles that we used to embed Terra.

9.1 CURRENT APPROACHES TO EMBEDDING LANGUAGES

All DSLs have a frontend that allows users to write statements in the language. Some

examples of common approaches are shown in Figure 9.1. The most direct approach

is to write a custom parser that reads a stream from some data source. Both SQL and

OpenGL/Direct3D shading languages work this way. They are distributed as libraries that

provide API functions that load a string representing the program.

Custom parsers provide the most flexibility for DSL syntax but make it harder for the

DSL to interact with the program it is embedded in. Another approach is to use calls to an

API to construct a representation of a program incrementally. This is the approach used

by OpenGL’s immediate mode that is used to describe geometry (Figure 9.1(c)). API calls

indicate the beginning and ending of geometry such as triangles and their points are described

by more function calls. While verbose in a language such as C, in languages with the ability

to define custom behavior for operators (e.g., +-/*), these operators can be defined to create

95

CHAPTER 9. EMBEDDING CUSTOM DSLS IN LUA 96

Some languages allow user-defined operators, which can be used to make the
DSL's syntax more natural, while still using an API to build the internal
representation for the DSL. Note that some syntax, such as the declaration of
x and y for the blur_x require multiple expressions in C++ since the syntax
of C++ is not fully extensible.

Emedded using
Operators
(Halide in C++)

The frontend is expressed as calls to API functions, which internally build a
representation. This approach makes meta-programming easy compared to
using string formatting operators to build larger expressions. Here we show
how to use OpenGL to draw 100 triangles by meta-programming the display
language using a loop in C++.

Embedded as
Function Calls
(OpenGL
immediates in C++)

Embedded as Strings
(SQL in Java)

Syntax is embedded in a string value of another language and executed via an
API. Interaction is done through the API. Code for the DSL is frequently
generated and run in the same process.

The DSL uses a custom parser and is run as its own process. Interaction is
done through inter-process communication, in this case through standard
input and output.

Standalone
(AWK)

NR*>*1*&&*NF*==*6*{*print*$1*$2;*}

String*query*=*"SELECT***FROM*people*WHERE*age*>*18";
Statement*stmt*=*con.createStatement();
ResultSet*rs*=*stmt.executeQuery(query);

for(int*i*=*0;*i*<*100;*i++)*{
****glBegin(GL_TRIANGLES);
********glVertex2f(0.0f,*0.0f);
********glVertex2f(1.0f,*0.0f);
********glVertex2f(1.0f,*0.0f);
****glEnd();
****glTranslate2f(1.0f,0.0f);
}

Func*blur_x;
Var*x,*y;*//declare*variables*to*be*used*in*blur_x*expression
blur_x(x,*y)*=*(input(x_1,*y)*+*input(x,*y)*+*input(x+1,*y))/3;**

Figure 9.1: Examples of different techniques for implementing the frontend of a DSL

CHAPTER 9. EMBEDDING CUSTOM DSLS IN LUA 97

statements that build a program in the DSL. For instance in C++, Intel’s Array Building

Blocks enable runtime generation of vector-style code using a combination of operator

overloading and macros to build a graph of vector-wide computations dynamically [56].

This approach is similar to type-directed staged programming described in Section 2.2.3.

The DSL is staged by the embedding language. It shares similar advantages, namely that

the DSL code itself can be meta-programmed by the host language.

Meta-programming of DSLs can be useful since it can reduce the number of built-in

operations that the DSL needs to implement, leaving other operations to be defined via meta-

programming. It also allows other DSLs to generate DSL code, allowing the programmer

to layer a high-level DSL on a lower-level DSL. This approach has been used in the past

for existing DSLs. Object-relational mappings frequently meta-program SQL, and shader

languages such as Spark [28] generate code for traditional shading languages.

However, building the DSL frontend using type-directed operators is limited by what

operators can be redefined in the embedding language. Languages such as C++ only allow

limited definition of arithmetic and assignment operators, but do not, for instance, allow the

redefinition of a conditional statement, or a variable declaration. Related work in the Scala

community makes almost all language syntax overloadable, making a so-called “virtualized”

language [12]. For instance, Chafi et al. use lightweight modular staging [62] to stage a

subset of the Scala language. The staged code is used to implement DSLs in the Delite

framework that can be translated to run on GPUs [7, 13].

If the embedding language and DSL are both statically-typed, then this approach also

limits the types in DSL to a subset of those in the embedding language. This limitation can

be problematic for many designs. In our experience, most DSL type systems are relatively

simple, but almost always have features that would lie outside of the type system of a

particular general-purpose language. For instance, Liszt’s field type is a parameterized

map, which is supported in many languages. But it also has limits on when it can be used,

becoming read-only or write-only access in certain contexts. The rules for these contexts

are simple, but fall outside the scope of most static type systems. In fact, this restriction

complicated the first version of Liszt, which was embedded in Scala. It needed to perform

a separate pass to check the correctness of field phases, weakening the benefits of static

typing.

CHAPTER 9. EMBEDDING CUSTOM DSLS IN LUA 98

9.2 OUR LANGUAGE EXTENSION INTERFACE

Our solution is based on the idea that most DSL frontends face many of the same challenges

that we faced when integrating Terra into the Lua ecosystem. We want other developers to

be able to generate DSL code dynamically and interoperate with the DSL, but it is important

that the DSL can exist as a separate language, with different syntax, semantics. and types.

We provide an API to embed a DSL in Lua using the same techniques that Terra itself

uses. DSLs provide rules for parsing custom expressions embedded in the same file as

normal Lua programs. Like Terra’s custom expressions (e.g., terra and struct), DSL

expressions result in first-class Lua values, and can contain semantics that perform DSL

analogs of specialization and typechecking. This approach will allow DSLs to define their

own syntax and their own custom types. By default, the DSLs also share the same lexical

scope as Lua and Terra programs, making interoperability easier.

Figure 9.2 shows an example of the interface DSLs use to define frontends. Each DSL

defines it own parser extension, using an API defined in Lua. Parser extensions are loaded

with a special import statement that loads a Lua package that defines the language using the

API. This package defines a set of new keywords that indicate a start of a DSL expression.

When a keyword is encountered at the beginning of an expression or statement, the Lua

parser transfers control to the DSL’s custom parser. This parser is free to define its own

syntax for any expression. For simplicity, we constrain the DSL parser to use the same lexer

interface as Lua. When implementing DSLs such as Darkroom or Liszt, we have found

that this balance of fixed lexing but custom parsing was flexible enough to create custom

statements while simple enough to produce concise parsers. It also encourages languages to

use syntax that looks consistent, since it prevents the invention of new tokens.

DSL parsers are written in Lua, using a lexer API to read tokens from the input. Internally,

these parsers can use any parsing technique, and are provided one symbol of lookahead. In

practice, the Lua grammar itself is amenable to top-down precedence (Pratt) parsing [59]

and DSLs that are designed with a similar set of constructs are often easily parsed using

this technique. For Liszt and Darkroom, we found this simple technique to be sufficiently

powerful.

CHAPTER 9. EMBEDDING CUSTOM DSLS IN LUA 99

This example code uses an import statement to enable the sumlanguage module, which adds a new
expression to Lua that sums up variables:

import."sumlanguage"
a,b,c.=.1,2,3
result.=.sum.
...........a.b.c.
.........done
print(result).::.6.....

The sumlanguage module itself is loaded by Lua's package manager, and returns a table that defines the
extension behavior. The table includes information about what keywords are added to the language,
and a function that handles the parsing for the extension. The parsing function itself returns a closure
that will be run when the statement should be evaluated.

return.{
....name.=."sumlanguage";.::name.for.debugging
....entrypoints.=.{"sum"};.::.list.of.keywords.that.will.start.our.expressions
....keywords.=.{"done"};.::list.of.keywords.specific.to.this.language
....::.Lua.parser.calls.this.function.when.it.sees.an.expression.that.starts.with.'sum'
....::.'lex'.is.a.handle.to.the.lexer.object,.which.has.an.API.for.producing.tokens.of.input
....expression.=.function(self,lex)
........local.variables.=.terralib.newlist()
........lex:expect("sum")
........while.not.lex:matches("done").then
............local.name.=.lex:expect(lex.name).value
............variables:insert(name)
............lex:ref(name).::tell.the.Terra.parser.we.will.access.a.Lua.variable,.'name'
........end
........lex:expect("done")
........
........::.Return.the.closure.that.will.be.called.when.this.expression.is.actually
........::.executed.in.Lua.
........return.function(environment_function)
............::Capture.the.local.environment,.a.table.from.variable.name.to.value
............local.env.=.environment_function().
............local.sum.=.0
............for.i,varname.in.ipairs(variables).do
................::Capture.the.local.environment,.a.table.from.variable.name.to.value
................sum.=.sum.+.env[varname]
............end
............return.sum
........end
....end;
}

Figure 9.2: An example language extension that defines a sum expression that adds variables
together. This example is not an entire DSL, so its intermediate representation is just a list of
variables names, but it still illustrates the different components of a DSL extension.

CHAPTER 9. EMBEDDING CUSTOM DSLS IN LUA 100

Like all operations in Lua and Terra, parsing runs in the same process as other stages of

the execution, so a DSL can build any internal data structures while parsing and use it later

in execution. Typically, a DSL will build a custom AST representing the parsed code.

When the custom DSL parser reaches the end of the expression, it transfers control back

to the Lua parser. It passes a closure back to the Lua parser, which will be run whenever a

normal Lua expression would run as if it had occurred in the same position as the custom

syntax. When run, this closure will be passed a Lua table containing the local lexical

environment of the program. This environment makes it possible for custom DSLs to

perform a specialization phase similar to Terra’s specialization. At this point DSLs are free

to implement the rest of their compilation pipeline in the way that is best for the DSL. For

instance, some may choose to perform typechecking lazily, like Terra, but others are free to

perform typechecking eagerly if that works better for the particular DSL.

9.3 USING LANGUAGE EXTENSIONS

To evaluate the effectiveness of this interface, we implemented two DSL frontends using

this system, one for the Darkroom language, and one for the updated version of Liszt written

in Terra.

9.3.1 Darkroom: Lua-based meta-programming with custom syntax

The original frontend for Darkroom constructed programs in Lua using operator definitions

on Lua metatables. Individual image definitions existed as first-class Lua objects, and can

be combined using operators such as + into new images expressions. Meta-programming

of Darkroom could be done to generate image processing operators such as convolve (Fig-

ure 9.3(a)), which would take an arbitrarily sized kernel and create a convolution with an

image.

This embedding worked for simple expressions such as doing arithmetic on images, but

introduced some syntactic noise for other operators. Stencil expressions are normally written

with explicit indexing variables for each dimension (e.g., foo(x+1,y) + foo(x,y) + foo(x-1,y),

with x and y representing a dimension of the image). But in Lua, x would need to be a Lua

value, which could lead to confusion if x were not in scope or shadowed. In our embedding,

CHAPTER 9. EMBEDDING CUSTOM DSLS IN LUA 101

Lua Operators This example Darkroom code defines an interface for quickly generating
convolutions against constant kernels. The convolve function generates the
convolution of a Darkroom image with the kernel K. The * and + operators
are defined on the Darkroom image type to build an IR for the image. The
convolve function uses two loops written in Lua to construct the entire
expression in Darkroom.

Custom Syntax We can also write convolve using Darkroom's custom embedding syntax.
Here we use a map-reduce expression which is not easy to represent with
operator overloading in Lua. Like expressions in Terra, Darkroom
expressions share Lua's lexical scope to make meta-programming possible,
illustrated by how the image expression refers to the kernel size N, and the
kernel data K:

))*enable*darkroom's*syntax*extensions
import*"darkroom"

))*the*same*convolve,*
))*but*using*Darkroom's*map)reduce*operator
local*function*convolve(N,K,image)
**local*W*=*2*N+1
**))*use*darkrooms*im*operator*to*create*a*new*image
**local*R*=*im(x,y)
**************map*i*=*)N,N*j*=*)N,N*reduce(sum)
****************k*=*K[(j*+*N)*W*+*i*+*N]
****************k*image(x+i,y+j)
**************end
************end
**return*R
end

terralib.require("darkroom.operators")
))*generate*a*convolve*function*against*a*kernel*K*
))*via*meta)z
local*function*convolve(N,K,image)
**local*R*=*0
**local*W*=*2*N+1
**for*j*=*)N,*N*do
****for*i*=*)N,*N*do
******local*k*=*K[(j*+*N)*W*+*i*+*N*+*1]
******R*=*R*+*k*image(i,j)*
****end
**end
**return*R
end
local*blur*=*{0,1/5,0,
**************1/5,1/5,1/5,
**************0,1/5,0}
local*result*=*convolve(3,blur,darkroom.load("input.bmp"))

Figure 9.3: Embedding Darkroom in Lua using both Lua’s operator overloading and custom syntax
via our language extension interface.

CHAPTER 9. EMBEDDING CUSTOM DSLS IN LUA 102

we choose to drop the x and write the expression as foo(1,0) + foo(0,0) + foo(-1,0). The

argument to the image indicates an image-wide “shift” operation instead of an index. While

semantically identical, this way of expressing the problem made the embedding different

than most other languages. Furthermore, as we added new features such as conditional oper-

ators (if x then y else c), it became clear that forcing everything into Lua syntax would

not result in ideal syntax.

Using the parser extension mechanism, we are able to create custom syntax for all

operators. The expression im(x,y) foo(x+1,y) + foo(x,y) + foo(x,-1) end both creates a

new image and concisely introduces variables for the dimensions of the image. Like Terra,

Darkroom has its own specialization phase where constants from the Lua environment can

be inlined into Darkroom code. In this case, it is used to resolve external references to other

image functions such as foo. Though it allows custom syntax, this design can still generate

parameterized image processing code using meta-programming. Figure 9.3(b) shows the

same definition of a convolution template using the custom embedding. It uses Darkroom’s

map-reduce operator to implement the convolution, rather than unrolling the convolution

entirely as was done in the original version. Since Lua does not have a built-in map-reduce

operator, it would have been awkward to represent it using an approach based purely on

operator overloading. But we found that representing the map-reduce in Darkroom was

important for performance because it enables more efficient code generation and better code

quality by capturing more structure about the computation.

The custom parser for Darkroom is also relatively simple. It is implemented in only 250

lines of code, using a helper library for top-down precedence parsing that is around 100

lines of code. Most expressions are just straightforward code that parses an expression and

builds an IR.

9.3.2 Liszt: Custom syntax with a language extension API

The first version of the Liszt language uses Scala as an embedding language for the compiler.

A compiler plugin to the Scala compiler allows Liszt to extract a typechecked version

of the Liszt AST before further processing. This approach allows for easy parsing and

typechecking, but runs into difficulty since it requires embedding the type system of Liszt as

a subset of the embedding language. Certain features, such as constant-length vectors, and

CHAPTER 9. EMBEDDING CUSTOM DSLS IN LUA 103

fields with read-only and reduce-only phases do not fit into Scala’s type system and had to

be checked at a later phase anyway. Furthermore, many operations that were not in kernels,

such as the declaration of fields and sets, require their own syntax and bookkeeping. This

bookkeeping occurs twice, once in the compiler to parse the declarations, and then again in

the runtime to lookup the declaration and link it to existing input data (e.g., loading that data

from a file).

The Lua version of Liszt simplifies many aspects of this design. Similar to how Terra

exotypes can be constructed using Lua expressions, Liszt uses Lua meta-programming to

create types such as fields and then load data into them. Fields and relations between mesh

elements are created using a Lua API, rather than requiring custom syntax. Since the entire

program executes as a single process, bookkeeping for fields and mesh relations only occurs

once, and does not have to be serialized between compiler and runtime.

The Liszt kernels themselves are a full language with variable declarations, conditionals,

and control flow in addition to custom statements such as reductions, and could not be

implemented using a Lua API. We implemented this part as a language extension introduced

by the liszt keyword. Similar to Darkroom, kernels can be parameterized over fields using

meta-programming in Lua. Previously Liszt required all fields to be explicitly declared

to make it possible to check the phases of fields without performing sophisticated alias

analysis. Using Lua meta-programming, a programmer can now generate multiple versions

of a function that use different fields.

The implementation of Liszt’s custom parser was longer than Darkroom’s at about 450

lines since it needs to parse an entire language, and includes support for Liszt-specific

features such as reductions, and relational operations such as insert or delete. It is less than

10% of the codebase and a relatively minor part of the project.

9.4 COMPARISON TO OTHER APPROACHES TO SYNTAX EXTENSION

Other approaches to syntax extension such as SugarJ [26], a parser extension for Java,

attempt to make the process of extending the parsing more concise. SugarJ, for example,

specifies new grammar rules using a declarative model based on context free grammars

CHAPTER 9. EMBEDDING CUSTOM DSLS IN LUA 104

(CFGs). This model has some advantages. Our extension mechanism will detect two lan-

guages as ambiguous if they both introduce statements that start with the same keyword,

while SugarJ can support CFGs that start with the same keyword as long as the entire expres-

sion is not ambiguous. It also allows a declarative, rather than programmatic, expression of

the new syntax. These types of extension mechanisms are valuable when trying to add a few

lightweight extensions to a language such as adding tuples or XML literals demonstrated

in SugarJ. In the case of larger DSLs, such as the ones we have implemented in Terra, it is

actually valuable to denote the beginning of DSL code with a unique keyword so that users

know what language follows. Furthermore, the parsing for both Liszt and Darkroom is less

than 10% of their codebase, so we have found that efforts to make the language extensions

more concise are not worth pursuing at the cost of extra complexity in the design of the

extension mechanism.

CHAPTER 10

INTEROPERABILITY

High-performance code is normally written as a part of a larger application. This is especially

true for DSLs and active libraries, whose programming model may be limited to specific

functionality such as rendering or simulation. Any solution for making it easier to write

high-performance code using strategies like DSLs needs to address how it will interoperate

with other technologies. This chapter examines the design decisions we made in creating

Terra and integrating it with Lua that maximize this interoperability.

10.1 WITH EXISTING APPLICATIONS

Most DSLs or active libraries are actually used as a part of a larger application. OpenGL is

normally a small part of a game engine which might use other technologies to do physical

simulation and artificial intelligence. If developers can replace parts of an application

piecewise, they are more likely to adopt newer technologies such as DSLs. This pathway

is also an advantage to DSL authors, since it means that the DSL can be responsible for

running only a few parts of an application. It can grow to accelerate more of an application

over time as it gains features. Terra supports this methodology at two levels. First, our use

of Lua enables developers to embed the entire Lua-Terra ecosystem into any application that

can call C functions. Second, Terra code and data-structures are generated such that they are

compatible with C functions at the application binary interface, making them directly usable

in pre-existing code.

105

CHAPTER 10. INTEROPERABILITY 106

#include "lua.h"
#include "lualib.h"
#include "lauxlib.h"

5 const char * str =
" function add(a,b) return a + b end "
" print(add(1,1)) ";

int main(int argc, char ** argv) {
10 lua_State * L = luaL_newstate(); //create a plain lua state

luaL_openlibs(L); //initialize its libraries
lua_dostring(L,str);
return 0;

}

Figure 10.1: Embedding Lua into a C program is relatively simple. These calls set up a Lua context
lua_State and run the Lua code in a string.

10.1.1 Embedding as a runtime

We selected Lua as a high-level language because it was designed originally to be embedded

in existing applications. The design uses a simple C API based on a virtual stack machine

to expose the Lua environment to another application [40, 41]. The stack machine allows

developers writing in C to extract primitive values from the Lua environment, as well as load

and execute arbitrary code. Figure 10.1 shows example code that loads Lua as a library in a

C program, and uses it to evaluate Lua code embedded in a string. These Lua APIs also make

it easy to register C functions with Lua so that Lua code can call back into the surrounding

application. This simple API is widely used in the game development community to couple

a scripting environment into game engines. While not all applications are developed using

the C runtime, almost all environments have some way of calling C functions, making this

interface a least-common-denominator for interoperability.

We extend Lua’s interface in our design of Terra by adding specific functions to initialize

Terra and load Terra code. Figure 10.2 shows the changes necessary to an application that

uses Lua to embed the Terra environment as well. Developers still use the standard Lua API

to work with the Lua environment, and only need to use the Terra API when using features

specific to Terra, such as evaluating a string that includes both Lua and Terra code.

Note that using Terra requires no more machinery than loading any other C library.

Since it runs dynamically, the developer also gets the benefits of runtime code generation,

including simplicity of design and the ability to adapt to runtime information. Requiring

CHAPTER 10. INTEROPERABILITY 107

#include "terra.h"

const char * str =
" terra add(a : int,b : int) return a + b end "

5 " print(add(1,1)) ";

int main(int argc, char ** argv) {
lua_State * L = luaL_newstate(); //create a plain lua state
luaL_openlibs(L); //initialize its libraries

10 terra init(L); //initialize the terra state in lua
terra dostring(L,str);
return 0;

}

Figure 10.2: Using Terra in addition to Lua only requires one additional function call to initialize the
Terra state.

the developer to pre-compile Terra code (for instance, using a Makefile in their build

script) would constrain certain designs relying on runtime code generation, and increase the

complexity of using Terra with an existing system by forcing the developer to write custom

build logic.

However, embedding Terra as a runtime library is not always the right choice. Terra

includes an entire optimizing compiler (LLVM), so it is a large binary. Compile times in

LLVM are also fairly slow, on the order of a few milliseconds for reasonably sized functions.

This makes the runtime code generation approach less desirable for slower architectures, or

where storage space is limited, such as on embedded devices. To address these uses, Terra

can also produce code for offline use using the terralib.saveobj function which can output

offline executables or shared libraries that contain pre-compiled code. In this model, the

Lua environment serves as a pre-processor and compiler, producing object files that can be

used apart from the Terra compilation environment. We are able to provide this functionality

because Terra’s semantics allow it to execute separately from the Lua environment. By

offering both alternatives, Terra provides the flexibility for prototyping, with a path for

optimizing compile times and binary size using selective offline compilation.

10.1.2 Zero-overhead compatibility with C

Embedding solves one half of the interoperability problem with existing applications – those

applications can call into Lua-Terra code. It is also useful to go the other direction – have

CHAPTER 10. INTEROPERABILITY 108

Primitives Translated to built-in equivalents

Vectors C equivalents use non-standard GCC extension

Arrays True Terra arrays are passed by value, so C arrays become pointers in Terra.

Unions In Terra, unions are a property of the layout of a struct rather than a
separate type, removing the need for C’s named vs. anonymous union
distinction.

Other Types such as enumerations or bit-fields are not directly translated since
there is no machine equivalent to them. In Terra these types can be
constructed via meta-programming. Qualifiers like const are ignored for
simplicity since we cannot ensure their correctness given unsafe casts
anyway.

TerraC

uint32_t+uint64_t
float+bool

int32+uint64
float+bool

Pointers &TT*

Functions {T,T2}+8>+T3T3+(*)(T,T2)

vector(float,4)float+__attribute__
((vector_size(16)))

Opaque &opaquevoid+*

&floatfloat[4]

Structs* struct+Complex+{
++real+:+float
++imag+:+float
}

typedef+struct+{
++float+real;
++float+imag;
}+Complex;

* More generally, Terra structs can use the exotype API to construct their layout using the __getentries meta-method
programmatically. The result of that function is then used to construct a corresponding C struct.

struct+Number+{
++++union+{
++++++++f+:+float;
++++++++i+:+int;
++++}
}

typedef+union+{
++++float+f;
++++int+i;
}+Number;

Figure 10.3: Correspondence between Terra types and C types. Terra types have the same memory
layout as their C equivalents to ensure zero-overhead ABI compatibility.

CHAPTER 10. INTEROPERABILITY 109

Terra code capable of calling existing code. Furthermore, we would like compiled Terra code

and data structures to be usable from existing C code without any overhead. To accomplish

both goals, Terra generates functions in such a way that they are compatible with the C

application binary interface, or ABI. Once a Terra function is generated, it can be linked

against C functions as if they were written in the same language. The data layout of Terra

types have a one-to-one correspondence with C data types, so they can be accessed directly

from C without any layer of translation. Primitive data types like uint64 map to their C

equivalents (uint64_t), and Terra’s exotypes map to C structs with equivalent data layouts.

Figure 10.3 describes the correspondence in detail.

This design enables several powerful behaviors. A Terra function can call a C function

without any overhead since, as a part of the ABI, they use the same calling convention. We

also provide a library call (e.g, terralib.includec("stdio.h")) that uses the Clang compiler

frontend to parse C header files, and exposes all of the C functions as Terra function objects

in the Lua environment. Since Clang produces LLVM similar to Terra, we can even inline C

functions into Terra functions when their definitions are available in header files.

This interface provides a zero-overhead way to use C functions in Terra. Other languages

that can call externally defined functions all require some form of declaration of each function

used (e.g., Figure 10.4) that translates the language’s types into equivalent C types. To our

knowledge, Terra is currently the only language that does not require any declarations while

still ensuring that the type of the variables passed to the C function are correct. The lack of

declarations makes it feasible to write high-performance libraries in C and then use them in

DSLs without making it any more difficult to write the code generator in Terra. In all cases,

developers calling C libraries from Terra can expect to get the same performance as if they

were calling those libraries directly from C.

When building Liszt in Terra, we were able to reuse most of the library code for loading

and manipulating meshes, since it was written in C/C++. Terra can also reuse existing

APIs for external libraries. In practice, we have used these features to render images with

OpenGL, launch CUDA kernels on GPUs, and interface with the Objective-C runtime. Even

simple tasks, such as dynamically allocating memory, are handled by calls into C’s standard

libraries.

CHAPTER 10. INTEROPERABILITY 110

C API Languages can access the following C API below using different interface styles:
typedef'struct'{
''''float'a;
''''float'b;
}'Vector;
Vector'Vector_create(float'a,'float'b)'{
''''return'Vector'{'a,b'};
}
Vector'Vector_add(Vector'a,'Vector'b)'{
''''return'Vector'{'a.a'+'b.a,'a.b'+'b.b'}
}

Python The ctypes library can load shared libraries of C functions and call them from
Python. Since the shared library itself does not contain type information, it requires
the user to specify the type information in Python, adding syntactic overhead:

LuaJIT The FFI works similarly to ctypes, but uses an interface where C declarations are
passed in strings. However, its parser for C is not powerful enough to handle full C
header files since it does not run a preprocessor.
ffi'='require("ffi")
ffi.cdef'[[
typedef'struct'{
''''float'a;
''''float'b;
}'Vector;
Point'Vector_create(float'a,'float'b);
Point'Vector_add(Vector'a,'Vector'b);]]
V'='ffi.load("libvector.so")
a'='V.Vector_create(1,2)
b'='V.Vector_add(a,a)

from'ctypes'import'*
lib'='cdll("libvector.so")
class'Vector(Structure):
''_fields_'='[("a",c_float),
''''''''''''''("b",c_float)]
lib.Vector_create.argtypes'='[c_float,c_float]
lib.Vector_create.restype'='Vector

lib.Vector_add.argtypes'='[Vector,Vector]
lib.Vector_add.restype'='Vector

a'='lib.Vector_create(1,2)
b'='lib.Vector_add(a,a)

C'='terralib.includec("vector.h")
terra'main()
''''var'a'='C.Vector_create(1,2)
''''var'b'='C.Vector_add(a,a)
end

Terra The C code can be imported directly with no syntactic overhead. Since it loads the
implementation as well, it has the opportunity to inline C functions when beneficial.

Figure 10.4: Examples of how different languages handle calling functions defined externally.

CHAPTER 10. INTEROPERABILITY 111

We explicitly designed Terra so that it would be compatible with C and have zero

overhead. The strategy of explicitly designing a new language so that it interoperates easily

with an existing one was inspired by the design of Scala, which was explicitly designed

to be compatible with Java [57]. To accomplish this goal, Terra code does not require a

managed runtime with a garbage collector, and is evaluated separately from the Lua runtime.

Higher-level features, such as exotypes or macros, are all evaluated during typechecking,

and desugared into simple data-structures and function calls. In this way, we can harness

the power of existing low-level code while also providing Terra as a better interface for

meta-programming.

10.2 WITH LUA

We have already discussed the interactions between Terra and Lua that make it possible for

Lua to meta-program Terra code and types dynamically. We also use features existing in the

implementation of LuaJIT to enable interaction between Lua and Terra’s runtime.

Interaction across two very different languages brings up the challenges of managing

the lifetime of objects across the two languages, and accessing data from one language in

the other. Our approach to object management builds on Lua’s model, which already has

good solutions for working with low-level languages. In Lua, all objects are allocated in

a garbage-collected heap. But in addition to Lua data-structures such as tables, it is also

possible to allocate userdata on this heap, which is a special Lua type that is simply stored

as an array of arbitrary bytes. This data will be collected when it is no longer reachable, and

can optionally have a meta-method (__gc) associated with that gets called when the object is

freed. This datatype allows the programmer to store Terra objects in the Lua environment.

It is also possible for Lua to store pointers to external data, or “light” userdata. These

pointers can point into a manually-managed heap such as the one used by malloc, but require

explicitly freeing the objects. LuaJIT also extends Lua with a cdata type. This type holds

external bytes like userdata, but also has an associated type in C. LuaJIT has mechanisms

for introspecting into this C type to read and write data to it directly from Lua. In building

off of LuaJIT, we use cdata objects and Terra’s ABI compatibility with C to represent Terra

values directly inside LuaJIT.

CHAPTER 10. INTEROPERABILITY 112

number

string

To any primitive type, using C’s rules for converting a double to the
primitive type.

To any Terra type T whose corresponding C type is the same as the value
in the cdata.

cdata

To &opaque, a pointer to the value in!userdata.

nil

To bool.

userdata

To any array type, T[N], each value of the table converted to T.
To any struct type, each value in the table converted to the first N values
in the layout of the struct.

table, used as array
with integer keys 1 to N

function

boolean

To nil, a Terra null pointer.

To rawstring,!pointer to Lua’s string data.

To any function type, a wrapper is generated that converts arguments to
Terra values, invokes the function, and converts the results back to Lua.

table, used as a map
with string keys

To any struct type, each value of the table converted to corresponding
field in struct type with the same name

Lua Type Conversion Rule

{3,4}?can convert to Complex?{3,?4}

{imag?=?3,?real?=?4}?can convert to Complex?{3,?4}

Figure 10.5: Converting Lua values to Terra values.

While Lua allows references to external data to exist, it does not explicitly allow external

data to reference Lua objects. Instead, the recommended way to store objects used externally

is as a value in a Lua table with a known key. The external code can then use the standard

Lua API functions to manipulate the table to retrieve values from the object. This design

focuses on simplicity — there is no need to have a separate mechanism to hold handles to

Lua objects.

Terra’s model for handling data across to the two languages builds on Lua’s interaction

with C. Terra values can be allocated using C’s malloc in a manually managed heap, or using

CHAPTER 10. INTEROPERABILITY 113

Type cannot be inferred. The function terralib.cast can be used to
annotate any Lua value with a Terra type if needed.

otherwise (table,-
function-value,-etc.)

number

string

If the number is representable exactly by an int32 then it is an int32,
otherwise it is a double.

The Terra type T whose corresponding C type is the same as the value in
the cdata.

cdata

 &opaque type

nil

bool

userdata

function

boolean

nil type

rawstring,-which is &int8

Used in a function call with argument Terra types T1,…,TN, the type
inferred is {T1,…TN}-D>-{}.

Lua Type Type Inference Rule

Figure 10.6: Inferring the types of Lua values. When a Lua value is used directly from
Terra code through an escape, or a Terra value is created without specifying the type (e.g.,
terralib.constant(3)), then we attempt to infer the type of the object. If successful, then the
standard conversion to that type is applied. The inference depends on the type of the Lua value. If
none of the normal rules apply but the value has a metamethod __toterraexpression, this method
will be called on the Lua object to generate the Terra expression before type inference occurs.

primitive, larger than double cdata with C type that corresponds to the Terra type

primitive, representable by double number+

array, struct

Value cdata with C type that corresponds to the Terra typepointer, vector

Reference cdata with C type that corresponds to the Terra type.
These objects are boxed in Lua, so they will be copied in Lua by
reference.

Terra Type Lua Type

Figure 10.7: Converting Terra values to Lua values. When converting Terra values back into Lua
values, the following rules apply. In cases where there is not a Lua type that can completely represent
the value, it is kept as a Terra value stored in LuaJIT’s cdata type.

CHAPTER 10. INTEROPERABILITY 114

the function terralib.new(T), which allocates them as cdata managed by the Lua garbage

collector.

Lua values are not directly accessible from Terra. When Terra code refers to a Lua

value during specialization, or a Lua value is passed to a Terra function as an argument,

it is necessary to convert values from Lua into Terra. Figure 10.5 describes the rules for

converting Lua values to Terra. Internally, we implement this conversion on top of LuaJIT’s

foreign-function interface, which makes it possible to call C functions and use C values

directly from Lua. Since Terra’s type system is similar to that of C’s, we can reuse most of

this infrastructure. If the resulting Terra type is not specified (e.g., when a Lua value is used

as the result of an escape), then it is inferred using the rules in Figure 10.6.

In general, primitive types are mapped to their equivalents, while Lua tables are converted

into arrays or structs whose static lengths or field names match the dynamic keys and lengths

of the input table. Almost all of these rules are adapted from LuaJIT’s interface for calling

C functions, and Terra internally uses this interface for its implementation. Note that data

already allocated as Terra values are stored in LuaJIT cdata objects, and simply passed

through unchanged. The rules for going in the opposite direction, that is converting Terra

values back to Lua, are summarized in Figure 10.7.

LuaJIT also provides functionality that allows Lua code to introspect C objects. We use

a wrapper around this support to extend it to Terra objects. Lua code can read and set fields

of C/Terra objects directly. This functionality is useful when writing initialization code

that does not need to be fast, but does need to prepare data-structures for future high-speed

components. In Liszt, this functionality is used to initialize memory for fields along with

other field meta-data which is normally stored in the Lua environment. It simplifies the

management of fields since we can rely on the Lua garbage collector to track when objects

like fields are no longer needed.

Some libraries of existing Lua code might include syntax that is not valid Lua-Terra

code (e.g., if it used the keyword terra as a variable name). To still provide backwards

compatibility in this case, we purposefully expose two sets of functionality for loading code,

the function lua_load (load from inside Lua itself) which comes from Lua and parses plain

Lua code, and terra_load (terralib.load), which is provided by Terra and parses Lua code

CHAPTER 10. INTEROPERABILITY 115

with Terra declarations embedded inside of it. Once loaded this code can interact in all the

normal ways with combined Lua and Terra code.

10.3 WITH DSLS

Many of the problems that Terra faces when interfacing with Lua and existing code are also

faced by the DSLs themselves. The Lua-Terra design encourages DSLs to interact with Lua

in similar ways.

The syntax extensions presented in Chapter 9 explicitly enforce a parsing phase, where

only the syntax is available, and a separate runtime phase, where the lexical environment is

always passed in as an argument. The easily accessible lexical environment encourages DSL

authors to write languages that extensively use the lexical environment. The environment

can be used to store language entities that would normally be in a custom symbol table

for the DSL such as functions, or types. It ensures that the DSL entities are first-class Lua

values, encouraging some degree of meta-programming for the DSL. It also makes it easy

for certain language objects to be constructed with Lua functions. For instance, fields in the

Liszt language are constructed using a Lua API rather than custom language extensions.

Since DSLs share the same lexical scope with Terra as well, it is easy for the DSL author

to integrate Terra code directly into a DSL where possible. We have found this useful in two

cases. In Darkroom, there were some instances where mostly stencil code had a small part

that read an image using a data-dependent index, such as the semi-Lagrangian update in our

fluid simulation. In these cases, Darkroom could call an external Terra function to perform

this step.

In Liszt, scientists often have pre-constructed mathematical functions written in C. We

are able to use our zero-overhead compatibility with C to import them as Terra functions,

and then call the Terra functions from Liszt code using the shared lexical scope between

Liszt and Terra. Without a shared scoped at compile time, a language like Liszt would need

custom operators to import foreign symbols, making the interactions more verbose.

In the future, we hope that a shared compilation environment will encourage interaction

between DSLs. Initially, DSLs can interoperate at the level of runtimes — one DSL being

able to invoke functionality of another by calling the generated Terra functions that each

CHAPTER 10. INTEROPERABILITY 116

produces. This level of interaction does not require the DSLs to be aware of each other

to work. Later DSLs that are frequently used together can be made aware of each other

and make compile-time decisions about data-structures cooperatively. The design of Terra

encourages this interaction by enabling both DSLs to be compiled and run in the same

process, making the meta-data needed for these choices easily available.

CHAPTER 11

IMPLEMENTATION

So far we have looked at the advantages of a two-language design for high-performance

code generation from the perspective of the user of the language. We also chose a two-

language design because it is substantially simpler to implement for practical reasons. There

are a lot of good implementations of high-level dynamically-typed languages, and good

implementations of low-level modular compilers for C. Both are widely used, and their

designs have improved over time. With a two-language design, we can leverage this work

without much modification. The details of executing each language well can be handled by

existing libraries, allowing us to focus on details of interoperability and staging. We chose

to implement our design using LuaJIT [2] for our high-level interpreter, and LLVM [49] for

low-level code generation. But this same design can be easily recreated using combinations

of other high- and low-level technologies.

Terra expressions are an extension of the Lua language, so our implementation augments

a standard Lua runtime with additional functionality. To run plain Lua code, we use

LuaJIT [2], an implementation of Lua that includes a trace-based JIT compiler. LuaJIT itself

is implemented as a library in C, with calls to initialize the runtime, load Lua programs, and

evaluate them. Terra adds additional functions to load combined Lua-Terra programs, and

compiler infrastructure to specialize, typecheck, and generate code for Lua functions.

The way we implement the entire process is shown in Figure 11.1. Since Terra is an

embedded language, the standard compiler pipeline is split into separate stages that occur

when a file is (a) loaded, (b) a Terra function is specialized, and (c) a Terra function is

typechecked then compiled. In the first stage, we load Lua-Terra programs. This process is

implemented as a preprocessor that parses the combined Lua-Terra text. This design allows

117

CHAPTER 11. IMPLEMENTATION 118

local%a%=%1
terra%addone(b%:%int)
%%%%return%a%+%b
end
print(addone(3))

local%a%=%1
addone%=%terra.deffunc(
%%%%%%%%%%%ast1,%
%%%%%%%%%%%{a%=%a})
print(addone(3))

ast1%=%
{"terrafn",%
%%{%{“b”,<function>}%},
%%{"return",%
%%%%{"add",%"a",%"b"}}}

Lua Parser

Terra-Lua
Parser

Terra
Specializer

<function>

{"terrafn",%
%%%%{%{"b",int}%},
%%%%{"return",%
%%%%%%{"add",%{1,%"b"}}}

Terra
Typechecker

{"terrafn",%int,
%%{%{"b",int}%},%
%%{"return",%
%%%%{"add",%{1,%int}%,%{“b”,%int}}}}

Terra
Code Gen

define%i32%@"$addone"(i32)%{
entry:
%%%1%=%add%i32%%0,%1
%%ret%i32%%1
}

LLVM
Code Gen

lea%eax,%dword%ptr%[rdi%+%1]
ret

Lu
a

St
at

e
(a) Parsing When Terra code is loaded, we parse it to
separate the Terra code from plain Lua code. The Terra
AST (left) is stored as a data structure in Lua’s
interpreter state. The Terra function is replaced with a
call to terra.deffunc, which is passed a reference to the
Terra AST, and a Lua table with the location lexical
environment.

(b) Specialization When the thunk is run,
terra.deffunc will be called to create the addone function
and specialize the Terra AST in the local environment.
Note how the reference to Lua variable “a” is replaced
with the constant 1. The specialized AST is then saved
inside the Terra function object until typechecking is
needed.

The resulting Lua code (right) is loaded using the plain
Lua parser, which turns it into a thunk, a Lua function
with no arguments that can be run to evaluate the entire
file.

(c) Code Generation When the addone function is
called, the specialized AST will be typechecked. Note
how the resulting AST is now annotated with types for
each expression. This result is then transformed into
LLVM IR, which is JIT compiled into assembly code.

Figure 11.1: Here we illustrate how a simple Terra program gets transformed during each stage of
compilation. The Terra AST and internal API calls have been simplified slightly for clarity.

CHAPTER 11. IMPLEMENTATION 119

us to implement Terra without having to modify the LuaJIT implementation. The preproces-

sor parses the text, building an AST for each Terra function. The AST is stored in the Lua

state. The preprocessor then replaces the Terra function text with a call (terralib.deffunc)

to create the Terra function and specialize it in the local environment. This function takes as

arguments a reference to the parsed AST stored in the Lua state, as well as a table that holds

the local lexical environment. After preprocessing, the plain Lua code is then loaded into

the Lua interpreter. Like normal Lua programs, our implementation loads Lua-Terra code

into a thunk, a Lua function that has no arguments which is called to actually run the code.

When this thunk is executed and the code to define a Terra function is run, it invokes

Terra’s function specializer, and returns the first-class Lua object that represents the spe-

cialized Terra function. Terra code is compiled when a Terra function is typechecked the

first time it is run. During typechecking, the compiler will evaluate any exotype properties

needed by calling user-provided property functions.

We use LLVM [49] to compile Terra code since it can JIT-compile its intermediate

representation directly to machine code. To implement backwards compatibility with C,

we use Clang, a C frontend that is part of LLVM. Clang is used to compile the C code

into LLVM and generate Terra function wrappers that will invoke the C code when called.

LLVM also handles other compiler details such as emitting object files, shared libraries, and

executables.

Using LLVM allows us to leverage common low-level optimization passes to get good

performance. In Clang and LLVM, most optimization of C code occurs after it has been

translated to LLVM. We have found that translating Terra directly to LLVM IR, and then

running standard optimization passes allows us to match the speed of equivalent C programs

without implementing our own set of Terra-specific optimizations.

With LLVM, we can easily target architectures other than x86 as well. Our GPU backend

allows Terra code to run on CUDA-enabled devices. It uses the same process to generate

LLVM IR as our CPU backend and shares the same optimization passes used to produce

optimized IR. We then use LLVM’s NVPTX backend to translate the LLVM IR to PTX

IR, which is given to the CUDA runtime and linked against pre-existing PTX libraries for

operators such as CUDA’s malloc and printf. Our GPU implementation also handles the

CHAPTER 11. IMPLEMENTATION 120

details of loading this code and generating wrapper functions for kernels that marshal the

arguments and invoke the kernel.

Similar to our approach to low-level programming on the CPU, our GPU backend does

not attempt to abstract over the GPU’s hardware or attempt to automate the conversion

of CPU code to GPU code. Instead, Terra functions used as CUDA kernels are written

similarly to kernels written in CUDA C. They explicitly manage their own memory layout,

and can use built-in functions to retrieve the local thread and block IDs while running. This

approach allows users to match the performance of CUDA C, while gaining the benefits

of meta-programming and runtime code generation provided by Terra. A simple micro-

benchmark based on the SAXBY kernel from BLAS runs the same speed (within 1%) when

written in Terra as equivalent code written with the native CUDA compiler (nvcc). One of

the reasons that Terra code can perform similarly is that nvcc itself is internally based on

LLVM and uses the same backend.

Our implementation of Terra uses around 15,000 lines of code, of which around 5,000

are written in Lua (the specializer, typechecker, and terralib library code), and the rest are

written in C++ (parser, LLVM code generator, and interface with clang). For comparison,

vanilla Lua 5.2—a simple interpreter design—is around 20,000 lines, and LuaJIT is 60,000

lines. Terra is comparatively smaller since it does not need to handle details such as garbage

collection (handled by LuaJIT), standard library maintenance (handled through backwards

compatibility with C), or low-level code generation (handled by LLVM). In contrast, a single

language design for high-performance code generation could end up being significantly more

difficult to create since its design would not map directly to either a high-level language, or

a low-level library like LLVM. While it is hard to speculate about the complexity of such a

language, other languages that are higher level than C but use LLVM as a backend such as

Rust (110,000 lines), and Julia (35,000 lines) are substantially larger.

CHAPTER 12

DISCUSSION

The contributions shown in this thesis and our experience developing the Terra language

suggest some areas of future work, as well as different perspectives on using Terra as a

programming language for building DSLs.

12.1 LESSONS LEARNED FROM BUILDING DSLS

Darkroom, Quicksand, and Liszt were a collaboration between myself and others, who are

developing these systems as independent research projects. Having collaborators build the

DSLs as actual research projects ensured that they were solving realistic problems. It also

gave us an opportunity to see how actual DSL writers would use Terra in practice. This

collaboration resulted in improvements to the language to make particular kinds of DSL

development easier.

Darkroom, developed by James Hegarty, was the first DSL we created using Terra. It stressed

the ability to generate generic code and the interfaces for embedding another language inside

Lua. It led us to make the interface for generating code more concise and predictable.

Originally, Terra used a lazy form of specialization, which would occur at the same time

as typechecking. This design made type information available at specialization time, but

made it hard to know when values would be captured. The difficulty of explaining these

semantics encouraged the switch to eager specialization and lazy typechecking. Darkroom

also encouraged the addition of low-level memory operations, including unaligned or volatile

loads and stores. This functionality is implemented as built-in macros for doing annotated

loads and stores. As the first language to interoperate between Terra and Lua, it also

121

CHAPTER 12. DISCUSSION 122

encouraged a more seamless view of Terra’s objects from Lua. We added the ability to

invoke methods on Terra objects directly from Lua. Internally, this mechanism uses the

exotype __getmethod property, and calls the result on the object directly from Lua. Finally,

we added the long form quotation syntax:

quote
stmts

in exp end

The short quote (8exp), is defined via desugaring to quote in exp end. Unlike functional

languages, Lua makes a distinction between statements and expressions. Terra inherits this

syntax and behavior. The long form quote combines a quote operator with the semantics of

a “let” expression from functional languages so that a programmer can include statements in

a quotation. Making the quotation more general is simpler than the previous design, which

required one quote operator for expressions and another for statements.

Quicksand, developed by Daniel Ritchie, was the first library to independently use the exo-

type interface. Exotypes allowed for expressive classes, but did not help with the automated

management of object lifetimes that is possible in languages such as C++. In C++, objects

allocated on the stack can have destructors that run when the stack unwinds. While class

systems were implementable with exotypes, Terra lacked a mechanism for automatically

scheduling a destructor to run when a scope ends. We added a defer statement to implement

this mechanism. A statement, defer foo(arg0,...,argN), schedules the function call foo to

run when the surrounding scope exits. It is similar to the defer statement in Google Go, but

the deferred code runs when a C++ destructor would run, rather than at the end of a function.

These defer statements can be generated by macros, making it possible for library-based

class system to create objects whose lifetime on the stack can be managed automatically.

Liszt, developed primarily by Crystal Lemire, Gilbert Bernstein, and Chinmayee Shah,

tested our implementation of GPU primitives. It encouraged a more robust interface to

GPU features such as CUDA-provided mathematical functions (e.g., log). It also required

access to GPU-specific features including shared and constant memory. These features are

expressed in the NVPTX backend as globals with special memory spaces. To use these

globals generically, they need to be converted to pointers in the unified address space. Both

CHAPTER 12. DISCUSSION 123

creating the global variable, and converting it to the unified address space were possible to

write in Terra, but each reference to these globals needed to be annotated with the address

space conversions. To automate the process and make it invisible to the user, we added

the __toterraexpression metamethod, which allows any Lua object to define how it should

be converted into Terra code when used in an escape. Using this mechanism, the CUDA

backend code creates custom Lua objects to represent shared and constant memory that

automatically insert the right memory space conversions. This allows the GPU backend to

support these features without modifying the rest of the compiler.

12.2 SOFTWARE DEVELOPMENT AS A LIBRARY

When we designed applications using Lua-Terra, we found that one of the ways that

the system reduces complexity is by replacing separate processes with a single process

orchestrated by Lua. In Liszt and matrix-multiply, this single process replaced a lot of “glue”

code written in shell scripts and Makefiles that called pre-processors or compilers. These

standalone tools were originally designed to be invoked by hand, and later by build tools

like make that simplify a repeated process. But they are not designed with the intention of

being heavily meta-programmed.

Lua and Terra provide a more programmable interface to these same software develop-

ment tools. The different phases of evaluation of a Terra program each roughly correspond

to and replace a single program in the previous model. Lua evaluation replaces the top-level

shell script or Makefile which manages the state and dependencies. Specialization of Terra

code from Lua replaces the need for source-to-source translators or preprocessors. Type-

checking corresponds to actually invoking the compiler to build code, and Terra evaluation

corresponds to actually running the compiled code as its own program. Making these phases

programmable does not prevent the use of Lua and Terra like a traditional compiler stack

since it is still possible to write compiled code out to a file. Instead, its increased flexibility

makes more complicated designs like DSLs or autotuners possible to write.

While Lua and Terra replace many existing tools, there are other tools that provide

valuable insights into software development that still exist primarily as separate processes

designed to be run by hand. Tools for debugging (e.g., gdb) and performance profiling

CHAPTER 12. DISCUSSION 124

(e.g., prof or VTune) provide valuable insights. They include powerful functionality. A

debugger has libraries that can start and stop code at particular source locations, watch for

changing expressions, and allow for runtime introspection of program state. Performance

monitoring programs know how to sample hardware performance counters and quickly

associate those locations with program text. This functionality can be very powerful if

used programmatically. A DSL might automatically annotate kernels it generates with

performance monitoring code and present an easy-to-understand view of how the DSL

was performing in the terminology of that language. A DSL might also want to expose a

debugger that can step through its statements, and introspect on intermediate values.

The functionality to actually do these tasks requires sophisticated architecture-specific

infrastructure, and while debuggers and profilers for low-level languages include this func-

tionality, it is not exposed in a way that is easily accessible apart from using the standalone

tools by hand. Some libraries, such as PAPI [8], provide an interface to performance timing

functionally, but their interface is at the level of assembly language. One barrier to a higher-

level interface is the need to expose the link between performance counters and program

code as part of the library. In traditional languages, this link is difficult to provide since the

code only exists as strings, which were consumed in a separate process. In a system like

Terra, these tools might be easier to create since it already represents code as a first-class

entity in the same process that is running. This way of profiling and debugging code is

familiar to the dynamically-typed language community and could provide a way to make

performance profiling and debugging easier if implemented at a low-level in a system like

Lua-Terra.

12.3 STATICALLY-TYPED LANGUAGES AS HETEROGENEOUS STAGED PROGRAMMING

Terra appears different from other traditional statically-typed languages since its constructs

are always created using Lua, which is dynamically typed. Nevertheless, it is possible to

think of every static-typed language as containing multiple languages. One language, at

the top level, instantiates entities like types, function definitions, classes and methods. This

language “evaluates” when the compiler for that language is run producing a second “stage”

containing the actual program. That program is described with a separate language which

CHAPTER 12. DISCUSSION 125

can appear in the body of functions. This view is reflected in the fact that statically-typed

languages typically make a distinction between what can appear at the top-level of a file,

which we might term a declaration language, and the expressions allowed in the body of

functions, which we traditionally think of as writing code in that language.

For instance, one can think of the top-level declaration language of C as a program

that defines types and global symbols, and then checks that the programs in the body of

the functions have the correct types. As a programming language itself, C’s declaration

language is impoverished. It can introduce “variables” for types (typedef), and functions

(function declarations). It can assign a function variable a value (function definition), and it

can define simple aggregate types. The fact that this language is so limited leads to a lot of

abuse of the preprocessor to add additional functionality, such as using #if statements to

introduce conditional compilation into declarations.

Other statically-typed languages build more functionality directly into their own versions

of the declaration language. C++ and Java include object-oriented features by extending

the declaration language with statements to introduce classes or add methods. Most of the

complexity of these object-oriented systems lies in the declaration language (the only thing

added to the computation language is normally a method invocation expression).

One drawback of this design is that the object-oriented features (e.g., inheritance, traits,

interfaces, etc.) are very specific and built-in to the language. Since C++ introduced

classes there have arguably been improvements in the way we handle features such as

multiple inheritance or interfaces such as mixins, which help solve the diamond inheritance

problem [6]. But since C++’s class system is part of the language itself, it cannot easily adapt

these improvements without breaking backwards compatibility. Similarly, early versions

of Java lacked genetics, leading to a lot of repetitive unsafe code. Reacting to this and

other limitations in Java, Guy Steele noted that any new programming language should

have some plan for growth [68]. In addition to having very specific built-in features, most

declaration languages are not really complete languages — typically there are no explicit

loops, conditionals, or data structures, which can restrict powerful meta-programming

behaviors that using a full language allows.

Rather than continue to add specific features to this declaration language and deal with

its shortcomings, our approach in Terra is to replace it entirely with Lua. Doing so removes

CHAPTER 12. DISCUSSION 126

the need for many language-specific features but provides a powerful mechanism to grow

the language. Namespaces are handled by storing values in Lua tables. Templates are

handled by nested Terra definitions in a Lua function. Terra’s exotypes are also designed

with growth in mind. Exotypes provide the bare mechanisms for object-orientation (method

invocation syntax) and allow the user to implement any desired functionality as a library via

meta-programming.

Using a full language makes the way that these features are handled much more flexible.

Templates in C++ and parameterized types in other languages can emit cryptic error mes-

sages. One reason this occurs is because the error is described in terms of the type system

rather than by the developer of the template. Since templating in Terra is accomplished by a

Lua function, it is possible for the developer of the template function themselves to write

better and simpler to understand error messages that are emitted when it is used incorrectly.

Recognizing that statically-typed languages really are a composition of multiple lan-

guages helps demonstrate some of the limitations of using them, but there are some down-

sides to Terra’s approach of using a full language as the declaration language. Tools that want

to provide introspection on code need to actually execute a full Lua program to understand

what types and methods exist. Thus, it is harder to understand code just by reading it. Having

a full program also limits possibilities for performing static analysis at this level. While at

first this seems problematic, it may be possible to adapt tools to this model where part of

the program actually runs during development. Developers might print out details about

relevant types or disassemble functions on demand to debug performance issues. During

development the programmer might have the running program communicate directly with

an IDE to inform it about what types and functions the declaration program is producing.

Some of these interactions have already been implemented using F# type providers [71] and

can be incorporated into Terra as well.

12.4 A MIDDLE GROUND FOR STATIC AND DYNAMIC TYPING

Terra exotypes are neither dynamically or statically typed. Unlike static languages, type-

checking can occur during program execution. But unlike dynamically-typed languages, this

checking occurs function-at-time when a function is first needed rather than as a function

CHAPTER 12. DISCUSSION 127

evaluates, which provides an opportunity for type errors to be caught before code is run.

Our API also allows the programmer to explicitly ask for typechecking and compilation of

functions using the compile method.

This approach to typechecking is more flexible than the traditional approach. If desired,

traditional typechecking behavior can be achieved by generating all Terra code using

quotations and exotypes, and then calling compile to typecheck the result. The code could

then be saved to an object file and used later. Making typechecking of a type system an

operation in the language itself allows us to explore a middle ground between static and

dynamic typing.

Languages with gradual type systems may benefit from the mixture of static and dynamic

typing. Gradual typing [64] provides a mechanism for annotating and statically checking

some types in an otherwise dynamically-typed language. Values without annotations are

checked when used as inputs to typed code, but internal to typed code these checks could

be omitted, improving performance while maintaining safety. Any gradual typing system

needs to provide some system for annotating types. A simple system would only be able to

provide types for a small amount of code in a program. A more complicated system could

type more of the program, but would add complexity to the programming language.

An advantage of dynamically-typed languages is their relative simplicity, and adding

a complex type system can detract from their appeal. A middle ground where functions

are typechecked during evaluation could keep the type system simple while still allowing

for typechecking of functions before they are run. The type system could use a simple

model of types, but like Terra exotypes, allow the runtime to meta-program their behavior

during typechecking. Functions would be typechecked either when they are defined or

when explicitly requested. Behavior similar to normal gradual typing could be achieved

by factoring the program into a “top-level” that defined types and functions, and a ‘main’

function that would be invoked to run the program. Evaluating the top-level of the program

would then define and check all the gradual types. This mixture of static and dynamic

typing in a single language might allow for improved performance, better safety, or reduced

complexity compared to existing approaches.

CHAPTER 12. DISCUSSION 128

12.5 APPLYING DYNAMIC CODE GENERATION TO SCIENTIFIC COMPUTING

The ability to do just-in-time compilation of code using Terra can be applied to areas that

have traditionally avoided the approach due to its added complexity, such as scientific

computing. In Liszt, for example, we could perform JIT compilation based on dynamic

stencil analyses. The version of Liszt written in Terra can dynamically load code, but

we have not fundamentally changed its approach for doing data-dependency analysis for

running on large clusters.

The new design of Liszt, based on dynamic compilation, makes it possible to replace

the current static analysis, which runs once per function on a static mesh, with an analysis

that runs somewhat dynamically. Rather than make the stencil analysis conservative, the

compiler can make aggressive assumptions, and insert guards that dynamically check these

assumptions during execution. If the stencil trips one of these guards or the mesh topology

changes, the kernels could be regenerated and the data structures rebuilt to adapt to the

change. It is likely that this JIT compilation approach of making aggressive assumptions in

combination with guards may prove useful to other fields as well. Terra’s ability to easily

provide runtime code generation makes it possible to explore these designs more easily.

12.6 USING HIGH-PERFORMANCE STAGED PROGRAMMING TO IMPROVE COMPILER

PERFORMANCE

Currently compilers are designed to be either run online (e.g., javascript JITs) or as offline

passes (e.g., gcc or clang). The online compilers are designed to emit code fast, and to

do so they are often specialized to emit only the kind of code necessary for the language

that they are emitting. Offline compilers like LLVM [49] are written in a way that is more

modular, with an abstract notion of a compiler pass and a pipeline of such passes as a way

to represent compilation. This modularity comes at the cost of compilation speed. In tests

when developing the Riposte VM [74], we found an order of magnitude difference between

compilation speed using a hand-written JIT compiler, and passing the same code to LLVM

when emitting code for the common Black-Scholes benchmark. Part of this difference is due

to LLVM performing more sophisticated transformations, but even when those optimizations

CHAPTER 12. DISCUSSION 129

are disabled, performance suffers due to the overhead of the modular abstractions and the

data layout of the intermediate representations.

Terra’s approach to staging high-performance code may make it possible to create very

fast compilers that are still modular. Using exotypes, we were able to create an x86 assembler

object that ran an order-of-magnitude faster than hand-written code by applying automated

optimizations such as template fusion. Other parts of traditional compilers are possibly

amenable to the same improvements if we can represent internal compiler transformations

using a higher-level of abstraction. For instance, instruction selection can be driven by

high-level templates that are translated into lower-level search procedures. LLVM already

represents some instruction selection this way using its tablegen language. IR transformation

passes can also be described at a higher level, allowing fusion of code across compiler passes

to reduce the cost of traversing the IR. The data structures representing the IR itself can be

optimized based on what transformations will actually be applied to it. A successful design

can make the approach of JIT compiling code applicable to a much wider body of problems

by improving the speed of online compilation.

CHAPTER 13

CONCLUSION

This thesis set out to make portable high-performance programming easier by creating a

principled way to programmatically generate high-performance code at a low level. Our

solution proposes a novel two-language design that uses the high-level language Lua to

meta-program a new low-level language Terra. The two-language design reflects the way

actual DSLs and autotuners are built in practice, where high-level languages are frequently

used to write the compiler, while low-level languages are used at runtime.

We show how to adapt principled techniques from multi-stage programming so they

would work in the context of a two-language design. Shared lexical scoping between Terra

and Lua makes it easy to manage Terra entities inside of Lua, and provides a basis for

their interaction. Variable hygiene makes it possible for the programmer to understand the

relationship between a variable’s declaration and use, even if they span two languages. We

also distinguish between staging and evaluation using different semantic phases of execution.

By ensuring the evaluation phase of Terra occurs independently from Lua, we ensure that

programmers can control the performance of generated Terra code.

We extend this two-language design to also support the generation of flexible high-

performance types. Here, we combine the advantages of each language to get the flexibility

of dynamic languages to create types based on runtime information with the performance

of types from statically-typed languages. We show how to combine meta-object protocols

commonly used in dynamically-typed languages with staged programming techniques that

run during Terra’s typechecking phase.

To make the interaction of Lua and Terra clear, we also provide formal semantics for

the phases of evaluation. We provide a language extension mechanism so other DSLs can

130

CHAPTER 13. CONCLUSION 131

be embedded in Lua in the same way we embedded Terra. And we describe the design

choices we made to ensure that Lua and Terra can interoperate well with each other and

with existing applications.

We evaluate our two-language design by creating example DSLs and libraries in a

wide variety of areas including linear algebra, image processing, physical simulation,

probabilistic computing, class system design, serialization, dynamic assembly, and automatic

differentiation. We show that this software can be easily created using our design, often

using fewer languages and technologies than similar software built with current tools. We

also show that performance of these examples matches or exceeds the existing tools.

A common theme across our examples is that the added simplicity and expressiveness

found when writing in Lua and Terra makes it feasible to implement aggressive optimizations

that were not attempted in existing approaches. In the future we hope that this approach

of creating concise but highly specialized libraries and languages can be used to optimize

more domains, making it possible to experiment with more radical designs for software and

hardware.

BIBLIOGRAPHY

[1] Google V8 Javascript engine. http://code.google.com/p/v8/.

[2] The LuaJIT project. http://luajit.org/.

[3] D. Ancona, M. Ancona, A. Cuni, and N. D. Matsakis. RPython: A step towards

reconciling dynamically and statically typed OO languages. In DLS, pages 53–64,

2007.

[4] A. Bawden and J. Rees. Syntactic closures. In LFP, pages 86–95, 1988.

[5] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. S. Seljebotn, and K. Smith. Cython:

The best of both worlds. Computing in Science and Engineering, 13.2:31–39, 2011.

[6] G. Bracha and W. Cook. Mixin-based inheritance. In OOPSLA/ECOOP, pages

303–311, 1990.

[7] K. J. Brown, A. K. Sujeeth, H. J. Lee, T. Rompf, H. Chafi, M. Odersky, and K. Olukotun.

A heterogeneous parallel framework for domain-specific languages. In PACT, pages

89–100, 2011.

[8] S. Browne, J. Dongarra, N. Garner, K. London, and P. Mucci. A scalable cross-platform

infrastructure for application performance tuning using hardware counters. In SC,

2000.

[9] E. Burmako. Scala macros: Let our powers combine!: On how rich syntax and static

types work with metaprogramming. In SCALA, pages 3:1–3:10, 2013.

132

BIBLIOGRAPHY 133

[10] J. Carette. Gaussian elimination: A case study in efficient genericity with MetaOCaml.

Sci. Comput. Program., 62(1):3–24, Sept. 2006.

[11] B. Catanzaro, M. Garland, and K. Keutzer. Copperhead: Compiling an embedded data

parallel language. In PPoPP, pages 47–56, 2011.

[12] H. Chafi, Z. DeVito, A. Moors, T. Rompf, A. K. Sujeeth, P. Hanrahan, M. Odersky,

and K. Olukotun. Language virtualization for heterogeneous parallel computing. In

OOPSLA, pages 835–847, 2010.

[13] H. Chafi, A. K. Sujeeth, K. J. Brown, H. Lee, A. R. Atreya, and K. Olukotun. A

domain-specific approach to heterogeneous parallelism. In PPoPP, pages 35–46, 2011.

[14] S. Chiba. A metaobject protocol for C++. In OOPSLA, pages 285–299, 1995.

[15] A. Chlipala. Ur: Statically-typed metaprogramming with type-level record computa-

tion. In PLDI, pages 122–133, 2010.

[16] A. Cohen, S. Donadio, M. jesus Garzaran, C. Herrmann, and D. Padua. In search

of a program generator to implement generic transformations for high-performance

computing. In 1st MetaOCaml Workshop (associated with GPCE), pages 166771–7,

2004.

[17] C. Consel and O. Danvy. Tutorial notes on partial evaluation. In POPL, pages 493–501,

1993.

[18] C. Consel and F. Noël. A general approach for run-time specialization and its applica-

tion to C. In POPL, 1996.

[19] G. Corliss, C. Faure, A. Griewank, L. Hascoët, and U. Naumann, editors. Auto-

matic Differentiation of Algorithms: From Simulation to Optimization, Computer and

Information Science, New York, 2002. Springer.

[20] K. Czarnecki, U. W. Eisenecker, R. Glück, D. Vandevoorde, and T. L. Veldhuizen.

Generative programming and active libraries. In Selected Papers from the International

Seminar on Generic Programming, pages 25–39, London, 2000. Springer-Verlag.

BIBLIOGRAPHY 134

[21] L. P. Deutsch and A. M. Schiffman. Efficient implementation of the smalltalk-80

system. In POPL, pages 297–302, 1984.

[22] Z. DeVito, N. Joubert, F. Palacios, S. Oakley, M. Medina, M. Barrientos, E. Elsen,

F. Ham, A. Aiken, K. Duraisamy, E. Darve, J. Alonso, and P. Hanrahan. Liszt: A

domain specific language for building portable mesh-based PDE solvers. In SC, pages

9:1–9:12, 2011.

[23] Z. DeVito, J. Hegarty, A. Aiken, P. Hanrahan, and J. Vitek. Terra: A multi-stage

language for high-performance computing. In PLDI, pages 105–116, 2013.

[24] Z. DeVito, D. Ritchie, M. Fisher, A. Aiken, and P. Hanrahan. First-class runtime

generation of high-performance types using exotypes. In PLDI, pages 77–88, 2014.

[25] J. Eckhardt, R. Kaiabachev, E. Pasalic, K. Swadi, and W. Taha. Implicitly heteroge-

neous multi-stage programming. New Gen. Comput., 25(3):305–336, Jan. 2007.

[26] S. Erdweg, T. Rendel, C. Kästner, and K. Ostermann. SugarJ: Library-based syntactic

language extensibility. In OOPSLA, pages 391–406, 2011.

[27] M. Flatt. Composable and compilable macros: you want it when? In ICFP, pages

72–83, 2002.

[28] T. Foley and P. Hanrahan. Spark: Modular, composable shaders for graphics hardware.

In SIGGRAPH, pages 107:1–107:12, 2011.

[29] F. Franchetti, Y. Voronenko, and M. Püschel. Formal loop merging for signal trans-

forms. In PLDI, pages 315–326, 2005.

[30] M. Frigo and S. Johnson. The design and implementation of FFTW3. Proceedings of

the IEEE, 93(2):216 –231, 2005.

[31] Y. Futamura. Partial evaluation of computation process—an approach to a compiler-

compiler. Higher Order Symbol. Comput., 12(4):381–391, Dec. 1999.

BIBLIOGRAPHY 135

[32] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elements of

reusable object-oriented software. Addison-Wesley Longman Publishing Co., Inc.,

Boston, 1995.

[33] N. D. Goodman, V. K. Mansinghka, D. M. Roy, K. Bonawitz, and J. B. Tenenbaum.

Church: A language for generative models. In Proc. of Uncertainty in Artificial

Intelligence, 2008.

[34] Google. Protocol buffers.

[35] B. Grant, M. Mock, M. Philipose, C. Chambers, and S. J. Eggers. DyC: An expressive

annotation-directed dynamic compiler for C. Theor. Comput. Sci., 248(1-2):147–199,

Oct. 2000.

[36] J. Hannemann and G. Kiczales. Design pattern implementation in java and aspectJ. In

OOPSLA, pages 161–173, 2002.

[37] J. Hegarty, J. Brunhaver, Z. DeVito, J. Ragan-Kelley, N. Cohen, S. Bell, A. Vasilyev,

M. Horowitz, and P. Hanrahan. Darkroom: Compiling high-level image processing

code into hardware pipelines. In SIGGRAPH, pages 144:1–144:11, 2014.

[38] U. Hölzle and D. Ungar. Optimizing dynamically-dispatched calls with run-time type

feedback. In PLDI, pages 326–336, 1994.

[39] R. Ierusalimschy, L. H. de Figueiredo, and W. C. Filho. Lua — an extensible extension

language. Software: Practice and Experience, 26(6), 1996.

[40] R. Ierusalimschy, L. H. de Figueiredo, and W. Celes. The evolution of Lua. In HOPL

III, pages 2:1–2:26, 2007.

[41] R. Ierusalimschy, L. H. De Figueiredo, and W. Celes. Passing a language through the

eye of a needle. Commun. ACM, 54(7):38–43, July 2011.

[42] O. Inc. Java object serialization specification. http://docs.oracle.com/

javase/7/docs/platform/serialization/spec/serialTOC.html.

BIBLIOGRAPHY 136

[43] N. D. Jones, P. Sestoft, and H. Søndergaard. An experiment in partial evaluation: The

generation of a compiler generator. SIGPLAN Not., 20(8):82–87, Aug. 1985.

[44] N. D. Jones, C. K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Program

Generation. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1993.

[45] G. Kiczales and J. D. Rivieres. The Art of the Metaobject Protocol. MIT Press,

Cambridge, MA, USA, 1991.

[46] O. Kiselyov and C. Shan. Embedded probabilistic programming. In Domain-Specific

Languages, pages 360–384, 2009.

[47] E. Kohlbecker, D. P. Friedman, M. Felleisen, and B. Duba. Hygienic macro expansion.

In Proceedings of the 1986 ACM conference on LISP and functional programming,

LFP, pages 151–161, 1986.

[48] J. Lamping, G. Kiczales, L. H. Rodriguez, Jr., and E. Ruf. An architecture for an

open compiler. In Proc. of the IMSA’92 Workshop on Reflection and Meta-Level

Architectures, pages 95–106, 1992.

[49] C. Lattner and V. Adve. LLVM: A Compilation Framework for Lifelong Program

Analysis & Transformation. In CGO, 2004.

[50] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to

document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[51] G. Mainland. Explicitly heterogeneous metaprogramming with MetaHaskell. In ICFP,

pages 311–322, 2012.

[52] J. McCarthy. History of LISP. SIGPLAN Not., 13(8):217–223, Aug. 1978.

[53] R. Meyers. X macros. C/C++ Users J., 19(5):52–56, May 2001.

[54] R. Neal. MCMC using Hamiltonian dynamics. Handbook of Markov Chain Monte

Carlo, pages 113–162, 2011.

BIBLIOGRAPHY 137

[55] G. Neverov and P. Roe. Metaphor: A multi-staged, object-oriented programming

language. In GPCE, 2004.

[56] C. Newburn, B. So, Z. Liu, M. McCool, A. Ghuloum, S. Toit, Z. G. Wang, Z. H. Du,

Y. Chen, G. Wu, P. Guo, Z. Liu, and D. Zhang. Intel’s Array Building Blocks: A

retargetable, dynamic compiler and embedded language. In CGO, pages 224–235,

April 2011.

[57] M. Odersky, S. Micheloud, N. Mihaylov, M. Schinz, E. Stenman, M. Zenger, and et al.

An overview of the Scala programming language. Technical report, 2004.

[58] M. Poletto, W. C. Hsieh, D. R. Engler, and M. F. Kaashoek. C and tcc: a language

and compiler for dynamic code generation. ACM Trans. Program. Lang. Syst., 21(2):

324–369, Mar. 1999.

[59] V. R. Pratt. Top down operator precedence. In POPL, pages 41–51, 1973.

[60] M. Püschel, J. M. F. Moura, B. Singer, J. Xiong, J. Johnson, D. Padua, M. Veloso, and

R. W. Johnson. Spiral: A generator for platform-adapted libraries of signal processing

algorithms. Int. J. High Perform. Comput. Appl., 18(1):21–45, Feb. 2004.

[61] J. Ragan-Kelley, A. Adams, S. Paris, M. Levoy, S. Amarasinghe, and F. Durand.

Decoupling algorithms from schedules for easy optimization of image processing

pipelines. In SIGGRAPH, 2012.

[62] T. Rompf and M. Odersky. Lightweight modular staging: A pragmatic approach to

runtime code generation and compiled dsls. In GPCE, pages 127–136, 2010.

[63] T. Rompf, A. K. Sujeeth, N. Amin, K. J. Brown, V. Jovanovic, H. Lee, M. Jonnalagedda,

K. Olukotun, and M. Odersky. Optimizing data structures in high-level programs: New

directions for extensible compilers based on staging. In POPL, pages 497–510, 2013.

[64] J. G. Siek and W. Taha. Gradual typing for functional languages. In Scheme and

Functional Programming Workshop, pages 81–92, 2006.

[65] J. M. Siskind. Flow-directed lightweight closure conversion. Technical report, 1999.

BIBLIOGRAPHY 138

[66] J. Stam. Real-time fluid dynamics for games. In Proceedings of the Game Developer

Conference, March 2003.

[67] Stan Development Team. Stan: A C++ library for probability and sampling, version

1.3, 2013. URL http://mc-stan.org/.

[68] G. L. Steele, Jr. Growing a language. In OOPSLA Addendum, pages 0.01–A1, 1998.

[69] B. Stroustrup. Multiple inheritance for C++. In Proceedings of the of the Spring 87

European Unix Systems Userss Group Conference, 1987.

[70] N. Sweet. Kryo. https://code.google.com/p/kryo/.

[71] D. Syme, K. Battocchi, K. Takeda, D. Malayeri, J. Fisher, J. Hu, T. Liu, B. McNamara,

D. Quirk, M. Taveggia, W. Chae, U. Matsveyeu, and T. Petricek. F#3.0 — strongly-

typed language support for internet-scale information sources. Technical report, 2012.

URL http://research.microsoft.com/apps/pubs/?id=173076.

[72] W. Taha. A Gentle Introduction to Multi-stage Programming. In Domain-Specific

Program Generation, pages 30–50. 2004.

[73] W. Taha and T. Sheard. MetaML and multi-stage programming with explicit annota-

tions. In Theoretical Computer Science, pages 203–217. ACM Press, 1999.

[74] J. Talbot, Z. DeVito, and P. Hanrahan. Riposte: a trace-driven compiler and parallel

vm for vector code in r. In PACT, pages 43–52, 2012.

[75] S. Tobin-Hochstadt, V. St-Amour, R. Culpepper, M. Flatt, and M. Felleisen. Languages

as libraries. In PLDI, pages 132–141, 2011.

[76] Z. Wan, W. Taha, and P. Hudak. Real-time FRP. In ICFP, pages 146–156, 2001.

[77] R. C. Whaley and A. Petitet. Minimizing development and maintenance costs in

supporting persistently optimized BLAS. Softw. Pract. Exper., 35(2):101–121, Feb.

2005.

BIBLIOGRAPHY 139

[78] D. Wingate, A. Stuhlmüller, and N. D. Goodman. Lightweight implementations of

probabilistic programming languages via transformational compilation. In Proc. of the

14th Artificial Intelligence and Statistics, 2011.

