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The stone the builders rejected has become the cornerstone.
– Psalm 118:22

I Introduction

In lieu of an abstract, each chapter in this book will have a description of its contents. This
book is focused on recapping, consolidating, streamlining, and annotating previous work
related to gravitation and non-relativistic quantum theory while adding a few new insights
when they are modest. Throughout this book, the reader’s familiarity with the modified
cosmological model is assumed but not strictly required.

The focus of the first section in this chapter is a review of geometry. Section two gives a
preliminary overview of an algorithm that will violate conservation of information. In section
three we propose to modify Feynman’s application of the action principle by replacing the
least action complex field trajectories with maximum action hypercomplex field trajectories
that still satisfy the action principle.

I.1 An Abstract Psychological Dimension

It is shocking that after this many years of work on the theory of infinite complexity that
the associated material calculated and referred to here is not already well known with the
entire field of all possible linear nuance being mapped out to the nth degree. It is surprising
that there is no Wikipedia article regarding the modified cosmological model (MCM) or the
theory of infinite complexity (TOIC) that spells out all of the trivially derived properties. To
that end, consider a cube spanned by x̂, ŷ, and ẑ. The slices of constant z are the subspaces
spanned by x̂ and ŷ at each value of z. Every curve that can be constructed using x̂ and
ŷ will be confined to some slice of z. Any curve leaving the slice would have a component
in the ẑ direction. Likewise any curve constructed from just x̂ and ŷ will have its tangent
vectors confined to that single slice of constant z. The curve’s cotangent space is the first
place we could possibly come across vectors with a non-vanishing ẑ component. We state
these obvious truths because the MCM describes de Sitter (dS) and Anti-de Sitter (AdS)
spacetimes as slices of a 5D cube and we want to show the exceptional behavior of our flat
universe when it sews together two 5D spaces but is not itself a slice of any 5D space.

Now consider flat empty 5-spaces Σ± where general relativity in the absence of 5D matter-
energy leads to the desired dynamics in the 4D slices through the Kaluza-Klein metric



2

Figure 1: This figure shows the region between two adjacent moments of psychological time: H1 and H2.
The arrangement immediately suggests a gravitational pilot wave formulation as the path to evolve
through the discontinuity of the as-yet-undescribed region inside the null interval between Ω1 and
ℵ2 but we will introduce another simpler formulation in this book. We will introduce new χA∅
coordinates to accommodate this representation wherein xµ∈H are moved away from the center
of the MCM unit cell where we have depicted them in previous work. χ5 is the horizontal direction
across this figure. This figure uses the values Φ2, Φ, and 1 to demonstrate Σ∅ but due to the
properties of the golden ratio there are many such arrangements.

ΣAB =

(
gαβ + φ2AαAβ φ2Aα

φ2
β φ2

)
. (1.1)

In this book, we will use the Greek letter χ for the 5D coordinates where we have used
ξ previously. Where Latin indices A have previously run from 0 to 4, here they will run
from 1 to 5 so ξ4→ χ5. We will add a layer of complexity when we take µ, ν ∈ {0, 1, 2, 3}
in the usual way but then add a subtle convention for α, β ∈ {1, 2, 3, 4}. In 5D, we have

A,B ∈ {1, 2, 3, 4, 5} and α, β ∈ {1, 2, 3, 4} or α̇, β̇ ∈ {2, 3, 4, 5}. Taking the coordinates of
Σ± as χA±, we will call the bulk metrics Σ±AB and they will have the form of equation (1.1).
Curves in the flat slices of constant χ5

± can never have tangent vectors that point to the left
or right in the cosmological unit cell. (Figure 1 shows that cell.) The slices ℵ and Ω are flat
slices of χ5 but they appear curved in this figure to demonstrate the curvature associated
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with the embedded metric of the de Sitter coordinates xµ± 6=χα±.
The oft-lamented “cylinder condition” that the MCM both embodies and motivates from

first principles [1, 2, 3] says that physics in the 4D worldsheets spanned by χµ± can never
depend on the fifth coordinate. This can be accomplished via a generalized disallowance
of the appearance of χ5

± in any equations of motion but we can accomplish the same thing
by taking our 4D spacetimes as surfaces of constant χ5

± in the 5D bulk [3]. The ordinary
limitation of the cylinder condition on physics is that position and momentum measured in xµ

can never depend on x4. However, that doesn’t say anything about the abstract coordinates
{χA+, χA∅, χA−} or vice versa.

Here, we begin to develop the complex behavior that can be derived by modeling our
universe of xµ at the interface of two 5D spaces Σ±. This is a key point to notice: observables
will always be defined on xµ which can, in principle, depend on all of the χA coordinates.
This contrasts the normal application of Kaluza–Klein theory which says xµ cannot depend
on x4. Therefore, even at this early stage, it is apparent that the MCM is very different from
the standard cosmological model and other Kaluza–Klein models. One well known issue with
standard Kaluza–Klein theory is that the field equations indicate that the electromagnetic
field strength tensor must always vanish with respect to 4D general relativity. By adding
the 15 chirological coordinates {χA+, χA∅, χA−} we have a lot of room to develop novel
workarounds. For instance, if the Kaluza–Klein requirement for vanishing electromagnetic
strength tensors applies to the chirological coordinates then that puts only a loose constraint
on what we do with the xµ, xµ∅, and xµ± coordinates.

Let χ5
± be non-relativistic psychological dimensions with identical topological flatness.

The identical topological flatness of χ5
± does not hold for χ5

∅ which can have an arbitrary
non-linear curvature with tangent vectors pointing anywhere because it has no width in the
path from H1 to H2, as in figure 1. Σ∅ exists only to sew Σ± together with a single point
so we are not concerned with the overall curvature there. There is no constrained object
anywhere in the vector bundle of Σ∅ so everything about that bundle is introduced as a
new MCM degree of freedom. The only constraint on Σ∅ is that it has to have at least one
point where we can construct a Lorentz frame and then use that point to ensure smooth
transport of a Lorentz frame from H1 to H2. The 4D slices of flat 5-space are flat but ℵ and
Ω, themselves slices, are curved, and what’s more: the only flat space we do have, H, isn’t
even a slice of a 5-space because Σ± do not contain their boundary at χ5 = 0 which specifies
the location of H [3]. H is the unincluded boundary of two 5D half spaces. How can we get
a curved slice out of a flat space? These new degrees of freedom beyond H will be helpful.

The addition of only one new degree of MCM freedom to go through larger infinity in the
hyperreal number system ∗R (via Φ̂n→ Φ̂n+1) leads to two new degrees of freedom: the
two dimensions of C become hyperreal and hyperimaginary. We will name the system that
contains hyperreal and hyperimaginary numbers as the hypercomplex number system1

?C. We point to hyperimaginarity as the reason for the fourth ontological basis vector 2̂
which allows us to use {̂i, Φ̂, 2̂, π̂} as a basis for general relativity (or rather we might choose

to call the fourth one î because it more precisely corresponds to hyperimaginarity.) Our

initial desire to add a single degree of freedom in a longitudinal mode along Φ̂ showed that
{π̂, Φ̂, î} was insufficient for the intened purposes [4, 5]. Luckily, we found 2̂ already there

1There is already another number system named the hypercomplex numbers, but it is not ?C. We have previously used the
name C3 in this regard which was also already taken.
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in the plane wave solutions whose periodic topology goes like ψ := e2πiθ. We assemble all
the ontological numbers when the first place we want to look in the phase space is where
θ= |Φ̂|=Φ giving ψ :=e2πiΦ.

The Φ̂n+1-site shall be located at the tip of the Φ̂ vector as pointing from the Φ̂n-site and
this intuitively points to future timelike infinity but we will develop other options in this
book. Due to the special MCM boundary condition that χ5 is always flat, we can retain
the non-relativistic notion of a vector connecting two points in a single manifold. Φ̂ points
in the direction of χ5 and all the Φ̂n lie end to end in an infinite 1D manifold.1 All the
other structure is foliated from Φ̂. If Φ̂ points to spacelike infinity then H2 can be another
universe beyond the observable horizon of H1. While there are many different discrete Φ̂
vectors in any significant volume of the cosmological lattice, the string of observations that
can be made by one observer is always a straight line in the cosmological lattice. This is
what we mean when we say that χ5 is identically flat.

Feynman considered it a flaw in his own approach [6] that he was forced to choose an ar-
bitrarily short, finite amount of chronological time t so as to avoid divergent integrals within
an infinite natural duration of time t ∈ [−∞,∞]. In this chapter, we will say a lot about
Feynman’s framework. Note that when an observer’s lifetime is comprised of a finite number
of observations we naturally have a way to impose Feynman’s mathematical constraint with
a more realistic philosophical predicate. Since the theory of infinite complexity regards the
observer’s ability to test his own theory, and an observer can only make finitely many obser-
vations in a lifetime, it is likely that we can impose a constraint based on finite chirological
time even when the proper chronological time of the universe has no inherent constraint to
finiteness. Feynman’s theory works even for artificially finite time so we are able to begin to
build the MCM by dividing the real line R into three non-specific regions [7]

Past ∈ [tmin, t0) , Present ∈ [t0] , and Future ∈ (t0, tmax] . (1.2)

Notice that the actual values of tmin and tmax do not enter into consideration. In the MCM
we will presume that t is infinite in extent when t≡ x0 but finite when t≡χ5. χ5 is built2

from some stack of Φ̂ vectors that point from one observation to the next. Since an observer
can only make finitely many observations in a lifetime, it will never become necessary to
consider the implications of an infinitely long χ5 dimension. This shows what we mean when
we say χ5 is an abstract psychological dimension. Here, Feynman’s arbitrary time is replaced
with a realistic observation time.

In reference [8], we go into a lot of detail regarding the mathematical analysis of concepts
of infinite complexity and we will also do so in chapter four of this book. Here, we introduce
?C by labeling each tier of infinitude with some unique Φ̂n and refer to them as levels of
aleph [9]. We may efficiently use integers for the logical ordering of tiers of hypercomplex
infinitude so we can also use integers to refer to them as levels of ℵ. Figure 2 shows three
levels of ℵ. Hyperspacetime will refer to an object constructed from 3D position space
by the addition of, first, relativistic chronological time x0 to make spacetime, and then flat

1This manifold is infinite in the sense of an infinite stack of unit cells, each of finite width in χ5.
2Here, χ5 refers to the construction assembled from χ5

± and χ5
∅ across arbitrarily many unit cells.
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Figure 2: From Wikipedia: an example of how hyperreal numbers ∗R work. Note that, in general (not
pictured), there is more than one level of infinitude and more than one level of infinitesimality.
These levels of infinitesimality and infinitude are what we will call tiers of infinitude when referring
to ∗R and levels of ℵ when referring to the exact same principle in the context of Φ̂n, though we
will interchange the terms informally. This figure shows three levels of hyperreal infinitude but
the complete hypercomplex number system ?C goes all the way up and all the way down. The
rightward direction in figure 1 is strictly associated with the upward direction in this figure.

chirological time χ5 to make 5D hyperspacetime. The hypercosmos will consist of many
hyperspacetimes on many levels of ℵ. We will use the ontological basis {2̂, π̂, Φ̂, î} as a non-

coordinate basis for tensor analysis but we do not yet require that the 5D set {̂i, 1̂, Φ̂, 2̂, π̂}
invented in reference [10] will be the analogue geometric basis in 5D. One way to think
about this is to assume that any 5D basis of a geometric manifold is not the ontological basis
which is 4D. Rather, the 5D construction {̂i, 1̂, Φ̂, 2̂, π̂} will refer to an ontological group
ℵΩ(5, 4, 3) where the arguments five, four, and three represent a standard group theoretical
labeling similar to how O(3) distinguishes the group of rotations from the O(1,3) group of
Lorentz rotations1. However, this book is only about the general relevance of the MCM and
we won’t develop any group theoretical concepts here.

In previous publications detailing the MCM, H refers both to the 4D manifold that is
flat Minkowski space and also to a Hilbert space H′. Here, we will prime the letter when
it refers to a vector space and leave it unprimed when it describes a manifold. ℵ′ and Ω′

are members of a rigged Hilbert space with H′; ℵ and Ω are anti-de Sitter and de Sitter
spaces respectively. We have chosen an arbitrary convention putting AdS in the past since
the only thing definite is that ℵ′ is a subspace of H′ and that Ω′ is the dual of ℵ′. We don’t
yet know for sure which of ℵ and Ω must be dS or AdS but by turning the crank on the
theoretical constructions presented in this book, it should be possible to determine that one
configuration or the other describes time moving in the forward direction.

1We remind the reader that O(3,1) is the natural topology of {2̂, π̂, Φ̂, î}.



6

I.2 The Dual Tangent Space

We have previously described a need to expand the phase space from 2N dimensions to 3N
[3] because we had revamped the theory as

C ≡ {̂i, 1̂} −→ C3 ≡ {̂i, π̂, Φ̂} . (1.3)

We find that it was wise not to immediately cease exploration in an attempt to calculate in
C3 because by adding 2̂ we have likely moved to 4N dimensional phase space with

?C ≡ {̂i, π̂, Φ̂, 2̂} . (1.4)

When working with C3, we proposed to find new physics by expanding the 2N-dimensional
Hamiltonian phase space to 3N dimensions but now the suggested expansion for new physics
on a hypercomplex cosmological lattice is larger still.

In ordinary quantum mechanics, in either of the position or momentum space represen-
tations, the other of the observable operators, x̂ or p̂, is represented as the partial derivative
operator. Through the derivative operator, the quantum mechanics is connected to the con-
tinuum in the sense that a manifold is connected to its tangent space through the gradient.
Classical phase space has 2N = 6 dimensions because it is comprised of three dimensions
of space and three of momentum space. The conjugate nature of position and momentum
is not quite the same as the duality between the unprimed geometric manifolds {ℵ,H,Ω}
and the abstract vector spaces {ℵ′,H′,Ω′} whose states have position and momentum space
representations written in the coordinates of different manifolds which are described in the
MCM as lattice sites. Multiple simultaneous avenues of complexity in duality and conjuga-
tion are the expected source of new complexity in the theory of infinite complexity. Each
lattice site has a localized bubble of physically realizable phase space when, for example, the
xµ{j} coordinates are beyond infinity in phase space with respect to the xµ{n<j} coordinates and

infinitesimal with respect to xµ{n>j}. It is at least feasible that new physics lie in phase space

when there is an overlap in the momentum space available to universes that are separated
by spacelike infinity in position space.

The process of evolution in the lattice is expected to differ from pure Schrödinger evolu-
tion as follows: the first derivative operator that appears in quantum mechanics only allows
us to go back and forth between p̂≡−i∂x and x̂≡ i∂p but in 4N dimensional phase space
we can likely find complex representational loops that achieve novel effects such as arbitrage
of information. Perhaps we can use the addition of two new layers of complexity called
hyperreality and hyperimaginarity to transfer information from position space into momen-
tum space, then into the dual tangent space, then into the momentum space of a different
position space such that M̂3 takes initial conditions in the position space of H1 and returns
the expectation value in the momentum space representation of the H2 coordinates. Recall
the underlying process

M̂3 : H1 7→ Ω1 7→ ℵ2 7→ H2 , (1.5)
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and keep in mind that we want to use the dual tangent space to bridge the gap across Σ∅

that appears in figure 1. Schrödinger evolution is such that an initial state directly becomes
a final state but equation (1.5) says that M̂3 takes an initial state in H1, sends it into the
future Ω1, then into the past of the next moment ℵ2 before returning the final state in H2.
The coordinates xµ{n} of each level of ℵ Φ̂n are separated by infinity but the frequencies

associated with the eigenstate basis vectors are separated by finite width in phase space
through ωi+1 = Φωi [9].1 Therefore, in momentum space, we can expect tunneling between
regions that are separated by infinity in position space. One of the remaining nebulosities in
the MCM is how to actually move beyond infinity when transiting the unit cell. Therefore,
consider how it will be useful make the Fourier transform between coordinates that can
never make it all the way to infinity and wave numbers which don’t know anything about
“the surface at infinity” and don’t have to “reach it” before they can describe what happens
behind it.

To begin to lay the groundwork for infinitely complex quantum states that have new
degrees of freedom hidden in the dual tangent spaces of their position and momentum space
representations, consider that a generic set of non-ontological 4D basis vectors êα≡ êµ can
be inherited from the generic 5D basis êA exactly via suppression of the component ê5 that
would point in the direction of increasing or decreasing χ5. The four basis vectors of the
observer’s lab frame x̂µ do not point into the bulk hyperspacetime between each instance of
H because x4 6∈xµ. When evolving some qubit encoded on a Lorentz frame across the unit
cell, we will rely heavily upon the fact that the flat metric of the Lorentz frame is always
the same and does not depend on the global topology specified by the {+,∅,−} scripting.
It is very important to note that it will be possible to take the four unit vectors χ̂µ± of Σ±

which span slices of χ5
± as the basis of a local Lorentz frame defined by an observer living

in a manifold with arbitrary global topology as long as the curvature is mild enough for
the Lorentz approximation. We will therefore restrict ourselves to the weak field limit

gµν = ηµν + hµν , (1.6)

where ηµν is the Minkowski metric and hµν is a small perturbation. Specifically we will use
x̂µ+ for the basis of 4D de Sitter space and x̂µ− as the basis of Anti-de Sitter space. When we
consider the unperturbed cosmological solution hµν = 0, and let the intergalactic magnetic
field go to zero with Bµ = 0 in equation (1.1), we have a cosmological Kaluza–Klein metric

Σ±AB =

(
ηµν 0

0 φ2(χ5
±)

)
, (1.7)

that will serve as the basis for modification in the sense of the first M in MCM. This
metric describes the singularity-free cosmos postulated in reference [7]. The no-singularities
condition was initially assumed on the basis of loop quantum cosmology but the condition
was independently motivated later and will be discussed in section IV.1. Neither of loop

1This feature is reviewed in section IV.6.
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Figure 3: This figure describes the MCM topological configuration. The geodesic that traverses the MCM
unit cell and whose tangent vectors include the three vectors {V µ+ , V µ, V

µ
−} shown here could be

akin to a periodic orbit of the Hopf fibration. Note that the connective vectors are never derived
from the 5D coordinates χA.

quantum cosmology (LQC) or loop quantum gravity (LQG) have any direct relevance to the
MCM machinery as it presently exists.

The tangent vectors to the geodesics associated with the perturbation hµν , such as, for
example, the local deformation of spacetime due to an ordinary cathode ray tube, while very
small, are not strictly confined to the slices of χ5

±. We can say the same thing about the
tangent vectors to some set of mega-scale cosmological geodesics in de Sitter space: they
point outside of the flat slices of χ5

+ and, further, the same can be said about anti-de Sitter
space and χ5

−. The tangent vectors point outside of the 4D worldsheet in both cases: vectors
associated with some perturbation hµν and vectors tangent to some cosmological geodesics
that show the global topology. A vector in curved space is an object defined at a point and
nothing more but χ5 is not curved so its tangent vectors always point to other points along
χ5. All the Lorentz frame vectors remain in their respective slices. If the slice is Minkowski
space then the Lorentz frame defines it identically. The tangent vectors to the cosmological
geodesics in Minkowski space remain in the slice but as we have shown there are still other
important vectors in the MCM that do point outside of the slices.

How do we know the vectors that point outside of the flat slices are pointing to other
slices of H ∪ {Σ+,Σ∅,Σ−} and not outside of hyperspacetime altogether? This is where we
take advantage of the flat topology that we have assigned to our psychological dimension
χ5. It only has one collinear tangent space. Vectors tangent to χ5 everywhere point in the
direction of χ̂5; it is a straight line. When we need some vector V µ to be aligned correctly
in the cosmological lattice, as in figure 3, we can begin M̂3 by defining χ5

+ as pointing in
the direction of V µ which is defined in terms of xµ∈H only. When we need to continue the
process on χ5

−, we can choose a vector V µ
+ from Ω and use it to the define the direction of



9

Figure 4: This figure shows our proposal to avoid computing the geodesics in figure 3 through the use of an
appropriately defined Φ̂ vector or set of Φ̂ vectors. This figure shows the single instance one 5D Φ̂
vector. In terms of a 4D Φ̂ vector, the connector might be better illustrated as (Φ̂)3 and we begin
to see an origin for the (Φπ)3 term in αMCM = 2π + (Φπ)3 when each Φ̂ has an accompanying π̂.
We have the option to say that Φ̂ points from one 5D manifold to p in the next or it can act in
4D (more likely) where it points to successive p’s in {ℵ,H,Ω} and where the third 4D p would be
the same point as the first 5D p.

χ̂5
−. If V µ

+ is the parallel transport of V µ onto Ω, and V µ
− is the parallel transport of V µ

+ onto
ℵ, then the parallel transport of V µ

− onto H2, call it W µ, will be very nearly the same as V µ

due to the weak field condition. If the Lorentz approximation was perfect then V µ would
be equal to W µ but in reality there will be small differences between the flat, spherical, and
hyperbolic spaces that lead to small “errors” in each step of parallel transport from one
Lorentz frame to the next in H 7→ Ω 7→ ℵ 7→ H. We expect that the sum of these errors
Q= |V µ −W µ| will look like quantum decoherence.

Here is an important point. Consider an infinite number of 4D de Sitter and anti-de
Sitter spaces that have an infinite number of curvature parameters, all unique, that form a
continuum of monotonically increasing curvature: curvature parameters in [−a, 0) for AdS
and (0, b] for dS. In the worldsheet representation, we can order all the like de Sitter branes
by increasing curvature parameter and then abut them to construct the smooth 5-spaces Σ±.
Since each 4D slice is curved individually, the 5D spaces will also be curved and physics in a
curved manifold always has tangent vectors pointing outside of the manifold. Compare this
to the case mentioned above when we start with flat 5-space and chop it into slices so that
it is only the cotangent vectors that point outside of the manifold. The slices are all flat in
the mathematical sense of the most natural geometry but in the physical sense of distance
we are imposing an embedded metric on the 4D slices that makes them seem curved to an
observer within. We can do this because the 4D coordinates xµ are an independent object
from the 5D ones χA even if there are certain cases where they are the same. Discerning
between either tangent vectors or cotangent vectors leaving the slices of constant coordinate
will be a critical distinction used to construct a bridge across Σ∅.

If we are relying on the topological disconnection of H from Σ± to motivate quantum
weirdness [3, 11] then we need to show how they are still connected in the non-topological
sector. If they are not sufficiently connected then the action that steers geodesics through
figure 3 will not exist. If they are connected, then the action is guaranteed to exist and the
trick (figure 4) will work (if a 5D Φ̂ exists.) It is very easy to demonstrate the non-topological
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Figure 5: This figure from reference [2] seeks to demonstrate how dark energy is a solution to the Poisson
equation inside the cosmological unit cell.

connection. Beginning with an initial state in H1, parameterize some curve in the Minkowski
metric whose tangent vector at a point is collinear with χ5

+ and its tangent space (which

will be accomplished by defining χ5
+ accordingly.)1 The statement χ5

+Φ̂ = V µπ̂ is a non-
topological, purely algebraic statement. Take note that χ5

+ having the same direction as V µ

is the only constraint on Σ+ so there is no other constraint that could make it impossible
to construct a unit cell around H when it preexists in a void. The χα+ are attached to χ5

+

strictly to ensure our ability to transport qubits defined in a local Lorentz frame along χ5.
Above, we introduced the x̂µ as a subset of the χ̂A but a more physical approach is to begin
with observable x̂µ and then define χ̂A as a superset. Since 5-space has infinitely many 4D
subspaces, there are infinitely many χA that can be constructed to contain xµ. Keep in
mind that there is no requirement for anything to “slide” along χ5

±. The qubit in H1 can
just as easily be described as tunneling onto Ω, then onto ℵ, and then onto H2. In fact,
Kaluza–Klein theory relies on the vanishing 5D Ricci tensor RAB = 0 so the qubit must
tunnel directly from one brane onto the advanced brane in H 7→Ω 7→ ℵ 7→H. A current of
massive particles in the bulk would be the opposite of a vanishing Ricci tensor. Once χ5

+

establishes a place to put χα+, we may define the coordinates xµ+ in the dS metric of the Ω
manifold. In ℵ and Ω, it is likely that we can always take xµ± = χα± when considering an
unperturbed ground state.

Describing figure 3, we parallel transport V µ onto Ω, call it V µ
+ , and then define χ5

− so

it is pointing in the direction of V µ
+ along the 1D manifold of stacked Φ̂ vectors, possibly

something like χ5
−î := V µ

+ Φ̂. To avoid conflict with the collinearity of V µ and χ5
+, meaning

that the topological arrangement should prevent any linear superposition of V µ and V µ
− , we

say χ5
− is out of phase with both V µ and V µ

+ .2 We can accomplish this in the obvious way
with the orthogonality of the ontological basis vectors but there is another avenue available

1The method of obtaining this first relativistic 4-vector from some quantum state is suggested in section II.6.
2We follow the convention that x̂ is out of phase with ŷ by π/2 radians in the Cartesian plane.
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when the level of ℵ increases n→n+1 between Ω and ℵ. The MCM forbids the interference of
vectors on different levels of ℵ [9] and this is already the established behavior for hyperreal
quantities on different tiers of infinitude in ∗R. With two number lines [10] — chronos
x0 and chiros χ5 — we can introduce the concept of double orthogonality. Consider
Hamiltonian systems which only consider the canonical conjugate coordinates wherein any
physical system is determined once any two variables are known. There, single orthogonality
(regular orthonormalism) can only halfway decouple two elements of a closed system. Double
orthogonality will allow complete decoupling of elements.

It is known that every gravitational manifold contains at least one point p at which it is
possible to construct a coordinate system wherein the metric is locally the Minkowski metric
and its first derivatives all vanish at p. Considering figure 3, let each vector {V µ, V µ

+ , V
µ
−}

point to the special point p in the future-adjacent manifold as in H 7→ Ω 7→ ℵ 7→ H. This
means that V µ

+ passing through p∈Σ∅ is the only constraint on Σ∅. Since V µ
+ was already

separated from H by only appearing in its tangent space, and Σ− is separated by not having
the inverse vector to V µ

+ anywhere in its vector bundle1, V µ
− ∈Σ− is doubly separated from

V µ ∈H, or doubly orthogonal. To begin the three-fold process of observation, calculation,
and observation again [12], we start with a vector V µ defined at a point in Minkowski space
H and say it points to p not in H, and then we construct p’s manifolds Σ+ and Ω around p.
Then we do the same thing with V µ

− : construct χ5
− from V µ

+ and then create V µ
− so that it

points to H2.2

We point out that if {V µ
− , V

µ, V µ
+} are all identically the 4D Φ̂ vector when written in the

various coordinates systems on {ℵ,H,Ω}, but Q= |V µ−W µ| 6=0, then we have an algorithm
that violates conservation of information.

Every observable state we could consider has some associated energy density that is
unambiguously a perturbation hµν on the background Minkowski metric ηµν . H is globally
flat but with the perturbation it is not precisely Minkowski space locally so it has local
geodesics with tangent vectors that point outside of the slice, into the bulk. All this allows
us to construct the Riemann sphere with poles at successive p and perform the inversion
operation that has been described for transporting Hilbert space, along with the geometry,
from one moment to the next, as in figure 6 [12].3 It is likely that the ordinary inversion
map between the two coordinate charts on S2 will be sufficient for the purposes of carrying
out what we have called “the inversion operation on the Riemann sphere.” When the sphere
is situated between two branes H1 and H2 (or H1 and Ω) then it is natural to associate the
coordinate chart that covers one of the sphere’s poles with the brane that touches that pole,
and likewise for the other pole and the other coordinate chart on S2. Between H1 and H2,
these would be the xµ{1} and xµ{2} coordinates shown in figure 1 or between H and Ω we would

have the xµ and {xµ+, xα+} coordinates.
Consider H and its vector space H′. If we are going to send information across the unit

cell from H1 to H2 with a vanishing Ricci tensor everywhere in the bulk then we need to use

1The inverse vector would go as 1/∞ since Σ− is on a higher level of ℵ than Σ+.
2To put this on a computer, it may be necessary to do this one more time with p whose manifolds are ∅ and Σ∅ being an

intermediate location between V µ+ and V µ− . This could require another object V µ∅ .
3The reader might ask, “If the vector in Hilbert space exists independently of the position space representation, then why

transport it all? Surely we can use the same Hilbert space everywhere.” If 4D physics is independent of the fifth dimension
because the branes are slices of constant χ5

±, and χ5
± increases with increasing Hn, then we can mitigate the increase of χ5 with

an appropriate linear reduction factor attached to the position space representations of H′ vectors in the successive position
spaces Hn. This reduction operation can be inconsequentially included in the inversion operation on the Riemann sphere that
occurs between observations [12, 10].
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Figure 6: This figure shows the bijection between a sphere and either of two planes: two flat slices of some
bulk. O marks the origin of coordinates on each chart. This figure differs from figure 4 because
here the sphere connects H to Ω but in figure 4 Φ̂ connects H1 to H2. Where figure 4 shows what
we called the 5D p, the point O on the right of this figure would be the first 4D p. Since the
Gel’fand triple is constructed by first taking a subspace of H, this figure suggests that we should
examine a possible reversal of the association of ℵ′ and Ω′ with dS and AdS (ℵ and Ω.)

an alternate channel. Hilbert space H′ is defined on C which is topologically equivalent to
either of the two charts on S2. The Riemann sphere is the portion of S2 that can be covered
by a single chart, and the map between S2’s two chart coverings, call them ξ and ζ, is the
inversion map

ζ ≡ 1

ξ
. (1.8)

There are normally two maps between the plane and the Riemann sphere: one where the
plane intersects the equator of the sphere and another where the sphere sits on top of the
plane and we will use the latter. The two representations completely mirror the choice to
put either H or Σ∅ in the center of the MCM unit cell. When the sphere rests on the plane,
the bijection between points on the sphere and points in the plane is defined by polar ray
tracing as in figure 6. After we use the polar ray to trace the plane onto the sphere, we can
use the inversion map to invert the information encoded on the sphere and then use the polar
ray (which now points always upward instead of always downward) to trace the information
back onto a new plane. This new plane can be some other flat slice of 5D bulk with its
own unrelated embedded metric that is de Sitter space in some coordinates xµ+ so that the
slice is what we call Ω (or perhaps this should be ∅.) The inversion map is exactly what is
required to go to a higher level of ℵ. Points on the sphere very near the pole at the base of
the polar ray have planar coordinates that approach infinity so the inversion map between
ζ and ξ will give something like ∞→ 1/∞ which is axiomatically zero. However, there is
some wiggle room where we can transform the coordinates as xµ→dxµ and χA→dχA which
are axiomatically non-zero. In this way, we can build the 1- and 2-forms of general relativity
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as well as whatever N -forms are required for the differential geometry of the hypercosmos.
The reader is referred to reference [8] for further specifications of the Riemann sphere as it
relates to the MCM/TOIC.

Here, Φ̂ points at least to Ω but in reference [13] we showed an alternative formulation

where Φ̂ points to an intermediate point somewhere inside the bulk of Σ+ between H and Ω
so the reader should not go in with too much bias regarding Φ̂. We develop the 4D Φ̂ here
and we will discuss the very important alternative formulation from reference [13] in chapter

four. Here, we will only use the 5D version (figure 4) to demonstrate how Φ̂ has at least
the potential to provide a shortcut between an arbitrary initial state and an arbitrary final
state. This shortcut regards calculating the transition amplitude which is often the object
of interest in quantum theory. The 4D version of Φ̂ is preferred at this time so that the
framework is guaranteed to accept input in the classical Lorentz approximation. However,
since we know the bulk curves in figure 3 are guaranteed to exist, we may be able to simply
define the vector Φ̂ such that it points from H1 to H2. All of the determinism can be
written in coordinate independent tensors so it could be possible to choose the coordinates
where Φ̂ has the correct behavior in 4- or 5D, and then write the tensor equations in those
coordinates. To some extent, we are cheating by taking χ5

± to be in the direction of an
arbitrary tangent vector but to a further extent that is exactly what one would expect using
2̂π = π̂ + π̂ = π̂ − ϕπΦ̂ [10]. Obviously the copy assigned to the Φ̂ component will have
the same direction as the original component: it is a co-π̂. They can point in the same
direction from the same point and not interfere with each other if we require that π̂ and
Φ̂ are orthogonal and we have already done so. If there are two quantities associated with
the single direction indicated by V µ then that is essentially the system of two number lines
described in reference [10]. Double orthogonality means vectors can have the same direction
and still be orthogonal due to the appended ontological basis vectors, e.g.: |ψ〉 π̂n.

We can define the ontological gauge to be the one where Φ̂n is a vector in Hn that
points to the termination of the worldline on Ω which is then carried forward by the periodic
MCM boundary condition to a final termination on Hn+1. This holds for any n but not
necessarily more than one n at a time. By “termination of the worldline on Hn+1” we
mean that the observer has computed the mathematical evolution of the initial state in
H1 which correctly describes what is observed when the theory is tested at H2. In many
realistic applications, this will be repeated millions of times iteratively because fine-grained
simulation might require millions of time steps, each calculated with M̂3. The ontological
gauge is very complicated but the theory of the TOIC is that Φ̂ agrees with experiment and
there will be no need to actually compute the geodesics whose tangent vectors are shown in
figure 3. If we did compute these curves, the idea of the shortcut is that they would give the
same answer arrived at with Φ̂. In any case, if we did try to compute the curves in figure 3
we would probably bump into ourselves where we have required that chiros is non-relativistic
because the full hypergeometry of the cosmological cell including Σ∅ would likely require χ5

to be non-flat. Such a system has proven too complex even to represent schematically and
rightly so if the computation represented by the diagram is technically impossible (without
?C tools.) Here, we mean to imply that Φ̂ is not an alternative means by which to compute
MCM processes, it will be the only way. Furthermore, if we are somehow accomplishing an
“impossible computation” then that gives some loose suggestion of the principle of violation
of conservation of information.
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Figure 7: This figure shows the division of the time interval described by Feynman. The red square here is
necessarily the same as the one in figure 4 because Feynman’s relativistic region R is spanned by
x and t. R is Minkowski space.

We have introduced {∅,Σ∅} as a new degree of topological freedom. Generally, in physics,

each degree of freedom is a channel for the flow of information so when we say M̂3 is
incomputable, perhaps we can compute

M̃4 : H1 7→ Ω1 7→ ∅ 7→ ℵ2 7→ H2 , (1.9)

with the additional point p∈∅⊂Σ∅. ∅ is a 4D Poincaré section of Σ∅ where we apply the
ad hoc operation of discrete translation to the higher level of ℵ. We may use the two central
steps of M̃4 to convert to the 1-form basis (description of the manifold in terms of its dual
tangent vectors) on the manifold with Ω 7→∅ and then convert back to tangent vectors in
Σ− with ∅ 7→ℵ. Another possibility that we will discuss in this book has to do with joining
Σ+

1 to Σ−2 with a twistor representation beyond the limits of the unit cell where χ5
±=±∞.

Yet another possibility, the main one treated in this book, is that M̂3 increases the level of
ℵ by two because there is one Φ̂ pointing to ∅ and another Φ̂ anchored at ∅.

While we seem to have the correct convention for dS and AdS spaces on Ω and ℵ, we
should, at some point, consider the reverse ordering of the elements of the Gel’fand triple
{ℵ′,H′,Ω} with respect to {ℵ,H,Ω}. Since the first step is H 7→ Ω, it is likely that the
first algebraic step is to select the subspace of Hilbert space which we have been calling ℵ′
whereas we have previously assigned the abstract superspace Ω′ to Ω. If we do change this
convention, we will simply make a revision in the definitions of {ℵ′,Ω′} to retain the intuitive
object associations through their shared symbols.

I.3 Feynman, Functions, and Functionals

Now we have explained, in principle, how a geodesic can pass from one disconnected space
H1 to another one H2 as if they were connected. We just have to find the correct algo-
rithm for the computation that makes use of the vectors in the tangent and dual tangent
bundles to these cosmological manifolds. As a preliminary for what will follow, insofar as
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the modified cosmological model is the boundary condition in which we propose to unify
general relativity with quantum electrodynamics via the theory of infinite complexity, and
by extension, eventually, with the standard model, we will now consider an excerpt1 from
Feynman’s seminal paper [6] on the spacetime formulation of quantum theory.2

“We shall see that it is the possibility [of expressing the action] S as a sum,
and hence Φ as a product3, of contributions from successive sections of the path,
which leads to the possibility of defining a quantity having the properties of a
wavefunction.

“To make this clear, let us imagine that we choose a particular time t0 and
divide the region R [(figure 7)] into pieces, future and past relative to t0. We
imagine that R can be split into: (a) a region R′, restricted in any way in space,
but lying entirely earlier in time than some t′, such that t′ < t0; (b) a region R′′

arbitrarily restricted in space but lying entirely later in time than t′′, such that
t′′ > t0; (c) the region between t′ and t′′ in which all the values of the x coordinates
are unrestricted, i.e., all of space-time between t′ and t′′. The region (c) is not
absolutely necessary. It can be taken as narrow in time as desired. However, it is
convenient in letting us consider varying t a little without having to redefine R′

and R′′. Then |ϕ(R′, R′′)|2 is the probability that the path occupies R′ and R′′.4

Because R′ is entirely previous to R′′, considering the time t as the present, we
can express this as the probability that the path had been in region R′ and will
be in region R′′. If we divide by a factor, the probability that the path is in R′, to
renormalize the probability we find: |ϕ(R′, R′′)|2 is the (relative) probability that
if the system were in region R′ it will be found later in R′′.

“This is, of course, the important quantity in predicting the results of many
experiments. We prepare the system in a certain way (e.g., it was in region R′)
and then measure some other property (e.g., will it be found in region R′′?)5 What

1We change a few variable names here to enforce consistency between Feynman’s notation and the present conventions.
2Feynman wrote reference [6], in part, as a response to a paper of Dirac’s [14]. At the end of Dirac’s paper he points out

that his theory still has some problems with it because it returns a complex-valued probability whose only physical utility is to
make a hand-waving (but valid!) association between a very small complex number and a very low probability. Large complex
numbers were apparently unintelligible. Feynman even dedicates an entire section of his much longer paper [6] to describing
the inadequacies of the formulation ge presents. Together, these two war era papers serve to sharply contrast contemporary
editorial standards in comparable modern journals. In reference [12], we make a statement similar to Dirac’s when we ignore
the problems associated with the sum of a vector and a tensor: “Assume an evolution operator that is the sum of a vector part
and a tensor part so that Υ̂ ≡ Û + M̂3. We ignore the difficulties associated with adding a vector to a tensor and for now it
will suffice to say that Υ̂ is a strange mathematical object. The operator ∂ is a unit vector and M̂3 takes on unitary properties
in chronos. Using the convention to denote tensor states |ψ〉π̂, we outline a new quantum theory.” Then in reference [5] we

discovered that Υ̂ is the higher rank, complexified analogue of a strange representation of the quaternions q = v0 + ~v.
Why are papers about partially formed ideas that only kind of work no longer allowed? When such papers appear in the

literature, other papers that fill in the gaps often appear in short order. It is only the papers that don’t work at all which
should be disallowed. Given the current total standstill in the pace of discovery in theoretical physics (or recent rather if we
reject the false narrative about how no one is studying the MCM), one would assume that editors would encourage the kinds of
papers that might inspire others to pursue new research directions but, alas, ’tisn’t so. The vast bounties of low hanging fruit
pointed to by the present research (as yet undescribed even now in 2017) will continue to be ignored (officially) by those who
would seemingly rather build Rube Goldbergs on the backs of giraffes in the hopes of randomly grabbing some fruit from the
clutches of a bird that might fly by even though no one has seen a bird with any fruit like that for decades.

3Φ[x(t)] is the contribution to the complex phase from the action associated with a given path x(t).
4Feynman writes that the region of variation can be taken as thin as desired but that also means that it can be taken as

thick as wanted as well. Feynman said that it can even be taken as 0 and when we use the inversion map on S2 we show that
it can even be taken as ∞. The inversion map is what we will use to switch between the description of the MCM unit cell with
H or Σ∅ in the center, and it will also mark the changing level of ℵ where some yet-to-be-defined transfinite renormalization
induces ∞→ ε.

5Note how Feynman describes the three-fold process of observation, calculation, and then observation again.
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does [equation (1.10)] say about computing this quantity, or rather the quantity
ϕ(R′, R′′) [which is the square of equation (1.10)]?

ϕ(R) = lim
ε→0

∫
R

exp

[
i

~
∑
i

S(xi+1, xi)

]
...
dxi+1

A

dxi
A
... (1.10)

“Let us suppose in [equation (1.10)] that the time t corresponds to one partic-
ular point k of the subdivision of time into steps ε, i.e., assume t = tk, the index
k, of course, depending on the subdivision ε. Then, the exponential of a sum may
be split into a product of two factors

exp

[
i

~

∞∑
i=k

S(xi+1, xi)

]
· exp

[
i

~

k−1∑
i=−∞

S(xi+1, xi)

]
. (1.11)

“The first factor contains only coordinates with index k or higher, while the
second contains only coordinates with index k or lower. This split is possible
because [the representation of the action as a sum of actions ]

S =
∑
i

S(xi+1, xi) , (1.12)

results essentially from the fact that the Lagrangian is a function only of positions
and velocities. First, the integration on all variables xi for i > k can be performed
on the first factor resulting in a function of xk (times the second factor). Next, the
integration on all variables xi, for i < k can be performed on the second factor also,
giving a function of xk. Finally, the integration on xk can be performed. That is,
ϕ(R′, R′′) can be written as the integral over xk of the product of the two factors.
We will call these ϑ∗(xk, t) and ψ(xk, t):

ϕ(R′, R′′) =

∫
ϑ∗(xk, t)ψ(xk, t)dx , (1.13)

where

ψ(xk, t) = lim
ε→0

∫
R′

exp

[
i

~

k−1∑
i=−∞

S(xi+1, xi)

]
dxk−1

A

dxk−2

A
... , (1.14)

and

ϑ∗(xk, t) = lim
ε→0

∫
R′′

exp

[
i

~

∞∑
i=k

S(xi+1, xi)

]
dxk+1

A

dxk+2

A
... . (1.15)

“The symbol R′ is placed on the integral for ψ to indicate that the coordinates
are integrated over the region R′, and, for ti between t′ and t, over all space. In
like manner, the integral for ϑ∗ is over R′′ and over all space for those coordinates
corresponding to times between t and t′′. The asterisk on ϑ∗ denotes complex
conjugate, as it will be found more convenient to define [equation (1.15)] as the
complex conjugate of some quantity ϑ.
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“The quantity ψ depends only upon the region R′ previous to t, and is com-
pletely denned if that region is known. It does not depend, in any way, upon what
will be done to the system after time t. This latter information is contained in ϑ.
Thus, with ψ and ϑ we have separated the past history from the future experiences
of the system. This permits us to speak of the relation of past and future in the
conventional manner1. Thus, if a particle has been in a region of space-time R′ it
may at time t said to be in a certain condition, or state, determined only by its
past and described by the so-called wavefunction ψ(x, t). This function contains
all that is needed to predict future probabilities. [sic]

“Thus, we can say: the probability of a system in state ψ will be found by
an experiment whose characteristic state is ϑ (or, more loosely, the chance that a
system in state ψ will appear to be in ϑ) is∣∣∣∣∫ ϑ∗(x, t)ψ(x, t)dx

∣∣∣∣2 . (1.16)

“These results agree, of course, with the principles of ordinary quantum me-
chanics. They are a consequence of the fact that the Lagrangian is a function of
position, velocity, and time only.”

When we include the advanced potential, Feynman’s nice machinery of the classical for-
malism will fail because the MCM Lagrangian depends on position, the first derivative of
position: the velocity ẋ, and also at least the third derivative of position

...
x that is almost

unique to the theory of advanced (and retarded) potentials. We expect to be able to make
the extension in the ontological formalism but emphasize that it will not be a direct ex-
tension of the classical action formalism. To achieve direct extension of the classical action
formalism we will consider the case when the advanced and retarded potentials Aµ± vanish
and thereby remove the dependence on

...
x . Aµ± represent an esoteric electromagnetic effect

whose technical details will be mostly beyond the scope of this book which aims (mostly) to
present the modestly technical details of the general relevance of what has been previously
reported regarding the MCM. However, we will briefly look at the advanced and retarded
potentials Aµ± in section III.10.

Feynman didn’t invent QED with the above quoted paper [6]. QED’s greatest success,
arguably, was the positive result obtained by Schwinger who wrote the following about eleven
six two in reference [15].

“The simplest example of a radiative correction is that for the energy of an elec-
tron in an external magnetic field. The detailed application of the theory shows
that the radiative correction to the magnetic interaction energy corresponds to
an additional magnetic moment associated with the electron spin, of magnitude
δµ/µ = (1/2π)e2/hc = 0.001162. It is indeed gratifying that recently acquired
experimental data confirm this prediction. Measurements on the hyperfine split-
ting of the ground states of atomic hydrogen and deuterium have yielded values
that are definitely larger than those to be expected from the directly measured

1For example, see definitions (1.2)
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nuclear moments and an electron moment of one Bohr magneton. These discrep-
ancies can be accounted for by a small additional electron spin magnetic moment.”

We eventually need to show how the radiative corrections mentioned by Schwinger are
the natural ones expected in the MCM but we will go that way at a later date since it is
about twenty years on down the line from the historical period with which the MCM has
been preoccupied. However, since Feynman’s result from that period is the foundation of
the MCM, we will go into lot of detail examining Feynman’s method for dividing the time
interval. First, note the process we described in reference [12].

“The observer is fixed in the present (at the origin) with the inclusion of δ(t)
and since this function returns an undefined value at t = 0 it is impossible to
integrate directly from early times to late times. To use an integrand of the form
f(t)δ(t) we must employ the method from complex analysis f(t)δ(t) 7→ g(r, θ).
The integral over all times will trace a path through ℵ, H, and Ω.”

The method is the Cauchy integral formula

f(z0) =
1

2πi

∮
C

f(z)

z − z0

dz . (1.17)

It is normally possible in physics to ignore boundary terms at infinity because the action
principle chooses the minimum of the action that goes from the past to the future along
ℵ 7→ H 7→ Ω. That is the process Feynman considered in his famous thought experiment
of building a continuum of all possible paths from the limit of infinitely many double slit
experiments. We consider here another process when the MCM boundary condition blocks
the path of least action with a topological obstruction at the origin so that the two sums in
equation (1.11) are joined on i=∞ instead of i=k. We expect that the maximum action
path (which is a perfectly good solution for the equations of motion) is the one that goes
around infinity like H 7→Ω 7→ ℵ 7→H, as in figure 8, where the boundary at infinity cannot
be ignored.

We can see one kind of topological obstruction at the origin when we set z0 = 0 in equation
(1.17) to obtain

f(0) =
1

2πi

∮
f(z)

z
d z . (1.18)

With f(0), clearly, there is no continuous path of integration through the point where z=0.
However, by using the path around the outside of the complex plane we can compute the
paths like limε→0

∫∞
ε
dz knowing that the result is the same as if the central point z=0 had

contributed. Instead of the most direct path, we integrate along the path in figure 8 that is
exactly of the form

χ5 ≡ χ5
+ ⊗ χ5

∅ ⊗ χ5
− . (1.19)
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Figure 8: We can understand the path symbolically labeled M̂2 as the path through Σ∅. The two path
segments on the real line labeled x very clearly correspond to χ5

+ and χ5
−. We will have to change

the orientation of this graph when we want to connect future timelike infinity to past timelike
infinity on a higher level of ℵ.

The point p in Σ∅ can be the point z0 that appears in the Cauchy formula, or any other
special point that we might need it to be, such as, perhaps, the location of the observer at
the origin. In section II.6, we will examine the twistor representation in which points are
deformed such that we might associate p∈∅ with the entire outer path labeled M̂2. The
important thing is that the Cauchy formula defines three piecewise path lengths around the
origin and it is obvious that we have already represented those paths with χ5

+, χ5
−, and χ5

∅.
The reader should note the excellent qualitative agreement between the specific concept of
Σ∅ and the path at infinity, and in general between M̂3 and the three pieces of the integral
over C.

We proposed in reference [12] to use equation (1.17) to write

∫ ∞
−∞

f(t)δ(t) dt =

∫ ∞
0

g (r, 0) dr +

∫ α−1
MCM

0

g (∞, θ) dθ +

∫ 0

−∞
g
(
r, α−1

MCM

)
dr , (1.20)

where the δ function places a singularity (topological obstruction) in the integrand like 1/t
which blows up at the origin. In more recent iterations, the mechanism that we expected
to derive from α−1

MCM hyperradians in equation (1.20) has been offloaded onto aspects of
hypercomplexity elsewhere and we refer the reader to reference [10] for fuller details on that
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offloading.
Here is a good place to notice an asymmetry between chronological time x0 and chirologi-

cal time χ5. In chronos, future timelike infinity t=∞ is perfectly balanced with a symmetric
value at past timelike infinity t=−∞. However, the hyperreal infinity-valued chirological
qubit at Φ̂∞ is balanced with a hyperreal infinitesimal-valued qubit Φ̂−∞ at the origin. When
Φ̂ points to spacelike infinity but Φ̂−1 points to the origin from a lower level of ℵ there is a
manifest asymmetry. Certainly any number of principles can be attached to this asymmetry.
The matter/anti-matter imbalance comes to mind because big and little hyperreal infinity
are both positive numbers (little hyperreal infinity is like limx→∞ 1/x>0) and they contrast
the notion of infinity composed from only positive and negative “big infinity.” The sym-
metric concept of plus and minus infinity might dominate the analyses that predict global
baryon neutrality whereas the fully transfinite analysis might directly suggest the excess of
matter over anti-matter. Also note that in plane polar coordinates there is no such thing as
minus infinity because r∈ [0,∞) for θ∈(0, 2π].

Originally, we put the rotation in equation (1.20) to be through α−1
MCM “hyperradians”

to show that the method allows a free parameter when we complexify the geometry of the
complex plane. Instead, we have complexified the underlying real analysis. Now that we
have a different origin for the free parameter α−1

MCM =2π+ (Φπ)3 [10], the π ordinary radians
required for the normal piecewise expansion of C will suffice. Then equation (1.20) becomes

∫ ∞
−∞

ψ(x, t)δ(t) dt =

∫ ∞
0

ψ (r, 0) dr +

∫ π

0

ψ (∞, θ) dθ +

∫ 0

−∞
ψ (r, π) dr . (1.21)

We will eventually need to show that the proposed representation in equation (1.21) can
support a non-exploding integration scheme that solves the problem Feynman encountered
when he tried to integrate over all of spacetime: his integrals would invariably explode. It
was for the reason of exploding integrals that Feynman imposed his finite time constraint.
In developing the associated argument, Feynman used one idea of “all of spacetime” that
perhaps relies on an unassumed differentiation between the theory of functions and the
theory of functionals. When the probability is a function of x and t

P ≡ P (x, t) , (1.22)

because the wavefunction is a function of x and t, Feynman’s thought experiment does
produce in its limit the complete space of all possible paths. However, in functional analysis
the probability

P ≡ P [ψ] , (1.23)

clearly implies that the continuum of all possible paths includes the Cauchy C curve. Un-
like equation (1.22), the P in equation (1.23) depends on a complex variable because ψ is
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complex-valued. Therefore, the ordinary rules of complex analysis must apply and those
rules say C needs to be included in the definition of all of spacetime. We will need to decide
if we will use the Cauchy integral formula to expand the probability, as examined above, or
the probability amplitude which usually depends on purely real variables but there are some
subtleties. In general, this relates to the difference between discrete and continuous sets of
eigenfunctions that lead to P [ψ]∈R and P [ψ]dx 6∈R respectively. In the continuous basis,
there is an extra integral that is preformed before a real valued probability is obtained for
comparison with experiment and we will return to these rudimentary yet critical details in
section IV.3. However, the general treatment of the Cauchy formula does not appear in this
book.

In equation (1.20), g(r, θ) is a function of a point in the complex plane and that is to
say that g is a function of a complex number. On the other hand, ψ(x, t) appears to be a
complex-valued function of two real variables x and t. This would imply P ≡ P (x, t) and
that the Cauchy integral formula has no natural application to the integrals Feynman used
to build his quantum mechanical wavefunction. However, the reader must recognize that we
can force ψ to be a function of a complex variable. How can we force this other possibility?
The analytical origin of the minus sign in the line element of Lorentzian spacetime

ds2 = −c2(dt)2 + (dx)2 + (dy)2 + (dz)2 , (1.24)

can come from a definition x0 = ict which means that the region R considered by Feynman
is actually the complex plane C because it is spanned by one real axis and one imaginary
axis. The dimensional transposing parameter c is a trivial coefficient that can be ignored so

z ≡ x+ it ∈ C . (1.25)

If {x, t} is a point in C then ψ(x, t)≡ψ(z) must be a function of a complex variable and the
Cauchy formula applies. We will discuss this complex forcing method further in section II.4.

In the famous thought experiment, Feynman builds up his space of all possible paths by
adding increasing numbers of screens and slits to a hypothetical double slit experiment. The
probability is a function of the wavefunction, which is a complex-valued function, so the path
in the Cauchy integral formula is completely contextually correct even when ψ(x, t) 6≡ψ(z).

In quantum physics, the thing that the observer actually tests at the endpoints of M̂3 is the
real valued probability P which, in turn, is a functional of the complex-valued wavefunction.
In the Cauchy formula, we have f(z0) ≡ P (ψ0) but what is ψ0? A general question in
quantum mechanics is to ask, when given an initial state ψi, what is the probability of
observing another state later. Call that state ψ0 so the probability of observing it is P [ψ0]
(or P ′[ψ0]dx.)

Feynman has not introduced hypercomplex field variables so he considered the neighbor-
hood around one level of ℵ and the minimum of the action is favored. When all the future
levels of ℵ have gravitating objects whose magnitudes (masses) are defined with hyperreal
infinities of successively increasing infinitude, the trajectory of a test mass is intuitively
pulled out of the Euclidean minimum of action onto the maximum action path that heads
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off in the direction of Φ̂. Notice the consistency here. An intuitive way to test gravitational
equations is to consider the motions of test particles. If we have equations of motion for
gravity near the surface of the Earth, they should show that an ordinary object will fall. Now
we are proposing to radically modify the entire paradigm of gravitation by adding this new
path C and different hypercomplex infinities and infinitesimals, and we expect the reader
to believe that it works when we have no significant accompanying calculation similar to
Einstein’s prediction for the deflection of light from Mercury as it passes deep through the
sun’s gravitational well.1 However, we do have many other results including one very much
like Schwinger’s derivation of the first order correction to the electron’s magnetic moment.
Schwinger used perturbation theory that depends on an expansion in the magical fine struc-
ture constant which is the number we have derived from first principles with help from God.
The author expresses his gratitude to God.

What possible reason could there be for a trajectory in which stationary states seem
stationary but constantly zoom off to infinity in H1 7→ Ω 7→ ℵ 7→H2 where H2 lies beyond
infinity? The infinitely large hyperreal qubit at the end of H1’s Φ̂ vector is the most massive
thing in the local hypercosmos so when the trajectory always goes straight toward the mass
of the universe on the higher level of ℵ (where m∼∞), it is making a beeline for the most
massive object in its local neighborhood. This is exactly what is expected of a theory of
gravity so there is a lot of consistency. The main push of this book will be to demonstrate
familiar aspects of unification between quantum theory and general relativity but we very
much urge a third party undertaking of a rigorous survey of MCM/TOIC objects/methods
to check if they are useful in any cutting edge experimental applications or if there is any
unnoticed but interesting hypercomplexity hidden somewhere within the infinite complex-
ity. The existence of this complexity has been convincingly demonstrated throughout this
research program.

It has been very many decades since Feynman wrote hits paper titled “Space-Time Ap-
proach to Non-Relativistic Quantum Mechanics,” and some of the problems with that ap-
proach had not been resolved until the introduction of the MCM wherein we have proposed
to explore the exotic but allowed maximum action equations of motion. Feynman’s Ph.D.
thesis was about the principle of least action in quantum theory so he discarded the max-
imum action paths a priori, but we will not do so. Since the action principle only allows
two solutions, and Feynman has already described one of them, the MCM must rely on the
other one.

1This work resulted from Einstein’s collaborations with Grossmann and Besso so it contrasts greatly with the MCM which
did not result from any collaborations.
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Figure 9: This figure illustrates the region of figure 7 between t0 and t′′. If one considers the third π̂
component in the middle as xµ∅π̂ then it is very easy to see where the (Φπ)3 term comes from
in αMCM . Simply let the non-unitary component be such that each π̂ is inflated by Φ from one
moment to the next. In a sense we can say π̂1/2 is out of phase with the other two π̂s (the
normal sense of π/2 orthogonality) and it is π̂0 and π̂1 that give, speculatively at least, the 2π for
αMCM = 2π + (Φπ)3.

Figure 10: This is the the mechanism from reference [7] through which we claimed to have unified gravity
and electromagnetism, and here we point out that that reference would have been better titled
Dark Energy in the Modified Cosmological Model with Ancillary Takeaways. We use the “in” �
and “out” ⊗ diagrammatic notation of introductory electromagnetism to show the places where
the piecewise bulk geodesics are joined across different tiers of infinitude (levels of ℵ) in ∗C.
The original caption for the diagram was, “The Feynman diagrams of gauge theory generate
surfaces which represent interacting strings [16]. On the left: electromagnetic pair creation near
the horizon. On the right: polarized gravitational pair creation.” This figure is adapted from
reference [17] and it went unfortunately uncited when we used it in reference [7].
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Figure 11: There are a lot of ways that ℵ and Ω could be connected.

II General Relevance with Emphasis on Gravitation

The first section of this chapter is an elementary review. Section two is dedicated to general
relativity. In section three, we make a nice comment about the Bekenstein–Hawking formula
for the entropy of black holes. Section four describes how coordinates in spacetime can
be defined so that the corresponding metric becomes either Lorentzian or Euclidean while
maintaining a valid general relativity. This method can force the condition that causes
the wavefunction to be a function of a complex variable. Section five describes a method
by which we may insert qubits onto a geometric manifold and emphasize the integration of
quantum mechanics into MCM quantum gravity/quantum cosmology. Here, we provide some
modest but original insights into the structure of perturbation theory with a new definition
for ϕ̂. Sections six and seven deal with twistors, spinors, dyads, and quaternions. The final
section in this chapter is about the MCM mechanism of unification between quantization
and gravitation.

Whereas the bulk of the research conducted in this program has focused on the quan-
tum sector, here we also investigate the gravitational sector. This chapter applies general
relativity to derive properties of the MCM and the reader should keep in mind that general
relativity is not called “general” because it is a high-ranking theory but rather because it is
generic. Special relativity to the contrary is not generic. This book is more comprehensive
than previous work and is therefore more rigorous but it is also very reiterative. The tools
of both hyperreal and complex analyses provide synergy for new tools of hypercomplex
analysis in the theory of infinite complexity.

The entire history of physics shows that the rigorous mathematical connection of modes
is sufficient to demonstrate inter-modal energy transfers in representative experiments and
research regarding the MCM has uncovered a novel new mathematical connection. There
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is no guarantee that a “correct” mathematical demonstration of a principle will show the
principle in the lab, but if it does not then that would be the first time. The emphasis,
of course, is on correctness but, due to the simplicity of the TOIC principles, it is totally
obvious that they are correct. Any defect cited in this research program is of at most genus
errata.1 As Jesus said in John 18:23, “If I said something wrong, testify as to what is wrong.”
Jesus immediately goes on to ask, “But if I spoke the truth, why did you strike me?,” which
can be taken, very much so, in the context of this banned research as well.

II.1 Relevant Aspects of Classical Physics

General relativity has a Newtonian limit whose structure is the same as the classical electric
force. Those solutions are commonly written as

~Fg = −GMm

r2
r̂ , and ~Fe = −eQq

r2
r̂ , (2.1)

where ~Fg and ~Fe are Newton’s law for gravity and the Lorentz force law with no moving
charges, a.k.a. Coulomb’s law. If quantum electrodynamics (QED) is one kind of multiplectic
expansion of the Poisson equation then all we have to do to unify gravity with electromag-
netism is to show that general relativity is another multiplectic expansion of the Poisson
equation using the same set of objects for each in a common structure. However, the Pois-
son equation, as in equations (2.1), is not a prominent topic in this book.

A common representation of the classical force law is

~Fjk =
β

r2
jk

(
~rjk
|~rjk|

)
, (2.2)

where β is an electric or gravitational coupling constant. The multiplectic expansion from
Newton’s vector gravity to Einstein’s tensor theory brings in tensor indices to track curva-
ture, it brings in the metric to define the distance along ~rjk, and it throws out the idea of a
vector such as ~rjk connecting two points in a curved manifold. To accommodate dynamical
spacetime geometry, it is required to use metrical and other tensors, and non-tensorial con-
nection coefficients to fully describe gravity, but even those tensor equations have to reduce
in the Newtonian limit to representations of the form of equations (2.1-2.2). These formulae
are derivable from the Poisson equation for gravity

∇2φ = 4πGρ , (2.3)

when the gravitational potential φ at a distance r away from mass M is

φ(r) = −GM
r

. (2.4)

1During the preparation of this book we discovered and corrected an important erratum in reference [10].
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Classical gravitation uses the scalar potential φ to determine the equations of motion but
general relativity has no gravitational potential and instead uses the non-tensorial connection
Γµρσ to compute geodesics with the geodesic equation

d2xµ

dτ 2
+ Γµρσ

dxρ

dτ

dxσ

dτ
= 0 . (2.5)

Geodesics are the paths followed by unaccelerated objects in spacetime. The connection,
also called the Christoffel symbol, the Christoffel connection, or the affine connection, is
determined from the metric via

Γλµν =
1

2
gλσ
(
∂µgνσ + ∂νgσµ − ∂σgµν

)
. (2.6)

The inverse metric gλσ appears in equation (2.6) so when we convert to 5D we will make use
of the inverse Kaluza–Klein metric ΣAB which has, thankfully, already been calculated and
posted on Wikipedia. We can simply plug it into the formula for the 5D connection coeffi-
cients where gλσ appears in equation (2.6). Other important objects include the Riemann
tensor which is (in 4D)

Rρ
σµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓ

λ
νσ − ΓρνλΓ

λ
µσ , (2.7)

and one of its contractions: the Ricci tensor

Rµν ≡ Rλ
µλν . (2.8)

Equations (2.7-2.8) generalize to 5D by changing the Greek indices to Latin. General relativ-
ity can become a very complex theory when the Ricci tensor and the metric are not linearly
dependent on each other and we will discuss related nuance throughout chapter three. To
date, we have only worked with Einstein’s equation in the form

8πTµν = Gµν + gµνΛ , (2.9)

but the avenue toward greatest complexity is shown when the Einstein tensor

Gµν ≡ Rµν −
1

2
Rgµν , (2.10)

is decomposed to give Einstein’s equation as
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8πTµν = Rµν −
1

2
Rgµν + gµνΛ , (2.11)

with the Ricci scalar R being

R ≡ gµνRµν . (2.12)

The main result of the MCM has been to develop a new connection between gravitation
and quanta. When the ontological basis was considered to have three elements1 {π̂, Φ̂, î}, we
showed a one-to-one unification

f 3
∣∣ψ; π̂

〉
7→ Tµν (2.13)

∣∣ψ; Φ̂
〉
7→ Gµν (2.14)

i
∣∣ψ; î

〉
7→ gµνΛ , (2.15)

but now the ontological basis is {̂i, Φ̂, 2̂, π̂}. This is better suited to Einstein’s equation as it
appears in equation (2.11) but there are several choices for that which 2̂ should map to. This
freedom to choose compounds the original arbitrariness imposed when we chose mappings for
{π̂, Φ̂, î}. When there were only three objects in Einstein’s equation, we chose one particular
set of maps to demonstrate that the maps exist. Now that there is a fourth object, we will
not make a guess about how the four tensors in Einstein’s equation are connected to the
four objects in the ontological basis. Instead, we simply point out that since there are four
of each, there exist some other one-to-one mappings even if we don’t pick one right now.
The important thing isn’t the form of the specific maps. The most important feature is that
we have obtained via the MCM the correct dimensionless coefficient of proportionality: 8π
[12, 4], as in equation (2.11). We will discuss the origin of 8π in the MCM in chapter three.

The Newtonian gravitational potential, by construction, does not include the gravitational
self-force of a particle when it deforms the spacetime of its own inertial frame. Likewise with
the electromagnetic potential: when we probe the field of a strong magnet with a weak
test charge e0, the equations of motion, though completely valid, are only an excellent
approximation to the equations of motion that include the small deformation of magnetic
field lines around e0 as it moves through the magnetic field. The geodesics of general relativity
also do not account for the gravitational self-force but they do allow other generalized energy
densities to change the course of particles in a way that the classical gravitational potential
cannot. It is for this reason, among others, that we say Einstein’s formulation of gravitation
is superior to Newton’s.

1The fourth element 2̂ first appeared in references [4] and [5].
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The electromagnetic self-force is called the Abraham force and it involves the third time
derivative of position as

~FA := q2~...x . (2.16)

The electromagnetic force is often taken as the Lorentz force

~FL = m~̈x = q
(
~E + ~̇x× ~B

)
, (2.17)

alone but the force equation becomes third order in ∂t as the Lorentz force is taken in
superposition with the Abraham force. In general, the approximation to the real electric
force with the second order Lorentz force is valid but there are extreme regimes such as
plasma physics where the third order equations

~FAL = m~̈x = q
(
~E + ~̇x× ~B

)
+ q2~...x , (2.18)

must be considered if a realistic answer is to be obtained. As discussed in the previous
chapter, equations of this form are not directly compatible with Feynman’s formalism. The
Lagrangian that gives the Abraham–Lorentz force is not solely a function of position and
velocity.

Consider Carroll’s words from reference [17].

“The primary usefulness of geodesics in general relativity is that they are the
paths followed by unaccelerated test particles. A test particle is a body that does
not itself influence the geometry through which it moves1 – never perfectly true, but
often an excellent approximation. This concept allows us to explore, for example,
the properties of the gravitational field around the Sun, without worrying about
the field of the planet whose motion we are considering. The geodesic equation
can be thought of as the generalization of Newton’s law f = ma, for the case of
f = 0, to curved spacetime. It is also possible to introduce forces by adding terms
to the right-hand side [of equation (2.5)],

d2xµ

dτ 2
+ Γµρσ

dxρ

dτ

dxσ

dτ
=

q

m
F µ

ν

dxν

dτ
.” (2.19)

Equation (2.19) is a second order force law because, as stated, it does not account for
the self-acceleration of test particles. The full relativistic force law is more complicated and
Dirac is credited with working out those details in 1938. The familiar object F µ

ν = gρνF
µρ

1This is the gravitational analogue of ignoring the Abraham force. Its dual is called the gravitational self-force or sometimes
the gravitational backreaction.
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in equation (2.19) is the electromagnetic field strength tensor. It is the tensor that most
directly influences observables. It is defined via

∂µF
µν = Jν , or F µν = ∂µAν − ∂νAµ , (2.20)

where the 4-vector potential Aµ defines the current through

Jµ =
1

4π
ηµν∂ν∂ρA

ρ . (2.21)

Note how equation (2.21) (the tensor Poisson equation) has a dimensionless coefficient 4π
that is also the coefficient of the leading term of the ontological resolution of the identity

1̂ =
1

4π
π̂ − ϕ

4
Φ̂ +

1

8
2̂− i

4
î . (2.22)

It is really striking that the leading coefficient of a logical ordering of the the ontological
resolution of the identity is 1/4π. The dimensionless constants that effortlessly fall out
of the MCM include: exactly the electromagnetic coefficient 4π, exactly the gravitational
coefficient 8π, and the fine structure constant to within 0.4%. On the last, it is totally
certain that we can reformulate quantum theory so that the inverse fine structure constant is
exactly 2π+(Φπ)3 and then the 0.4% disagreement will be shuffled into some other quantum
fuzziness elsewhere. Quantum electrodynamical perturbation theory works because αQED is
a very small number and another number that differs by 0.4% is also very small.

The special behavior of the ontological basis hails from the MCM notation which specifies
a manifold and a vector space for state vectors

∣∣ψ; î
〉
≡ ψ(xµ−) (2.23)

∣∣ψ; π̂
〉
≡ ψ(xµ) (2.24)

∣∣ψ; Φ̂
〉
≡ ψ(xµ+) , (2.25)

that would otherwise all live in H′ and have position space representations in the xµ co-
ordinates of Minkowski space H due to the implicit assumptions of quantum mechanics.
Equation (2.23) says ψ lives in ℵ′ which relies on coordinates xµ− and equation (2.25) says
ψ lives in Ω′ relying on coordinates xµ+. xµ are the coordinates of Minkowski space H. H
is where the theory is required to match observations and π̂ is the element of the ontolog-
ical basis whose coefficient is the electromagnetic coupling constant. We expect to extend
equations (2.23-2.25) to include the complete ontological basis with
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Figure 12: H is not at the point p ∈ Σ∅. Σ∅ lies all around the outside of this MCM representation.

∣∣ψ; 2̂
〉
≡ ψ(xµ∅) . (2.26)

This equation says that |ψ; 2̂〉 lives in the same Hilbert space H′ that |ψ; π̂〉 lives in but the
position space representation is in the xµ∅ coordinates that do not belong to H. The original
three maps were associated with the three vector spaces of a Gel’fand triple and this fourth
map should be associated with the dual space to Hilbert space H′ which is also H′. Since
H′ is self-dual, the fourth map for 2̂ is easily accommodated in the Gel’fand triple.

A fourth map for |ψ; 2̂〉 implies a new topological component associated with {ℵ,H,Ω}
which we will call simply ∅ and say that it is a 4D section of the 5D manifold Σ∅. Σ∅

lies around the outside of the old unit cell (figure 12) and is centered in the most recent
depiction: figure 1.1 The description of the MCM unit cell has always been as a partial
unit cell because we had never even begun to examine all the diagrammatic subtleties that
would fully include Σ∅. In figure 1, we put Σ∅ in the center to emphasize that it is the
main unknown at this point but the figure still only shows a partial cosmological unit cell
because it does not show how Σ± are actually connected, which is vital. We have been able
to get away with not stating the relationship between 2̂, ∅, and Σ∅ because, as indicated
by the “∅” notation, it does not directly contribute to observables. However, before the
set of MCM observables that would be of interest to experimentalists can be derived, the
indirect dependence on Σ∅ must be clarified and we have mentioned M̃4 as a next step in
that direction.

Regarding ∅, note that the path over dθ on the right hand side of

∫ ∞
−∞

ψ(x, t)δ(t)dt =

∫ ∞
0

ψ (r, 0) dr +

∫ π

0

ψ (∞, θ) dθ +

∫ 0

−∞
ψ (r, π) dr , (2.27)

is zero because ψ(∞)=0 and, similarly, the path over χ5
∅, which lies entirely at infinity, has

zero length in our “affine” parameter χ5. We say ψ(∞)=0 in compliance with the ordinary

1We use a loose definition of manifold because it is possible to leave the MCM “manifolds” along the χ5 direction.



31

Figure 13: This figure makes reference to figure 10 and describes where the fourth step in M̃4 could be added
to the existing process M̂3. While we will not develop the method in this section, the general idea
is to use 2̂ as the first step to create a copy of H and then put it in between ℵ and Ω where the
level of ℵ increases. If in some sense we can “leave Φ̂ behind” when evolving through ∅, possibly
by folding it into the coefficient of a Fourier transform, then we have a good clue about how to
restore unitarity after the non-unitary MCM operations: use modified Fourier coefficients.

square integrability condition in quantum mechanics.1 If the particle is at some finite ~r at
some time t then the probability of finding it at ~r =∞ finitely later should be zero. The
entire manifold Σ∅ exists only to guarantee the existence of an exceptional point where the
level of ℵ can increase during Ω 7→ℵ, as in figure 13. For now, we simply say that there is
some manifold Σ∅ which has at least one point that can sew together Σ+ and Σ−, and then
we introduce a non-trivial parameter

χ5 ≡ χ5
+ ⊗ χ5

∅ ⊗ χ5
− , (2.28)

called chiros. We can use this definition to draw diagrams that show a smooth affine pa-
rameter χ5 even when the manifolds it passes through have been disconnected by H- and
∅-branes.

Why is being able to represent the non-smooth topology on a smooth affine parameter
important? It is important because affine parameters are the best way to convert a diagram’s
lines into equations. No matter how complex a given curve is, be it geodesic or field line,
once the curve is known, it is possible to parameterize the curve in a way that makes it
trivial. There are other parameterizations which are more complex but the simplest one uses
an affine parameter. A good definition for an affine parameter λ on a geodesic is that it is a
linear rescaling of the proper time τ→λ=aτ + b that would be experienced by an observer
traveling along the path. Once we have constructed χ5 as in equation (2.28), we can put
an affine parameter on that construction and retain the label χ5. χ5 is the parameter that
allows us to represent the MCM unit cell with a smoothly connected diagram.

1The MCM condition necessarily gives ψ(0)=0 because the observer will never find the particle at his own exact location.
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Why are diagrams important? As we pointed out in reference [7], “Diagrams are used in
physics to transmit information with a clarity that is not present in excessively quantified
arguments.” Diagrams are important because they allow us to visualize the degrees of
freedom of a system in a way that lets us easily write down the kinetic and potential energy
functions, which then let us formulate the Lagrangian or Hamiltonian. Thereafter, known
methods are applied to derive a solution to either the Euler-Lagrange equation or the action
principle and the equations of motion result. For instance, while we have spent a lot of time
developing the diagrammatic representation which led to the principle of most action, other
researchers may have neglected the diagrammatic (geometric) representation in favor of some
algebraic descriptions of their models and then become bogged down trying to squeeze the
theory onto a software module that only computes the path of least action.

It is quite popular in the contemporary physics scene to assume a Hamiltonian without
first sketching out a system’s diagram. We completely shy away from this on philosophical
grounds. This is why we have never made any statements like, “Let there be a diagonal
Hamiltonian matrix operator,” and it is why we have not considered arbitrarily specific
objects like the Einstein–Cartan–Kibble–Schiama action or similar. The TOIC represents
only one single point in parameter space where the normal analysis is to consider gauge
theories as entire equivalence classes, or broad hypersurfaces in parameter space. By guessing
random Hamiltonians, the idea is that the guesses should intersect these planar equivalence
classes. However, the TOIC, with its infinitely precise irrational coefficients, is pointlike and
singular in parameter space so it is highly unlikely be intersected in this way. It must be
developed from the diagram. Furthermore, many classical methods for probing theoretical
parameter space only use one kind of time and therefore could never find the parameters of
a two time model.

In the course of doing physics, only when we have developed the diagrams enough to
extract one intuitive, unambiguous energy function (a Hamiltonian or a Lagrangian) should
we begin to compute the equations of motion. This diagrammatic aspect is the infamous
“underlying conceptual component” [7] whose illusory nature is currently the main bottleneck
preventing progress in theoretical physics. Diagrams have been among the most important
contributions of the TOIC and we have been lucky enough to uncover several irrefutable,
non-diagrammatic, quantitative results as well. However, we still have not written the MCM
Hamiltonian so that will be a worthwhile task to undertake in the future Ω. The purpose
of this research has been to develop a method by which one could calculate new equations
of motion that have remained elusive to very many other researchers that are looking for
them. While Mathematica or Matlab are happy to give the equations of motion for a given
Hamiltonian, we philosophers of Nature, we physicists, should only be happy with equations
of motion that come from a diagram so guessing random Hamiltonians can never lead to
true happiness.

Reference [18] lists five general categories for theories of gravitation. Mann writes, “By
setting various conditions on [the manifold ] M and choosing an appropriate Lagrangian L we
can construct a variety of theories of gravity.” They are: general relativity, torsion theories,
Kaluza–Klein theories, supergravity theories, and algebraically extended theories. Mann
defines the last as follows [18].

“[Algebraically extended theories are] theories in which all geometric objects take
their values in an algebra A, instead of the real numbers R. [sic] The spacetime
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Figure 14: This figure shows a hypothetical hypercomplex gravitational potential B̄ that replicates the mo-
tion along hypercomplex geodesics

manifold M is still real; by requiring the reality of physically measurable quantities
on M it has been shown that the only allowable algebras which may be introduced
are the real numbers (general relativity), the complex and hypercomplex numbers
and the quaternions and hyperquaternions.”1

The MCM combines aspects of general relativity, torsion theories, Kaluza–Klein theories,
and algebraically extended theories. Infinite complexity is too much complexity to consider
and luckily there is a simplifying constraint built into Kaluza–Klein theory: the 5D Ricci
tensor RAB has to vanish at all times. This severely restricts the complexity of the bulk
hyperspacetime in Σ± but it still allows rather complex solutions to the 5D metric because
gravitational radiation is a non-trivial solution to RAB = 0. We will therefore not be con-
strained to say that the bulk hyperspacetime is a void; we are only constrained to say that
the 5D Ricci tensor RAB always vanishes and the hyperspacetime bulk is void of any points
where the wavefunction collapses. (By definition, collapse inducing measurements happen in
H and never in the bulk.) The infinite number of H-branes in the hypercosmos can imply a
physical multiverse, or there is a more philosophically untouchable interpretation when the
hypercosmos is only a mathematical potential. It can be the observer’s non-physical tool for
making abstract calculations to derive predictions for observables in spacetime.

Figure 14 shows the expected gravitational potential energy curve between adjacent levels
of ℵ Φ̂n and Φ̂m. As levels of ℵ increase in the future, the arrow of time points strictly in
the direction of increasing magnitude in ?C, which is the normal downhill energy condition
seen in figure 14. Downhill leads toward the infinitely greater mass-energy that exists in
the future under the assumptions of the MCM. We can say that the gravitational potential
energy landscape in the time direction is completely determined by the object in the future
because the gravitational amplitude of the object in the past, being on a lower level of ℵ, is
on the order of an infinitesimal with respect to the future object. However, since the future is
out there at future infinity, it will be difficult to make the direct extension of the Newtonian

1Mann goes on to make an aside about how the theory based on hypercomplex numbers is testable in the solar system, but
those hypercomplex numbers, as mentioned in an earlier footnote, are likely not ?C.
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potential from spatial dependence to temporal as

φ(r) = −GM
r

−→ B̄(χ5) = −GM
χ5

. (2.29)

If an object is infinitely far away, or at least approximately infinitely far away, then limχ5→∞
B̄(χ5) = 0 but if we use hypercomplex numbers to get M :=∞ then there exists a likely
workaround involving infinite mass divided by infinite distance. For instance, if we assume
a level of ℵ j and write the infinite distance as χ5 = rΦ̂j+1, and the mass of the universe on
the higher level of ℵ as MΦ̂j+1, then

B̄(r) = −GMΦ̂j+1

rΦ̂j+1
= −GM

r
. (2.30)

Equation (2.30) is completely trivial but, if it is even possible to formulate the dynamics in
this way, when we include the non-trivial properties of χ5 such that the resultant B̄ has all
the dependences in figure 14 then the equation might be more interesting.

We know the Newtonian gravitational potential describes a limit of general relativity but
there is no guarantee that a new scalar potential function B̄ can represent hypercomplex
gravitation. On the other hand we would be remiss not to at least look for the case where
it is possible to encode the entire thing on a Newtonian potential which could then later
be shown to be a limit of the the MCM, but here we will work in the post-Newtonian
tensor language. Regarding an overall MCM potential energy function, the notion will be
to assemble a periodic array of δ-valued energy wells corresponding to allowed regions Hn

between unallowed bulk regions where V =∞ such that the infinite depths of the successive
energy wells increase as tiers of infinitude in ?C from one π̂-site to the next. Hypothetically,
we would take the limit of infinitely many discrete wells to construct the hypercomplex
version of the continuous 1/r gravitational potential well.

Now we will examine the metric in the bulk of the MCM unit cell. In reference [19],
Bailin and Love report the Kaluza–Klein metric as follows and once again we change certain
variable names for global consistency.

“We adopt coordinates χ̃A, with A = 1, ..., 5 with

χ̃µ = χµ µ = 0, 1, 2, 3 (2.31)

being coordinates for ordinary four-dimensional spacetime, and

χ̃5 = θ (2.32)

being an angle to parameterize the compact dimension with the geometry of a
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circle.1 The ground-state metric after compactification is

Σ̃AB = diag{ηµν ,−Σ̃55} (2.33)

where

ηµν = (1,−1,−1,−1) (2.34)

is the metric of Minkowski space, M4, and

Σ̃55 = R̃2 (2.35)

is the metric of the compact manifold S1, where R̃ is the radius of the circle.2

“The identification of the gauge field arises from an expansion of the metric
about the ground state. Quite generally, we may parameterize the metric in the
form

Σ̃(χ, θ) =

(
gµν(χ, θ)− Aµ(χ, θ)Aν(χ, θ)φ(χ, θ) Aµ(χ, θ)φ(χ, θ)

Aν(χ, θ)φ(χ, θ) −φ(χ, θ)

)
. (2.36)

To extract the graviton and the Abelian gauge field theories it proves sufficient
to replace φ(χ, θ) by its ground-state value Σ̃55, and to use the ansatz without θ
dependence:

Σ̃(χ) =

(
gµν(χ)− Aµ(χ)Aν(χ)Σ̃55 Aµ(χ)Σ̃55

Aν(χ)Σ̃55 −Σ̃55

)
. (2.37)

We write

Bµ(x) = ξAµ(χ) (2.38)

where ξ is a scale factor we shall choose later so that Aµ(χ) is a conventionally
normalized gauge field.”

We see unification between classical gravity and classical electromagnetism beginning to
occur when the electromagnetic potential appears in the Kaluza–Klein metric. However, we
know Kaluza–Klein theory doesn’t work by itself (without MCM modifications [3].) Further-
more, the Newtonian gravitational potential is a scalar field whereas the the electromagnetic
potential transforms as a 4-vector so there is some fundamental imbalance of the formalism
that remains to be balanced through unification.

1This is what we have suggested by mapping Minkowski space onto a cylinder [2]. While we will refer to our 5D metric as
the Kaluza–Klein metric, the Kaluza–Klein model is the one with the compactified circular topology of the fifth dimension. In
the MCM, the fifth dimension has flat Euclidean topology so it is not the ordinary Kaluza–Klein model. Because the Kaluza–
Klein metric is consistent with the MCM/TOIC we will still speak of the Kaluza–Klein metric. Rather than a fifth dimension
compactified on a tiny circle or spiral, the MCM compactifies the 4D gravitational manifold H as a hypercomplex infinitesimal
on an unending, monotonic march of infinitude in ?C where some hypercomplex normalization restores finite unitarity at the
end of each unit cell.

2Dolce has extensively documented how the dynamical topological radius can be used to scale gauge theories. We we refer
the reader to reference [20].
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Where general relativity has geodesics, electromagnetism has field lines and we need to
unify these approaches. To that end, consider what Zangwill1 says about chaotic magnetic
field lines in reference [21].

“The complexity of a large class of magnetic field line configurations can be
appreciated using a field constructed from a constant B0 and an arbitrary scalar
function f(r):

B(r) = B0ẑ + ẑ ×∇f(r) . (2.39)

The field satisfies ∇ ·B = 0 by construction. [sic] The equation for the field lines
is

Bx

dx
=
By

dy
=
Bz

dz
= λ (2.40)

or

dx

dz
= − 1

B0

∂f

∂y
and

dy

dz
= +

1

B0

∂f

∂x
. (2.41)

Now, change the variables in [equation (2.41)] so x = q, y = p, and z = t. If,
in addition, we let f = −B0H, the two equations above are exactly Hamilton’s
equations of classical mechanics,

q̇ =
∂H

∂p
and ṗ = −∂H

∂q
(2.42)

Therefore the magnetic field lines are the ‘time’-dependent trajectories in (q, p)
phase space of a ‘particle’ with Hamiltonian H = −f/B0. Since most Hamilto-
nians are non-integrable and produce chaotic trajectories,2 the magnetic field line
configuration will be very complex indeed.”

In general relativity, we can derive a a set of differential equations in Hamiltonian form
whose solutions are geodesics. Zangwill has shown how field lines can be derived in the
same way and yet, at some level, the two approaches to physics, geodesics and field lines,
are not compatible. Electromagnetic field lines can be derived as a limit of a quantum
theory but geodesics cannot. The main push of the MCM is to identify and resolve these
outstanding discrepancies. Luckily, this research program has had no aim to calculate any
field lines or geodesics, to calculate an expectation value, or anything like that. Where
we have seen other researchers stuck with conceptual difficulties, the main contribution of
this research program to the total body of human knowledge has been to suggest to those
other researchers, “Try doing it this other way.” The difficult problem was not to make
the other calculation, the difficult part was to suggest the other calculation which we have
now identified as computing the path of maximum action. Before we can do that we must

1Andrew Zangwill is credited, and in fact lauded, as the person who first explained the Abraham–Lorentz force to this
writer along with its anomalous reliance on the ∂ 3

t operator.
2We expect the simplest MCM Hamiltonian to be of the non-integrable variety but, after the hypercomplex formalism is

fully developed, it may be simpler than expected.



37

first develop the field of hypercomplex analysis in ?C, and a survey of algebra is also in
order. If someone wants to see a calculation that does not appear in this research, they
should make it themselves or ask someone to do it for them. Detractors can continue to
harrumph that they would have used a computer to solve some equations and then copied
their software’s output into LATEX, and then sent their paper to a publisher other than viXra,
but waiting for this writer to abandon his research in fundamental physics in favor of some
problem in applied physics will not prove fruitful. We do not mean to disparage applied
physics in any way. Rather our aim is to, however unlikely, get one or more detractors to
finally clear the conceptual hurdle where they begin to understand that this writer’s research
program is his own and not his detractors’, that it is already experimentally verified, and
that said detractors have received the new theory stupidly. How can a body of research be
both “experimentally verified,” as this research is, and also “pending peer-review” as this
research is not? The widespread desire to ignore or obfuscate this issue pending a change in
this writer’s research direction will be a dire mark of shame on the history of the professional
conduct of science by supposedly reasonable men.

To move forward with the present considerations in classical physics, consider Carroll’s
further words from reference [17].

“As we shall see, the metric tensor contains all the information we need to de-
scribe the curvature of the manifold (at least in what is called Riemannian geometry
[sic]). In Minkowski space we can choose coordinates in which the components of
the metric are constant; but it should be clear that the existence of curvature is
more subtle than having the metric depend on the coordinates [sic]. Later, we shall
see that the constancy of the metric components is sufficient for a space to be flat,
and in fact there always exists a coordinate system on any flat space in which the
metric is constant. But we might not know how to find such a coordinate system,
and there are many ways for a space to deviate from flatness; we will therefore
want a more precise characterization of the curvature [sic].

“A useful characterization of the metric is obtained by putting gµν into its
canonical form. In this form the metric components become

gµν = diag(−1,−1, ...,−1,+1,+1, ...,+1, 0, 0, ..., 0) , (2.43)

where [equation (2.43)] means a diagonal matrix with the given elements. The
signature of the metric is the number of both positive and negative eigenvalues;
we speak of ‘a metric with signature minus-plus-plus-plus’ for Minkowski space,
for example. If any of the eigenvalues are zero, the metric is ‘degenerate,’ and the
inverse metric will not exist; if the metric is continuous and nondegenerate, its
signature will be the same at every point. We will always deal with continuous
nondegenerate metrics1. If all of the signs are positive, the metric is called Eu-
clidean or Riemannian (or just positive definite), while if there is a single minus
sign it is called Lorentzian or pseudo-Riemannian, and any metric with some
+1’s and some −1’s is called indefinite. [sic] The spacetimes of interest in general
relativity typically have Lorentzian metrics.

“We have not yet demonstrated how it is always possible to put the metric in
canonical form. In fact it is always possible to do so at some point p ∈ M , but in

1We, however, cannot always do this because the MCM has piecewise discontinuous and degenerate metrics.
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general it will only be possible at that single point, not in any neighborhood of p.
Actually we can do slightly better than this; it turns out that at any point p there
exists a coordinate system xµ̂ in which gµ̂ν̂ takes its canonical form and the first
derivatives ∂σ̂gµ̂ν̂ all vanish (while the second derivatives ∂ρ̂∂σ̂gµ̂ν̂ cannot be made
to all vanish):

gµ̂ν̂(p) = ηµ̂ν̂ , ∂σ̂gµ̂ν̂(p) = 0 . (2.44)

“Such coordinates are known as locally inertial coordinates, and the asso-
ciated basis vectors constitute a local Lorentz frame; we often put hats on the
indices when we are in these special coordinates. Notice that in locally inertial
coordinates the metric at p looks like that of flat space to first order. This is the
rigorous notion of the idea that ‘small enough regions of spacetime look like flat
(Minkowski) space.’ Also, there is no difficulty in simultaneously constructing sets
of basis vectors at every point in M such that the metric takes its canonical form,
the problem is that in general there will not be a coordinate system from which
this basis can be derived. [sic]

“The idea is to consider the transformation law for the metric

gµ̂ν̂ =
∂xµ

∂xµ̂
∂xν

∂xν̂
gµν , (2.45)

and expand both sides in Taylor series in the sought after coordinates xµ̂. The
expansion of the old coordinates xµ looks like

xµ =

(
∂xµ

∂xν̂

)
p

xµ1 +
1

2

(
∂2xµ

∂xµ̂1 ∂xµ̂2

)
p

xµ1xµ2 +
1

6

(
∂3xµ

∂xµ̂1 ∂xµ̂2 ∂xµ̂3

)
p

xµ1xµ2xµ3 ... ,

(2.46)

with the other expansions proceeding along the same lines. For simplicity we
have set xµ(p) = xµ̂(p) = 0. Then, using some extremely schematic notation, the
expansion of [equation (2.45)] to second order is

(ĝ)p + (∂̂ĝ)px̂+ (∂̂∂̂ĝ)px̂x̂ =

(
∂x

∂x̂

∂x

∂x̂
g

)
p

+

(
∂x

∂x̂

∂2x

∂x̂ ∂x̂
g +

∂x

∂x̂

∂x

∂x̂
∂̂g

)
p

x̂ (2.47)

+

(
∂x

∂x̂

∂3x

∂x̂ ∂x̂ ∂x̂
g +

∂2x

∂x̂ ∂x̂

∂2x

∂x̂ ∂x̂
g +

∂x

∂x̂

∂2x

∂x̂ ∂x̂
∂̂g +

∂x

∂x̂

∂x

∂x̂
∂̂∂̂g

)
p

x̂x̂ .

“We can set terms of equal order in x̂ on each side equal to each other. There-
fore, the components gµ̂ν̂(p), 10 numbers in all (to describe a two-index tensor1), are
determined by the matrix (∂xµ/∂xµ̂)p. This is a 4× 4 matrix with no constraints;
thus, we are free to choose 16 numbers. Clearly this is enough freedom to put the
10 numbers of gµ̂ν̂(p) into canonical form, at least as far as having enough degrees
of freedom is concerned. (In fact there are some limitations–if you go through the
procedure carefully, you find for example that you cannot change the signature.)

1This is true for a symmetric two-index tensor.
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The six remaining degrees of freedom can be interpreted as exactly the six parame-
ters of the Lorentz group; we know that these leave the canonical form unchanged.
At first order we have the derivatives ∂σ̂gµ̂ν̂(p), four derivatives of ten components
for a total of 40 numbers. But looking at the right hand side of [equation (2.47)] we
see that we now have additional freedom to choose (∂2xµ/∂xµ̂1∂xµ̂2)p. In this set of
numbers there are ten independent choices of the indices µ̂1 and µ̂2 (it’s symmetric
since partial derivatives commute) and four choices of µ for a total of 40 degrees
of freedom. This is precisely the number of choices we need to determine all of
the first derivatives of the metric, which we can therefore set to zero. At second
order, however, we are concerned with ∂ρ̂∂σ̂gµ̂ν̂(p); this is symmetric in ρ̂ and σ̂ as
well as µ̂ and ν̂, for a total of 10 × 10 numbers. Our ability to make additional
choices is contained in (∂3xµ/∂xµ̂1∂xµ̂2∂xµ̂3)p [!!! ] This is symmetric in the three
lower indices, which gives 20 possibilities, times four for the upper index gives us
80 degrees of freedom–20 fewer than we require to set the second derivatives of
the metric to zero. So in fact we cannot make the second derivative vanish; the
deviation from flatness must therefore be measured by the 20 degrees of freedom
representing the second derivatives of the metric tensor field. We will see later how
this comes about, when we characterize the curvature using the Riemann tensor
which will turn out to have 20 independent components in four dimensions.

“Locally inertial coordinates are unbelievably useful. Best of all, their useful-
ness does not generally require that we do the work of constructing such coordinates
[sic], but simply that we know they do exist.”1

Wow! Rather than using tensor language for all of that we can use commas to separate all
the items needed to make a calculation, put them in curly brackets, and call it a multiplex.
Is the best way to keep track of the 20 curvature components of the Riemann tensor really in
an object that transforms like a tensor? Why not use a 4×5 matrix, or a 20×1 matrix that
more directly represents the idea of a multiplex? Quantum mechanics does fine with matrices
instead of tensors so we know that, in some sense, there exists an analytical channel for
physics other than tensor analysis on manifolds. There are already hundreds of multiplectic
positions needed just to cover tensor analysis in Lorentzian 4-space so two copies of the 14D
MCM system (the requirement for two copies of the system appears in reference [10]) will
need many thousands of positions to describe the general relativity of one MCM qubit. Due
to the sphere theorem and well-known methods of Ricci flow, the whole thing boils down
to large systems of partial differential equations but report format is not the correct venue
in which to describe possibly hundreds of thousands or millions of constraint equations that
would rigorously demonstrate how the curvature is related to the quantized electric current.
(Whoever has the facility to make those calculations should do so and upload his result to a
public mirror such as Wikipedia.) Instead of specific constraint equations in the MCM, we
have a powerful argument that goes something like, “You see how these two things connect?
There is only one way that we can pull an answer out of these objects.” As an example,
consider the MCM operator M̂3 := ∂3/∂χ5

+ ∂χ
5
∅ ∂χ

5
− [10] and how, among all the objects

in general relativity, it can only connect to the ∂3/∂xµ̂1 ∂xµ̂2 ∂xµ̂3 operator that appears

1It is this line of reasoning that leads us to believe it will be possible to make a vastly simplified calculation of trajectories
across the MCM unit cell whose various coordinate systems might be very difficult to construct... and unnecessary.
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in equation (2.46). This is the object Carroll identifies as containing “our ability to make
additional choices.”

To avoid confusion with very many other hats, we will not use hats to specify locally
inertial coordinates. It will be the convention that {xµ−, xµ, x

µ
+} are always locally inertial

coordinates on {ℵ,H,Ω} and we have a lot of freedom to use xµ∅ as required. The reader
must take extreme care to note that Carroll’s setting ∂σgµν = 0 at the origin to reduce the
complexity of the equations complements what we have referred to as the MCM condition.
The MCM condition states that the observer is always at the origin xµ=0 and any coordinate
system that places him elsewhere will make the MCM contraption falter. Setting the first
derivative to zero might be eventually be shown to be a required by the full MCM condition
rather than the option as which Carroll has presented it. When evolution moves the observer
from ti=0 to ti+1 6=0, that is simply t′i+1 =0 in the coordinates of the time advanced manifold.

II.2 General Relativity

We have firmly established the requirement for four ontological vectors {2̂, π̂, Φ̂, î} [4, 5, 10]

as opposed to the three-fold subset {π̂, Φ̂, î} proposed in reference [12]. Therefore, we shall
consider Einstein’s equation resolved into four components

8πTµν = Rµν −
1

2
Rgµν + Λgµν , (2.48)

and how they connect to {H,ℵ,∅,Ω} via something along the lines of

8πf 3
∣∣ψ; π̂

〉
=

Φ

4
|ψ; 2̂

〉
− 1

2
|ψ; Φ̂

〉
+ i
∣∣ψ; î

〉
. (2.49)

The reader should note that we have chosen this arbitrary position for 2̂ only to show
matching between equations (2.48-2.49) on the 1/2 coefficient and the 8π coefficient, and
also that we have used hand waving for some signs and i’s. This begins to show that we might
assign the geometry Rλ

µσν to the î component, and then use the fundamental incompatibility
between irrational π and maximally irrational Φ to establish the computational topology
of the topological incompatibility between dS and AdS. When we apply the operator that
replaces π/2≈ 1.57 with Φ≈ 1.62 (section IV.1), all of the U(1) periodicity in 2π vanishes
because

sin(θ − π/2) = cos(θ) , but sin(θ − Φ) 6= cos(θ) . (2.50)

Therefore, this will be a symmetry breaking operation.
When the trigonometric functions are represented as distinct infinite series, they are

assumed to all have an even or odd infinite number of terms. It is the fundamental property
of sine that it is an even function and the fundamental property of cosine that it is an odd
function so we have good reason to consider the case when the topology of the MCM unit



41

cell must be such that it can accommodate a remainder term after operations pairing two
unlike infinite numbers of terms. Whatever the origin of the remainder, in this way, we may
represent two infinities in Σ± and then use the remainder to define something in H or ∅. For
example, consider the inner product of two orthogonal wavefunctions ψ± written in some
discrete bases {ψ+

j , ψ
−
k } in Σ±

〈
ψ−
∣∣ψ+

〉
=
∞∑
j=1

∞∑
k=1

c∗kcjδjk

∫
ψ−∗k ψ+

j dx = 0 . (2.51)

If we revise the concept of infinity such that one of the sums starts with iterator 0 and the
other with iterator 1, possibly motivated by the inclusion of a boundary in hyperbolic AdS
when none exists in spherical dS, then we will have an equation like

〈
ψ−
∣∣ψ+

〉
=
∞∑
j=0

∞∑
k=1

c∗kcjδjk

∫
ψ−∗k ψ+

j dx 6= 0 . (2.52)

Therefore the inner product must be such that

∞∑
j=0

∞∑
k=1

c∗kcjδ
′
jk

∫
ψ−∗k ψ+

j dx := c0ψ
+
0 , (2.53)

where δ′jk has special behavior such that

∞∑
j=0

∞∑
k=1

c∗kcjδ
′
jk

∫
ψ−∗k ψ+

j dx = c0

∫
ψ+

0 dγ̂ . (2.54)

Then it only remains to define γ̂ such that∫
dγ̂ = V0

(
1

4π
π̂ − ϕ

4
Φ̂ +

1

8
2̂− 1

4
î

)
. (2.55)

where the implication is that the inner product of the extra term in the odd infinite series
is taken with the identity operator 1̂. We will return to these details in chapter four. When
we say “the topology must be able to accommodate a remainder term” we have implied at
least the existence of a special kind of inner product and equation (2.55) shows how those
remainders can be objects in general relativity.

Previous work developing the TOIC has drifted in the direction of quantum theory from
its cosmological roots as the MCM and here we swing back in the other direction toward the
physics of the continuum described (with random assignments) by

f 3
∣∣ψ; π̂

〉
7→ Tµν (2.56)
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∣∣ψ; Φ̂
〉
7→ Gµν (2.57)

i
∣∣ψ; î

〉
7→ gµνΛ . (2.58)

Various iterations of these maps are derived in references [22, 12, 13, 4, 10]. In this section, we
will examine what needs to be done to split the Einstein tensor Gµν , and therefore equation
(2.57), into the components that appear in equation (2.48). Throughout this book, we will
ignore the signs of terms when they seem irrelevant and as justification we refer the reader
to the as-yet-undiscussed channel for

√
i (or n

√
i) which can be added later to generate an

arbitrary sign convention. Note that we continue to choose arbitrary matching for objects
rather than represent them in the most general fashion. For instance, the 2̂ term in equation
(2.49) could be the one that connects to Tµν , or any of the tensors in Einstein’s equation, but
we choose a particular (and reasonable) ansatz purely for convenience in maps (2.56-2.58).
Even the selection of the spherical and hyperbolic spaces Ω and ℵ as belonging to the future
or the past was arbitrary. Likewise, the assignment of the members of our Gel’fand triple ℵ′
and Ω′ to either dS or AdS manifolds was arbitrary. Such ansatzes are fine and if something
about maps (2.56-2.58) is found to be backward in the final analysis then later we can switch
it or perhaps we will complement the work of Benjamin Franklin and end up with an electric
current vector that does not point in the opposite direction to the motion of electrons. It
may even be that the other form of Einstein’s equation Rµν =Tµν − 1/2Tgµν is the one that
shows the most natural mapping of the objects in maps (2.56-2.58).

Throughout this research program, we have made many arbitrary choices when they make
it easier to analyze an idea than would be possible with a fully rigorous but overly general
case. Reasonable choices have consistently pointed the way to better choices such as the
replacement of the original basis vector ϕ̂ [7] with Φ̂.1 By choosing three ontological vectors,
we discovered that three are not enough to do all of the heavy lifting and now there are four
objects in the ontological basis. Since 2̂ now appears along side {π̂, Φ̂, î}, we should examine
what role it might play in relating the quantum and gravitational sectors as in equations
(2.56-2.58). To that end, consider the Einstein tensor

Gµν ≡ Rµν −
1

2
Rgµν , (2.59)

where we modify map (2.57) with 1=1/2 + 1/2 and Φ̂=Φ/2 2̂ as

1

2

∣∣ψ; Φ̂
〉

+
Φ

4

∣∣ψ; 2̂
〉
7→ Rµν −

1

2
Rgµν . (2.60)

There are multiple ways to assign the components of Gµν because the expanded map is from

two objects to two objects (and even this rests upon the assumption that Φ̂ is the piece that

1In this book, we use a different ϕ̂ and the reader should understand that it is a completely new object unrelated to the
original notation for what we now call Φ̂.
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should connect to the Einstein tensor.) The first obvious one-to-one possibility of non-mixed
linear dependence is

1

2

∣∣ψ; Φ̂
〉
7→ Rµν , and

Φ

4

∣∣ψ; 2̂
〉
7→ − 1

2
Rgµν , (2.61)

which gives R = Φ/2 and the second is

1

2

∣∣ψ; Φ̂
〉
7→ − 1

2
Rgµν , and

Φ

4

∣∣ψ; 2̂
〉
7→ Rµν , (2.62)

which gives R=1. Either way we obtain a nice constraint on the Ricci tensor Rµν .
In reference [3], we connected the curvature of the cosmos described by the Ricci tensor

to the golden ratio by defining embedded hyperboloids {ℵ,Ω} in 5D hyperspacetime with
curvature parameters equal to

Φ =
1 +
√

5

2
≈ 1.62 , and ϕ =

1−
√

5

2
≈ −0.62 . (2.63)

The reader should be aware of this odd notation that ϕ is a negative number, or what
Gauss would have called an inverse number. We initially defined hyperboloids directly in
the 5D bulk [3] but now we take flat slices of bulk in the χA coordinates and then impose
the hyperboloidal geometry for the xµ± coordinates with a 4D embedded metric g±µν(χ

5
±) on

each flat slice. The curved embedded metric is assigned by the MCM boundary condition so
it is not inherited from the 5D metric. The slices stay flat in the 4D metric Σ±αβ(χ5

±) that is

inherited from the 5D metric Σ±AB.
We already have two places where the Riemann tensor Rσ

µλν and the golden ratio Φ
connect: the first is in the embedded hyperboloid constraints

Φ2 = −
(
x0

+

)2
+

3∑
i=1

(
xi+
)2

, and − ϕ2 = −
(
x0
−
)2

+
3∑
i=1

(
xi−
)2

, (2.64)

for the xµ± coordinates of dS and AdS which were given in reference [3]. These two equations
were derived with an ansatz that the hyperboloid parameter on each slice should equal to the
square of χ5 at that slice. The new, second connection is derived from equations (2.61-2.62)
as a constraint on the Ricci scalar

R ∈
{

1,
Φ

2

}
, (2.65)
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and we should check to see if they are compatible. Equations (2.64) were proposed in
reference [3] as a way to show how the golden ratio could be forced into the metric and the
derivations in reference [3] did not depend on any specific choice of hyperboloid parameter.
To check the validity, note that in O(N,1) dS with N=3 and hyperboloid parameter α2 =Φ2

the formula for the Ricci scalar is

R =
N
(
N − 1

)
α2

=
6

Φ2
. (2.66)

Clearly these details do not all come together here because 6/Φ2 6∈ {1,Φ/2}. Therefore, we
should give precedence to the new matching condition shown in equation (2.65) and then use
equation (2.66) to derive the corresponding hyperboloid parameters α2

± in a revision to the
{Φ2,−ϕ2} ansatz that appears in equations (2.64). There is no requirement to use χ5 iden-
tically as the hyperboloid parameter as in reference [3]; we can create a the same smoothly
varying hyperboloid parameter as some other function of the pseudo-affine parameter χ5 as
needed. In reference [3], the ansatz was that this function should be α2

± = ±Φ±1 now we
have a requirement for a different function.

Consider the case when R = Φ/2, as per equation (2.65). Moving past the not very
relevant hyperboloid parameters that will describe the exact curvature on ℵ and Ω (it is
highly relevant that they are curved, not what the curvature is), note that R becomes the
coefficient in the tensor transformation law

xµ∅ =
Φ

2
xµ+ , (2.67)

associated with a change of coordinates from the Φ̂-site to the 2̂-site (via Φ̂ = Φ/2 2̂). The
form R = Φ/2 is very natural looking and it seems reasonable but we have another nice
possibility as well. We may set the Ricci scalar R to unity and let that be a scale factor that
enforces unitarity in lieu of the ad hoc normalization that is usually applied. Both choices
can be interpreted as an obvious (non-contrived) scale factor so we have good evidence of
the reasonableness of sticking 2̂ into the maps that were already doing fine without it.

If we are going to analyze the MCM and TOIC with the methods of general relativity
then its objects better satisfy the tensor transformation law. Mirroring equation (2.67), the
tensor transformation associated with a change of coordinates from xµ to xµ+ for some vector
Aµ is

Aµ =
∂xµ

∂xν+
Aν+ . (2.68)

To consider a change of coordinates from xµ associated with π̂ to xµ+ associated with Φ̂, let
Aµ≡Aπ̂ so that
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Aµ =


A
0
0
0

 , and Φ̂ : Aµ 7→ Aµ+ . (2.69)

By construction we have π̂=−ϕπΦ̂ so

xµ π̂ = −ϕπxµ Φ̂ =⇒ xµ+ = −ϕπxµ . (2.70)

Therefore

∂xµ+
∂xµ

= −ϕπ , (2.71)

and evidently the tensor transformation law is

Aµ+ = −ϕπAµ . (2.72)

It is good that the xµ coordinates of H have a different scale than the xµ+ coordinates of
Ω. The change of linear scale should have a direct association with the MCM’s expected
non-unitarity. Furthermore, we should explore in future work what it means for the quantity
−ϕπ to be inverse (prefaced with a negative sign) but also positive with −ϕπ>0.

The boundary condition given in reference [3] for determining H’s metric ηµν (or similarly
gµν =ηµν + hµν) was

lim
χ5

+→0+
Σ+
AB + lim

χ5
−→0−

Σ−AB =

(
ηµν 0
0 0

)
. (2.73)

The RHS of equation (2.73) shows the 5D analogue of the 4D metric in H. It has a vanishing
determinant and only one sign different than the other four so it is degenerate definite and
the metrics Σ±AB are nondegenerate because Σ±55 =χ5 is never equal to zero in Σ±. Among
Σ±AB, one of them is a Lorentzian metric and one is an indefinite metric because χ5 being
timelike in one of Σ± implies that it is spacelike in the other. Whichever of Σ± has two
timelike dimensions has an indefinite metric and the other is Lorentzian.

We chose the definition in equation (2.73) to show that the present needs to be considered
a superposition of the past and future which would not have been specified from a simpler
boundary condition such as

lim
χ5

+→0+
Σ+
AB = lim

χ5
−→0−

Σ−AB. (2.74)



46

Equation (2.74) does not show that the metric in H is always the flat Minkowski metric ηµν .
Equation (2.73) does show that requirement. However, if we suppose to define the metric in
H with

ηAB ≡
(
ηµν 0
0 0

)
, (2.75)

then no inverse metric will exist (ηAB is degenerate) and it will be impossible to compute
the connection coefficients according to the ordinary Christoffel prescription. That formula
relies on the inverse metric as in

Γλµν =
1

2
gλσ
(
∂µgνσ + ∂νgσµ − ∂σgµν

)
. (2.76)

To get the object ηAB in equation (2.73) into invertible form, we can consider

lim
χ5

+→0+
g+
µν + lim

χ5
−→0−

g−µν = ηµν , (2.77)

where g±µν is the non-flat embedded metric on each 4D slice of constant χ5. We could even
start to build complexity using the α̇ and tensor indices to write

lim
χ5

+→0+
Σ+
αβ + lim

χ5
−→0−

Σ−
α̇β̇

= ηµν . (2.78)

Equation (2.77) shows that the “size,” or linear scale, of g±µν is not equal to ηµν and this
is exactly what we would expect from the tensor transformations shown in the previous
section. This non-uniformity of scale must be associated with the non-unitary component of
the MCM. If the scale of different sectors was the same then we would have

1

2
lim

χ5
+→0+

g+
µν +

1

2
lim

χ5
−→0−

g−µν = ηµν , (2.79)

but this is not the stated relationship.
The inherited metric on each slice of constant χ5 is Σ±αβ and the embedded metric of the

chronological coordinates on each slice is g±µν . The MCM is such that Σ±55 ≡ ±χ5
± so it is

easy to see that the embedded metrics are defined by setting the parameter of curvature in
dS and AdS equal to some tailored function of the values of χ5

+ and χ5
− on each respective

slice of χ5. Therefore, the embedded metric on each slice of χ5 has subtle curvature near
χ5 = 0 and greater curvature where the absolute value of χ5 is larger. When we take the
limit χ5 → 0, it means the curvature approaches zero on each side of H. The difference
of the two metrics will be very small because AdS with infinitesimal negative curvature
is approximately indistinguishable from dS with infinitesimal positive curvature. Note the
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Figure 15: This iteration of the MCM unit cell emphasizes that H does not connect to Σ+ and Σ− simulta-
neously.

critical distinction that dS with positive curvature and AdS with negative curvature are
topologically irreconcilable but all the flat slices of χ5 share the same flat topology.

Equation (2.77) shows how the slices of Σ± approach a matching condition at H but we
can just as easily put the matching condition at Σ∅, as in figure 15. Then equation (2.77)
becomes

g∅αβ = gΩ
µν + gℵµν , (2.80)

where gΩ
µν = g+

µν(Φ) and gℵµν = g−µν(ϕ). Here, we place ℵ at χ5
−=ϕ but in this book we will

sometimes place it at χ5
−=−1. One piece of possibly relevant nuance is that we can introduce

a non-commutative concept in which the distance from H to ℵ is |ϕ| but the distance from
ℵ to H is one. Equation (2.80) shows that Σ± do contain their boundary at Σ∅ to contrast
the definition that Σ± are infinite half spaces which do not contain their boundary at χ5

±=0.
If they did not contain the other boundary, which is Ω or ℵ in Σ+ or Σ− respectively, we
would write

g∅µν = lim
χ5

+→Φ−
g+
µν + lim

χ5
−→ϕ+

g−µν . (2.81)

When we include the boundary, we can define gℵµν and gΩ
µν directly and we can even take

another definition

g∅µν = g+
µν(∞) + g−µν(∞) . (2.82)

This definition looks pretty good because dS and AdS with infinite curvature are singularities.
Mild negative curvature at χ5

−=ϕ isn’t exactly balanced out with larger positive curvature
at χ5

+ = Φ so equation (2.80) does not give the kind of neutral value expected for the ∅
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component. With equation (2.82), we get something along the lines of ∞+ (−∞)=0 which
is a good neutral value for the point p ∈ Σ∅ where the level of ℵ increases. The case of
infinite curvature could be a unique case that will allow us to smoothly connect a hyperbolic
topology with a spherical one.

In the arrangement described by figure 15, we see that H touches only one of Σ± at a time
so simultaneous matching on both sides of H is not implied in any way. We are joining Σ±

with ∅ instead of H so the new matching condition in equation (2.80) or (2.82) is very much
implied. The original condition about the smoothness of the bulk hyperspacetime across H
has now been dropped. It had to be smooth across H in the picture where H was in the
center of the unit cell but it does not have to be smooth across H in figure 15 because there
is no “across H” in the that representation of the MCM unit cell. Normally, the notion
of something going across H is required for physics but the MCM considers the regions
beyond timelike and spacelike infinity to construct this alternate representation where it is
not strictly required to pass through H. Hyperspacetime does not need to be smooth across
H because the non-trivial parameter χ5 is only defined between two adjacent instances of H
that are doubly piecewise disconnected through Σ± and Σ∅. We might fill in the piecewise
disconnection between Ω and ℵ with a smooth interface but it might not be necessary to
do that to compute ψ ∈ Hj+1 given ψ ∈ Hj. Therefore, we can define the MCM bulk-
boundary correspondence [3] to be the one in equation (2.82) rather than equation (2.77).
The notation without limits implies that the boundary is included, and the limit notation
implies that the boundary is not included. The ηµν in equation (2.77) has been replaced
with g∅µν because Σ∅ is not defined a priori to be flat but we might be able to use g∅µν =ηµν .
In any case, we will make use of the fact that every manifold has at least one point where
we can make the metric be the Minkowski metric with vanishing first derivatives to ensure
a smooth connection across ∅. The reader will recall from the earlier excerpt that Carroll1

has associated the second derivatives with the curvature and we expect there to be some
discontinuity in the manifolds as the topology changes between O(1,4) and O(2,3) in Σ±.

We still have not exactly specified the how the size of g+
µν relates to g−µν but it is likely

related to the numbers in the ontological basis. Regarding the other two g metrics: 2̂gµν≡g∅µν
a natural assumption. The convention in classical EM is to say that the potential in the
present is 1/2 times the advanced potential in superposition with 1/2 times the retarded
potential (via 1/2+1/2=1) but the MCM more likely relies on the non-trivial case Φ+ϕ=1.
When we have these two different metrics g±µν , they might provide a channel through which
to apply complexity directly to the weak field limit of GR

gµν = ηµν + hµν , (2.83)

so that equation (2.73) becomes

lim
χ5

+→0+
Σ+
AB + lim

χ5
−→0−

Σ−AB =

(
ηµν + hµν 0

0 0

)
. (2.84)

1Carroll’s general relativity textbook [17] has an entire appendix dedicated to analysis of embedded metrics.
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This gives us a good place to make a distinction between M̂3 and M̃4. The former might
be impossible to compute because it is impossible for the different topologies of O(1,4) and
O(2,3) to smoothly merge in the way that would be required for them to both perfectly
and simultaneously approach an observable state that is exactly the Minkowski metric ηµν .
Perhaps the two limits are guaranteed never to sum perfectly to the degenerate 5D extended
Minkowski metric ηAB. Perhaps due to the numerical approximations that are required
(those now assigned to the extra step of M̃4) the two limits in equations (2.73) and (2.84)
can never sum to ηAB but instead sum to

gAB ≡

(
ηµν + hµν 0

0 0

)
. (2.85)

We may take the small perturbation that arises naturally in the attempt to approximate
spherical and hyperbolic manifolds as equal objects (by taking the Lorentz approximation
in ℵ and Ω) to be the difference of two large perturbations as

hµν ≡ H+
αβ −H

−
αβ , (2.86)

where H±µν are perturbations in Σ±. Similarly to equation (2.86), there exists another in-
terpretation wherein we may write the real metric including perturbations gµν = ηµν + hµν
as

gµν ≡ H+
αβ −H

−
αβ . (2.87)

This idea probably can be applied to the hierarchy problem but we are not there yet.1

Wikipedia says, “In theoretical physics, the hierarchy problem is the large discrepancy be-
tween aspects of the weak force and gravity,” and, in general, it has to do with the large
relative scale of many of the empirical parameters of the standard model. In the MCM, we
get large relative scale by taking nested resolutions of the identity to generate arbitrarily
small numbers such as those that appear in the standard model, and also as the amplitudes
of arbitrarily unlikely quantum processes. Perhaps the irreconcilable topological element,
represent it with some arbitrarily large perturbation H∅

αβ, can be decomposed into two per-

turbative modes that live in Σ±

H∅
αβ ≡ H+

µνΦ̂
1 −H−µνΦ̂2 . (2.88)

For this, we must note that Σ+ and Σ− exist on two adjacent levels of ℵ when the unit cell
is centered on ∅ but they exist on the same level of ℵ in the representation centered on H.
Mirroring what we have done with

1Some particle physics applications of the MCM unit cell, along with its most specific experimental prediction are found in
reference [11] and in section II.8.
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ηAB ≡
(
ηµν 0
0 0

)
, (2.89)

we can embed the 4D perturbation in a larger perturbation H∅
AB and then use the nine

extra matrix positions to be the numerical representation of the remainder of the topological
incompatibility between Σ±. In a practical sense, it may be possible to reverse engineer
what these numerical coefficients must be and thereby complete the “impossible calculation”
without knowing them beforehand. This will be another stark MCM departure from the
almost two dozen experimentally determined parameters that must be manually inserted to
prop up the standard model of particle physics. In chapter four, we will call some specific
attention to the idea that

M̃4 ≡ Υ̂ = Û + M̂3 , (2.90)

and also that M̂3 was never meant to be the complete MCM operation [22]. We have added
2̂ as an accommodation for a fourth component, and even the first MCM representation of
fine structure in reference [22] used two in the ratio ΦD=2L were D and L were the lengths
of the sides of Minkowski space taken as a 2D quantum box.

We have been modestly specific about what all of the MCM coordinates are and now we
will list all of the metrics. The real metric gµν in H given by equation (2.83) is the idealized
Minkowski metric ηµν plus a small perturbation hµν . Σ±AB are the metrics of the 5D manifolds
Σ±. The slices of χ5

± in Σ± are flat in the χα coordinates associated to the inherited metric
Σ±αβ≡ηµν . The embedded metric of the xµ± coordinates on any slice is g±µν(χ

5
±). g±µν(χ

5
±) is the

dS or AdS metric when χ5
± is positive or negative. The metrics on ℵ and Ω are g−µν(ϕ)≡gℵµν

and g+
µν(Φ)≡gΩ

µν respectively. When it comes to the metric for xµ∅, we will probably rely on
the mechanism described by Carroll when he wrote, “Best of all, their usefulness does not
generally require that we do the work of constructing such coordinates [sic], but simply that
we know they do exist.”

We will go into more detail about ℵ and Ω in the next chapter but, for now, note that
since equation (2.77) suggests a scale factor of 2 when we take g±µν to be equal in size, we
are compelled to show that

ϕπ ≈ 1.94 , and 2 = 2 , give ∆ℵ ≈ 3% , (2.91)

with the intention of reminding the reader that

π

2
≈ 1.57 , and Φ ≈ 1.62 , give ∆ℵ ≈ 3% , (2.92)

and even pointing out that
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Figure 16: This figure shows the twisting mechanism for modularizing co-π̂s and creating paths that connect
various sites in the cosmological lattice.

Φ2 ≈ 2.62 , and e ≈ 2.72 , give ∆ℵ ≈ 3% . (2.93)

If the scale of {gµν , g+
µν , g

−
µν} was uniform then we would have to multiply the LHS of equation

(2.77) by 1/2 as in equation (2.79). This is how we come to say that the simplest scale factor
is two, but we also need to consider scales relative to 1=Φ + ϕ, and similar.

Here, we clearly have a mechanism that can lead to fuzzy geometry when the topology of
the boundary conditions on the plane waves in the cosmological lattice changes from O(1,4)
to O(2,3) across Σ∅ in the MCM unit cell. Perhaps what is e on one side of H becomes
Φ2 on the other and we can use the extra freedom of H∅

AB to make those transformations.
χ5

+ has the opposite sign to χ5
− so, therefore, Σ± have different numbers of spacelike and

timelike dimensions. We aim to pass this all off with a topological twist on χ5 ∈{0,∞} as
in figure 16. When we use the 2̂ operator to generate two topological spaces from one, the
operation that separates the co-π̂s can scale the ratio of their lengths from 1 to Φ such that
they can no longer be combined to form equal halves of a circle. They can still be combined
into a circle but one co-π̂ will have more than π radians of arc length. This is nothing but
a conformal transformation, but it is an additional operation beyond twisting that breaks
the symmetry retained throughout figure 16. We will go into a lot of detail in this regard in
section

Lorentzian metrics only have one timelike dimension. This means that when we write the
metric as a diagonal matrix, all the eigenvalues are positive except one, or the whole thing is
shifted and they are all negative except one: {±∓∓∓}. A new problem that will eventually
need to be tackled is to compute 5D geodesics of the form

d2χC

(dχ5)2
+ ΓCAB

dχA

dχ5

dχB

dχ5
= 0 , (2.94)
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when the background topology of piecewise χ5 is O(1,4) on one side of χ5
∅ and O(2,3) on

the other side. We will begin to treat that problem in section III.8 but it is likely the these
geodesics are in the impossible regime of M̂3 and will be replaced by some new technique in
M̃4.

II.3 An Entropic Application

Here, we state a new facet of the model. Clearly |ϕπ| = 1.94 so we can use xµ+ = ϕπxµ

(equation (2.70)) to write

xµ+ = |ϕπxµ| ≈ 2xµ , and xµ∅ = 2xµ . (2.95)

This is a new definition for xµ∅: it is twice as big as xµ so it is just bigger than xµ+. We have
already defined the tensor transformation law between xµ and xµ+ that gives |ϕπ|≈1.94≈2
and now we define the xµ∅ coordinates as exactly twice as big as the observable xµ coordinates.
This is similar to what we have done making chirological orthogonality on Φ≈1.62 just larger
than the ordinary orthogonality on π/2≈1.57.

When we want to write a Lorentz frame on ∅ so that we can sew Σ± together, we find

x0
∅ = 2x0 , and xi∅ = 2xi . (2.96)

This leads to a Minkowski diagram in ∅ that has four times the area of the same diagram
written in H. Since M̂3 is expected to preserve analytical qubits in the ground state along
geodesics, the point density of the fabric of the diagram is rarefied by a factor of four, as in
figure 17. We could say that entropy increases in physics because there is some boundary
condition misalignment between how the present connects to the past and future respectively,
possibly on the order of

2− 1.94 ≈ 0.06 << 1 . (2.97)

The value 0.06 is about ten times larger than

αQED ≈ αMCM ≈
1

137
= 0.00729927007299270072992700729... , (2.98)

so have good reason for this mode to dominate as decoherence does over determinism in the
quantum sector. Here, we imply that αMCM is a deterministic structure constant but 0.06
is an “error” term. Perhaps this mismatch being constantly inflated from one moment to
the next results in the second law of thermodynamics: dS>0 where S is the entropy. Note
that the area A and the number 4 are the two main components of the Bekenstein–Hawking
formula for the entropy of a black hole. In units where c=G=~=1, that formula is
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Figure 17: The non-unitary properties of the M̂3 operator require that the Minkowski diagram is stretched.
In this map, the area increases exactly by a factor of 4 but in the map Φ̂ : H 7→ Ω the area of Ω
only increases by about (ϕπ)2 ' 1.942 ' 3.7.

SBH =
A

4
. (2.99)

This could be irrelevant but since we have criticized Hawking’s own analysis of dynamics
near black holes as missing a single point [5], and Σ∅ has been created to supply a single
point, there could be some profound connection.

II.4 Complex Coordinates

It is quite common to write the metric as a diagonal matrix and here we will examine a
few of the ordinary definitions used for tensor analysis in gravitational manifolds. For the
Minkowski metric with c 6= 1, we must choose from the two allowed Lorentzian signatures
{± ∓ ∓∓} that are out of phase by eiπ. The signature that implies distance in the x0

direction is imaginary but gives real-valued spacelike distance is

ηµν =


−c2 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

 . (2.100)

The eigenvalues of the matrix define the line element in the manifold

ds2 = −c2
(
dx0
)2

+
(
dx1
)2

+
(
dx2
)2

+
(
dx3
)2

, (2.101)

and all of this can be condensed by writing the line element as
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ds2 = ηµνdx
µdxν . (2.102)

Of course, the proper time τ is given by

dτ 2 = −ηµνdxµdxν = −ds2 . (2.103)

Since 3-velocity is a measure of relative time, and proper time always passes at the same
rate, we see the reason for the surprisingly ordinary normalization of the 4-velocity Uµ of an
object in motion in spacetime

gµνU
µUν = −c2 . (2.104)

The 4-velocity is always normalized as in equation (2.104) without regard for the metric. The
passage of time recorded by non-inertial clocks is universally relative to this normalization
convention. The 3-velocity ~v always has to be measured with respect to some external clock
since the thing that is moving with ~v is stationary in its own inertial frame. Therefore the
object of relativity is the external clock. It has to slow down if observers are going to agree
about distances due to the surprising property of the universe that the velocity and the time
always combine as in equation (2.104).

This is the origin of time dilation: if the 3-velocity increases, then the 1-velocity must
decrease in proportion to maintain the normalization of the 4-velocity. Within the normal-
ization of the 4-velocity, the freedom to move around phase space among a range of momenta
pi, and to move throughout space xi at relativistic speeds, is counterbalanced by time dila-
tion in x0. Since the 4-velocity includes the real velocity ~v and the relativistic kinetic energy
E, we are able to show that

pµ = mUµ =⇒ pµpµ = −E
2

c2
+
∣∣~p∣∣2 = −

(
mc
)2

, (2.105)

where m is a particle’s proper mass. Hypersurfaces in phase space satisfying equation (2.105)
lead to the concepts of “on shell” real particles, and “off shell” virtual particles. When QFT
shows a particle with energy and momentum not related as in equation (2.105), then we say
the particle is “off shell” in some kind of bulk of virtual states. This is why the shell in
the on or off shell condition is called the mass shell. The implication of equation (2.105) is
exactly a hyperboloid condition in the manner of

f+(χ5
+) = −

(
x0

+

)2
+

3∑
i=1

(
xi+
)2

, and f−(χ5
−) = −

(
x0
−
)2

+
3∑
i=1

(
xi−
)2

, (2.106)
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that define ℵ and Ω as hyperboloids in Σ±.
Given the coordinates xµ and the Minkowski metric ηµν , we have assembled all the pieces

of the flat 4D line element

ds2 = ηµνdx
µdxν , (2.107)

which is a good starting point for making calculations in general relativity. We have used
xµ :{ct, x, y, z} with ηµν = diag(−+ + +) but it is equally valid to build Lorentzian spacetime
with x0≡ ict which requires a different metric to preserve equation (2.107). In that case we
have a 4D Euclidean metric

η′µν =


c2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , (2.108)

which leads to a significantly different formulation of the theory. The spacetime is still
Lorentzian — that is an immutable aspect of Nature — but now the metric is Euclidean
because we have made the change ct→ ict. With complex coordinates that use a Euclidean
metric, there will be no distinction between raised and lowered tensor indices and any even-
tual calculations will be simplified.

The most general form of the 4D line element for a given diagonal metric Z̄µν is

ds2 = Z̄00

(
dZ0

)2
+ Z̄11

(
dZ1

)2
+ Z̄22

(
dZ2

)2
+ Z̄33

(
dz3
)2

, (2.109)

where Zµ is some set of coordinates. If we set

Zµ ≡ xµ :


x0 ≡ ct

x1 ≡ x

x2 ≡ y

x3 ≡ z

, (2.110)

and we want to make Z̄µν give the Minkowski line element

ds2 = −c2 dt2 + dx2 + dy2 + dz2 , (2.111)

then evidently the Lorentzian metric diag(−1, 1, 1, 1) is required. However! We can alter
the Zµ coordinates as
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Zµ ≡ yµ :


y0 ≡ ict

y1 ≡ x

y2 ≡ y

y3 ≡ z

, (2.112)

and now

dZ0 ≡ ic dt =⇒
(
dZ0

)2
= −c2

(
dt
)2

. (2.113)

Therefore, if we want to write the line element in the form of equation (2.111), we have to
use the Euclidean metric. Here, we have the convenient option to finally make a definition
for î with

Ẑ0 = ct î =⇒
(
dẐ0

)2
= c2

(
dt
)2
î2 = −c2

(
dt
)2

. (2.114)

This looks very much like î should be the arrow of time and there is another option for using
î, one that nicely demonstrates the principle of complexity. We can use equation (2.114)
with the Euclidean metric when we take

Ẑµ ≡ zµ î , with zµ :


z0 ≡ ct

z1 ≡ ix

z2 ≡ iy

z3 ≡ iz

, (2.115)

Furthermore, definition (2.115) is the one that naturally eliminates the need for Wick rotation
of the time component z0 7→ −iz0 during the computation of QFT action integrals as in
reference [23]. Wick rotation will be unnecessary if we replace the differential volume element
of four real dimensions dxµ the volume element of one real dimension and three imaginary.
When we integrate over dzµ as in equation (2.115), we will recover three factors of i giving
i3 =−i which is exactly the term inserted manually during analytic continuation via Wick
rotation. Another configuration, one that seeks to demonstrate the concept of π̂ as an arrow
of space is

Ẑµ ≡ ẑµ , with ẑµ :


z0 ≡ ct î

z1 ≡ ix π̂

z2 ≡ iy π̂

z3 ≡ iz π̂

. (2.116)

Due to infinite complexity, there are very many schemes that can be explored.
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Figure 18: The new object ϕ̂ encodes the quantum sector in the MCM unit cell along side the ontological
basis {̂i, Φ̂, 2̂, π̂} which should be used, among other things, as a non-coordinate basis for general
relativity. This system needs to be able to support at least two distinct phases: decoherence and
stability. The non-decoherence mode of repeated measurement is such that all the V are linearly
dependent on Φ̂. Then Q= |V µ −Wµ|= |Φ̂− Φ̂| = 0.

II.5 What is ϕ̂?

In section I.2, we introduced the vector V µ that will be transported through H 7→ Ω 7→
ℵ 7→H and figure 18 gives the general idea. The object ϕ̂ will be the initial V µ written in
ontological notation. The ϕ̂ component shall complement the perturbation tensor hµν as the
computational source for what happens across a given MCM unit cell. So far, we have only
considered the ontological sector with hµν =0 so, in context, ϕ̂ is the complete computational

source. We described how M̂3 pushes a vector V µ through the MCM unit cell, and now we
begin to clarify those preliminary definitions as

V µ ≡ ψ
(
x; tinitial

)
ϕ̂ , and W µ ≡ ψ

(
x; tfinal

)
ϕ̂ . (2.117)

We can imagine a method in which M̂3 (or M̃4) takes ψ(x; tinitial) ϕ̂ and returns a qubit
in the unitary sector like ψ(x; tfinal)1̂ which then becomes the seed term for evolution across
the next level of ℵ when we make the change ψ(x; tfinal) 1̂→ψ(x; tinitial) ϕ̂. We will implement

a transfinite normalization Φ̂2→ Φ̂1 as part of the ontological rescaling at the boundary of
each unit cell so we can see how we might also come across Φ̂0≡ 1̂ becoming Φ̂−1≡ ϕ̂. As
the level of ℵ increases, the magnitude of infinitude must be decreased to maintain finite
normalization. Since ϕ̂ is new, we will not be too specific about it other than to mention
that it should exist in some form. If {̂i, Φ̂, 2̂, π̂} are going to be a basis for 4D spacetime then
we need some other informatic channel for the quantum component of our quantum gravity.
We propose to send that channel on ϕ̂. It will be the object that holds the quantum initial
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condition which will be operated upon with M̂3 : H1 7→H2. Since the TOIC is a theory of
quantum gravity and not just gravity, we need to evolve the dynamical geometry of H across
the unit cell and also whatever quantum information from H′ was encoded on H through its
representations in the coordinates xµ or momenta pµ.

The utility of ϕ̂, without being specific about one exact mathematical definition or an-
other, will be as follows. The true history is the string of earlier Φ̂ vectors that precede an
observer on a given level of ℵ but ϕ̂ encodes the record of that history in the present H.
For this reason, we will attach the new object to H. The qubit on ϕ̂ is ψ ∈H′. It defines
the entire quantum mechanical sector because states ψ are complete boundary conditions
in quantum theory under the Schrödinger equation. We can also take ϕ̂ as the source of
torsion as in reference [5]. Recall that the source of torsion is a vector and not a scalar like
gravitational or electric sources. The torsion can be encoded with a potential so if we use
the wavefunction as the potential then we see how the quantum gravity will act by sending
qubits into the geometry through the torsion. We would like to show that the probability
density on H2 exhibits decoherence with respect to that on H1 because of the Ricci flow, or
some other geometric flow, acting on the quantum information during its geometric repre-
sentation in the hyperspacetime between adjacent H-branes. When we discussed torsion in
reference [5], we set H as a torsion free boundary surface in the MCM unit cell. We have also
defined H as the place where measurements of quantum states happen, and that corresponds
to what is called the collapse of the wavefunction. It is an intuitive arrangement when the
wavefunction is encoded in the torsion and then it collapses on the torsion-free surfaces H.

One of quantum mechanics’ many odd empirical results is that a state will not exhibit
decoherence if the state is measured sufficiently often. If the geometric flow is always present
between successive measurements then we will always see decoherence which is not the desired
behavior. Instead, we will need to introduce some parameter1 that sets a transition between
laminar flow across the unit cell and then some supercritical non-laminar phase. In the case
of laminar flow, decoherence will not be observed because the laminar flow corresponds to
each of {V µ, V µ

+ , V
µ
−} being Φ̂ giving Q= |V µ −W µ|=0. When the parameter, which might

be the length of chronological time x0 between successive measurements, becomes too large,
then there must be a phase change. In the non-laminar phase, the vectors {V µ, V µ

+ , V
µ
−} will

all have to be defined individually so that Q>0.
In section I.2, we described how hyperspacetime can be constructed from spacetime by

taking some vector in H and then defining {V µ, V µ
+ , V

µ
−} accordingly. This is the Q > 0

decoherence mode where the V are defined by some local qubits instead of the ontological
qubit Φ̂. Additionally, we might explore a situation in which decoherence does always occur
but the qubit remains in some local minimum that is preserved through brief geometric flow
during the period between repeated measurements. If we associate one qubit with one local
minimum in the flow then the eigenstate |ψ; π̂0〉 at the beginning of the flow will be the same
one at the end of the flow |ψ; π̂1〉 as long as the valley of stability representing the eigenstate
is preserved. If the duration of the flow is very short then we expect the local minimum
will not merge with some other basin of attraction where the quantum state changes from
an eigenstate to a superposition of eigenstates. This notion might form a long sought after
quantum determinism.

Dirac was able to predict anti-matter on the basis of sign reversal symmetry in quantum

1This parameter might describe some experimental configuration and not Nature itself fundamentally.
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mechanics. If we extend that principle into another sector in QED then we would expect
that the perturbation theory that agrees with Nature would be a Laurent series expansion
in the fine structure constant, but instead the one that describes Nature is only a Taylor
series. QED uses series whose terms are proportional to αnQED but a continuation of the

symmetry argument made by Dirac might lead one to conclude that terms of order α±nQED
should contribute as in a Laurent series. Why are the terms associated with α−nQED not present
in Nature? Of course, those terms would make the probability interpretation of the theory
explode but we could add some non-trivial non-unitary component to the

√
i channel which

would allow the Laurent terms and not just the Taylor terms. If we put the observer on
the Φ̂0 level of ℵ then it is easy to associate all qubits from the past levels Φ̂{n<0} with the
Taylor series terms and all the future qubits on levels Φ̂{n>0} with the terms that would add
to the Taylor terms to make a complete Laurent series. The critical distinction to note in
this regard is that the past terms get encoded on ϕ̂ but the future terms do not. To examine
the full Laurent series representation, we could take a Laurent series and split it in half.
Put the positively and negatively exponentiated terms respectively into the chronological
and chirological sectors. It is natural to say that the terms in the chronological sector are
QED’s Taylor series terms αnQED and the other terms α−nQED are not encoded in the ϕ̂ sector
because chronological initial conditions like ψinitialϕ̂ describe the past only. For now, we leave
the future terms as a logical remainder but perhaps the continuation of Dirac’s symmetry
argument will yield observable consequences of the Laurent representation as advanced effects
dual to the retarded effects on the Taylor terms. We may be able to use the transfinite
analytical tools of hypercomplexity to write the causality violating advanced potential effects
from the future levels of ℵ directly into the well known Taylor series representation of the
past levels. Furthermore, we have struggled with a reason to invert αMCM so that it becomes
1/137 instead of just 137, but now that matters less as we have freedom to choose positive
or negative exponents in each sector respectively.1 Terms in the Laurent exclusive sector are
assigned to all future levels of ℵ, one term to each level, so they are much more complicated
than the Taylor terms that exist together on a single level of ℵ. This distinction between a
single level of ℵ or many levels could be a clue regarding how the chronological sector could
be so well understood for so many decades while the other parallel sector has remained
mysterious.

We might motivate the Taylor/Laurent asymmetry in perturbation theory by noting that

we have previously expected to define the past of some moment Φ̂n on the Φ̂n−m-sites with
m ≥ 1 but now we see that ϕ̂ is a better place to define the past. The analytical expression of
the past has to exist in the present with the observer so we may encode the information from
the past as ϕ̂ onH1. Instead of a series of past terms in the hypercosmos like {Φ̂n−1, Φ̂n−2, ...},
we have a series of terms in perturbation theory like {αMCM , α2

MCM , ...}≈{137−1, 137−2, ...}
which all coexist on the same level of ℵ with ϕ̂.

To say a little more about αMCM , note that we still have not decided which of the onto-
logical basis is the arrow of time. The vector π̂ is a good candidate, but it does not have to
be the arrow of time and could be the “arrow of space” when î, or another one, is the arrow
of time, as in equation (2.116). The motivation in proposing an arrow of space is the factor
of π3 that appears in αMCM = 2π + (Φπ)3. While we have made some good definitions for
the numerical origin of αMCM in reference [10], if there is a π̂ pointing in each of the three

1In reference [10], we did finally come up with a good way to get 137 into the denominator.
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Figure 19: The “volume integral” over the fundamental element of the abstract psychological space is the
fine structure constant αMCM when the volume of the ball is (Φπ)3 and the two vectors each
contribute π as non-trivial embedded objects corresponding the two π̂-sites at the beginning and
end of every MCM unit cell, as in reference [10]. We might obtain the volume element (Φπ)3

through the inflation of 3-space where the arrow of space is π̂. Recall that inflation of 3-space is
the default scenario in ΛCDM cosmology where the Hubble parameter increases with time. This
figure first appeared in reference [8] where we argued against the Riemann hypothesis. Reference
[8] is a good introduction to the idea of infinite complexity.

dimensions of space where the ϕ̂ object encodes an input for M̂3, and then space is inflated
by Φ when Φ̂ acts on ϕ̂ (perhaps generating the unitary sector 1̂), then that could be another
natural origin for (Φπ)3. If that 3-space is on the interior of the 2-sphere in figure 19, and
the two vectors on its surface are delta functions that return π when integrated over, likely
pointing to π̂0 and π̂1 on two different levels of ℵ, Φ̂1 and Φ̂2, then the volume integral over
the object in the figure will be∫

dVMCM ≡ α−1
MCM = 2×

(π
2

+
π

2

)
+
(
Φπ
)3

. (2.118)

In reference [24], it is shown that topology change is usually represented by a boundary
condition on Hilbert space H′ so we will make an entirely rigorous definition for the modular
topology change H 7→ Ω 7→ ℵ 7→ H. The topological boundary condition that has proven
difficult to depict in 2D is such that we take two zenith coordinates on S2, put them in
a bispinor with two more zenith degrees of freedom whose orthogonal endpoints lie in θ ∈
(−π/2, π/2) and then include those 1D intervals in the volume of the physical Hamiltonian or
Lagrangian phase space. Perhaps we might generate exotic effects, such as the decoherence
of classical reality into quantum weirdness, by scaling only position or momentum space
with non-unitary operations based on irrational numbers, but not both, because ψ∈H are
represented solely with position space representations in the MCM maps to general relativity.
Therefore, let the changing level of ℵ be such that Φ̂ : V →Φ3V when V is the volume of the
O(3) sector of an O(3,1) manifold. The completion of the volume of “all of space,” including
the ring(s) at infinity, is defined when the rings contribute as an infinitesimal volume on the
lower level of ℵ but their portion gets chirologically inflated to finiteness in transit through
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hyperspacetime from one moment of psychological time to the next. Then the changing
level of ℵ for the finite objects that represent conformal infinity is such that the zero volume
of four 1D rings contribute on the higher level as 2×(π/2 + π/2). Each zenith coordinate
domain on S2 has length π because θ∈(π/2, π/2) along each ring, and we remove the point
θ= 0 due to the MCM condition that the observer can never observe anything at his own
location. The four intervals θ∈ [0, π/2) can each have a conformal infinity at π/2 which is

then effectively an orthogonal topological element in the observer’s local M̂3 theories. Thus
we have defined rigorously the MCM model of topology change as

V Φ̂0 = π3 , with V Φ̂1 = (Φπ)3 + 2π . (2.119)

Here, we also note that the changing level of ℵ could be such that Φ̂j goes to Φ̂j+2 because
we have to select the Φ̂ component before we can operate with Φ̂ to increase the level of ℵ.
Therefore, in section IV.1, we will revisit the argument from reference [13] about whether
the level of ℵ should go up by one or two. If we use two then we have a natural disconnection
between two chirological degrees of freedom χ5

+ and χ5
−.

II.6 Twistors and Spinors

The mystery of unification in physics is to find a scheme by which quantum particles dynam-
ically warp spacetime, meaning that the spacetime is not just a background. In the previous
section, we suggested to send qubits into the geometry by encoding them in the torsion. In
this section, we show that another option leads to an object in twistor theory.

One obvious way to define a reciprocal mechanism for sending perturbations between QM
and GR will be through

ψ ←→ hµν , (2.120)

where ψ is a disturbance on the vacuum and hµν is the perturbation on the Minkowski metric.
In reference [3], we showed how an electromagnetic boundary condition on H could induce
gravitation in the bulk hyperspacetime and vice versa. This reciprocity between the electric
and gravitational sectors implies the existence of more than one configuration for perturbative
information and we are drawn to consider many possible definitions for perturbations such
as those in equations (2.86-2.88). Each method for writing qubits as perturbative tensors,
through the torsion earlier and now directly with ψ→hµν , are simply ansatzes taken for the
purposes of discussion. To that end, one is inclined to consider perturbations of the form
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hµν = ψ



− i
4

0 0 0

0 −ϕ
4

0 0

0 0
1

8
0

0 0 0
1

4π


, (2.121)

where the reader should recognize the ontological coefficients. We may associate them with∫
dγ̂ and/or the {+−+−} non-Lorentzian metric signature representation of the inherently

O(3,1) topology of Minkowski space found in the linear space spanned by {̂ı, Φ̂, 2̂, π̂}. In
equation (2.121), the state causes a perturbation in ontological form having two timelike di-
mensions and two spacelike. Such objects have been treated as a problem in string theoretical
twistor theory by Witten. He writes the following in reference [25].

“[W ]e will review some kinematics in four dimensions. We start out in sig-
nature + − −−, but we sometimes generalize to other signatures. Indeed, [in
perturbation theory ] the signature is largely irrelevant as the scattering amplitudes
are holomorphic functions of the kinematic variables. Some things will be simpler
with other signatures or for complex momenta with no signature specified.

“First we recall that the Lorentz group in four dimensions, upon complexi-
fication [emphasis added ], is locally isomorphic to SL(2) × SL(2), and thus the
finite-dimensional representations are classified as (p, q), where p and q are inte-
gers or half-integers. The negative and positive chirality spinors transform in the
(1/2, 0) and (0, 1/2) representations, respectively. We write generally λa, a = 1, 2,

for a spinor transforming as (1/2, 0), and λ̃ȧ, ȧ = 1, 2, for a spinor transforming as
(0, 1/2).

“Spinor indices of type (1/2, 0) are raised and lowered with the antisymmetric
tensor εab and its inverse εab (obeying εabεab = −δac ): λa = εabλ

b, λb = εbcλc. Given
two spinors λ1, λ2 both of positive chirality, we can form the Lorentz invariant
〈λ1, λ2〉 = εabλ

a
1λ

b
2. From the definitions, it follows that 〈λ1, λ2〉 = −〈λ2, λ1〉 =

−εabλ1aλ2b.
“Similarly, we raise and lower indices of type (0, 1/2) with the antisymmetric

tensor εȧḃ and its inverse εȧḃ, again imposing εȧḃεḃċ = δȧ
ḃ
. For two spinors λ̃1, λ̃2,

both of negative chirality, we define [λ̃1, λ̃2] = εȧḃλ̃
ȧ
1λ̃

ḃ
2.

“The vector representation of SO(3, 1) is the (1/2, 1/2) representation. Thus,
a momentum vector pµ, µ = 0, ..., 3, can be represented as a ‘bi-spinor’ paȧ with
one spinor index a or ȧ of each chirality. The explicit mapping from pµ to paȧ can
be made using the chiral part of the Dirac matrices. With signature + − −−, one
can take the Dirac matrices to be

γµ =

(
0 σµ

σ̄µ 0

)
, (2.122)
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where we take σµ = (1, ~σ), σ̄µ = (−1, ~σ), with ~σ being the 2×2 Pauli spin matrices.
In particular, the upper right hand block of γµ is a 2 × 2 matrix σµaȧ that maps
spinors of one chirality to the other. For any spinor pµ, define

paȧ = σµaȧpµ . (2.123)

Thus, with the above representation of σµ, we have paȧ = p0 + ~σ · ~p (where p0 and
~p are the “time” and “space” parts of pµ), from which it follows that

pµp
µ = det(paȧ) . (2.124)

Thus a vector pµ is lightlike if and only if the corresponding matrix paȧ has deter-
minant zero.

“Any 2 × 2 matrix paȧ has rank at most two, so it can be written paȧ =

λaλ̃ȧ+µaµ̃ȧ for some spinors λ, µ, and λ̃, µ̃. The rank of a 2×2 matrix is less than
two if and only if its determinant vanishes. So the lightlike vectors pµ are precisely
those for which

paȧ = λaλ̃ȧ, (2.125)

for some spinors λa and λ̃ȧ.

“If we wish paȧ to be real with Lorentz signature, we must take λ̃ = ±λ̄ (where
λ̄ is the complex conjugate of λ). The sign determines whether pµ has positive
energy or negative energy.

“It will also be convenient to consider other signatures. In signature + + −−
[emphasis added ], λ and λ̃ are independent, real, two-component objects. Indeed,
with signature + + −−, the Lorentz group SO(2, 2) is, without any complexifi-
cation, locally isomorphic to SL(2,R) × SL(2,R), so the spinor representation is
real. With Euclidean signature + + + +, the Lorentz group is locally isomorphic
to SU(2) × SU(2); the spinor representations are pseudoreal. A lightlike vector
cannot be real with Euclidean signature.

“Obviously, if λ and λ̃ are given, a corresponding lightlike vector p is deter-
mined, via (2.125). It is equally clear that if a lightlike vector p is given, this does

not suffice to determine λ and λ̃. They can be determined only modulo the scaling

λ→ uλ, λ̃→ u−1λ̃ (2.126)

for u ∈ C∗, that is, u is a nonzero complex number. (In signature + − −−, if

p is real, we can restrict to |u| = 1. In signature + + −−, if λ and λ̃ are real,
we can restrict to real u.) Not only is there no natural way to determine λ as a
function of p; there is in fact no continuous way to do so, as there is a topological
obstruction to this. Consider, for example, massless particles of unit energy; the
energy-momentum of such a particle is specified by the momentum three-vector ~p,
a unit vector which determines a point [on a sphere] S2. Once ~p is given, the space
of possible λ’s is a non-trivial complex line bundle over S2 that is known as the
Hopf line bundle [(figure 20)]; non-triviality of this bundle means that one cannot
pick λ as a continuously varying function of ~p.
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Figure 20: The Hopf fiber bundle describes a 4D shape drawn with circles so it offers an alternative viewpoint
on hyperdimensional geometry from rectangular representations such as the tesseract or the
MCM unit cell. The bundle looks like the stereographic projection of the 3-sphere onto parallels,
meridians, and hypermeridians, as in figure 21. In reference [7], we assigned the topologies flat,
hyperbolic, and spherical to those projections and later they were associated to {ℵ,H,Ω}. Now,
we are likely proposing to better understand the Hopf fibration by modeling it as the complete
cosmological unit cell including Σ∅. On the left, the arrows at the top and bottom can be thought
of as the input and output of M̂3. The Wikipedia caption of the image to the right is, “The Hopf
fibration can be visualized using a stereographic projection of S3 to R3 and then compressing R3

to a ball. This image shows points on S2 and their corresponding fibers with the same color.”

Figure 21: In the stereographic projection of the 3-sphere onto parallels, meridians, and hypermeridians,
every parallel, meridian, and hypermeridian is a circle. To get straight lines, we simply consider
a circles of infinite radius.
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“Once p is given, the additional information that is involved in specifying λ

(and hence λ̃) is equivalent to a choice of wavefunction for a spin one-half particle
with momentum vector p. In fact, the chiral Dirac equation for a spinor ψa is

iσµaȧ
∂ψa

∂xµ
= 0 .” (2.127)

Equation (2.127) is exactly the kind of mechanism wherein some hypercosmological vector
V µ is derived from the qubit ψ in the lab frame. Witten writes, “The explicit mapping from
pµ to paȧ can be made using the chiral part of the Dirac matrices,” and that calls attention

to the fact that we have still not defined an explicit M̂3. We have a preliminary definition
that M̂≡∂t but the Dirac operator

D̂ ≡ iσµaȧ∂µ , (2.128)

suggests that we might add complexity to M̂3 with matrix-valued or other multiplectic
coefficients M to each M̂ . Just as the Pauli matrices define nonrelativistic spinors, the Dirac
matrices σµaȧ define Dirac spinors (what are often called Dirac vectors are rigorously Dirac

bispinors) so if we add some matrix coefficients to the derivatives in M̂3 then that will also
be a way to probe the MCM for multiplectic spinor analogues. For instance, we might write

M̂3 =
(
M1∂+

)(
M2∂∅

)(
M3∂−

)
, (2.129)

where the roots of the algebra of Mi are representative of physical systems. The matrices
Mi do not disrupt the mechanism of ∂ 3

χ ≡ (C1∂+)(C2∂∅)(C3∂−) demonstrated in reference
[10]; they complement the scalars Ci with multiplectic structure.

We will not be going too much into twistor theory and it will suffice to say that twistors
satisfy the twistor equation. Wikipedia says, “For Minkowski space [sic] the solutions to the
twistor equation are of the form

Ωa(x) = ωa − ixaȧπȧ , (2.130)

where ωa and πȧ are two constant Weyl spinors and xaȧ = σaȧµ x
µ is a point in Minkowski

space.” Among the primary utilities of twistor theory is to change the number of indices of
objects (xµ 7→xaȧ or pµ 7→paȧ) which is exactly what is needed for maps like

f 3
∣∣ψ; π̂

〉
7→ Tµν (2.131)

∣∣ψ; Φ̂
〉
7→ Rgµν (2.132)
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Figure 22: If the figure on the left represents a condition of symmetry then the output of the operation to
the right will represent a condition of antisymmetry. Bosons have symmetric wavefunctions and
fermions have antisymmetric wavefunctions.

Φ

4

∣∣ψ; 2̂
〉
7→ Rµν (2.133)

i
∣∣ψ; î

〉
7→ gµνΛ , (2.134)

wherein rank one state vectors become rank two tensors in general relativity. It follows that
we can rewrite

ψ ←→ hµν , as
∣∣ψ; ϕ̂

〉
7→ hµν . (2.135)

A substantial issue, however, remains unresolved with this method for adding an index:
spinors do not transform as tensors. Under ordinary circumstances, the map that adds an
index is the covariant derivative

∇λ : ψµ 7→ ∇λψ
µ , (2.136)

but shortly we will describe some nuance indicating that spinor objects do have a natural
place in general relativity.

We have not used spinors at all in the MCM because we have not carried out any quantum
mechanical analysis requiring the specification of a qubit as a fermion. Even when the two
universes U and Ū together have fermionic properties attributed to the antisymmetry of
the twisting in figure 22, we have not yet considered both universes simultaneously other
than to show that a second universe must exist. The MCM unit cell describes U but not
simultaneously Ū . The MCM proposes to wrap the ct axis of the Minkowski diagram around
a cylinder. The initial formulation [2] of the MCM includes a big bang which begrudgingly
violates causality — even with cyclic bouncing we have the causal problem of turtles stacked
on the backs of turtles — but we do not concede the violation of conservation of momentum
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Figure 23: The MCM vertex is exactly the Feynman diagram for electron-electron scattering via the exchange
of an off shell photon.

which is a shared property of most big bang theories. We say that if a 4-momentum vector
came into existence for some reason at the beginning of the universe then there must also
have come into existence another 4-momentum vector pointing in the other direction. Thus,
figure 22 shows two arrows of time: the arrows of time for two universe that left the event of
the big bang at θ=0 moving in opposite directions through time. The non-trivial parameter
χ5≡χ5

+⊗χ5
∅⊗χ5

− is specially designed to accommodate all the twisting in the diagrams with
overlaps at θ=0 and θ=π. In general, we can replace the concept of the origin of the universe
at an eccentric bounce whose apex represents the spontaneous creation of the wavenumber
4-vector kµ at t0 with a permanent non-equilibrium condition of turbulence between a source
and sink of information attached to the legs of the diagram, as per Feynman. String theory
is known to have the Feynman theory encoded as a limit and we see the MCM is exactly
the Feynman digram for two electrons interacting via the exchange of a virtual photon, as
in figure 23.

A spinor is just a multiplex introduced to get the right eigenvalue algebra needed to
describe anomalous angular momentum in quantum mechanics. The angular momentum
vector of a spin-1/2 particle does not transform as a vector under rotations and, therefore,
that fermionic angular momentum cannot be represented with vectors; we use spinors in-
stead. For example, if one wishes to know the component in the ẑ-direction of the angular
momentum of a spin-1/2 state then one must operate on the state with the σz Pauli matrix.
That matrix is 2×2 so the state has to be an array with one column and two rows. We often
say that any array with one column is a vector but the rigorous definition has to do with
whether or not the array transforms as a vector. The spin-1/2 state does not transform as a
vector: it transforms as a spinor and here we are led to point out another general relativistic
artifact related to quantum theory. By making the revision ct→ ict, as in section II.4, we
have shifted x0 by π/2 radians in the complex plane but the corresponding revision to the
metric η00 = 1→ η00 =−1 is a rotation through a full π of arc in the complex plane. This
is the same behavior seen in rotations of the half-integer spin vectors (spinors) in relation
to the locally inertial lab frame: rotating one makes the other one rotate twice (half) as
much. Furthermore, since vectors are the sources of torsion, we might later use spinors as
the sources “hypertorsion” which might be useful in some advanced application.

A long-standing problem throughout the history of quantum theory has been the question
of how to represent the fermionic eigenfunctions of the spin-1/2 operator without spinors. In
a very fundamental way, if we turn a system upside down then we expect that the momentum
of the system will be inverted but this is not the case for spin-1/2. There is no classical
description with objects that transform as vectors such as the objects associated with orbital
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Figure 24: PN is the projective subspace of null chirality and PT± are the projective subspaces of a twistor
space with either left or right chirality. This figure is well isomorphic to the end of figure 22 when
we stretch the bounce point across an entire null surface.

angular momentum, e.g.: if a spinning ball is turned over then its angular momentum vector
will also turn over in kind, and, i.e.: for a boson we can say that ψ(x) = f(x) so that the
state is a 1×1 array but it is always impossible to write the wavefunction of a fermion as an
ordinary function. Fermionic wavefunctions always require a multiplectic component as in

∣∣ ↑ 〉 ≡
∣∣ψ; 1

2

〉
=

(
1
0

)
, and

∣∣ ↓ 〉 ≡
∣∣ψ;−1

2

〉
=

(
0
1

)
, (2.137)

with

Ŝz =
1

2

(
1 0
0 −1

)
. (2.138)

It is easy to see that Ŝz operating on |↑ 〉 or |↓ 〉 will give the appropriate value: ±1/2.
We propose that by shifting certain complexity into the topology it will be possible to

define spin algebras without spinors. In lieu of spinors, we want to use the topological
twisting mechanism from figure 22 which should be amenable to description with spinors if
that formalism is desired. Where a wavefunction on one arc of π radians (in figure 22) would
be symmetric, we can create antisymmetric fermionic wavefunctions by twisting conformally
deformed semicircles around the bounce point which is the origin of coordinates. Where
the final pane of figure 22 shows sinusoidal ct and −ct, if we invert only the semicircle on
one side, or simply select the complete upper or lower path, then the resultant sinusoidal or
piecewise sinusoidal wavefunction that propagates on either ct or −ct will be antisymmetric.
Witten proposes to use a “bispinor” and that sounds like exactly the kind of thing one
might need to twist the topology. However, where Witten builds on the spinor, we aim to
never introduce the spinor except as a limit of some ontological considerations. In figure
24, we can see the general outline of how the chirality of twistor space relates the interface
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of Σ±. The are joined on the projective null space but have chiral legs extending outward.
We can directly associate the positive and negative projective twistor subspaces PT± with
components of a spinor but we would have to make some special accommodation for PN,
possibly as the superposition of two distinct spinor states PT±.

The general idea to construct MCM spinors is to take

π̂ ≡
(
π
0

)
and î ≡

(
0
i

)
, (2.139)

as the eigenbasis of a non-relativistic spinor algebra. In the relativistic limit, spinors become
Dirac bispinors. We will describe the two degrees of freedom of relativistic quantum theory,
hypercharge and isospin, as in figures 25 and 26, with

2̂ ≡ c2

(
2
0

)
, and Φ̂ ≡ cΦ

(
0

Φ0

)
= cΦ

(
0
1

)
. (2.140)

We can construct a bispinor from two spinors built on π and i, and 2 and Φ. In terms of the
MCM, what Witten says about the Lorentz group being isomorphic to SL(2)×SL(2) must
be in reference to the idea that the ontological gauge has a {+−+−} topology in

1̂ =
1

4π
π̂ − ϕ

4
Φ̂ +

1

8
2̂− i

4
î , (2.141)

but the numbers themselves {i,Φ, 2, π} which don’t rely on ϕ<0 have the O(3,1) Lorentzian
topology of three real dimensions and one imaginary, or vice versa. This topology is usually
associated with the Lorentzian signature {−+++}. Furthermore, the topology of spacetime
is notable in general for the conformal properties of spacelike, timelike, and lightlike vectors,
and in the MCM we want to add a fourth kind vector that describes a longitudinal direction.
Associate to this Φ̂ which points out of spacetime H to the future Ω. It might be useful to
define Φ̂ as a chiroslike vector leaving an association for timelike, spacelike, and null vectors
as chronoslike vectors {2̂, π̂, î}. We can associate complexity with Φ̂ when we replace
(0 1)T in equation (2.140) with (0 1̂)T and decompose onto nested ontological resolution of
1̂.

The Pauli matrices are

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, and σz =

(
1 0
0 −1

)
, (2.142)

and they are related to the Dirac matrices, as in equation (2.122), which gives a good picture
of bispinor structure in matrix algebra. If we consider in the Pauli matrices a topology of
space associated with î and time with 2̂ then we can associate the imaginary Pauli matrix with
space and the other two matrices with time so that there are two kinds of spacetime: space
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Figure 25: The logical network is similar in structure to common representations of hypercharge and isospin.

Figure 26: Figures taken from Wikipedia describe the quantization of hypercharge and isospin.
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with chronos and space with chiros. In reference [11], we showed that these distinct classes
of spacetime, represented here as matrices acting on spinors, when considered altogether,
form the basic structure of the standard model of particle physics.

Among {2̂, π̂, î}, π̂ should probably be the null interval because the coefficient of π̂ is
the coupling constant of the theory of the propagation of photons at the speed of light
on ds2 = 0. If we let 2̂ describe the two light cones whose symmetry axis is the arrow of
time then 2̂ should be the arrow of time and this leaves spacelike vectors associated with
î. There is an odd spatial property in quantum mechanics that, even with linear quantum
mechanical multiplexes, there never exists a simultaneous eigenbasis for {Ŝx, Ŝy, Ŝz}. The
most information that we can extract from the wavefunction is by choosing one direction in
an experimental device, calling that the ẑ-direction, and then measuring the component of
the spin angular momentum along that direction. This is likely a profound connection so we
will repeat the specification of a novel arrangement. The chirological vector is Φ̂ and χ5 is
1D, timelike vectors have the topology of 2̂ giving chronos and chiros, conformally invariant
null vectors are like π̂, and all three dimensions of space are topologically like 1D î. All of the
multiplectic structure in quantum theory is built on the small unitary basis {1̂, î} and the
fundamental weirdness of quantum mechanics is that we cannot extract information from
the wavefunction about the components of the half integer spin along all three spatial axes.

When we replace {1̂, î} with {π̂, î} to construct an “ontological” spinor algebra, the ana-
logues to equations (2.137-2.138) are

∣∣ ↑ 〉 ≡
∣∣ψ; 1

2

〉
=

(
π
0

)
, and

∣∣ ↓ 〉 ≡
∣∣ψ;−1

2

〉
=

(
0
iπ

)
. (2.143)

with

Ŝ ′z =
1

2π

(
1 0
0 −i

)
. (2.144)

This redefinition of σz will require a revision to σx and σy to preserve the commutation
relations [σa, σb] = 2iεabcσc but that can surely be accomplished because the Pauli matrices

are not a unique representation. Furthermore, in dimensionalized form (~ 6=1) the Ŝ ′z operator
is

Ŝ ′z =
~
2π

(
1 0
0 −i

)
=
(
2π
)−2

h

(
1 0
0 −i

)
. (2.145)

Therefore, perhaps we have redundantly included a factor of 2π in these preliminary defini-
tions. Perhaps the 2π contribution to αMCM on the higher level of ℵ contributes as 0 on the
level of ℵ where equation (2.145) is relevant, as in

V Φ̂0 = π3 , with V Φ̂1 = (Φπ)3 + 2π . (2.146)
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If these matrices are encoded on ϕ̂ then they will be on the same level of ℵ as H where the
quantum theory is canonically defined. We will not develop all these objects here but the
origin of spinors in the MCM has been suggested concisely.

An exemplary feature of twistor theory is the mapping of the null interval ds2 = 0 in
Minkowski space to its corresponding object in twistor space. In twistor theory, the light
ray is a point in twistor space1 and points in spacetime become Riemann spheres in twistor
space. Using these definitions, we can further clarify the inversion operation on the Riemann
sphere that we have referred to very many times [12]. This operation takes a Riemann sphere
tangentially situated between two branes and inverts it so that the origin of coordinates moves
to the null point of S2 that is not included in the Riemann sphere. In the non-spherical planar
representation, this means that the 0D pointlike origin becomes a 1D ring at infinity. If the
map swaps the Riemann sphere’s pole with its null point at the other pole then that is a map
between the entire Riemann sphere and a point, i.e., it is the inverse of the map to twistor
space. Furthermore, if the line of ds2 =0 is a point in twistor space then, recalling that the
wavy line on the right side of figure 23 has ds2 =0, we can say that the diagram on the left
side is a twistor representation of the right side that shrinks the wavy line to a point.

Witten’s spinors λ, λ̃ are only determined up to an inverse scale relationship between u
and u−1 exactly like the one satisfied by Φ and ϕ, and the two canonical coordinate charts on
S2. Perhaps it is specifically when we fix this as the golden ratio with {u, u−1}≡{Φ,−ϕ} that
we are able to set the new boundary condition that lets us solve for new physics. Regarding
that special kind of physics, the inverse scale relationship is exactly the relationship between
the two charts that cover S2; they are related by the canonical inversion map. Where Witten

is not able to uniquely determine his spinors λ and λ̃, in our argument against the Riemann
hypothesis [8] we used a single chart on S2 but were unable to uniquely determine which
of the two possible charts it was. Furthermore, since any point on S2 can be the origin
of a chart, we were actually unable to determine which of the infinite number of possible
charts we were working with. Our argument against the Riemann hypothesis relied heavily
on the relationship between a point and the Riemann sphere, and if a spacetime point is the
Riemann sphere in twistor space then there likely exists an important connection between
that argument, the Riemann ζ function, and twistor theory. However, we will not be going
in that direction in this book because such nuance lies far beyond the general relevance of
the MCM.

We previously described how the complete geometry of the bulk, including the fiber bun-
dle of all the computed geodesics, was very complicated. Witten suggests that this is the
complexity of the famous Hopf fibration so we will have another new result if the ontological
basis provides a new understanding of Hopf’s famous mathematical representation of geo-
metric complexity. In reference [13], we described the topology of M̂3 as being isomorphic
to that of the Kerr–Newman geometry surrounding a charged, rotating black hole. The
topology of the singularity in the Kerr–Newman black hole is S1, not the normal pointlike
singularity, which is actually only one half of S0 (which is two points.) In the natural uni-
verse, it is unlikely that there exist any uncharged, non-rotating black holes, and, therefore,
there will be no pointlike singularities in Nature. One might speculate that, at a very funda-

1See video reference [26]. In this talk Penrose explains that his main interest in twistor theory is to discover a spacetime
calculus specific to 3+1 dimensions, and perhaps we have done that with {Φ, 2, π}∈∗R and {i}∈∗C. He states that 4D twistor
theory is the best variety of twistor theory and he casts erudite dispersions on the arrangement shown in figure 24 which shows
the abutment of two 5D twistor spaces.
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Figure 27: This figure shows the multifaceted region surrounding a Kerr–Newman ring singularity.

mental level, the problems with Hawking’s derivation of radiation near a static Schwarzschild
black hole described in reference [5] are related to the oversimplification of the multifaceted
Kerr–Newman event horizon as a simple mathematical surface. The Kerr–Newman horizon
shown in figure 27 is multilayered and very much looks like the Hopf fibration whereas the
Schwarzschild event horizon is a simple surface.

To close this section in which we only lightly touch on either of twistors or spinors, and
then only with the tip of a long polearm, consider what Misner, Thorne, and Wheeler write
about Penrose in reference [27]. Penrose’s name appeared in the title of the first paper [2]
this writer submitted to arXiv in 2009. His name also appeared in the abstract of the second
such paper [7] submitted in 2011 wherein one finds a statement, “Following the program of
Penrose, geometry rather than differential equations will be the mathematical tool.”

“Roger Penrose started out as an algebraic geometer. [sic] Because if his pure
mathematical background, his approach to the subject was different [em-
phasis added ] from those which had been adopted hitherto. He was particularly
interested in the global light-cone structure of spacetime and in the equations of
zero rest-mass fields both of which are preserved under conformal transformations.
He exploited this conformal invariance to give an elegant and powerful treatment
of gravitational radiation in terms of a null surface I + at infinity. More recently
this interest has led him to develop the theory of twistors, which are the spinors
corresponding to the conformal group of Minkowski space.”

II.7 Dyads and Quaternions

Noting that the three Pauli matrices together with the identity matrix are isomorphic to
the quaternions (whose Lie group is S3), we have considered a great many things and now
we will generate complexity by considering pairs of ontological basis vectors. There is an
intuitive picture wherein one needs to compute arbitrarily long strings of such vectors to
define the addresses of arbitrarily many unique lattice sites in the hypercosmos. It is with
these long addresses that we propose to generate the small numbers needed to solve the
hierarchy problem. A first step in that direction is to consider pairs exhibiting the behavior
proposed in reference [5]
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π̂π̂ ≡ π2 (2.147)

Φ̂Φ̂ ≡ Φ + 1 (2.148)

2̂2̂ ≡ 1 + 1 + 1 + 1 (2.149)

î̂i ≡ − 1 . (2.150)

A dual vector is a map from vectors to real numbers so these four definitions mean that the
ontological basis vectors are their own dual vectors. The ontological numbers need to have
these properties if they are to retain their everyday numerical properties. However, there
are several available product operations to explore.

Hilbert space vectors are their own dual vectors but that does not mean the ontological
state vectors live in ordinary Hilbert space. The definition for vectors in H′≡L2 is

ψ
(
x
)
∈ L2 ⇐⇒

∫ ∞
−∞

ψ∗
(
x
)
ψ
(
x
)
dx <∞ , (2.151)

and that they have an inner product〈
ϑ
∣∣ψ〉 ≡

∫
ϑ∗ψ dx , (2.152)

which is symmetric under complex conjugation as〈
ϑ
∣∣ψ〉∗ =

〈
ψ
∣∣ϑ〉 . (2.153)

There are some exceptions for eccentric and/or contrived wavefunctions where ψ(∞) 6=0 but
equation (2.151) is given generally as motivation for ψ(∞) = 0 along the Cauchy C curve
around infinity. For any value less than∞, the wavefunction can be normalized to unity but
(without a transfinite framework in place) it is not possible to normalize ψ if the integral in
equation (2.151) is equal to ∞.

We want to impose a non-commutative component where equation (2.152) holds but
equation (2.153) does not strictly hold in all cases. We will not discuss every property of
H′≡L2, but only those we intend to change systematically with modular complexification.
Recalling that ℵ′ and Ω′ are dual spaces in rigged Hilbert space {ℵ′,H′,Ω′}, we propose to
alter equation (2.153) by introducing a new kind of duality along the lines of
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∣∣ψ; Φ̂; Φ̂1
〉∗

=
〈
ψ; î; Φ̂2

∣∣ , and
∣∣ψ; î; Φ̂2

〉∗
=
〈
ψ; Φ̂; Φ̂2

∣∣ , (2.154)

where the second ket position specifies the manifold among {ℵ,∅,Ω;H} and the third sets
the level of ℵ. The dual space of either ℵ′ or Ω′ will be the next forward iteration of the
space so that, following a general process H1 7→Ω1 7→ℵ2 7→H2, the dual of an Ω′ state is in
the same unit cell (centered on ∅) but the dual of an ℵ′ state is in the next unit cell (using
the convention that the iterator on the object specifies the level of ℵ to which it belongs).
Using these definitions, we can contradict the property of L2 shown in equation (2.153). The
contradictory statement is〈

ϑ; î; Φ̂1
∣∣ψ; Φ̂; Φ̂1

〉∗
=
〈
ψ; î; Φ̂2

∣∣ϑ; Φ̂; Φ̂1
〉
, (2.155)

but 〈
ϑ; î; Φ̂1

∣∣ψ; Φ̂; Φ̂1
〉∗ 6= 〈ψ; î; Φ̂1

∣∣ϑ; Φ̂; Φ̂1
〉
. (2.156)

However, we preserve the behavior of equation (2.153) as a special case like〈
ϑ; π̂; Φ̂1

∣∣ψ π̂; Φ̂1
〉∗

=
〈
ψ; π̂; Φ̂1

∣∣ϑ; π̂; Φ̂1
〉
. (2.157)

Also note that the inner product of |X1, Y1, Φ̂
1〉 with 〈X2, Y2, Φ̂

2|, as in equation (2.155),

should give zero when Φ̂2 is in the ket. This would show that the amplitude for the level of ℵ
to decrease is zero. More precisely, it should give zero up to a hypercomplex remainder which
is to say that those vectors are nearly orthogonal or, perhaps, nearly Dirac orthogonal. The
concept of transfinite infinity requires us to have sectors for three types of numbers: finite,
infinite, and infinitesimal. Therefore, when we compute 〈ψ; î; Φ̂1|ϑ; Φ̂; Φ̂1〉 on the level of ℵ
denoted Φ̂1, the answer should be finite but not infinite, and, therefore, we might require the
hypercomplex inner product to be carried out on the level of ℵ of the bra rather than the
ket. Then in the usual way, the output of the operation will tell us the probability amplitude
for a state ψ starting in Ω1 to be found later in ℵ2. We intuitively expect that this number
should be one because time always goes forward but a full analysis of all the requirements
should be carried out to determine the complete structure of the inner product including the
nuance related to the δ′jk and

∫
dγ̂ discussed in section II.2. The point is that inner product

must be defined so that the amplitude for a Φ̂j+1 state to end up in a Φ̂j state should be
zero or very small. Another standard property of vectors in Hilbert space that we aim to
alter is 〈

ϑ|ψ
〉
∈ R ≥ 0 . (2.158)
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The
√
i channel exists specifically to violate this constraint and there is also an inbuilt

violation in the ontological basis itself. If the three real ontological basis vectors are such
that 〈

ψ; {Φ̂, 2̂, π̂}
∣∣ψ; {Φ̂, 2̂, π̂}

〉
≥ 0 , (2.159)

then a direct consequence will be that〈
ψ; î
∣∣ψ; î

〉
≤ 0 . (2.160)

We aim to make a lot of modifications to the existing theory but there is no guarantee that
everything about M̂3 can be represented in Dirac notation. Therefore all of the objects
presented, following the style of this book, are defined tentatively pending a better follow on
analysis. We will return to these important issues in section IV.3.

We have not yet begun to address the products defined by arbitrarily long strings of
different lattice vectors that are the addresses of different lattice sites. If we were to write
the cosmological address of a hypothetical lattice site such as the π̂-component of the î-
component of the 2̂-component of the π̂-component of the π̂-component of the 2̂-component
of the î-component of the π̂-component on Φ̂11 it could look like

N∏
1

êj = π̂î2̂Φ̂7π̂π̂Φ̂2̂Φ̂3îπ̂ . (2.161)

We say “could look like” because the order of the eleven Φ̂ in equation (2.161) does not
matter. The 1D topological flatness condition on chiros means that no matter how many
Φ̂n’s appear in a string, we will combine them into one hatted object Φ̂N , and then we will
consider the full nested structure of {2̂, π̂, î} on that single level of ℵ. By “nested structure”

we mean that the order of the non-Φ̂ objects in the string does matter when specifying a
lattice address. We point this out to demonstrate that Φ̂ is completely different than {2̂, π̂, î}.
Here, we consider a single observer’s timeline but point out that nested Φ̂ structure would
imply divergent timelines. By “nested Φ̂ structure” we mean the case when the order of
Φ̂ objects in equation (2.161) also matters but we are not yet to that level of complexity.

Instead, we use only {2̂, π̂, î} to build an easily understood 3D lattice on one level of ℵ and
then we will consider many such levels. In this book, we have proposed to avoid any reliance
on the addresses of such sites in the past by encoding the history on ϕ̂, but when we want
to compute the amplitudes for the evolutionary futures of the qubit on ϕ̂, it is likely we will
need to consider future cosmological lattice sites identified in a manner roughly like that
shown in equation (2.161).

We have considered pairs of like basis vectors acting on each other outside of the Dirac
product but we have not yet considered mixed products of different kinds of ontological basis
vectors. We will consider a rule to take the outer dyadic product when the pairs of basis
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vectors are mixed. The cross product is an outer product that only exists in three dimensions
but the dyadic product is another outer product valid for any two basis vectors of consistent
dimension. The dyadic tensor âb̂, also called the dyadic tensor product, is defined by its
action on vectors. It is a map from one vector to another vector, or a map from two vectors
to numbers via(

âb̂
)
· ĉ = â

(
b̂ · ĉ
)
, and d̂ ·

(
âb̂
)
· ĉ =

(
d̂ · â

)(
b̂ · ĉ
)
. (2.162)

This is an important property because it allows us to construct both types of objects needed
to replicate the Dirac formalism with

|ψ〉â ≡ |ψ; â〉 . (2.163)

In this notation, we can write

〈ϑ; b̂|ψ; â〉 ≡ 〈ϑ|ψ〉 âb̂ = âb̂ 〈ϑ|ψ〉 . (2.164)

The dyadic outer product is not commutative. For example, using the totally arbitrary
assignments for êµ, and going from the 2D spinors in the previous section to the 4D bispinor
form, let

π̂ =


π
0
0
0

 , Φ̂ =


0
Φ
0
0

 , 2̂ =


0
0
2
0

 , and î =


0
0
0
i

 . (2.165)

Then we have objects like

π̂Φ̂ =


0 πΦ 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 and Φ̂π̂ =


0 0 0 0
πΦ 0 0 0
0 0 0 0
0 0 0 0

 , (2.166)

that demonstrate the non-commutativity with π̂Φ̂ 6=Φ̂π̂.
Equations (2.165-2.166) demonstrate objects natural to quaternion operations since they

are 4-vectors and 4×4 matrices. Now that we have discovered hyperquaternions in confer-
ence proceedings from 1984 [18], and even they have not proven sufficient to finally develop a
unified field theory, perhaps 2̂ can act on the hyperquaternions to give an “ultraquaternion”
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solution using the principles outlined in reference [5]. With a fifth component in the quater-
nion algebra derived from 2̂x 7→ x + x, we might design the additional complexity needed
to accommodate O(1,4)↔O(2,3) on two quaternion algebras. When using the ontological
objects as pseudo-quaternions H′ [5] (or ultraquaternions), they do not technically meet the

definition of quaternions H because the coefficient −i/4 of î is not real and the quaternions
all have real coefficients. Also, the identity is not in the ontological basis but it is a member
of H as formulated by Hamilton. Therefore, let us solve this problem about the inconsistency
of î with H by assigning our ontological pseudo-quaternions as {1̂, Φ̂, π̂, î}. Then if we add
a fifth component 2̂ to H, and thereby make two copies of a quaternion algebra (on two
co-π̂s), we can take within each instance separately a rigorously perfect set of quaternions

{1̂, Φ̂, 2̂, π̂}. The ordinary quaternions {1, i, j,k} have the property that ijk=−1 and we can

almost certainly replicate this with 2̂π̂Φ̂ = 2πΦ. We have stated that, in each application
of M̂3, the phase in the gauge theory is constrained by the ontological gauge to evolve only
across a single cycle of 2π radians so we can use the periodicity to get rid of 2π from 2πΦ be
resetting the final phase ∆ = 2π to the initial phase required by the MCM: ∆ = 0. We also
know that when the level of ℵ increases objects like Φ̂n will become like Φ̂n−1. For the specific
case of Φ̂1 this gives Φ̂0 = 1̂. We can attribute the missing negative sign to

√
i. Therefore,

up to all of the details which truly need be nothing more than ordinary normalization, we
have engineered 2πΦ→−1 in a fairly reasonable and direct manner.

Now we have considered pairs of basis vectors. What shall be the general case for the
consideration of triples? This is exactly the problem Hamilton was considering when he
invented the quaternions. We want to give rigorous definitions to long strings of unit vectors
that define each lattice site but the dyadic only involves pairs. It makes a lot of sense to
let the self product of two like basis vectors be the inner product and let the mixed product
of two dissimilar basis vectors be the outer product but what would be the interpretation
for the long product that keeps track of strings like that in equation (2.161)? We have
run into a roadblock on the way to complexification after only considering the second order
lattice sites. However, it looks like simple pairs will be enough for now; any long string can
be constructed with iterative consideration of pairs that say, “from here, go there.” If the
Dirac matrices can be combined to make exactly 16 independent objects then it is critically
important to note that there are exactly sixteen independent objects when we consider all
iterations of dyadics like equation (2.166). In this way, perhaps it will be simpler to use the
dyadic product exclusively, even for like pairs, and replace equations (2.147-2.150) with

π̂π̂ =


π2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (2.167)

Φ̂Φ̂ =


0 0 0 0
0 Φ2 0 0
0 0 0 0
0 0 0 0

 (2.168)
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2̂2̂ =


0 0 0 0
0 0 0 0
0 0 4 0
0 0 0 0

 (2.169)

î̂i =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1

 . (2.170)

Indeed, the definitions in equations (2.147-2.150) are more like the dot product than the
dyadic product. In any case, we left a lot of unanswered questions when we considered the
quaternions in reference [5] wherein the main goal was to raise those questions. We won’t
propose to treat those questions now but will refer to one of the main takeaways reported
after examining the quaternions in reference [5]: the 4D structure is a lot like Dirac’s theory
(and Einstein’s theory.) We have now shown another set of 16 objects which is different
than, yet exceedingly similar to, the quaternion argument made in reference [5].

After noting how the dyads look like the Clifford algebra, also consider a general Lorentz
transformation in matrix form

ct′

x′

y′

z′

 =


γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1



ct
x
y
z

 . (2.171)

Evidently the ontological dyads can build Lorentz transform matrices as well. Every Lorentz
transformation can be written as the sum of a rotation and a boost so even the symmetries
of the Lorentz group might be motivated by the ontological basis. We know the Lorentz
group has six parameters and it will take six dyadic products π̂Φ̂, Φ̂π̂, π̂π̂, Φ̂Φ̂, 2̂2̂, and
î̂i to build equation (2.171)’s typical example of velocity in one dimension. More complex
Lorentz transform matrices will be built with more than six dyads so they are not the Lorentz
parameters themselves, but it is good that the small set of dyads we used to demonstrate
complexity can be used to demonstrate the Lorentz transform in special relativity.

II.8 Unification

One of the main things that remains to be clarified in the MCM is the precise form of the
maps

f 3
∣∣ψ; π̂

〉
7→ Tµν (2.172)

Φ

4

∣∣ψ; 2̂
〉
7→ Rµν (2.173)
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∣∣ψ; Φ̂
〉
7→ Rgµν (2.174)

i
∣∣ψ; î

〉
7→ gµνΛ , (2.175)

through which we propose to unify gravitation and quantum theory. This does not appear to
be low hanging fruit and, in any case, we have not yet reached for it. Detractors certainly will
claim that we have not yet unified the theories because we have not yet defined the maps with
some specific definition that would have to be confirmed or denied by experimentalists. This
is not an invalid criticism. To date, work on the MCM has only discovered the mechanism of
unification. We have not yet demonstrated it by writing the maps as specific functionals of
wavefunctions. However, the discovery of a new mechanism for unification, the only one that
exists,1 is independently a great accomplishment. Now it is possible for other researchers to
tinker with the mechanism but that was not possible before it was discovered by this writer in
2012 [12]. If no one ever discovers a mechanism of unification then the theories of gravitation
and quanta will never be unified. When the theories are eventually unified according to the
specifications of detractors, that unification will unequivocally follow the discovery of the
mechanism of the unification! Even then, detractors will not desist from their detractions
until the experimentalists confirm or deny any specific functionals proposed. Instead of
searching for the specific functionals preferred by everyone who was unable to figure out a
mechanism for unification on their own, we have wisely pursued the course of research that
led to the maximum action result in section I.3 that is among the main new results presented
in this book. The absence of a set of specifically defined functions for some problem in applied
physics takes away nothing from our discovery of the maximum action path hidden along the
Cauchy C curve around infinity. It takes away nothing from very many other, independently
valid, results derived in the MCM and yet detractors continue to insist that one incomplete
problem means that all of the problems are incomplete. If experimental confirmation of a
theory of grand unification was the only praiseworthy achievement in physics then how do
praised physicists exist when then that confirmation does not?

Once the mechanism is discovered, it does become possible to unify the theories of grav-
itation and quanta. This is clearly a two step process and accomplishing either step is a big
deal. Thus, the identification of a mechanism of unification, the first one ever, is clearly an
important discovery worthy of praise despite the protestations of people who know nothing
about the scientific method or who do know but are blinded by their own hubris. If the
specific MCM maps are found in the next 90 years or so then history will show that finding
the mechanism of unification was the more difficult problem between finding the mechanism
and finding the functionals. In the time after unification is achieved according to the seman-
tic definition preferred by detractors and not the one preferred by this writer which means
that unification has already been achieved, the thing that will be first demonstrated to the
physics students of the future will be the mechanism of the unification. Physics professors
will say, “This mechanism unifies the disparate mathematical frameworks of differential ge-
ometry and quantum field theory,” and the specific forms of the maps will likely be left as a

1The reader should be very careful to note that no one has ever proposed a mechanism such as the MCM mechanism. There
should be no insistence to treat the MCM as another blip on a radar screen full of many such blips. It is the only blip on the
screen, and it is the only blip that has ever appeared on the screen.



81

homework problem in advanced coursework.
In addition to the mechanism of unification in maps (2.172-2.175), we have demonstrated

so many other successful aspects of the theory that any reasonable person should assume that
the maps exist and that the two theories will be “properly unified”1 through the mechanism
exposed in this research program. However, the acceptable demonstration of the mechanism
of unification, the one that is something other than, “Look at these three dimensionless
constants: 4π, 8π, and 137,” is likely to be one specific problem in applied physics like
Einstein’s calculation2 of the deflection of light from Mercury. From an applied problem
such as this, we would only infer the extension to other problems solved in the MCM leaving
detractors in the position to say, “Confirmation in one place isn’t confirmation everywhere.”
Similarly in the non-hypothetical case of the extant and sufficient MCM demonstrations,
detractors can always say, “You didn’t do the thing you didn’t do yet,” and the political
agents will maintain the belief that it is a reasonable criticism to accuse this writer of not
singlehandedly doing all of physics.

The benefit of dealing with Nature at the fundamental level, and not the applied level, is
that we may infer the extension of our fundamental results to all applied problems without
having to choose one specifically. If someone can choose an applied problem that shows
our extension would fail then they are encouraged to do so, but that work will likely not
be stimulated until the original work by this writer is recognized. When the MCM’s other
myriad, definitive, irrefutable results exist, it is highly irregular that funded researchers have
not taken up the search for functionals while we remain focused on more important issues
dealing with the fundamentals of infinite complexity (such as those in reference [8].) Thus
are the prerogatives of those researchers and if they choose not do it first then we will get
to it when we get to it. Since it will be impossible to know if any derived maps are correct
without an experimental confirmation, all detractors that currently detract are most likely
to continue to do so even if we did propose a specific set of functionals. If the physics
community at large has pretended to ignore our other experimental predictions and other
mathematical results that are already fully complete then it is likely that specific analytical
relationships of the form

Tµν = fT [ψ; π̂] (2.176)

Rµν = fR[ψ; 2̂] (2.177)

Rgµν = fRg[ψ; Φ̂] (2.178)

gµνΛ = fgΛ[ψ; î] , (2.179)

1Here, we put “properly unified” in quotes to differentiate proper unification from the type of demonstration that would
have been made if an acolyte of one of the professional physics societies had somehow found unification inside the box of physics
that those societies seem to think is the only allowable, or valid, methodology.

2The reader must note that this was not Einstein’s calculation but rather was the calculation of Einstein et al. and this
writer has no et al. because he has been shunned rather than embraced by the pool of potential et al.s.



82

would also be ignored.1 Recall that we have solved very many problems besides the problem
of unification, and solving one more is unlikely the change the sentiments of the cretins
in the anti-science conspiracy. The primary of example of that to which we refer is the
non-publication of the full spin analysis for the Higgslike particle [28]. In reference [11], we
derived the MCM’s best and most specific experimental prediction for new spin-1 particles.
Why has the full spin analysis for the Higgslike particle not been carried out and published
if not to spite this writer by denying him the experimental confirmation that detractors will
always refer to regardless of how specific our theoretical results eventually become?

The aspects of the theory that provide such strong evidence of its correctness include the
production of three numbers which are unambiguously the most important dimensionless
constants in physics. The leading coefficient (leading because π̂ is the primary component)
of the ontological resolution of the identity

1̂ =
1

4π
π̂ − ϕ

4
Φ̂ +

1

8
2̂− i

4
î , (2.180)

is the dimensionless electromagnetic coupling constant 1/4π. Electromagnetism is a corner-
stone of the physics that we more or less understand, and we have taken π̂ as the sector of
known physics in H before adding {2̂, Φ̂, î} to construct an ontological basis for new physics
in the hypercosmos.2 It is a good demonstration of the MCM’s consistent, non-contradicting
validity that the coefficient associated with π̂ is the dimensionless electromagnetic coupling
constant. We have uncovered consistency in every corner of the MCM but never once have
we uncovered any inconsistency, and none has been demonstrated by any detractor. Sec-
ondly, we have generated the dimensionless coupling constant from Einstein’s equation 8π
and we will discuss its origin in the next chapter. Thirdly, we arrive at the first important di-
mensionless constant identified in the MCM: the fine structure constant α−1

MCM =2π+ (Φπ)3.
This differs from the currently accepted value αQED by about 0.4% and it is totally obvious
that quantum theory can be reformulated with αMCM by moving the 0.4% discrepancy into
the quantum uncertainty found in some other corner of the theory.

Another very strong indicator for the overwhelming likelihood of the existence of a set
of functionals that will clarify and define maps (2.172-2.175) with specific, correct, useful
definitions is the MCM’s modified model of particle physics (figure 28.) In the standard
model of particle physics, there are four fundamental gaugeons plus the spinless scalar Higgs
boson. In the MCM scheme, there are no fundamental scalar particles and we predict two
spin-1 gaugeons G± and ζ0 where the standard model only predicts the spin-0 scalar particle
H0. At a very fundamental level, it is likely that we have been able to make so much
progress through diagrammatic representations alone because the conformal invariance of
the MCM gauge theory is not broken by the existence of a fundamental scalar particle. The
MCM breaks symmetry in two ways. The first is that “infinitely large” is not balanced
with “minus infinitely large.” It is balanced instead with infinitesimals at the origin. The

1This statement is highly conditional. They would only be ignored if they were correct. If they were demonstrably incorrect,
as they likely would be if the endeavors to find them were undertaken by this writer prematurely, then they would likely not
be ignored. In that case detractors would probably pounce upon that erroneous result to rhetorically assault the other MCM
results which are logically unassailable.

2The hypercosmological lattice structure is not unlike the concept of an akashic record. Measurements get made at π̂-sites
and there they remain when the observer makes more observations later, at other π̂-sites.
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Figure 28: The 4× 4 symmetry of the standard model is broken by the spin-0 H scalar boson but the 4× 4
symmetry of the modified model is completed with the spin-1 G and ζ gauge bosons. Notice how
the labeling, when taken by column, up to an extra Φ in each generation of matter particle, gives
αMCM = (Φπ)3 + 2π. See reference [11] for details regarding the modified model of elementary
particles.

second symmetry breaking mechanism is that chronological time can be computed in any
direction but chirological time can only be computed in the forward direction. This is closely
related to (if not uniquely derived from) the previous symmetry breaking mechanism about
an imbalance in infinitude. All of the pieces of the MCM are conformally invariant in the
gauge theory but if we tried to include H0 then there would be a breakdown in the global
conformal invariance, and that would impede the drive to do physics with diagrams.

As an aside about particle physics, we mention the neutrino mass. Neutrino masses
violate the predictions of the standard model but they have never been measured directly.
The existence of massive neutrinos is inferred from neutrino flavor oscillation. Oscillation
means that a neutrino of one flavor at a source can show up in a detector as any of the
three flavors: electron, muon, or tau. The argument against the standard model says that if
neutrinos were massless then they would move at the speed of light along the null interval
in spacetime. When ds2 = 0 for every neutrino trajectory, it means that neutrinos do not
experience time and, therefore, they should not be able to change flavors. Change is uniquely
a property associated with time; timeless things don’t change. However, now that we have
introduced a second kind of time into the MCM we should re-evaluate whether or not flavor
oscillation strictly implies mass. It might be that massless neutrinos do move on the null
interval as predicted by the standard model but there is some oscillation allowed due to the
passage of chirological time which is orthogonal to the spacetime of only spacelike, timelike,
and null intervals. Massless neutrinos are predicted by the standard model when it says they
should have strictly left chirality and perhaps we can associate that with strictly increasing
chirological time.

The symmetry of the MCM particle scheme, with respect to the asymmetry of the stan-
dard scheme, makes a good case for the overall correctness of the MCM but it still remains
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for the political agents at the LHC to report the spin of the particle they discovered in
2012. The official source of what is and is not known in particle physics is the Particle Data
Group. They publish a yearly volume and the entry for the Higgs boson in the 2016 volume
[29] contains the following wherein the reader should note the deliberate uncertainty in the
choice of words and how that tone contrasts the ordinary style of concise language one finds
in PDG’s publications.

“H0 refers to the signal that has been discovered in the Higgs searches. Whereas
the observed signal is labeled as a spin 0 particle and called a Higgs Boson, the de-
tailed properties of H0 and its role in the context of electroweak symmetry breaking
need to be further clarified.”

Indeed they do need to be clarified because no one knows if the particle announced by
CERN four years prior to the publication of reference [29] is the spin-0 particle predicted
by Higgs and several of his contemporaries or if it is among the pair of spin-1 particles
predicted via the MCM. If they report that the particle has spin-1 then that will make an
even stronger case for the existence of the specific, physical functionals that will replace the
arrows in maps (2.172-2.175). There are very many things that have worked out surprisingly
well in the MCM such as the new mechanism for bulk-boundary correspondence [3] and,
altogether, there is an irrefutable likelihood that specific physical forms of the maps do exist
and can be written down. There have been so many such discoveries in this research program,
each making a small (or huge) argument for the overall physical correctness of the MCM,
that altogether they do form a convincing argument. However, the fact remains that we still
have not identified the specific functionals of wavefunctions or their inverses and that is on
the to-do list.

To find the requisite functionals, we should look for a connection between the quantum
state vectors and the general relativistic equation of state. Recall that Einstein’s equation
alone, much like equations (2.176-2.179), does not determine physics. Einstein’s equation
conserves the energy of a universe but we also need to know the universe’s equation of state
before we can do physics properly. There are very many common equations of state for a
model universe and reference [30] contains a comprehensive survey of the most common and
useful ones. One thing that all general relativistic equations of state have in common is a
pair of thermodynamics parameters: the pressure p and the energy density ρ. Since any two
parameters are defined by their ratio w, we can expect that it will be productive to study
ontological equations of state wherein the ratio of these two parameters is the golden ratio.
Perhaps we can set them relative to each other as w=Φ in Σ+ and w=ϕ in Σ− to set a non-
equilibrium condition across H or ∅ which leads to the laws of thermodynamics: entropy
increases and time goes forward. Davies has discovered the golden ratio in an independent
study of black hole thermodynamics [31]. He published a paper titled “Thermodynamic
Phase Transitions of Kerr–Newman Black Holes in de Sitter Space” so here we have the
following MCM elements already bundled together in 1989: the golden ratio, Kerr–Newman
black holes, phase transitions, and de Sitter space. To repeat what we have stated about
the MCM already, we expect that the topological compartmentalization of the MCM unit
cell is exactly that of the Kerr–Newman black hole [13], and obviously half of the unit cell
is de Sitter space. The MCM adds AdS to the list of things in the title of reference [31], and
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thereby we make it possible to incorporate AdS/CFT effects beyond the thermodynamics
considered by Davies.

Regarding maps (2.172-2.175), we have made them such that they point to both sides

of Einstein’s equation but we could make the four maps on |ψ; {̂i, Φ̂, 2̂, π̂}〉 point to the 16
places in the matrix representation of the Einstein tensor Gµν , or the stress energy tensor
Tµν , or there are very many possible permutations.1 Since one of Tµν or Gµν determines the
other through Einstein’s equation (given gµνΛ), there is no need for us to send the qubit
into both of Tµν and Gµν . However, if we do not send the information to both sides of
Einstein’s equation then we lose the unique connection to the all-important coefficient 8π.
Another thing to consider is that a single quantum should not determine the state of the
entire universe. In that case, we are drawn to maps of the form

f 3|ψ; π̂〉 7→ Tψµν , where Tµν = T 0
µν + Tψµν , (2.181)

or

i|ψ; Φ̂〉 7→ hµν
[
ψ(xµ+)

]
, where Gµν = G0

µν + hµν
[
ψ(xµ+)

]
. (2.182)

By computing only forward chirological time starting from some present moment H, we
are forced to compute two separate trajectories in Σ+ and Σ−. These are the legs of M̂3

H 7→Ω and ℵ 7→H respectively and there is also the operation that changes the level of ℵ
where Ω 7→ ℵ. The three pieces of M̂3 are very well matched to the possible polarization
states of a spin-1 particle. Classical physics only computes the leg ℵ 7→ H and the Higgs
boson only has one possible polarization state: no polarization. By adding the additional
topological elements associated with M̂3, we can preserve the Higgs mechanism but allow
the polarization states {1, 0,−1} of a spin-1 particle. There is a natural connection between
+1 polarization in Σ+, 0 polarization in ∅, and −1 polarization in Σ−. Based on figure 28,
we have predicted a pair of spin-1 particles [11] but we did not start with the Higgs boson
and then generalize it the MCM. We modeled the non-Higgs particles and then saw that
there should be two more with spin-1. We have predicted these particles G± and ζ0 along
a line of reasoning independent of what is now called the Englert–Brout–Higgs–Guralnik–
Hagen–Kibble mechanism.

In reference [32], we extensively discuss the prediction for spin-1 particles put forward in
reference [11]. The main criticism of the prediction for spin-1 is the Landau–Yang theorem
which says spin-1 particles cannot decay to a pair of photons but that theorem should be
reinterpreted with the tools of hypercomplex analysis. We have shown that Bell’s famous
theorem has a completely different interpretation in ?C, and the Landau–Yang theorem may
as well. In video reference [33], Arkani-Hamed, who knows about the Landau–Yang theorem

1Under ordinary conditions, this writer’s fellow researchers would jump at the chance put their names on arbitrarily long
catalogs of the implications of finitely many intuitive guesses at specific functionals. The reader is invited to recall that the
quantum Hall effect was finally solved by guessing and Laughlin shared the 1998 Nobel Prize in physics for his excellent and
well-reasoned guess.
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as well as any detractor of the MCM, makes some plain statements that spin-1 is not ruled
out.

To finish this chapter, we will compare Higgs’ famous result [34] to the MCM maps. The
result that earned Higgs the Nobel Prize for Physics 2013, which he shared with Brout,
first appeared in reference [34]. On the final (second) page of that paper, one sees the term
“70-plet” in the title of the article that follows Higgs’, and detractors who detracted from
our employment of the word multiplex should take note of the year of publication of that
article: 1964. Higgs write the following in reference [34].

“The Goldstone theorem [sic] fails if and only if the conserved currents associ-
ated with the internal group are coupled to gauge fields. The purpose of the present
note is to report that, as a consequence of this coupling, the spin-one quanta of
some of the gauge fields acquire mass; the longitudinal degrees of freedom of these
particles (which would be absent if their mass were zero) go over into the Gold-
stone bosons when the coupling tends to zero. [sic] The simplest theory which
exhibits this behavior is a gauge-invariant version of a model used by Goldstone
himself: Two real scalar fields ϕ1, ϕ2 and a real vector field Aµ interact through
the Lagrangian density

L = −1

2

(
∇ϕ1

)2 − 1

2

(
∇ϕ2

)2 − V (ϕ 2
1 + ϕ 2

2 )− 1

4
FµνF

µν , (2.183)

where

∇µϕ1 = ∂µϕ1 − eAµϕ2 (2.184)

∇µϕ2 = ∂µϕ2 − eAµϕ1 (2.185)

Fµν = ∂µAν − ∂µAν , (2.186)

e is a dimensionless coupling constant, and the metric is taken as − + ++. L is
invariant under simultaneous gauge transformations of the first type on ϕ1 ± iϕ2

and of the second kind on Aµ. Let us suppose that V ′(ϕ 2
0 ) = 0, V ′′(ϕ 2

0 ) > 0;
then spontaneous breakdown of U(1) symmetry occurs. Consider the equations
[sic] governing the propagation of small oscillations about the “vacuum” solution
ϕ1(x) = 0, ϕ2(x) = ϕ0:

∂µ
{
∂µ
(
∆ϕ1

)
− eϕ0Aµ

}
= 0 (2.187){

∂2 − 4ϕ 2
0V
′′(ϕ 2

0 )
} (

∆ϕ2

)
= 0 (2.188)

∂νF
µν = eϕ0

{
∂µ
(
∆ϕ1

)
− eϕ0Aµ

}
(2.189)

[Equation (2.188)] describes waves whose quanta have (bare) mass 2ϕ0{V ′′(ϕ 2
0 )}1/2;

[equations (2.187) and (2.189)] may be transformed, by the introduction of new
variables

Bµ = Aµ −
(
eϕ0

)−1
∂µ
(
∆ϕ
)

(2.190)

Gµν = ∂µBν − ∂νBµ , (2.191)
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into the form

∂µB
µ = 0 , ∂νG

µν + e2ϕ 2
0B

µ = 0 . (2.192)

[Equation (2.192)] describes vector waves whose quanta have (bare) mass eϕ0. In
the absence of the gauge field coupling (e = 0) the situation is quite different:
[equations (2.187) and (2.189)] describe zero-mass scalar and vector bosons, re-
spectively. In passing, we note that the right-hand side of [equation (2.189)] is
just the linear approximation to the conserved current: It is linear in the vector
potential, gauge invariance being maintained by the presence of the gradient term.”

The Goldstone theorem says bosons should appear whenever symmetry is broken and the
complexity of fine nuance underlying Higgs’ short paper is too much to go into here, and not
relevant to the topic of this book. We have included this excerpt to compare the MCM to
what Higgs did and was lauded for across decades without any experimental confirmation,
or even a calculation to say what the mass of the particle should be. Higgs assumes a
Lagrangian and, with sufficient motivation, we have assumed another equation

ω3
∣∣ψ; π̂

〉
= πΦ2

∣∣ψ; π̂
〉
. (2.193)

From Higgs’ Lagrangian, he is able to derive equations (2.187-2.189) and from equation
(2.193) we are able to write

8π3f 3|ψ; π̂
〉

=πΦ
∣∣ψ; π̂

〉
+ π
∣∣ψ; π̂

〉
(2.194)

8πf 3|ψ; π̂
〉

=
∣∣ψ; Φ̂

〉
− i
∣∣ψ; î

〉
(2.195)

=
Φ

4

∣∣ψ; 2̂
〉

+
1

2

∣∣ψ; Φ̂
〉
− i
∣∣ψ; î

〉
. (2.196)

Higgs’ next step following equations (2.187-2.189) is to introduce new variables Bµ and Gµν ,
as in equations (2.190-2.191). We have done the same thing introducing new variables Tµν ,
Rµν , Rgµν , and gµνΛ as

f 3
∣∣ψ; π̂

〉
7→ Tµν (2.197)

Φ

4

∣∣ψ; 2̂
〉
7→ Rµν (2.198)

−1

2

∣∣ψ; Φ̂
〉
7→ Rgµν (2.199)
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−i
∣∣ψ; î

〉
7→ gµνΛ . (2.200)

Higgs’ derivation concludes by using his new variables to write the equations of vector
waves in equation (2.192). We have done the same thing using our new variables to write
maps (2.197-2.200) as Einstein’s equation

8πTµν = Rµν −
1

2
Rgµν + gµνΛ . (2.201)

Higgs’ result is slightly more formal than ours because he introduces the new variables
with equations and we have only introduced them with maps. However, our result is more
complicated than Higgs’ because he is using Einstein notation throughout his paper but we
intermingle Einstein notation, Dirac notation, and also the new MCM notation related to the
ontological basis. Since the left hand side of maps (2.197-2.200) do not have tensor indices
on them it would be impossible to use equations as Higgs has done. Instead we have used
the “maps to” notation 7→ to call attention to the new channel discovered by this writer
and reported in 2012 [12]. Therefore detractors institute a false equivalence when they agree
that Higgs’ result is praiseworthy but ours is not. Most importantly, where Higgs was not
able to derive the mass of the Higgs boson, its coupling constant, we have exactly derived
the coupling constant of Einstein’s equation. Therefore, when detractors say, “Tooker didn’t
write equations,” one should point out, “Higgs didn’t write the coupling constant and no
one complained about that.”

For further reading regarding the Englert–Brout–Higgs–Guralnik–Hagen–Kibble symme-
try breaking mechanism, and its clear relationship to the MCM principles such as ∂3, the
reader is referred to reference [35] wherein one finds an exceptionally well written and acces-
sible technical development.
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And he shall speak great words against the most High, and shall wear out the
saints of the most High, and think to change times and laws: and they shall be
given into his hand until a time [x0] and times [x0, χ5] and the dividing of time
[χ5

+, χ
5
∅, χ

5
−].

– Daniel 7:25

III Maximal Symmetry

The first section in this chapter restates the MCM hypothesis and points out a few obvi-
ous criticisms which are mitigated with arguments in later sections. The second section
recounts some drama related to the development and publication status of the documents
that characterize this research program. Section three contains a few orphaned comments
and in section five we make a definition for a multiplex. Sections four and six are dedicated
to addressing the criticisms from section one. In section four, we propose to create small
perturbations hµν on the Minkowski metric by taking the difference of large perturbations
in Σ±. Additionally, in section six we strengthen and clarify the loose definition for a 5D
ontological wavefunction Ψ = 0 that was reported in reference [10]. In section seven, we
discuss the properties of eponymous maximally symmetric spacetimes. In section eight, we
treat the geodesics of the MCM unit cell but do not calculate them. The main result of this
chapter is in section nine where we show how dark energy and expanding space are both
expected properties of the piecewise metric used in the MCM. Section ten is a brief summary
of relevant aspects of the advanced and retarded electromagnetic potentials.

III.1 The MCM Hypothesis

The first step in building the MCM is to assume a hypothesis that momentum is always
conserved and, thereby, pursue a different model than most big bang theorists. Taking a
shortcut to something that can be analyzed specifically, we have hypothesized that the third
derivative with respect to chronological time should be equal to the third derivative with
respect to chirological time.

M̂3
∣∣ψ; π̂

〉
= M̂3

∣∣ψ; π̂
〉

=⇒ ∂ 3
0

∣∣ψ; π̂
〉

:= ∂ 3
5 |ψ; π̂

〉
. (3.1)
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The operator that appeared as ∂4 in earlier work now appears as ∂5 because we have changed
the counting convention on the Latin indices A. The next step is to choose ψ so that the
hypothesis becomes

ω3
∣∣ψ; π̂

〉
= iπΦ2|ψ; π̂

〉
, (3.2)

and we will say a lot about how to accomplish that in this chapter (after first referring the
reader to reference [10] for full details), and we will revisit this important issue in section
IV.3. We reduce equation (3.2) which is quadratic in Φ to a linear one with Φ2 = Φ + 1 to
achieve

ω3
∣∣ψ; π̂

〉
= iπΦ|ψ; π̂

〉
+ iπ|ψ; π̂

〉
. (3.3)

This gives some general idea about how one might quantize third order equations that are
ordinarily taken as unquantizable: we can take an equation of any order in Φ and reduce
the order through an operation like Φ3→Φ2 + Φ→ 2Φ + 1. We have still not identified all
the problems we hope to solve through some method of achieving equations in a given order.
However, since the theory of infinite complexity uses the advanced potential that is third
order in ∂t, we will almost certainly be required to quantize a third order potential as part
of the quantization process for the classical MCM Hamiltonian.

After writing equation (3.3), we use ω=2πf , insert the identities π̂=−ϕπΦ̂ and π̂=−iπî,
and then shuffle the hats to write

8π3f 3
∣∣ψ; π̂

〉
= iπ2|ψ; Φ̂

〉
+ π2|ψ; î

〉
. (3.4)

Then we normalize by π2 and say that

8πf 3
∣∣ψ; π̂

〉
= i|ψ; Φ̂

〉
+ |ψ; î

〉
, (3.5)

is Einstein’s equation via

f 3
∣∣ψ; π̂

〉
7→ Tµν := ψ

(
xµ
)

(3.6)

i
∣∣ψ; Φ̂

〉
7→ Gµν := ψ

(
xµ+
)

(3.7)

∣∣ψ; î
〉
7→ gµνΛ := ψ

(
xµ−
)
, (3.8)
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and we continue to ignore some minus signs. The far right column in maps (3.6-3.8) shows
another new trick introduced for this research and, again, this is something we will return to
in section IV.3. Even in exotic studies of non-standard quantum theory where the Gel’fand
triple is considered, the position space representations of the vectors in {ℵ′,H′,Ω′} are taken
in the coordinates of H but in the MCM we take their position space representations in
the coordinates of the similarly named manifolds {ℵ,H,Ω}. We have already shown in the
previous chapter how to accommodate 2̂ in the scheme of maps (3.6-3.8). We do it with the
decomposed Einstein tensor and the remaining definition to compliment the above will be∣∣ψ; 2̂

〉
≡ ψ(xµ∅) . (3.9)

For the purposes of discussing the logical development of the hypothesis, we will use the
original convention given by maps (3.6-3.8) without including 2̂. There are so many possible
ways to insert 2̂, it is unlikely that we would guess the correct one at this point but we will
briefly develop an ansatz.

We say equation (3.5) is Einstein’s equation, but what does that mean? Here, we will
be more careful with our notation because there are a few things listed below that are not
perfect in the sense of the = symbol that appears in equation (3.5). However, that takes away
little from the magnitude of the MCM discoveries because we can swap in the := symbol,
and it is clear that a previously undocumented mechanism has been documented and now
appears in the literature. Rather than a strict equality, we can more freely use the := symbol
which means “is defined according to.” In section III.5, we will give a formal definition for
the multiplex although we will also continue to use the word informally. Where the = sign
denotes an equality, the := sign shall denote a multiplex.

Before embarking in section III.2 upon an interesting, maximally symmetric aside about
the history of the Earth in the years around 2012 A.D., we will list the most obvious criticisms
of the hypothesis, and then after discussing the history, we will return to the problems
pointing out how the multiplectic formalism is superior, in many ways, to the ordinary ideas
of formalism for quantized determinism with arbitrary spinors.

The problems with the hypothesis as defined by equation (3.2) are as follows.

1. Equation (3.2) implies that only one frequency ω=
3
√
iπΦ2 is allowed.

2. When everything is proportional to ψ, as in equations (3.1-3.5), there is no room for
complexity-generating double orthogonality in the maps (3.6-3.8). To build double
orthogonality we must first start with single orthogonality but ψ is not orthogonal to
itself. When we use maps (3.6-3.8) to convert to tensors, all of the tensors will be
linearly dependent on each other through ψ. In general, to model an arbitrary cosmos
with perturbations, there need to be at least two independent tensors in Einstein’s
equation.

3. In reference [10], we proposed to make the left and right sides of equation (3.1) inde-
pendent by switching to a law of the form ∂ 3

0 |ψ(xµ)〉=∂ 3
5 |Ψ(χA)〉, but then we have a

problem of how a 4D object on one side might be equal to a 5D object on the other
side. Recall from reference [9] that not only is Ψ a function of the 5D coordinates, it is
a five component vector where ψ is only a four component vector.
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4. Even if we solve problem two and accomplish a workaround for the dimensionality issue
in problem three, we still have the same problem of linear dependence as in problem
two, only to a lesser degree. When we decompose the Einstein tensor into the Ricci
tensor and the metric with

Gµν ≡ Rµν −
1

2
Rgµν , (3.10)

both objects are, by construction, defined by Ψ but we know that fully dynamical
spacetime requires Rµν and gµν to be, at least sometimes, independent.

Since we have introduced the concept of double orthogonality, we could try to solve
the problem of the uniform dependence on ψ strictly in the double orthogonal channel
for ontological basis vectors (without introducing Ψ as in problem three), but, even then,
the Ricci tensor and the metric tensor are neither single nor double orthogonal because of
problem four. In equation (3.10), Rµν and gµν both live inside i|Ψ; Φ̂〉 so, even in the second
orthogonal channel, they are the same: they are both proportional to Ψ and they both
live on Φ̂. This is problematic because there is no infinite complexity; there are just four
extra complexes {̂i, Φ̂, 2̂, π̂} so if we try to get single and double orthogonality from just four
numbers we will be in for a burdensome and likely fruitless task (although we develop a novel
scheme in this regard throughout chapter four.) Even if we use 2̂ as in equations (2.61-2.62),
which were

1

2

∣∣Ψ; Φ̂
〉
7→ Rµν , and

Φ

4

∣∣Ψ; 2̂
〉
7→ 1

2
Rgµν , (3.11)

and

1

2

∣∣Ψ; Φ̂
〉
7→ 1

2
Rgµν , and

Φ

4

∣∣Ψ; 2̂
〉
7→ Rµν , (3.12)

that will only achieve single orthogonality, albeit in the second orthogonal channel. The
ontological basis is hardly infinite; we want to generate complexity by applying the basis to
the already infinite dimensional Hilbert space of ψ position eigenstates and, presumably, Ψ
as well.

If we wanted to, we could even trace the primary issue regarding linear dependence all
the way back to equation (3.1) to say that there is no room for any complexity at all: ψ=ψ
and there is only one frequency. However, we will not go that far. We will guarantee some
modicum of complexity simply by defining the ∂ 3

0 and operators to require a representation
of ψ in the chronological and chirological coordinates separately. Recall from chapter one
that there is some complex discrepancy between the xµ and χA coordinates due to technical
nuance in the dual tangent space.
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III.2 Historical Context

In this chapter, we will show how none of problems one through four are actually problems at
all. Since we are writing a short book rather than a short paper, with the intention of using
these extra pages to review the basics of that which should have been immediately obvious to
any subject matter experts with half the entire field committed to memory, we will condense
all previous := workarounds into formalism that is rigorously correct using new multiplectic
formalism. By “immediately obvious,” we mean to derisively imply that the more than seven
years it has been since people started passing around MCM literature is far too long and the
so-called self-correcting mechanism in science is broken as fuck. This section is dedicated
to evidence of the brokenness (non-existence) of the alleged self-correcting mechanism in
science and shortly we will return to the problems listed in the previous section.

Reference [2] contains the first written description of the MCM. It was rejected by arXiv
in September 2009, and that manuscript is the likely basis for the articles titled “Is the
Universe Inside a Black Hole?” that Nikodem Poplawski has been successfully publishing in
popular media since 2010. The MCM phrase “inverse radial spaghettification” [7] is a fancy
way to say that the universe is inside a black hole and now, in newer research, we have gone
on to show that the observer resides on a singularity at the origin of coordinates marking
each level of ℵ.1 It is commonly understood that singularities mark the center of black holes
so universe-in-a-black-hole is very much a facet of the MCM. We suggest that Poplawski
began writing these articles after he was inspired to do so by the original MCM manuscript
[2] which he obtained somehow.

Similarly at the end of September 2009, Ashtekar, Campiglia, and Henderson published
reference [36] wherein the first citation is to the Feynman paper [6] that we have considered
in chapter one. This is interesting because Ashtekar had not been citing Feynman’s war-era
papers from 70 years ago but then he did do so, immediately after this writer distributed
reference [2]. Reference [2] begins with a quote taken from one of Feynman’s less famous
war era papers where he makes a comment about the time ordering of events not being
as important as the way they are encoded in his formalism. A main result of reference [2]
was an alternative interpretation for the method described by Feynman [6].2 This is the
method we have proposed to modify by the inclusion of the maximum action path. arXiv
lists the submission date on Ashtekar et al.’s paper, reference [36], as about one or two
weeks after an anonymous and/or unscrupulous reviewer at arXiv rejected reference [2].3

Since we multiply cited LQC4 within reference [2], a theory whose bottom-liners include
Ashtekar,5 it is likely that the arXiv reviewer, if it was not Ashtekar himself, sent the
manuscript to Ashtekar. Additionally, Ashtekar may have obtained the manuscript not

1In fact, even by the time arXiv rejected reference [7] in 2011, we had already moved the observer from an arbitrary
moment to the moment at the apex of a quantum geometric bounce. Such bounces only occur on the interiors of the event
horizons of black holes. When the entire universe bounces à la LQC, that is simply occurring inside a super-massive black hole
which contains (or is) the entire universe. The MCM goes far beyond LQC when it identifies a dark energy candidate in the
mechanism.

2This method is the one in the long excerpt from Feynman’s reference [6] which appears in section I.3.
3Unfortunately, we have no record of the date of the original submission of reference [2] to arXiv, but it was probably

around the 15th of September, 2009. After presenting a result to the 2009 meeting of the IceCube Collaboration at Humboldt
University in Berlin, this writer enjoyed the gracious patience of the Germans for a few days and then returned to Atlanta to
upload the manuscript to arXiv on a Monday or Tuesday expecting it to appear online either Tuesday or Wednesday. At the
time of the publication of this book, that was about 3,000 days ago.

4LQC and LQG were not cited directly in 2009 but instead we used the terms “bouncing” and “the repulsive force of
quantum geometry” which were taken from Ashtekar’s 2009 LQC talk at Georgia Tech.

5The bottom-liners also include Bojowald who declared LQC “dead” in 2013. See video reference [37].
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through arXiv but through another channel. Just weeks before Ashtekar et al. published
reference [36], this writer had distributed copies of reference [2] in the newly opened Center
for Relativistic Astrophysics (CRA) whose founding faculty include two former colleagues of
Ashtekar’s: Pablo Laguna1 and Dierdre Shoemaker. The purpose of the email distribution
was to advertise that this writer would give a talk on the MCM in the CRA that week.
Shoemaker, who had been working side by side with Ashtekar in Pennsylvania just a year
earlier, was in attendance but she was most intently on her phone throughout the talk,2

almost intentionally projecting disinterest, or disrespect, and is unlikely to have made any
effort to help this writer disseminate his research.

The key point in all of this is that somehow reference [2] was deemed not good enough
even to be uploaded to arXiv as a preprint. However, it seems to have been good enough to
prompt an immediate response paper [36] from leading names in the field. Usually eliciting a
response paper at all is considered a high achievement in theoretical physics and an immediate
response from a leader in the field (Ashtekar) is high praise indeed. As a counterexample,
consider that most papers passing the “very high,” “very meaningful,” “critically important”
bar of peer-review go on to be completely ignored and accumulate a layer of dust serving as
a reminder that the paper did, at one point, pass peer-review meaning that the publishing
cartel bestowed a cookie upon the authors who can all add the cookie crumbles to their
C.V.s... which mean nothing weighed against the merit of the research that appeared in the
publication. The cartel’s cookie crumbles have become overly important in the modern era
where the merit of the research in question is too often non-existent or not significant.

Despite science’s alleged self-correcting mechanism, the exact dynamic from 2009 unfolded
again in 2011. Once again, arXiv rejected another manuscript, reference [7], based on some
unpublished set of censorship guidelines.3 It seems that after this newer manuscript made the
backchannel rounds, negative frequency resonant radiation was immediately discovered [38]
and a team at USC immediately built a working quantum computer [39]. Note that since
frequency is inverse time, negative frequency resonant radiation is a negative time mode
exactly like the |t−〉 state we suggested only months earlier in reference [7]. In reference [22],
we suggested to look for correlations with delay and then, just a few months later, the BaBar
collaboration announced that they had decided to reanalyze their old data for correlations
with delay and that they did affirmatively find them [40].

In 2009, reference [2] was not even good enough to be allowed as a preprint but it garnered
a response, which is very high praise. In 2011, the paper [7] still did not meet the bar
of arXiv’s unpublished censorship criteria and not only did it garner a response paper, it
garnered response experiments. This is outrageously high praise because experiments cost
time and money whereas papers only cost time. It means that the “peers” of this writer
have “reviewed” the manuscript and decided to change research direction in favor of the
MCM/TOIC. If the results of the experimental response had been negative, then the praise
would be lessened only somewhat because it would still be true that we had presented a new

1Laguna deserves an honorable mention and thanks for inviting not just Ashtekar to Georgia Tech, but also Penrose,
meaning that both of the speakers that inspired the MCM were the invitees of Laguna.

2One wonders how Shoemaker could pursue a PhD, make it through the academic grinder into a tenure track position, get
a promotion as a founding member of a center for relativistic astrophysics, and then show absolutely no interest when some of
the most important astrophysical mysteries of the universe are plainly spelled out before her eyes on a white board. Affirmative
action likely explains the whole thing.

3If they are unpublished, are they even guidelines? Or does the uncertainty principle mean that they are always whatever
the anonymous reviewer wants them to be? What does the uncertainty principle tell us about unpublished guidelines in the
national security apparatus?
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idea which is the primary function of theorists: to theorize new theories. In this regard,
one may compare the MCM/TOIC to other very famous theories that are worse yet still
manage to reap all of the theoretical praise. However, unlike the experimental tests of very
many respected and praiseworthy theories, the results of the experimental response were all
positive. Therefore, although the TOIC has not passed “peer-review,” it has been known
for an experimental fact, multiple experimental facts actually [38, 39, 40] (at least! ), that
it describes Nature better than any other theory that currently exists. This was known all
throughout 2013, 2014, 2015, 2016, and 2017 but there has been no accompanying update
to the public understanding of science.

We are essentially accusing Abhay Ashtekar, Nikodem Poplawski, and others of plagiarism
but in the technical sense there has been no plagiarism.1 In the technical sense, the com-
plaints listed here only suggest that the alleged self-correcting mechanism in science “fucked
this writer over big time.” We pointed out Ashtekar et al.’s spurious Feynman citation as
evidence of his having viewed reference [2], so consider that, in reference [36], Ashtekar et
al. wrote that they were being so vague not to avoid writing about the MCM directly, but
rather because they would leave “the detailed derivations and discussions to a longer article.”
Did those derivations exist at the time of the publication of reference [36], or had they been
first suggested after someone looked at the manuscript which arXiv rejected [2], but not
carried out during the hasty preparation and revision of the rough draft that preceded the
preprint cited here as reference [36]? One wonders if the promised detailed derivations ever
did appear in the literature. If not, did they ever come into existence? If not, was reference
[36] worded so as to mislead readers about the existence of the derivations?

Ashtekar et al. write the following in reference [36], and one further wonders how they
managed to report a rigorously developed Hamiltonian theory without reporting a rigorous
development of anything at all.

“Because of [sic] the Schrödinger equation we can now pass to a sum over
histories a la Feynman. [sic] We emphasize that the result was derived from a
Hamiltonian theory. We did not postulate that [our equation] is given by a formal
path integral. Rather a rigorously developed Hamiltonian theory guaranteed that
[our equation] is well-defined.”

In reference [2], we did not include a detailed derivation and we did not claim rigor
without derivation, which is what Ashtekar et al. have done. The diagrams in reference
[2] explain an idea much more clearly than Ashtekar et al. were able to explain anything
with their non-rigorous rigor of math salad in reference [36]. They included neither diagrams
nor derivations but, somehow, their paper was good and ours was not just terrible, it was
unacceptably terrible. How have Ashtekar et al. “rigorously developed” it while leaving the
“detailed derivations” to a longer article? Furthermore, the reader should be very careful
to note that if the rigor of Ashtekar et al.’s result is offloaded elsewhere beyond the paper’s
pages then references [2] and [36] are very similar indeed. Ashtekar et al.’s murky, imprecise,
arguably self-contradictory wording starkly contrasts reference [2] where one finds in the
abstract a sentence, “No attempt at quantification is made.” Instead, we pursue a qualitative

1It would be impossible to steal this writer’s research because the main intention in carrying it out has been to give it away
for free. It is only this writer’s accolades that have been stolen and, God willing, much blood will be spilled over this thievery.
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analysis of the diagrams that guarantee our framework is well-defined. Again, this sharply
contrasts reference [36] when the qualitative discussion of diagrams is practical to a degree
that is at least an order of magnitude greater than the practicality of qualitative analysis
of quantitative equations that don’t, when taken all together, form a rigorous derivation of
anything. Generally, quantitative analysis is only superior to qualitative analysis when it is
rigorous.

As an example of real quantitative rigor, consider the unassailable truth of the appear-
ance of the coefficient of Einstein’s equation 8π in the first intuitive manipulations of the
MCM/TOIC once the equally unassailable truth of

2π +
(
Φπ
)3 ≈ 137 , (3.13)

was established.1 Somehow, some particular individuals have snuck into the halls of power
to convince everyone that Feynman was wrong when he is famously paraphrased as stating
that all good physicists have the fine structure constant on the wall in their offices and ask
themselves where it comes from, and that no one has a good explanation for it, and that if
they did it would “probably be related to π or something.” This is paraphrased rather than
quoted because the original quote, which this writer had understood to be one of Feynman’s
greatest quotes of all time, does not appear in any internet search results returned to this
writer’s computer terminal on February 20, 2017 A.D. Feynman’s findable quotes that appear
in internet search results at the beginning of the third millennium of Domini, include, “We
know what kind of a dance to do experimentally to measure [the fine structure constant ]
very accurately, but we don’t know what kind of dance to do on the computer to make this
number come out, without putting it in secretly!” The specification of this other dance is a
great success of the MCM. Feynman’s other quotes include the following.

“There was no way, without full understanding, that one could have confidence
that conditions the next time might not produce erosion three times more severe
than the time before. Nevertheless, officials fooled themselves into thinking they
had such understanding and confidence, in spite of the peculiar variations from
case to case. A mathematical model was made to calculate erosion. This was a
model based not on physical understanding but on empirical curve fitting.”

Given that Ashtekar et al. were able to produce the inferior analysis that became reference
[36] likely within just days of reading about the MCM, all within the context of their own
years or decades long familiarity with the material, it is demonstrated exactly how well-
defined the MCM already was in 2009.

Ashtekar et al. strongly emphasize that their result was derived from a Hamiltonian
theory. They do not say whether or not they were inspired to make that derivation for
the first time immediately after viewing the contentious paper that arXiv rejected in 2009:
reference [2]. When they write that they did not postulate that their formula is given by a

1The reader should note that some further confirmation of the validity of the TOIC is seen when the coefficient 1/4π of the
leading term of the ontological resolution of the identity is also the dimensionless coupling coefficient for the electromagnetic
interaction.
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formal path integral, is that to distinguish their paper from reference [2] wherein we postulate
that the MCM is given by the formal path integral? Their emphasis on the Hamiltonian
theory refers to the type of extra mathematical details presented in this book that are not
needed to understand the idea. In fact, we are still moving steadily toward that eventual
Hamiltonian derivation. In 2011, the purpose of reference [7] was not to make any precise
predictions, and this book is only about the theory’s general relevance, so we will not derive
a new Hamiltonian here. Making precise predictions is clearly the top priority of theoretical
physics but it should be clear that there are at least two steps in the process that produces
them. Before one makes a prediction, one must define how to predictions are to be made.
This illustrates the standard distinction between fundamental science and applied science.

The critical reader will notice that “detailed derivations and discussions” are left out in
both references [2] and [36], but only one of them appears on arXiv today. In the acknowl-
edgments section of reference [36], Ashtekar et al.’s first thanks are to Jerzy Lewandowski
who was the advisor or colleague of Poplawski at the University of Warsaw. In April 2010,
around the time Poplawski began publishing his very, very, very many popular science ar-
ticles about the universe being in a black hole, he also published reference [41]. Note how
the title of that paper is evocative of the idea of inverse radial spaghettification:1 “Radial
Motion into an Einstein–Rosen Bridge.” Likewise, the title of Lewandowski’s October 2009
talk at LSU was evocative: “Spin foams from loop quantum gravity perspective.” What
was this new perspective that Lewandowski was evangelizing in Louisiana just a month after
arXiv rejected reference [2]?

While on the topic of the conduct of science in a manner that is other than ethical,
consider the following. At some point in 2011, while preparing a draft of reference [7], this
writer encountered a slideshow from another a talk given at LSU. The title was something
like “Path Integral Approach to Spin Foams” and the name on the slides was likely Jonathan
Engle who was also a speaker in video reference [37]. The slides were dated from the end
of 2008, but when this writer checked on the seminar schedule at the host university, LSU,
the talk was actually given at the end of 2009 and the date from 2008 appears to have been
“a typo.” This is notable because the path integral formulation of spin foams was not yet
conceived in 2008 and a lesser typo might not have changed the year of initial formulation.
Based on the description of a new use for the Feynman path integral in reference [2], and
also the fact that Engle was Ashtekar’s PhD student, it is likely that the new topic presented
and misdated in this talk was inspired by reference [2]. When one views reference [42], which
shows the LSU Physics and Astronomy talk schedule archives, one sees all the years 2004–
Present except 2009–2012: the window in which Engle presented the misdated slides. If
other researchers were already jockeying in 2009 to position themselves to receive credit for
a discovery that was not their own, then whose discovery was it? A full forensic accounting
of the failure of physics to self-correct in this regard is required.

Finally, we wish to point out that Lewandowski is a coauthor on reference [43] which was
published in September 2009 around the same time we were proposing to wrap the Minkowski
diagram around a cylinder [2]. Therein, Kamiński et al. refer to an unusual cylindrical object

1The term “inverse radial spaghettification” did not appear in the literature until 2012 because arXiv did not allow it to be
added to the literature in 2011. To understand how the title of Poplawski’s 2010 paper is evocative of 2009’s reference [2], note
that radial motion means 1D motion, and together with “into an Einstein–Rosen bridge,” it means motion toward a bridge
between two distant regions of the universe along the 1D manifold defined by the motion. The idea presented in reference [2]
was that dark energy is an expected feature in pairs of worldsheets in the hypercosmos connected in 1D through a bounce. The
connection is 1D because it is along χ5.
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Cyl(A(Σ)) and one also sees that object in at least one earlier arXiv preprint coauthored
by Lewandowski [44]. However, one wonders if perhaps they have contracted with Mossad–
Fonseca (or similar) to do a more professional time stamp alteration job than was suggested
above when discussing Engle’s “Path Integral Formulation of Spin Foams” slides.

For science to self-correct, everyone named in this section will need to consult with the
grand inquisitor of the self-correcting mechanism in science.1

III.3 A Few Miscellanea

Regarding the technical matters at hand, we restate problem one as

ω3
∣∣ψ; π̂

〉
= iπΦ2

∣∣ψ; π̂
〉

=⇒ ω3 = iπΦ2 . (3.14)

The implied value ω3 = iπΦ2 is a cubic function of ω so the fundamental theorem of algebra
says it will have three roots, not one, and two of them might not even be real numbers.
However, the problem remains: equation (3.14) does not allow the full frequency spectrum
of free particle eigenstates available to unbound quanta gravitating on a continuum.

With quadratic equations, which would define ω2 rather than ω3, one has two solutions.
An example is the map used to generate the Mandelbrot set fc(z)=z2 + c, or even x2 =x+ 1
whose two roots are

Φ =
1 +
√

5

2
, and ϕ =

1−
√

5

2
. (3.15)

Quadratic equations ax2 +bx+c=0 always have two roots given by “the quadratic equation”

x =
−b±

√
b2 − 4ac

2a
, (3.16)

but for cubic equations we don’t know how to find the roots without guessing because there is
no more-complex version of equation (3.16) that we could call “the cubic equation.” This is,
at least, important to understand before attempting to understand why one “can’t quantize”
cubic equations of motion despite quadratic second order equations quantizing so famously
nicely. About the only thing we do know about cubic equations is that they will never have
exactly two real roots.

In the development of the MCM, we have previously vacillated concerning the sign of ϕ
and, independently, the magnitude of ℵ’s parameter of curvature because there were many
possible choices. Among the many choices, here we have a good reason to choose ϕ<0 with
ϕ≈−0.62, and to take it as the magnitude of the parameter of curvature on ℵ. The reader
should note that the distance in the χ5

− direction toward the past from a given Hi might be

1In November 2011, as we were putting reference [7] together with intention to give arXiv a shot at redemption, we discovered
all of the above information related to Ashtekar and cohort at Penn State, ranted about it prolifically, and the reader will recall
that November 2011 is the month that the FBI swarmed Penn State over “decades old Sandusky allegations.”
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irrelevant and, instead, the contentious distance may be how far in front of Ω the next ℵ lies
in the χ5

+ direction (or the χ5
∅ direction.) This follows from the introduction of ϕ̂ and the

implied separation of the past from the present which contains a record of the past. Another
thing we have vacillated on is the length of χ5 across the complete MCM unit cell. If we
say that the length of χ5

+ between H and Ω is Φ, that χ5
∅ has no width between Ω and ℵ,

and then that the length of χ5
− between ℵ and H is ϕ, then the total chirological distance

will be unity via 1 = Φ + 0 + ϕ. However, due to the non-unitary component of the MCM,
χ5 across one unit cell could be shorter than χ5 across the next unit cell. There are very
many possible conventions, including the one shown in figure 1 which uses χ5

− =−ϕΦ = 1.
This could have a further application to the MCM unitarity constraint that has not been
precisely specified other than to say that it exists because we are using quantum theory.
However, rather than exploring unitarity in this section, we will remain focused mostly on
the general relevance of the existing model without adding too many bells and whistles.
When unitarity becomes relevant we will explore it but there are a lot of other things that
need to be covered first. For instance, the MCM unit cell considered here does not even
begin to make accommodations for the compact unit cell described in reference [13] and it
is the opinion of this writer that the ideas presented there are not irrelevant. Reference [13]

contains a mechanism through which M̂3 increases the level of ℵ by one where previous work
had indicated that the level should increase by two in each application of M̂3. The reader
should take note of the condensed mechanism in reference [13], and we will discuss it again
in section IV.1.

One of the big struggles in this research has been to show how to unify second order
classical mechanics under Newton’s laws with first order, or linear, quantum mechanics
governed by the Schrödinger equation. To this end, we have chosen the scalar field φ in the
Kaluza–Klein metric

ΣAB =

(
gµν + AµAνφ

2(χ5) Aµφ
2(χ5)

Aνφ
2(χ5) φ2(χ5)

)
, (3.17)

to be linear in χ5 with

φ2(χ5) ≡ χ5 . (3.18)

Even when the metric has this linear definition, the double dot operator in f =mẍ is not
linear. We want to make everything linear for two reasons: it is easier to compute linear
mathematics and if we can linearize quadratic equations, then we can probably quadratify
cubic ones and then quantize them canonically. It would be a big conceptual advance if
there was found to be some gauge symmetry associated with the golden ratio that would
universally allow such manipulations. Regarding quadratic equations, and not making an
argument about gauge symmetry but rather only outlining an idea at a very high level, we
need to split the non-linear ∂2 operator into two parts. They should be unequal so that they
can generate complexity but the only obvious way to split it is through
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∂2 = ∂ ◦ ∂ . (3.19)

This formulation certainly contains nothing new.
In section II.1, we showed how Hamilton’s equations, two first order equations, can give

either the geodesics or the field lines of different second order theories but there was no
application to quantum theory where the Hamiltonian only appears inside Schrödinger’s first
order equation. Hamilton’s equations, linear or not, are exactly equal to classical mechanics
so that formulation gives us little direction regarding a classical description of quantum
physics where expectation values conform to classical laws. In reference [10], we discussed
the normal decomposition of second order equations into pairs of linear equations that are
amenable to analysis with numerical methods. The correlation of numerical x and v to the
specific case of Hamiltonian q and p is easy to see with

ẍ =
F

m
7→


ẋ = v

v̇ =
F

m

, (3.20)

but this is not what we refer to as linearization. The difficult form of linearization we refer
to is the one that turns one second order equation into one first order equation. It will likely
be easiest to implement the unification of first and second order equations at the level of
numerical algorithms, and we will discuss such things in section IV.7. Before moving on to
solve problems one through four, presented at the beginning of this chapter, we will discuss
one possible analytical feature that could motivate later alterations to existing numerical
analysis algorithms. All the physical equations and dynamics that were derived analytically
over the years have already been converted into computer ready algorithms so it may be
simpler to modify those algorithms and then reverse engineer their analytical underpinnings
than to advance solely through the proposition of new underpinnings.

The topological component of double orthogonality uses sums; products should generally
be understood as a single object with a single topology. If this avenue of splitting ∂2 is to
pan out, we must learn something about how addition on the right hand side (RHS) of

∂2 := A+B , (3.21)

relates to multiplication on the left hand side (LHS.) In mathematics, multiplication and
addition are important operations but they are more important in physics because the phys-
ical interpretation assigned to each operation is very well understood. Almost everything in
physics depends on some combination of additive and multiplicative operations. Earlier we
quoted Feynman’s reference [6] as follows.

“We shall see that it is the possibility [of expressing the action] S as a sum,
and hence Φ as a product, of contributions from successive sections of the path
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which leads to the possibility of defining a quantity having the properties of a
wavefunction.”

When Boltzmann was formulating his famous entropy formula S = k log Ω, he did not
randomly pick the logarithm from a very large sea of possible operations. Boltzmann simply
wrote down what he knew about the interpretation of addition and multiplication as they
relate to entropy, and the logarithm was the only choice that would preserve it. Therefore,
pursuing a very high level concept, to obtain some new representation of ∂2 we should find
equation (3.21) when either A or B has to be the partial derivative operator because we
must be able to reconstruct ∂2 from the pieces A and B. For instance if we let A= ∂ and
B=�2 we can reconstruct ∂2 with

∂2 = A2 + 0×B , (3.22)

but that is not a valid solution because

∂2 6= ∂ + �2. (3.23)

However, we are not totally constrained by ∂2 =A + B because definition (3.21) is not an
equation, and even if it was, it might be irrelevant. (We suggest an idea only vaguely right
now.) To get the complexity generating representation of ∂2, if it exists (and if it is actually
useful), we will likely have to solve an equivalence relationship like definition (3.21) and we
already know an equation that looks like that. The two roots of

x2 = x+ 1 , (3.24)

are the two numbers Φ and ϕ which are both called the golden ratio. If the decomposition
of the non-linear operator ∂2 into a linear form that unifies physics was simple, it would
have been done by now. To develop a new law in this regard — for future investigations
— we could suggest that ∂2 has a representation as one full cycle (2π radians) which can
be decomposed into co-π̂s that undergo different types of gauge transformations. Note the
similar properties of π and Φ such as

π + π =
(√

2π
)2

, and Φ + 1 = Φ2 , (3.25)

and even the connection between addition and multiplication demonstrated by

2 + 2 = 2× 2 . (3.26)
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In the case of ∂2 := π + π, A = B but it is quadratic in the mysterious coefficient
√

2π
from the Fourier transform, and there exists an independent result which proves that

√
2 is

an irrational number. Perhaps the ontological basis is best represented as {̂i,
√̂

2 , Φ̂, π̂}, and
ˆ√2 and î combine in the

√
i channel to give the rational real numbers Q. We won’t go in

this direction now, but we remind the reader of the suggested coupling between “sites” in
the continued fraction forms of the irrational number π and the most irrational number Φ

Φ = 1 +
1

1 + 1
1+ 1

1+ 1
1+...

, and π = 3 +
1

6 + 32

6+ 52

6+ 72
6+...

. (3.27)

A product defined to combine the piecewise elements of continued fractions might be a good
avenue for philosophical inquiry when calculating to assemble 2 from pairs of

√
2. A result

of the contraction of information stored in π and Φ respectively might be to combine copies
of
√

2 from each. In this way, there will be no rational real numbers in the ontological

basis itself, but they are emergent through operations like i2 =−1 or
√

2
2

= 2 which give

i2 +
√

2
2
=1. Taking these numbers together with addition, we can generate the integers Z

and, when we add multiplication as well, we recover the rationals Q. Then, noting that î is
still in there, we recover complex numbers C, and then through the rules for Φ̂, we recover
?C. Once we have constructed 2, either from

√̂
2 or 2̂ directly, then we will have more pieces

for building complex cosmological clockwork with

Φn+1 = Φn + Φn−1 and 2n+1 = 2n + 2n . (3.28)

III.4 Problems One and Two

Problem one references a frequency constraint stated as

ω3
∣∣ψ; π̂

〉
= iπΦ2|ψ; π̂

〉
=⇒ ω3 = iπΦ2 . (3.29)

The kets on both sides are the same so their coefficients ω3 and iπΦ2 must also be the
same. iπΦ2 is fairly well introduced in reference [4] which revises and improves the original
argument [12] for the criticality of that number as it relates to deriving Einstein’s equation.
All of the MCM structure is encoded on the value iπΦ2 so we can’t change it much. Instead
of changing the scalar coefficient, we proposed, in reference [10], to change the ket on the
right side of the fundamental formula which is recast as

M̂3
∣∣ψ; π̂

〉
= M̂3

∣∣Ψ; π̂
〉

=⇒ ∂ 3
0

∣∣ψ(xµ); π̂
〉

= ∂ 3
5

∣∣Ψ(χA); π̂
〉
. (3.30)

Any frequency is allowed in this formulation when the degree of freedom for ω is preserved
in the freedom to choose Ψ 6=ψ. From equation (3.30), all the steps of equations (3.2-3.5)
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follow directly, and we have incidentally solved problem two as well. Problem two stated
that, when all of the terms in

8πf 3
∣∣ψ; π̂

〉
= i|ψ; Φ̂

〉
+ |ψ; î

〉
, (3.31)

are proportional to ψ, there is no way to achieve double orthogonality. The introduction
of Ψ fixes this. With Ψ, when we convert from the quantum language to the gravitational
language, the stress energy tensor Tµν on the LHS, defined by ψ, can be different than
everything on the other side which will depend on Ψ.

Simply capitalizing ψ on the RHS solves both problems one and two. Ψ is the solution to
problem two that we will use moving forward but there is another way to solve problem two
that demonstrates complexity, and is worth exposing. We may redefine ψ so that it begins
as a third rank tensor

ψ ≡ ψσµν , (3.32)

and then let the ontological vectors act on ψσµν like the Kronecker delta per the usual pre-

scription for basis vectors. Consider, for example, only the ê3 ≡ î term that we expect to
map to gµνΛ. We see how one might use the basis vectors to extract independent tensors via

|ψ; î〉 ≡ ψσµν ê3 = ψσµνδ
3
σ = ψ3

µν = gµνΛ . (3.33)

The other objects of general relativity, 8πTµν , Rµν , and 1/2Rgµν , can all be extracted from
ψσµν with the other êµ when they are defined accordingly.

Equation (3.33) is reminiscent of the interpretation of the connection coefficients Γσµν as

a set of four 2D matrices: one µν-matrix for each σ. In equation (3.33), î picks out gµνΛ
because that is the definition specified by maps (3.6-3.8). gµνΛ would be just one of the four

2D matrices contained in ψσµν . This formulation motivates the inclusion of 2̂ as it will have
an object defined for it in the counting over σ, but there would be a leftover element if we
tried to do this with only êi ∈ {Φ̂, π̂, î}. However, we will not presently solve problem two
with equation (3.32) because it simply shifts our problem to another sector. If we choose to
use ψσµν , we would have to add a problem to the list about how to use three index tensors
as state vectors in quantum mechanics. Between the two proposed solutions, the former is
better because it is simpler; we will choose to capitalize ψ rather than adding three Greek
indices.

Not only is the three index proposal like the connection, it is also like the torsion. In
reference [17] Carroll writes the following.

“The first thing to notice is that the difference of two connections is a tensor.

Imagine we have defined two different kinds of covariant derivative, ∇µ and ∇̂µ,

with associated connection coefficients Γλµν and Γ̂λµν . Then the difference
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Sλµν = Γλµν − Γ̂λνµ , (3.34)

is a (1,2) tensor. (Notice that we had to choose a convention for the index place-
ment.) We could show this by brute force, plugging in the transformation laws
for the connection coefficients, but let’s be a little more slick. Given an arbitrary

vector field V λ, we know that both ∇µV
λ and ∇̂µV

λ are tensors, so their difference
must also be. This difference is simply

∇µV
λ − ∇̂µV

λ = ∂µV
λ + ΓλµνV

ν − ∂µV λ − Γ̂λµνV
ν (3.35)

= SλµνV
ν . (3.36)

Since V λ was arbitrary, and the left hand side is a tensor, Sλµν must be a tensor.
As a trivial consequence, we learn that any set of connection coefficients can be
expressed as some fiducial connection plus a tensorial correction,

Γλµν = Γ̂λµν + Sλµν . (3.37)

“Next notice that, given a connection specified by Γλµν , we can immediately
form another connection simply by permuting the lower indices. That is, the set
of coefficients Γλνµ will also transform according to

Γλ
′

µ′ν′ =
∂xµ

∂xµ′
∂xν

∂xν′
∂xλ

∂xλ′
Γλµν

∂xµ

∂xµ
∂xν

∂xν
∂2xλ

′

∂xµ∂xν
. (3.38)

[Since the partial derivatives appearing in the last term of equation (3.38) com-
mute], they determine a distinct connection. There is thus a tensor we can asso-
ciate with any given connection, known as the torsion tensor, defined by

T λµν = Γλµν − Γλνµ = 2Γλ[µν] . (3.39)

It is clear that the torsion is antisymmetric in its lower indices, and a connection
that is symmetric in its lower indices is known as ‘torsion-free.’ ”

Noting what Carroll has stated above regarding the difference of two connections being a
tensor, we can set Aµ=0 in the Kaluza–Klein metric, not calculate the bulk geometry, and
simply take the difference of the connections ΓC ±AB in Σ± as the perturbation hµν in H. Even
when Σ± are empty 5D space, the fact that they have topologies O(1,4) and O(2,3) means
that the connections will be different on either side of H.

III.5 What is a Multiplex?

Implication (3.30) solves problem two about all the objects being linearly dependent on ψ
but, by going the route with Ψ, we introduce a new problem: problem three. How can
the 4D object ψ on the left be equal to the 5D object Ψ on the right?1 This cannot be

1The objects ψ and Ψ were introduced in reference [10]
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true in general, and we don’t want to introduce any unnecessary complexity, so we should
reformulate the rigid equality in implication (3.30) as

∂ 3
0

∣∣ψ(xµ); π̂
〉

:= ∂ 3
5 |Ψ(χA); π̂

〉
. (3.40)

Equation (3.40) uses the := symbol because we want to show a new kind of relationship,
possibly between a topological object and an algebraic one, or between a geometric object
and a group theoretical one, or some such juxtaposition, such as connecting the ontological
basis to the ontological group, or perhaps vice versa. Since it is not clear, at this point, how
the type of object on the RHS of equation (3.40) compares with the type on the LHS, we
will focus on the symbol := in the center and, going forward, we will say “multiplex (3.40)”
instead of “equation (3.40)” when this symbol appears (although we will not rely upon it
heavily in this book.)

An equation has an LHS and an RHS, but a multiplex will have an LHS/RHS pair, as
in multiplex (3.40), and also an imaginary hand side (IHS) which consists of all the objects
needed to make the multiplectic relationship true. We can select any two elements of a
multiplex as an RHS and an LHS which are logically related through an independent IHS.
If there are N objects in a multiplex, then we can always write an “is defined according
to” statement between any two objects leaving the remainder of N − 2 objects as an IHS.
Those familiar with group theory will see many obvious parallels, but we will not discuss
the likeness here other than to say that the foundation of group theory is that every group
has the identity operator as one of its elements so {1̂, π̂, 2̂, Φ̂, î} is a good set to explore for

group structure but the ontological basis {π̂, 2̂, Φ̂, î} is not.
We will also use the word multiplex to refer to an IHS from which no LHS/RHS pair has

been selected; the most general multiplex contains all the information about all possible :=
pairings. If we want to make some arbitrary example that shows how all the pieces of a
multiplex work, we can consider a multiplex

ZM ≡ {Z1, Z2, Z3, Z4, Z5} . (3.41)

When we choose to consider, perhaps in an effort to understand an equation, two elements
of a multiplex taken as an LHS and an RHS, then there is a corresponding IHS that contains
the full multiplex minus the two elements that are being used to define a := relationship.
If we take an LHS Z1 along with an RHS Z2 then that defines an IHS ZM:{Z1,Z2}. Together
they look like

Z1 := Z2 , with ZM:{Z1,Z2} = {Z3, Z4, Z5} . (3.42)

ZM:{Z1,Z2} is the set of objects that makes Z1 :=Z2 true. The IHS contains everything needed
to demonstrate how a LHS is defined by an RHS. Then we also have

Z5 := Z3 , with ZM:{Z5,Z3} = {Z1, Z2, Z4} , (3.43)
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and so on.
Unlike relationships given with =, those defined with := are not self-contained. The full

meaning is contained on the LHS, the RHS, and on the IHS, but the IHS does not need to
be specified to understand the most important part of the := relationship. The LHS/RHS
multiplex relationship is statement that a sufficient IHS exists, and there is an implication
(or an expectation) that some IHS will connect the LHS and RHS in a fairly direct, or
“irreducible,” manner, and not be some mathematical Rube Goldberg of the type that can
be made complicated enough to relate any two things.

III.6 Problems Three and Four

Problem three manifests in multiplex (3.40) when the LHS is a 4-vector and the RHS is a
5-vector [10], and the two cannot satisfy the = relationship. Here, we will rederive Ψ to show
that there is yet another undiscussed arrangement for resolving the linear dependence issue.

After inserting Ψ into equation (3.5) it becomes

8πf 3
∣∣ψ; π̂

〉
= i
∣∣Ψ; Φ̂

〉
+
∣∣Ψ; î

〉
, (3.44)

and this solves problems one and two. Problem two is solved when the starting point already
exhibits single orthogonality between ψ and Ψ, and problem one is solved when there is an
obvious symmetry that will allow the full frequency spectrum as Ψ always becomes whatever
is needed to satisfy equation (3.44) for a given f . Recalling that we introduced Ψ in reference
[10] as the complete state of the universe, and noting that the complete state is unobservable,
there is no constraint on how complicated we can make its wavefunction. Still, as mentioned
above, there is a lingering issue with the Ψ workaround: when we introduced the 5D Ψ
vector, we also defined it to contain ψ as a 4D subspace. This is a severe constraint! Ψ is
almost completely determined by ψ so, in truth, we have just barely solved problem two. To
add more freedom between ψ and whatever we put on the RHS of equation (3.44), and to
resolve the dimensionality discrepancy of problem three, consider a third representation

8πf 3
∣∣ψ; π̂

〉
= i
∣∣φ; Φ̂

〉
+
∣∣φ; î

〉
. (3.45)

To get φ we take

∣∣Ψ〉 = 0 (3.46)

= 1 + (−1) (3.47)

= 1−
(

1

4π

)
π̂ +

(
ϕ

4

)
Φ̂−

(
1

8

)
2̂ +

(
i

4

)
î (3.48)
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= 1− ψ (3.49)

= φ− ψ (3.50)

with

ψ ≡
∣∣ψ〉 =



− 1

4π

ϕ

4

−1

8

i

4


, and φ ≡

〈
φ
∣∣ =



1

4π

−ϕ
4

1

8

− i
4



T

. (3.51)

Obviously the constant state vectors presented here (and in reference [10]) will lead to more
problems because the wavefunction should vary over space and time but ψ and φ do not, and
certainly Ψ = 0 does not. When this structure was introduced in reference [10], we did not
explicitly state a method by which we could introduce the coordinate dependence into the
wavefunctions. The implication of Ψ = 0 would have to be that Ψ 6= 0 in some perturbative
limit, or some other limit where it is equal to zero only on a certain level of ℵ. Note well
that when Ψ = 0, we can use the algebraic structure that we have built with Ψ to host
perturbations in the form of hµν , hαβ, and hAB, and then move to the computational frame
where the relevant qubit with coordinate dependence is encoded in the perturbation. That
computational frame is likely what we have previously described as G-space [9], and perhaps

the difference between M̂3 and M̃4 is that M̂3 takes a qubit in a position or momentum
representation and outputs a qubit in the other representation, but M̃4 has an output in the
same representation as its input.

We described the mode between the state {Ψ, ψ, φ} and the qubit {hµν , hαβ, hAB} as
exhibiting Yangian symmetry in reference [9]. Reference [9] is among the most rigorous
mathematical analyses undertaken so far in this research program.1 When we add the coor-
dinate dependence that will make our wavefunctions ψ and φ functions instead of constants,
whatever change we make in ψ must be perfectly balanced in φ if equation (3.46) is to hold.
However, it is not required that the π̂ component of ψ is perfectly offset by the π̂ compo-
nent of φ. Both ψπ̂ and φπ̂ can vary independently when one uses the other components to
keep everything balanced. Finally, note that we can solve problem three simply by replacing
5D Ψ with some 4D vector φ that is otherwise not constrained. This means we only have

1From this writer’s perspective, the main result of the work unit whose output was “Ontological Physics” [9] was that
further inquiry in that direction should be carried out with computers. This writer considered it prudent to continue with the
survey of that which is better analyzed without computers, which is sometimes called philosophy, because certainly there are
thousands or millions of other people who are already well trained in computerization.
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to introduce a second 4D wavefunction, and it doesn’t need to have anything to do with
equations (3.46-3.51).

In quantum theory, the ordinary application of any resolution of the identity is to say
that every object is multiplied by one, and now we have the option to say, also, that every
object has zero added to it which allows us to insert two identities as 0̂ = 1̂ − 1̂, and which
also may be written as 0̂ = 1̂ − Φ̂0. Furthermore, where Feynman has discussed the role of
addition for the action and the role of multiplication for wavefunction, and with these new
“ontological” resolutions of both one and zero, we can make use of either channel anywhere
by adding zero or multiplying by one. We expect that this will be an important feature of
infinite complexity but for now it will suffice to say that there are so many options in this
regard (regarding φ) that we can classify problem three as solved. Regardless of φ’s complete
technical specification, it is 4D so problem three goes away.

With three problems out of the way, we come to problem four about how the linear
dependence issue lingers inside the Einstein tensor when∣∣φ; Φ̂

〉
7→ Gµν ≡ Rµν −

1

2
Rgµν . (3.52)

φ resolves the issues discussed earlier, but the drawback is that they do not solve the problem
of the linear dependence of the objects inside Gµν . As mentioned a few times already, we

could use 2̂ so that the four ontological vectors correspond to the four terms of Einstein’s
equation written without the brevity of the Einstein tensor

8πTµν = Rµν −
1

2
Rgµν + gµνΛ , (3.53)

but we have avoided this for two reasons. First, the MCM algebra generates three terms
naturally, as in equation (3.44), and we would have to unnaturally pick one of the three
terms to split in half with 2̂ before assigning one of the halves to 2̂. Second, it is nice when
we can interpret general relativity as a manifestation of the principle

L̂QC
∣∣bounce

〉
:=
∣∣t+〉+

∣∣t−〉 , (3.54)

which first appeared in reference [7], and there is something very interesting we can say
about this. The original intention with equation (3.54) had been to show that the operation
of the LQC operator on the bounce state was not just to decompose it into the past and
future, but rather into the past, present, and future via

L̂QC
∣∣bounce

〉
:=
∣∣t+〉+

∣∣t?〉+
∣∣t−〉 . (3.55)

In the course of the development of the idea, it became clear that the bounce state should
be the present denoted with |t?〉 and that is how we arrived at equation (3.54) in the original
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paper: reference [7]. However, now that we have added Σ∅ with the ∅ coordinates, we are
absolutely able to preserve the original interpretation by writing

M̂3
∣∣bounce

〉
:=
∣∣t+〉+

∣∣t?〉+
∣∣t−〉 , (3.56)

with an implication that ∣∣t?〉 := Σ∅ . (3.57)

We refer the reader to reference [7] for a lot of the “irrelevant” details regarding the L̂QC
formalism.

The concept illustrated by equation (3.56) has four terms, just like would be needed to
write Einstein’s equation in long form with four terms corresponding to the four ontological
basis vectors. The only remaining obstacle to using 2̂ from the outset is that the MCM
algebra generates three terms and we don’t know how to best add a fourth one. Luckily we
can sidestep this issue because dS and AdS belong to a small set of spacetimes that are called
maximally symmetric. The definition of a maximally symmetric space is one whose Ricci
tensor is linearly dependent on the metric.

Rµν ∝ gµν =⇒ Rµν := gµν . (3.58)

Since we are only requiring the possibility of constructing a Lorentz frame at the three
slices {ℵ,H,Ω} of the cosmological unit cell, but not the bulk hypercosmos between slices,
we have miraculously generated a constraint that means we don’t need to change anything
else. Problem four is not a problem at all because we have already, based on completely
independent considerations, chosen {ℵ,H,Ω} to be exactly those unique spaces where the
metric and Ricci tensors are never independent from each other. In maximally symmetric
spacetime, all of the tensors in Einstein’s equations are linearly dependent on each other.

If the Ricci tensor and the metric are linearly dependent on each other then the stress-
energy tensor must also be linearly dependent with them. This means problem two was never
a problem to begin with because we had already constructed the MCM to be the special
case where complete linear dependence on both sides of Einstein’s equation is expected.
Furthermore, as a statement of the non-problematic nature of any of the “problems,” note
how

∂ 3
0

∣∣ψ; π̂
〉

= ∂ 3
5 |ψ; π̂

〉
−→ ∂ 3

0

∣∣ψ; π̂
〉

= ∂ 3
5 |ψ′; π̂

〉
, (3.59)

also solves problems one and three. ψ and ψ′ are both 4D and ψ′ will vary to accommodate
any frequency ω. Simply adding the tick mark to ψ is sufficient to completely put aside all
four of the problems cited in section III.1.
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III.7 Maximally Symmetric Spacetime

Noting that flat expanding space in not curved, the Friedman–Lemâıtre–Robertson–Walker
(FLRW) metric of flat expanding space is

ds2 = −(dx0)2 + a2(t)[(dx1)2 + (dx2)2 + (dx3)2] . (3.60)

Consider what Misner, Thorne, and Wheeler write about this metric in reference [27].

“Turn now to the 3-geometry γijdx
idxj for the arbitrary initial hypersurface

SI . This 3-geometry must be homogeneous and isotropic. A close scrutiny of
its three-dimensional Riemann curvature must yield no ‘handles’ to distinguish
one point on SI from any other, or distinguish one direction at a given point
from any other. ‘No handles’ means that [the 3D Riemann tensor Rl

ijk] must
be constructed algebraically from pure numbers and from the only ‘handle-free’
tensors that exist: the 3-metric γij and the three-dimensional Levi-Civita tensor
εijk. (All other tensors pick out preferred directions or locations.) One possible
expression for Rl

ijk is

Rijkl = K
(
γikγjl − γilγjk

)
; K = “curvature parameter” = constant . (3.61)

Trial and error soon convince one that this is the only expression that both has
the correct symmetries for a curvature tensor and can be constructed solely from
constants, γij and εijk. Hence, this must be the three curvature of SI . (One says
that any manifold with a curvature tensor of this form is a manifold of ‘constant
curvature.’)

“As one might expect, the metric for SI is completely determined, up to coor-
dinate transformations, by the form [equation (3.61),] of its curvature tensor. [sic]
With an appropriate choice of coordinates, the metric reads [sic],1

dσ2 = γijdx
idxj = K−1[dξ2 + sin2 ξ(dθ2 + sin2 θ dφ2)] if K > 0 , (3.62)

dσ2 = γijdx
idxj = dξ2 + ξ2(dθ2 + sin2 θ dφ2) if K = 0 , (3.63)

dσ2 = γijdx
idxj = (−K)−1[dξ2 + sinh2 ξ(dθ2 + sin2 θ dφ2)] if K < 0 . (3.64)

Absorb2 the K−1/2 or (−K)−1/2 into the expansion factor a(t) [sic], and define the

1In the original text of this excerpt [27], the letter χ was used where we write ξ.
2Here, “absorb” refers to an area of physics where the mathematical rigor is less than superb with respect to what absorption

is. We have previously chosen, in reference [12], to “suppress one power of π so ∂t|ψ〉 = Φm|ψ〉” and here the authors refers to
the exact same thing as absorption.
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function

Σ ≡ sin ξ, if k ≡ K/|K| = +1 (“positive spatial curvature”) , (3.65)

Σ ≡ ξ, if k ≡ K = 0 (“zero spatial curvature”) , (3.66)

Σ ≡ sinh ξ, if k ≡ K/|K| = −1 (“negative spatial curvature”) . (3.67)

Thus write the full spacetime geometry in the form

ds2 = −dt2 + a2(t)γijdx
idxj , (3.68)

γij dx
i dxj = dξ2 + Σ2(dθ2 + sin2 θ dφ2), (3.69)

and the three-curvatures of the homogeneous hypersurfaces1 in the form

(3)Rijkl = [k/a2(t)][γikγjl − γilγjk] . (3.70)

The curvature parameter K, after this renormalization, is evidently

K = k/a2(t) . (3.71)

“Why is the word ‘renormalization’ appropriate? Previously a(t) was a scale
factor describing expansion of linear dimensions relative to the linear dimensions
as they stood at some arbitrarily chosen epoch; but the choice of that fiducial
epoch was a matter of indifference. Now a(t) has lost that arbitrariness. It has
been normalized so that its value here and now gives the curvature of a spacelike
hypersurface of homogeneity here and now. Previously the factor a(t) was con-
ceived as dimensionless. Now it has dimensions of a length. This length is called
the ‘radius of the model universe’ when the curvature is positive. Even when the

1These solutions in particular, in addition to Ashtekar and Singh’s question about emergent time in reference [45], are what
motivated the original object {ℵ,H,Ω}. In reference [45], Ashtekar and Singh asked, “Can we extract, from the arguments
of the wavefunction, one variable which can serve as emergent time with respect to which the other arguments ‘evolve?”’ It
was the preexisting knowledge of this solution that made this writer immediately recognize the Gel’fand triple as the correct
algebraic dual to the K∈{±1, 0} geometries in the framework where Ashtekar and Singh’s “emergent time” is the superposition
of the positive and negative time modes. Brian Kennedy had assigned Chris Isham’s book Lectures on Quantum Theory as
part of this writer’s first graduate course in quantum mechanics and, within that excellent book, this writer found the above
mentioned reference to Gel’fand’s object.

Kennedy criticized the students in this writer’s first semester graduate course for doing so poorly on an exam. This writer
was absent for the criticism because Kennedy was handing back the test and reviewing students’ errors, but this writer was
confident in having aced the test. However, Kennedy gave this writer 5/20 on one of three 20 point problems and left a note
asking why the problem wasn’t solved via the method he suggested in class. This writer went to Kennedy’s office hours the
following week and showed him that if the three parameters left in this writer’s solution were set to unity then it was correct.
Kennedy immediate agreed and upped the score to 15/20 which made put this writer well above the grade Kennedy had cited
as a threshold in his criticism to the class. This writer was really bitter about that because if there has ever been a 19/20
partial credit answer in the history of physics, then this writer’s solution was it. The extra four points would have given this
writer the highest grade in the class. This writer would have almost got 100% on the heavily weighted test almost ensuring
an A course grade after the final. However, Kennedy docked four points because he had made an error in grading by not
recognizing this writer’s alternative methodology. Kennedy compounded his error by leaving a note about not doing it his way,
and did not even realize that this writer had aced the test during post-test lecture during the week proceeding the office hours
in question. This writer was embittered by those four points and, after that, was not interested in trying to get an A or being
particularly studious in Kennedy’s second semester quantum mechanics course. However, Kennedy deserves thanks for adding
a second textbook to the syllabus for the breadth of his students’ exposure to the fundamental issues. Isham’s book has been
very helpful in this research program, and even inspirational in its direct straightforwardness.
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curvature is negative one sometimes speaks of a(t) as a ‘radius.’ Only for zero
curvature does the normalization of a(t) still retain its former arbitrariness. Thus,
for zero curvature, consider two choices for a(t), one of them a(t) and the other
ā(t) = 2a(t). Then with ξ̄ = 1

2
ξ, one can write proper distances in the three

dimensions of interest with perfect indifference in either of two ways:

proper distance
in the direction
of increasing ξ

 = a(t) dξ = ā(t) dξ̄ , (3.72)

proper distance
in the direction
of increasing θ

 = a(t)ξ dθ = ā(t)ξ̄ dθ , (3.73)

proper distance
in the direction
of increasing φ

 = a(t)ξ sin θ dθ = ā(t)ξ̄ sin θ dφ . (3.74)

“No such freedom of choice is possible when the model universe is curved,
because then the ξ’s in the last two lines are replaced by a function, sin ξ or sinh ξ,
that is not linear in its argument.

“Despite the feasibility in principle of determining the absolute value of the
‘radius’ a(t) of a curved spacetime, in practice [1973’s ] accuracy falls short of what
is required to do so. Therefore it is appropriate in many contexts to continue to
regard a(t) as a factor of relative expansion, the absolute value of which one tries
to keep from entering into any equation exactly because it is difficult to determine.”

The first thing we will point out is that Misner, the first author of reference [27], is the
“M” in ADM, whose result [46] we have rejected in reference [3] on the basis of modern
CMB data that shows there is a heavenly multipole moment that we can very much “grasp”
as a “handle” in the manifold. We are not using “no handles.” The hats on all four of the
ontological numbers are handles and we have formulated χ5 as another sort of handle. In
the above excerpt, the authors state that the implication of no-handles is that the Riemann
tensor “must be constructed algebraically from pure numbers and from the only ‘handle-
free’ tensors that exist: the 3-metric γij and the three-dimensional Levi-Civita tensor εijk.”
Since the MCM does include handles, we will need to verify whether or not the MCM allows
additional pieces to contribute to the Riemann curvature tensor. We have not given much
attention to the 3D metric γij since the main avenue of complexification is expected along
the high-dimensional channels unique to Σ±. Of all the ways to deform the flat Minkowski
space, there is a subset of simpler deformations that only change the geometry of 3-space.
Among that subset, there is a simpler subset of scalar deformations that curve Minkowski
space by some constant factor everywhere in the universe. The spaces ℵ and Ω have been
assigned as de Sitter space and anti-de Sitter space exactly because they of this last variety.
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Minkowski space, de Sitter space, and anti-de Sitter space are all maximally symmetric.
{ℵ,H,Ω} is especially maximally symmetric.

It is important to note that while H has a simple metric

ds2
± = −(dx0)2 +

3∑
i=1

(dxi)2 , (3.75)

ℵ and Ω have different metrics that are non-trivial despite their respective conditions of
maximal symmetry. Carroll develops those metrics as follows [17].

“The maximally symmetric spacetime with positive curvature (κ > 0) is called
de Sitter space. Consider a five-dimensional Minkowski space with metric ds2

5 =
−du2 + dx2 + dy2 + dz2 + dw2, and embed a hyperboloid given by

−u2 + x2 + y2 + z2 + w2 = α2 . (3.76)

Now introduce coordinates {t, χ, θ, φ} on the hyperboloid via

u = α sinh(t/α) (3.77)

w = α cosh(t/α) cosχ (3.78)

x = α cosh(t/α) sinχ cos θ (3.79)

y = α cosh(t/α) sinχ sin θ cosφ (3.80)

z = α cosh(t/α) sinχ sin θ sinφ . (3.81)

The metric on the hyperboloid is then

ds2 = −dt2 + α2 cosh2(tα)
[
dχ2 + sin2 χ

(
dθ2 + sin2 θdφ2

)]
. (3.82)

We recognize the expression in round brackets as the metric on a two-sphere, dΩ2
2,

and the expression in square brackets as the metric on a three-sphere, dΩ2
3. Thus,

de Sitter space describes a spatial three-sphere that initially shrinks, reaching a
minimum size at t = 0, and then re-expands.1 Of course this particular description
is inherited from a certain coordinate system; we will see that there are equally
valid alternative descriptions.

“These coordinates cover the entire manifold. You can generally check this by,
for example, following the behavior of geodesics near the edges of the coordinate
system; if the coordinates were incomplete, geodesics would appear to terminate in
finite affine parameter. The topology of de Sitter is thus R×S3. This makes it very

1Shrinking, reaching a minimum, and then reexpanding is also known as “bouncing.”
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Figure 29: These conformal diagrams are most appreciatively reproduced from Carroll’s textbook [17]: Space-
time and Geometry: An Introduction to General Relativity.

simple to derive the conformal diagram, since the important step in constructing
conformal diagrams is to write the metric in a form which is conformally related
to the Einstein static universe (a spacetime with topology R × S3, describing a
spatial three-sphere with constant radius through time). Consider the coordinate
transformation from t to t′ via

cosh(t/α) =
1

cos(t′)
. (3.83)

[Equation (3.82)] now becomes

ds2 =
α2

cos2(t′)
ds̄2 , (3.84)

where ds̄2 represents the metric of the Einstein static universe,

ds̄2 = −(dt′)2 + dχ2 + sin2 χdΩ2
2 . (3.85)

The range of the new time coordinate is

−π/2 < t′ < π/2 . (3.86)

“The conformal diagram of de Sitter space will simply be a representation of
the patch of the Einstein static universe to which de Sitter is conformally related.
It looks like a square, as shown [on the left side of figure 29]. A spacelike slice of
constant t′ represents a three-sphere; the dashed lines at the left and right edges
are the north and south poles of this sphere. The diagonal lines represent null rays;
a photon released at past infinity will get precisely to the antipodal point on the
sphere at future infinity. Keep in mind that the spacetime ‘ends’ to the past and
future only through the magic of conformal transformations; the actual de Sitter
space extends indefinitely into the future and past. Note also that two points can
have future (or past) light cones that are completely disconnected; this reflects the
fact that the spherical spatial sections are expanding so rapidly that light from one
point can never come into contact with light from the other.

“A similar hyperboloid construction reveals the κ < 0 spacetime of maximal
symmetry, known as anti-de Sitter space. Begin with a fictitious five-dimensional
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manifold with metric ds2
5 = −du2−dv2 +dx2 +dy2 +dz2, and embed a hyperboloid

given by

−u2 − v2 + x2 + y2 + z2 = −α2 . (3.87)

Note all the minus signs. Then we can induce coordinates {t′, ρ, θ, φ} on the hy-
perboloid via

u = α sin(t′) cosh(ρ) (3.88)

v = α cos(t′) cosh(ρ) (3.89)

x = α sinh(ρ) cos θ (3.90)

y = α sinh(ρ) sin θ cosφ (3.91)

z = α sinh(ρ) sin θ sinφ , (3.92)

yielding a metric on this hyperboloid of the form

ds2 = α2
(
− cosh2(ρ)dt′2 + dρ2 + sinh2(ρ)dΩ2

2

)
. (3.93)

These coordinates have a strange feature, namely that t′ is periodic.1 From [equa-
tion (3.88)], t′ and t′+2π represent the same place on the hyperboloid. Since ∂t′ is
everywhere timelike, a curve with constant {ρ, θ, φ} as t′ increases will be a closed
timelike curve. However, this is not an intrinsic property of the spacetime, merely
an artifact of how we have derived the metric from a particular embedding. We
are welcome to consider the ‘covering space’ of this manifold, the spacetime with
the metric given by (3.93) in which we allow t′ to range from −∞ to ∞. There
are no closed timelike curves in this space, which we will take to be the definition
of anti-de Sitter space.

“To derive the conformal diagram, perform a coordinate transformation analo-
gous to that used for de Sitter, but now on the radial coordinate:

cosh(ρ) =
1

cosχ
, (3.94)

so that

ds2 =
α2

cos2 χ
ds̄2, (3.95)

where ds̄2 represents the metric on the Einstein static universe (3.85). Unlike in
de Sitter, the radial coordinate now appears in the conformal factor. In addition,

1The MCM proposal to modify spacetime by wrapping time around a cylinder, a.k.a. giving x0 a circular topology, has the
same effect of making time periodic.
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for anti-de Sitter, the t′ coordinate goes from minus infinity to plus infinity, while
the range of the radial coordinate is

0 ≤ χ <
π

2
. (3.96)

Thus, anti-de Sitter space is conformally related to half of the Einstein static
universe. The conformal diagram is shown [on the right side of figure 29], which
illustrates a few representative timelike and spacelike geodesics passing through
the point t′ = 0, χ = 0. Since χ only goes to π/2 rather than all the way to π, a
spacelike slice of this spacetime has the topology of the interior of a hemisphere S3;
that is, it is topologically R3 (and the entire spacetime therefore has the topology
R4). Note that we have drawn the diagram in polar coordinates, such that a point
on the left side represents a point at the spatial origin, while [the] one on the right
side represents a two-sphere at spatial infinity. Another popular representation is
to draw the spacetime in cross-section, so that the spatial origin lies in the middle
and the right and left sides together comprise spatial infinity.1

“An interesting feature of anti-de Sitter is that infinity takes the form of a
timelike hypersurface, defined by χ = π/2. Because infinity is timelike, the space
is not globally hyperbolic, we do not have a well-posed initial value problem in
terms of information specified on a spacelike slice, since information can always
‘flow in from infinity.’ Another interesting feature is that the exponential map is
not onto the entire spacetime; geodesics, such as those drawn [on the right side
of figure 29], which leave from a specified point do not cover the whole manifold.
The future-pointing timelike geodesics, as indicated, can initially move radially
outward from t′ = 0, χ = 0, but eventually refocus to the point t′ = π, χ = 0 and
will then move radially outward once again.2

“As an aside it is irresistible to point out that the timelike nature of infin-
ity enables a remarkable feature of string theory, the ‘AdS/CFT correspondence.’
Here, AdS is of course the anti-de Sitter space we have been discussing, while
CFT stands for conformally-invariant field theory defined on the boundary (which
is, for an n-dimensional AdS, an (n − 1)-dimensional spacetime in its own right).
The AdS/CFT correspondence suggests that, in a certain limit, there is an equiv-
alence between quantum gravity (or a supersymmetric version thereof) on an AdS
background and a conformally-invariant non-gravitational field theory defined on
the boundary. Since we know a lot about non-gravitational quantum field theory
that we don’t know about quantum gravity, this correspondence (if true, which
seems likely but remains unproven3) reveals a great deal about what can happen
in quantum gravity.”

Carroll’s example of embedded hyperboloids demonstrates exactly what we have done
to embed the chronological dS and AdS metrics onto the chirological slices of Σ±. We
have included these long excerpts mainly to demonstrate the general relevance of the MCM:

1Note how Carroll’s description of the options for drawing the conformal diagram mirror our own options for drawing the
MCM unit cell centered on H or ∅

2This is ordinarily described as bouncing.
3See reference [3] for a proof.
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almost every type of thing we have imposed as an “unmotivated” constraint was already an
inherent constraint on the objects from which the MCM is assembled. Furthermore, Carroll
shows how the conformal diagrams of dS and AdS are constructed from co-π̂s or pairs of
halves of co-π̂s, as in figure 29. The important takeaway from figure 29 is that where dS is
constructed naturally on two complete co-π̂s, AdS is only constructed from one and a half
co-π̂s. Through the presence of half co-π̂s we can see that it will be easy to modularize
the coordinate systems described by Carroll for immediate application to the construction
of complete π̂-sites in the MCM. Any advanced calculation using these coordinates would
be impractical to carry out by hand, as is the analytical style of this writer and others, as
in figure 30. On the up side, the interested party should be excited to know that tensor
algebra solver software exists and is described in reference [48]. Williams’ paper can likely
be trusted as the source of record for many common formulae that appear in various states
of correctness and incorrectness throughout the literature because he has derived them with
software.1

III.8 Toward Geodesics

Geodesics are another topic better handled on computers. Wikipedia says, “The full Kaluza
equations under the cylinder condition are quite complex, and most English-language reviews
as well as the English translations of [foreign language reports ] contain some errors.” If we

1Regarding imperfect formulae, even software can have errors, and, in any case, a comprehensive survey of the literature
is always in order. Regarding literature known to contain errata: just as a literate person can understand a sentence with a
misspelled word in it, so can a numerate person often recognize what an equation demonstrates even when its formalism is not
algorithmically impeccable. Therefore, when the critic is numerate, criticisms of the form, “This is wrong,” or, “This is not
even wrong,” can sometimes be rebutted with, “Did I demonstrate something there?” If the answer is yes then the target of
the criticism might close his rebuttal with, “Q.E.D.”

Figure 30: Calculation of the geodesics of the MCM will require a computational facility much greater than
the one relied upon by this writer. That facility is demonstrated in this figure which shows a
page excerpted from reference [47]

.
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did undertake the effort to calculate by hand and then report the geodesics of the MCM, our
report would almost certainly contain errors of this sort and thereby we would have added
little to the literature in our publication of an erroneous or even error-riddled set of geodesics.
Certainly this is an exercise best left to computer experts or until this writer becomes more
expert with computers. We very much refer the reader to reference [48] wherein Williams has
done a great service to mankind putting together a comprehensive and seemingly error-free
review of common formulae related to the 5D Kaluza–Klein metric which is

ΣAB =



−1 + A1A1χ
5 A1A2χ

5 A1A3χ
5 A1A4χ

5 A1χ
5

A2A1χ
5 1 + A2A2χ

5 A2A3χ
5 A2A4χ

5 A2χ
5

A3A1χ
5 A3A2χ

5 1 + A3A3χ
5 A3A4χ

5 A3χ
5

A4A1χ
5 A4A2χ

5 A4A3χ
5 1 + A4A4χ

5 A4χ
5

A1χ
5 A2χ

5 A3χ
5 A4χ

5 χ5



=

(
gαβ + AαAβχ

5 Aαχ
5

Aβχ
5 χ5

)
. (3.97)

We will not complete the calculation here because geodesics are too complicated to do
efficiently by hand. Note that the formulas in reference [48] use the cylinder condition
throughout the 5D space. In the MCM, we are only forced to apply the cylinder condition
on the slices ℵ and Ω but not necessarily on each individual slice of Σ± where χ5

± 6∈{Φ, 0,−1}.
H and ∅ are further differentiated from ℵ and Ω when we note that the cylinder condition
is not a prerequisite for {H,∅}. H is a flat 4D brane embedded in a smoothly varying
continuum of de Sitter branes and that continuum, including H, is constrained to have
a representation in general relativity where x4 = 0 is the parameter of curvature. H can
therefore be apart from a Kaluza–Klein theory with its inherent scalar field φ2 induced
through the cylinder constraint. ∅ is at infinity and its topology is defined as the topology
of H because the only thing we might ever consider using ∅ for is to define a Lorentz frame.
So ∅ is defined thusly and Σ∅ is constrained accordingly. The Lorentz approximation is that
the lab frame is Minkowski space devoid of any perturbations due to the mass-energy of lab
equipment, planets, moons, scientists, etc., so, therefore, we can always define that frame in
∅. The MCM condition means that the origin of coordinates in ∅ would be the point of
Σ∅ that stitches χ5

± together in the piecewise definition of geodesics parameterized in χ5. If
we were going to undertake computerization, a first check on the robust stability of MCM
would be to compare its geodesics in the cases where Aα = 0 and Aα = 1. Since it is only
potential differences that contribute to observables, we should get the exact same geodesics
for any constant potential Aα.

Everything in the geodesic equation comes from the derivatives of the metric. The non-
tensorial Christoffel symbols (connection coefficients) are

ΓCAB = 1
2

ΣCD
(
∂AΣBD + ∂BΣDA − ∂DΣAB

)
, (3.98)
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and they appear in the geodesic equation as

d2χC

dλ2
+ ΓCAB

dχA

dλ

dχB

dλ
= 0 . (3.99)

The geodesic equation reflects an impressive amount of complexity already present in Ein-
stein’s theory from 100 years ago. Certainly, Einstein carried out more intense manual
computations than we have in this research program. In fact, it is due to Einstein’s efforts
that we recognized the dimensionless coefficient of proportionality 8π as highly relevant in
reference [12]. It must be noted that Einstein had no hope of using computers to make his
calculations and that his contemporaries such as Schwarzschild, Nordström, and others were
the first to make many of the most elementary calculations in general relativity. Likewise,
any of this writer’s contemporaries could be the first to make elementary calculations in the
MCM but it seems science has taken a turn since the olden times.

To find the connection coefficients we need the inverse metric which is

ΣAB =



−1 0 0 0 A1

0 1 0 0 −A2

0 0 1 0 −A3

0 0 0 1 −A4

A1 −A2 −A3 −A4

(
ηαβAαAβ +

1

χ5

)


. (3.100)

In reference [10], we pointed out that since χ5 ≡ χ5
+ ⊗ χ5

∅ ⊗ χ5
− is a non-standard pseudo-

dimension, we will have issues understanding M̂3 ≡ ∂3 in terms of the chirological time.
However, x0 is not a pseudo-dimension so, in the chronological sense, M̂3 ≡ ∂ 3

t and this is
where Einstein’s 8π comes from. We had to define an alternate convention for chirological
∂ 3
χ which appears in reference [10]. That convention is

∂ 3
5 ≡ ∂

∂χ5
−

∂

∂χ5
∅

∂

∂χ5
+

. (3.101)

To evaluate these derivatives, we assume a certain set of gauge transformations

ψ′ = eiΛψ ←→ A′µ = Aµ +
1

e
∂µΛ , (3.102)

according to the prescription in reference [10]. In that reference, we showed only how the
wavefunction transforms but here we will also consider the transformation of the potential
because it drives the transformation of the metric and geodesics. To derive the fully rel-
ativistic gauge transformation, we will need to substitute the covariant derivative for the
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partial derivative that appears in equation (3.102) but we will proceed in the limit where the
covariant derivative is equal to the partial derivative. Therefore, what follows in this section
is only an estimate.

To assess the feasibility of deriving a non-trivial “ontological” potential that could be
used to define a specific metric and therefore a specific set of geodesics, we will start with

ψ0 = e−iωt , and Aµ = 0 . (3.103)

We will make gauge transformations to accommodate the operator ∂ 3
5 according to equation

(3.101). The first derivative in ∂ 3
5 is with respect to χ5

+ so we make the gauge transformation
with

Λ1 = Φχ5
+ + ωt . (3.104)

This gives the wavefunction

ψ1 = eiΛ1ψ0 = ei(−ωt+Φχ5
++ωt) = eiΦχ

5
+ . (3.105)

Gauge theory requires a corresponding transformation of the potential, as in equation (3.102).
The transformations employed here do not affect the Ai components of the 4-potential. Those
components, as they appear in the gauge transformed potential, will be proportional to the
∂i derivatives of Λ1 and it is obvious that those will all vanish. The new potential is

A
{1}
0 =

1

e
∂0

(
Φχ5

+ + ωt
)

=
ω

e
(3.106)

A
{1}
i = Ai = 0 , (3.107)

To apply ∂∅ we need to apply another gauge transformation

ψ2 = ei(Φχ
5
++Λ2) , with Λ2 = πχ5

∅ − Φχ5
+ , (3.108)

which gives

ψ2 = eiπχ
5
∅ . (3.109)
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The derivative of Λ′′ with respect to xµ vanishes so there is no change in the potential and
we see

A
{2}
0 = A

{1}
0 =

ω

e
(3.110)

A
{2}
i = A

{1}
i = Ai = 0 . (3.111)

We need to complete taking ∂ 3
5 with one more gauge transformation for ∂− which is

ψ3 = ei(πχ
5
∅+Λ3) , with Λ3 = −Φχ5

− − πχ5
∅ , (3.112)

and this gives

ψ′′′ = e−iΦχ
5
− . (3.113)

Again, the derivative of Λ3 with respect to xµ vanishes so

A
{3}
0 = A

{2}
0 = A

{1}
0 =

ω

e
(3.114)

A
{3}
i = A

{2}
i = A

{1}
i = Ai = 0 . (3.115)

The final remaining step is to convert back to a wavefunction of the xµ coordinates
which we can do in a few separate ways. This is very interesting and surely contains a lot
more nuance than will be discussed here. We have started with an ordinary wavefunction
e−iωt and used gauge transformation operations to take derivatives with respect to the three
chirological times in the M̂3≡ ∂ 3

5 operator. The final gauge transformation will be applied
to convert the wavefunction back into a form that does not depend on chiros.

These two simple options, a and b, for completing ψ0(xµ)→ψ4(xµ) are

ψ a±
4 = e∓iωt , or ψ b±

4 = e±ikx , (3.116)

and there are also non-simple forms where the phase has mixed dependence on both time
and space with ∆≡kx−ωt. Even if we choose the simpler option where the initial and final
states both depend on t but not x, we still have the option to choose the sign that changes
the direction of the wavepacket’s propagation. Figure 31 illustrates how this arrangement
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Figure 31: A plane wave is incident on the bounce state from the bottom right. The bounce is generally
understood, by now, to lie at either the endpoints of the MCM unit cell or the central point
corresponding to p ∈ Σ∅. The incident wave can be either transmitted or reflected by the
bounce.

.

is very natural to the MCM. Also note that ψ4 seems logically related to the new process
M̃4 though it arose purely through consideration of M̂3 ≡ ∂3. We must associate the two
forms ψ a

4 and ψ b
4 with the idea that the topology on either side of H has different numbers of

spacelike and timelike dimensions. A 5D plane wave incident on H from Σ−, if transmission
is possible, must have some component converted from a spacelike domain onto a timelike
domain. Since timelike dimensions use dimensional transposing parameters such as c, we can
expect that this change of domain significantly alters the character of the transmitted wave.
In fact, it is not outlandish to think that the dimensional transposing parameter might even
alter the energy of the wave as it passes through H. However, here we remain focused on the
gauge potential that arises due to the gauge transformation of the wavefunction presented
above.

To achieve ψ a
4 or ψ b

4 will have to consider two Λ4’s

Λ a±
4 = ∓ωt+ Φχ5

− , and Λ b±
4 = ±kx+ Φχ5

− . (3.117)

If we choose to arrive at ψ a
4 then the A

{4a}
i components will all vanish and the final gauge

transformed potential is

A
{4a∓}
0 =

ω

e
+

1

e
∂0

(
∓ ωt+ Φχ5

−
)

=
ω

e
∓ ω

e
(3.118)

A
{4a∓}
i = 0 . (3.119)
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Figure 32: The original graphical iteration of the MCM unit cell is, perhaps, the most intuitive representation
of its important geometric features.

These values for A
{4}
µ look very good. If we select the initial and final wavefunctions as e−iωt

then the potential at the end is equal to the potential at the start: Aµ=0. However, at some
point (not presently), we will need to study the frequency doubling in the induced potential

A
{4a+}
0 =

2ω

e
, (3.120)

associated with a reflection of the wavepacket, as in the upper right figure 31.
For Λ b

4 we have

A
{4b±}
0 =

ω

e
+

1

e
∂0

(
± kx+ Φχ5

−
)

=
ω

e
(3.121)

A
{4b±}
i = 0 +

1

e
∂i
(
± kx− Φχ5

−
)

= ±k
e
, (3.122)

which is more complicated than A
{ 4a}
α because it involves both x and t. In this case, the

final potential will have non-vanishing components A
{4a}
i .

Here, we will state a motivation for assigning two timelike dimensions to Σ+ and only one
timelike dimension to Σ−. For M̂1, we want to evolve some initial state along the chirological
time instead of the chronological time. This is, in general, how the MCM mode of evolution
differs from old physics. If we evolved the qubit with chronological time, then we would be
in perfect agreement with what the classical theory says to do, sans modifications. In order
to construct a second timelike path for new physics, we should assign the O(2,3) topology
to Σ+. To do this, we simply redefine the scalar field that appears in the 5D metric as

φ2 ≡ χ5 −→ φ2 ≡ −χ5 . (3.123)
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Now the signs in Σ±AB will show that Σ+ has two timelike dimensions and Σ− will have four
spacelike dimensions.

Consider the role of the second timelike dimension in Σ+ after we formulate an initial
condition at χ5 = 0. We know that the qubit will evolve in proper time according to the
Schrödinger equation but we want to add the chirological mode of evolution along geodesics
so that we may explain aspects of quantum weirdness with “interference effects” between
the two timelike evolutionary channels. We evolve the initial qubit through χ5

+ ∈ (0,Φ] in
Σ+, and note that the interval (0,Φ] is just long enough to hold one half of one co-π̂, or one
half of one π̂ vector, just as is required to construct the conformal diagram of AdS shown in
figure 29. This follows because

π

2
≈ 1.57 , and Φ ≈ 1.62 , (3.124)

and it also follows that, in the modularization process for AdS and dS on co-π̂s, we can
expect characteristic remainder terms on the order of 1.62−1.57 = 0.05 << 1 which might
be used to make perfect geometry fuzzy. We will discuss the remainder Φ− π/2 extensively
in sections IV.1 and IV.5.

III.9 Dark Energy and Expanding Space

Here, we return to the MCM’s first result: dark energy. Unification of the theories of
gravitation and quantization is a vastly more primary problem than dark energy because it
predates all of what we now call modern physics, or post-war physics, but dark energy is still
very important. The MCM dark energy result [2, 7] was followed by a new numerical formula
for the fine structure constant [22, 12], a derivation of Einstein’s equation based on the
numbers in that formula [12], a new geometric explanation for the AdS/CFT correspondence
[3], an explanation for the structure of the fundamental particles in the standard model as
facets of the AdS/CFT geometry [11], a prediction for two new spin-1 particles [3], and
many other interesting results [9, 49, 13, 4, 5, 23, 10, 8]. The MCM mechanism for dark
energy, called inverse radial spaghettification, can be thought of as ordinary spaghettification
toward the past (to the left) in the cosmological unit cell where the radial coordinate can be
intuitively extrapolated from the rectangular coordinates in the figures.

Using equation (3.123), consider the Kaluza–Klein metric in the limit of vanishing com-
plexity. When Aα=0, we have a pair of “ground state” metrics

Σ
+ O(2,3)
AB =


−1 0 0 0 0

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 − χ5

+

 , (3.125)

and
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Σ
− O(1,4)
AB =


−1 0 0 0 0

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 − χ5

−

 . (3.126)

The form of each metric is identical and it is only the sign of χ5
± that distinguishes the

number of timelike dimensions. (χ5
− is negative so −χ5

− > 0 and we are ignoring a likely
complex phase between χ5

±.) The metrics Σ±AB are essentially the same so we may follow the
ordinary prescription to derive the line element for a generic Kaluza–Klein metric ΣAB.

ds2
MCM = ΣAB dχ

A dχB = −
(
dχ1
)2

+
(
dχ2
)2

+
(
dχ3
)2

+
(
dχ4
)2 − χ5

(
dχ5
)2

. (3.127)

On cosmological scales, Aα=0 is good approximation for the nearly negligible intergalac-
tic magnetic field so we should consider the implications of equation (3.127) as physical
implications. At first glance, ds2

MCM is very nearly the FLRW line element

ds2
FLRW = −

(
dx0
)2

+ a2
(
x0
) [(

dx1
)2

+
(
dx2
)2

+
(
dx3
)2
]

. (3.128)

of flat expanding space. The FLRW metric is flat expanding rather than curved expanding
because the scale factor a2(x0) only depends on x0 but not the spatial coordinates xi. Note
how the expansion factor in the FLRW metric is a squared function of a timelike dimension
exactly like the expansion factor in equation (3.127). Using equation (3.123) to substitute
the scalar field φ2(χ5)≡−χ5 back into ds2

MCM we see the two line elements are indeed similar
with a2(x0)→φ2(χ5) in

ds2
MCM = −

(
dχ1
)2

+
(
dχ2
)2

+
(
dχ3
)2

+
(
dχ4
)2

+ φ2
(
χ5
) [(

dχ5
)2
]

. (3.129)

In equation (3.128), the scale factor stretches all three spatial dimensions equally but, in
equation (3.129), the scale factor only stretches the fifth dimension. In Σ+, where χ5

+ is a
positive valued timelike dimension, the metric shows contracting time. On the other side
of H, where χ5

− is negative and spacelike, the metric shows expanding space but not in all
four spacelike dimensions.1 Expanding space in the past is exactly what astrophysicists
observe, and contracting time in the future is more or less the mechanism by which we
have proposed to generate dark energy [2, 7]. Furthermore, the expansion of space by
a parameter in [−1, 0) is unlikely to be exactly counterbalanced by a contraction of time
proportional to a parameter in (0,Φ], and that imbalance can lead to a pressure gradient
which causes the arrow of time to point preferentially in one direction.

1This might allow for the propagation of tachyons, as in reference [5].
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The FLRW metric describes flat space because the expansion parameter is a function of
a timelike variable. In Σ−, the fifth dimension is spacelike so not only do we get expanding
space there, we get expanding curved space exactly like what will be required to embed slices
that contain 4D dS and AdS. Our example of expanding space only shows expanding space
in one dimension so there is a natural interpretation related to increasing levels of ℵ along
χ5. There is another natural interpretation would be to let the expansion of three spatial
dimensions, which are properly astrophysical, be taken as a reciprocal effect derived from a
modularized dependence on the expansion of the fourth spacelike dimension in Σ−.

III.10 Advanced and Retarded Potentials

When approaching H from the directions of χ5
±, the discrepancy between the O(1,4) and

O(2,3) topologies makes it impossible to model the boundary as a simple 1D transmission
problem for the quantum mechanical probability current to pass through H (or ∅.) In the
future Ω, it should be a productive exercise to model the MCM in 1D (motion along χ5

only) to derive a hypercomplex potential function V that plugs into the Hamiltonian of the
Schrödinger equation as

Ĥ =
p̂2

2m
+ V̂ . (3.130)

With a well defined V̂ , we would solve for the transmission and reflection coefficients for the
probability current in the hypercosmos. We mention that in this section because we may be
able to identify those coefficients, T and R, with the advanced and retarded potentials. If
T is the amplitude of the signal in the forward time direction from H1, then it reaches the
next moment H2 as a retarded signal from the past. However, the signal that is reflected
from H1 with amplitude R will move in reverse time, meaning that it will be incident on
an earlier H-brane (or an earlier ∅-brane) from the future, as is expected of the advanced
potential.

Consider the place of the advanced potential as given by reference [50].

“Electromagnetic radiation will here be considered as an example for wave
phenomena in general.1 It may be described in terms of the four-potential Aµ,
which in the Lorenz gauge obeys the wave equation

−∂ν∂νAµ(r, t) = 4πjµ(r, t) , with ∂ν∂ν = −∂2
t + ∆ , (3.131)

with c = 1, where the notations2 ∂µ := ∂/∂xµ and ∂µ := gµν∂ν are used together
with Einstein’s [summation convention]. When an appropriate boundary condition
is imposed, one may write Aµ as a functional of the sources jµ. For two well known
boundary conditions one obtains the retarded and the advanced potentials,

1Although the Schrödinger equation is the heat equation rather than the intuitive wave equation, it does certainly fall under
the topic of wave phenomena in general.

2∆ is the Laplacian operator: ∆ ≡ ∇2 ≡ ∇ · ∇.
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Aµret =

∫
jµ(r, t− |r− r′|)

|r− r′|
d3r′ (3.132)

Aµadv =

∫
jµ(r, t+ |r− r′|)

|r− r′|
d3r′ . (3.133)

These two functionals of jµ(r, t) are related to one another by a reversal of retarda-
tion time |r−r′| [sic]. Their linear combinations are solutions of [equation (3.131).]”

The origin of Aµadv and Aµret is a tedious subject in classical electromagnetism and will be
beyond the scope of this book. The point of this book is (mostly) to go into greater detail
regarding the general relevance of that which has been published already. However, we do
want to emphasize that when we impose the MCM condition that sets t = 0, the second
argument in jµ is completely natural to the MCM coordinates. For jµ evaluated at the
advanced time, we can expect

|r− r′| = Φ , (3.134)

and for jµ evaluated at the retarded time we expect

|r− r′| = −ϕ . (3.135)

Consider the following from reference [51].

“In 1909 Walter Ritz and Albert Einstein (former classmates at the University
of Zurich) debated the question of whether there is a fundamental temporal asym-
metry in electrodynamics, and if so, whether Maxwell’s equations (as they stand)
can justify this asymmetry. As mentioned above, the potential field equation

∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
− 1

c2

∂2φ

∂t2
= −4πρ , (3.136)

is equally well solved with either of two functions

φ1 =

∫
ρ(x, y, z, t− r/c)

r
dx dy dz φ2 =

∫
ρ(x, y, z, t+ r/c)

r
dx dy dz ,

(3.137)
where φ1 is called the retarded potential and φ2 the advanced potential. Ritz
believed the exclusion of the advanced potentials represents a physically significant
restriction on the set of possible phenomena, and yet it could not be justified
in the context of Maxwell’s equations. From this he concluded that Maxwell’s
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equations were fundamentally flawed, and could not serve as the basis for a valid
theory of electrodynamics. Ironically, Einstein too did not believe in Maxwell’s
equations, at least not when it came to the micro-structure of electromagnetic
radiation, as he had written in his 1905 paper on what later came to be called
photons. However, Ritz’s concern was not related to quantum effects (which he
rejected along with special relativity), it was purely classical, and in the classical
context Einstein was not troubled by the exclusion of the advanced potentials. He
countered Ritz’s argument by pointing out (in his 1909 paper “On the Present
State of the Radiation Problem”) that the range of solutions to the field equations
is not reduced by restricting ourselves to the retarded potentials, because all the
same overall force-interactions can be represented equally well in terms of advanced
or retarded potentials (or some combinations of both). He wrote

‘If φ1 and φ2 are [retarded and advanced ] solutions of the [potential
field ] equation, then φ3 = a1φ1 + a2φ2 is also a solution if a1 + a2 = 1.
But it is not true that the solution φ3 is a more general solution than φ1

and that one specializes the theory by putting a1 = 1, a2 = 0. Putting
φ = φ1 amounts to calculating the electromagnetic effect at the point
x, y, z from those motions and configurations of the electric quantities
that took place prior to the instant t. Putting φ = φ2 we are determining
the above electromagnetic effects from the motions that take place after
the instant t. In the first case the electric field is calculated from the
totality of the processes producing it, and in the second case from the
totality of the processes absorbing it. If the whole process occurs in a
(finite) space bounded on all sides, then it can be represented in the form
φ = φ1 as well as in the form φ = φ2. If we consider a field that is
emitted from the finite into the infinite, we can naturally use only the
form φ = φ1, precisely because the totality of the absorbing processes is
not taken into consideration. But here we are dealing with a misleading
paradox of the infinite. Both kinds of representations can always be used,
regardless of how distant the absorbing bodies are imagined to be. Thus
one cannot conclude that the solution φ = φ1 is more special than the
solution φ = a1φ1 + a2φ2 where a1 + a2 = 1.’

“Ritz objected to this, pointing out that there is a real observable asymmetry
in the propagation of electromagnetic waves, because such waves invariably origi-
nate in small regions and expand into larger regions as time increases, whereas we
never observe the opposite happening. Einstein replied that a spherical wave-shell
converging on a point is possible in principle, it is just extremely improbable that
a widely separate set of boundary conditions would be sufficiently coordinated to
produce a coherent in-going wave. Essentially the problem is pushed back to one
of asymmetric boundary conditions [emphasis added ].”

A field emitted from the finite into the infinite is exactly the problem of how to begin
to propagate fields in H1 through the unit cell to the higher level of ℵ on H2. Recall the
transfinite origin of the concept of a level of ℵ [9]. We will rely on a general understanding
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of the coefficients

a1 + a2 = 1 ←→ Φ + ϕ = 1 , (3.138)

while noting that complexified solutions of the form

φ = a1φ1 + a2φ2 + a3φ3 + a4φ4 , with a1 + a2 + a3 + a4 = 1 , (3.139)

are independently interesting on account of

1̂ =
1

4π
π̂ − ϕ

4
Φ̂ +

1

8
2̂− i

4
î . (3.140)
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I was there when he set the heavens in place, when he marked out the horizon
on the face of the deep, when he established the clouds above and fixed securely
the fountains of the deep, when he gave the sea its boundary so the waters would
not overstep his command, and when he marked out the foundations of the earth.

– Proverbs 8:27-29

IV Computation and Analysis in Quantum Cosmology

In the first section of this chapter, we review the details set forth in the earliest MCM-
related publications [2, 7]. Section two presents the details of a specific set of closed timelike
curves known as Tipler sinusoids as an example of the kinds of field solutions that will
have to be encoded into the energy function of the hypercosmological lattice.1 Section three
discusses quantum mechanics and improves the motivations for what we have called the
MCM hypothesis. Section four reviews Penrose’s seminal paper on conformal infinity [52]
and discusses MCM applications of the conformal principles. In section five, we discuss
the analytical features of covering spaces with the intention to emphasize what it means
to break U(1) symmetry and how the strong force can be incorporated into the MCM. We
will directly show the U(1)×SU(2) property of electroweakness and discuss the extension to
SU(3). Section six treats the double slit experiment in the context of the cosmological lattice.
Section seven is dedicated to analysis with a concentration on numerical analysis. In section
eight, we present a toy model of the mass parameters of the universe {ΩMatter,ΩDM,ΩDE}
that is in perfectly within the parameter space allowed by ΛCDM.

With the conclusion of this book, we can reasonably say that the survey of fundamentals
in this research program has progressed to about 1920. Certainly there is a lot of work left to
be done. If this book was longer, we would take the extra pages to show how non-relativistic
quantum theory should be generalized from C to ?C, and once that is complete we could
begin to develop an MCM energy function to use for V̂ in some 1D MCM application of the
Schrödinger equation. From there, we would progress to a more thorough study of the Dirac
equation. That would lay the foundation to move on to the work of Schwinger, and we would
hope to show that the radiative corrections he found are natural to the MCM. After that, we
should study the work of Feynman and take great care to look for complexity hidden in or
passed over by his rules for writing integrals based on diagrammatic representations of QFT
interactions. After that we would revisit the Landau–Yang theorem to (hopefully) show that

1The word “encoded” here refers to the nebulous justification for writing the Einstein–Hilbert action (or similar) which one
does because it gives the geodesics of spacetime as the equations of motion.
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spin-1 to two photons is allowed when the mathematical analysis is carried out with ?C in
the dynamical hypercosmos instead of with C on an uncoupled spacetime background. After
that, the results of Lee and Yang regarding parity violation would need to be converted into
the MCM language so that we might address the technical aspects of the Sakharov conditions
for the matter/anti-matter imbalance. From there, we could move on to selected results in
modern QFT such as the electroweak theory which posits that every spacetime point has
its own SU(2) subspace. Then we would hopefully show that the SU(3) symmetry of QCD
arises from a projection of SU(2) into a higher (or lower) level of ℵ.

IV.1 The Modified Cosmological Model

An early idea in the MCM was to solve the problem of the divergent energy of the vacuum
predicted by quantum field theory. In reference [7], we proposed to divide infinite energy by
zero volume to obtain a finite energy density, and the MCM unit cell embodies that concept
wholeheartedly, as in figures 33 and 34. Those figures show where we can obtain V = 0 for
the finite energy density and also the (Φπ)3 + 2π needed for

α−1
MCM =

(
Φπ
)3

+ 2π . (4.1)

The empirical application of α−1
QED≈137 is mainly in the splitting of energy levels of electrons

trapped in spherically radial atomic potential wells. When the MCM matches chronos to
leptons and chiros to quarks, the pieces x0 and {χ5

+, χ
5
∅, χ

5
−} give, generally, the electron and

three quarks in the exactly solvable hydrogen atom. If we then associate a transit of the
MCM unit cell with the transition of an atom in one state to an atom in another then there
is a picture of the electron changing from one spherical harmonic state to another across H
or ∅. We want to exploit the inherent non-unitarity of the ontological basis {̂i, Φ̂, 2̂, π̂} to
generate the fine structure constant as a property of the ontological topology. Therefore, if
we consider the MCM exactly as it defined, namely a state |ψ;n〉 in H1 and |ψ;m〉 in H2,

such that, per figure 33, the normalized magnitude of Φ̂ is 2π and the normalized magnitude
of π̂ is (Φπ)3, then we will come to a direct motivation for not only the number 137 itself,
but also its main context in physics: the splitting of hydrogenic energy levels.

The MCM borrows a concept from solid state physics to consider the universe as one
quantum of spacetime bouncing around in a lattice, or possibly transiting a lattice in a
superconducting analogue phase. We label the lattice “the hypercosmos” but, in actuality,
the hypercosmos needs be nothing more than a mathematical potential. In the ordinary
case of dynamics on a lattice, there is a clear geometric picture of the overall periodicity
such BCC, FCC, HCP, and other complete geometric representations but there is as yet no
complete geometric representation of the MCM unit cell, at least not in the familiar sense of
geometry on a single level of ℵ. We have not been able to fully draw the diagram connecting
adjacent H-branes because there is a non-geometric psychological process included in the
periodicity. Even then, we have been able to deduce a lot of its properties through various
philosophical analyses. However, one idea will be to join Σ± beyond the boundaries of the
unit cell where χ5

± = ±∞. In that case, we can remove the topological incongruity of dS
and AdS by joining Σ± across a singular manifold of infinite curvature. Another idea is to
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Figure 33: This figure shows the relative volumes of the major elements of the unit cell. Notably ∅ must
have A=π2 on the left and something like A=Φ2π2 on the right. Therefore, during M̂3, ∅ can
be uniformly rarefied by Φ or it can be rarefied only along one direction (probably the timelike
direction) by Φ2. However, we expect that the unit cell centered on H will have the same area
on both sides, as in figure 34.

Figure 34: This figure shows another intuitive concept for the ultimate origin of αMCM . This figure demon-
strates the non-unitary component of forward chirological evolution and also the fundamental
difference between H- and ∅-branes. H connects to Σ± where the 5D spaces do not contain their
χ5 =0 boundary but Σ± both contain their boundary where they are joined across ∅. H-branes
get inserted into an empty slot but ∅-branes are something extra which must be added.
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connect Ω and ℵ as elements of a symplex and we will develop that concept throughout this
chapter.

The MCM and TOIC were developed to describe the process M̂3 by which an observer
can make a prediction for something to happen, then wait for an event which can confirm
or deny the prediction, and then wait a while longer for the retarded signal from that event
to reach him in the present where he can compare the reality to his predicted expectation.
We say that the calculation of the dynamics across one full unit cell would constitute an
impossible calculation and, by that, we mean that no solution exists within an analytical
framework that exists only on a single level of ℵ. These situations of analytical intractability
are common in physics for excited and perturbed states but they are exceptional in the case
of a ground state or vacuum solution like the MCM unit cell with Aµ = 0 and no matter-
energy in 4- or 5D. One such exceptional case is the energy of the QFT vacuum. When we
do M̂3 with that calculation, it says our theory is wrong. The usual prescription for dealing
with this common problem of computational impossibility (in the absence of expeditious
fudge factors) is to simply substitute the numerical solution for the analytical one and, here,
the reader must note that numerical solutions are analytical solutions. They are simply a
different sort designed to minimize the error associated with the numerical solution and it
is even possible that the error term associated with the numerical solution can be reduced
to zero so that it is exactly the analytical solution. In that case, what would seem to be an
analytically intractable problem will have a solution and everything that was “impossible”
will have to be reclassified as “impossible until now.”

Unintegrable integrals of transcendental functions (such as trigonometric functions and
the associated complex exponential) are a common example in physics where analytical
solutions do not exist. Nearly everything in quantum theory other, than the harmonic
oscillator potential, is of this mathematically intractable variety. In relativity, there are
certainly very few solutions to the geodesic equation that can be written down without
numerical methods of approximation. Therefore, if we develop a new numerical algorithm
that can improve the approximation of such unintegrable solutions then that will be a good
advance. Since we have little hope for computing M̂3 directly, we have, in this regard,
introduced M̃4 which we define precisely as

M̃4 ≡ Υ̂ , where Υ̂ ≡ Û + M̂3 . (4.2)

The operator Υ̂ was added to the MCM in 2011. In reference [22], we proposed to generate
α−1
MCM with this operator and in section II.5 we described a new method to construct the

MCM structure constant α−1
MCM : 2π radians of freedom in a U(1) theory comes from two

zenith coordinates θ ∈ [0, π] covering the Riemann sphere’s topology S2 and (Φπ)3 comes

from the composition of an O(3) theory with Φ̂ during transit across the MCM unit cell such

that Φ̂ : π3→Φ3π3.
The intention at the start of this section is to clarify the geometric framework in which

we find the all-important fine structure constant but not to derive it specifically. We will
use Feynman’s non-inclusion of the endpoints of the time axis as evidence of freedom to
map the interval x0 onto S1 with a covering space representation and then we will return to
covering spaces in section IV.5. Feynman makes some comments in reference [6] (excerpted
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in chapter one) about how additive terms in the action show up as multiplicative terms
in the wavefunction. He is able to show how one representation makes the other simpler
and we propose to make the entire theory simpler with the operator Υ̂ ≡ M̃4 that acts
via addition and multiplication simultaneously.1 Ordinary methods of non-gravitational
quantum field theory in curved spacetime have no coupling between the field theory and the
fabric of spacetime but, here, we can supplement those methods by guiding spacetime with
M̂3 during unitary field evolution with Û . This method can be accomplished with

∫
dγ̂ but

we will not rely on it in this section which aims, mostly, to review references [2] and [7].
There is still work remaining to clarify the MCM processes but the conceptual framework is
clear and exceedingly well motivated, and we will make some exquisitely nice remarks on γ̂
in section IV.3.

As a theory of everything, the lack of coupling between spacetime and fields on spacetime
is only one of many problems solved by the MCM. In addition to the energy density of the
vacuum, there are many examples in QFT where action integrals explode and we propose to
eventually rewrite all of them (most of them) in non-exploding form with the ?C formalism
of the TOIC.2 Recall that if Feynman did not impose an arbitrarily short duration of time
for his calculation [6] then his integrals would explode, and that we have called Feynman’s

operation (or similar) by the name Û . Using the theory of infinite complexity, we can ensure

everything that would make a solution explode in Û is simultaneously imploded by the the
effect of M̂3. In general, we can send divergences to points at “conformal infinity” and then
switch in and out of covering space representations to bring those terms in or push them
out as required. This directly represents a source of information and a sink of information.
In the TOIC, we will encode these sources and sinks on unpaired elements that exist as a
remainder after taking the inner product of a series with an even infinite number of terms
and a series with an odd infinite number of terms. Using the

∫
dγ̂ notation, we will have a

manifold plus a scalar as the output of the new hypercomplex inner product that relies on
δ′jk, as in section II.2.

Before the MCM, the closest physicists had come to discovering a mechanism of unification
between gravity and electromagnetism was in the work of Kaluza. Around 1920, Kaluza
showed that a 4D general relativity with matter-energy and a 4D gauge theory (conformal
field theory) with electric charges can be encoded in a 5D space when there is no 5D matter-
energy. This work was produced almost immediately following Einstein’s formulation of
gravitation but it was nearly a century later that we proposed [3] to use two such 5D
theories to define a boundary condition in 10D likely relevant to string theory. Kaluza’s
theory, called Kaluza–Klein theory today, doesn’t work by itself because it predicts that the
electromagnetic field strength tensor

Fµν = ∂µAν − ∂νAµ , (4.3)

1Interestingly, the Riemann zeta function [8] has independent representations as a sum over integers ζ(s) =
∑∞
n=0

1
ns and

as a product over prime numbers ζ(s) =
∏
p

1
1−p−s .

2Recently Arkani-Hamed et al. published a paper titled Scattering Amplitudes For All Masses and Spins [53] which is
likely a good stab in this direction but his refusal to acknowledge this writer’s contributions to his research program is at times
irksome and always frustrating.
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should always vanish. In the MCM, we introduce two 5D spaces with which we might
sidestep this problem. As we have shown very many times, four electromagnetic potential
4-vectors Aµ arise in the MCM as

Σ+
AB =

(
Σ+
µν A+

µ

Aν+ χ5

)
and Σ−AB =

(
Σ−µν A−µ

Aν− χ5

)
. (4.4)

Two of these four 4-vectors {A+
µ , A

ν
+, A

−
µ , A

ν
−} are constrained to satisfy Fµν = 0 but the

other two can be used to define a non-vanishing Fµν in H. The general idea is to have two
pairs of vectors on two levels of ℵ when equation (4.3) is only a constraint on one such
level but we have not yet written the field strength tensor in H in the way that does this
while maintaining the physical interpretation of everything else in the theory. What we
have undertaken is to let there be two 5-spaces which generate a 10D stringlike boundary
condition where the two spaces are separated by a topological obstruction containing the
four spacetime dimensions of H: xµ. H is the 4D boundary where 5D Σ−1 is connected to
5D Σ+

1 and there is some subtlety associated with ∅ connecting Σ+
1 to Σ−2 since the level of

ℵ increases there. We might consider either obstruction, H or ∅ (or both), as a Goldstone
boson of the broken symmetry arising from the projection of U(1) θ∈ (0, 2π] onto a helical
interval θ∈ [−∞,∞] (a covering space) but, instead, we are considering the obstruction as
Minkowski space. However, this is the general idea of MCM quantum cosmology: the whole
universe is like one quantum of spacetime [2, 12].

As of the writing of this chapter in late 2017, more than eight years have passed since
reference [2] was submitted to arXiv. Over the following 3,000 or so days, we have refined
arguments, made some of them quantitative (recall that diagrams are already quantitative
topology to begin with), and still mostly conformed to the original theory which is the main
topic of this section. Here, we will go through reference [2], almost sentence by sentence,
and then we will also revisit the follow on attempt [7] submitted to arXiv two years later in
2011. It was in reference [7] that we coined the phrase “modified cosmological model.”

Reference [2] begins as follows.

“Consider the spacetime diagram in a region surrounding the big bang where
ct=0 corresponds to the apex of a quantum geometric ‘bounce’ rather than a di-
vergent singularity. At ct=0, allow the superposition bounce state to decay to two
time arrow eigenstates. By convention we say our universe is the eigenstate mov-
ing forward in time along the positive ct axis. The other decay product is another
universe experiencing forward flowing time in the direction of our negative ct axis.”

To expand on this, we note that the canonical spin algebra of operators on | ↑ 〉 and | ↓ 〉
can be used to describe the MCM quantum cosmology based on |t±〉. Consider, in analogy,
that a quantum mechanical state can be in a superposition of spin up and spin down so
that there is no preferred orientation for the net angular momentum in the ẑ-direction.
Likewise, we can simulate a big bang with no arrow of time as a superposition of two time
arrow eigenstates. H′ is spanned by the possible states of a system in a given moment with
no quantum mechanical time and this constraint of timelessness on the information in the
wavefunction is given by
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∣∣t?〉 =
1√
2

∣∣t+〉+
1√
2

∣∣t−〉 . (4.5)

This will also be a good model for describing the big bang, or the big bounce, or the
big crunch, or the singular topological obstruction that exists at the location of an MCM
observer. With these time eigenstates, we defined a superposition that gives no net arrow of
time in the present moment, which is singular. It cannot support an arrow which must have
a tip somewhere away from its anchor point. An absent arrow of time is a requirement for an
accurate representation of the big bang at the beginning of the universe before time existed,
or for a timeless Hilbert space of states at some given moment H′(t). With spin up and spin
down, there is no way to measure a state of zero net angular momentum for one quantum;
a measurement will yield either spin up or spin down. However, the observer cannot make a
measurement that would collapse |t?〉 into one of |t±〉 so the state of timelessness is persistent
and we should associate this with the timelessness of the present moment.

A common yarn in the teaching of quantum mechanics is to explain to students that
the orientation of the axis for the Ŝz operator is not relative to an objective background
but, rather, is only relative to the way the observer defines the eigenfunctions that describe
the possible outcomes of his measurements of angular momentum along an arbitrary axis in
3-space. Therefore, without repeating the entire history of quantum mechanics, when the
observer is invariably forced to observe time flowing in one direction as the present moment
keeps changing position in spacetime, that will set the analogue of Ŝz, call it T̂ , along the axis
of time. T̂ is the time arrow operator. We are using two universes U and Ū so the fermion
algebra may already contain the T̂ operator if we say that the two universes’ simultaneous
wavefunction transforms as a spinor. In that case, when Ŝz acts on spinors to give the
eigenvalues ±1/2, T̂ acting on universes will give ± so we would have T̂ =sign(Ŝz).

The potential energy landscape of the MCM is a periodic repetition of that shown in
figure 35. In one moment, the observer is drawn toward the future and again in the next
moment, and in the moment after that, etc. Time always marches on. This energy condition
is such that the farthest objects in the observable universe, i.e.: the objects most distant
on the observer’s past light cone, should appear to be accelerating away from observers on
Earth. This is exactly what is observed and called dark energy. Voilà! A Nobel Prize,
s’il vous plâıt. When we extend the periodic potential beyond one unit cell, we have to
introduce the transfinite component because the depth of the energy well has to get to
infinity before the next unit cell can start. This must be associated with the changing level
of ℵ that precedes the restoration of finiteness after each application of M̂3 (or M̃4.) It is
nice to see that forward flowing time and the accelerating recession of cosmological objects
at high redshift z >> 1 are two aspects of the same energy condition. In section III.9, we
showed how the metric predicts dark energy and expanding space, and now, with the inherent
chirological directionality of increasing levels of ℵ, we have shown that forward flowing time
is an additional implication of the MCM.

Reference [2] continues as follows.

“To allow dynamical interaction between the universes to take place via a fa-
miliar mechanism wrap the ct axis around a cylinder. The big bang occurs at φ=0
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Figure 35: This figure first appeared in a 2009 manuscript [2] rejected for publication by arXiv but later
published on viXra. This figure ignores the local energy wells of the observer and observables to
show that the mass-energy of the lattice site on the higher level of ℵ dominates on cosmological
scales. The energy curve defined by the two masses in figure 36 contributes as a infinitesimal
when taken in superposition with the energy curve in this figure because it is the energy well of
some m >∞ on a higher level of ℵ than the universe that contains the labeled observers and
observables.

Figure 36: In this figure of Newtonian gravity adapted from Wikipedia, the energy curve shows the local
landscape due to m1 and m2 which fairly well correspond to the observers and observables in
figure 35. Figure 35 does not include these energy wells because it demonstrates the cosmological
energy well of an entire universe on a higher level of ℵ.
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and the big crunch for each universe occurs at φ=π.”

When we say “allow dynamical interaction between the universes to take place via a
familiar mechanism” we refer to the mechanism by which ordinary masses gravitate when
they can be connected by a curve in a manifold, as in figure 36. The curve we refer to is
~r12, not the energy curve. When the connecting curves such as ~r12 are geodesics, they show
the path of an unaccelerated point mass in spacetime. When m1 and m2 deform spacetime,
the geodesics will be such the masses move directly toward each other (assuming there is no
angular momentum.) A point mass is a poorly defined object because there are no physical
point masses and, in any case, the geodesic equation unphysically ignores the gravitational
backreaction but these methods of approximation, together with the exponential maps that
approximate the relationship between a manifold and its tangent space, do altogether form a
framework for M̂3 that will say the theory is correct. It may even be that the two disparate
theories of modern physics can be connected through their methods of approximation more
easily than they might be connected in the exactly solvable analytical sector. On the cosmo-
logical scales inherent to general relativity, we can ignore, say, the backreaction of a hydrogen
ion against the gravitational background of a galaxy but the nature of these approximations
should be an important feature at the small scales expected of quantum gravity. Also note
that, in the MCM, the small scale of quantum gravity is actually a small number on a higher
level of ℵ so it is even larger than the cosmological scale.

The curve along which two masses gravitate can be Euclidean (Newtonian) ~rij or it can
be some other path in curved space that needs to be parameterized with an affine parameter
like λ in xµ(λ), or a quasi-affine parameter like χ5. In general, all of these curves are
conformally equivalent to a straight line with no curvature (or torsion), such as ~r12 in figure
36. Therefore, there is a conformal invariance between any curved chronological trajectory
through spacetime, generally parameterized as xµ(λ), and an axiomatically flat path across
the MCM unit cell parameterized with χ5 such that

x′(χ5) ≡ χα+(χ5
+) Φ̂j ∪ p∈ Σ∅ ∪ χα−(χ5

−) Φ̂j+1 . (4.6)

This representation shows the general structure under which we bisect π with a point and
then have two disconnected domains θ∈ (0, π/2) such that 0 is the location of the observer
and π/2 is at conformal infinity.1 If we envision the origin with two abstract directions χ5

±
attached then we might say that we could assemble 2π dimensionless radians of freedom from
two such arrangements of bisected π: one centered on the origin of H and another centered
on the origin of ∅. We should consider that the factor 2π in α−1

MCM inherits one π from the
zenith coordinate of one chart on S2 and another from the other zenith coordinate in the
second chart. When we bisect each π, we have four objects like π/2 on which we will shortly
propose to encode bispinor structure. In general, we can associate one chart with the unit
cell centered on H and the other with the unit cell centered on ∅. When considering two
different charts on S2, we are not constrained to take disconnected charts at opposite poles.
We might take two charts at the same pole where one chart is on S2 and the other chart is

1Conformal infinity is derived in most cases from tan(±π/2) = ±∞.
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over the hypercomplexly infinitesimal annulus around the origin of coordinates of the first
chart, as in reference [8]. Then these two charts cover an abstract S2 because the chart on
the small annulus is self-similar to the standard coordinate chart on S2 in every way.

One further thing that we will call attention to in the excerpt above is this: we wrote, at
that time, that both universes have a big crunch at φ=π but we might go a bit further now.
An easy way to model a topological defect might be to have one universe reach future timelike
infinity at φ= π/2 and the other at φ= Φ. To that end consider the operations in figure
37. On the right, where we apply 2̂−1 to go back to the union of two co-π̂s, there is a small
remaining element. On these small elements, we can define localized sections of finite width
that can house scaled coordinate space representations of quantum state vectors. The idea
will be to use

∫
dγ̂ to construct a new general relativity which can then serve as a dynamical

spacetime background included in the hypercomplex inner product 〈ψ; Φ̂j+1|ψ; Φ̂j〉 whose
remainder is written onto a segment like Φ − π/2. Using 2̂−1, we may reform U(1) and
then use π̂ to define the remaining interval as a compactified U(1) dimension. Note that
we are using the operator π̂ to construct a circle1 and that the π̂ MCM object is generally
associated with the U(1) electromagnetic theory. U(1) is the symmetry of a circle, hence π̂.

If we use Φ̂ on both co-π̂s separately, as in figure 38, then we can construct the system with
which we have argued against the Riemann hypothesis [8], as in figure 39. If we operated on

the circle with Φ̂ then all four intervals would be affected through the distributive property
of multiplication. Therefore, the operation with Φ̂ in figure 38, which does not satisfy the
distributive property, looks like a bispinor product. In future work, therefore, we should
consider the bispinor representation of the geometric basis of the manifold (its twistor space
representation) such that the eigenvalues of the metric are the {+−+−} components of the
ontological resolution of the identity and not the {− + ++} components of the ontological
basis. The properties of the ontological basis are manifest in the O(3,1) Lorentz symmetry of
spacetime fields that can be represented as objects depending on the bispinor representation
of the manifold’s cotangent basis, also called its 1-forms. dx is a one-form and the volume
element of spacetime d4x≡dxµ can be dγ̂ in twistor space... or these objects can be combined
in some such similar scheme. A good idea for further development will be to take the twistor
representation of the cotangent basis.

We have obtained, in figure 38, a hidden SU(2) symmetry exactly as required for elec-
troweak theory. In the process of doing so, each time we add a small U(1) symmetry, it
replicates the general idea of a compactified fifth dimension in Kaluza–Klein theory. It is
precisely the U(1) symmetry of the fifth dimension that distinguishes specific Kaluza–Klein
theories from general Kaluza theory. Considering the center of figure 38, if we say that
the two free segments are co-π̂s on Φ̂j+1 and Φ̂j−1 respectively then the repeating unit of
the lattice in this representation is equal to the Φ̂j ring with a little Φ̂j±1 sphere attached.
Although the standalone piece has one higher segment and one lower, we can consider the
repeating unit as one ring with one little sphere on one side. A 2-sphere and a circle are
constructed from three circles so this representation is evocative of the π3 term in αMCM .

We can obtain the line from the circle by taking the limit of the radius increasing to
infinity and this is how we can ensure the identical topological flatness of χ5 across the unit
cell: always use the level of ℵ so that R =∞ defines a straight line. Then the trajectory
across the unit cell requires a scaling ∞ Φ̂j→RΦ̂j+1 as H1→∅ increments the level of ℵ by

1The number π is sometimes referred to as “the circle number.”
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Figure 37: This figure shows how we can use the numbers in the ontological basis as operators to create
complex structures.

Figure 38: A further manipulation beyond those shown in this figure would be to change the level of ℵ in
the rightmost figure so that the radius of the large circle becomes infinite. If the operation is
applied judiciously then we could obtain a small sphere attached to flat space as is required for
the topology of electroweak theory.

Figure 39: When repeated many times, the operations in figure 38 can generate the nested fractal structure
developed, in reference [8], to argue against the Riemann hypothesis. The three spheres in this
figure are on different levels of ℵ which means that the radius of each larger sphere is infinite
with respect to the radii of the spheres nested within.
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one, and then ∅→H2 increments it by another during RΦ̂j+1→ 0 Φ̂j+2. Then H and ∅ are
out of phase as even and odd levels of ℵ. This is an important feature that we will return
to later in this section.

Consider a fundamental utility of the ontological basis {̂i, Φ̂, 2̂, π̂} in a simplified yet
descriptive manner. The MCM presupposes a cylindrical symmetry so we have π and 2 a
priori in the relationship C=2πR between the cylinder’s radius and its circumference. Use 2̂
to split the circumference into two intervals that will be the time axes of U and Ū . Splitting
two intervals at a point necessarily leaves one interval with a missing endpoint. Invoking the
physical constraint that the observer in U or Ū is between his past and future light cones,
we move a null point from the end of each interval to its center. This is shown in figure 38
after acting with Φ̂ but, presently, we let the null points go to the center after acting with
2̂ because we have not yet used Φ̂. Thus, we have separated the past and future of each
universe. We may derive from θ∈ (0, 2π] four intervals {ϑ+, ϑ−, ϑ̄+, ϑ̄−} all ranging from 0
to π/2, two of which will reach “the big crunch” at conformal future timelike infinity where
ϑ+ = ϑ̄+ =π/2 and the other two will have “the big bang” in their history at ϑ−= ϑ̄−=π/2.

Φ̂ will act on one interval from ϑ and one from ϑ̄ but we have not yet used Φ̂. In the ϑ
representation, there is no ϑ<0 but there is negative parameter when the parameter on each
co-π̂ is θ∈ (−π/2, π/2). Therefore, in Gaussian terminology two of these ϑ are inverse in θ

and two are direct, and that is a good motivator for the spinor product with Φ̂. When Φ̂
operates, it only stretches the direct (or inverse) intervals leading to future timelike infinity
in U and Ū . Here we have described θ and ϑ as the domain of chronological time x0 and, in
general, we can associate ϑ+>0 with ϑ that increases from H through the future light cone
or across Σ+ and then ϑ− > 0 continues to increase through the past light cone, or across
Σ−, on the way back to H.

Moving on with the review of reference [2], it goes on to state that, “Interaction through
the point φ = π is plausible since we are not considering any kind of conformal infinity
that would be required if our bangs and crunches were singular.” This passage refers to
the non-singular bounce of LQC but in the present formulation we do consider conformal
infinity; that which we do not consider is divergent infinity. The interaction in question is
the gravitational attraction of U and Ū through the bounce point which results in the effect
known as dark energy. It is “plausible” because we have added the chirological component
to the system such that the dead end at an ordinary singularity is replaced with the door to
a higher level of ℵ (as in figure 10.) This is obviously something that has been revised.

Instead of singularities or bounces at past and future timelike infinity, we have a new
concept of changing levels of transfinite infinitude (ℵ). The assumption of a non-singular
big crunch at the end of the universe was inherited from the bouncing framework but we
have subsequently generalized the MCM away from LQC so we also need to discuss how big
bangs or crunches relate to the present formulation in ?C. Currently, we take the singular
moment as the moment of the present H but, in the historical development, the singular
moment was the big bang. Along two co-π̂s (in U and Ū) we say that {ϑ−, ϑ̄−}∈(0, π/2) is
associated with the past and π/2 is the distance along {ϑ+, ϑ̄+} from the present to future
timelike infinity, which replaces the earlier definition “big crunch.” We say that 2̂ splits the
U(1) symmetry into a pair of co-π̂s and then we use Φ̂ to change lengths. The exact change
will be a property of the exact algebra but, for the purposes of qualitative discussion, we
presume that Φ̂ changes the dimensionless length between the present and future infinity
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Figure 40: The trajectory of maximum action has an intermediate path of integration that could lie in the
upper or lower complex half-plane.

Figure 41: When the interval θ∈(−π, π) is decomposed into four intervals of length π/2, one of the intervals
is unique because it has two null endpoints.

Figure 42: When we take the operator 2̂Φ̂2̂−1 such that Φ̂j→ Φ̂j+1, there is an intuitive association that 2̂
takes a qubit out of H1 at which point Φ̂ operates before we use 2̂−1 to put the qubit back into
H at H2.
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from π/2 to Φ. After we make this change and then recombine all four elements, two futures
and two pasts, into a circle, we will have a small extra interval of length |π/2−Φ| ≈ 0.05, as
in figure 37. We can further use π̂ to define the small remainder as a circle to make a small
loop attached to the original circle. These little loops will have relative length |π/2− Φ| on
the same level of ℵ as the big circle but length 2π on the level of ℵ directly associated with
the small element, as in figure 40. Figure 37 shows that Φ̂ has operated on only one of the
co-π̂s but if we use it on both, as in figure 38, then it is very easy to see that the topology
will support the path of integration shown on the right in figure 40. The convention in figure
40 shows that M̂3 increases the level of ℵ by two which was the original convention before we
showed a more compact mechanism [13] that increases the level of ℵ in unit increments. The

compact mechanism required that Φ̂ specify a point in the bulk of Σ+ specifically to avoid
increasing the level of ℵ by two during each M̂3, and now we have good evidence suggesting
that it should, in fact, always increase by two. Perhaps even levels of ℵ are on shell and
odd levels are off shell, or there exists some such condition that we will not clarify presently
where one level describes a hidden sector attached to every observable sector. In various
MCM references, we have made the argument that the observer connects two of {ℵ,H,Ω}
at each step of M̂3 so we are in good order say that the observer spans two levels of ℵ and
that, therefore, an increase of two levels is needed if M̂3 sends the observer completely into
the future.

Figure 41 shows the general principle of topology change in the MCM [5]. The figure
shows that one of the four four quadrants on θ ∈ (−π, π) is different than the other three.
Three of them have one missing endpoint and the fourth has two missing endpoints. This
gives the O(3,1) character of the system but we do not want this property when we set the
past and future light cones of U and Ū on four ϑ. Therefore, perhaps the odd and even
levels of ℵ shall refer to a temporal description, as with U and Ū , and a spatial description,
as in figure 41. In reference [7], we wrote the following.

Figure 43: This figure calls attention to the psychological nature of physics. This figure calls further attention
to the application of the sphere theorem to the framework depicted in figures 37-42.
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“We have assigned a spatial 3-sphere [xi] to each dimension of the tempo-
ral sphere [{t+, t?, t−}]. Space serves as the radial coordinate of the temporal
ball just as time serves as the radial coordinate in the 3+1 dimensional space of
[g ]eneral [r ]elativity. [sic] By alternating temporal and spatial spheres, diameters
are mapped to circumferences and it is clear that the MCM is a fractal matrix
theory of infinite complexity. The embedding and re-embedding is the physical
manifestation of T-duality.”

Note well, π̂ is exactly the map from a diameter to circumference, as in the ancient formula

C = πD =⇒ π̂ : D 7→ C . (4.7)

This can be written as

C = 2πR , so 2̂π̂ : R 7→ πR 7→ C . (4.8)

Perhaps on even (odd) levels of ℵ, we will construct temporal spheres like ϑµ and on odd
(even) levels we will construct spatial spheres like xµ. We also mention T-duality in this
excerpt. T-duality is the equivalence of theories under the change r→1/r and is, therefore,
exactly the inversion operation on the Riemann sphere. We invert it once to get from H to
∅ and then we uninvert it such that it goes to H on the higher level of ℵ. In general, we have
two dualities in the MCM: T-duality between x and 1/x, an also circle duality between x and
eix. Clearly, there is a lot of material to finalize and by now the reader should understand
that the purpose of this book is to discuss the material but not to finalize it.

Above we have taken π a priori as part of the MCM but we can do better, as in figure
42. We can begin with the Feynman theory wherein the the endpoints of the time axis are
not included and then operate on that axis with π̂ to get a circle ab initio. Then we apply
2̂Φ̂2̂−1 to increase the level of ℵ and, if we finish with π̂ as opposed to the π̂2 shown in figure
38, we will end up with a small embedded cylinder. If we say that the π̂ to the left of figure
42 operates on the Φ̂j level of ℵ then the second π̂ operates on the small interval at the right
of figure 42 because the large circular interval has been sent to Φ̂j+1 with 2̂Φ̂2̂−1.

Considering figures 38, 39, and 42, note the critical importance of π̂2 for constructing the
small embedded sphere. Furthermore, the reader is invited to recall the prominent role of
π2 in our derivation of the Einstein equation. In reference [4], we described a requirement
to “cast a factor of π2 into the information current.” Starting with the MCM hypothesis

ω3
∣∣ψ; π̂

〉
= iπΦ2|ψ; π̂

〉
, (4.9)

we can easily derive

8π3f 3
∣∣ψ; π̂

〉
= iπ2|ψ; Φ̂

〉
+ π2|ψ; î

〉
, (4.10)
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which has an extra factor of π2 in it. Therefore, using tentative notation, we can write

8πf 3
∣∣ψ; π̂

〉
· π2 =

(
i|ψ; Φ̂

〉
+ |ψ; î

〉)
· π2 . (4.11)

At this point, we can replace some prosaic “casting” with π2 ≡ π̂2 such that we use π̂2 to
construct the topology of the embedded 2-sphere.

In whichever manner we twist the lines and circles, we need to be able to define the cor-
respondence between the test particles that travel on them and the field representation in
the bulk that would specify the path of an off shell virtual particle. These paths cannot be
fully described with θ or ϑ but we have proposed to use Υ̂ to act with addition and multipli-
cation simultaneously. Keeping in mind that all of the above operations were multiplicative
in nature, and without going too far off on a tangent, this will be a good place to mention
a possible future definition for Υ̂ like

Υ̂ ≡ î+ π̂2̂Φ̂ . (4.12)

We can use î to add the bulk space beyond the scaffolding to what we have done with the
scaffolding itself in M̂3. We have associated Û ≡ î with ordinary quantum theory and i is
featured prominently in the Schrödinger and Dirac equations

i~
∂

∂t
ψ := Ĥψ , and i~γµ

∂

∂xµ
= mcψ . (4.13)

Among the most notable features of the motions derived from these equations is that the
quantum wavefunction will often penetrate the classically forbidden regions of the energy
landscape.1 If we consider the lines of the the figures in this section as strings then we
can send classical vibrations along them but those vibrations will never leave the lines that
represent the strings. In the quantum regime, the off-string forbidden region becomes al-
lowed. Therefore, if desired, we can encode the Dirac and Schrödinger equations on î, and
that leaves the other three operators for the topological deformations which create the little
SU(2) symmetry at every point in spacetime. In general, we say that the lines are associated
with real axes since, in the present convention at least, they have real length and we can add
to that real domain the entire bulk space of fields with imaginary components by, perhaps,
using Υ̂ as defined in equation (4.12). Earlier, we proposed to add matrix-valued or other

multiplectic coefficients to the derivatives in M̂3 ≡ ∂3 and the hatted objects in equation
(4.12) fit the bill.

To continue the review of reference [2], consider the statement, “We are dealing with
quantum geometric ‘tunnelling’ where everything remains pleasantly continuous.” We in-
herited this smoothness condition from LQC but, at the time of the appearance of reference
[2] in 2009, we had not yet made the connection to the Poincaré conjecture. That appeared

1They will always penetrate the forbidden region when the potential is physical, meaning that the energy differences are all
finite.
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Figure 44: The MCM proposes to wrap the ct axis of the Minkowski diagram around a cylinder.

about two years later in reference [7]. Originally, the motivator of a singularity-free universe
was “the repulsive force of quantum geometry” and, though not stated explicitly in 2009, the
lack of any singularities implies that a trivial manifold has to be diffeomorphic to the real
universe, and that, therefore, in qualitative terms of loose language, all of the the topological
deformations in figure 44 are allowed.

We have migrated away from LQC as a motivator so now we can motivate the diffeo-
morphism in another way. First, remove from all of spacetime the interiors of any event
horizons that contain topological singularities. We can leave other kinds of singularities in
the fields defined in the universe1 but, to construct a trivial 3-ball, there can be no gravita-
tional singularities where the curvature of the manifold becomes infinite. We have removed
the interiors of all the black holes so there are no places where the manifold’s continuum
breaks down but, now, we have punched holes in it, meaning that the topology is still not
a trivial 3-ball. More changes are required. Therefore, increase the distances ~rjk between

the centroids of all the event horizons such that ~rjkΦ̂
1→~rjkΦ̂

2. We have not increased the
effective radius of the black holes so their sizes are on the order of an infinitesimal with
respect to the new scale of the universe on the higher level of ℵ. Even these pointlike black
holes prevent us from assembling a trivial 3-ball so we need to make a trick. We know that
we can use the Banach–Tarski result to add points so we can also go in the reverse direction
and remove all these points leaving a smooth manifold which is a topological 3-ball. Even
then, there remain questions about the derivatives at these points which would break the
diffeomorphism down to simple homeomorphism. This is insufficient for the purposes of the
MCM; we need full diffeomorphism.

In an ordinary shrinking operation, where the sizes of black holes in the universe shrink
instead of the distance between them increasing, the manifold is smooth up to a point (after
shrinking the volume of the event horizon to a point) which is then removed “manually” to
reduce the size of the object to zero. It is normal to remove these points so that the manifold
is perfectly smooth as needed to construct a 3-ball but, even then, the fields and tangent fields
will have kinks at the location of the point which was removed. This means that the model
universe has only been made homeomorphic to the 3-ball but not diffeomorphic. When we
increase the distance between the singularities instead of reducing their horizons, the picture
is different. Since the mass of the singularity is mBH =mΦ̂1, it will only have an interaction
distance of zero in the universe that exists on Φ̂2. Then the tangent fields will not have kinks

1An example of the allowable singularities is the the infinite electrical potential predicted at the tip of sharp, charged
conductor.
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and we obtain diffeomorphism because masses like m=0 do not curve spacetime. Therefore,
even when the real universe does contain singularities we can still say that it is diffeomorphic
to the 3-ball: we simply have to encode the singularity qubits on a lower level of ℵ. When
we want to consider singularities on our cosmological 3-ball, we only have to zoom in on the
empty fabric of the manifold to consider a local region around the point where we place the
singularity for consideration. We call the this local region the hypercomplexly infinitesimal
neighborhood around the point to emphasize that this is different than an ordinary rescaling
to zoom in on a local neighborhood. The hypercomplexly infinitesimal neighborhood around
a point exists on a lower level of ℵ than the initial framework of analysis. In this way, we
can add singularities as small perturbations on a smooth manifold without disrupting the
all-important topological invariance. The topological invariance of the MCM unit cell is the
foundation of everything and must not falter.

Reference [2] progresses as follows.

“The gravitational interaction [between the time arrow eigenstates ] acts along
a single axis so anisotropies in one universe’s matter density do not appear as gra-
dients in force on the other universe. This is in good agreement with the uniform
[effect ] of the controversial cosmological constant.”

Indeed, it is in good agreement. The point made here about matter anisotropy is subtle
but vital. The accelerating redshift z of deep space objects (dark energy) is observably uni-
form across the universe so, given a pair of real physical universes with clumpy features, we
are constrained in our modeling of dark energy as an interaction between them such that
these clumpy features do not lead to clumpy dark energy. We can suppress the anisotropic
clumpiness in the interaction by transmitting it along a 1D manifold χ5 that connects uni-
verse A with universe B, that is, it connects H1 to H2, instead of another idea where some
4D vector field grows off the mass distribution in universe A, reaches across the MCM unit
cell, and then acts on universe B as an anisotropic effect that cannot be interpreted as dark
energy. A 4D vector field connecting the two universe is unallowed both because it would
transmit the information about clumpiness and it would mean that A and B were really just
one universe with a large void in the middle. There would be no fifth dimension.

Moving forward with the review, consider the following further passage from reference [2].

“Given an assumption of interaction through the big crunch, forward in time
points ‘downhill’ toward a lower energy state [as in figure 35.] Observations have
been made supporting this. Since we are further along in time than the astrophys-
ical objects we observe, we can think of ourselves as deeper into a gravitational
well than these [light years ] distant objects. If this were so, we would be accelerat-
ing away from the observed object images. This is an alternative interpretation of
data suggesting that the more distant an object lies, the more quickly it accelerates
away from us. Acceleration is relative and in the [MCM ] it is more intuitive to
conclude that this data shows us to be accelerating away from the past, toward
the future.”

At this point, we are forced to concede that we should have followed the example of
Einstein and published a few very short papers rather than putting three sections into one
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short paper1 [2] because the groundbreaking, Nobel Prize worthy2 result that appeared in the
third paragraph of reference [2] seems to have been lost on readers by the time they finished
reading the eighth and final paragraph. This all-important third paragraph is reviewed
extensively in reference [54]. Higgs received a Nobel Prize for his brief observation in a
two page paper [34] that a certain differential equation could be recast as a wave equation
but reference [2] is not about differential equations. It is about topology. The language of
topology is not differential equations so detractors err when they insist that Higgs’ paper
is categorically better than reference [2] on account of his research in differential equations
being reported in the language of differential equations while our research in topology was not
also reported in the language of differential equations. Topology does have its own jargon but
that jargon is in support of the diagrammatic component; it is not the primary channel for
communication of topological ideas. In any case, the point here is not to argue for a Nobel
Prize but, rather, to argue that reference [2], with its groundbreaking and likely correct
explanation for dark energy, was good enough to appear on arXiv alongside thousands of
other papers that will be never be cited and possibly not even read.

The above excerpts paraphrase the first section of reference [2] and the second section be-
gins stating, “The only thing relevant to the quantification of entropy is a system’s macrostate
as defined by a set of parameters.” The macrostate of H is determined by the parameters
{xµ, xµ±, x

µ
∅, χ

A
±, χ

A
∅}.3 A key feature of the MCM is that we constrain these parameters in

the boundary condition defined by the MCM unit cell; the phase space does not run rampant
across all of parameter space. Therefore, in the MCM, we have already laid the groundwork
for a new push toward a general relativistic statistical mechanics.4 As of 2010 no such sta-
tistical mechanics had yet been devised and, as of this writing in 2017, no such mechanics
are known to exist to this writer.

Another key feature that uncovers a nice tunnel to complexity can be seen in the MCM
parameters {xµ, xµ±, x

µ
∅, χ

A
±, χ

A
∅}. The fifth chirological coordinates χ5

± have a connection
with a hypothetical fifth chronological coordinate x4

±. It would be attached to xµ± as the
de Sitter parameter of curvature for the embedded metric on the slice at each value of χ5

±
but there is no χA corresponding to xµ in the way that we take for the ± and ∅ coordinate
variants. It is quite common to describe the coordinates in dS or AdS as xa when the the
fifth “coordinate” takes the same value everywhere in the model universe whose curvature
is equal to x4 (and the lower case Latin index runs from zero to four.) Since Σ± do not
contain their boundaries at χ5 = 0, and since H is a 4D analytical Minkowski space, there
is no connection for χ5 to a hypothetical x4. Recall that if we adapted the xa coordinates
of de Sitter space to Minkowski space then the fifth coordinate would be zero and the
metric would not be invertible leading to a host of related technical problems. None of
these problems are intractable but, in the MCM, we say that H is purely 4D and none
of those problems exist. However, we can use a 5D analogue metric for ∅ since we will
never need to invert its metric. The only common requirement for an inverse metric is in
the connection coefficients but we do not anticipate needing to know those for ∅ where the

1Here we do not mean to imply that the sections should have been rewritten. We only mean to say that the paragraphs in
each section of reference [2] should have been divided among three papers rather than three sections of one paper.

2It is worthy of a Nobel Prize upon confirmation, as per usual. However, it is unlikely that this writer would bow his head
to the King of Sweden to accept the medal or even don the clown costume preferred by the attendees of such ceremonies.

3There are four xµ variables and four χA variables so, if desired, we could condense the notation so that the only relevant
parameters are xµν and χAµ.

4See reference [55] for an introduction to general relativistic statistical mechanics.
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only purpose is to smoothly sew together χ5≡χ5
+⊗χ5

∅⊗χ5
−. Therefore, we can encode the

chirological metric Σ∅
AB at χ5

± = ±∞ with matrix valued coefficients Σ55 pertaining to an
algebra altogether disconnected from everything described by the coordinates of the unit
cell. This algebra would contain the operations that construct the cosmological lattice from
any given qubit. As Dirac added matrix coefficients to the Klein–Gordon equation, we can
add any kind of multiplectic structure here. Operations such as rotations and inversions, and
all the mundane topological manipulations we have motivated for the MCM, are typically
described in equation form with matrices. Rotation matrices, shear matrices, and the like
can be encoded in the fifth diagonal position of a hypothetical metric ΣAB which would
define the chirological line element if H was actually embedded in a 5-space. We could
embed it in 5-space, if we wanted to, but we have designed the MCM unit cell such that
H is topologically a surface on the terminating edge of a semi-infinite 5-space: either Σ+

or Σ−. Rather than using an obscure corner of H in x4, we will use an obscure corner of
∅ which was already obscure to begin with. Therefore, we motivate the concept of double
orthogonality between the hypercosmological lattice and the dynamics inside a particular
universe H.

Reference [2] continues as follows.

“[C ]onsider the following topological manipulations [(figure 44.)] The big bang
and crunch are identical and may be mapped into each other by twisting the ct
circle into a figure eight. Twist it once further so that time forms a circle once again
but now [the forward time direction] for each universe is in the clockwise direction.
Finally center the dynamics on the bounce state so the death and rebirth of each
universe is schematically clear.

“In the final frame of [figure 44], the semicircle on the left represents our per-
ception of the larger system just before the crunch. Our universe is nearing a state
of maximum entropy and the reverse time universe is converging on its minimum
entropy big bang. After the bounce we again find one universe at a maximum of
entropy and another at a minimum. As there is no way to tell which is the for-
ward or reverse time universe, this interaction is analogous to the rearrangement of
identical particles — a process long known to be isentropic. To alleviate problems
with human intuition in perceiving the flow of time, let us replace the spacetime
diagram with the familiar Feynman diagram where a rigorous framework is already
in place for dealing with interacting bodies moving in different directions through
time [figure 45]. If we give ourselves fully over to the Feynman diagram, we should
consider the reverse time universe to be the [anti-particle] of our universe. Then
it has negative baryon number and the greater system at hand becomes baryon
neutral in good agreement with predictions.”

This excerpt contains two further insights that are good ideas on the order of the good
idea about dark energy. Thermodynamics is (mostly) beyond the scope of this book but the
other idea embodied by figure 45 is very much in scope. Most of the mathematical content of
the early MCM papers was encoded in the diagrams but we used Feynman’s formulation of
the path integral as an analytical foundation. We did not reproduce in 2009 what Feynman
had written 70 years earlier but Feynman’s results did exist and did serve as the foundation
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Figure 45: This figure show the isomorphism of interacting universes in the MCM with interacting fermions
in QED.

of reference [2], and all the subsequent work in this research program. Detractors will surely
claim that if we have not transcribed Feynman’s words then they could not have possibly
served as a rigorous analytical foundation for the work in this research program. However,
reasonable people can not possibly accept detractors’ faulty argument. The isomorphism
between Feynman’s idea and the MCM, as in figure 45, is absitively posolutely undeniable.

The final bit of this excerpt has to do with the matter/anti-matter imbalance that we
claim to solve without addressing the Sakharov conditions.1 It is possible that the MCM
has subsequently and incidentally conformed to those requirements but it will be another
topic for future inquiry to examine whether or not the theory predicts a matter/anti-matter
imbalance in each individual universe. One likely motivator for this imbalance is that t+
and t? must both be associated with forward time so that there is a fundamental imbalance
between {t+, t?} and {t−}. This imbalance might further be connected to the fractional
electric charges of the quarks: +2/3 and −1/3. Another motivator for an imbalance is that
infinity is not symmetric about the origin. Recall that the ordinary concepts of plus and
minus infinity do not carry over into the framework of hypercomplex analysis. We can have
plus and minus infinity on Φ̂j but infinitely big Φ̂j+1 lies at positive infinity and infinitely
small Φ̂j−1 lies at the origin. We have defined Φ̂ as a 1D object pointing though, or to, future
timelike infinity so it cannot point to the entire ring at infinity that would be symmetric
around the origin. That would require Φ̂ to also point to spacelike and null infinity but
we have it not defined it to do that (yet.) Asymmetry about the origin induces a lack of
symmetry in the related analytical framework and we might try to associate that with the
non-vanishing baryon numbers of the two individual universes U and Ū .

The above concludes what we will repeat from 2009’s reference [2] and, now, we will
continue the theme of this section with a few excerpts from reference [7]. Just as the theme
of this section has been to rehash reference [2], the purpose in producing reference [7] in 2011
was to rehash it, and also to see if arXiv would accept a manuscript typeset in LaTeX with a
lot of (a fair amount of at least) irrelevant prose added. They did not and had instituted an
endorsement system since this writer’s first attempt to publish with them in 2009. In 2011,
this writer obtained an endorsement from Pablo Laguna and sent a LaTeX manuscript to
arXiv again. Thereafter, arXiv both rejected the manuscript and revoked the endorsement
according to some unpublished censorship criterion that many who publish on arXiv might

1The excerpt states that there is no imbalance but that is only when considering U and Ū together; within U there is still
an imbalance.
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believe does not exist.
Reference [7] begins with the following irrefutable statements that detractors have surely

sought to refute: “A new paradigm is needed in physics and the MCM is such a construction,”
and, “Diagrams are used in physics to transmit information with a clarity not present in
excessively quantified arguments.” Not only was a new a paradigm needed around 2009-2011
but, despite the laborious, decades-spanning efforts of those to whom the MCM’s detractors
show good will, new paradigms have been few and far between. Most paradigmatic pro-
posals can be ruled out in minutes and supersymmetry — the main unrefuted paradigmatic
proposal, possibly even irrefutable, as in “not even wrong” — isn’t so super.1 Therefore, the
scientific merit of the MCM is self-evident when it presents a novel new paradigm falsifiable
in many ways, most notably in its prediction for new spin-1 fundamental bosons. Note that
a paradigm is one thing and a formal mathematical theory polished by thousands of the
world’s best and brightest over a century of sustained collaborative effort is quite another.
References [2] and [7] describe a paradigm, or what might be called a framework, or simply
a new idea. All formalized theories are built on the new ideas that preceded them. Indeed,
history shows that, between formulating an idea and polishing one, the formulation is the
bottleneck which throttles progress in physics.

Misner, Thorne, and Wheeler write the following about diagrams in reference [27].

“Pictures are no substitute for computation. Rather, they are useful for (a)
suggesting geometric relationships that were previously unsuspected and that one
verifies subsequently by computation; (b) interpreting newly learned geometric re-
sults.”

The primary output of this MCM research program has been to suggest the geometric re-
lationships that produce physics’ three most important dimensionless constants {αMCM , 8π,
1/4π}. When detractors focus only on the computational component, which is not primary
in this research program, they ignore that the main difficulty in physics in recent decades has
been the lack of any new geometric relationships on which new computations could be based.
After studying physics in college for almost a decade, this writer became familiar with the
general framework of physical computation and sought to develop a new set of geometric
relationships of the type that would be relevant. We do not disagree with Misner, Thorne,
and Wheeler when they claim that pictures are no substitute for computation, but we do
disagree with detractors who claim that pictures are worthless without computation.2 Fol-
lowing Misner, Thorne, and Wheeler, we must conclude that the pictorial component should
precede the computational component. Therefore, considering that physics is a collabora-
tive effort with no one person doing the entire thing, it is most odd (and indeed personally
vexing to this writer) that other physicists have not been publicly excited at the possibility
of making new computations based on the MCM geometry. Indeed, in analogy, it is as if
detractors believe that the machinist who mills a part for the LHC should not be paid or
praised for his work because he did not also assemble the LHC himself, interview and hire

1In the paradigm of supersymmetry there is a rotation that will swap fermions with bosons and the MCM contains this
symmetry. We simply associate fermions with chiros and bosons with chronos so that any rotation which swaps x0 with χ5

necessarily swaps bosons with fermions.
2We in no way imply that this research program is devoid of computation. We only allude to the type of very involved,

tedious calculations that detractors look for when they scan over papers without reading them.
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all the staff at CERN, run the machine and do the full data analysis by himself, and also
organize the conferences in which he might disseminate his work.

During this writer’s time in academia, 2003-2011, it became apparent to him that the
area of critical need in physics was definitely not in the computation department. The
critical need was in the conceptual department and, although this writer has supplied an
exquisite concept to the physics community at large, none of the other physicists will admit
to making the computations which must follow. This writer concedes that the computational
component is usually considered the primary component in modern physics but detractors
should concede that such is likely the main reason for physics having gone into a stall for
so many decades. Computation is no substitute for creative imagination. While we may or
may not have misquoted Einstein in reference [3], but it is widely accepted that Einstein
said, “Imagination is more important than knowledge. For knowledge is limited, whereas
imagination embraces the entire world, stimulating progress, giving birth to evolution.” In
this research program, we have sought to blend knowledge with imagination to derive a new
paradigm without becoming bogged down in the irrelevant technical details that detractors
are so in love with. Rather than work out the details they would like to see for themselves,
detractors have chosen to block both progress and evolution seemingly out of spite for this
writer’s creativity and outstanding mastery of the foundations of physics.

To continue the review of reference [7], consider the following.

“Perelman’s [and Hamilton’s ] proof of the Poincaré conjecture can be applied
to LQC in a way not possible with other cosmologies. The conjecture is this: every
simply-connected closed three-manifold is homeomorphic to the three-sphere. Bo-
jowald has shown that the divergent singularities of classical [g ]eneral [r ]elativity
do not exist in Nature. Given this, the Poincaré conjecture can be applied to LQC
as: every simply connected, closed three-manifold is diffeomorphic to the three-
sphere.”

In 2011, we presumed that singularities do not exist in Nature due to the principles of LQC
but now we can completely ignore LQC and say that singularities don’t make our theory
explode due to the axioms of hypercomplex analysis in the theory of infinite complexity.
With ?C numbers, we can embed singularities in a non-singular 3-ball as perturbations on
a lower level of ℵ. This is very good because singularities are generally believed to exist in
the physical universe on the interior of real black holes. Analyses of other theories run into
a dead end at infinity but hypercomplex analysis is transfinite so there is no dead end.

It is most interesting to note that we began with a solution to a Millenium Problem and
then progressed to a solution of another one regarding the Riemann hypothesis [8] about five
years later. Detractors must acknowledge the validity, and now proven superiority, of using
geometry rather than differential/integral equations as the mathematical tool driving new
concepts.

Continue to consider reference [7] with the following.

“The conformal equivalence of the Minkowski diagram and the Penrose diagram
[figure 46] is trivial. The universe defined by I and II in the Penrose diagram travels
forward through time and this motion constitutes a component of its 4-momentum.
If momentum is conserved, the big bang must have thrown an equal amount of
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Figure 46: On the left is the Penrose diagram of a Schwarzschild black hole. On the right is a quasi-Minkowski
diagram describing the big bang. It shows two future light cones opening in opposite directions
away from the big bang. The black arrows on the right indicate the arrows of time in the universes
U and Ū .

matter and energy along both time directions as in [figure 46]. This is not posed as
an assumption but rather [as ] an absolute fact of momentum-conserving Nature.

“Regions III and IV of the Penrose picture are unphysical in the [standard cos-
mological model ]. This fact stems from the big bang singularity forbidden in LQC.
In the present divergence-free paradigm, all four regions are physical and coexist.
Penrose’s reverse time description of III and IV is accepted without question in the
MCM; such a reverse time regime is needed to satisfy [conservation of momentum].

“In [figure 46], region A is a conformal map of Penrose regions I and II. Region
B represents Penrose III and IV. Spacelike regions C and D are orthogonal to the
Penrose diagram and do not appear in it.”

This excerpt contains one of the MCM’s finest qualities: conservation of momentum. The
MCM does universally respect conservation of momentum but ΛCDM cosmology can not
honestly put that feather in its hat.

The comparisons between {I,II,III,IV} in the Penrose diagram of a Schwarzschild black
hole (figure 46, left) and {A,B,C,D} in the Minkowski diagram (figure 46, right) were framed
around the idea of the bounce being at the big bang. The minimal Schwarzschild model of a
singularity in spacetime is a good model for the big bang singularity in an abstract analytical
manifold that we can use as a proxy for the spacetime which did not exist at the special
moment where everything in the universe was condensed to a point (or however small the
apex of a quantum geometric bounce is taken to be.) We have subsequently migrated to
the framework in which the singularity is associated to the present moment H and we have
not much treated the other universe Ū which we call Penrose III and IV. Furthermore,
the Penrose diagram is 4D so the full extension to the high dimensional MCM has a lot
more complexity than the one-to-one correspondence of regions suggested in figure 46. For
instance, one particular issue is that it makes sense for U and Ū to be next to each other
at the big bang but it is unclear what that might mean at an arbitrary time during the late
universe. One feature to note is that, since we have encoded the past of H on ϕ̂ instead of
Φ̂j−1, there is room to say that U and some Ū are still adjacent at every moment and shortly
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we will make a neat connection in that regard.
One of the first things to note about Penrose diagrams, which Penrose himself called con-

formal diagrams, is that they do explicitly contain points at infinity which are not necessarily
included in the Minkowski diagram. Therefore, the main venue for Minkowski diagrams is the
description of calm spacetime around an inertial (Lorentz) frame and the Penrose diagram is
better suited to describing black holes and cosmologies. The well known Penrose diagrams
of the different black holes are not themselves so important for the MCM because they only
describe the slice H, and not the bulk hyperspacetime or the requisite non-commutative
aspects of chirological time, but Penrose’s ideas about conformal infinity are completely in-
dispensable in the MCM. Conformal equivalence in spacetime is always reducible to a Penrose
diagram of some sort (a conformal diagram) and the MCM is completely dependent on that
equivalence. We say that two manifolds are conformally equivalent if the line element in one
can be written in terms of the other as

ds2 = Γds̃2 , (4.14)

where Γ is some conformal scale factor. Penrose’s idea of a map between physical space-
time and another manifold where the location of infinity lies at a location specified with a
finite parameter is the foundation of just about everything we call hypercomplex analysis.
Generally, we derive a map from infinite to finite with some change of coordinates like

τ = tan(ρ) , where tan
(
±π

2

)
= ±∞ . (4.15)

This will put infinity at the endpoints of the four intervals ϑ ∈ (0, π/2) introduced above.
Penrose’s seminal insights into conformal infinity are reported in reference [52]. That paper
was reproduced by Springer in 2010 with a well deserved label: Golden Oldie. We will study
reference [52] more closely in section IV.4.

Before moving on with the review of reference [7], consider what Hamilton writes about
Penrose diagrams in reference [56].

“The Penrose diagram shows that the horizon is really two distinct entities,
the Horizon, and the Antihorizon. The Horizon is sometimes called the true hori-
zon. It’s the horizon you actually fall through if you fall into a black hole. The
Antihorizon might reasonably be called the illusory horizon. In a real black hole
formed from the collapse of the core of a star, the illusory horizon is replaced by
an exponentially redshifting image of the collapsing star.[sic]

“However, the Schwarzschild geometry has a simple mathematical form, and
that form can be extended analytically. The mathematical extension consists of a
second copy of the Schwarzschild geometry, reversed in time, glued along the Anti-
horizon. The complete analytic extension of the Schwarzschild geometry contains
not only a Universe and a Black Hole, but also a Parallel Universe and a White
Hole. This is simply a mathematical construction, with no basis in reality. Still,
it is cute that even the simplest kind of black hole, a Schwarzschild black hole,
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harbors alien mathematical passageways.”

Where Hamilton writes, “the illusory horizon is replaced by an exponentially redshifting
image of the collapsing star,” he fairly concisely sums up what Poplawski was writing about
in his prolific “Is the Universe Inside a Black Hole?” publications. When the whole universe
is inside a black hole, rather than the redshifted image of a star we will see the redshifted
image of the whole early universe showing up as dark energy. In the MCM we describe dark
energy as inverse radial spaghettification and this is the gist of it. Furthermore, it does not
appear that Hawking, in his initial derivation of his eponymous radiative effect, has made
allowances adequately for the “alien mathematical passageways.”

During the time that a large portion of physicists were preoccupied with firewalls versus
complementarity instead of the MCM, 2012 and the following years, it was postulated that
one of the following three things must be false [57]: “(i) Hawking radiation is in a pure
state, (ii) the information carried by the radiation is emitted from the region near the
horizon, with low energy effective field theory valid beyond some microscopic distance from
the horizon, and (iii) the infalling observer encounters nothing unusual at the horizon.” It is
mind-boggling to this writer that hundreds or thousands of physicists juggled the “rigorous
mathematical implications” of (i-iii) without considering that none of their juggling was
rigorous at all because Hawking’s result on which they were building was not rigorous to
begin with. To this writer’s knowledge, no one, at any point in the well published debate,
ever pointed out that the entire principle of firewalls or complementarity was founded on
Hawking’s non-rigorous result. As a last aside before continuing with reference [7], note the
following from reference [5].

“Consider Hawking radiation in the context of topological obstructions. Near
the horizon there is a quantum fluctuation and one particle starts falling inward
before it annihilates with its partner. Once its trajectory pierces the horizon, its
phase space is spontaneously truncated so that no future trajectory ever leaves the
interior of the event horizon. (In reference [13] we showed how a fractal embed-
ding of event horizons in a charged, rotating black hole is a good descriptor for
cosmological lattice translations.)

“The radius of the black hole is proportional to the mass enclosed so it has
respective radii rout and rin before and after the particle falls behind the horizon.
When is the moment that the particle’s phase space changes? It can’t change until
the particle passes the horizon, and when it does the black hole’s radius has already
changed to rin meaning the particle is inside by more than a differential element of
distance. Hence the moment we are examining can no longer be the moment the
radius changed. This is an unresolved paradox.

“To derive Hawking radiation, it is necessary to advance a trajectory from rfar

to rclose. When the trajectory is very close, all the relevant information is exported
to a parameter file. The information is injected inside the black hole and then
someone starts the stopwatch running again. With one particle inside, the other
escapes as Hawking radiation despite there being no physical trajectory through
the horizon.”
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Figure 47: This figure shows the general superposition of positive and negative time that the observer must
occupy when he is unable to make a measurement to determine if he is in |t+〉 or |t−〉.

Alien mathematical passageways indeed.
Returning to reference [7], we treat an experimental constraint on theorists’ ability to

guess random cosmologies as follows.

“The WMAP data rules out the curvature of the universe postulated here. To
avoid this contradiction let us assume WMAP observes a superposition of |t+〉 and
|t−〉 so that |t?〉 = α|t+〉 + β|t−〉 as in [figure 47]. Then WMAP samples two op-
positely curved spaces which obey the superposition principle. The result is the
observation of flat space. [O ]bservers will never be able to say if they belong to |t+〉
or |t−〉. The wavefunction is diffuse and the postulation of |t?〉 is confirmed. When
an observation cannot be made, both possibilities must coexist as a superposition
of states.”

NASA’s WMAP website [58] reports the following about the curvature of the universe.

“The WMAP spacecraft can measure the basic parameters of the Big Bang the-
ory including the geometry of the universe. If the universe were flat, the brightest
microwave background fluctuations (or “spots”) would be about one degree across.
If the universe were open, the spots would be less than one degree across. If the
universe were closed, the brightest spots would be greater than one degree across.

“Recent measurements (c. 2001) by a number of ground-based and balloon-
based experiments, including MAT/TOCO, Boomerang, Maxima, and DASI, have
shown that the brightest spots are about 1 degree across. Thus the universe was
known to be flat to within about 15% accuracy prior to the WMAP results. WMAP
has confirmed this result with very high accuracy and precision. We now know (as
of 2013) that the universe is flat with only a 0.4% margin of error.1 This suggests
that the Universe is infinite in extent; however, since the Universe has a finite
age, we can only observe a finite volume of the Universe. All we can truly con-
clude is that the Universe is much larger than the volume we can directly observe.”

1A likely unrelated point of interest is that αMCM disagrees with αQED by about 0.4%.
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One of the main differences between references [2] and [7] is the embedding of flat space-
time in the latter between two curved spaces: hyperbolic and spherical. During the prepa-
ration phase of reference [7], this writer had not yet been expelled from Georgia Tech; that
would not happen until the month following the attempted publication of reference [7]: De-
cember 2011. While doing unrelated professional research at Georgia Tech regarding shock
induced phase transitions in bulk metallic glasses, this writer had a weekly meeting with
Seung-Soon Jang who was co-advising this writer’s professional research with Naresh Thad-
hani. In these weekly meetings, we spoke not only about glasses but about scholarly things
in general. On a particular day, likely in October 2011, this writer was explaining to Jang
that the WMAP result which shows a flat universe prohibits the kind extra dimensions that
now constitute Σ±. When this writer told him, “Extra cosmological dimensions are ruled
out,” he responded, “No, I don’t think so.” This writer subsequently verified the veracity
Jang’s statement and, upon deep contemplation, the extra dimensions were added to the
MCM. Jang’s comment was at least as great an influence on the MCM as the lectures given
by Ashtekar and Penrose and has previously gone unmentioned. This writer extends his
gracious thanks to Seung-Soon Jang and acknowledges learning the Greek word chiros after
inquiring about the names of some of the computing clusters in Jang’s group. One was
named Veritas and another was named Chiros, and there were a few other clusters.

The excerpt above finishes with a statement that the universe is much larger than what
is observable so we are drawn toward a comparison with the topological system derived in
reference [8] wherein we study the Riemann sphere. When considering the hypercomplexly
infinitesimal discs around the polar singularity on S2, we were able to define them as flat
by taking the radius of the curvature of the sphere as infinity. Therefore, a similar principle
may be at play in the physical universe where our local region of flat spacetime smoothly
transitions into non-vanishing curvature beyond the CMB.

NASA’s WMAP website [58] reports the following about WMAP in general.

“The Wilkinson Microwave Anisotropy Probe (WMAP) mission reveals con-
ditions as they existed in the early universe by measuring the properties of the
cosmic microwave background radiation over the full sky. This microwave radi-
ation was released approximately 375,000 years after the birth of the universe.
WMAP creates a picture [figure 48] of the microwave radiation using differences in
temperature measured from opposite directions (anisotropy). The content of this
image tells us much about the fundamental structure of the universe.”

The proper age of the universe t=375, 000y corresponds to the time of baryogenesis. One
second after the big bang, the universe was much too hot for baryons such as nucleons to
form. Even at that early time, the age of the universe was already far beyond the inflationary
epoch which itself took place after the universe had fully transitioned out of the Planck epoch,
which had some non-deterministic origin in a big bang or bounce of some variety (according
to ΛCDM.) Hundreds of thousands of years later, around t=375, 000y, the universe cooled
off enough for hydrogen atoms to form. At that time, the fluid of the universe became
transparent to electromagnetic radiation. The cosmic microwave background is the farthest
(oldest) thing we can see in the universe because, for t < 375, 000y, all the photons were
getting knocked around in the pre-baryonic plasma. For this reason, the CMB is sometimes
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Figure 48: The results of the WMAP experiment show that the angular scale of temperature fluctuations in
the cosmic microwave background is about 1◦. This implies that the spacetime on the interior of
the CMB has very little or no net curvature.

called the surface of last scattering. Frequent scattering means we cannot infer that a
photon’s source must lie along the path that the photon took to reach a detector on Earth.
For photons created after t=375, 000y, when the universe became clear, most of the photons
in the universe that come to our telescopes get here along a straight path. When a telescope
detects one of these photons, we have good reason to conclude that the photon was created
in the region of sky at which a particular telescope is pointed at the time of the detection.
When we detect CMB photons, there is no expectation that the photon was created in the
region of sky that is the the object of the detector.

We see that, in the canonical ΛCDM framework, there are many nested layers of complex-
ity between the present day and the big bang: last scattering, inflation, the Planck epoch,
and a non-deterministic first moment of the universe after the singularity. Therefore, we
have good reason to say that our own hand waving between a pointlike big bang and a non-
pointlike bounce is likely to be a subset of the canonical hand waving in ΛCDM.1 In ΛCDM,
there is significant hand waving when we presume that the cosmological topology is such
that the special relativistic light cone can be analytically continued all the way back to a
singularity at t=0. This topology is valid for the present day and the early universe but it is
not valid for the very early universe. Therefore, we have good reason to move the bounce to
H and then set the big bang or the big crunch at ∅ where we have a fifth diagonal term in the
metric Σ∅

55 which will modify the topology. If we want to use a single topology for the entire
lifetime of the universe then our chosen lattice hypercosmos model means that “cosmological
phonons” could come into the universe from the past or the future (the bang or the crunch)
and this is in line with our repeated calls to include dependence on the advanced time in
the field equations of Σ± and H. The only place that we are modifying ΛCDM is in the
early universe that we cannot see because the universe was at that time filled with plasma,

1This particular circumstance of hand waving was confined to the early MCM only. We do not presently wave hands in this
fashion because there is no bounce in the modern iteration constructed about some present moment.
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and plasma physics is the canonical example of why it is sometimes necessary to include the
advanced potential in the field dynamics if one wishes to make a verifiable prediction.

NASA goes on in reference [58].

“To address its key scientific questions, WMAP measures small variations in the
temperature of the cosmic microwave background radiation. These variations are
minute: one part of the sky has a temperature of 2.7251◦ Kelvin (degrees above ab-
solute zero), while another part of the sky has a temperature of 2.7249◦ Kelvin. In
1992, NASA’s Cosmic Background Explorer (COBE) satellite detected these tiny
temperature differences on large angular scales. WMAP measures anisotropy with
much finer detail and greater sensitivity than COBE did. These measurements
reveal the size, matter content, age, geometry and fate of the universe. They also
reveal the primordial structure that grew to form galaxies and will test ideas about
the origins of these primordial structures.”

The temperature of the CMB is important because we can compare it to the temperature
of the universe at which we predict baryons were able form. If Doppler shift due to the
expansion of the universe has cooled those pre-baryonic photons to their present temperature
then that gives us a measure of how much the universe has expanded since baryogenesis.
Figure 48 is shaded to show the fluctuations in the temperature of the CMB but the results
of the experiment were that the CMB is surprisingly thermally flat. The even temperature
of the CMB (isotropy) is very important for building the MCM lattice. The boundary
condition of isotropy at the outer edges of the anisotropic physical universe is an unintuitive
constraint. When we look at the intermediate stuff of the universe between Earth and the
CMB, there are great fluctuations in what is observed. We see void, planets, stars, planetary
nebulae, galaxies of various geometries, etc. The gradient from darkness to starlight in the
night sky is strongly pronounced and, except in very deep space images, we do not need to
shade for contrast. It is surprising that the CMB does not have these features because all of
the anisotropy in the present day universe is supposed to be the deterministic continuation
of the isotropic surface of last scattering at t=375, 000y.

Here, we point out one of the major problems with the standard cosmological model: the
horizon problem. We say that the age of the universe is about 13.7Gy because the CMB is
about 13.7Gcy away from Earth. If we observe the CMB from a position on the surface of
the Earth for about 12 hours, the final position in the sky will be about 27.6Gcy from the
initial position. This follows from the 24 hour Earth day. If one looks to the sky for 12 hours
then the final view is in the opposite direction to the initial view and 27.6≈ 13.7×2. It is
paradoxical that both sides of the CMB, the side that is 13.7Gcy from Earth in one direction
and the side that 13.7Gcy in the opposite direction, are in thermal equilibrium. According to
the standard cosmological model, the universe is not yet old enough for any information to
have propagated across 27.6Gcy as would be required for two points separated by π radians
in the CMB to come to thermal equilibrium with each other. Among the many different
phases of the universe between the present day and the big bang, the standard workaround
for the horizon problem is included in the inflation phase. We simply say that the universe
came to thermal equilibrium when it was very small and then inflation kicked in making
the observed equilibrium conform to the expectation. However, inflation itself is contrived
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(inflation is just f(x) = ex for the size of the universe), there is at least as much evidence
against it as there is for it, and, in any case, modern inflation is just the latest iteration
of ex after several earlier versions were ruled out by experiment.1 In the MCM, we should
therefore consider that the hypercosmos exists forever so that the thermal equilibrium of the
CMB is not paradoxical. We can take an eternal universe or we might even take a finite
duration, big bang/crunch universe where the CMB shows a state of equilibrium that reflects
the equilibration of the cosmological lattice phonons at every time in the eternal existence
of the hypercosmos. In that case, what we would call “the universe” exists inside the CMB
but does not include it; the CMB would be a domain wall in an eternal cosmological lattice
that houses universes which come and go as vacuum or other fluctuations. These solutions
are purely speculative but are no more or less contrived than inflation itself.

Another problem, one not solved by inflation, is that when the cosmological horizon is
13.7Gcy away from Earth in every direction, there is only one geometry that will accommo-
date the arrangement. The CMB surface must be a sphere and the observer must be at its
center. Therefore, in the paradigm where the universe is about 13.7Gcy old, the equidistance
of the CMB implies that the Earth is in the center of the universe. On one hand, since the
MCM universe describes what can be observed relative to an observer at xµ = 0, it is not
so strange that cosmological phenomena should be centered on the position of the observer.
Given the common understanding, however, that the observer is not the center of the uni-
verse, we might consider a diver in the ocean. The water around the diver is clear out to a
certain distance where he observes a bluish and opaque wall. This is the analogue surface of
last scattering in the water. The distance to this surface is approximately the mean free path
of the photons in the water. Beyond this distance, the diver no longer has an expectation
that photons come to him from the direction in which he observes them. It is the diffusion
of the scattered photons from beyond the mean free path that cause the underwater optical
horizon to look like a featureless blue wall. Regardless of where the diver swims in the ocean,
he will always be in the center of this sphere of visibility so, in the cosmological setting, we
may formulate some similar scenario where the observer is always in the center of a larger
sphere of visibility in space. Whatever the scenario should be, we will not be drawn to the
conclude that the age of the water is X years because the distance to the scattering surface
is X light years. Therefore, we should likewise not do so for the age of the universe. The
flat, empty intergalactic medium of the cosmological arena does not generally attenuate light
like water does so, in analogy, we should say that, perhaps, 13.7cy is the distance at which
metrical turbulence sets in [7].

What is metrical turbulence? To understand this feature, what we called hyperturbulence
in reference [7], or to know if it is even a valid idea for an effect, would require a significant
analysis which will not appear in this book. However, since the idea is a prominent and
novel feature of the MCM we will discuss the underlying principle. To that end, note that
the lines in figures like figure 47 are the proper time axes of different universes and that,
on some level of ℵ, we have a description where t+ is the time axis of de Sitter space, t?
Minkowski space, and t− anti-de Sitter space. We have constructed the cosmos so that there
is a representation where the parallels, meridians, and hypermeridians on the surface of S3

(figure 49) are associated with flat, hyperbolic, and spherical geometries [7]. Parallels are

1Reference [59] gives a good review of the modern state of cosmic inflation.
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Figure 49: Each type of circle in this figure, by definition, implies a component π and, when we consider all
three simultaneously, we are drawn toward π3 which is an important ingredient for α−1MCM . This
figure is mostly taken from Wikipedia.

likely flat and should foliate1 Minkowski space but it is not obvious, between meridians and
hypermeridians, which should foliate de Sitter or anti-de Sitter space. Note that all three
types of lines — parallels, meridians, and hypermeridians — are circles or straight lines,
and, by changing levels of ℵ, circles of radius R can be made flat with R→∞ and straight
lines can be made circular with ∞→R. Furthermore, one parallel, one meridian, and one
hypermeridian can be used to construct the three element structure of a circle with a sphere
attached that we have developed in this section, and depicted in figure 49.

The 3-sphere representation contrasts with the unit cell representation because {ℵ,H,Ω}
all come together at the vertices seen in figure 21. The unit cell is designed to show the
χ5 direction but it is clear that x0 also leads to ℵ and Ω in its distant past and future
respectively. These representation can be reconciled by considering that chiros must wind
around chronos (chirally.) It will likely be a source of topological incongruity leading to a
condition of non-conservation of information that chiros must wind around chronos chirally
while also being identically flat, as in the MCM unit cell.

To develop a concept of hyperturbulence, consider that the metric associated with each
of {t+, t?, t−} extends into the bulk, away from the lines, through the foliation and that the
foliations must therefore overlap at the points where parallels, meridians, and hypermeridians
intersect at right orthogonal vertices. Even if we define the foliation on a lower level of
ℵ so that the foliation only extends into the hypercomplexly infinitesimal neighborhood
around each line, these lines intersect at the vertices. Therefore, even in the hypercomplexly
infinitesimal neighborhoods around each line, the “metrical fields” {gµν ,Σ±αβ} are bound to

1Just as S2 missing one point is equivalent to the plane, S3 missing one point is equivalent to 3-space. Therefore when we
complete 3-space with a point from one of the lines {t+, t?, t−} we will obtain S3. Therefore, the “foliation” refers to that which
propagates along each axis using a single point from it to maintain at all times the S3 topology. It is through this mechanism
of self-similarity, namely 3-spheres {x, y, z} attached to the surface of the primary 3-sphere of {t+, t?, t−}, that we propose to
generate an infinite amount of complexity. When we complete physical 3-space with a point of time along with the axis of
that time, that gives a 3-ball whose surface is a 3-sphere entirely other than the 3-sphere of {t+, t?.t−}. If we were going to
complete that sphere with another axis to create a 3-ball, that axis would likely be spacelike. Therefore, one imagines a fractal
embedding, as in reference [7], “consisting of three 3-balls embedded on the surface of another 3-ball,” and we can continue the
embedding forever by taking any surface direction of any 3-sphere as the radial direction of an embedded 3-ball.
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overlap because there is only one hypercomplexly infinitesimal neighborhood around the
point of intersection.1 Therefore, when the line element at these points of intersection has
simultaneous contributions from topologically irreconcilable hyperbolic and spherical metrics
we may speculate that the flat transparency of deep space breaks down to give a turbulent
line element that defines an opaque region where light no longer propagates along straight
lines. In that case, the 13.7Gcy distance to the CMB will not be a measure of the age of the
universe but, rather, a measure of how much the metric of t± bleeds onto the metric of t?.

Without pursuing the concept of “overlapping metrical fields” directly we can consider
a similar phenomenon: the dark energy interaction arising from the gravity of one universe
overlapping on the other. We have required that this interaction is isotropic so, therefore, the
anisotropic distributions of matter-energy in one universe cannot bleed over into the other
universe. For this, to first order at least and only for the purposes of qualitative discussion,
note that ℵ := t− and Ω := t+ bleeding onto H := t? is an altogether different phenomenon
from H2 bleeding onto H1 or Ū bleeding onto U . The proposed effect of hyper-turbulence
refers to flat space mingling with curved space but dark energy is an effect we attribute to
an interaction between two flat universes. We have not totally clarified if dark energy acts
across {U, Ū} or {H1,H2}, the latter being two adjacent instances of a single universe U ,
and we will do so now using some of the principles discussed earlier in this section.

We now say H2 is two levels of ℵ higher2 than H1 so we can set U and Ū on adjacent
levels of ℵ. In this arrangement, if the first instance of U (H1) is on Φ̂j and the second

instance of U (H2) is on Φ̂j+2 then we clearly have space to put Ū on Φ̂j+1. In the previous

formulation, we were constrained to put the past of Φ̂j+2 on Φ̂j+1 but, now that we have
encoded the record of the past on ϕ̂, we have room to include Ū on Φ̂j+1. When we consider
the original argument that U and Ū should interact through the big bang, we can make the
extension to the present convention to say that U and Ū have a dark energy interaction that
is centered on each present moment. Furthermore, when we take the fundamental unit of
the MCM lattice as a circle with a small sphere attached and consider that the circle is on
a different level of ℵ than the sphere, as in figure 50, we can say that the permanent pull
toward the future is encoded into this system. This is the scenario where dark energy arises
between U and Ū , and shortly we will describe another arrangement where the interaction is
between U and U in the future, and we will conclude that dark energy is not an interaction
between U and Ū but between H1 and H2. Figure 50 shows how each unit element in the
cosmological lattice can include the dark energy interaction given in reference [2] but it begs
another question. If U and Ū are two universes then how can one be a circle while the other
one is a sphere? A further question asks that if the observer is in t? then how can he also
be in t+, as in figure 47? To answer both questions, we can say that U is always taken in
the t? representation and that Ū is taken in the t± representation. Therefore, we naturally
find that the circle S1 should correspond to U with t? on even levels of ℵ and the sphere S2

should correspond to Ū with t± on odd levels. Here, the reader should note that since we
have no way to the determine the absolute level of ℵ it will only be a convention to say that

1If we say that {t+, t?, t−} are on three different levels of ℵ then they will not necessarily overlap. However, if H1 is on Φ̂j

and H2 is on Φ̂j+2 then there is only one level of ℵ for ℵ and Ω so they must overlap. Furthermore, it has been the convention
in the MCM unit cell to say that {ℵ,H,Ω} are all on the same level of ℵ so we are justified to consider {t+, t?, t−} not on three
separate tiers of infinitude.

2Three levels of ℵ, one level and two higher ones, are a good amount to associate with M̂3 because they are sufficient to
cover infinitesimal elements, finite elements, and infinite elements. In reference [8], we defined hypercomplexity as the limit of
infinite complexity when it is restricted to only three simultaneous levels of ℵ.
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Figure 50: This figure shows a universe U which will experience dark energy due to the gravitational pull of
Ū on a higher level of ℵ. If we convert to the t± representation in U then we could add another
universe on Φ̂j−1 which would experience dark energy in its t? representation due to the pull of
U .

one sector is odd and the other even.
When we have operated with the ontological basis to construct S1 × S2, as in figures 37,

38, and 42, which must be the U(1) × SU(2) electroweak sector of the standard model, we
initially derived a circle with an unpaired interval at each pole. When we assemble a lattice
constructed from these objects, the interval from each end will be paired with the interval
from the next object so that there are always two of these unpaired intervals between each
circle. In analogy with solid state physics, the fundamental repeating unit of crystal structure
sometimes shows half of an atom on each side and sometimes it shows an entire atom on one
side, but not the other. Therefore, we have considered the repeating unit as a circle with a
sphere but now we we will consider the fundamental object that reflects the spinor properties
of Φ̂, as in figure 51. Furthermore, since there is a manifest duality between t? and t± we
will also consider the arrangement in figure 52 where t? is associated with the outer regions
of the repeating unit instead of the center. It will be hard to build the periodic lattice with
this representation because we do not want two t? intervals in the same place but figure 52 is
the one that motivates dark energy as an interaction between H1 and H2 instead of between
U and Ū . Figure 52 is like figure 50 with part of a second unit cell attached so, if we consider
it in that way, there will be no difficulty building the lattice in such a representation.

Figure 52 does not show that the interaction between the two U will be 1D but if we take
U only on even levels of ℵ by requiring that odd levels of ℵ are purely imaginary with respect
to the even levels, then we will arrive at figure 53 which does show a 1D transmission. Figure
53 is exactly like the integration path around what we have called the Cauchy C curve. We
have associated î with the off shell region and, in the usual picture of on and off shell, there
is only one shell but the utility of the lattice is such that there are multiple shells separated
by off shell regions. We should associate every point that can be described as “on shell”
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Figure 51: This figure contrasts figure 50 to show the repeating unit in the fundamental form without moving
both outer intervals to one side.

Figure 52: This figure shows a dual representation to figure 51 where t± are each associated with one co-π̂.

Figure 53: This figure demonstrates how we may transmit the dark energy interaction in only one dimension.
The central region is imaginary but that does not strictly imply that it is associated with î.
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with the π̂-sites. Furthermore, in reference [3], we showed that, for the unit cell centered on
H, the fields in Σ− should be imaginary with respect to real fields in Σ+. However, it does
not matter which fields are real and which are imaginary between Σ±; it only matters that
there is a factor of i between them. If we put i into Σ+ around H1 but put i into Σ− around
H2 then the entire intermediate region between them will be imaginary exactly as in figure
53. We know that there is more than one dimension in Σ± but, if we make everything in
there imaginary, that will have the effect of sending the interaction through î alone, which
is 1D. Clearly there is a lot of hand waving associated with this picture since we have not
mentioned χ5 at all, and the O(4,1) and O(3,2) topologies of Σ± imply that some of the
dimensions will always be real regardless of where we put i, but, then again, we have not yet
invoked the

√
i channel. If we add imaginary phases like ±i3/2 and ±i1/2 then, possibly, we

can arrive at figure 53. We could accommodate both O(4,1) and O(3,2) topologies purely

in î by separating timelike and spacelike dimensions in Σ± with roots of i instead of i and 1
(which are roots of unity). Furthermore, if everything in Σ± is imaginary in this way then
that will naturally enforce the RAB =0 condition in the bulk of the MCM unit cell.

To construct a cosmological lattice we have to put another universe on the other side
of the CMB and that universe would have the same anisotropic structure as ours. If the
entire hypercosmos is filled with cells containing anisotropic universes smoothly connected
by spacetime to the their CMBs then we would have to come up with some good idea for
why the CMB lattice domain walls screen that information. In general, we can use the same
mechanism from figure 53 which screens the anisotropy from contributing to dark energy. If
we made a trivial lattice of ΛCDM cosmologies immediately adjacent to each other then we
could immediately say that the model was unphysical because it would lead to anisotropies
in the CMB on the scale of the anisotropies in the universes. In the MCM, to the contrary,
we connect the adjacent universes by the path around infinity so they are not right next
to each other, as in figure 40. Therefore, Ū , the unseen parallel universe, must lie entirely
within the path around infinity and that is described by figure 53. When we integrate around
that path in the complex plane, we can take semicircle in either the upper or lower complex
plane and, in figures 40 and 52, we have the choice to make use of either of t± when we want
to connect H1 to H2 lying beyond Ū . Intuitively, this should be t+. Furthermore, all of the
anisotropy from the universe on the lower level of ℵ contributes even less than a differential
element because the lower level is two levels of ℵ lower.

Earlier in this section, we proposed to encode the Dirac and Schrödinger operators on î
although î does not appear in equations (4.12). Here, we clarify that as

||̂i|| = i 6=⇒ î ≡ i , (4.16)

so that

î 6≡ i . (4.17)

This is obvious because, for purposes of self-similarity, we will need to define complex fields in
the real sector {Φ̂, 2̂, π̂} of the ontological basis. Due to the tensor transformation law, those
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same fields in î will be shifted by π/2 when represented in C. Therefore we can associate the
i in figure 53 with the i in the Schrödinger and Dirac operators so that the off shell domain
wall is a quantum sector that complements the classical sector Hj.

One of the most interesting features of the CMB is how perfectly the spectrum of CMB
photons aligns with the spectral distribution for blackbody radiation. It conforms to the
blackbody law better than anything that can be created with classical machine parts on
Earth. Therefore, we can ideate that the CMB conforms to the blackbody spectrum better
than any classical device because it is a quantum object quantized to do so. For example,
during the n= 2 to n= 1 atomic transition, we will always get a photon with energy hf0

and we can say that the macroscopic CMB object on Φ̂j is a a quantized object on Φ̂j+1

quantized such that the energy distribution is the blackbody spectrum. In a certain isotope,
ignoring magnetic effects, recoil effects, etc., the n = 2 to n = 1 transition can only happen
if it emits a photon with E = hf0 and we can theorize that an effect from a higher level of
ℵ constrains the spectrum of energy in a distribution of photons instead of the energy of a
single photon.

The origin of Planck’s constant h in physics is directly in the law for the distribution of
blackbody photons. Before Planck inserted his constant into the distribution there was a
problem called the ultra-violent catastrophe where the distribution would agree with obser-
vations at higher energies but diverged at lower energies to the ultra-violet side of visible
light in the total spectrum of electromagnetic radiation. Wikipedia says the following about
Planck’s law for blackbody radiation.

“Planck derived the correct form for the intensity spectral distribution function
by making some strange (for the time) assumptions. In particular, Planck assumed
that electromagnetic radiation can only be emitted or absorbed in discrete packets,
called quanta, of energy:

Equanta = hν = h
c

λ
, (4.18)

where h is Planck’s constant. Planck’s assumptions led to the correct form of the
spectral distribution functions:

B(λ, T ) =
2hc2

λ5

1

ehc/(λkBT ) − 1
. (4.19)

Albert Einstein solved the problem [of discretized energy packets ] by postulating
that Planck’s quanta were real physical particles—what we now call photons, not
just a mathematical fiction. He modified statistical mechanics in the style of Boltz-
mann to an ensemble of photons. Einstein’s photon had an energy proportional to
its frequency and also explained an unpublished law of Stokes and the photoelec-
tric effect.”

Taking only passing notice of the relationship between the highly abnormal factor λ5

and the dimensionality of Σ±, we need to associate quantized spin angular momentum with
Dirac’s constant

~ ≡ h

2π
. (4.20)
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The general idea in the MCM has been to use the modular topology operators to twist, or
spin, the time axes of different universes joined on the topological singularity ∅ where the
level of ℵ increases. If we want to make rigorous the connection between the MCM twisting
and quantum mechanical spin, we should compute the angular momentum vectors of the
different universes and see if there is an implication of integer angular momenta, which can
be described classically, being split in half on the i surface that facilitates the twisting.

In the unit cell centered on ∅, we propose to join Σ+
1 to Σ−2 where χ5

+ =∞ and χ5
−=−∞

such that the topology of de Sitter space with x4
+ =∞ is not incompatible the topology of

anti-de Sitter space with x4
−=−∞. If we could not rely on “the bounce point” ∅ at χ5

±=±∞
then we could never join dS topology with AdS topology, and we have associated the i surface
of the quantum cosmological sector with the bounce point. We have the freedom to include
two bounce points in the model, one at the origin and one at infinity, because we have two
charts on the Riemann sphere which is inherent to the topology of quantum states: quantum
amplitudes are always C numbers. Both charts on the Riemann sphere have a coordinate
singularity at φ=π relative to the origin φ= 0 of the chart in question.1 The MCM wraps
the time axis around a cylinder so, when the hypersurface of the present propagates forward
in time, there is manifestly an associated angular momentum. Therefore, it is likely that if
we examine the material presented in this section, as it relates to the law of conservation of
angular momentum, then we might show that half-integer spin momenta are implied. We
will return to this important point in section IV.3.

Before moving on, we make a point regarding the significant hand waving, or, more
technically, the lack of specificity, that we have relied on to make the preceding qualitative
statements in this section. There is no issue taking different representations to describe
different effects. One might be inclined to say, “All effects have to be demonstrated in all
representations,” but that is false. We can operate with any and all of {̂i, Φ̂, 2̂, π̂} on any
line or circle, on any level of ℵ, to generate any required representation in the required
orientation with respect other representations. The lattice site addresses that we assign to
different representations will make them unique with respect to other representations that
we use to describe other effects.

IV.2 Tipler Sinusoids

Here, we give an example of the kinds of analytical field solutions that will need to be
converted to machine language before a meaningful prediction can be extracted for an ex-
perimental test of the accuracy of some application in cosmology. The purpose of this section
is not to analyze Tipler’s result in the MCM but, rather, to discuss the complexity of its
features as they relate to the general principles of the MCM.

Consider what Tipler wrote in reference [60], a paper containing in its abstract the inter-
esting phrase, “would act as a time machine.”

“Since the work of Hawking and Penrose, it has become accepted that classical
general relativity predicts some sort of pathological behavior. However, the exact
nature of the pathology is under intense debate [sic] because solutions to the field
equations can be found which exhibit virtually any type of bizarre behavior. It is

1We can associate this pair of singularities with the MCM condition that the observer is always at the origin. When the
observer can never measure something at his own location, we introduce a new boundary condition ψ(0) = 0 to supplement the
usual condition ψ(∞) = 0.
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Figure 54: This figure shows the conformal diagram of Reissner-Nordström spacetime. Hypercomplex co-
ordinates on chronos and chiros are well suited to defining a continuous parameter through the
periodic boundaries. Where we have previously made reference to the Kerr–Newman metric of
a charged rotating black hole, the Reissner–Nordström metric describes a a charged black hole
with no net angular momentum.

thus of utmost importance to know what types of pathologies might be expected to
occur in actual physical situations. One of these pathologies is causality violation,
and [it can be argued ] that if we make the assumptions concerning the behavior
of matter and manifold usual in general relativity, then it should be possible in
principle to set up an experiment in which this particular pathology could be
observed.

“Because general relativity is a local theory with no a priori restrictions on the
global topology, causality violation can be introduced into solutions quite easily by
injudicious choices of topology;1 for example, we could assume that the timelike
coordinate in the metric is periodic,2 or we could make wormhole modifications
in Reissner–Nordström space [(figure 54.)] In both of these cases the causality
violation takes the form of closed timelike lines (CTL) which are not homotopic to
zero, and these need cause no worries since they can be removed by reinterpreting
the metric in a covering space (following Carter, CTL removable by such means
will be called trivial–others will be called nontrivial).”

Regarding trivial CTL, which we will refer to as CTC (closed timelike curves), Tipler
writes the following about Carter’s result.

“Carter’s causality theorem can be stated as follows: A necessary and sufficient
condition for nontrivial causality violation in a connected, time-oriented spacetime
with a timewise orthogonally transitive Abelian isometry group is the nonexistence
of a covariant vector in the Lie algebra such that the corresponding differential form
in the surface of transitivity is everywhere well behaved and everywhere timelike.

1Tipler’s comment is evocative of an axiom stated in reference [8], “If the topology required by the new definitions is not
reducible to a [sufficient form] then the definitions will amount to what Laithewaite has called ‘the multiplication of bananas
by umbrellas’ meaning that the definitions are contrived.”

2This is what we have done in the MCM [2], obviously.
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If the above criterion is satisfied, then there exist both future- and past-directed
timelike lines between any two points of the spacetime.”

Although the Wikipedia page for Lie algebras is straightforward enough, we prefer to focus
on simpler aspects of Tipler’s result. Indeed, beginning with Tipler’s reference to Hawking
and Penrose, then his reference to Carter’s theorem, and his ultimate reliance on the results
of van Stockum, the expertise in general relativity far exceeds the general relevance of the
modified cosmological model. There are, however, a number of features in reference [60] that
are generally relevant and amenable to immediate analysis, qualitative as it may be, with
the tools that we have developed and reviewed in this book.

CTC which are not homotopic to zero cannot be removed by smooth variations. “Homo-
topic to zero” means “can be removed by smooth variation” so we see the obvious distinction
between trivial and non-trivial CTC. Tipler says that pathological, non-trivial CTC cannot
be removed via smooth deformation but that they can be removed “by reinterpreting the
metric in a covering space.” As we will discuss in section IV.5, the covering space relies on
the modularization of the topology in a way that is more complex than what is required to
build a simple topological homeomorphism. If a given CTC is homotopic to zero then we
can remove it with an ordinary coordinate transformation that doesn’t know about modu-
larized topology. Non-trivial CTC can only be removed by changing the topology and, for
that, our intent is to expand circular U(1) into a helix. We have associated {2̂, π̂, î} with

the circle through eix=eix+2πi and we add Φ̂ at the point of discontinuity in the domain of
the parameter of the broken U(1) symmetry θ∈ (0, 2π) to get rid of the periodic boundary

condition by creating a helix whose central axis is parallel to Φ̂. This will transform the
finite circular interval into a infinite linear interval wrapped around a cylinder. This infinite
interval θ∈ (−∞,∞) is the covering space of the circular interval θ∈ (0, 2π). Since we are
starting with U(1) and then changing it, we are also starting with the Euler formula and

then changing it. We will say the Euler formula is true in the space spanned by {2̂, π̂, î} but

not true in {̂i, Φ̂, 2̂, π̂} which is a space akin to U(1) with a winding number attached.
All of the fields used by Tipler, originally derived by van Stockum, are built almost

entirely from functions related through the Euler formula. Regarding a rapidly rotating,
infinite massive cylinder, Tipler writes, “van Stockum has developed a procedure which
generates an exterior solution for all aR > 0,” where a is the angular velocity and R is the
radius of the cylinder. That solution is

0 < aR <
1

2
:



H = e−a
2R2(

r/R
)−2a2R2

L =
Rr sinh(3ε+ θ)

2 sinh(2ε) cosh(ε)

M =
r sinh(ε+ θ)

sinh(2ε)

F =
r sinh(ε− θ)
R sinh(ε)

, with

{
θ =

(
1− 4a2R2

)1/2
ln(r/R)

ε = tanh−1(1− 4a2R2)1/2
(4.21)
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aR =
1

2
:



H = e−1/4
(
r/R

)−1/2

L = 1
4

[
3 + ln(r/R)

]
M = 1

2

[
1 + ln(r/R)

]
F =

(
r/R

)[
1− ln(r/R)

]
(4.22)

aR >
1

2
:



H = e−a
2R2(

r/R
)−2a2R2

L =
Rr sin(3β + γ)

2 sin(2β) cos(β)

M =
r sin(β + γ)

sin(2β)

F =
r sin(β − γ)

R sin(β)

, with

{
γ =

(
4a2R2 − 1

)1/2
ln(r/R)

β = tan−1(4a2R2 − 1)1/2
. (4.23)

We find hyperbolic sines and cosines in the central region 0<aR< 1/2, ordinary sines and
cosines in the exterior region aR>1/2, and logarithms where they are joined. A first check
on physicality might be to examine the piecewise continuousness or discontinuousness of the
three fields’ tangent and cotangent fields at the point where they are sewn together. On
the other hand, a first mathematical analysis using the tools of the TOIC, which is also a
physical analysis, will be to expand all the fields out into infinite series such as those used to
demonstrate the validity of the Euler formula. In that case, we would look for pathological
rarefication of information where certain series expansions are sampled more or less heavily
than others that appear equally weighted in van Stockum’s representation.

The first thing to note in the hypercomplex analysis of van Stockum’s solutions (not
carried out here) will be that ln(x) is not an object in the Euler formula like sin(x), cos(x),
and eix. All of the hyperbolic functions can be represented with exponentials, ex rather than
eix, but ln(x) is not going to enable any useful symmetry reductions. Already we can see that
the MCM/TOIC analysis of the solution will not be directly easy because ln(x) is a wrench
in the sprocket. Equations (4.21-4.23) contrast with the metrical solutions in equations
(3.65-3.67) where the hyperbolic and spherical solutions are joined at the flat interface with
a simple linear argument. At the boundary where the interior field is sewn to the exterior
field with the aR = 1/2 solution, we have the logarithm which is somehow different than
the other functions. Given the structure of the MCM, it is likely that we can move this
logarithmic analytical pathology to Σ∅.

The structure of the solutions for the Tipler sinusoid here and for the FLRW metric
in section III.7 both have a similar structure which should be familiar to any student of
physics: the solutions in two disconnected regions are sewn together with a third solution
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Figure 55: When we join across levels of ℵ with singular topology ∅ we can say that the region denned by
ℵ and Ω is surrounded by black holes (pictured) or equivalently H can be the singularity denned
within the {ℵ,Ω} event horizons. In the latter case we directly obtain the notion of a universe
inside a black hole.

defined on the surface that separates them. This structure, which is very common in physics,
lends itself naturally to χ5 ≡ χ5

+ ⊗ χ5
∅ ⊗ χ5

−. It also lends itself naturally to coordinate
transformations such that we should be able to join regions on either of H or ∅. Note the
phase change between the hyperbolic trigonometry functions in the interior regions and the
ordinary trigonometry functions in the exterior region: the hyperbolic variants depend on ex

so, across the surface aR = 1/2, we obtain a change ex→ eix that mirrors iχ5
−→χ5

+ across
H, as derived in reference [3]. There will be some nuance joining on a topological singularity
that will not support a coordinate space representation when ∅ is located at χ5

± = ±∞;
there, we might use the twistor representation or similar. Before we would undertake such
an effort we must first show why that would useful but our intent here is only to show the
similarity between classically ubiquitous piecewise field solutions sewn together at a point
and MCM fields in Σ± sewn together at one of two points: H or ∅.

One task that is already well motivated is to show causal trajectories across the MCM
unit cell and Tipler explains that the pathological behavior containing non-trivial CTC can
be removed through the covering space. Therefore, we might consider that the MCM unit
cell shows the covering space representation where identically flat χ5 has no pathologies
at all. Tipler writes [60], “The region of causality violation is confined within an event
horizon,” so if we do put an infinite rotating cylinder (such as spacetime wrapped around
a cylinder) into an MCM cosmos then causality violating CTC can fill the hypercosmos
in the x0 direction but would be constrained never to close across the unit cell in the χ5

direction. This follows because we have taken χ5 as the non-physical covering space of x0

which is the object of closure in any CTC. Another possibility is that these closed CTC
are hidden behind the event horizons in figure 55 so that no CTC ever intersect with H.
Perhaps hyperspacetime ends at {ℵ,Ω} and the rest of Σ± for large |χ5

±| are not constrained
by RAB = 0. This would allow us to put a source behind one horizon (white hole) and a sink
(black hole) behind the other which send a gravitational displacement current (or similar)
through hyperspacetime whose quantum aspects are called the information current. We can
take the system shown in figure 55 where the black hole behind ℵ becomes a white hole that
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will be our transmitter; information does generally come to an observer along his past light
cone. Furthermore, causality violation is precisely the anomalous interpretation assigned to
the advanced potential which we independently expect to violate causality everywhere in the
MCM unit cell. Therefore, perhaps we should consider that there is no constraint on CTC
that would prevent them from intersecting H meaning that the central region in figure 55
is the interior of a black hole rather than the exterior of two black holes. If we include the
advanced potential in the field equations, then it is almost a foregone conclusion that there
will be CTC in H.

The traditional idea of a white and black hole pair, as in the Penrose diagram of a
Schwarzschild black hole, would send matter through hyperspacetime in violation ofRAB = 0.
Therefore, in the limit where we ignore any non-causal loop holes in the Kaluza–Klein con-
straint RAB = 0, we want the source and sink to be a transmitter and a receiver for gravi-
tational radiation. Note that there is no dipolar gravitational radiation and that when we
use the sphere theorem to invert the interior and exterior solutions for modular continua-
tion1 we will be using a topology that we have described, in reference [8], as having four
singularities: a pair of singularities in each of a pair of charts. If we can associate each pair
of charts with Σ+ and Σ− respectively then there will be four singularities in each union
of Σ+ and Σ− and we should generally associate these with {ϑ+, ϑ̄+, ϑ−, ϑ̄−}. Each such
union contains one MCM unit cell which is the region of hyperspacetime between ℵ and Ω
where we want the gravitational waves to propagate. Therefore, with four singularities, or
four poles, we have exactly the ingredients needed to make quadrupolar gravitational radi-
ation. Perhaps this line of reasoning might even uncover novel modularized field solutions
describing a gravitational autodynamo such as the geon described by Wheeler [61].

The next steps following onto Tipler’s work, should we decide to do an depth MCM
analysis, are mostly clear. The primary goal of that research would be to examine how CTC
initially come into existence as aR starts at zero and then increases, and also to see if we
can forge a connection between the conditions simultaneous with the cylinder in the present
and the character of the information that comes into the present along the CTC. A few
other things that should be reanalyzed include Tipler’s proof of Carter’s theorem. We need
to back away from Euler’s formula and decompose all the objects into infinite sums. An
additional point of contention that could be revealed under further analysis is a reliance on
a line element ds2 defined according to an angular coordinate that is double valued at the
point {0, 2π}. Tipler takes the polar coordinate of his infinite cylinder as ϕ∈ [0, 2π] where
the MCM would suggest ϕ∈ [0, 2π) or ϕ∈ (0, 2π]. We find, therefore, two points where we
might add hypercomplexity: the center of the phase space at aR = 0 and possibly one point
where we break the U(1) symmetry with f(0) 6=f(2π). We might associate the latter with a
non-commutative frame dragging effect.

All of the above gives a good assessment of what MCM cosmology will look like in practice
but the aspect of reference [60] that has the most bearing on the MCM specifically is found
in one of the footnotes.

1In proffering an idea of “modular continuation” we refer to a spherical system where an interior solution is joined to an
exterior solution by a solution on the surface of a sphere with radius R. Due to the conformal invariance of the theory, we
should be able to apply the sphere theorem so that the interior and exterior solutions are permuted, and then apply a coordinate
transformation such that the interior solution in the exterior region can be joined to another exterior solution at a larger radius
R′ > R. Here, we rely on a system, as in reference [8], of concentric shells so that any exterior region is also an interior region
with respect to some larger radius. “Modular continuation” then refers to joining interior and exterior regions across surfaces
at different radii.
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“For a2 + e2 > m2 [where a is the angular velocity, e is the charge, and m is
the mass ] there are no event horizons and so causality violation is global, but it is
not clear that a star with such high values of angular momentum and/or charge
would collapse sufficiently far to uncover the region where gϕϕ changes sign [sic].
Penrose has argued [sic] that a naked Kerr singularity would be a good model for
a rapidly rotating star which has collapsed into a disk. CTL would be expected
when e 6= 0, but one might contend that these occur so close to the singularity (and
hence in regions where we expect general relativity to break down anyway) that
they are without physical significance. van Stockum’s work shows, however, that
CTL are not necessarily associated with extreme curvature in physically significant
situations.”

Noting that Tipler uses gϕϕ to describe what we have called Σ55, the changing sign of
Σ55 is the most critical aspect of the MCM unit cell. On one side of H, the fifth diagonal
position is negative, and on the other side it is positive. Any system containing this changing
sign must have direct relevance to the MCM and the alternation of Σ± as nested spherical
shells (when we take radial χ5 rather than Cartesian.) Tipler also writes that the CTC
for a charged black hole, such as the Kerr–Newman black hole, would be too close to the
singularity for them to have any physical significance but we have developed the concept of
the hypercomplexly infinitesimal neighborhood around a singularity expressly for the purpose
of assigning physical significance to such regions. Finally, while much of Tipler’s discussion
of CTC has focused on regions of extreme curvature, he states that CTC are not exclusively
associated with regions of extreme curvature and, therefore, we may expect such pathologies
in the region of mild curvature around H within the ground state MCM unit cell.

IV.3 MCM Quantum Mechanics

In discussing quantum cosmology, we conform to the following distinction between classical
mechanics and quantum mechanics: classical phenomena have equations of motion that
minimize the action and quantum phenomena come from solutions that are maxima of
the action. In section I.3, it was demonstrated that any maximum of the action must
follow a trajectory in phase space that goes around the Cauchy C curve at infinity, and
that quantum phenomena are so strange because a topological obstruction along that path
leaves an analytical remainder. The “Dirac bracket” inner product of a bra with a ket is
modified such that dx is augmented by dγ̂ . The remainder of the MCM inner product
is associated with what is called Dirac orthogonality: a property specific to wavefunctions
represented in the eigenbasis of a continuous spectrum of eigenstates. The position space
representation is one such example. The non-orthogonality of position eigenstates gives the
Dirac orthogonality condition〈

x1

∣∣x2

〉
= δ(x1 − x2) , where

∣∣ψ〉 =

∫ ∞
−∞

ψ(x)
∣∣x〉 dx , (4.24)

which is completely different than genuine orthogonality in the case of discrete eigenvectors
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〈
ψn
∣∣ψm〉 = δmn , where

∣∣ψ〉 =
∞∑
n=1

αn
∣∣ψn〉 . (4.25)

Continuous position eigenstates, analytical Dirac delta functions δ(x−x′), live in an infinite
dimensional non-Hilbert space called Ω′, as in {ℵ′,H′,Ω′}. Therefore, we can identify the
sector of relevance for the “analytical remainder” that will be operated on with dγ̂: when the
inner product uses finite dimensional representations use dx, and when there is an infinite
dimensional basis, directly related to “levels of ℵ” through ψ :=δ, then use dγ̂.

Consider the Dirac formalism for the representation of ψ in a discrete basis ψn or in the
continuous basis of position eigenstates |x〉:〈

ψn
∣∣ψ〉 = αn , but

〈
x
∣∣ψ〉 = δ(x− x′) . (4.26)

Note the integration variable in δ(x−x′). Why isn’t there an integration variable with 〈ψn|?
This is an important question because all of quantum field theory comes equations (4.26).
The answer has to with the idea that the observer can never test a question like, “Is the
particle at position x?,” but, “Is the particle in discrete state n?,” is very often testable.
Among other things, the observer does not have any devices that can measure mathemati-
cally specific points in space but he does have devices that can measure analytically singular
properties like electronic transition energy. Therefore, depending on the sector of the quan-
tum theory that is being probed, finite or infinite dimensionality in the vector space, we
have two different probability functionals that need to be written into M̂3. M̂3 cannot be
periodic if sometimes we compute P [ψn]∈R to get a number for comparison with experiment
but sometimes we compute P ′[ψ(x)]dx 6∈R and then obtain a real-valued probability with
P =

∫
P ′[ψ(x)]dx. The probability in the finite dimensional sector gives

P [ψn] = |αn|2 , so P [ψn] ∈ R . (4.27)

If we simply replace ψn with ψ(x) then we get the nonsense answer

P [ψ(x)] = |δ(x− x′)|2 =⇒ P [ψ(x)] 6∈ R . (4.28)

This is nonsense because we can’t do M̂3 with it. Predictions can only be checked with R
numbers but we still need to apply more operations to equation (4.28) before we can reach
the final requisite step P [ψ]∈R. Equation (4.28) does not satisfy this constraint. However,
the Dirac delta function does make some qualitative sense as a position space wavefunction;
if the delta is within the limits of the dx integration in P [ψ(x); a, b] then the integral will
return unity and otherwise it will return zero.
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This section closely examines P [ψ] and so we will restate its relevance. At the end of
the day in quantum theory, whatever the application, the numbers that will be compared to
experiment come out at as

P [ψ] ∈ R , with 0 ≤ P [ψ] ≤ 1 . (4.29)

When evaluating whether or not a theory’s prediction is correct, P [ψ] is the object of interest.

It is the main philosophical object at the heart of M̂3 wherein an observer does science when
he computes an expectation and then also checks it. In ordinary quantum theory, we have
the two different interpretations for P [ψ] discussed above but we want to define a universal

process for M̂3 that has only one interpretation and only one algorithm. Before a prediction
can be checked, the prediction must return a real number. Therefore we may write

M̂3 : P [ψn] = |αn|2 , and M̂3 : P [ψ(x); a, b] =

∫ b

a

|ψ(x′)|2dx′ . (4.30)

In the discrete eigenbasis, there is no integration variable and P [ψ]∈R is obtained directly.
In the continuous eigenbasis, we introduce an integration variable with the concept of Dirac
orthogonality and then eliminate that variable with an integral operation. Most notably, it
is the analytical structure of P [ψ] that first suggested the maximum action path in chapter
one, and we might consider that the conjuration and elimination of an integration variable
is something that happens along the Cauchy C curve around infinity where the level of ℵ
changes. The probability functional is the backbone of everything about M̂3 and we need to
define an operator or functional that will always return a real number. For the probability
interpretation to hold, the normalization of P [ψ] is such that

P [ψn] =
N∑
n=1

|αn|2 = 1 , and P [ψ(x);−∞,∞] =

∫ ∞
−∞
|ψ(x′)|2 dx′ = 1 . (4.31)

On the left, the continuum of available eigenstates introduces a new variable into the P
functional and then it gets eliminated in the integral over dx′. We will not go off, too
much, on a tangent here but it must be noted how this is very much like the concept of an
information source and sink. When we introduce a new variable and then integrate it away,
there is always a lot of wiggle room in measure theory that we can use to add arbitrary
complexity if desired. It is within this wiggle room that we have made the change dx→dγ̂.

For a finite, discrete set of eigenfunctions we have

P [ψn] = |αn|2 , where ψ =
N∑
n=1

αnψn , (4.32)
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but the case is altogether different for the infinite dimensional case of continuous spectra of
eigenfunctions. Then the interpretation for P [ψ] changes so that P [ψ]dx is the probability
of finding the particle between x and x+ dx (at time t.) Therefore, we have a good concept
for integrating over the hypercomplex neighborhood between x and x+ dx.1 For the infinite
dimensional case, we have

P [ψ(x); a, b] =

∫ b

a

ψ∗(x)ψ(x) dx , where ψ(x′) =
〈
x
∣∣ψ〉 =

∫ ∞
−∞

δ(x−x′)ψ(x) dx .

(4.33)

In long form, the formula to obtain a real probability from ψ(x) = 〈x|ψ〉 is

P [ψ(x); a, b] =

∫
b

a

[∫
δ(x1 − x′)ψ(x1) dx1

] [∫
δ(x2 − x′)ψ∗(x2) dx2

]
dx′ . (4.34)

This can be rewritten in MCM the as

P [ψ(x); a, b] =

∫
b

a

[∫
δ(χ+ − x)ψ(χ+) dχ+

] [∫
δ(χ− − x)ψ∗(χ−) dχ−

]
dx . (4.35)

To obtain P [ψ]∈R on an arbitrary level of ℵ, we can add χ∅ such that

P [ψ(x);−∞,∞; Φ̂j] =

∫
Φ̂j

0̂

(∫ ∞
−∞

P ′[ψ(x)] dx

)
dχ∅ = Φ̂j . (4.36)

The integration over dχ∅ happens only in the hatted channel so it is easy to understand why
χ5
∅ should have no width in χ5≡χ5

+⊗χ5
∅⊗χ5

−. That integration increases the level of ℵ and
exists purely in the hatted channel ∫ Φ̂j

0̂

dx∅ = Φ̂j . (4.37)

1Often it is noted that there is a problem calling Dirac delta functions “functions” and all of this semanticism can almost
certainly be assuaged with regular functions on different levels of ℵ.
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Everything about limits of Σ± converging on H or ∅ should be derivable from equation
(4.35). However, we will only examine the fundamentals of quantum mechanics in this
section. The fundamental that we presently consider is that P [ψ] is algorithmically different

for ψ(x) and ψn, and we need something that is algorithmically the same for M̂3.
Note how the two functionals

P [ψn] = |αn|2 , (4.38)

and

P [ψ(x); a, b] =

∫
b

a

∫ ∞
0

∫ 0

−∞
δ(χ+ − x)δ(χ− − x)ψ∗(χ−)ψ(χ+) dχ− dχ+ dx , (4.39)

for obtaining a real-valued probability are somewhat similar in structure to

Υ̂ = Û + M̂3 , (4.40)

with

Û := P [ψn] , and M̂3 := P [ψ(x); a, b] . (4.41)

One gets the impression that the derivation of the probability 0 ≤ P [ψ] ≤ 1 can be uni-

versalized with a projection operator into the Û or M̂3 component of Υ̂. For P [ψn], the
eigenfunctions are exactly orthogonal and we expect no remainder, and that can be asso-
ciated with Û . Then there is a natural extension to rules for dx and dγ̂ when the latter
operates on the remainder of the M̂3 component. The dx3 in P [ψ(x); a, b] is very much

like M̂3, and M̂3 is the operator that makes the connection to the gravitational sector. In
fact, when we make the simplistic conversion |αn|2→ |δ(x − x′)|2, as in equation (4.28), it
is likely not irrelevant that |δ(x)|2 ∼ dx2 because the metric gµν goes like dx2. All of the
equations given so far in this section assume the Euclidean metric and we will continue in
that convention having taken note that |δ(x−x′)|2∼dx2 gives a good indicator for a fruitful
avenue of complexification.

The intention is to use the ontological basis as the basis for general relativity in a manifold
constructed from the analytical remainder when the MCM inner product is between two
series represented with unequally infinite numbers of terms. We will also want to use the
ontological basis as a discrete eigenbasis in quantum theory. Here, we will consider various
constructions of the MCM inner product of objects on various levels of ℵ. A first inner
product that we could take is
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Figure 56: The π̂2 operator adds topological hypercomplexity to the Riemann sphere.

P [ψ] =
〈
ψ; π̂; Φ̂2

∣∣ψ; π̂; Φ̂1
〉
. (4.42)

We already have 〈
ψ
∣∣ψ〉 = 1 , so

〈
ψ; π̂

∣∣ψ; π̂
〉

= π̂π̂ := π2 , (4.43)

and we can assume that π2 gets used to create the topology described in figure 56. π̂ is a
real number so π̂∗= π̂. We have not completely decided if the level of ℵ should increase by
one or two in M̂3. In the convention where M̂3 increases the level of ℵ by one, we have〈

ψ; π̂; Φ̂j+1
∣∣ψ; π̂; Φ̂j

〉
= π̂Φ̂2j+1π̂ . (4.44)

For the probability interpretation to be valid, we need to obtain π̂Φ̂2j+1π̂→1 so that equation
(4.44) says that a state on Φ̂j will always transition to Φ̂j+1.

We have proposed in this research program to label the π̂-sites with integers and that
M̂3 : π̂1→ π̂2. Therefore, if we want to make rigorous the statement “use π̂2 to create S2,” we
can define a projection operator into the π̂2-site. Therefore, consider Υ̂ such that it produces
the qubit at H2 from the input qubit on H1 and also another part that we will suppress with

P̂π2 =
1

π2
π̂2 . (4.45)

The projection operator P̂π2 is normalized for the probability interpretation and we might
associate the remainder with that which is suppressed by the projection. The dynamical
geometry which complements ψ via the MCM mechanism of quantum gravity [4] must be

related to that which does not survive P̂π2 . It has been the convention in the MCM to use
the definition that π̂j≡ π̂j meaning that
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π̂1 · π̂1 = π2 , and π̂1π̂1 = π̂2 , (4.46)

The reader should take careful note that, for the probability interpretation, and without
modifying any of the normalization built into ψ already, we need to remove π2 from equation
(4.44) and then also remove Φ2j+1. Regarding π2, we have already defined M̂3 to be such
that π̂1 7→ π̂2 so the intuitive projection operator π̂2 to select H2 is the one that enforces the
normalized probability.

We have shown the projection operator with the dot product in equation (4.11), but the
projection operator in quantum mechanics is usually written as a dyadic so we should examine
that formalism as well. The first thing to clarify in that direction is that {xµ−, xµ, x

µ
+, x

µ
∅}

is continuous in {ℵ,H,Ω,∅} but the basis vectors {̂i, Φ̂, 2̂, π̂} themselves are discrete. The
purpose of the ontological basis is to give four discrete position space representations to
ψ so, in a sense, they are discrete but position eigenvectors are continuous. Consider the
properties of discrete states

∣∣ψ〉 =
4∑

α=1

∣∣êα〉〈êα∣∣ψ〉 , I =
4∑

α=1

∣∣êα〉〈êα∣∣ , where êα ∈ {̂i, Φ̂, 2̂, π̂} .

(4.47)

The four discrete ontological basis vectors need to be orthogonal. We can demonstrate this
with the general property of independent basis vectors ê1 · ê2 = 0 such that〈

ê1

∣∣ê2

〉
=

∫
ê∗1 · ê2 dx =

∫
0 dx = 0 . (4.48)

Quantum mechanical projection operators have the property that P̂2 = P̂ and we should
show that as well. For example, if |êj〉 = êj we have

P̂2
i =

∣∣̂i〉〈̂i∣∣̂i〉〈̂i∣∣ =
∣∣̂i〉 î · î 〈̂i∣∣ = −P̂i . (4.49)

This raises an important question regarding î. Should we take î∗ ≡ −î or should we take
î∗≡ î because, as a basis vector, î is outside the realm of complex conjugation? π̂ offers a
simpler case when we may unambiguously write

P̂2
π =

∣∣π̂〉〈π̂∣∣π̂〉〈π̂∣∣ =
∣∣π̂〉 π̂ · π̂ 〈π̂∣∣ = π2P̂π . (4.50)

Evidently
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∣∣êα〉 =
1

|êα|
êα . (4.51)

Note that equation (4.51) is what gives the term 1/π2 that appeared in equation (4.45).
Then we obtain

P̂2
π =

∣∣π̂〉〈π̂∣∣π̂〉〈π̂∣∣ =
∣∣π̂〉( 1

π

)
π̂∗ ·

(
1

π

)
π̂
〈
π̂
∣∣ =

∣∣π̂〉( 1

π2

)(
π2
)〈
π̂
∣∣ = P̂π . (4.52)

Using |̂i〉=−i î and 〈̂i|= i î, we can rewrite equation (4.49) as

P̂2
i =

∣∣̂i〉〈̂i∣∣̂i〉〈̂i∣∣ =
∣∣̂i〉(i) î · (− i) î 〈̂i∣∣ =

∣∣̂i〉 î∗ · î 〈̂i∣∣ . (4.53)

Therefore, we need to take 〈̂
i
∣∣̂i〉 = î∗ · î = −î · î = 1 , (4.54)

if we are to recover P̂2
i = P̂i. However, it must be noted we still have the option to set î · î=1

as an added layer of complexity when the P̂i operator has some pathology likely associated
with the

√
i channel.

Take special note of the butterfly operator |êj〉〈êj| as a projection operator. In equation
(4.45), we introduced the projection operator into the π̂2-site and we can rewrite it as

P̂π2 =
∣∣π̂〉〈π̂∣∣ =

(
1

π
π̂

)∗(
1

π

)
π̂ =

1

π2
π̂2 . (4.55)

Interestingly, the pairwise butterfly operator is a dyad. It is only possible to write the
operator in this form for the projector into π̂2. We could not write the dyadic with three
ontological basis vectors for π̂3. Consider the other dyadic representation

∣∣π̂〉〈π̂∣∣ ≡


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 π2

 . (4.56)

Therefore, we have two dyadic products: a unitary one |êj〉〈êj| and a non-unitary one êj êj.
Before we show what 〈êj|ψ〉 is, let us demonstrate the property of I in equations (4.47) by
writing
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4∑
α=1

∣∣êα〉〈êα∣∣ =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

+


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

+


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

+


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 . (4.57)

Indeed, these four matrices do sum to the identity matrix I.
When the spectrum of eigenvalues is continuous, as it is for position, then the completeness

relation changes as

I4 =
4∑

α=1

∣∣êα〉〈êα∣∣ −→ I∞ =

∫ ∣∣x〉〈x∣∣ dx , (4.58)

and the orthonormality condition

〈
êα
∣∣êβ〉 =

(
1

|êα|
êα

)∗
· 1

|êα|
êβ = δαβ , becomes

〈
x′
∣∣x〉 = δ(x− x′) , (4.59)

when

〈
ê1

∣∣ψ〉 = ψ(x) = δ(x− x′) (4.60)

〈
ê2

∣∣ψ〉 = ψ(x+) = δ(x+ − x′) (4.61)

〈
ê3

∣∣ψ〉 = ψ(x−) = δ(x− − x′) (4.62)

〈
ê4

∣∣ψ〉 = ψ(x∅) = δ(x∅ − x′) . (4.63)

Discrete eigenstates are orthogonal but continuous states are not orthogonal because δ(x−x′)
is never equal to zero. The Dirac delta is identically never equal to zero, which is totally
different than the Kronecker delta δαβ which is identically zero for α=β. However, δ(x−x′)
is kind of like zero so the concept of “Dirac orthogonality” is introduced. Furthermore, the
hypercomplexly infinitesimal neighborhood has been introduced specifically for the analysis
of objects that are very close zero but still non-vanishing.

We have been able to define the projection operators as per normal but there is some
unresolved complexity that lingers. Writing out the full form of ψ we find
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∣∣ψ〉 =
4∑

α=1

∣∣êα〉〈êα∣∣ψ〉 =
〈̂
i
∣∣ψ〉∣∣̂i〉+

〈
Φ̂
∣∣ψ〉∣∣Φ̂〉+

〈
2̂
∣∣ψ〉∣∣2̂〉+

〈
π̂
∣∣ψ〉∣∣π̂〉 (4.64)

= ci
∣∣̂i〉+ cΦ

∣∣Φ̂〉+ c2

∣∣2̂〉+ cπ
∣∣π̂〉 . (4.65)

This formula is properly normalized when all of the coefficients are equal to one half but it
seems wrong that 〈êµ|ψ〉=〈êν |ψ〉 for any µ or ν. If we use the ontological coefficients∣∣ψ〉 =

−i
4

∣∣̂i〉+
−ϕ
4

∣∣Φ̂〉+
1

8

∣∣2̂〉+
1

4π

∣∣π̂〉 , (4.66)

then the unitarity is broken with

4∑
α=1

|cα|2 =

(
1

4π

)2

+

(
−ϕ
4

)2

+

(
1

8

)2

+

(
−i
4

)2

6= 1 . (4.67)

In fact, we have not yet carefully considered what the objects in equations (4.60-4.63) are
supposed to be. Certainly, if we write that the cα are all equal to 1/2 then it makes no sense
to write 〈

êα
∣∣ψ〉 =

∫ ∞
−∞

êαψ(xα) dx , (4.68)

because it will not generate any complexity. The likely issue is that even though we have
written the basis discretely, the corresponding objects are defined as, for example∣∣ψ; π̂

〉
= ψ(x) =

〈
x
∣∣ψ〉 . (4.69)

This is a position space representation with continuous eigenfunctions. When we have a dis-
crete orthonormal basis |êα〉, what we actually have is four sets of continuous eigenfunctions.
Therefore let there be a “psi-langle” and a “psi-rangle” such that, for example{

π̂
∣∣ψ〉 =

∣∣ψ; π̂
〉

(4.70)

Then the operation specified by
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〈
ψ; π̂

∣∣ψ; π̂
〉

=

∫
ψ∗(x)ψ(x) dx , (4.71)

will be the integral that is required to obtain P [ψ(x)] ∈ R from P ′[ψ(x)]dx. This is the
interpretation for equation (4.69) where it says a ket is equal to a bra and a ket. In this
notation, we require one more integration operation and that must be the one which ensures
P [ψ(x); a, b]∈R If we write

∣∣ψ〉 =
{
î
∣∣ψ〉∣∣̂i}+

{
Φ̂
∣∣ψ〉∣∣Φ̂}+

{
2̂
∣∣ψ〉∣∣2̂}+

{
π̂
∣∣ψ〉∣∣π̂} (4.72)

= ψ(x−)
∣∣̂i}+ ψ(x+)

∣∣Φ̂}+ ψ(x∅)
∣∣2̂}+ ψ(x)

∣∣π̂} , (4.73)

then we can let the purpose of the new notation be to disrupt the normalization of the
probability with the non-unitary properties of the ontological basis such that

∑
|cα|2 6= 1.

However, it is not the intention to reformulate all of quantum mechanics in this book, and
breaking unitarity certainly requires a reformulation of the entire theory.

We do have a few more interesting and rigorous results to show in this section so we will
return to 〈ψ; êµ; Φ̂∆|ψ; êλ; Φ̂〉. If we use the projection operator π̂2 then we may obtain from
equation (4.44) 〈

ψ; π̂; Φ̂j+1
∣∣ψ; π̂; Φ̂j

〉
· π̂2 = Φ̂2j+1 . (4.74)

For the probability interpretation, we need Φ2j+1→ 1. Solving 2j + 1 = 0 for j = 1/2 gives
a nonsensical answer because levels of ℵ are discrete and it doesn’t make any sense to have
a half of one. Therefore the levels of ℵ in M̂3 must go to Φ̂j+2 instead of the Φ̂j+1 shown
above. In the convention where M̂3 : Φ̂j→ Φ̂j+2, we can write〈

ψ; π̂; Φ̂j+2
∣∣ψ; π̂; Φ̂j

〉
= π̂Φ̂2j+2π̂ · π̂2 = Φ̂2j+2 , (4.75)

which requires us to solve 2j + 2 = 0 to get the correct normalization with j=−1. Written
simply, we have 〈

ψ; π̂; Φ̂1
∣∣ψ; π̂; Φ̂−1

〉
= π̂1̂π̂ . (4.76)

This equation makes it look like M̂3 should increase the level by two. However, it involves
Φ̂−1 which is something that we want to avoid. We can’t increase by j→ j + 1 in equation
(4.76) because that will mess up the probability with Φ1 6=1. There is another way that we
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can get the correct normalization with M̂3 that increments the level of ℵ by one instead of
two. We might encode the initial quantum state on the same level of ℵ as H, that is Φ̂0 =1̂,
with ϕ̂. Then we can write 〈

ψ; π̂; Φ̂1
∣∣ψ; π̂; ϕ̂

〉
= π̂1π̂ . (4.77)

This formulation no longer requires that the level changes by two. In contrast to equation
(4.76), we might associate Φ̂−1 with Ū so that t± are associated with Φ̂±1, exactly as in
figure 52 and many other descriptions of the same scenario. Equation (4.77) relies on the
magnitude of ϕ being proportional to Φ−1 even though ϕ̂ itself exists on the same level of ℵ
as H on Φ̂0

Equation (4.77) looks exactly like a quaternion rotation. A quaternion rotation when the
angle is π will have the effect of a 2π rotation through the complex plane. If we rotate 1̂ by
π/2 radians through C then it becomes î, if we rotate it by π then it becomes −1̂ etc. Then

e−uπ1̂euπ = 1̂ , (4.78)

is the unique quaternion rotation that will give the correct probability interpretation of the
MCM inner product. Quaternion rotation by any angle other than nπ will not preserve the
probability interpretation. Quaternion rotations operate from the left and right. With that
in mind, we might use the psi-langle and psi-rangle together in a “psi-gangle”{

êα
∣∣ ∣∣ψ〉 ∣∣êβ} =

∣∣e−uθαψeuθβ〉 , (4.79)

as a way around the issue in equation (4.69) where, in essence, a ket was set equal to a
bra-ket. However, we leave these details to a specific treatment to appear elsewhere.

Figure 57 shows how we can account for the two different types of rotation. The single
operator rotation causes a rotation only, but the two operator rotation causes the rotation
and also changes the anchor point of the object in question. In this case, we can see how
~V euθ forms an intermediate object that we should associate with the Cauchy C curve. If we
organize the operation as in figure 58 then we can see easily how the object that connects
the two anchor points O and O′ is in a lateral direction to the shared direction of the other
two objects ~V and e−uθ~V euθ. In that case, we should associate this intermediate path with
the off shell region i that separates adjacent instances of t?. Furthermore, the quaternions
have the property ijk = −1 whereas the Lorentz transformation, rigorously a rotation by
an angle in C, uses the regular imaginary number i2 =−1. R̂ is a Lorentz transformation
when the imaginary part of the complex angle vanishes. There is motivation for a third
step in M̂3 when we we consider that there is only one on shell region in spacetime but,
in hyperspacetime, we can rotate objects into the imaginary off shell region, apply another
operation completely within the off shell region, and then rotate back onto the on shell region
at the next π̂-site. Therefore, if we want to make the connection in a certain picture
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Figure 57: We can let quaternion rotation (quaternion analogue rotation) differ from ordinary rotation when
the quaternion operation changes the anchor point of the object while the single operator rotation
does not do so.

Figure 58: This figure seeks to replicate the mechanism shown in figure 53. Here the initial and final
directions are both along ẑ.

Figure 59: This figure demonstrates how a quaternion rotation and an ordinary rotation together fill the
requirement for ~V 7→ ~W which was developed in chapter one. Notably, ~W is of the form M̂3~V
and a direction for future inquiry will be to make the change uθ→Φ when the rotation angle
becomes 2Φ≈π.
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π̂ := euπ , (4.80)

we may let the objects in the ontological basis go like

π̂ 7→ eπ , (4.81)

In equation (4.81), we have used the notation from reference [5] that {̂i, Φ̂, 2̂, π̂} have operator
properties in a quaternion picture {i,Φ,2,π}. We might speculate that the place of the
exponential map in converting the basis vectors into quaternion operators will be such that
the object appears in different incarnations on different levels of ℵ, possibly identifiable as
the odd and even levels. For instance, we might say that π̂ on even levels of ℵ is like eπ

on odd levels. Where we have supposed in reference [7] to build a fractal matrix theory
of infinite complexity via the alternation of diameters and circumferences on spatial and
temporal spheres, the alternation between π̂ and eπ on successive levels of ℵ is, in essence,
is the same principle. π̂ is like a diameter and eπ is like a circumference.

Here, a question remains about how we can switch between π̂ and eπ. The first thing to
note is that the quaternion in the exponent plays the same role as i in an ordinary rotation
operator.1 Noting that the change of parameterization x↔eix is associated with the change
of topology R↔ S1, and noting that we have proposed to use the changing level of ℵ to switch
between circular and straight paths with R↔∞, we can suppose that π̂ on the flat level of
ℵ becomes eπ on the circular level of ℵ. There were a lot of unanswered questions regarding
MCM quaternions in reference [5], and we did not answer them in section II.7, but we will
say a little more about map (4.81) here. We will not go into a lot of detail about quaternions
but it suffices to say that almost everything in quantum theory has an isomorphism with
the quaternions. Since electromagnetism can also be formulated with quaternions instead of
vectors, and quantum theory can be formulated with quaternions instead of Pauli matrices,
it may be wise to revert to the quaternion formulation of physics when teaching the material
to graduate students.

Relationships like that in map (4.81) are known as exponential maps. In general relativity,
the exponential map is a map from the a manifold’s tangent space back to the manifold itself.
Therefore, the exponential map is well-suited as a map like those in figure 59 where the
mapping is from one space to another. Defining an exponential map between the ontological
basis and quaternions is very natural for a number of reasons, many of which appear in
reference [5]. Another reason is that the Pauli matrices, together with the identity, are like
the quaternions. Quaternion rotation requires two operators, one on the left and one on the
right, and we are proposing to derive quaternion structure from the inner product which will
always have two operators: one in the bra and one in the ket. While not directly related to
quaternions, ancillary support is found when the dyadic representation of pairs of ontological

1In reference [5], when we first proposed to use the ontological basis as quaternions, we noted an issue with î 7→ei because it
induces an imaginary coefficient that does not exist in Hamilton’s quaternions H. Therefore, we should examine the case when
i is different than the other quaternions because it is like the ordinary rotation operator ei∆ through another exponential map
i 7→ei.
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basis vectors contains 16 distinct matrices like the algebra of physical space for the Dirac
equation.

With an appropriately chosen Φ̂j, we can enforce the probability interpretation of the
inner product with

π̂∗1̂π̂ 7→ e−π1̂eπ = 1̂ , (4.82)

and figure 59 shows how we can use this structure inside the MCM unit cell. We can define
the transport of ~V as

e−uθ~V euθ = e−uθ~V+ = ~V− . (4.83)

How can we get to ~W from ~V−? Recall that the ontological basis differs from the quaternions
in î because the rigorous definition of the quaternions H requires that all four of them have
real coefficients. Also note that, among the ontological basis, î is the only one that has
unitary properties. Therefore, we should consider a unitary rotation such that

~W = ~V−e
iδ . (4.84)

When M̂3 is constituted with two quaternion rotation operators and an ordinary rotation, we
find a structure similar to the gauge theory developed in reference [10]. In that reference, we

showed that the chirological derivative M̂3 =∂+∂∅∂− introduced constants ±Φ for ∂± and π
for ∂∅. The oppositely signed Φ are easily attributable to the two quaternion operators, and
π may be attributed to the ordinary rotation, which is somehow connected with ∂∅ though

∅ makes no appearance in figure 59. The quaternion operator on the right rotates ~V and
then the left quaternion operator changes the anchor point and rotates it once again. Let the
final step be a non-rotating phase change that implements some duality between AdS in ℵ
and the CFT of ψ in H. In reference [3], we described AdS/CFT correspondence through a

general treatment of bulk/boundary correspondence but the final operation that sends ~V− in

ℵ to ~W in H2 is a natural home for the technical criteria that formally define the AdS/CFT
correspondence. This is notable because we require the correspondence between AdS and
the CFT, but not between dS and the CFT. There is no dS/CFT correspondence and, in the
series of operations proposed here, we remove any suggestion that the bulk/boundary cor-
respondence developed between H and Σ± in reference [3] would require some new dS/CFT
correspondence beyond the AdS/CFT correspondence that has been well studied in the 21st

century.
Where can we get the extra term eiδ required for equation (4.84)? We can use the unitary

evolution operator in the MCM inner product so that

〈ψ; π̂; Φ̂1|Û |ψ; π̂; ϕ̂〉 = π̂eiĤtπ̂ . (4.85)
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This brings us to an important point. We have been considering the topological remainder
in the MCM inner product of ψ with ψ but we have motivated the existence of the remainder
only in the case of orthogonal states. There is some nuance related to how we will use |êα}
but, in general, ψ is not orthogonal to itself. Therefore, it will be helpful to consider the
property of the unitary evolution operator〈

ψ
∣∣Û ∣∣ψ〉 =

〈
ϑ
∣∣ψ〉 , (4.86)

where ϑ and ψ are orthogonal states. For instance, in the position space representation
the unitary evolution operator will take a state |x1〉 and return a state |x2〉 that is Dirac
orthogonal to |x1〉. Then〈

ϑ; π̂; Φ̂j+2
∣∣Û ∣∣ψ; π̂; Φ̂j

〉
:=
〈
ϑ
∣∣ψ〉 = δ(x− x′) , (4.87)

which has the backbone of Dirac orthonormalism that will be associated with the remainder
term. Note well, not every MCM inner product will produce a remainder. We have not
produced the remainder in any of the above but we are progressing toward that feature.

When assigning quaternion properties to the ontological basis we needed to send them
into the exponent of Euler’s number with π̂ 7→eπ and, in general, we have an exponential map
x 7→ eix as the relationship between linear and circular intervals. To restate the connection
to levels of ℵ, when the radius of a circle is finite it is a circle, but when the radius becomes
infinite the circle becomes a line. In developing quantum theory, it is shown to students
that the Hamiltonian operator is a Hermitian matrix and that e to the power of a Hermitian
matrix is always a unitary operator. How does the matrix get into the exponent and what
does it mean for Euler’s number to be raised to the power of a matrix? This is another
example of an exponential map. For square matrices M we have

eM ≡
∞∑
j=0

Mj

j!
= I + M +

1

2
M2 +

1

6
M3 + · · · , (4.88)

and we will examine the exponential map again in section IV.6.
Referring again to figure 59, take note that dS spacetime has no boundary but AdS

spacetime does have one. When we increase the level of ℵ we necessarily introduce a boundary
term. Therefore, when we say that the MCM inner product has a remainder due to an extra
term in the series expansion of the wavefunction, we can let the dual vector on the higher
level of ℵ in the MCM inner product always be defined such that it includes more terms
than the same series on the lower level of ℵ. This is an alternative possible source of extra
terms besides the argument for odd and even infinities made in reference [9]. Since the level
of ℵ is expected to increase by two in the MCM inner product, we should assume that there
will be at least two more terms in the series expansions on the higher level of ℵ without
choosing one source for those terms or another. This is simply another proposal. The most
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important feature is that the MCM inner product does or can produce a remainder that can
be analytically connected to an imbalance in the countability of two countably infinite series.

One of this writer’s first conversations with David Finkelstein occurred in 2011 during
the weeks following the distribution of reference [7] on the Georgia Tech campus. At that
time, David made some comments that may be paraphrased as, “Oh, you decided to go
to the big end instead of the small end.” He was referring to our introduction of what
has evolved into the Cauchy C curve and he was comparing it to traditional attempts to
fundamentally understand the universe by probing the realm of quanta. Most physicists
working on quantum gravity attempt to develop quantum gravity by trying to show a self-
consistent framework for the graviton as the quantum of the Newtonian gravitation field.
In the MCM, we begin with Einstein gravity so that there is no field to quantize, and let
the scale of the entire gravitational manifold representing the universe in one moment be
on the order of an infinitesimal with respect to the scale of the manifold representing the
universe in the next moment. By “going to the big end” we consider the entire universe as
one quantum on the higher level of ℵ, and integration is necessarily the operation that goes
toward the big end. When we consider two simultaneous charts on S2, one of them is on
a higher level of ℵ so that is another example of going toward the big end. Furthermore,
when we say those two levels of ℵ are Φ̂0 and Φ̂1, to the exclusion of Φ̂−1 (associated with
t−), then we once again uncover a fundamental asymmetry of the MCM. If it was symmetric

then Φ̂0 wouldn’t preferentially pair with either of t± but it does preferentially pair with t+
and, using very broad strokes, we can probably use this to explain why the baryon number
of the universe does not vanish but, rather, is manifestly positive.

The convention to define the MCM inner product with Φ̂ and ϕ̂, as in〈
ψ; π̂; Φ̂j+1

∣∣ψ; π̂; ϕ̂
〉

= π̂−11̂π̂ , (4.89)

is interesting because, with ϕ̂ being on Φ̂j, the numbers of the discretized levels of ℵ are
j + 1 and j respectively. As we will show at the end of this section, the integer values j
and j + 1 form the backbone of the most complex eigenvalues of the angular momentum
operators in quantum mechanics. If we associated an angular momentum with each of the
t± universes as they travel in different directions around the circle then the two momenta
should combine in superposition to give no net angular momentum but there is an altogether
different scenario with t?. In the representation where t? goes around a circle rather than
along a straight line, as per the MCM initiative to wrap the the x0 axis around a cylinder,
there is evidently an associated angular momentum ~L. As ~L is conserved from one moment
to the next (H1 to H2), it must be decomposed onto t± for the integration path around

infinity, as in figure 52. In the decomposition, we expect that ~L/2 will go into t+ and ~L/2
will go into t−. t± run clockwise and anti-clockwise between H1 and H2 so the rotation that
contributes to the momentum in t− must be reversed with respect the rotation in t+. This is

required to generate ~L/2 in t− which adds, rather than cancels, with the angular momentum

of t+. Therefore, we can associate ~L/2 with half integer spin, and the two opposite types of
rotation should be called “spin up” and “spin down.”

Above we have shown how the amplitude for forward evolution needs to normalized to
unity. The formalism also needs to show that the amplitude for staying in the present is
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forbidden with 〈
ψ; π̂; Φ̂0

∣∣ψ; π̂; ϕ̂
〉

= 0 . (4.90)

This formula says that the probability for a qubit on Φ̂0 to stay on Φ̂0 is zero. However, the
formula has simply reduced j by one with respect to equation (4.89) so we can immediately
write 〈

ψ; π̂; Φ̂0
∣∣ψ; π̂; ϕ̂

〉
= π̂−1ϕ̂π̂ . (4.91)

This does not equal zero so we need to take a closer look. Here, we might uncouple ϕ̂ from
H in some fashion such that

ϕ̂ 7→ Φ̂−1 . (4.92)

With this map, we say that everything on Φ̂−1 is an infinitesimal. When the probability is
proportional to ϕ̂, as in equation (4.91), it is subfinite and can be associated with zero as
required for equation (4.90).

What about the probability for a state to start on Φ̂j and then end up on a level that is
much higher? If we consider 〈

ψ; π̂; Φ̂j
∣∣ψ; π̂; ϕ̂

〉
= π̂−1Φ̂j−1π̂ , (4.93)

with j≥2 we do not get zero. If we use the equivalent of map (4.92), trivially

Φ̂j 7→ Φ̂j , (4.94)

then equation (4.93) gives a number on a higher level ℵ which is infinite, and therefore a
problem. To build the workaround in this case, note that we have not specified the initial
level of ℵ so we may simply say that ϕ̂ was encoded on the level of Φ̂j−2. From this we recover
P [ψ] = 1 with a finite (but arbitrary) normalization. Absolute level of ℵ does not factor
into consideration so it is feasible that we can normalize such that the level of ℵ on the right
of the modified Dirac bracket is always j − 2. This will hard code into the bracket that it
always increases the level of ℵ by two. Therefore, we do not obtain 〈ψ; π̂; Φ̂{j≥2}|ψ; π̂; ϕ̂〉=0

but instead exclude it from consideration. When the future is on Φ̂j, and the qubit is on
Φ̂j−2, then the baseline level of ℵ is evidently j − 1. The map that will identify a transition
amplitude into Φ̂j, as in equation (4.93), with the amplitude into Φ̂1, as in equation (4.89),
is
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Φ1−j : Φ̂j 7→ Φ̂1 . (4.95)

If we add this to equation (4.93), we get

〈
ψ; π̂; Φ̂j

∣∣Φ1−j∣∣ψ; π̂; ϕ̂
〉

= π̂−1

(
Φ̂j−1

Φj−1

)
π̂ = π̂−11̂π̂ , (4.96)

This shows that the probability for the qubit to end up two levels of ℵ higher than where
it started is 100%. The standard use of a normalization coefficient in quantum theory is
precisely so that the inner product is normalized to unity. This shows that the normalization
constant Φ1−j in equation (4.96) is well motivated. Therefore, with the exception of the rule

ϕ̂ 7→ Φ̂−1, we have only used the ordinary methods of quantum mechanics to study these
amplitudes. The eccentric step ϕ̂ 7→ Φ̂−1 was introduced for amplitudes when j was not large
enough. When studying the case of j too large, we redefined the inner product so that it is
always across two levels of ℵ, and this definition means that we do not have to rely on the
map ϕ̂ 7→ Φ̂−1. The operation which returns unity is always from j − 2 to j.

The above stated rules will work, but the notation with two hatted specifiers |ψ; êµ; êν〉
is not something we have previously considered. Also, it is unsatisfying that, when j is too
big, we use a normalization but in the case of ϕ̂ 7→ Φ̂−1 we say that the number exists on a
different tier of infinitude. The normalization procedure should work the same in either case
so we have imposed an arbitrary rule to do one thing one case and another in the other case.
Therefore. we will propose another inner product where we do not require the normalization
to unity. Consider 〈

ψ; Φ̂2
∣∣ψ; π̂

〉
= πΦ2 . (4.97)

This is the amplitude for the π̂ component to end up two levels of ℵ higher than where it
started. It returns the all-important critical value [4] at the foundation of all of the MCM’s
quantitative results:

∂3ψ := iπΦ2ψ , (4.98)

where the factor of i is relegated to the
√
i channel in equation (4.97). If we put the unitary

evolution operator in there as〈
ψ; Φ̂2

∣∣Û ∣∣ψ; π̂
〉

=
〈
ϑ; Φ̂2

∣∣ψ; π̂
〉

= πΦ2δ(x− x′) , (4.99)
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then we have defined an excellent MCM remainder, but if 〈ϑ|ψ〉=δ(x−x′) then 〈ϑ; êλ|ψ; êµ〉
is supposed to give a number in R. In this section, we will replicate the derivation of general
relativity using equation (4.97) but the reader should note that, by propagating δ(x − x′)
through the algebra, we can describe increasingly complex connections between quantum
states ψ and the geometric conditions in a gravitational manifold.

The result that P̂π2 = P̂π1 is very important because it shows that there is fundamentally
only one π̂-site. When we construct the projection operators for a hypothetical π̂j-site, they
are all the same and this is indicative of fractal structure. Linear algebra requires that basis
vectors appear by themselves and not in products so it was ambiguous when we wrote the
bra-ket with both π̂s and Φ̂s in it as in〈

ψ; π̂; Φ̂1|ψ; π̂; ϕ̂〉 = π̂1̂π̂ . (4.100)

The second π̂-site is actually π̂2≡ π̂2 so a fully specified version of equation (4.100) is〈
ψ; π̂2; Φ̂1|ψ; π̂1; ϕ̂〉 = π̂21̂π̂1 = π̂ · π̂ · π̂ . (4.101)

There are redundant π̂s in there. This notational deficiency is likely attributable to the
psi-langle formalism where the product of a psi-langle with a ket is another ket. This means
we could take the output ket with another {π̂| which would be associated with the third
instance of π̂ in equation (4.101). If we write the probability for a state to transition into a
level of ℵ that is two levels higher than where it started as

P [ψ(x)]Φ2 =
〈
ψ; Φ̂2

∣∣ψ; π̂
〉
, (4.102)

as in equation (4.97), then this will have just one π̂ in it. Therefore, the condensed psi-
langle/ket |ψ; êλ〉 notation is favored. This is excellent because we have treated objects like
|ψ, êλ〉 throughout this research program but objects like |ψ; êλ; êρ〉 are of a different sort
altogether. In equation (4.97), we have reduced to the intuitive form 〈ψ; êµ|ψ; êν〉 and it
looks as if we don’t need to write π̂ redundantly.〈

ψ; Φ̂2
∣∣ψ; π̂

〉
= Φ̂2 · π̂ . (4.103)

We have the native definitions in linear algebra 〈êα|êβ〉 = δαβ but equation (4.103) is
a non-linear relationship wherein we cannot enforce the rules of linear algebra. The most
famous non-linear application in quantum mechanics is the harmonic oscillator

Vharmonic(x) =
1

2
mωx2 . (4.104)
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This potential along with the hydrogen atom mentioned earlier are the most important
exactly solvable problems in quantum mechanics.1 The harmonic oscillator is non-linear in
x but the hydrogenic potential

Vhydrogenic(x) = − 1

4π

e2

ε0

1

x
, (4.105)

is linear on the other side of a Riemann sphere somewhere when 1/x→x. The harmonic os-
cillator differs significantly from the hydrogen atom when its quantized energy levels increase
as integers. The hydrogenic energy levels

Ehydrogenic
n =

me

2

(
1

4π

e2

ε0~

)2
1

n2
, (4.106)

kind of increase as levels of ℵ because n is an integer, but the quantum energy levels in the
harmonic oscillator

Eharmonic
n = ~ω

(
1

2
+ n

)
, (4.107)

do increase exactly as integers. The inverse linear r−1 atomic potential has energies that go
like n−2 and the quadratic harmonic potential has energies that go like n. There is likely
some deep reciprocity between these two famously exactly solvable problems of hydrogen
and harmony when {

x−1;n−2
}
←→

{
x2;n1

}
, (4.108)

but instead we will remain focused on equation (4.103).
What we have done in equation (4.103) is to let there always be a remainder, not just in

the case of Dirac orthogonal vectors. We say equation (4.103) shows a remainder because
of the non-linear pathology. We have treated these objects mostly in the Dirac formalism
but consider the case when we write out the inner product in the form that highlights the
potential for an unpaired term. In long form, we have

〈
ψ; Φ̂2

∣∣ψ; π̂
〉

=
∞∑
j=0

∞∑
k=1

c∗kcjδ
′
jk

∫
ψ∗kψj dx = c0πΦ2

∫
ψ0 dγ̂ . (4.109)

1In quantum field theory there are exact solutions for fourth order interactions and those are essentially the square of the
harmonic oscillator problem. The third order interaction is an unsolved problem well suited to analysis in ?C.
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At this point, it is very easy to associate the unpaired term ψ0 with the (questionable)
delta function in equation (4.99). Furthermore, equation (4.99) shows the remainder only
associated with the Dirac orthogonal states which is what we want. It is natural to write〈

ψ; Φ̂2
∣∣Û ∣∣ψ; π̂

〉
=
〈
ϑ; Φ̂2

∣∣ψ; π̂
〉

= c0πΦ2

∫
δ(x− x′) dγ̂ . (4.110)

Depending on what dγ̂ does, and what we use for x and x′, this representation offers a lot
of potential for complexification.

Consider a reformulation of the MCM hypothesis as〈
ψ
∣∣M̂3

∣∣ψ〉 ≡
〈
ϑ; Φ̂2

∣∣ψ; π̂
〉
. (4.111)

The interpretation is that the returned value of M̂3 is equivalent to the amplitude for the
level of ℵ of the π̂-site to increase by two as the particle moves from one location to another.
In that case, using the remainder notation and setting c0 =1, we have〈

ψ
∣∣∂̂3
t

∣∣ψ〉 = ω3ψ0 , and
〈
ϑ; Φ̂2

∣∣ψ; π̂
〉

= πΦ2ϑ0 , (4.112)

from which we can infer directly that

ω3ψ0 = πΦ2ϑ0 . (4.113)

Then we may write, as per usual,

8π3f 3
(
ψ0 π̂

)
= πΦ2

(
ϑ0 π̂

)
(4.114)

= πΦ
(
ϑ0 π̂

)
+ π
(
ϑ0 π̂

)
(4.115)

= π2
(
ϑ0 Φ̂

)
− iπ2

(
ϑ0 î
)
. (4.116)

We must get rid of π2 in some fashion: either we construct S2, we use the projection operator
π−2 π̂2, we use the quaternion identity π̂−1βπ̂=β, or do some such operation that we recover

8πf 3
(
ψ0 π̂

)
=
(
ϑ0 Φ̂

)
− i
(
ϑ0 î
)

(4.117)
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=
Φ

4

(
ϑ0 2̂

)
+

1

2

(
ϑ0 Φ̂

)
− i
(
ϑ0 î
)
. (4.118)

This replicates the earlier matching of the ontological basis to the elements of Einstein’s
equation

f 3
(
ψ0 π̂

)
7→ Tµν (4.119)

Φ

4

(
ϑ0 2̂

)
7→ Rµν (4.120)

(
ϑ0 Φ̂

)
7→ Rgµν (4.121)

i
(
ϑ0 î
)
7→ gµνΛ . (4.122)

Here, we must repeat, again, that the matching in these maps is arbitrary and that we
expect future investigations will show unique relationships between the ontological pieces of
the remainder and the tensors in general relativity. Specifically, the manner in which we
have chosen to derive the 2̂ sector solely through the Φ̂ sector is very arbitrary. However,
regardless of the form of the matching, here we have achieved exactly what we proposed to
do with

∫
dγ̂. The important principle demonstrated is that there does exist some set of

matchings between the objects in Einstein’s equations and the objects in equation (4.118).
Furthermore, Tµν is the stress-energy tensor which we have set proportional to the frequency
cubed and there exists an independent result in quantum theory wherein the energy density
of the vacuum depends on the cube of the frequency.

Moving on with quantum mechanics, in reference [62] Gatland writes the following about
why half-integer spin states must have multiplectic coefficients. While we have used the
concept of even and odd levels of ℵ separating on shell regions from an off shell bulk, Gatland
makes a novel argument regarding the odd- or evenness of the analytical wavefunctions
themselves.

“One problem in presenting the theory of angular momentum in the context
of quantum mechanics is explaining the absence of orbital momentum states that
are half-integer (in units of ~). The angular momentum are initially defined in
terms of position and momentum operators and the commutation relations for the
components are obtained. The remainder of the algebraic analysis only uses the
commutation relations for the angular momentum components so that some of the
information contained in the position-momentum commutation relations is lost. As
a result both integer and half-integer momentum states appear. [sic] In the usual
development, the raising and lowering operators from a state with z-component
angular momentum number m to the neighboring m states (expressed in terms of
the polar angle θ and the azimuthal angle ϕ) are
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L± = −i~e±iϕ
(
± i∂/∂θ − cot θ∂/∂ϕ

)
, (4.123)

and the z-component angular momentum operator is

Lz = i~∂/∂ϕ . (4.124)

If Fl,m(θ, ϕ) is an eigenfunction of L2 and Lz with eigenvalues l(l + 1)~2 and m~,
respectively, the according to [equation 4.124],

Fl,m(θ, ϕ) = fl,m(θ)eimϕ . (4.125)

We combine [equations (4.123) and (4.125)] and find that the neighboring states
(after normalization) are given by

~
(
± d/dθ −m cot θ

)
fl,m = ρl,±mfl,m±1 , (4.126)

where

ρl,m =
[(
l(l + 1)−m(m+ 1)

)]1/2 ~ . (4.127)

Raising the top state or lowering the bottom state gives zero for the right-hand
side of [equation (4.126)]. From the resulting differential equations we find

fl,±l = N± sinl θ . (4.128)

The normalization constants N+ and N− in [equation (4.128)] have the same mag-
nitude but not necessarily the same phase. All of the states for a given l may be
obtained by starting from the bottom state, [equation (4.128)] with m = −l, and
using [equations (4.126-4.127)] to move up in m.”

Quantum mechanical eigenfunctions are purely a study of differential equations and, here,
we will say a little about how analytical wavefunctions might be modified, if required, to
describe the MCM, and also what l and m might describe in the MCM system. l is called
the azimuthal quantum number and we proposed to modify the azimuthal angle in the
MCM by extending the periodic domain θ ∈ (0, 2π] onto the infinite helical interval θ ∈
(−∞,∞) in some covering space representation. Therefore, we might insert an additional
layer of decoupling by removing from the functions {Fl,m, fl,m, ρl,m, eimϕ} the topological
U(1) periodicity. This complexification may make it impossible to separate the functions into
products of simpler functions but this kind of separated analysis is not required for modern
computing facilities which can return solutions to arbitrarily complex sets of differential
equations without ever having to represent them analytically.

In quantum theory, we move up in m which is associated with the zenith angle on the
z-direction in the Ŝz operator. Furthermore, the zenith angle in the MCM must be identified
with a set of two such angles through which we derive bispinor structure on {ϑ+, ϑ̄+, ϑ−, ϑ̄−}.
We might use the concept of double orthogonality to join the changing level of ℵ to the
magnetic quantum number m such that the raising and lowering operator on m is associated
with a raising (or lowering) operator for the level of ℵ. However, not everything must be

connected and m and Φ̂j could be completely separate.
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Figure 60: This figure shows the possible angular momentum configuration for l= 2. For any l-state, there
are 2l+ 1 possible values of m giving the 2×2 + 1=5 possible values shown in this figure, which
is taken from Wikipedia.

Gatland’s main idea in reference [62] is that it is impossible to have half-integer values of
the orbital angular momentum which could be explained with classical mechanics. This is
shown in figure 60 and the reader should understand that if half-integer values were allowed
then the flat sections of z would be separated by units of

~
2

=
1

4π
h , (4.129)

as opposed to the integer separation shown in figure 60. As it is, there are no such sets of
eigenfunctions that have this property so we need to describe our experiments in this limit
with eigenspinors. Gatland writes the following about the symmetry of that representation.

“We now consider the symmetries of the fl,m functions under the transformation
θ → π − θ. Under such a sign transformation sin θ is even (no sign change), cos θ
is odd (changes sign), and cot θ is odd. Also, if g(θ) is even (odd), then dg/dθ is
odd (even). It follows from [equation (4.126)] that if fl,m is an even function, then
fl,m±1 is an odd function, and vice versa. But, according to [equation (4.128)], the
bottom state is even, so the states are alternatively even and odd.

“However, according to [equation (4.128)], the top state is also even so there
must be an odd number of m states. This requirement in turn implies that l be an
integer. The integer angular momentum states are allowed by the symmetry anal-
ysis, but the half-integer angular momentum states are forbidden. Half-integer
angular momentum states cannot be represented in terms of three-dimensional
space functions.”

Thus spinors are introduced and we get the complicated Ĵ = L̂ + Ŝ + ... operators. All
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of these operators are used to describe the angular momentum of an electron in a hydrogen
atom. All systems with many electrons and/or nucleons are solved by methods of approxi-
mation based on the beautiful solution for hydrogen. Note well that, in the MCM particle
model (section II.8), quarks are like chiros and leptons are like chronos so the electron and
three quarks in a hydrogen atom are exactly like x0 ∪ {χ5

+, χ
5
∅, χ

5
−}.

Note that the transformation θ → π − θ is exactly the operation that will represent
decoupling two co-π̂s generating a U(1) symmetry and then reassembling them such that H
and ∅ are swapped between the two representations of the MCM unit cell. When we take
two coordinates θ∈(−π/2, π/2) that are initially the same, and then we send one of them as
θ→π − θ, that will have the effect of reversing the direction of increasing coordinate along
that θ. This is exactly what will be required for constructing the various iterations of t±.
Furthermore, if we change the level of ℵ so that the parameter on each co-π̂ goes like θ→eiθ

then

eiθ −→ ei(π−θ) = eiπe−iθ = −e−iθ . (4.130)

In this instance, we have before and after objects that essentially transform as x→1/x with

eiθ −→ − 1

eiθ
, (4.131)

which is the inversion map on S2

ζ =
1

ξ
, (4.132)

up to a sign. We can get that extra sign anywhere, most directly by considering an initial
change θ→ θ − π instead of θ→π − θ. In equation (4.131), the ζ and ξ functions (eiθ and
e−iθ) increase in opposite directions around the complex unit circle exactly as we expect t+
and t− will. The inversion shown in equation (4.132) is between two coordinate charts on the
surface and if we consider another inversion that exchanges the sphere’s interior region with
its exterior region then the extra minus sign will be obtained as a normal vector pointing
from the surface toward the interior or the exterior.

IV.4 Conformalism and Infinity

Penrose gives a definition for conformal infinity in spacetime which begins as follows in
reference [52].

“Let M̃ denote physical space-time with metric ds̃. The idea is to construct
another ‘unphysical’ manifold M with a boundary I and metric ds, such that M̃
is conformal to the interior of M with ds = Ωds̃, and so that the ‘infinity’ of M̃
is represented by the ‘finite’ hypersurface I (see [figure 61].) This last property
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Figure 61: This figure originally appeared in reference [52] where the original caption read, “The infinite
physical space-time M̃ is mapped into an unphysical ‘finite’ conformally equivalent manifold M ,
with boundary I corresponding to the ‘infinity’ of M̃ .” The squiggly lines leaving M̃ fairly well
represent CMB photons coming from the the horizon of the observable universe and the included
boundary of M is like a domain wall in the hypercosmos.

is expressed by the condition that Ω = 0 on I , that is to say, the metric at I is
stretched by an infinite factor in the passage from M to M̃ so I gets mapped to
infinity. Asymptotic properties of M̃ and the fields in M̃ can now be investigated
by studying I , and the local behavior of the fields at I –provided that all the
relevant concepts can be put into conformally invariant form.”

Here, will refer to the conformal factor as Ωconf for disambiguation with de Sitter space Ω.
When Penrose describes stretching by an infinite factor, he necessarily refers to the changing
level of ℵ. The hypercosmos is such that the information on the π̂-site corresponding to H
propagates beyond the boundary at conformal infinity to another π̂-site on a higher level of ℵ.
The open physical universe that is feasibly amenable to measurement isH≡M . Ω is another
unbounded space; its spherical topology means that it does not have a boundary. In M̂3,
the boundary is not obtained until projection into the hyperbolic topology of ℵ. Therefore,
let Φ̂ anchored to H point to Ω and Φ̂ anchored to Ω point to ℵ such that the level of ℵ
increases by two in each application of M̂3. When the metric is stretched by a conformal
factor equal to infinity on I , that is a requirement for the metric to be dynamical at the
π̂2-site. Without getting stretched by at least ∞, the metric would be gµν = diag(0, 0, 0, 0)
in H2. Where Penrose completes the physical manifold with a point at infinity, we want to
complete it with at least S0: one point for countable infinity and one for uncountable infinity.
Furthermore, we might wish to take analytical continuations of M into the region beyond
I without venturing into the universe H2 on the other side. Then we should complete the
physical manifold with a linear segment whose endpoints are countable and uncountable
infinity. The purpose of Φ̂ is then, first, to point to countable infinity at I , and then from
countable to uncountable infinity such that there is a rotation completely denned within
the region beyond conformal infinity but before the next π̂-site. Therefore, when Penrose
suggests examining the behavior of fields at I we might suggest to examine the behavior
of the analytical continuation of fields into the region inside conformal infinity. This region
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should be associated with the cosmological domain walls that separate adjacent universes in
the hypercosmos.

In reference [27], Misner, Thorne, and Wheeler write the following.

“When performing calculations in asymptotically flat spacetime, one often must
examine the asymptotic forms of the fields (e.g., the metric, or the curvature ten-
sor, or the electromagnetic field) ‘at infinity.’ For example, the mass and angular
momentum of an isolated system are determined by the asymptotic form of the
metric [sic]. It is rarely sufficient to examine asymptotic forms near ‘spatial in-
finity.’ For example, if one wishes to learn how much mass was carried away by
gravitational and electromagnetic waves during a supernova explosion, one must
examine the asymptotic form of the metric not just at ‘spatial infinity,’ but at
‘future null infinity.”’

What does it mean to be conformal? A map is conformal if it preserves the angles at
which lines intersect. If we draw an orthogonal basis in a manifold and use a conformal map
to send it to another manifold M̃ 7→M , or H 7→Ω 7→ℵ 7→ H, or even HΦ̂j 7→HΦ̂j+2 which
could be written H 7→H̃, then the basis will still be orthogonal.1 An important application
of conformal invariance is to preserve the right angle of intersection of the two null intervals
x1 = ±cx0 in a 2D Minkowski diagram of H ≡M . Conformal invariance is familiar from
special relativity where the conformal deformation of the null interval is always elsewhere
from the observer due to the rigidity of the assumed Lorentz frame. In figure 62, we see
the two lines intersect at right angles and that is always the topology of the Lorentz frame.
Without regard for the motion of an observer, photons will always recede from and arrive
at the position of the observer at the speed of light. This requires, at all times, that the
light cone centered on the observer is describable with a conformal field theory. This is a
property of relativity. The light cone must open at the 90◦ angle of intersection of two lines
whose slopes are c=±1. In figure 63, we see that all the lines still intersect at right angles
but are not everywhere orthogonal. Conformal maps preserve the orthogonality that is the
general structure of physical modes that we use to make physical descriptions. The “general
structure” referred to is that sin(x) and cos(x) are out of phase by π/2 in the context that the
harmonic oscillator potential is approximately the only exactly solvable problem in physics.
We can use the Euler formula to add complexity with an imaginary component via the
exponential map θ 7→eiθ. This is how we go from the lines in the diagrams to the bulk space.
In the O(3,1) topology of S3 with a phase shifted radial degree of freedom (a 3-ball) we have
three real dimensions on the surface of the sphere and then we go into the bulk space with
a fourth imaginary dimension (or this can be real and the sphere can be imaginary, as in
section II.4.) Without considering a full 3-ball, we can consider the simplified MCM system
in figure 64 which shows that the MCM worldlines are sinusoidal. Then we can associate
an on shell condition with the sine waves sin(x) and cos(x) = sin(x − π/2) and we should
associate the exponential plane waves eix with the bulk region off of the sinusoidal lines. It is
precisely the introduction of operators whose commutators are proportional to i that allows
one to probe the off shell region in QFT.

1The two options for writing M̂3 here, H7→Ω 7→ℵ 7→ H and HΦ̂j 7→HΦ̂k, reflect what we called the 4D Φ̂ and the 5D Φ̂ in
section I.2 (figures 3 and 4.)
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Figure 62: The null interval ds2 = 0 is conformally invariant and that makes conformal field theory impor-
tant for physics. Length contraction contracts the horizontal axis which is a conformal Lorentz
transformation that would make the angle of the light cone acute. However, the Lorentz approxi-
mation that defines an inertial frame says the angle is always π/2 right angle radians. Therefore,
the meaning of the word “relativity” is that the slope of the light cone’s edges at a point away
from the observer depends on an observer’s relative motion.

Figure 63: f is a conformal map because it preserves the angles of intersection of all lines. However, the
distance between the lines, and therefore the angles between them away from their points of
intersection, are not preserved in a conformal transformation. This figure is taken from Wikipedia.

Figure 64: The structure of time wrapped around a cylinder in the MCM is generally described by two sine
waves out of phase by π radians.
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Figure 65: This figure demonstrates that conformal transformations preserve the angles of intersection of
lines but only at the point of intersection, not in a local neighborhood of the intersection... unless
we consider the hypercomplexly infinitesimal neighborhood.

A good way to understand a conformal map from one manifold to another, the general
sense in which we use the word “conformal” in the MCM, is that the conformal manifold
can be constructed by smooth deformations of the original manifold. In conformal transfor-
mations, the angles of intersections are always preserved but the angle between lines is not
preserved everywhere. In figure 63, all the lines intersect at 90 degrees (π/2≈Φ radians.)
In the conformal manifold produced by f, the angle between the lines is not everywhere π/2
as it is in the pre-image of f. The concept of local preservation of angles does not mean
that there is a finite area around the point of intersection where the angle of intersection
has been preserved. In figure 63, one might assume incorrectly that there is a small region
in the corner of each box where the lines are still perpendicular. In fact, the lines are only
perpendicular at the point of intersection, as in the center of figure 65. Regarding that
figure, consider a non-straight line γ parameterized in the deformed manifold with τ . Also
consider another set of parallel lines z (a direction) in the conformal manifold such that one
of these lines is perpendicular to γ at τ = 1. The fact that the lines are only perpendicular
at a point can be extended to the idea in general relativity that a coordinate basis êµ can
only be defined at a point; it is extended throughout an “inertial frame” only in the Lorentz
approximation. When ẑ is perpendicular to γ(τ) at τ = 1, we must say that, even at the
local point γ(1 + dτ), the parallel lines are no longer perpendicular to γ(τ) because it is
identically non-straight. This is shown in the center of figure 65. However, in the MCM,
we have the freedom to consider another local region around the point of intersection which
we call the hypercomplexly infinitesimal neighborhood of any point γ(τ). At that level of

zoom, there are points γ(τjΦ̂
j + τj−2Φ̂j−2) where the z-direction is perpendicular to γ across

a local region described by the parameter τj−2, as in figure 65 (right.) For this, we use the
definitions that

τ ± dτ ≡ τj Φ̂j ± Φ̂j−1 , and Φ̂j−1 ≡ ∞Φ̂j−2 . (4.133)
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Due to the axioms of hypercomplexity, this small region defined with τj−2 on Φ̂j−2 can extend
all the way out to any finite value until

γ(Φj +∞Φ̂j−2) ≡ γ(Φj + Φj−1) , (4.134)

where we use the notation that

γ(Φj + Φj−1) ≡ γ(1 + dτ) . (4.135)

Therefore, infinity on Φ̂j is unity on Φ̂j+1. Infinity on Φ̂j is like an infinitesimal on Φ̂j+2. In
the conformal manifold, we may consider the neighborhood where τj−2∈(−∞,∞) to be such
that the angles between γ and the other lines are everywhere as they were in the original flat
manifold at γ(1). We see that the parameter τj−2 is allowed to vary across any finite range
in the hypercomplexly infinitesimal neighborhood around γ(1) because τj−1dτ will always be
infinitesimal for finite τj−1. See reference [8] for a more detailed exposition of the notation
in equations (4.133-4.135).

The hypercomplexly infinitesimal neighborhood will be very important if we are to de-
scribe the entire universe as a single quantum of spacetime with language that usually de-
scribes atoms in a lattice. This notation allows us to resolve a continuum inside the quantum
which is another example of that to which Finkelstein referred to as “going to the big end.”
Building a lattice with the requisite non-commutative properties, likely one that implies
that the reciprocal lattice of the cosmological reciprocal lattice is not the original cosmo-
logical lattice itself, will be a significant technical feat. However, we have made use of the
orthogonal intersection of parallels, meridians, and hypermeridians on S3 to set the relative
orientations of the flat, spherical, and hyperbolic spaces of the MCM unit cell so we have a
lot of guidance for what the lattice might look like once we make the inevitable conversion
from the rectangular coordinates that are easy to draw to the spherical coordinates which are
not so easy to represent without specialized software. Conformal invariance guarantees that
parallels, meridians, and hypermeridians will always intersect at the same angle of perfect
orthogonality and, therefore, the relevant features of the MCM unit cell will be preserved
even if we represent them with two cubes Σ±. Notably, we will never be able to cover the
rectangular representation of the unit cell with a conformal deformation of the 3-spherical
representation because a conformal transformation will never be able to squeeze all the way
into the corners of the MCM unit cell as it appears in this book.

In reference [52], Penrose gives the definitions of conformal invariance of field equations.

“The utility of [conformal infinity ] rests on the fact that the zero rest-mass free-
field equations for each spin value are conformally invariant if interpreted suitably.
For example, for spin zero, if the wave equation is written as{

∇µ∇µ +
R

6

}
φ = 0 (4.136)
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Figure 66: This figure shows tiers of infinitude as {Φ̂j+2, Φ̂j , Φ̂j−2}. When this figure appeared in chapter
one, there was in intuitive idea that this should show three adjacent levels of ℵ but clearly it does
not. This shows the entire infinite expanse of the central level being like a point in the upper
level so it necessarily skips the intermediate level. A finite element on Φ̂j+1 is like a point on
Φ̂j+2 or the entire real line on Φ̂j .

where R is the scalar curvature and ∇µ denotes the covariant derivative—both
according to the metric gµν of M , then{

∇̃µ∇̃µ +
R̃

6

}
φ̃ = 0 (4.137)

where ∇̃µ, R̃ refer to the metric g̃µν = Ω−2gµν of M̃ and where

φ̃ = Ωφ . (4.138)

For spin 1 we have Maxwell’s free-field equations

∇µFµν = 0 , ∇[λFµν] = 0 (4.139)

with Fµν = F[µν]. The tilde version of this holds if we put

F̃µν = Fµν . (4.140)

For spin 2, we can use a tensor Kµνρσ with the symmetries

Kµνρσ = K[ρσ][µν] , Kµ[νρσ] = 0 , Kµ
νρσ = 0 (4.141)

satisfying

∇[γKµν]ρσ = 0 (4.142)

or equivalently ∇µKµνρσ = 0. Conformal invariance is achieved if

K̃µνρσ = Ω−1Kµνρσ .” (4.143)
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If the conformal factor Ωconf is a constant then equation (4.138) is exactly what we have
shown in section II.2 regarding the “size” of the coordinates at one lattice site compared
to another. Stretching and shrinking are absolutely conformal transformations. Tensor
transformations are conformal; the coefficients of proportionality in the tensor transformation
law can be labeled Ωconf. Also note that equations (4.136-4.137) are the wave equation so
φ cannot be a quantum mechanical wavefunction. Wavefunctions satisfy the heat equation.
(The Schrödinger equation is a heat equation and that is why the probability density diffuses
like heat.) The zero mass Klein–Gordon equation in flat space is

∇µ∇µφ = 0 , (4.144)

and it generalizes to curved space as

(∇µ∇µ + ζR)φ = 0 , (4.145)

where the Ricci scalar R is a mass analogue term. The equation is conformally invariant
when ζ = 1/6, meaning that equations (4.136-4.137) would have different values ζ and ζ̃ for
any place in parameter space other than ζ=1/6.

Penrose gives the definition ds=Ωconf ds̃ which implies ds2 =Ω2
conf ds̃

2 and that is mirrored
in Penrose’s later definition g̃µν = Ω−2

conf gµν . If we reduce equations (4.136-4.137) to 1D so
that φ describes, say, the displacement of a vibrating string then it is very easy to understand
equation (4.138). It says that, after mapping the string to a conformal string in a conformal
manifold, the amplitude of the vibration on the string is scaled by the linear conformal
factor. In the case of a string, φ describes the transverse displacement so it is a distance.
Obviously it follows that the metric will be scaled by Ω2

conf because it depends on the distance
as dxµdxν . The displacement field of a string is a good example of a spin-0 field. The string
has no inherent angular momentum and there is no such thing as a polarized classical string
vibrating in the plane.

We have included Penrose’s comments about spin fields because we can make a nice
connection to the spin-1 field specifically but, first, we will say a little more about spin
and spinors to complement a few concepts developed earlier in this book. The simplest
representation of non-classical spin is that for spin-1/2. The Pauli spin matrices are 2D so,
to connect with Hilbert space, we need to make the change H′ → H′ ⊗ C2. A C2 number is
a 1× 2 column array and those connect to 2D matrices via the rules of matrix algebra. For
spin-1, the spin matrices are 3D and we have a corresponding state space H′ → H′ ⊗ C3.
Spin-3/2 matrices are 4D and there is a corresponding state space, spin-2 matrices are 5D,
etc. In the MCM, we have proposed to construct all these spaces with the product of H and
the neighboring dimensions in the unit cell. For instance, to construct the space of spin-1/2
wavefunctions [11], we have modified the state space as

H′ → H′ ⊗ χ5
+ ⊗ χ5

− . (4.146)
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χ5
± are separated by χ5

∅ so we can assign one C number to each of Σ± to generate C2. Then
“spin is weird” because Σ± are disconnected on the same level of ℵ but Σ+ is connected to
Σ− on the higher level by the Cauchy C curve. The full MCM unit cell includes the surfaces
{ℵ,H,Ω} whose coordinates are {xµ−, xµ, x

µ
+} and we can construct the C3 needed for spin-1

matrix algebra with

H′ → H′ ⊗ x0
+ ⊗ x0 ⊗ x0

− . (4.147)

Here, we generate C3 with three functions that take a point from each time axis and return
a C number. Therefore spin-1 can be described with three numbers in three disconnected
spaces {ℵ,H,Ω}.

The abstract vector space H′ is modified for spinors by adding an n-tuple from C and
this must have a corresponding modification in the position space representation. We have
shown that half integer spin states cannot be accommodated with simple functions of position
space. To get the corresponding object for the position space representation of ψ∈H′ ⊗C2,
we would need to add a function of χ5

+ that returns a complex number and another function
of χ5

− that does the same. For the spin-1 spinor, we would take three functions of the three
expansion dimensions shown in equation (4.147). There are no fundamental particles with
spin-3/2 so we can ignore that case and progress to the spin-2 graviton which is sometimes
thought to exist. Gravitons have never been detected and no one has ever developed a
consistent mathematical framework for them. In the MCM, the space for spin-2 would have
to be constructed as

H′ → H′ ⊗ t{j+1}
− ⊗ t{j}+ ⊗ t{j}? ⊗ t

{j}
− ⊗ t

{j−1}
+ . (4.148)

This construction spans three levels of ℵ and cannot exist within a single unit cell so the
MCM prediction, originally, was that there are no spin-2 gravitons. This aligns well with
the MCM’s alternative approach to quantum gravity: we have made the quantum sector
classical instead of seeking to quantize the classical sector. For the case of half-integer spin,
it is provably impossible to make the quantum sector classical but we have developed a
workaround with piecewise geometry. The graviton is expected to be the quantum of the
gravitational field but there is no gravitational field in general relativity and that further
corroborates the MCM prediction that there are no spin-2 gravitons. How could there be
a quantized gravitational field when there is no classical gravitational field to begin with?
However, there may well be physical spin-2 gravitons in Nature and, now that we have
introduced 2̂ and ∅, we might reformulate definition (4.148) as

H′ → H′ ⊗ t{j}∅+ ⊗ t{j}+ ⊗ t{j}? ⊗ t
{j}
− ⊗ t

{j}
∅− . (4.149)

which would exist on a single level of ℵ, as in figure 67.
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Figure 67: We have previously cited a problem with the physical interpretation for the extension of the MCM
spin scheme to spin-2. The scheme in this figure, which includes ∅, assuages the interpretive
problem so spin-2 fundamental MCM particles should not be ruled out on interpretive grounds
alone.

We should further note that the electromagnetic field strength tensor Fµν is conformally

invariant between M and M̃ without any reliance on Ωconf. The relativistically invariant
Lagrangian for electromagnetism is

LEM =
1

4
FµνF

µν . (4.150)

We have placed the π̂-site in the cosmological lattice such that it corresponds to H which is
the classical domain of electromagnetism and the coefficient of π̂ in

1̂ =
1

4π
π̂ − ϕ

4
Φ̂ +

1

8
2̂− i

4
î , (4.151)

is the dimensionless electromagnetic coupling constant 1/4π. Therefore, this gives us a lot

of guidance about how to arrange spin fields in the lattice constructed from {̂i, Φ̂, 2̂, π̂} but
that will be beyond the scope of this section. It suffices to say that we have taken π̂ ∈ H as
the object of “old physics” and the MCM unit cell centered on H has a prominent feature
{ℵ,H,Ω} which will support the C3 numbers needed for the spin-1 matrix algebra of the
electromagnetic force carrier. The masslessness constraint on the photon will likely provide
further guidance in a full analysis of all physical spin fields whose conformal properties are
described in reference [52]. An alternative formulation of LEM in the ontological formalism
is

L̂EM =
1

4π
FµνF

µν π̂ , (4.152)

which shows there is likely some deep ontological connection between the inherent conformal
invariance of Fµν and the energy function LEM . Furthermore, if we take only the π̂-site as the
sector of absolute conformal invariance then we might associate the 1/4 pre-factor of LEM to
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Figure 68: This figure is taken from reference [52]. The finite universe M̃ is conformal to the region between
the two elements of M labeled I + and I −.

one fourth of the total energy, where energy is apparently conserved because we only consider
one fourth of {̂i, Φ̂, 2̂, π̂}. Unitarity is associated with probability but it is also associated
with conservation of energy. Therefore, when we extend the theory into the non-unitary
sector, perhaps the π̂ component still conserves energy. It is possibly mere coincidence but
still worth noting that when we take the ontological resolution of identity with the formula

êα = |êα|
∣∣êα〉 , then 1̂ =

4∑
α=1

1

4

∣∣êα〉 , (4.153)

has the same coefficient as the electromagnetic energy function LEM . In this case, the
projection operator P̂π would select the sector in which energy is conserved.

Regarding conformal infinity itself, and specifically figure 68, reference [52] goes on as
follows.

“The meaning of I−, I −, I0, I +, I+, can be seen by considering the behaviour
of curves in M corresponding to the straight lines in M̃ [which is the finite manifold
not including points at infinity.] The image of a time-like straight line originates
at I− and terminates at I+; the image of a space-like straight line originates and
terminates at I0; the image of a null straight line originates at a point of I − and
terminates at a point of I +. Thus, at I− represents past infinity; I0 represents
spatial infinity; I+ represents future null infinity. We expect, therefore, that zero
rest-mass fields are to be significant at I − and I +, but that fields of finite rest-
mass are important at I− and I+ and not at I − and I +.”

For the purposes of the MCM, we need arrange {I−,I −, I0,I +, I+} in the unit cell but
the full conformal analysis goes far beyond the general relevance of the MCM, and the
rectangular representation is not well suited to conformalism at infinity. We have put future
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Figure 69: To devise an analytic continuation beyond infinity we must map future timelike infinity in the
physical manifold to past timelike infinity in the conformal manifold. Here the 2π radians around
I+ are condensed to a point so in some sense the continuation onto the higher level of ℵ is like
the inverse of the Hopf fibration. To construct the Hopf fibration, each point in S2 “fibrates” a
circle of 2π radians and all the circles together form S3 which the topology of all of space.

and past timelike infinity on Ω and ℵ respectively so we should at least assume that I+

is a point in Ω and I− is a point in ℵ. Zero rest-mass fields are relevant because dark
energy is observed through the photon field and figure 68 looks exactly like the topological
piece we will need to continue the topology of the hypercosmos beyond the future timelike
infinity of a given universe, as in figure 69. In H≡M̃ , future timelike infinity I+ is, in the
low dimensional representation, a disc of infinite radius that closes the future light cone at
x0 =∞. The map from I+ to I− requires that the level of ℵ change by two so that the
infinite radius, first, becomes finite with one increment of ℵ, and then becomes infinitesimal
for smooth integration with the representation centered on ∅. When the circle of 2π radians
on Φ̂1 becomes a point on Φ̂2, that is like a contraction of the fibers in the Hopf fibration
such that S2 is recovered from S3.

Consider the 4D Lorentz frame represented in Cartesian spacetime coordinates and as-
sume that the topology of the Lorentz frame is sufficient for a model of the physical cosmos
M̃ . Further consider the geometry of the light cones on the left in figure 69. Within the
MCM, we have encoded the past on ϕ̂ so that the interior of the past light cone is actually
Ū . This is an example of topological modularization because, in the direct, non-modular
topology, the past light cone is filled with U . We are able to make this change because the
timelike region inside the past light cone, be it U or Ū , will never be intermingled with the
region outside the cone. Special relativity makes a stark distinction between the timelike
region inside the light cone and the spacelike region outside. When the spacetime interval
associated with a motion is

∆s2 = −
(
c∆t

)2
+ ∆x2 + ∆y2 + ∆z2 , (4.154)

the following definitions tell where xµfinal lies in relation to the light cone structure whose
apex was at xµinitial. We have
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∆s2 > 0 =⇒ Spacelike separation (4.155)

∆s2 = 0 =⇒ Lightlike separation (4.156)

∆s2 < 0 =⇒ Timelike separation . (4.157)

Here, we briefly consider the global synergies of the above concepts of conformalism in the
MCM. The spacelike interval is separated from the timelike interval by the null interval which
is conformally invariant. The field strength tensor Fµν does not need to be rescaled in the
conformal manifold because the force carrier of electromagnetism, the photon, only moves
between spacetime points separated by ∆s2 = 0. Conformal invariance of the gauge theory
means that, no matter how we scale1 the objects in the theory, the overall picture of physics
will not break. We can apply conformal transformations to the objects in any region of the
theory and we know that the null interval will always be a topological obstruction between
the spacelike and timelike regions. This allows us to say, “Ū is inside the past light cone.”
If some events have a given separation in M̃ , as in equations (4.155-4.157), then they will
have that same separation in M . Furthermore, we have associated the timeless spacetime
slice of a position representation H with the past light cone where ds2 = 0 already defines
the surface of conformal invariance. Even furthermore, we have chosen H as a topological
obstruction in the MCM unit cell, and the null interval is already a topological obstruction
between the spacelike and timelike regions. Still further, the coefficient in the non-unitary
case of π̂ is the dimensionless electromagnetic coupling constant 1/4π, the topology of the
electromagnetic sector of the standard model is U(1), U(1) is the topology of a circle, and π
is sometimes known as the circle number. Thus π̂ is very well suited to the role it plays in
the MCM.

Moving on, consider a pair of cones pointing in the direction of space, to the side of the
past and future light cones in the Minkowski diagram. The cones have circular openings
and we cannot fill all of space with four conical solids. Even if we go from the Minkowski
diagram to the 3D version with two spacelike dimensions, and consider six conical solids, two
with a shared axis in the direction perpendicular to the plane of the page, we will not fill all
of space. The same in 4D, we can never fill all of spacetime with a finite number of conical
solids. In 4D, there is no analogue of the inside of the light cone that could be considered
a complementary conical element such that the two topologies could be joined on the null
region to form O(3,1). We must take the conical interior region with a toroidal exterior
region. Therefore, the topology of spacelike infinity is different than the topology of timelike
infinity, and that topological incongruity is not built into the topology of the Lorentz frame.
The difference between spacelike and timelike infinity in spacetime is most obvious in the
notation O(3,1). Timelike infinity only has one dimension but spacelike infinity has three.

1Regarding gauge theory, “scale” is a better translation than “gauge” of the original German word “eich.” The word was
popular in Germany around the time gauge theory was being discovered because they were using different gauges of train rail
to build different kinds of transportation networks. Scale is a better word to describe how the steel I-beam can be made bigger
to support a heavier train. “Scale theory” is what people should say instead of “gauge theory.”
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Furthermore, Penrose had relied upon null infinity in his framework for conformalism so we
might later consider that the path around the Cauchy C curve in 4D spacetime (or 5D) could
be much more complex than the simple semicircle we have used to describe it thus far. We
have considered that all of spacetime cannot be filled with 4D right hyperconical sections
and we have also considered that a conformal transformation can never stretch a spherical
or conical manifold (radial manifold) all the way into the corners of a rectilinear Cartesian
manifold. There is no conformalism between a circle and a square because the square’s
corners intersect at π/2 and any conformal transformation would preserve that angle. A
similar example would be the Fourier series approximation to a step function; there is no
number of waves considered in superposition that will generate a true step function. We can
get very close, but it will always be an approximation.

It is known that the spacelike region created by removing a pair of timelike hypercones
from 4D spacetime can never be equivalent to a rectangular manifold but in reference [46]
wherein Arnowitt, Deser, and Misner prove that the total energy of the universe is a positive
definite quantity, the authors rely on a rectangular boundary at spacelike infinity. To discuss
reference [46], we should discuss its relevance to the modified cosmological model, and also to
David Finkelstein. During the short period of time between the attempted November 2011
publication of reference [7] and this writer’s December 2011 expulsion from Georgia Tech, ref-
erence [7] was submitted for peer review. Among the very many journals that received MCM
manuscripts in 2011 and 2012, something approaching proper peer review was only granted
at one of them. All the others said that the work was “inappropriate” or issued no response
at all. After speaking with David Finkelstein, who did in person extend this writer’s research
a warm regard, this writer was complaining to Andrew Zangwill that the normal publication
process was not working as expected for the modified cosmological model. Zangwill assured
this writer that if reference [7] was submitted to IJTPD, it would absolutely be granted or-
dinary review by a subject matter expert. This writer did submit the manuscript to IJTPD
and it was accepted for review. Soon afterward, this writer received the reviewer’s comments
which may be paraphrased as, “The author knows nothing, and certainly nothing about the
ADM mass-energy.” The reviewer’s criticism of the MCM was focused on the idea to have
two universes with oppositely signed p0 in their 4-momenta traveling in different directions
through time. The energy of the universe with p0 < 0 would, by construction, be negative
and that violates the theorem which appears in reference [46]. This writer responded to the
reviewer’s criticism by pointing out some fine nuance related to the definition of the surface
at spacelike infinity but received no response and the manuscript was soon removed from
the online submission system. Shortly after, this writer noticed on Finkelstein’s Georgia
Tech faculty web page that he had been the editor of IJTPD for decades so we presume that
Finkelstein was the reviewer. This writer takes his experience with IJTPD as representa-
tive of peer review in general. In person, Finkelstein agreed that the manuscript had some
good points and there was a dialogue consisting of criticisms and responses. However, when
Finkelstein donned his anonymous reviewer mask, the manuscript had no redeeming value
whatsoever because of the “total ignorance” regarding, among other things, the not highly
relevant work of Arnowitt, Deser, and Misner. When it was demonstrated in rebuttal that
the issue raised by Finkelstein (presumably) was not problematic at all, IJTPD simply chose
to end the communication and ignore this writer’s valid point. The manuscript was removed
from consideration for publication at IJTPD very soon thereafter.
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One issue raised here with the ADM theorem is that the volume element bounded by the
surface whose differential element is

dSi =
1

2
εijk dx

jdxk , (4.158)

cannot possibly be the entire spacelike region because the number of topological corners
disagrees with the conical representation. However, the small contribution of the small sliver
of extra volume that would solve the problem would have no effect on the theorem’s validity
so it is irrelevant to Finkelstein’s criticisms, or possibly the criticisms of Finkelstein’s former
coworker. In response to the ADM positive definiteness theorem [46], we have proposed in
reference [3] to add complexity to the surface element at spacelike infinity by defining

dŜi =

 0
1

2
εijkdx

jdxk

−1

2
εijkdx

jdxk 0

 , (4.159)

but there are very many other proofs of the positive definiteness theorem for the total energy
of the universe in the modern literature. Without focusing on any specific detail, we may
refute all of them in one swoop if we introduce a convention such that binding energy is
positive in the universe where time flows in reverse, end of story. However, it should be
emphasized that reversing the normal vector on the surface at spacelike infinity such that

dSi = −1

2
εijk dx

jdxk , (4.160)

is allowed and almost exactly equivalent to reversing time so that t increases in the direction
toward −∞. By right-handed convention, we choose, under ordinary circumstances, the unit
normal in equation (4.158) but in the MCM we take the convention that gives positive energy
in U and negative energy in Ū . The unit normal vector is defined according to handedness of
the axes so, when we swap +t for −t, we are well motivated to select the differential element
of area in equation (4.160). However, if we simply say that binding energy is positive inside
the universe that moves along t− then we need not consider the unit normal vector on the
surface at spacelike infinity at all.

Here, we begin to get to one of the most important points made in this book: deterministic
evolution is not, in general, a conformal transformation. In quantum mechanics, there is an
idea to generate spin from very many infinitesimal rotations and here we will show that
evolution cannot be generated from very many small conformal transformations. In the
1940s, Dirac and Feynman (and very many others) each noted the shortcomings of their
own theories relating to the extension of Maxwell’s theory into the quantum realm. Neither
Dirac nor Feynman mentioned that, even among all the infinite loops of quantum field
theory, no one has a mechanism through which to break or reconnect field lines. This shows
that the problem has been considered historically so impossible that prominent physicists
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were not even talking it about it any more almost a century after Maxwell formulated
electromagnetism. Maxwell saw that light was a propagating electromagnetic wave but his
much lauded theory did not describe how such waves can detach from sources, as in figure 70.
No one had solved the problem by the time of Dirac and Feynman and it remains officially
unsolved. Nevertheless, Maxwell’s theory is wildly successful despite this major interpretive
deficiency. Again, we do not criticize the deficiency, but rather we want to emphasize that
first ideas appear, and later they are polished, and both stages of that process should be
recorded in the literature. This process of postulation and refinement was normal in the
days of Maxwell, Dirac, and Feynman, but it is treated abnormally in the present day. The
breaking of field lines looks exactly like figure 71. Demonstrating the broad application of the
principle, we can see a similar feature to figure 70 in simulations of quark-gluon plasma, as in
figure 72, and in accelerations of non-Newtonian fluids, as in figure 73. All of the complexity
in simulations of the generalized dynamical process can be described via the bifurcation of
one sheet into two or the joining of two sheets into one which is exactly what happens to
the MCM topology every time the trajectory along the χ5 direction is computed.

Figures 72 and 73 show many points in a manifold where field lines “bloop” together or
bloop apart. These figures are demonstrative of all physical systems because the physical
vacuum fluctuates in this manner at all times. In reference [10], we suggested that Φ̂ might
point to exceptional points that we will refer to here as the apex of blooping. However, the
physical fields do not treat these points as exceptional points; they are completely mundane
and any point in a field can at any time become the apex for a given blooping apart or
blooping together. These reconnections and disconnections can happen anywhere and, in
reference [10], we showed that new frequencies can appear at any point along the real line
during the frequency doubling cascade into chaos. The applications are different — the
blooping of field lines or the blooping of a new frequency mode into or out of existence —
but the topology of a transition through a saddle point is the same unexpected behavior
when the expectation is that the dynamical processes would slide away from the critical
blooping point exponentially quickly.

In the MCM language, we can define a field theory completely within the infinite extent
of the hypercomplexly infinitesimal neighborhood around the point of unstable equilibrium
at the “apex” of a dynamical saddle. We refer to the bloop as a saddle point because as a
system oscillates its field lines should be squeezed together or rarefied but then, according
to determinism, return to their original arrangement instead of crossing and breaking, or
breaking and joining. A saddle point describes an unstable equilibrium and the “x-point” in
figure 70 is exactly a saddle point. We expect that physical trajectories will come arbitrarily
close to it and then veer away from it in the downhill saddle direction. However, in the case
of blooping, we have irrefutable evidence that trajectories do reach these points and there
is not a well established concept in physics for what happens when they get there. It is
easy to envision the topological bloops in figures 72 and 73 as two spheres coming together
or separating at a point, and the non-trivial parameter χ5 is already organized so that the
three cases in figure 71 are the unique properties of {ℵ,H,Ω}. The central part of figure 71
is a singular geometry and must be associated with χ5 = 0 or χ5 =±∞ while hyperboloids
of one sheet or two are non-singular and can be associated with a range of values for χ5

±.
Hyperboloids of one sheet have a negative hyperboloid parameter and hyperboloids of two
sheets have a positive one.
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Figure 70: The angle of intersection of the field lines between panes four and five, the so called x-point,
is not preserved throughout the field evolution so the evolution operator cannot be constructed
from conformal transformation operators. This figure is adapted from one found on the website
of the Department of Astronomy of the University of Wisconsin.

Figure 71: The hyperboloid associated with negative curvature is cohesive but the hyperboloid of positive
curvature has two discrete topological elements. This mechanism will be useful in attempts
to describe the breaking and reconnection of classical electromagnetic field lines, and also the
splitting of t? on even levels of ℵ into t± on odd levels. In the center, we see the light cone
structure that is already present in H even without the MCM. It it is unsurprising that the light
cone structure will be replicated on H via the χ5 = 0 curvature parameter. This figure is taken
from Wikipedia.
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Figure 72: Simulations of quark-gluon plasma show smooth deformations of hyperboloidal perturbations.

Figure 73: The bloop effect can be seen in experiments such as the one in this picture where experimenters
from the University of Texas at Austin applied extraordinary mechanical accelerations to non-
Newtonian fluids. The fluid in this figure is corn starch.
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Figure 74: This figure contains conformal diagrams of de Sitter space Ω and anti-de Sitter space ℵ.

Figure 70 encapsulates the argument we will make for why evolution is non-conformal. At
the apex of the bloop, the field lines intersect, and conformal transformations preserve the
angle of intersection, but the lines only intersect at that one special apex point. Therefore,
if we have an evolution operator whose effect is to take one state and return another state
that could have been obtained by a conformal transformation of the initial state, we should
conclude that there is some problem with the evolution operator. In the MCM, we have
smooth conformal variance across Σ+ and Σ− individually but there is no smooth variation
that will connect Σ+ to Σ−. Even when we smoothly deform the manifold to a de Sitter
singularity of infinite curvature at χ5

+ =∞, if we continued to conformally transform the Σ+

manifold in any way, we would never obtain the AdS manifold that we need on the other
side of Σ+ at χ5

−=−∞. A conformal transformation of de Sitter space will never result in
an anti-de Sitter space but this is required for the operation that propagates information
across the unit cell. We need to add a non-conformal piece where the level of ℵ changes.
Furthermore, we have proposed to use Φ̂ as the object that points the apex of blooping and
we already have it pointing from H to ∅, which we have now placed at the apex of the bloop.
To get the change of topology from dS to AdS, we need a mechanism that will change the
sign of the fifth position of the metric.

In section IV.2, we pointed out that Tipler has considered just such a changing sign near
a rapidly rotating infinite cylinder but, in section II.1, we excerpted Carroll [17] who wrote
that putting the metric into canonical form with conformal transformations can never change
the signature of the metric. Any conformal transformation is allowed to deform the metric as
required, but if none of them can ever change the metric signature then evolution can never
be a conformal transformation because it requires a change like {−++++}→{−+++−}.
Therefore, even away from the context of the MCM, and based solely on the requirement
that a physical theory of determinism must support blooping, any evolution operation whose
output can be obtained via conformal transformation of its input must have some problem
with it. It is true that, even in the MCM, often times we will obtain a system in H2 that
superficially looks like a conformal transformation of the system in H1 but that superficial
appearance ignores that H2 is on a different level of ℵ and that the level of ℵ cannot be
changed with a conformal transformation. Φ̂j → Φ̂j+2 is a discrete operation. Therefore,
when detractors declare that the intermediate MCM steps at {Ω,∅,ℵ} are superfluous,
the wise physicist may rebut the declaration by showing that dS→AdS enforces the non-
conformal constraint of the evolution operator which can be glossed over in something like
H7→H.
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Figure 75: The Shilnikov bifurcation is strangely evocative of the logo for John Titor. The potential for CTC
in the real universe [60, 12] is such that there may be a connection between Titor’s alleged time
travel technology and the MCM research program into the fundamental nature of time itself.

To say a little more about conformal infinity at the apex point ∅, note that the descrip-
tions of de-Sitter space and anti-de Sitter space that we excerpted from reference [17], in
section III.7 (figure 74), reflect the conformal coordinates used by Penrose in reference [52].
A hyperboloid of one sheet is defined with a negative hyperboloid parameter so it is like ℵ,
and a hyperboloid of two sheets has a positive hyperboloid parameter but it is not quite like
Ω. Ω is constructed from only one surface, not two as in figure 71. Furthermore, in figure 74,
we see that Ω is constructed on a complete co-π but ℵ is constructed on only one half of a
co-π̂. Therefore there is some manifest complementarity when ℵ is a complete mathematical
hyperboloid constructed on half of a co-π̂ and Ω is only half of a mathematical hyperboloid
but is constructed on a complete co-π̂. We can likely make a connection here to the splitting
of t? on even levels of ℵ into t+ and t− on the odd levels.

Above, we claimed that the problem of field line breaking was no longer being considered
by prominent physicists but the problem has been worked on by very many people. Another
example of blooping is to consider is the dripping of water droplets from a leaky faucet, as
in reference [63]. If we study the water molecules, obviously there is no blooping but, in
the fluid equations that contain the field line description, there is clearly a small bloop each
time a droplet forms whose surface is disconnected from the small reservoir of water under
the faucet. This particular blooping is described in reference [63] as an Andronov–Shilnikov1

1As an undergraduate this writer took an ODE class and a dynamical systems class with Andrey Shilnikov at Georgia State
University. This writer shamefully burned Shilnikov with the student review form for the the dynamical systems course. This
writer had gone into college with an idea assembled from a childhood introduction to mathematics and a slew of psychedelic
experiences as a young adult. The idea began to crystallize during three semesters of calculus and other advanced math courese.
This writer signed up for Shilnikov’s dynamical systems course hoping that it would contain the missing link to this writer’s
idea but it did not. This writer was not, at that time, aware that the missing link was as yet undiscovered. This writer had
a good understanding of what would be covered in the other math classes he would take as an undergraduate and none of
them were relevant to that missing link. When Shilnikov’s dynamical systems course concluded, it became apparent that no
one was going to explain the extra piece of mathematics to this writer. In frustration and disappointment, and ignorance that
the missing piece had never been formulated by anyone, and under the completely wrong assumption that no one reads or
cares about student review forms, this writer cathartically burned Shilnikov with the student review although Shilnikov was an
excellent professor, exceptionally erudite, and very friendly. This writer was frustrated to have to wait until graduate school to
take a course that would explain the extra mathematical component but this writer did not encounter the material in graduate
school. Then, again due in no small part to personal frustration, this writer set out to figure out the missing piece on his own.
This book is a work unit of that investigation. The understanding of dynamical systems imbued to this writer by Shilnikov was
absolutely essential to that effort; without a foundation in those concepts, we would not have even had the words to begin to
describe the idea. This writer extends his gratitude, warm regards, and an apology to Andrey Shilnikov.
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saddle-node bifurcation. Figure 75 depicts the distinct modalities of bloop approach followed
by bloop egress in the Shilnikov bifurcation [64]. Just as there is a question in the MCM
about how Σ+ can connect to Σ−, there is an open question in the theory of dynamical
systems regarding how the planar spiraling sector can be connected to the perpendicular
component at the saddle point. The extra pieces attached to the broad outer sweep of figure
75 indicate that there is an extra piece needed to connect one sector to the other. We have
shown the relevance of the saddle, but what is the node in the saddle-node bifurcation? We
want Φ̂ to point to spacetime points where bloops happen and we can put a 2-form on the
end of Φ̂. We will discuss the feature more thoroughly in sections IV.5 and IV.6 but we
mention it here because of the general relevance to blooping. We can interpret a 2-form as a
multiplex containing two different normal vectors so we should say that one is in the plane of
spiraling and the other is in the perpendicular direction such that the 2-form is the “node.”

IV.5 Covering Spaces

When we propose in the MCM to wrap x0 around a cylinder we are invoking the concept of
a covering space. We often say that a circle is the target space of the real line as a covering
space. We know that we can obtain a parameter on a circle from a parameter on a line by
making the change of variables x0→eix

0
. This must define a circle because we may write

eix
0

= cos(x0) + i sin(x0) . (4.161)

If we make the further change of variables

y = cos(x0) , and z = sin(x0) , (4.162)

then we may use the identity sin2(θ) + cos2(θ) = 1 to write the equation of the unit circle
centered on the origin

y2 + z2 = 1 . (4.163)

Therefore, if we use the linear algebraic formalism

~r = y21̂ + z2î , where |~r| = 1 , (4.164)

and then move to the plane spanned by some non-unitary basis like {Φ̂, 2̂, π̂}, we will deform
the circle into an ellipse such that |~r| 6=1.

In section IV.2, we showed that pathological closed timelike curves can be removed from
a manifold via the covering space representation. If we consider a circle as representative
of any CTC then it is obvious how the pathological behavior is removed in the helical
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Figure 76: It is known R is composed of uncountably infinitely many points. If we change levels of ℵ such
that points of vanishing width becomes an interval of finite width then there will be ℵ∞ such
intervals. This figure is similar nature to the construction of the Hopf fibration which results
when each of the ℵ∞ points in S2 is replaced with a circle of finite circumference 2π radians.

covering space of the circle: the circle is closed but the helix is not. Open timelike curves
are not pathological in any way; every mundane physical process in general relativity is
described with open timelike curves. In the MCM, however, since we are moving in the
opposite direction from the covering space onto the target space (mapping the ct axis onto
a circle) we expect that there will be pathological CTC. If we are to include the effects
inherent to classical electromagnetism that depend on the advanced time, a time greater
than the observer’s proper time since the beginning of the universe, then we will be required
to incorporate some spacetime geometry that will allow information from the future to
contribute to determinism in the present. Closed timelike curves are the penultimate example
of this geometry, pathological as they may be.

The covering space will have a lot of application to the extension of conformal infinity
from a point to a segment that can accommodate countable infinity ℵ0 and uncountable
infinity ℵ∞. Another place in the MCM where the covering space has a direct application is
in the breaking of the U(1) symmetry of quantum mechanics by imposing the framework of
hypercomplex analysis in which the Euler formula is not always exactly correct. To consider
the domain of quantum mechanical eigenfunctions when the Euler formula does not hold we
will necessarily consider the covering space of U(1) which is most generally the unbounded
real line R. If we want to re-impose all the symmetries of U(1) in the covering space then
we can simply make the domain structure on R periodic in 2π dimensionless units of length.
One might superficially assume that both representations, the circle or a line with a periodic
domain structure, are equivalent but there are some global differences.

If there are uncountably many points along R and we expand each one into an interval of
2π by reducing the level of ℵ, as in figure 76, then there will be uncountably many periodic
cells of width 2π. We have not changed the structure of R at all. The R topology is identical
on every level of ℵ. Therefore, if there are uncountably many such intervals on Φ̂j−1 there
are uncountably many of them on any level of ℵ. Numbering the uncountably infinite points
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Figure 77: This figure demonstrates another method for segmenting R with intervals of finite width 2π.
Because we have included the origin, we are able to define a first interval, a second one, and so
on such that there are only countably infinitely many such intervals in R. This disparity between
possible periodic domain structures on R must be hidden in the region beyond conformal infinity.
In the MCM, we extend Penrose’s concept of a non-physical point at infinity [52] to an entire
non-physical space beyond infinity.

in figure 76 with k instead of 1, 2, 3... demonstrates that there is no first point that we could
begin to count and so, hence, there are uncountably many of them. It is understood that
there are uncountably many points in R and if we reduce the level of ℵ by one j→j−1 then
points of zero width become intervals of finite width. However, if we did not change the level
of ℵ and simply declared, “Let the domain on R be periodic in 2π,” then we could make an
argument that there are only countably many such intervals. In figure 77, we include the
origin and note that, in general, the analysis of R begins with a cut. That cut in R can
be any number so we will call it the origin O. Relative to that point, one can very much
begin to count the intervals of 2π. There is one to the left of O, a second one to the right
of O, a third one to left of the first one, etc, as in figure 77. This is relevant for the MCM
because the MCM condition places the observer exactly at O. Therefore, if we stay on the
same level of ℵ, there will be countably many intervals of 2π but, if we change the level of
ℵ, we can obtain uncountably many such intervals. From this we see that countable infinity
can be covered with uncountably infinity when the target and covering spaces are both R.
Indeed, there is a natural association between chiros and R with countably many intervals,
and between chronos and R with uncountably many.

Consider the covering spaces in figure 78. On the left is a trivial covering space but on
the right we show a non-trivial covering space. Each element π/2 in the circle is followed by
another element Φ−π/2. This covering space reflects a simple application of the operations
shown in section IV.1. The N th interval of π/2 (which can be rescaled to 2π as needed)
begins at the position NΦ in the non-trivial covering space. In figure 78, the covering space
has small gaps between elements that are adjacent in the target space and we can twist these
extra elements into small circles to recover the trivial projective covering space, as in figure
79. However, the simultaneous existence of the non-trivial covering space with the trivial
one implies that the interval Φ − π/2 becomes a symplectic point in the trivial covering
space rather than vanishing completely. In this way, it is easy to associate the trivial and
non-trivial covering spaces with different levels of ℵ; the point on one level is a finite interval
on the other.

To make the connection between the trivial and non-trivial covering spaces, we need
to assign a 2-form everywhere a sphere appears on the helix. To move in that direction,
first consider that, when treating the ADM positive definiteness theorem, we introduced a
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Figure 78: Here, we can see an intuitive placement for the idea to encode half of a co-π̂ (π/2≈1.57) on each
Φ̂ (because Φ≈ 1.62.) Each purple region has an element ∆ = Φ − π/2 that can be associated
with Σ∅ in the base space. We will establish complex behavior when we make a representation
where the Σ∅ element has non-zero width. The affine parameter along the helix that contains
the covering space is a natural object for such a definition.

Figure 79: By compactifying the extra elements Φ − π/2, it is possible to recover the trivially projective
covering space. This figure is evocative of the mechanism through which points in spacetime
become the Riemann sphere in twistor space.
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symplectic 2-form

dŜi =

 0
1

2
εijk dx

jdxk

−1

2
εijk dx

jdxk 0

 , (4.165)

on the surface at spacelike infinity. The physical interpretation for this surface element is
that the normal vector on the surface points in the left- or right-handed direction (to the
interior or exterior of all of space) and it is a general property of 2-forms that we can assign
multiple directions to a point. In the polar coordinates {r, θ, z} natural to the helix, the unit
vector that points in the direction of increase along the helix is

êhelix = cθθ̂ + cz ẑ . (4.166)

When we add a generalized “2-form”

ê =

(
0 êhelix

êsphere 0

)
, (4.167)

at the points where the spheres are attached then a trajectory approaching each such point
can continue on the helix or be diverted into the sphere. Indeed, noting that the spinor is
comprised of two unit vectors∣∣ ↑ 〉 =

(
1
0

)
≡ ê1 , and

∣∣ ↓ 〉 =

(
0
1

)
≡ ê2 , (4.168)

we see that the spinor definition of the multiplex that defines the path at the symplectic
point might be superior to the matrix definition in equation (4.167). In either case, the
multiplectic form is such that the continuation through the symplectic point is a smooth
extension of the trajectory in either exit direction. Figure 80 shows the scheme by which
we introduce local bifurcative symplex at the points where the spheres are attached. The
U(1) symmetry only needs to be preserved along the êhelix direction. Furthermore, when
contracting the interval Φ − π/2 into the small sphere so that the trivial covering space is
recovered, we can do that contraction at the NΦ points or the Nπ/2 points in a way that
will produce a variety of projections into the target space.

The inversion operation on the Riemann sphere changes the anchor point of every vector
in its attached vector field. If a vector is anchored at φ = φ0 and θ = θ0 relative to an
origin of coordinates at one of the sphere’s poles then, after the inversion operation, they
will be located at φ′ = φ0 and θ′ = θ0 relative to the primed origin of coordinates at the
other pole. We have mostly treated this problem as a discrete operation but if we use a
continuous inversion operation, such as that in figure 81, then we see a direct application
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Figure 80: The small intervals Φ − π/2 that are the basis of the small spheres inherent to the non-trivial
covering space can be encoded on the trivial covering space with a 2-form at the periodic points.
We can measure parameter along the helix such that these points lie at θ = Nπ/2 or θ = NΦ.

of the symplectic form in equation (4.165). The origin of the two non-zero numbers in the

symplectic matrix dŜi comes from the dot product of the differential area vector with the
normal vector

dŜ := d ~A · ±n̂ , (4.169)

where ±n̂ point in the left or right handed directions, as in figure 82. Therefore, if we use
the sphere theorem to invert the Riemann sphere with a continuous deformation, as in figure
81, then the inward facing normal vector will be swapped with the outward facing one and
vice versa.

In figure 79, we have many small spheres whose interiors and exteriors can be permuted
with the sphere theorem and, in general, we can use this to create a lot of non-commutative
or fractal complexity in the cosmological lattice. Then using equation (4.167), we can either
preserve or break the U(1) symmetry. êhelix can point in the direction of preserved symmetry
and êsphere can point in the direction of broken symmetry. Furthermore, we should note
the fractal quality when each circle in the small sphere has its own helical covering space
with yet smaller embedded spheres at other bifurcative points where we can impose or not
impose the U(1) constraint. This mechanism should have direct bearing on the construction
of the cosmological lattice. By using a system of nested covering spaces, we can implement
the topological component of the information current, as in figure 83. This mechanism
will transport information throughout the hypercosmos and across various levels of ℵ. This
type of information exchange is more natural to matrix operators but we have shown the
topological component here in keeping with the theme of this research program.

Earlier in this book, we noted that the path across the unit cell is qualitatively similar in
many regards to a threading of the Hopf fibration. The Hopf fibration is itself defined when
each point of S2 has a corresponding circle in S3 such that if every point in S2 is replaced with
a circle then we obtain S3. The utility of fibrations in mathematics is to parameterize one
topological space in terms of another and the direct utility in the MCM will be parameterize
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Figure 81: The sphere theorem offers another method to invert the Riemann sphere beyond the ordinary
discrete inversion map ζ = 1/ξ. In addition to swapping the interior and exterior regions, this
inversion operation also turns the sphere upside down which will implement the changing anchor
points in the associated vector field. The normal vector pointing outward from the north pole of
the sphere in the first frame becomes an inward pointing normal vector anchored to the south
pole in the last frame. The sphere theorem demonstrates an important application in which we
must consider the differential element of surface area as dSi = ±εijkdxjdxk instead of simply
dSi=εijkdx

jdxk. This figure is taken from reference [65]

Figure 82: This figure demonstrates a symplectic 2-form. Noting that the 1/2 factors in equation (4.165)
come from the double counting in the Einstein notation, we see that, when n̂ is a unit vector
|n̂|=1, the possible values for dS=d ~A · n̂ are ±dxdy depending on which normal vector is used.

Figure 83: This figure demonstrates the information current by changing the domain of ψ from the big circle
to the little circle.
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everything on Φ̂j+1 in terms of objects on Φ̂j. In the MCM, we say that the relationship
between the circle of zero radius (a point) and a circle of finite radius is the changing level

of ℵ so, indeed, it is likely that the Hopf fibration appears in every M̂3 where the level of
ℵ increases. Furthermore, the Hopf fibration is important in twistor theory and we have
proposed to use the twistor representation as the representation for ∅ where no position
space exists because of the infinite curvature of the embedded metrics on the slices of Σ± at
χ5
±=±∞. Even furthermore, the example at the beginning of this section about assigning an

interval of dimensionless length 2π to every point in R is almost exactly what Hopf has done
assigning a circle in S3 to every point in S2. We will not be sidetracked presently with these
matters but we have a laid the foundation for a lot of future inquiry. We might undertake
this inquiry at some point in the future Ω or some detractor might choose to desist from his
program of detractions and unproductive research in order make these likely fruitful inquiries
on his own.

In reference [8], when we were considering the polar coordinate singularity on S2 we
defined the changing level of ℵ such that the location of the initial point was the center of
the circle when the point was represented on the other level of ℵ. However, if we use the
idea that each point in S2 comes from a circle in S3 then we will probably be constrained to
say that the irreducibly singular location of the point in S2 is not in the center of the circle
in S3 but rather that it is a point in the circle. The Hopf fibration refers to circles as fibers
attached to, not centered on, the points of S2. If the point is on the large circle, and not
at its center, then we have likely changed the anchor point of some object. Furthermore, a
point is a circle on a lower level of ℵ (objects become smaller on higher levels) so there is
some nuance when one intuitively associates the higher dimensionality of S3 with the higher
level of ℵ because it is obtained by reducing the level of ℵ of a set of points to obtain a set
of circles.

The formal definition of a covering space has to do with the neighborhood around a
point. When we want to consider the point at conformal infinity in the Penrose scheme
of conformalism, we cannot use a covering space because there is only a neighborhood to
consider on one side (because I is the boundary of M .) However, we have only considered
the general properties of covering spaces. We have not yet added hypercomplexity and, when
we do, the hypercomplexly infinitesimal neighborhood around the point at conformal infinity
is amenable to canonical covering. Furthermore, when we extent Penrose’s point at infinity
to a segment between ℵ0 and ℵ∞ we will be able to consider the neighborhood around ℵ0 as
per usual.

Consider the endpoints of the zenith angle φ∈(−π, π), as in figure 84. There is a hyper-
complexly infinitesimal neighborhood around the null point so we can make the transition
from ordinary complexity to hypercomplexity by including or not including Φ̂. Figure 84
shows Φ̂ on the same level of ℵ as π̂. If we call that level j and then consider π̂+Φ̂j+1, we will
recover the circle constructed with π̂ alone because |Φ̂| = Φ is a finite quantity that becomes
an infinitesimal quantity on a higher level of ℵ. Therefore, we should consider that the circle
does always include Φ̂. When we require that Φ̂ has different boundary conditions at its
endpoints, that provides a natural mechanism through which to break the U(1) symmetry.

Furthermore, we can use Φ̂ to point in a direction that deforms the circle into a helical
interval as needed to construct the covering space considered in this section. That is to say:
we can use Φ̂ to create ẑ. Figures 85 and 86 are not directly related to the covering space
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Figure 84: We may enforce the broken U(1) symmetry by requiring unequal boundary conditions at either
end of Φ̂. The circle can be recovered from π̂+ Φ̂ by considering Φ̂ on a lower level of ℵ such that
it is an object inside the hypercomplexly infinitesimal neighborhood around the null point of the
non-included boundary when θ∈(0, 2π].

Figure 85: This figure shows an application of the ontological basis toward building the requisite MCM
topology. On the left, note the role of 2̂ when S1’s 2π radians become 4π steradians on S2.

Figure 86: In this book, we have focused on attaching the small sphere to the circle to achieve SU(2)⊗U(1)
but, for the complete standard model, we need to achieve SU(3)⊗SU(2)⊗U(1) which is the
plane with a 2-sphere attached on one side and a 3-sphere on the other. This figure does not
directly motivate the group theoretical structure of the standard model but it does demonstrate
an intuitive arrangement for the j→ j + 2 change in the level of ℵ under M̂3. If both H1 and
H2 have a sphere with two Φ̂ objects on the right side, then, on the left side of H2, we could,
for instance, have a sphere missing the Φ̂2 which it receives from H1 during propagation across
the unit cell with the inversion operation on the Riemann sphere. This figure shows a double
inversion where the first inversion moves the sphere’s origin to p∈Σ∅ and the second moves it to
a point in H2.
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Figure 87: This figure demonstrates a topological application for the unpaired terms discussed in this section.
When an inner product in the arithmatic sector leaves an unpaired element, it should act as a
connector in the topological sector.

but they show a notable extension of the scheme π̂→ π̂ + Φ̂ to the full ontological basis.
The idea to have an unpaired element in the MCM inner product comes from the feature

of quantum mechanics that the eigenvectors of a continuous basis of eigenfunctions are not
orthogonal. In general, we can associate this unpaired element with an included endpoint
getting shuffled to a place where a non-included endpoint is required. We have some guidance
for building the cosmological lattice when we can take any number of intervals with a non-
included endpoint, place all of those non-included endpoints at one shared lattice site, and
then pin them all together with an included endpoint from another interval. Indeed, simply
taking a polar great circle of the Riemann sphere θ∈(−π, π), if we want to construct a circle

without a null point via this method of pinning then we naturally obtain a π̂+Φ̂ helical unit,
as in figure 87. Incidentally, this gives a good demonstration of what it means for Φ̂ to live
inside the hypercomplexly infinitesimal neighborhood around the null point in θ ∈ (−π, π).

If the circle is on the j level of ℵ then so is the Φ̂ on the right side of this figure but there
is another Φ̂j−1 attached to the circle on the left. It exists inside the missing north polar
point. Figure 87 shows one construction but it should be clear that there are any number
of constructions that can be assembled from an unlimited number of finite intervals with
various conditions of missing or included endpoints.

In figures 84-86, we have used the ontological basis to make the extension from real
analysis on π̂ to hypercomplex analysis on {̂i, Φ̂, 2̂, π̂}. Often we add the null point to the
U(1) topology citing the null point on the Riemann sphere but we may equally well cite the

isomorphism of θ∈ (−π, π) with R :x∈ (−∞,∞). Let 2̂ and Φ̂ both be associated with the
transfinite component so that simple complex analysis takes place in C spanned by π̂ and
î. One of the most important formulae in the analysis of C is the Cauchy integral formula.
Wikipedia says the following.

“Cauchy’s formula shows that, in complex analysis, ‘differentiation is equiva-
lent to integration.’ Complex differentiation, like integration, behaves well under
uniform limits – a result denied in real analysis.”

The statement that integration is the same as differentiation in complex analysis enables
us to use derivative and integral operations to “change the level of ℵ.” Wavefunctions
are typically infinitely differentiable so the Cauchy differentiation formula (which is beyond
the scope of this book in which we do not even fully define the Cauchy C curve) applies.
Cauchy’s differentiation formula is a concise formula for the nth derivative of a holomorphic
function such as the wavefunction. We do not have formulae like this in real analysis.
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However, we might expect to see new complexity when the “Cauchy C curve” of relevance
is not the boundary of an ordinary disc but is, instead, along a helix composed of many
discs sewn together at symplectic points. One expects that, in general, the various Cauchy
formulas describing integrations around the boundary of a disc in C can be adapted to
integrations across a window function of width 2π radians on the helical covering space.
If we disrupt the symmetry of the U(1) topology of a disc’s boundary with a series of
embedded symplectic points on the helix then we expect the relationship between spaces
and tangent spaces will become more complex than that which is represented so concisely
with the Cauchy differentiation formula in the space spanned by only π̂ and î. Indeed,
the hidden degrees of freedom of the non-trivial covering space developed in this section
might disrupt the regularity of the Cauchy differentiation formula across different levels of
ℵ such that decoherence is observed when boundary conditions that match on a value and a
first derivative only exactly match on the value on another level ℵ, but are still constrained
to almost match on the first derivative. While complex analysis is typically the domain
of quantum theory, we should note the boundary condition on the metric in the Lorentz
approximation is such that its first derivatives all vanish. Therefore replacement of the
Cauchy disc with a window function on the MCM helix might lead to quantum decoherence
and fuzziness in spacetime. In fact, we can avoid having to modify the well known boundary
conditions of the exactly solvable problems in physics by only introducing this decoherence
on the odd levels of ℵ between the even levels associated with H1 and H2. It will be a
fruitful exercise to consider in the future the case when the two unit vectors attached to
the embedded symplectic points are considered in the non-unitary sector as two crossed
Φ̂ vectors, one pointing into the trivial covering space and one pointing in a orthogonal
direction in the non-trivial covering space.

IV.6 The Double Slit Experiment

One of the primary results of reference [9] was a logical explanation for the odd wave/particle
duality observed in the double slit experiment. The formalism developed in reference [9] led
notably a reanalysis of Bell’s inequality in reference [49] which shows that local hidden
variables such as the chirological MCM coordinates are always allowed to exist even when
Bell’s theorem “proves” that they are not. The main result in reference [9] was to begin to
develop a transfinite definition of the exponential function. As a physical motivator for that
extension of eix onto every level of ℵ, we developed the double slit experiment in the context
of the cosmological lattice. As an illustration of the prominent features of the cosmological
lattice we will show in this section how the structure removes the “weirdness” from this
famous example of unintuitive quantum phenomena.

The first known double slit experiment was carried out by Young in 1801. He used
photons and, in 1927, Davisson and Germer did the double slit experiment with electrons.
The general experimental set up is shown in figure 88. Since that time, the wave/particle
mystery effect has been confirmed for various quanta incident on two slits. It is one of the
most important results in quantum theory and its empirical constraints on theory greatly
influenced the development of the MCM. Even after solving dark energy [2], deriving the fine
structure constant and Einstein’s equation [12], as well as reproducing the particle structure
of the standard model [11], finding an intuitive explanation in the MCM for the double slit
experiment stands out as a feat of great importance. Wikipedia says the following about
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Figure 88: Wave interference requires that the flux incident on the diffraction screen pass through both slits
equally. This figure is taken from Wikipedia and it ignores the decreasing amplitudes of the
maxima away from the beamline.

this hallmark of quantum weirdness.

“In the basic version of this experiment, a coherent light source, such as a
laser beam, illuminates a plate pierced by two parallel slits, and the light passing
through the slits is observed on a screen behind the plate. The wave nature of
light causes the light waves passing through the two slits to interfere, producing
bright and dark bands on the screen – a result that would not be expected if light
consisted of classical particles. However, the light is always found to be absorbed at
the screen at discrete points, as individual particles (not waves), the interference
pattern appearing via the varying density of these particle hits on the screen.
Furthermore, versions of the experiment that include detectors at the slits find that
each detected photon passes through one slit (as would a classical particle), and
not through both slits (as would a wave). However, such experiments demonstrate
that particles do not form the interference pattern if one detects which slit they
pass through. These results demonstrate the principle of waveparticle duality.

“Other atomic-scale entities, such as electrons, are found to exhibit the same
behavior when fired towards a double slit. Additionally, the detection of individual
discrete impacts is observed to be inherently probabilistic, which is inexplicable
using classical mechanics. [sic]

“The double-slit experiment (and its variations) has become a classic thought
experiment for its clarity in expressing the central puzzles of quantum mechan-
ics. Because it demonstrates the fundamental limitation of the ability of the ob-
server to predict experimental results, Richard Feynman called it ’a phenomenon
which is impossible [sic] to explain in any classical way, and which has in it the
heart of quantum mechanics. In reality, it contains the only mystery of quantum
mechanics.’”
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The critical behavior that leads to this famous weirdness is whether or not the observer
checks which slit the particles go through. If the observer does not make this observation
then the particles show up on the optical screen according to a wavelike interference pattern
of probability density, but if the observation is made then the particles show up on the screen
as if each slit were an independent source of particles. In pre-MCM physics this was hard to
accommodate in a theoretical description of the process because a psychological event such as
an observation is just another point in spacetime the same as any other. The behavior that is
an observation should have no effect on the system producing the observed result. For some
strange reason, it does have a pronounced effect and, for a long time, this was considered
an inexplicable phenomenon (or explicable only with an unsatisfying explanation.) In the
MCM, we expand spacetime into hyperspacetime such that the observer’s observation is
not just another event in spacetime; these events are π̂-sites. Observations at successive
π̂-sites define the periodic boundary of the MCM unit cell. This allows us to make a formal
distinction between generalized spacetime events (points in spacetime) and psychological
events that collapse wavefunctions.

Even if Feynman says there is only one mystery, the issues in the double slit experiment
are many. When one particle at a time is sent through the slits, each particle will register on
the screen individually indicating that it has not been split apart by the diffraction grating.
This particulate behavior can be confirmed by placing a detector at the location of the
slits which will confirm that a single quantum always goes through one slit or the other,
but never both. The mysterious component of the experiment arises when many individual
quanta are sent through the grating and no observations are made at the slits. If the impact
of each particle is marked on the screen then the total pattern that forms is that of wave
interference which is incompatible with the particle having gone through one slit or the other.
Wave interference implies that the particle goes through both slits, as in figure 88. Another
example of wave/particle duality is when a gamma ray beam of weakening intensity shows up
on a Geiger counter as increasingly infrequent clicks rather than as a decreasing amplitude
of the loudness of the clicks. In seeking to develop an MCM motivation for the double slit
result, one in which the result is intuitive rather than non-intuitive, we reject that the idea
that the particle chooses to go through slit or the other. Since the electron is inanimate and
cannot make a choice, it must always go through both slits. The only options, intuitively,
for the electron’s path are for it to go through one or both slits and we must choose the
option for both because it is a superset of the other possibility.1 Rather than claiming that
an electron will choose on its own to go through one slit or the other, we will say that the
observer chooses (randomly) to observe one mode or another. This problem of choosing one
slit or the other is the same the problem of why individual particles show up on the screen
at one location and not another. This is a probabilistic problem that we do not treat in this
book.

To motivate the double slit interpretation with π̂-sites, we will need to consider that the
probability amplitude is complex-valued and, therefore, must be associated with the off shell
region of reality between π̂-sites. Here, we use the terms on and off shell more broadly
than only referring to the mass shell in phase space: on shell means at a π̂-site (H) and off

1Here we ignore some fine nuance related to the Cauchy C curve around infinity. It is possible that the particle doesn’t go
through either slit and instead traverses the whole universe before showing up on the screen but we will not treat that possibility
in this section. That possibility induces a requisite superluminal motion but we might assuage that problem by traversing the
universe on the lower level of ℵ while measuring distance according to the scale of the higher level.
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shell means in the bulk of the MCM unit cell. In the region where no measurement is made
between the plate and the screen, we have no particle, only amplitude. Then we must say that
the collapse of the wavefunction on the optical screen is a topological bloop of a sort where
the particle comes into pointlike existence disconnected from the diffuse wavefunction. We
give the same wavefunction to every particle that goes through the slits but when we observe
a particle, the wavefunction collapses to show that all of the probability is focused at the
single point where it is observed. The two slit wave interference pattern is always a sinusoid
pinched inside of an exponential envelope function and the goal in physics, ultimately, is to
explain how the particle can show up at random places on the screen while the behavior
of very many particles will always conform to the wave pattern. Furthermore, if we start
measuring which slit the photons go through then we will not observe wave interference
at all regardless of the large number of particles that we send into the apparatus. The
brief treatment in reference [9] was focused on this latter mystery about detection at the
intermediate position where the slits are located between the source and the optical screen.
That detection will destroy the interference pattern. The mystery about why large numbers
of individual particles always assemble the wavelike pattern is a question in stochasticism
which lies far beyond anything considered to date in the MCM.

To go into a little more depth here, note that we have the same wave behavior in front of
the slits as we do behind it. If particles were aimed at the center of the two slits then they
would hit the material that divides the two slits and not show up at the screen at all. The
probability density for where the particles will hit the screen with the slits in it is centered on
this point but, for some stochastic reason, sometimes the particle does not hit the material
in the center and instead goes through one slit or the other. Why the particle should go
through one slit or the other is the same question of stochasticism regarding why it hits the
optical screen in one part of the wave pattern and not the other. However, the question,
“Why here and not there?,” as it regards the optical screen is more interesting because the
probability density has maxima and minima meaning that there are certain places on the
screen where particles never arrive. On the first screen with the slits in it, there is just one
blob of probability density centered between the slits but, on the second plate, when there is
no measurement at the first, there are multiple blobs that decrease in amplitude away from
the axis of the beam.

To get a wave interference pattern on the final screen, we need to take two waves in
superposition. We will call these ψa and ψb corresponding to wavefronts of probability
amplitude emanating from each slit which we will label a and b. Particles will preferentially
show up where these waves are in phase and they will rarely show up where the waves are
out of phase (and they will never show up where their phases differ by exactly π radians.)
Separating the initial beam into two components a and b, we may write the wave and particle
modes as

Waves −→


∣∣ψa(tsource); π̂1

〉
→

∣∣ψa(tslits); π̂1

〉
→

∣∣ψa(tscreen); π̂2

〉
∣∣ψb(tsource); π̂1

〉
→

∣∣ψb(tslits); π̂1

〉
→

∣∣ψb(tscreen); π̂2

〉 (4.170)
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Particles −→


∣∣ψa(tsource); π̂1

〉
→

∣∣ψa(tslits); π̂2

〉
→

∣∣ψa(tscreen); π̂3

〉
∣∣ψb(tsource); π̂1

〉
→

∣∣ψb(tslits); π̂1

〉
→

∣∣ψb(tscreen); π̂2

〉 . (4.171)

At time tsource, the particle starts moving toward the screen. The observer must have some
way to know if his device is emitting electrons and when he confirms that an electron has
been emitted that marks his first measurement at π̂1. If the observer does not check to
see which slit the electron went through then he has not yet reached chirological π̂2 at
the chronological time tslits. The observer wishes to observe either wavelike or particulate
behavior on the screen so he will definitely make a measurement at chronological tscreen. This
event will be at the π̂2 site when he does not check which slit the electron went through,
and it will be π̂3 when he does. The formulation in equations (4.170-4.171) resolves the
pathological behavior wherein checking which slit a particle goes through destroys the wave
interference pattern on the optical screen. When the particles are detected at the slits, the
density of particles on the optical screen becomes two blobs corresponding to two particle
sources: slit a and slit b. We can derive this behavior from equations (4.170-4.171) when
two waves on π̂2 will interfere but two waves distinctly on π̂2 and π̂3 will not. In the future,
this mechanism will likely be adapted to the Φ̂j formalism instead of π̂j but here we simply
reproduce that which originally appeared in reference [9].

The case of waves in equation (4.170) is straightforward enough. If we send the particles
though one at a time, they will always show up as particle impacts on the screen that only
form an interference pattern when recorded and considered all together. The probability
density on the screen, in this case, shows the interference of two waves with the same on-
tological identifier. The case of particles in equation (4.171) differs from the case of waves
because the probability density on the screen is just the superposition of the waves from slit
a and slit b with no interference effects. Here we rely on the concept that interference is only
a property of like waves. If we fire neutrons through one slit and water molecules through
the other then it will not matter if we observe the slits or not, there will be no interference.
When a single beam is incident on the slits then obviously the waves going through each
slit are alike and will interfere, but if we use the levels of ℵ on the different π̂-sites to make
the waves unalike then interference is forbidden even for like particles. The observation at
the slits collapses the wavefunction only on the slit in which the particle is detected. The
wavefunction coming to the screen through the other slit originated on π̂1 but now the wave
emanating from the slit through which the particle was observed to pass comes from π̂2

which is on a different level of ℵ.1

Reference [9] begins with some definitions that make a π̂1 state different than a π̂2 state.
The structure of the relevant wavefunction in the ordinary notation is

Ψscr = Ψa + Ψb (4.172)

Ψa = Ψ0e
iωt (4.173)

1The phrase “level of ℵ” was first coined in reference [9].
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Ψb = Ψ0e
iωt+δ (4.174)

P ′scr[ψ] =
〈
Ψscr

∣∣Ψscr

〉
, (4.175)

where Ψscr is the wavefunction on the screen. As above, Ψa and Ψb are the contributions to
Ψscr from each slit, and the probability for finding the particle on the screen between z1 and
z2 is

P [ψ(z)] =

∫ z2

z1

Ψ∗scrΨscr dz . (4.176)

Regardless of any quantum weirdness, dissimilar waves will not create interference patterns
so we must have the same ω in Ψa and Ψb. To modify the existing framework, we will use
lower case ψ. The structure of the MCM wavefunction in equations (4.170-4.171) is

ψscr = ψa + ψb (4.177)

ψa = ψ0e
iωnχ5

(4.178)

ψb = ψ0e
iωmχ5+δ (4.179)

Pscr[ψ] =
〈
ψscr; π̂m

∣∣ψscr; π̂n
〉
. (4.180)

If we takem=n then this formulation exactly replicates the ordinary formulation in equations
(4.172-4.175) (up to the final integration over dz which is included in the MCM notation
〈ψ; π̂|ψ; π̂〉.)

If the MCM wavefunction starts and ends on a π̂-site then it must go through some
intermediate sites as well and here we will detail that process. The wavefunction is

ψ(x, t) = ψ(x)eiωt , (4.181)

and for simplicity we will let

ψ(x) = ψ0 = 1 . (4.182)
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When the wavefunction evolves in the chronological channel, t begins to increase from tsource≡
ti until the trajectory terminates at time tscreen ≡ tf . To examine the chirological channel
H 7→Ω 7→ℵ 7→H, we need to use some of the new operators developed in section IV.3. We
will introduce time dependence as

ψ(t) =
{
π̂
∣∣ψ(t)

〉
=
∣∣ψ(t); π̂

〉
. (4.183)

To get the wavefunction out of H, we need to get in the Σ+ representation. That looks like

ψ+(χ5
+) =

{
Φ̂
∣∣ψ(t); π̂

〉
, (4.184)

but what is the analytical form of ψ+(χ5
+)? χ5 is dimensionless so, if we trivially make the

conversion t→ χ5
+, it will mess up the units in the exponent. Euler’s number is typically

raised to the power of a dimensionless number in physics; that is why the familiar term
∆ = kx − ωt comes out in dimensionless radians. Furthermore, the information about ti is
expected to be relevant at tf when the chronological and chirological paths intersect again.
We say “again” because these paths necessarily intersect at ti when make the conversion in
equation (4.184). For consideration of the chirological path, we will take the definition

ψ+(χ5
+) =

{
Φ̂
∣∣ψ(ti); π̂

〉
= −ϕπ

∣∣ψ(χ5
+); Φ̂

〉
(4.185)

= −ϕπ eχ5
+(iωti) , (4.186)

where the −ϕπ comes from π̂ = −ϕπΦ̂, and the exponent is fully dimensionless. Now that
we have taken the wavefunction out of H, we need to send it to Ω. According to figure 1,
the length of χ5

+ across Σ+ is Φ. Therefore the wavefunction on Ω is

ψ+(Φ) = −ϕπ e(iωti)Φ , (4.187)

and we have achieved H 7→Ω. For Ω 7→ℵ, we need the Σ∅ representation. When obtaining
the Σ∅ representation, we will preserve χ5

+ =Φ as we have preserved t= ti.

ψ∅(χ5
∅) =

{
2̂
∣∣ψ+(Φ); Φ̂

〉
= −ϕπ

(
Φ

2

) ∣∣ψ(χ5
∅); 2̂

〉
(4.188)

=
π

2
eχ

5
∅(iωti)Φ , (4.189)
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χ5
∅ has no width in figure 1 but we here we will use another length of Φ, as in figure 89,

which gives

ψ∅(Φ) =
π

2
e(iωti)Φ

2

. (4.190)

This has the interesting coefficient π/2 and it lies exactly between π̂1 and π̂2 This number,
π/2, is usually associated with orthogonality and we want ∅ to be topologically orthogonal
to H. It is through this concept that we introduce double orthogonality between adjacent π̂-
sites. With equation (4.190), we have achievedH7→Ω 7→ℵ and we need the Σ− representation
of the wavefunction for ℵ 7→H. Then

ψ−(χ5
−) =

{
î
∣∣ψ∅(Φ); Φ̂

〉
=
π

2

(
− 2i

)∣∣ψ(χ5
−); î

〉
(4.191)

= −iπ eχ5
−(iωti)Φ

2

, (4.192)

Sticking to the convention from figure 1 that the length of χ5
− across Σ− is unity, we can

advance

ψ−(1) = −iπ e(iωti)Φ
2

. (4.193)

We have evolved the wavefunction across χ5≡χ5
+⊗χ5

∅⊗χ5
− that span the unit cell and now

we need to put it back into the position space representation on π̂2. We write

ψ(tf ) =
{
π̂2

∣∣ψ−(1); î
〉

=
(
− iπ

)( i
π

) ∣∣ψ(tf ); π̂2

〉
(4.194)

= e(iωtf )Φ2

, (4.195)

where the projection back into H replaces, for some reason, ti with tf . This reason is likely
a boundary condition that says the chirological and chronological wavefunctions have to be
equal at π̂-sites. Information about ti is preserved, if required, through ∆t= tf − ti.

At this point, we use the ωn notation from equations (4.178-4.179). In reference [9], ωn
is defined [9] such that ωn = ωΦn. This reflects M̂3 that increases the level of ℵ by one.
Here, we have included the ∅ component which agrees with the level increasing by two so
we should introduce the definition

ωn = Φ2nω , (4.196)
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Figure 89: This figure shows where we can obtain two copies of Φ̂ during M̂3 such that the level of ℵ is
increased by two across each unit cell. The perpendicular directions of the Φ̂ in this figure are
evocative of the rotation operation depicted in figure 58.

Figure 90: This figure shows where we can obtain αMCM =2π+ (Φπ)3 via the manner of rarefaction demon-
strated by figures 33 and 34. A rotation of the second Φ̂ about the first Φ̂ axis will directly
implement the torsion so this is a very natural representation. It is evocative of figure 91.

Figure 91: This figure from reference [7] (excerpted in part from reference [17]) demonstrates the general
principle of Φ̂ pointing to, and lying within, a worldsheet.
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so that

ψ(tscreen) =
{
π̂2

∣∣ψ−(1); î
〉

= eiω1∆t , (4.197)

is obtained. We have used the operators {êλ| here but we could just as well use the P̂
formalism so that |êλ}{êλ| appears instead. Then, where π̂2 is used in equation (4.197),

we could examine the property P̂2 = P̂ demonstrated in section IV.3 as it relates to the
psi-rangle/psi-langle non-unitary butterfly operator. Indeed, when the projection operator
into the π̂1-site is the same as the projection operator into the π̂2 site we can preserve the
information about which is which by associating π̂1 with ti and, as in equation (4.197), π̂2

with tf .
Equation (4.197) is exactly what the wavefunction should look like at tf on π̂2 when

we write the initial frequency as ω0. There is a normalization that must be introduced to
conserve energy under the change of frequency, but we have achieved the mechanism through
which π̂n waves will not form interference patterns with π̂m waves when m 6=n. If we repeated
the process to derive {

π̂3

∣∣ψ−(1); î
〉

= eiω2tf , (4.198)

then it is clear that the two waves will not form an interference pattern because their fre-
quencies are different. Furthermore, when we say that there needs to be some normalization
of the frequency to conserve energy, we should consider the MCM solution for dark en-
ergy [2, 7, 54]. Acceleration into the future indicates a changing passage of time so we can
implement the energy normalization and set a constraint on dark energy when

ω1 = [ω0]
[rad]

[sec(π̂1)]
[Φ2] −→ ω1 = [ω0]

[rad]

[sec(π̂2)]
[Φ2] , (4.199)

where

[sec(π̂1)] = [sec(π̂2)][Φ2] =⇒ ω0 −→ ω0 . (4.200)

IV.7 Fundamentals of Hypercomplex Analysis

Real physical systems are usually too complicated to compute by hand so we use computers
to compute expectation values for comparison with experiment. Many a graduate student has
been frustrated by seemingly impossible homework problems only to have another student or
professor later say, “Here one must use the small angle approximation,” or, “Here one must
take the approximation as a Taylor series in arbitrarily few terms to get an answer that is
good enough for full credit.” Even then, homework problems are often trivial compared to
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real life applications at the edge of what can be done. For instance, one such problem might
be to consider the electric field above a finite charged conductor with irregular, asymmetric
geometry, and then derive the equations of motion of a charged particle in its vicinity moving
with some velocity ~̇r. The geometry is irregular so it will be impossible derive the analytic
form of the electric field (due to the irregularly distributed charge.) Whatever the field’s
equations are, the field is a vector field. At each point in space, a vector is anchored that
points in the direction of the electric force that will be exerted on a positive electric charge
located there. Even if we are somehow able to write the field equations, likely with finite
element numerical methods, it still remains to compute the second order differential equation
~F =q( ~E+~̇r× ~B)=m~̈r (and even when we compute it, we have ignored the Abraham–Lorentz

force.) At that point, and beyond the approximations that were involved in deriving ~E to
begin with, we would resort to more numerical methods to approximate the motion of the
particle in question. Such methods, likely Runge–Kutta methods, ask where the particle
is and what the field is at that point, and, although the motion is continuous, we will say
that the particle moves some discrete step in the direction of the field vector. We set the
step as a very small increment and then approximate the total motion as the sum of very
many small steps. Among the downsides is that each discrete step necessarily ignores all
the field vectors between teach step’s initial and the final positions. If the step is small
enough, however, and then numerical methods conforming to this prescription are generally
an excellent approximation.

Electromagnetic homework problems live in flat space so the the small step of discretized
approximate motion always stays inside the manifold that represents all of space. If we were
computing gravitational equations of motion in curved space instead of Euclidean electric
motion then the tangent vectors would point outside of spacetime and this represents another
source of error that needs to be minimized. One tool for solving this problem is known as
the exponential map and, after a few more fundamental concepts, the exponential map will
serve as our segue into numerical analysis for the MCM at the end of this section. The
exponential map is a map from a manifold’s tangent space back to the manifold itself. In
general, it must be noted that, when we develop the theory, we are like an artist scribbling
an impression, refining it, developing it, and then crafting it (hopefully) into a masterpiece,
and then we put it through the wood chipper get a computer to accept it is input.

One common place of approximation in quantum theory is to calculate the amplitude of
small oscillations around some valley in the energy landscape. Higgs does so in his seminal
paper [34]. Therefore, consider the minimum of the harmonic oscillator potential V =kx2/2
in the conformal coordinates x∈(−π/2, π/2). The potential spans all of space x′∈(−∞,∞)
and the conformal relationship is x′ = tan(x). If we want to consider the region close to
x = 0, as per the MCM methodology, then we should also consider the hypercomplexly
infinitesimal neighborhood around that point. The coordinates of that neighborhood are
some other conformal zenith y∈ (−π/2, π/2) on another level of ℵ such that we assemble two
co-π̂s with the domain of the potential and the domain of the hypercomplexly infinitesimal
neighborhood around x= 0, as per the prescription developed in reference [8]. These two
coordinates x and y should be related through the hypercomplex inversion map x = 1/y
from which it follows that the small angle approximation in x fails completely in y. However,
where the ordinary relationship for hyperreal numbers ∗R is ∞=1/ε, which we would write

as Φ̂1 =1/Φ̂−1, we have introduced the intermediate level Φ̂0 in ?C where Φ̂j+2 =ℵ0Φ̂j+1 and
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Φ̂j+1 = ℵ0Φ̂j so there is room to let the small angle approximation fail without completely
destroying physics in the hypercomplexly infinitesimal neighborhood around the minimum.
Indeed, it is better, here, to write the inversion map with the notation xΦ̂j 7→ 1/yΦ̂j−1

than as an equation x = 1/y which does not properly account for hypercomplexity. The
quantum harmonic oscillator is usually a student’s first introduction to zero point energy
and, in the MCM, we might associate that energy with the internal degrees of freedom of
the hypercomplexly infinitesimal neighborhood around the energy minimum. Often one asks
the question, “Is it possible to tap the zero point energy?” Perhaps an improved analysis of
the small oscillations about the lowest n=1 energy eigenstate will yield new insight on this
important question.

Another application of complexity in numerical analysis relates to the representation of
a physical continuum with a discrete set of grid points. Consider two computational grid
representations of de Sitter space and anti-de Sitter space respectively. Every set of grid
points contains its first and last point so where does the topological nuance go when AdS
contains its boundary at infinity but dS does not? Where does this topological degree of
freedom to either include or not include a boundary at infinity go when we simply compute
hyperbolic and spherical field theories on topologically equivalent grids of discrete points
in spacetime? To see the implication of the topological equivalence of all sets of grids
points, consider a 1D simulation on 100 evenly spaced grid points xj on the unit circle. We
can enforce U(1) symmetry on the interval θ∈ [0, 2π] by maintaining a boundary condition
x1 = x100. When the angular coordinate ranges from [0, 2π) we can put the first grid point at
θ=0 but we cannot put another grid point at θ=2π because that point is not in the domain
of θ. The last grid point will appear at θ=99ε=2π−ε. θ does not contain its boundary at 2π
so we are forced to define our point lattice on the closed interval θ∈ [0, 2π−ε]. Here, we have
completely lost the feature of the system in question that it does not contain its boundary.
Where did the interval θ ∈ (99ε, 2π) go? Our simulation leaves a small gap that is usually
considered negligible but should not be considered so in the analysis of ?C. In figure 83, we
have demonstrated how qubits stored in the small gap at the end of the grid can be shuffled
into the primary grid domain with MCM operations so in hypercomplex numerical analysis
we should account in the grid for the openness or closedness of the underlying analytical
topology.

Consider a simple application of the topological discrepancy between closed or open space-
times and sets of grid points which are always closed. Spherical coordinates can never be
deformed to cover a Cartesian manifold because the angles of intersection of the rectilinear
coordinates at the corners of the considered region are not preserved in the polar coordinate
representation. However, we can increase the conformal parameter Ωconf to such a degree
that all of the deviation between a radially charted manifold and the Cartesian manifold is
contained in the missing interval θ∈(99ε, 2π). Figure 92 shows the principle through which
it is possible to increase Ωconf until the apex point is squeezed arbitrarily tightly into the
corner. If the deviation from rectangularism is negligible everywhere in the grid except for
the last box beyond x100 and below y1 then we are on firm ground to say that the rectangular
grid representation is a very good approximation for the curve xµ(θ).

Here, we suggest that, by including an extra abstract grid point for the apex point, all
the tools of conformal transformation will become exactly available in the realm of numerical
analysis. All of the information that would be truncated beyond the last grid point can be



240

Figure 92: In the analytical realm, there is no conformal transformation between the circle and the square.
In the realm of numerical approximation, we can use a large conformal scaling factor to squeeze
the discrepancy into the region hidden beyond the final grid point. It will be possible to modify
numerical computation algorithms such that they include one more abstract grid point which will
correspond to Φ̂ pointing from, in this case, (x100, y1) to the non-grid apex point which contains
information stored on another level of ℵ.

encoded on the apex point with arbitrary multiplectic structure. We should define the last
grid point, the new hypercomplex grid point, such that Φ̂ points to the location of the apex
of the curve from the final grid point. The apex point is the point that would eventually
end up in the corner if such a conformal rescaling were possible. On that point, we can
encode all the information about the real curvature of xµ(θ) that is lost by approximation
as a set of rectangularized grid points. In finite analysis, the contributions of the small
features that are ignored between conformal manifolds and rectangular grids can, in most
cases, rightly be taken as insignificant. When Arnowitt, Deser, and Misner have used the
Cartesian coordinates for the surface at spacelike infinity [46], they have ignored corners of
the type shown in figure 92. They have rightly done so in this context because that last
element is insignificant as a contribution to the total energy of the universe. However, there
is room in hypercomplex analysis to define the opposite case where the corner cannot be
ignored. For instance, we might desire to put an infinite amount of matter-energy in the
corner to model the MCM dark energy interaction between a universe and another universe
on a higher level of ℵ. In transfinite analysis, we can encode hypercomplex qubits on these
missing elements such that they are insignificant on one level of ℵ but might completely
dominate on another level of ℵ. Note the global consistency of the most general case where
a grid of Cartesian points is taken between two apex points: the apex point near x1 is like
Φ̂j pointing from a lower level of ℵ to the set of grid points xk on the jth level of ℵ, and
the other apex point is like Φ̂j+1 pointing to one or more grid points on a higher level of ℵ
from x100. Therefore, we see how the topological remainder that cannot be moved onto a
computer without some special accommodations can have a lot of relevance regarding the
outcome achieved by a given method of approximation. The MCM application of the apex
principle arises at least when we want to join evolution in boundaryless Ω with continued
evolution in bounded ℵ.1 This joining will likely be accomplished through the a singularity
at χ5

±=±∞ but it is impossible to represent a singularity with set of grid points... unless we

1The 3-space in AdS is strictly bounded but the time axis is unbounded so ℵ does not have one cohesive boundary ∂ℵ with
regards to chronological time. However, the change of topology O(3,2)→ O(4,1) can likely be used to define ∂ℵ relative to
chirological time.
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consider the hypercomplexly infinitesimal neighborhood around the singularity. Therefore,
there is reason to consider the relevance of the abstract grid point to representations of the
singular point p∈Σ∅.

Consider an application in which flat space is defined as the superposition of spherical and
hyperbolic spaces. Hyperbolic space includes its boundary so a grid of points does have the
correct topology. To define the superposition we might simply put another set of grid points
corresponding to de Sitter space between the Anti-de Sitter grid points. As long as the first
and last grid points corresponding to the combined flat space are AdS grid points, we do
not invoke any kind of topological discrepancy and it is very natural to say that Φ̂ connects
the first AdS grid point with the first dS grid point, and likewise for the last points. For
example, if the AdS grid points are {0, 1, 2, ...100} then we might take the dS grid points as
{1/2, 3/2, ...199/2}. Then the relationship between the density of grid points in Minkowski
space {0, 1/2, 1, 3/2, ...199/2, 100} and the contributing dS and AdS spaces is the same as
the density of terms in the Euler formula. The Euler formula is proven by showing that half
of the terms in the series expansion of eix are like the sine series and the other half are like
the cosine series.

Consider some trajectory coming into the [0, 2π] or (0, 2π] region (the 1D grid represen-
tation of H) at the end of a trajectory in the bulk which reaches its asymptotic behavior by

entering the planar grid region. When we have let Φ̂j come into the set of grid points from
a lower level of ℵ, we now consider the trajectory along the connection between adjacent
levels. The trajectory begins on a lower level of ℵ and then enters the region represented
with grid points via the Φ̂ object connecting some conformal apex to the grid itself. We
say the behavior is asymptotic because the bulk spaces Σ± do not include their boundary
at H and, presumably, the grid representation in question is that of H. As an example,
consider a simulation of the lifetime of the universe on a set of grid points along the x0 axis.
In very many cases, the first grid point will lie after the Planck and inflationary epochs.
Therefore, we could consider the inflationary period as corresponding to the curve in the
region smaller than x1. The leftward apex point in this scenario would represent the big
bang. When the first grid point x1 is already later than inflation, we will completely crop
the inflationary period from the domain of the simulation and, therefore, also anything that
might have happened before the big bang. Once reaching the asymptote representing the
post-inflationary phase of the universe at the first grid point, the topology of the system
is truncated such that there is never again any component of the manifold in the direction
perpendicular to the line defined by the 1D grid points xj. We say “never again” only in
reference to the domain spanned by the grid; when we come the end of the grid and consider
a second apex point, likely the big crunch, then once again we can consider a perpendicular
direction. To restate this concept for clarity, the vectors that points from one non-apex
grid point to another are always strictly in the x-direction but the vector that points from
the first and last grid points to the apex points can have a component in a perpendicular
direction. We can generate a 3-space in this way when the first apex point deviates in the
y-direction but the final apex point deviates in the z-direction. In this example, the inflation
field never contributes to what we compute for any grid point xj ∈ [x1, x100]. We might
compute the mass density of the universe at each grid point, or perhaps its optical opacity.
Just as we can ignore the effects of inflation before the first grid point, we can add new
effects beyond the last grid point. For now, consider only monotonic entry into the grid at
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the first grid point: inflation begins after the apex point but then smoothly tapers off before
time t=x1. Therefore, the topology has some small dθ where the real curve has to leave the
computational manifold (the set of grid points.) Regardless of how tightly we squeeze “the
circle” into “the corner,” there will always be some deviation between the line defined by
the grid points and the physical manifold but, for numerical purposes, we only require that
the deviation is small compared to the spacing of the grid points. In the analytical sector,
the deviation of the physical and computational manifolds can be represented with dθ. The
vector pointing from one grid point to the next along the time axis is x̂0 but to account for
the curved area outside the boundary of the simulation, at some level we will need to add
dθ so that we can recover the apex point that does not lie along the axis. This dθ refers the
appearance of components in the ŷ- and ẑ-directions; it is not θ as in xµ(θ).

Note how capital Greek letters Θ and Φ show a line with its endpoints either within or
beyond the interior of a circle. To discuss the features of the distinction between closed and
open intervals, we can consider that Θ does include the line’s endpoints but Φ does not.
When we consider a straight line that either does or does not include its endpoints, all of
the tangent vectors to that line are collinear with the line. From a geometric perspective,
this is a self-evident property of straight lines: they are their own tangent spaces. When the
topology of the space represented by the grid is such the boundary is not included in the
space, then we need to include the apex point. The apex point can never be squeezed all
the way down onto the axis defined by the grid so there exists some dθ. Depending on how
we define the convention, this dθ will introduce a dy or a dz, and that fully defines a second
independent tangent vector. Therefore, the tangent space to a grid without apex points is
1D but the tangent space to the more realistic grid that does include the apex point(s) is
at least 2D. Therefore, the inclusion of the apex point directly motivates a new realm of
complexity through the expansion of the tangent space.

In numerical analysis, the forward approximation for the first derivative is

ḟ(x) ≈ f(xj+1)− f(xj)

|xj+1 − xj|
. (4.201)

Our purpose here is to compute the “tangent vectors” to the set of grid points to get an idea
of the topology of the grid points. This will be useful for comparing the grid topology to the
topology of the non-discretized progenitor manifold where analytically exact solutions can
exist. To examine the grid itself, we set f(xj) = ~xj, and the tangent vector at every grid
point is

~̇x ≈ ~xj+1 − ~xj
|xj+1 − xj|

=
ε x̂

ε
= x̂ . (4.202)

How do we take the forward derivative approximation at the last grid point? This is im-
possible and usually a little hand waving is introduced such that we take the backward
approximation

ḟ(x) ≈ f(xj)− f(xj−1)

|xj − xj−1|
. (4.203)
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However, when we add another grid point for the apex point we can still use the forward
formula at x100. Now the tangent vector at that last point will not be collinear with the
other vectors and this means that the tangent space to the computational domain has two
basis vectors and must sweep out a plane. Using the last grid point and the apex point, the
forward derivative formula is

~̇x ≈ ~xapex − ~x100

|xapex − x100|
=

[(
100 + εx

)
ε x̂+ εy ŷ

]
− 100ε x̂

β
, (4.204)

from which it immediately follows that

~̇x ∝ x̂+ ŷ . (4.205)

We have demonstrated the concept for the grid with f(x) = ~x but a problem is that we
generally do not have a value for f(xapex). If we simply ignore the final endpoint xapex then,
rather than an open interval, we have modeled a closed interval with one less grid point. To
make the distinction between the closed and open intervals in the numerical language, we
can say that the tangent vector at the endpoint has a component that is perpendicular to the
tangent space of the closed interval, as in equation (4.205). Then the tangent space increases
from a line to a plane or from the plane to a space, etc. The tangent space of the grid space
that includes its boundary has co-dimension 1N or 2N with the tangent space of the grid
space that does not include its boundary. Here N is the number of grid dimensions, N = 1
in the example we have discussed, and we say 1N or 2N because the extra direction at the
apex point can be the same at each end of the grid or those directions can be perpendicular
to x̂ and also mutually perpendicular as ŷ and ẑ.

Penrose suggests [52] that completing the physical manifold with a point at conformal
infinity is useful because we can consider the behavior of fields at conformal infinity I .
Therefore, when we complete the physical manifold with a conformal point, we necessarily
induce the extra point xapex and we should consider that the apex points at conformal infinity
are what will distinguish a hypercomplex grid from an ordinary one. By building rotations
around conformal infinity, we can rotate between, perhaps, a set of grid points representing
H and another representing Σ± such that the analytical intractability of the disconnection of
H from Σ± is not an issue at all in the discretized domain of computer language. Even when
H and Σ± are separate, the last grid point of H is next to the first grid point in Σ+, and
this facilitates continuation in the manner of any adjacent grid points. The mathematical
operation required to twist a tangent vector out of the plane is rotation (or possibly torsion
which we not treat here) and we need, in this example, to get the tangent vector at the
last H grid point to point to the first Σ+ grid point or an intermediate apex point. This
will be important if we do not have information about the apex point a priori but instead
want to determine it from the information generated on the grid; we might devise a rotation
operator R̂ that takes the last tangent vector and makes it point to the apex point which, in
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this example, holds a multiplex containing all the grid points of Σ+. Without regard for the
density of the grid points, it will only be the final computer language tangent vector between
H’s last grid point and the apex point that expands the tangent space, as in equation (4.205).
The apex point can be squeezed arbitrarily tightly into the corner so the angle of deviation
assigned to that rotation out of the plane should be dθ, which we already know is appended
to the generator of rotations when writing a 3D rotation operator R̂z := L̂z. Therefore,
we might expect that the apex point is associated with the Cauchy C curve and quantum
phenomena will be obtained by going “through the big end” of classical simulations when
we join sets of grid points on an apex point.

Let us examine how we can derive this second basis vector ŷ for the tangent space to
xj without knowing about the apex point before hand. The formula for an infinitesimal
rotation operator is

R̂z(dθ) = 1̂− i dθL̂z +O(dθ dθ′) . (4.206)

For the purposes of hypercomplexity, we want to examine the feasibility for constructing
this operator using nothing but the ontological basis {̂i, Φ̂, 2̂, π̂}. Equation (4.206) can be
replaced with the sum of the identity with a linear (trivially conformal) part and a symplectic

part. The dθ dθ′∼=dxµdxν term motivates us to replace the error term with Φ̂. We will say
Φ̂ should have a symplectic form on it so that it can point to the surface at spacelike infinity
where the normal vector points either back inside the universe or outside of the universe
altogether. Earlier in this section, we proposed to use Φ̂ to point in the direction of the
apex point so that it could be defined without including ŷ or ẑ, and now we want to directly
replace the error term in the definition of R̂ with Φ̂. The notation O(dθ dθ′) means that the
first two terms in equation (4.206) are correct up to terms of order dθ2 and we propose to
build an ontological rotation

R̂z(dθ) = 1̂− i dθL̂z + Φ̂(dxµ ∧ dxν) , (4.207)

that does not have an error term. Equation (4.207) puts each of the three terms on three

different levels of ℵ in the normalization that Φ̂ = Φ̂j+1, 1̂ = Φ̂j, and dθ := Φ̂j−1. This is a
favorable structure in hypercomplexity because it can specify rotations as they relate to one
lower and one higher level of ℵ. The symplectic form that we have assigned to Φ̂ offers a lot
of promise for replacing the O(dθ dθ′) term. We need a term like dθ2 and we have it in

Φ̂ := dxµ ∧ dxν ≡

(
0 dxµ dxν

−dxµ dxν 0

)
. (4.208)

This multiplectic definition is presented to define Φ̂ such that it has a symplectic form at
its tip. The symplectic form attached to the tip of Φ̂ will be useful for moving beyond
spacelike infinity, for steering through non-trivial covering spaces or for steering through the
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cosmological lattice in general, and also for pointing to bloop points where field lines break as
in section IV.4, or where new frequencies appear, as in reference [10]. Indeed, we have shown
that the symplectic points embedded on the helix in section IV.5 appear at the points NΦ.
We can construct R, which is the covering space in question, with the embedded symplectic
points by taking a stack of Φ̂ where each Φ̂ has a symplectic form at its tip, as in equation
(4.208). Furthermore, when dx∧dy 6= dy∧dx, we see some small hint of why the quaternion
rotation uses two operators instead of just one. Perhaps two operators are needed to define
the orientation in a way that is not required for a non-symplectic 2-form like dθdθ′=dθ′dθ.

The normal analysis of rotations discards the O(dθ dθ′) term and only considers the linear
approximation

R̂z(dθ) = 1̂− i dθL̂z , (4.209)

which we could write with Υ̂= î+ 2̂π̂Φ̂ such that

R̂z(dθ) = Υ̂ · −î = 1− 2̂π̂Φ̂ · î . (4.210)

This gives the general form of R̂z(dθ) but we must make some accommodation for the extra

two hats after î is dotted into the second polynomial term 2̂π̂Φ̂. For that, we can use the
extra two hatted objects to construct a dyadic. The dyadic is a projection operator so we
may evaluate 2̂π̂Φ̂· î as dot product of î with a certain projection of one of 2̂, π̂, or Φ̂. Another
issue with equation (4.210) is that this is only a representation of the linear approximation

of R̂z(dθ). We want to obtain an exact expression of the form of equation (4.207). To that
end, consider a different definition

R̂z(dθ) = 1̂ + Υ̂µ , (4.211)

where we introduce

Υ̂0 = î+ Φ̂2̂π̂ (4.212)

Υ̂1 = Φ̂ + 2̂π̂î (4.213)

Υ̂2 = 2̂ + π̂îΦ̂ (4.214)

Υ̂3 = π̂ + îΦ̂2̂ . (4.215)
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Clearly Υ̂1 is the operator we are looking for. It allows us to write

R̂z(dθ) = 1̂ + 2̂π̂î+ Φ̂ , (4.216)

which is of the exact form of equation (4.207). Here, we simply need to solve a matching
problem on

2̂π̂î ←→ −i dθL̂z . (4.217)

Before examining the matching, consider that R̂ needs to be able to rotate about any spa-
tial axis if there is any hope of devising a working rotation operator from the outlandish
formulation in equation (4.211). Multiple rotation axes are easily accommodated with

R̂x(dθ) = 1̂−
(
2̂π̂
)
î+ Φ̂ (4.218)

R̂y(dθ) = 1̂−
(̂
i2̂
)
π̂ + Φ̂ (4.219)

R̂z(dθ) = 1̂−
(
π̂î
)

2̂ + Φ̂ . (4.220)

Since each dyadic is such that êµêν 6= êν êµ, equations (4.218-4.220) give two possibilities
for each rotation. We could say that this justifies an extension to the quaternion rotations
where two operators would uniquely determine a unique operation or we could say that the
êαêβ 6= êβ êα freedom is associated with clockwise or counterclockwise rotations. We could
even let the operator be such that one dyad gives the instruction to rotate and the other
gives the instruction to swap the tip with the anchor point and then do the rotation. Before
we decide any of that, we need to determine the matching in relationship (4.217).

We have previously written the L̂z operator in polar coordinates but, to accommodate
the symmetries required for a rotation about an arbitrary spatial axis, we should work in
Cartesian coordinates. When we write

L̂z = −i ∂
∂φ

, (4.221)

in the {z, φ, θ} coordinates, there are no φ or θ axes that we might rotate about because the

φ̂ and θ̂ unit vectors point in different directions at different points in space. Instead, we
will consider

L̂z = −i
(
x
∂

∂y
− y ∂

∂x

)
. (4.222)
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L̂z looks like the total differential of some generic f(x, y)

df =
∂f

∂x
dx+

∂f

∂y
dy . (4.223)

Indeed, the dyadic, being composed of only two pieces, is generally amenable to representa-
tion as f(x, y). The relationship between equation (4.222) and equation (4.223), up to the
function f itself, is mostly that the dx and dy have been integrated over

L̂z
?
= −i ∂

∂y

∫
dx+ i

∂

∂x

∫
dy . (4.224)

Therefore, we might consider an exotic qubit d̂f such that L̂ := d̂ and d̂f integrates over
dx and dy. Perhaps there is a natural association with the weird quantum operator for the
observable quantization of angular momentum L̂z in that it represents a total differential that
has been half integrated over. Equation (4.224) is then of the same form as the remainder
of the MCM inner product. When |ϑ〉 and |ψ〉 are Dirac orthogonal states

〈
ϑ
∣∣ψ〉 =

∞∑
j=0

∞∑
k=1

c∗kcjδ
′
jk

∫
ψ−∗k ψ+

j dx =
(
null
)
c0δ
′
jk

∫ (
null
)
ψ+

0 dx , (4.225)

represents something half integrated over. We only mention this as an aside because the
partially integrated form of df in equation (4.224) is in similar in quality to equation (4.225).

Now, we continue with the analysis of R̂z. With the Cartesian L̂z from equation (4.222),
we may obtain from equation (4.206)

R̂z(dθ) = 1− dθ

(
x
∂

∂y
− y ∂

∂x

)
+O(dθ dθ′) . (4.226)

One of the interesting features of R̂z(dθ) is that the quantum mechanical angular momentum

operator L̂z is the generator of classical rotations. From equation (4.222), we can write

L̂z = x̂p̂y − ŷp̂x , (4.227)

where the idea in quantum theory is that p̂i≡∂i. We assign special significance to z when we
say that there can be only a simultaneous eigenbasis in quantum theory for the total angular
momentum and the projection onto one of the three spatial axes, call it z. Therefore, we
have judiciously arranged equation (4.220) such that 2̂ is outside of the dyadic in R̂z(dθ).
The quantum operator consists of two terms with like structure, as in equation (4.227), and
2̂ is the operator that splits one term into two. This is what it means to choose 2̂ judiciously:
if we look at î or π̂ outside the dyad in equations (4.218-4.219) then we would not expect an
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inherent polynomial of two like terms. We could choose to split any term into two terms if
desired, but that structure is only innate to 2̂.

Beginning to develop the requisite connection −idθL̂z↔(π̂î)2̂, we write

−dθ
(
x
∂

∂y
− y ∂

∂x

)
←→

(
π̂î
)
2̂ . (4.228)

Where does the differential angle dθ come from? To include it we should revise the ansatz
in equation (4.211) such that

Rz(dθ) = 1̂ + δΥ̂1 , (4.229)

where δ indicates the small variation. As an illumination of relevant the principles, consider
that we have added an ontological resolution of 0 to the ontological resolution of the identity
such that

1̂ =
1

4π
π̂ − ϕ

4
Φ̂ +

1

8
2̂− i

4
î , and 0̂ = 1̂ +

(
− 1̂
)
. (4.230)

Therefore, when we consider the infinitesimal rotation Rz(dθ), we might take a variation
about either of zero or one. We can examine Rz(dθ) as the variation around one with
Rz(0) = 1̂ or we can examine it as the variation around zero when Rz(0) = 1̂ + 0̂. In
general, this principle illustrates the connection between multiplication and addition that is
likely amenable to group theoretical applications. 0̂ introduces additive complexity and 1̂
introduces multiplicative complexity. When we attempt to recover relationship (4.228), we

can write the linear approximation to R̂ as

Rz(dθ) = δΥ̂0
z = δ

[̂
i+
(
Φ̂π̂
)
2̂
]

, (4.231)

and we can write the total operator as

Rz(dθ) = 1̂ + δΥ̂1
z = 1̂ + δ

[
Φ̂ +

(̂
iπ̂
)
2̂
]

. (4.232)

Equation (4.231) is our tentative representation of the first order approximation to R̂ and

equation (4.232) is the tentative representation for the exact form of R̂. Equations (4.231-
4.232) show the convention that rotation about the z axis is selected by taking 2̂ outside
of the dyadic. Since we are not concerned with an ontological representation of the linear
approximation to R̂, we will only work with equation (4.232).
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The formula for the variation is δJ = J(u0 + δu) − J(u0), and we should not take the
variation of the basis vectors but only the variation of the dyadic. We can represent equation
(4.232) in the convention where ê1 = π̂, ê2 =Φ̂, ê3 =2̂, and ê4 = î as

Rz(dθ) = 1̂ + δ


0
1

îπ̂
0

 , (4.233)

so the J in the variation formula is J(i, π)= îπ̂. Then

δ
(̂
iπ̂
)

=
(̂
i+ δi

)(
π̂ + δπ

)
− îπ̂ = î δπ + π̂ δi+ δi δπ . (4.234)

Here, we ignore terms of order δ2 so we have gone off on quite a tangent pursuing the
ontological representation of the rotation. However, in section IV.5, we showed that C is
simply constructed from î and π̂ so, in some vague sense, we have taken the variation of the
complex plane δ(̂iπ̂) wherein all quantum phases have the form of rotation operators. Here,
we update equation (4.233) as

Rz(dθ) = 1̂ +
[
δ
(̂
iπ̂
)
2̂ + Φ̂

]
= 1̂ +

(̂
i δπ + π̂ δi

)
2̂ + Φ̂ , (4.235)

and this is what we are trying to put in the form of equation (4.207), which contains −idθL̂z.
If we use the mapping

î 7→ −1 (4.236)

δπ̂ 7→ dθ (4.237)

2̂ 7→ L̂z , (4.238)

then we almost get the right form with

Rz(dθ) = 1̂− i dθL̂z + Φ̂ +
(
π̂ δi
)
, (4.239)

but we have the extra piece π̂ δi. This could be another hint that only quaternion rotations
can be built from {̂i, Φ̂, 2̂, π̂}; we might use two operators such that the extra piece gets
canceled.
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Before coming to that, it is not clear why 2̂ should be L̂z or that we are even well motivated
in the maps (4.236-4.238) to begin with. When we defined a similar looking set of maps for
Einstein’s equation, we were motivated by the coefficient of proportionality 8π but we have
not demonstrated a corresponding piece of evidence in this case. Therefore, consider the
relationship between the angular momentum operator and Pauli spin matrix commutation
relations

[L̂x, L̂y] = iεabc L̂z , and [σa, σb] = 2iεabc σc . (4.240)

The Pauli matrices are the half-integer angular momentum operators and we are not too far
from firm ground when want to associate the dyadic (êαêβ) with the Pauli matrices. The
Pauli matrices are the simplest matrices that have the requisite properties for a physical
spin algebra but they are by no means the only set of matrices that can be used. Even
when 2 appears in the commutator for the Pauli matrices, the mechanism is not so clear
as the appearance of 8π in the MCM derivation of Einstein’s equation but it does define
some fundamental linkage between 2̂ and the quantum mechanical angular momentum op-
erator L̂z. Perhaps the difference between L̂z and 2̂ is the former constructs R̂z(dθ) for an

arbitrary rotation around the z axis but the latter is only used to construct R̂2(Φ) which
points exclusively to the apex point. Here, we have raised very many more questions tan-
gentially, especially regarding the representation of Pauli matrices with ontological dyads,
but we will remain in this section focused on Υ̂ before progressing into numerical analysis
for hypercomplexity.

Regarding Υ̂, why should the operator

Υ̂ = êµ + êν êρêσ , (4.241)

be more important than

Υ̂ = êµêν + êρêσ , or Υ̂ = êµêν êρêσ ? (4.242)

On this last question, we might propose that the form of equation (4.241) relates to even

levels of ℵ and equations (4.242) relate to odd levels. Another representation of Υ̂ is

Υ̂ = êµ + êν + êρ + êσ , (4.243)

and we have already shown that this one is very important. This is the linear algebra version
of Υ̂ and we might say that equation (4.241) is the Lorentz invariant version of Υ̂, or even

that Υ̂ = êµêν + êρêσ is the twistor version. The intention here is only to call attention
to these objects and not necessarily to define them. As the fundamental objects of the
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theory, we will definitely need to come up with answers for what these objects are and so,
in prudence, we cite them here.

To sum up the above excursion into complexity consider the nicest MCM result regarding
Einstein’s operator

8̂π : Tµν 7→ Rµν + gµνΛ . (4.244)

In our analysis of the fundamentals, it is notable that while π shows up linearly and at third
order in α−1

MCM =2π + (Φπ)3, 2 only shows up linearly and Φ only shows up in its cube. It is
further notable that 2 does show up at third order in the theory when we write

2̂3π : Tµν 7→ Rµν + gµνΛ , (4.245)

and Φ shows up at first order in Φ̂. Therefore, when detractors say, “Prove it,” we can write

23π3

π2
= 23π = 8π , (4.246)

which is the general relativity operator. This operator is derived with the map 2̂π : f 7→ ω
that is usually associated with the Fourier transform which we have not yet even begun to
examine. However, 2π is known to be a spurious constant of the normalization of the Fourier
transform with the inverse Fourier transform between the frequency domain and the angular
frequency domain. After writing equation (4.246) for detractors, we can cite an extensive
body of work [2, 7, 12, 11, 3, 9, 13, 49, 4, 5, 23, 10, 8] which defines a specific enough
set of requirements for a new mathematical mechanism which will describe, by principle of
analytic rigor, a new sector in physics. Thus it is demonstrated; detractors have no ground
upon which to stand.

The angular frequency is also referred to as the wavenumber domain but when angular fre-
quency and wavenumber are taken as the same, it disregards conformalism. The wavenumber
domain uses a Cartesian chart but the angular momentum domain uses a radial coordinate
chart. Therefore if one domain completed with its surface at conformal infinity is deformed
into the other with its surface at infinity, then the corners in the Cartesian chart will be
pinched into symplectic points in the polar coordinates. This is not allowed in conformal
transformations so this distinction of the Fourier transform needs to be rigorously accounted
for. Likely, the angular frequency domain can be associated with π̂, and wavenumber with
Φ̂.

As another aside about the complexity of the ontological objects, consider the place of the
affine connection in general relativity. Relativity deforms the relationships between spaces
and their tangent spaces such that the partial derivative does not transform as a tensor,
and we have to introduce multiplectic “connection coefficients” Γνµλ to derive a “covariant”
derivative
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∇µV
ν = ∂µV

ν + ΓνµλV
λ . (4.247)

If we write Υ̂ as

Υ̂λ
µνσ = êλ + êµêν êσ , (4.248)

then we get a lot more complexity than the Υ̂µ in equations (4.212-4.215) because any

combination of {̂i, Φ̂, 2̂, π̂} is allowed but we have only considered Υ̂µ such that each object
appears exactly once. To update the notation, we may write

Υ̂1 ≡ Υ̂Φ
ijk = Φ̂ + êiêj êk . (4.249)

Even here, there is more complexity because repeats are allowed in {i, j, k} but none appeared
in equation (4.213). We should represent the second term in equation (4.249) with one index
of one type and two of the type that will contribute to the dyadic. As an ansatz, let

Υ̂λ
µνσ = êλ + Γµνσ , where Γµνσ =

(
êν êσ

)
êµ . (4.250)

In equation (4.240), we showed how the commutators of the Pauli matrices and angular mo-
menta are likely relatable through 2̂, and can arise from taking the two objects in parenthesis
as a dyadic tensor matrix coefficient for 2̂. Specifically we have examined

Γ2
iπ =

(̂
iπ̂
)

2̂ . (4.251)

We have analyzed a possible connection between the 3D rotation operator and the ontological
basis and shown that the new connection has the same form as what is already called the
connection Γλµν .

What about M̂3? Can it be represented in this way? It is not infeasible that some maps
exist between {∂+, ∂∅, ∂−} and some configuration of {êµ, êν , êλ}. Therefore, consider the
most general operator 〈

ψ
∣∣M̂3

∣∣ψ〉 −→
〈
ψ
∣∣êµêν êσ∣∣ψ〉 . (4.252)

We can define a quaternion exponential map and an ordinary exponential map as

êµêν êλ 7→ e−uµM [êν ]e
uλ , (4.253)
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where M [êν ] is not a quaternion rotation operator or a 3D rotation operator, and

êµêν êλ 7→ M+[êν ]e
iĤtM−[êλ] . (4.254)

where M±[êρ] are likewise not quaternion rotations or 3D rotations. This might be a demon-
stration of what it means to make an impossible calculation. If there are two exponential
maps required, that can not be considered simultaneously, then how can we make sense of
it? We will be compelled to include sufficient complexity in M̂ [êλ] such that some unpaired

qubits from M̂3 get paired with partners from Û as per Υ̂≡ Û + M̂3.
Equation (4.254) is the matrix exponential map with some extra pieces. In quantum

theory, the Hamiltonian operator Ĥ is a square matrix and we use the definition

eĤ ≡
∞∑
j=0

Ĥj

j!
= I + Ĥ +

1

2
Ĥ2 +

1

6
Ĥ3 + · · · . (4.255)

The scalar exponential map is the one that alternates lines with circles via x 7→eix such that

ex ≡
∞∑
j=0

xj

j!
= 1 + x+

1

2
x2 +

1

6
x3 + · · · , (4.256)

but what is the exponential map for e
~V ? Ĥ is a square matrix and any product of N square

matrices will have the same dimensionality as Ĥ. Likewise with ex, a scalar to any power is
still a scalar. When we write

e
~V ≡

∞∑
j=0

~V j

j!
= 1̂ + ~V +

1

2
~V · ~V +

1

6
~V · ~V · ~V + · · · , (4.257)

there are a few problems. 1̂ doesn’t make sense in that context, ~V is a vector but ~V · ~V is a
scalar, and ~V · ~V · ~V is poorly defined. Nevertheless, the exponential map for vectors is an
important object in general relativity where it takes the form

expp(~V ) : TpΣ 7→ Σ (4.258)

as a map from a manifold’s tangent space at a point TpΣ back to the manifold Σ itself. What
is called the exponential map in general relativity is critically important in any simulation of
general relativity and, naively, it is the map shown in equation (4.257) although one never
uses that representation because of the problem in the notation.

In the realm of rigor, even hydrogen atoms curve flat space and the tangent vectors to the
geodesics in the manifold containing the hydrogen will point outside of the manifold. This is
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important because the geodesics of non-symmetric natural geometries cannot be written in
closed form and instead we approximate the path with the tangent vector. However, if the
tangent vector points outside of the manifold then there is a problem using it to define the
path which must lie exclusively within the manifold. One of the simplest (and best) methods
for determining the path, often called a method of evolution, is the Gaussian method, also
called Euler’s method. Often one asks, “If particle A is at location B then where will it
be later?” The Gaussian approximation answers this question by taking the tangent vector
to a point and then defining the next point in the path by taking some small step ∆t in
the direction of the tangent vector. If ∆t is very small then, often times, this is a very
good approximation for the real path which never leaves the manifold. For example, the
time derivative of position is velocity measured in meters per second; the velocity vector is
the tangent vector to the path at a point. If we multiply meters per second by some small
amount of seconds then we will obtain a distance. In Euler’s method, we can approximate
the path by moving a small distance in the direction of the velocity vector after taking its
product with some small time step ∆t. We say this gives the next point in the path. Then we
take the tangent vector to that point, multiply it by the standard time step, obtain the next
point, etc. The problem is that this cannot possibly be the real path because every tangent
vector points to a place outside of spacetime. This is useful when we take a very small time
step because the outcome is very much like the physical expectation but, when we want to
account for effects like symplectic points or the hypercomplex neighborhood around a point
then the discrete nature of ∆t makes it highly unlikely that the discretized approximate path
will intersect these mathematically specific points even if the continuous trajectory would
pass through them.

The exponential map is developed, for instance, in reference [17]. The main useful prop-
erty of the exponential map is that a tangent vector kµ to a manifold at point p defines a
unique geodesic xµ(λ) running through p as

xµ(λ) = λkµ , (4.259)

when λ = 0 at p. Therefore, as a matter of practicality, the exponential map is Euler’s
method

xj+1 = xj + ∆t ẋj , (4.260)

which is very easy to understand. Equation (4.260) is equation (4.259) when xj =0, ẋj =kµ,
and ∆t=λ.

Leading into our discussion of Runge–Kutta methods, note the general utility of this
classical method of numerical approximation. Let there be some field

ẋ = σ
(
y − z

)
(4.261)

ẏ = −xz + αx− y (4.262)
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Figure 93: This figure shows the Lorenz attractor.

ż = xy − βz , (4.263)

where {σ, α, β} are some constants. Altogether equations (4.261 -4.263) define a vector at
every point in space. One asks, “If we examine point p in the field where does it go?” If
p=(x1, y1, z1)=(1, 2, 3) then, after ∆t, we say it goes to

x2 = 1 + ∆t ẋ(p) (4.264)

y2 = 2 + ∆t ẏ(p) (4.265)

z2 = 3 + ∆t ż(p) . (4.266)

If we repeat this process very many times, and connect each pj to each pj+1, then we will
obtain something that looks very much like figure 93. This is called the Lorenz attractor
after Lorenz who developed equations (4.261-4.263) to describe chaotic weather patterns.
This example shows the importance of the step size ∆t; if we chose {σ, α, β} on the order
of 100 and ∆t on the order of 106 then the first step would move the point far beyond the
attractive basin and the interesting behavior would not be observed. Only when the step is
appropriately sized do we observe the interesting behavior. If the step was too large then all
of the complexity would be glossed over so, obviously, when simulating systems with very
fine features, a very small step size is required. Therefore, when we do computations in
general relativity near, for instance, a black hole whose event horizon is a mathematically
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perfect surface, it is likely that any finite step size will represent an insufficient resolution.
In the context of Hawking radiation, we have raised an issue regarding the increment of an
event horizon’s radius associated with one electron falling into the black hole and it would
require an outrageously small ∆t to resolve this in the numerical realm. Here, we have
demonstrated the general difference between the exactly solvable problems that are few and
far between in physics, and the other problems that must be solved by approximation. The
approximated solution always reflects the physical input and artifacts related to the choice
of approximation. It is even possible to conflate effects derived from a certain approximation
with actual physical effects but, in the MCM, we have only considered that which can be
written exactly and are, therefore, free from any potential approximation biases. Indeed,
there are many potential sources of bias in any numerical solution and the step size is only
one of them. Consider what Burden and Faires write in reference [66].

“We began with a discussion of the most elementary numerical technique, Eu-
ler’s method. The procedure is not sufficiently accurate to be of use in applications,
but it illustrates the general behavior of the more powerful techniques, without the
accompanying algebraic difficulties. The Taylor methods [are] generalizations of
Euler’s method. They [are] accurate yet cumbersome because of the need to de-
termine extensive partial derivatives of the defining function of the differential
equation.1 The Runge–Kutta formulas simplified the Taylor methods, while not
significantly increasing the error.”

Euler’s method, or Gauss’, in equation (4.260) computes xj+1 using only data from xj but
Runge–Kutta methods use data from a few other points and are more accurate. Consider
the Runge–Kutta fourth order algorithm as excerpted from reference [66].

To approximate the solution of the initial value problem

y′ = f(t, y), a ≤ t ≤ b, y(a) = α,

at (N + 1) equally spaced numbers in the interval [a, b].

INPUT endpoints a, b; integer N ; initial condition α.
OUTPUT approximation w to y at the (N + 1) values of t.

1Equation (2.47), in section II.1, is an excellent example of this cumbersome task.
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1. Set ε = (b− a)/N ;

t = a

w = α

OUTPUT(t, w).

2. For j = 1, 2, ... do steps 3− 5.

3. Set K1 = εf(t, w);

K2 = εf(t+ h/2, w +K1/2);

K3 = εf(t+ h/2, w +K2/2);

K4 = εf(t+ h,w +K3).

4. Set w = w + (K1 + 2K2 + 2K3 +K4)/6; Compute wj

t = a+ jε. Compute tj

5. OUTPUT(t, w)

6. STOP.

The statement of the initial value problem is the same that we have considered for Euler’s
method. As in equations (4.261-4.263), we have a tangent vector specified, here it is called
y′. For the Lorenz attractor, we defined a first point p = (1, 2, 3) and here we have some
generalized y(a) = α. a is the start time and this Runge–Kutta algorithm specifies how
long the simulation will run where, above, we simply considered many time steps. This
method differs from the Gaussian method when it computes four different values for the
next point and then takes a weighted average of them as the returned value. Notably, the
K1 contribution to the weighted average is exactly the Gaussian approximation. However,
even when the error associated with this method is less than in the previous method, the
discrete stepping is still going to ignore anything related to hypercomplexly infinitesimal
neighborhoods. Toward that problem, consider what Burden and Faires write in reference
[66] regarding adaptive step methods.

“The appropriate use of varying step size [produces ] computationally efficient in-
tegral approximating methods. In itself, this might not be sufficient to favor these
methods due to the increased complication [emphasis added ] of applying them.
However, they have another feature that makes them worthwhile. They incorpo-
rate in the step size procedure an estimation of the truncation error that does not
require the approximation of the higher derivatives of the function. These methods
are called adaptive because they adapt the number and position of the nodes used
in the approximation to ensure that the truncation error is kept within a specified
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bound.”

The geodesic equation and equations like those that define the Lorenz attractor are dif-
ferential equations that need to be integrated before we can use them to plot trajectories
like those in figure 93. For this reason, the corresponding Runge–Kutta methods are called
integral approximating methods. If we could integrate the equations of motion exactly then
there would be no need but, in practice, when one derives the equations of motion for a real
physical system, they are not exactly solvable. If we want to simulate a black hole of finite
mass existing in some large region of the universe then an adaptive step method will allow
us to simulate that which we have referred to as embedding the singularity in the manifold
on a lower level of ℵ. One adaptive method is the Runge–Kutta–Fehlberg method. Consider
the Runge–Kutta–Fehlberg algorithm, also excerpted from reference [66].

To approximate the solution of the initial value problem

y′ = f(t, y), a ≤ t ≤ b, y(a) = α,

with local truncation error within a given tolerance.

INPUT endpoints a, b; initial condition α; tolerance TOL; maximum step
size εmax; minimum step size εmin.
OUTPUT t, w, ε where w approximates y(t) and the step size ε was used, or
a message that the minimum step size was exceeded.

1. Set t = a;

w = α;

ε = εmax;

FLAG = 1;

OUTPUT(t, w).

2. While (FLAG = 1) do steps 3− 11.
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3. Set K1 = εf(t, w);

K2 = εf(t+ 1
4
h,w + 1

4
K1);

K3 = εf(t+ 3
8
h,w + 3

32
K1 + 9

32
K2);

K4 = εf(t+ 12
13
h,w + 1932

2197
K1 − 7200

2197
K2 + 1932

2197
K3);

K5 = εf(t+ h,w + 439
216
K1 − 8K2 + 3680

513
K3 − 845

4104
K4);

K6 = εf(t+ 1
2
h,w − 8

27
K1 + 2K2 − 3544

2565
K3 + 1859

4104
K4 − 11

40
K5).

4. Set R = 1
h

∣∣ 1
360
K1 − 128

4275
K3 + 2197

75240
K4 − 1

50
K5 − 2

55
K6

∣∣;
5. If R ≤ TOL then do steps 6 and 7.

6. Set t = t+ εmax; Approximation accepted.

w = w + 25
216
K1 + 1408

2565
K3 + 2197

4104
K4 + 1

5
K5.

7. OUTPUT(t, w, ε).

8. Set δ = 0.84(TOL/R)1/4.

9. If δ ≤ 0.1 then set ε = 0.1ε

else if δ ≥ 4 then set ε = 4ε

else set ε = δε. Calulate new h.

10. If ε > (TOL)εmax then set ε = εmax.

11. If t ≥ b then set FLAG = 0

else if t+ ε > b then set ε = b− t
else if ε < εmin then

set FLAG = 0;

OUTPUT(‘min ε exceeded′).

12. STOP.

One shortcoming of this algorithm will be that the adaptive step, no matter how small
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we allow it to go, will always be finite and, therefore, will always gloss over infinitesimal
features such as symplectic points (which become symplectic Riemann spheres in twistor
space.) However, where this algorithm can give an error message in step 11 that the step has
gotten too small, we can replace that with an instruction to move the simulation to another
level of ℵ where, ostensibly, the symplectic point becomes a finite region or the distances
describing a Φ̂j black hole embedded in a Φ̂j+1 universe become finite. This would have a
lot of direct application in machine language where numbers are defined not as elements of
R but, rather, as floats, doubles, and the like where there is a limit imposed a priori on the
relative scale of any two numbers in the simulation.

Why have we included these algorithms in full? To answer that question, we must first
say a little about why we have not included any MCM energy function LMCM or HMCM .1 It
is traditionally thought in physics that the energy function is where the magic happens but
consider the full scope of the magic in physics. First one (hopefully) draws a system diagram
and then one labels the system’s degrees of freedom such that all the energy channels (modes)
are enumerated. Then one solves the Euler-Lagrange equations which involve functionals of
the energy function or one applies the action principle which involves the same. By some
canonical method, one obtains the equations of motion and detractors are wrong to cite
the absence of a retranscription of the canon in MCM publications as a defect in the MCM
itself. After obtaining the equations of motion one asks, “If the system is like this now,
how will it be later?” One quickly realizes that the equations of motion offer no answer to
this important question! The equations of motion are written as not so intuitive differential
equations. To determine the motion, one must integrate the equations of motion to solve
for the behavior of the degrees of freedom. If one is very lucky, these can be solved exactly
but, often in physics, one is not that lucky. At that point, one resorts to methods like the
Runge–Kutta methods presented in this section, and there are other popular Runge–Kutta
methods in physics. For instance, the Runge–Kutta–Nordström algorithm will conserve
energy along the approximated trajectory while Runge–Kutta–Fehlberg will not. Even with
Runge–Kutta–Nordström, the approximate trajectory will not conserve in all cases angular
momentum so, if one wishes to see that, one has to use an even more powerful algorithm.
If one wants to simulate particles randomly arriving as discrete packets of mass, energy,
and linear and angular momentum on the the final screen in the double slit experiment
then one likely relies upon what are called Monte Carlo methods. An entire landscape of
quadrature methods will give an approximation to any integral P [ψ(x)] even when it is
analytically intractable, and,in general, analytical intractability in physics is treated with
numerical analysis.

To the point of why we have included the Runge–Kutta algorithms, we argue that the
algorithmic computational component is really where the magic happens in physics. When
every analytical method has already been adapted to some algorithm in numerical analysis,
we view the extant algorithms as a better place to scan for hidden features related to P [ψ(x)]
than the analytical representations themselves. The MCM has been so successful because we
have discovered many hidden features in the analytical sector but these results are related

1Part of the reason we have never treated an MCM energy function is that, even if we did invest the time and energy to
derive one, we do not have a powerful computing facility in which to integrate the resultant equations of motion. Without those
integrated equations, it would be very difficult (impossible) to determine if the energy function in question was correct or if it
contained an error. Indeed, one expects that the first such function would contain errors and, without an efficient computational
facility in which to identify those errors and iteratively correct them, the initial exercise to develop an energy function at all
with would have constituted a suboptimal allocation of efforts and attention.
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only to the fundamentals which contribute to P [ψ(x)]. When dealing with P [ψ(x)] directly,
the numerical sector is a superior fishing grounds. In general, the numerical representation
allows one to define and enumerate the modes of a system with the same simplicity as a
diagram, and with the added benefit of actually being able to produce a real-valued expec-
tation value with the push of a button that is tantamount to, if not identically, P [ψ(x)].
Writing an energy function in the analytical sector has no simplicity, especially in general
relativity, and is only indirectly connected to the empirical sector. For instance, the algo-
rithmic representation of the process for integrating the equations of motion derived from
the Einstein–Hilbert action will give a much clearer picture of the overall issues than would
be found by simply writing

SEH =
1

2

∫
R
√
− det(gµν) d

4x . (4.267)

Given the approach we have taken in the MCM, we can examine equation (4.267) and identify
a likely 2̂, the Ricci scalar R is like a delta function choosing a specific slice of χ5, but what
is the integral over the square root of the negative determinant of the metric supposed to be
in the diagrammatic component? The minus sign will cancel the minus sign from the O(3,1)
structure of a diagonal metric to ensure a real root, but what is the rest of it?

Indeed, where we have presented M̂3 in the analytical channel as ∂3, that does not fully
encompass the procedure through which an observer computes a prediction for an event,
waits for the event to happen, and then compares the real to event to his prediction. To
fully encompass all of that, M̂3 will need to be written algorithmically in language similar
to what we have presented for the Runge–Kutta fourth order and Runge–Kutta–Fehlberg
algorithms. The analytical sector will present a lot of challenges when we want to extend the
full action formalism of the standard model of particle physics toward the maximum action
path across Φ̂j → Φ̂j+2. Whatever that analytical formalism is, it will have the structure
of two sets of grid points in the numerical sector. In practice, P [ψ(x)] will be computed in
the numerical sector and never in the analytical sector. The precise energy function of the
MCM universe is irrelevant because the MCM modifies the way arbitrary energy functions
are crunched in numerical integrators.

Within the Lorenz attractor, defined by differential equations (4.261-4.263), are three

qubits, all of the general form 2̂(δi π̂− δπ î) where the constants are like êµ and the variables
are like δeµ. Lorenz’ ẋ and ż are exactly of this form and his ẏ is of this form with an additive
term −y which means that y is self-referentially damped by its own magnitude. Even the
Riemann tensor can be written as Rijkl = K(γikγjl−γilγjk). Indeed, the partially integrated

total differential d̂f was of this same form and the connection between d and d̂ would be an
eccentric feat in the analytical sector.

In the MCM grid, which is a lattice, we have defined Φ̂ pointing from the planar grid
topology to some apex point where there is another Φ̂ pointing from the apex point into
some topologically distinct set of grid points. Whereas a grid of position space and a grid
of momentum space are orthogonal, the two grids that we can derive by sampling the two
disks in the Lorenz attractor can be considered double orthogonal. Whatever the operation
for smooth evolution across levels of ℵ in the analytical sector, if we project the two Lorenz
disks, meaning all the ~xj that were plotted in figure 93, onto two planes, and then further
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project the projections onto the x and z axes, we will obtain the two requisite orthogonal
sets of grid points. Indeed, we can assign a spinor to each ~xj that specifies if it belongs to
the left disc or the right disk. Furthermore, we can select one of the transitional ~xj that
appear to belong to neither disk as an apex point of the sort referred to a bounce point in
reference [2]. Indeed, with a judicious choice of initial condition we can set the parameters
{σ, α, β} and take the grid spacing such that there is only one point in the non-disk transition
region. Indeed this limited and tailored run of the simulation should be associated with one
application of M̂3. The trajectory starts in one disk where it spins for a while until it hits
the apex point and ends up in the other disk which we will say is on a higher level of ℵ.
Therefore, since P [ψ(x)] is, according the experimental standards of detractors and others,
an object defined in numerical analysis, it is irrelevant what the analytical representation of
the mechanism is. Therefore, the analytical representation is irrelevant.

IV.8 Two Stringy Universes in the Information Current

One of the best and mathematically most advanced features of the MCM is that it is a
natural framework for 10D string theory when we define 10D geometric boundary conditions
with five dimensions in each of Σ± (5 + 5 = 10.) There are very many ways we can define
the ten boundary conditions needed to solve a 10D system in the MCM. We can use χA+ and
χA− to define five boundary conditions in each, or we could define five boundary conditions

on a string φ(χ5) in only one of Σ± and then define another five conditions for φ̇(χ5) in
either of Σ±. Between the χA± coordinates and the xµ± coordinates, we have nine dimensions
in each of Σ± that we can evolve according to x0 such that the MCM has two 10D strings
as the fundamental unit whereas contemporary string theory uses only one 10D string as
the fundamental unit. There are very many possible arrangements. The MCM condition
sets φ(0) = 0 and that never changes because we compute everything else relative to that
feature. It is the defining property of the MCM that φ(0) = 0 can never change so we also

find φ̇(0)=0, φ̈(0)=0,
...
φ (0)=0, etc. When two strings terminate on two sides of H, a likely

D-brane, and they both share the φ(0) = 0 condition, then they can be smoothly joined
across the brane. They need not match on ∅, if placed at χ5

± =±∞, because the infinite
curvature dominates.

The Riemann hypothesis is a very important in string theory because the Riemann ζ
function is a common object in its analytical representation. Where we have examined the
Riemann ζ function in reference [8], we have strongly argued that the Riemann sphere must
have two null points instead of just one. The first frame of figure 94 has one null point because
it shows a polar great circle of the Riemann sphere θ∈(−π, π). Therefore, we should consider
that the circle is composed of two strings that are topologically disconnected at the south
polar point but unified there with a shared boundary condition. In fact, the main result
of reference [8] was that a circle with one null point is not a sufficient topology on which
to host hypercomplexity. There must be at least two null points. Therefore, when we have
proposed to generate π̂+Φ̂ by adding Φ̂ at the null point, here we should have two Φ̂s. Since
the two Φ̂ are concomitant pointing through each other, we can say that we have generated
π̂+ Φ̂2. Two Φ̂s stuck together at an apex point are like “Rubik’s Scissors” that can support
a modularized fractal topology constructed from base units of π̂ and Φ̂. π̂ is an inherent
curved piece and Φ̂ is an inherent straight piece which can be defined as the R→∞ limit
of a semicircular piece of radius R. Indeed, this fairly well aligns with “levels of ℵ” and the
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Figure 94: We can use inversion operations to change the direction of increasing parameter along a given
element and we can attach qubits to missing endpoints such that they will be shuffled around
among different elements in a self-similar scheme of covering spaces.

non-linear operation Φ̂2 · π̂ at the heart of MCM general relativity. Furthermore, the duality
between one 10D string defined with χA±, two 10D strings {x0, xµ+, χ

5
+}, and {x0, xµ−, χ

5
−} is

a likely host for bispinor structure. The only dimensionful parameter in string theory is the
length of the string and we propose to construct a representation where the two strings in
the MCM concept of string theory are the two co-π̂s which have appeared throughout this
book, each of length π, or perhaps a π̂ and a Φ̂, or even two co-Φ̂s.

We will induce an information current in the model when we consider the inclusion or
non-inclusion of the endpoints of the strings such that qubits can be shuffled into or out
of the circle formed by the two co-π̂s and two co-Φ̂s through a dynamical series of nested
covering space representations. By including the endpoints or not including them, we will
alternate bounded and unbounded topologies in the manner of M̃ and M , or Ω and ℵ. The
two MCM manifolds {ℵ,Ω} have boundedness or unboundedness built into the spatial slices

of their de Sitter definitions and we can take M̃ ≡H with M ≡ ∅. These are manifolds
that do or do not include a point at conformal infinity, and p∈Σ∅ is such a point. Figure
94 shows the endpoint structure when the co-π̂s are further divided about their own origins
and this is representative of the MCM fractal geometry; either co-π̂ can form a circle with
half the circumference of the two co-π̂s together, and then the topology argument regarding
a second null point implies that a single co-π̂ should have two Φ̂s as it did in the larger
circle. When we consider four elements, as in figure 94, we have considered two layers of
complexity: decomposition of a circle into co-π̂s and then a second nested layer of complexity.
This decomposition is under the general sense that two layers of complexity demonstrate an
attachment to one higher level of ℵ and one lower.

We want to show how to pass two wavefunctions through the machinery that we have
presented in this book as pertains to a single wavefunction. Therefore, we will consider the
forward passthrough of one wavefunction through a series of matrix operations, and then we
will scan for the existence of a parallel reverse passthrough channel. This operation will be
accomplished with notation related to the tensor indices α, β∈{1, 2, 3, 4} or α̇, β̇∈{2, 3, 4, 5}.
In section IV.6, we showed the propagation of the wavefunction across each step of H7→Ω 7→
ℵ 7→H and here we consider the matrix representation of the metric at each step of M̂3. For
the step H1 7→Ω we wrote equation (4.184) which was

ψ+(χ5
+) =

{
Φ̂
∣∣ψ(t); π̂

〉
. (4.268)
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Here we will develop the multiplectic component of the scheme that followed equation (4.184),
which should be representable with matrices even when tensors are more familiar to some.
The MCM quanta of the quantum gravity theory are inherently dynamical in the geometry
so we also want to propagate the metric across the unit cell with the wavefunction. We need
to embed the 4D metric in the upper left corner of a 5D matrix as


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 7→


-1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0
0 0 0 0 χ5

+

 . (4.269)

On the left, the O(3,1) topology exists with the complex O(1) in the upper left corner but, in
the 5D matrix, we can encode O(3,1) using either corner. χ5

+ is positive so for the specific 5D
matrix in map (4.269) the Lorentz qubit can only exist in the upper left corner.1 Also note
the dependence on χ5

+; it varies across Σ+ because Σ+
55 is not a constant like g00 and, when

we move the complex O(1) part to χ5
−, the variation within Σ− is a conformal deformation

of the dimensional transposing parameter between the timelike and spacelike regions. The
next step of M̂3 Ω 7→ℵ is where the level of ℵ increases and we will say that the 4D metric
moves to the other corner. This looks like

-1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0
0 0 0 0 χ5

+

 7→


−1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 χ5
−

 . (4.270)

Here we can use the idea that χ5
− is a negative number to preserve the O(3,1) topology

through this inversion operation. Now, the Lorentz qubit exists in the lower right hand
corner and we must associate this inversion with the two-step rotation that rotates a vector,
swaps its anchor point with its tip, and then does another rotation. The last step ℵ 7→H2

looks like


−1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 −χ5
−

 7→


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 . (4.271)

1In the convention where Σ±55 =−χ5
± this will be reversed, obviously.
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To achieve this step, we have seemingly normalized χ5
− to unity but upon closer inspection,

as in figure 1, one sees that one is the length of χ5
− that spans Σ−. The propagation across

the unit cell involves χ5
+ going to Φ, then we swap Φ̂’s anchor point and rotate it again to

accumulate Φ in ∅ (along a symplectic direction inherent to the symplectic form at the tip

of the first Φ̂) to give a second higher level of ℵ when we anchor Φ̂ at the point χ5
+ = Φ.

We measure χ5
− from zero on the higher level of ℵ toward its limit χ5

− = 1 at H. All of
the tensor notation will have to be rewritten to get the timelike part of the O(3,1) topology
back into the zero tensor index, or else everything else will have to be modified, but we have
demonstrated the broad strokes. Furthermore, it is obvious that these matrices can hold Ū
which starts in the lower right corner and then moves in the opposite direction across the
matrices with respect to the direction demonstrated here for a universe U .

If we compute the above matrix operations then how can we use the Ū channel? We
can say that the output of Ū that exists at the beginning of the forward operation is the
a source of information, and that the initial Ū at the end of the forward operation is a
sink. When the source is like Φ and the sink it is like ϕ, we have a derived what should
be a working thermodynamics. Where does the extra information go when the source and
sink are imbalanced? It must go into the entropy. We are presently considering non-entropic
systems but this is highly evocative of what we have referred to as Penrose’s entropy dilemma
in reference [2].

Regarding two universes, we will say a little more about the change of topology between
O(1,4) and O(2,3) that arises from

χ5 ≡ χ5
+ ⊗ χ5

∅ ⊗ χ5
− , with χ5 ∈ [ϕ,Φ] . (4.272)

Σ±55 ≡ χ5
± so the change of sign of χ5 at Σ∅ implies a change in the total number of time-

like and spacelike dimensions in Σ+ and Σ−. O(4,1) and O(3,2) can both hold an O(3,1)
manifold so there is no problem to pass ordinary spacetime through the unit cell. Consider
the symplectic point: the two basis vectors that span the space of possible exit directions
from the symplectic points can guide timelike trajectories onto timelike trajectories, and
spacelike trajectories onto their own smooth continuations. Likely, null trajectories are con-
formally invariant because they never pass through symplectic points. Indeed, the union of
the rings at infinity for each spatial dimension in the strictly real (relative to some phase
convention) O(3) part of the spacetime topology is like three π̂s, or π3 as in αMCM , or even
the three mixing angles for quarks in the Cabibbo–Kobayashi–Maskawa matrix. It is very
natural, therefore, to assume that the wavefunction of U and Ū together is an anti-symmetric
spinor wavefunction even if the classical limit of a wavefunction for U alone would suggest
a symmetric wavefunction. As one last bit about this change of topology O(4,1) → O(3,2),
consider the case when Σ± are joined on a singularity at χ5

± =± −∞. Somehow, smooth
evolution toward +∞ is replaced with smooth evolution away from −∞. This is exactly the
kind of thing we can accomplish with symplectic points that contain unit vectors pointing
in different directions. If there is one symplectic point on Ω, and one on ℵ, then we can join
them through local symplex instead of the non-local singularity proposed for χ5

±=±∞.
To finish this book, we will propose a new formulation of the mass parameters of the

universe {ΩMatter,ΩDark Matter,ΩDark Energy}. All of the fundamental matter particles that make
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Figure 95: χ5 has an antisymmetric wavefunction because there is a topological obstruction at χ5 = 0 that
invokes a twisted path around infinity.

up the stuff in the universe have antisymmetric wavefunctions so we will associate the classical
massiveness of ΩMatter with some solitonic element, likely a left/right mover in string theory,
associated with the shaded region χ5

+ in figure 95. Therefore, consider some moment of
Σ± such that, when the total moment of χA± is one, the moment of χ5

+, the anti-symmetric
piece easily identified in figure 95, is one tenth. We will examine only the moment of the
χ5

+ antisymmetric piece because it is the generator of antisymmetry. When the matrix
representation presented in this section is such that U evolves forward in time while Ū
evolves simultaneously in reverse time, we will have to define spinor valued coefficients for
each matrix position. This will allow simultaneous passthrough channels for U and Ū when
the spinor has one forward passthrough channel | ↑ 〉 ≡ |t+〉 and one reverse passthrough
channel | ↓ 〉 ≡ |t−〉: a source and sink of information. Indeed, the fundamental MCM
principle is that |t?〉 is a superposition of the |t±〉 eigenstates [7]. Let the spinor on Σ+

55 be
such that half of the moment goes to U and half goes to Ū so that the moment associated
with U is half of one tenth. Noting that ΛCDM sets ΩMatter≈0.05, we can model the universe
as

ΩU
Matter = 0.05 , and ΩŪ

Matter = 0.05 , (4.273)

where the anomalous contribution to the total mass-energy is divided among

ΩDark Matter = 0.25 , and ΩDark Energy = 0.65 ≈ |ϕ| . (4.274)

This has a nice ontological feel to it and it sits square in the middle of the parameter space
favored by ΛCDM. These parameters describe the distribution of mass-energy in the universe
through

ΩU
Matter + ΩŪ

Matter + ΩDark Matter + ΩDark Energy = 1 . (4.275)
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Regarding dark matter, we might replace the infamously unsatisfying particulate explanation
with an interaction of U and Ū through a series of cosmological symplectic points such that
the associated moment is that of one channel in

1̂ =
1

4

∣∣π̂〉+
1

4

∣∣Φ̂〉+
1

4

∣∣2̂〉+
1

4

∣∣̂i〉 . (4.276)

We have already proposed that dark energy should be an interaction of U and Ū through
the ends of the unit cell and “dark matter” can be a similar interaction along a different
avenue. Here, dark matter is described as an interaction through the symplectic points and
dark energy is described as an interaction through the apex point, as in reference [2].
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A knife at detractors’ throat.
Why didn’t you read

that which I wrote?
Geometry will be the mathematical tool.
Death to you,

you malicious fool.

V Death to Detractors
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Appendix A

Synopsis of Historical Development

Here we list the abstracts of the papers that most directly document the historical develop-
ment of the modified cosmological and theory of infinite complexity. We comment on some
of them to point out key details with the benefit of hindsight.

A.1 Modified Spacetime Adresses Dark Energy, Penrose’s Entropy

Dilemma, Baryon Asymmetry, Inflation, and Matter Anisotropy

“A model of modified spacetime is discussed. Implications for causality re-
garding modern anomalies and paradoxes are made. Topics include a dark energy
candidate without induced gravitational screening. The dynamics of the repul-
sive force of quantum geometry allow the validity of the second law continuously
through a universe’s death and rebirth. The baryon asymmetry is explained with-
out addressing the Sakharov conditions. Inflation and anisotropies in an FLRW
universe are also attributed to quantum bounce phenomena. No attempt at quan-
tification is made.”

Presented without comment.

A.2 Dark Energy in M-Theory

“Dark Energy is yet to be predicted by any model that stands out in its sim-
plicity as an obvious choice for unified investigative effort. It is widely accepted
that a new paradigm is needed to unify the standard cosmological model (SCM)
and the minimal standard model [of fundamental particles ] (MSM). The purpose
of this article is to construct a modified cosmological model (MCM) that predicts
dark energy and contains this unity. Following the program of Penrose, geome-
try rather than differential equations will be the mathematical tool. Analytical
methods from loop quantum cosmology (LQC) are examined in the context of the
Poincare conjecture. The longstanding problem of an external time with which to
evolve quantum gravity is resolved. The [dark energy ] and WMAP data are re-
examined in this framework. No exotic particles or changes to General Relativity
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are introduced. The MCM predicts dark energy even in its Newtonian limit while
preserving all observational results. In its General Relativistic limit, the MCM
describes dark energy as an inverse radial spaghettification process. Observable
predictions for the MCM are offered. AdS/CFT correspondence is discussed. The
MCM is the 10 dimensional union of de Sitter and anti-de Sitter space and has M-
theoretical application to the five string theories which lack a unifying conceptual
component. This component unifies gravitation and electromagnetism.”

Note the specific goal of this research program: to use geometry rather differential equa-
tions. Part of the purpose of the present book is to show that the geometric picture illustrated
by sufficiently logical diagrams is equivalent to, or better than, the clunky differential equa-
tion formulation of certain big-picture issues in physics. This paper introduces many of the
most fundamental pieces of the MCM such as the golden ratio Φ and non-flat spacetime.

The procrastination between 2009’s reference [2] and this paper [7] ended in response to
the superluminal neutrino non-event. Even after two years, this writer had not heard back
regarding his manuscript [2] and sought to prepare another one for possible entrance into
the superluminal neutrino fray. It is this writer’s opinion that the arc of the story of his life
was greatly influenced by his simultaneous decision in 2011 to attend an Occupy ProtestTM.

A.3 Tempus Edax Rerum

“A non-unitary quantum theory describing the evolution of quantum state ten-
sors is presented. Einstein’s equations and the fine structure constant are derived.
The problem of precession in classical mechanics gives an example.”

This paper contains a derivation of Einstein’s equation from the framework in which we
have derived αMCM . On the day that detractors finally relent from their persistent detrac-
tions, they will be hard pressed to say how they might have ever been so miserly as to detract
from the irrefutable mathematical results in this paper. To detract from the interpretation
or application of the result is to miss the main point of this paper: Einstein’s equation is
encoded into the MCM geometry. There is no margin for detractions regarding the MCM’s
early dark energy result, and that result was circumstantially confirmed with the derivation
of αMCM . When we have also demonstrated Einstein’s equation as further confirmation of all
previous results, and yet detractors detract, there exists a serious problem in academia. The
result in this paper is magnificent in the most spectacular way unlike 100% of the unveri-
fied theories that are praised 100 times a week at conferences around the world. Even still,
detractors say, “It is not verified,” as if verification is needed to confirm that 8π3/π2 = 8π,
or that (Φπ)3 + 2π ≈ 137, or that a downhill energy condition on the time axis will cause
an effect exactly like dark energy. It makes no sense. Furthermore, this paper derives a
characteristic length scale for the new effects which offers experimentalists a direct window
into the principles. Despite this, it appears there has been no work done toward forging an
experimental inquiry regarding this length scale as it might relate to the anti-gravity effects
of classical mechanical precession. As of the time of this writing in late 2017, more than
five years have passed without this valuable result being publicly recognized. There is a
conspiracy afoot.
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A.4 Geometric Cosmology

“The modified cosmological model (MCM) is explored in the context of general
relativity. A flaw in the ADM positive-definiteness theorem is identified. We
present an exposition of the relationship between Einstein’s equations and the
precessing classical oscillator. Kaluza theory is applied to the MCM and we find
a logical motivation for the cylinder condition which leads to a simple mechanism
for AdS/CFT.”

Here, we are content to explore the most general instance of bulk-boundary correspon-
dence and then assume it is a reformulation of the well-known AdS/CFT correspondence.
Finding the fine structure constant or the coefficient of Einstein’s equation in an invented
framework might not have been a sign, but finding both of them in the same framework
made it a sure thing that this was a correct physical formulation. A further confirmation
appeared in this paper when the previously unexplained cylinder condition in Kaluza-Klein
theories naturally describes a periodic boundary condition on a succession of fractally nested
worldsheets.

A.5 Quantum Structure

“The logical structure of the standard model is isomorphic to the geometric
structure of the modified cosmological model (MCM). We introduce a new particle
representation scheme and show that it is invariant under CPT. In this represen-
tation spin arises as an ordinary physical process. The final character of the Higgs
boson is predicted. Wavefunction collapse, the symmetry (anti-symmetry) of the
wavefunction and some recent experimental results are discussed.”

Another huge confirmation of the appropriateness of the framework appeared in this pa-
per when the structure of the standard model of particle physics was shown to be the exact
structure of the MCM. This is where the theory graduated from even the most obtuse,
codgerly accusations of not-even-wrongness by deriving an experimental prediction akin to
Higgs’ prediction for a scalar boson – less that six months after discovering the connection to
Einstein’s equation. Particularly amazing was the accounting for the eight flavors of gluon.

A.6 Ontological Physics

“Ambiguity in physics makes many useful calculations impossible. Here we
reexamine physics’ foundation in mathematics and discover a new mode of calcu-
lation. The double slit experiment is correctly described by the new mode. We
show that spacetime emerges from a set of hidden boundary terms. We propose
solutions to problems including the limited spectrum of CMB fluctuations and the
anomalous flux of ultra-high energy cosmic rays. A fascinating connection be-
tween biology and the new structure should have far reaching implications for the
understanding and meaning of life.”
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Figure A.1: The effect shown in this figure, if it is real, certainly should be added to the modern physics lab
in the undergraduate curriculum.

Here, we developed the argument that has motivated our subsequent reliance on hyper-
real numbers. In this book, we aim to continue the formalization of definitions required for
the development of “ontological” systems of differential equations of hypercomplex-valued
quantities and what they mean for the implied divergences when integrating over singular-
ities. A singularity is a common object even in classical electromagnetism. An example
is the potential at the vertex of a pointed, charged object. A real object will not have a
mathematically perfect vertex, but when we solve the field equations for the mathematical
boundary condition that does have a mathematical vertex, we observe a singularity in a
field of real numbers. This paper included figure A.1 which purports to show that unusual
behaviors should be assigned to sharp points where cusps lead to singularities.

Among the main results of this paper we to demonstrate that the new interpretation for
“levels of ℵ” leads to a direct resolution of the classical interpretive paradox in the double
slit experiment. This is an important thing that M̂3 does even beyond the myriad previous
utilities of M̂3. We have not followed up on this direction very much because we have been
taking a fine tooth comb through classical field theory before attempting to wade into quan-
tum field theory, but significant attention is given in this book. Furthermore, the concept
of levels of ℵ has driven all subsequent work on the theory of infinite complexity. The new
interpretation for the double slit experiment that appeared in this paper is notable because
it refers a bifurcation of the particle’s worldline in the same way that bifurcating number
lines were later treated in reference [5]. This method is expected to have an application to
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one of the main paradoxes in classical field theory: the breaking and reconnection of field
lines.

In this paper from 2013, we point out that M̂3 moves Dirac vectors fromH1 toH2, though
we work with the simpler, non-multiplectic scalar wavefunction in this book. Further, where
we have titled the first section of this book An Abstract Psychological Dimension, the pri-
mary philosophical predicate of the methodology demonstrated in this paper was that “chiros
tracks the observer’s attention.” We emphasized that the original idea for using Feynman
diagrams in our first paper to use the word “modified” [2] was absolutely correct, and the
maximum action path derived here in chapter one is certainly the requisite modified version
of the action principle identified in 2013. Furthermore, this paper is where we first empha-
sized that “Dirac orthonormal” functions are a subset of “not orthonormal” functions for
analytical purposes. We later went on to develop this showing that Bell’s inequality, under
a certain very reasonable assumption, actually gives the limiting case when local hidden
variables are always allowed [49]. It was in this paper that we first discussed the DNA-like
structure in the MCM and this will be a priority subject during the advanced computer-
ized phase of this research program. Another highlight of this paper was to suggest a novel
boundary condition for astrophysical searches for evidence of cosmic strings.

A.7 Kerr-Newman, Jung, and the Modified Cosmological Model

“Where physical theory normally seeks to describe an objective natural world,
the modified cosmological model (MCM) seeks to describe an observer’s interaction
with that world. Qualitative similarities between the psychological observer, the
MCM, and the Kerr-Newman black hole are presented. We describe some minimal
modifications to previously proposed processes in the MCM. Inflation, large-scale
CMB fluctuations and the free energy device are discussed.”

This paper was mostly a discussion of esoteric, or metaphysical, properties relating the
observer and the environment, and the pesky measurement dependence of the quantum
mechanical wavefunction. In this paper, we showed that M̂3 can be taken such that it in-
crements the level of ℵ by one or two in each application.

A.8 Infinitely Complex Topology Changes with Quaternions and

Torsion

“We develop some ideas that can be used to show relationships between quan-
tum state tensors and gravitational metric tensors. After firmly grasping the math
by α and Einstein’s equation, this is another attempt to shake it and see what goes
and what stays. We introduce slightly more rigorous definitions for some familiar
objects and find an unexpected connection between the chirological phase Φn and
the quaternions q∈H. Torsion, the only field in string theory not already present
in the theory of infinite complexity, is integrated. We propose a solution to the
Ehrenfest paradox and a way to prove the twin primes conjecture. The theory’s
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apparent connections to negative frequency resonant radiation and time reversal
symmetry violation are briefly treated.”

The main results of this paper were to explain that topology change should be modeled
as a boundary condition on Hilbert space, and that there exists a likely exponential map
between the ontological basis {̂i, Φ̂, 2̂, π̂} and the quaternions H, or some modified quater-
nion {i,Φ,2, π} called H′. The dimensionless constant of the MCM 1/4π, which is also the
dimensionless coupling constant of electromagnetism, was first reported in this paper.

A.9 Quantum Gravity

“This paper uses a small set of mathematical principles to describe a very wide
swath of physics. These principles define a new theory of quantum gravity called
the theory of infinite complexity. The main result is that Einstein’s equation for
general relativity can be derived from unrelated, mathematically novel quantum
phenomena. That the theory takes no free parameters should be considered strong
evidence in favor of a real connection between physics and mathematics.”

This paper condensed previous work to derive a logically minimal mathematical represen-
tation that has been the basis of subsequent work, and is the origin of the notation convention
used in the present paper.

A.10 On the Reimann Zeta Function

“We discuss the Riemann zeta function, the topology of its domain, and make
an argument against the Riemann hypothesis. While making the argument in
the classical formalism, we discuss the material as it relates to the theory of infi-
nite complexity (TOIC). We extend Riemann’s own (planar) analytic continuation
R→ C into (bulk) hypercomplexity with C→ ?C. We propose a solution to the
Banach–Tarski paradox.”

The main result of this paper was an argument against the Riemann hypothesis. In the
course of making that argument, we showed that the topology of the Riemann sphere is not
sufficient for the purposes of hypercomplexity and we proposed to add a second null point to
S2. When we have proposed in this book to attach Φ to the null point, a second null point
indicates a second Φ̂ of the sort required to derive the MCM’s critical value iπΦ2.

A.11 The Truth about Evolution

“The purpose of this report is to debunk Darwin’s theory of evolution and any
variant theory that relies on the natural rate of mutation to explain the origin of
new genes. We construct a model of DNA and show that the minimum rate of
mutation needed to produce humans within the geological age of the Earth is too
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high. It is much higher than any realistic model of random mutations. The cal-
culation presented here should end the evolution debate, at least in its Darwinian
limit. Other problems with evolution are discussed.”

This paper shows that the mainstream scientific observer is most likely fundamentally
wrong about his or her place in the universe and should be open to alternative interpretations
in general, and particularly so regarding systems of extreme complexity.
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