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1 Introduction

I prepared this technical report as part of my preparation for Computer Vision
PhD qualifying exam. Here we discuss two properties of surfaces known as
”First” and ”Second” fundamental forms and their applications in computer
vision.

2 Background

A parametric surface is defined as X(u, v) = [x(u, v), y(u, v), z(u, v)] where u
and v are the parameters. as an example a cone as shown below can be either
described as a parametrized surface being

X(u, v) = a.u.sin(v)i+ a.u.cos(v)j+ uk (1)

or in explicit representation as a surface z(x,y) being described as a function
of x and y

z(x, y) =
√

x2 + y2 (2)
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Figure 1: a cone drawn as a 3D surface z=f(x,y)
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Having visualized a 3D surface, we recall that Xu(u1, v1) and Xv(u1, v1)
are tangent vectors to a point lying on the surface described by parameters
u and v. Xu(u1, v1) and Xv(u1, v1) being linearly independent, fully describe
the tangent plane at the given point. The normal to the tangent plane can
be simply found by ||Xu × Xv||. Keep in mind this vector needs to be nor-
malized to be considered as unit normal vector to the tangent plane at point
[x(u1, v1), y(u1, v1), z(u1, v1)].

3 First Fundamental Form

First Fundamental Form of a surface is a property of the surface and is defined
by

v.v =< v,v > where v = Xu.du+Xv.dv (3)

v can be thought of the velocity of particle moving on the surface, simply be-
cause the components of v indicate its speed along u and v which are linearly
independent.
Question: what is the relation of the speed as given above and directional deriva-
tive?
It can been inferred form (3) that square root of First Fundamental Form
√

X2
u +X2

v is the length element, therefore integrating it along a space curve
described as C(u, v) = [x(u, v), y(u, v), z(u, v)] gives us the arc length.
Question: How does it correspond to Geodesic Curves? defined as minimum
length space curve, lying on a surface and connecting two given points

It is common to represent (3) in terms of a matrix multiplied with the
infinitesimal change vectors as below:

< v,v >= [du, dv]T
[

< Xu, Xu > < Xu, Xv >
< Xu, Xv > < Xv, Xv >

]

[du, dv] (4)

we can further expand (4) and write it as a quadratic form

< Xu, Xu > du2 + 2 < Xu, Xv > dudv+ < Xv, Xv > dv2

Edu2 + 2Fdudv+Gdv2 (5)

This is also a bilinear form, we leave it to the reader to prove. A peculiar
application of First Fundamental Form which can be seen as the quadratic form
in (5) is its application is computing surface area or arc length.
As discussed above arc length is the square root of First Fundamental Form :

ds2 = Edu2 + 2Fdudv+Gdv2 (6)

The length element is useful to measure length of a space curve. Such curve lies
on the surface which is mapping from uv space. Therefore, if we think of a curve
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in uv space described parametrically as C(t) = [u(t), v(t)] then such curve is
mapped to a space curve as C(u(t), v(t)) = [x(u(t), v(t)), y(u(t), v(t)), z(u(t), v(t))].
Hence, we can benefit from (6) as follows:

ds2 = Edu2 + 2Fdudv+Gdv2

ds =
√

E(du/dt)2 + 2F (du/dt)(dv/dt) +G(dv/dt)2 dt

ds =
√

Eu2t + 2Futvt +Gv2t dt

(7)

To utilize First Fundamental Form in finding surface area note that area of a
planar parallelogram with sides being 3D vectors a and b is a.b.sin(θ) where θ is
the planar angle between the two vectors. we can derive that ||a×b|| = a.b.sin(θ)
and from that we know that for a 3D surface the area element is dA = ||a× b||
if we assume a mapping X(u, v) (shown in the image with r) takes that uv plane
to the 3D-space surface, then a = Xudu and b = Xvdv, (see the image below)

Figure 2: visualization of surface element from uv space

therefore

dA = ||Xudu×Xvdv|| = ||Xu ×Xv||du.dv (8)

from simple algebra we know that

||Xu ×Xv||
2+ < Xu, Xv >2= ||Xu||

2.||Xv||
2

||Xu||
2 =< Xu, Xu >= E and ||Xv||

2 =< Xv, Xv >= G
(9)

Therefore, using First Fundamental Form we can derive the surface element
as to be:

dA2 = EG− F 2 (10)

4 Second Fundamental Form

We discussed that First Fundamental From is a quadratic form on the tangent
space of a surface and is helpful in calculating surface area or arc length, now
let’s turn our attention to second Fundamental Form which is handy in finding
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the curvature of a surface.
Given a point on a surface X(u,v), suppose we want to pull or push the surface
along the normal vector. The deformed surface can be represented as r(u, v, t) =
X(u, v)−t.n(u, v). This is the equation of a family of surfaces, while the Second
Fundamental From talks about one member of this family which is at t=0 and
coincides with the given surface X(u,v). Basically Second Fundamental Form is
about how First Fundamental Form changes as t changes as shown below.
Let’s write the First Fundamental Form for the new surface r(u, v, t). We have
ru = Xu − t.nu and rv = Xv − t.nv. the interesting observation here is that ru
and nu both lie on the tangent plane (think about it geometrically).

E(t) =< ru, ru >=< Xu − t.nu, Xu − t.nu >= Xu.Xu − 2t.nu.Xu + t2.nu.nu

F (t) =< ru, rv >=< Xu − t.nu, Xv − t.nv >= Xu.Xv − t.nu.Xv − t.nv.Xu + t2.nu.nv

G(t) =< ru, ru >=< Xv − t.nv, Xv − t.nv >= Xv.Xv − 2t.nv.Xv + t2.nv.nv

(11)
The Second Fundamental Form can be derived by differentiating First Fun-

damental Form with respect to t.

∂E

∂t
du2 + 2

∂F

∂t
dudv +

∂G

∂t
dv2|t = 0 (12)

Let’s do each part separately first, then put all together:

∂E(t)

∂t
=

∂

∂t
Xu.Xu − 2t.nu.Xu + t2.nu.nu |t = 0 = −2nu.Xu

∂H(t)

∂t
|t = 0 = −nu.Xv − nv.Xu

∂G(t)

∂t
=

∂

∂t
Xv.Xv − 2t.nv.Xv + t2.nv.nv |t = 0 = −2nv.Xv

(13)

We know that n is perpendicular to Xu and Xv therefore

n.Xu = 0 → (n.Xu)u = 0 → nu.Xu+n.Xuu = 0 → −nu.Xu = n.Xuu =< n,Xuu >
(14)

We can apply this for the other two equations. Eventually the Second Funda-
mental Form can be formulated as:

< n,Xuu > du2 + 2 < n,Xuv > dudv+ < n,Xvv > dv2

or in matrix representation

[du, dv]T
[

< n,Xuu > < n,Xuv >
< n,Xuv > < n,Xvv >

]

[du, dv]

(15)

Now the question is how to practically use this form? The answer is in the
next section
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5 Gaussian Curvature and Mean Curvature

5.1 Gaussian Curvature

The Gaussian curvature is the limit of surface area of A being transfered to
Gauss unit sphere divided by the original surface area A on the surface. (see
B.K.P Horn’s book - chapter 16)
Using the above derivation we can verify that Gaussian curvature K is the de-
terminant of Second Fundamental Form matrix divided by determinant of First
Fundamental Form matrix. This is direct relation of matrix equation in (16)
as an easy example a plane has Xuu, Xvv, Xuv equal to zero, hence Second Fun-
damental Form for a plane is zero and hence the Gaussian curvature is also zero.
Note1

It can be simply derived that a surface of form (x, y, z(x, y)) has Gaussian cur-

vature K =
zxx.zyy−z2

xy

(1+z2
x
+z2

y
)2

Note2

Two surfaces that have same First Fundamental Form have same Gaussian
curvature. keep in mind they might have different parametrization for First
Fundamental Form.

5.2 Mean Curvature

We note that nu and nv are two vectors lying on the tangent space, hence can
be written as linear combination of Xu and Xv. for example one can write
nu = a11Xu + a12Xv and nv = a21Xu + a22Xv. Therefore, we can summarize
solving for aij in a matrix formulation as:

[

− < nu, Xu > − < nu, Xv >
− < nv, Xu > − < nv, Xv >

]

=

[

a11 a12
a21 a22

] [

< Xu, Xu > < Xu, Xv >
< Xv, Xu > < Xv, Xv >

]

(16)
which is a relation between First and Second Fundamental Forms. Having solved
for A = [aij ] k1 and k2, the two Principle Curvatures are minus of eigenvalues
of the matrix A. also
H = MeanCurvature = 1

2 trace(A) =
1
2 (k1 + k2) and

K = GaussianCurvature = det(A) = k1.k2.

Now let’s derive Mean Curvature for a surface given by (x, y, z(x, y)). we
use the fact that − < nu, Xu >=< n,Xuu > and the other two counterparts
and derive:

n = (1, 0, zx)× 0, 1, zy → normalize → n =
1

√

1 + z2x + z2y

[zx, zy, 1]
T (17)
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1
√

1 + z2x + z2y

[

< [zx, zy, 1]
T , [0, 0, zxx] > < [zx, zy, 1]

T , [0, 0, zxy] >
< [zx, zy, 1]

T , [0, 0, zxy] > < [zx, zy, 1]
T , [0, 0, zyy] >

]

=

[

a11 a12
a21 a22

] [

< [1, 0, zx]
T , [1, 0, zx] > < [1, 0, zx]

T , [1, 0, zy] >
< [1, 0, zx]

T , [1, 0, zy] > < [1, 0, zy]
T , [1, 0, zy] >

]

(18)

This scary equation easily simplifies to:

1
√

1 + z2x + z2y

[

zxx zxy
zxy zyy >

]

=

[

a11 a12
a21 a22

] [

z2x + 1 zx.zy
zx.zy z2y + 1

]

(19)

To find the Gaussian and Mean curvature we note that
det(AB) = det(A).det(B) and trace(A.B) = trace(B.A) 6= trace(A)trace(B),
therefore we need to do the following:

1
√

1 + z2x + z2y

[

a11 a12
a21 a22

]

=

[

zxx zxy
zxy zyy

]

.

[

z2x + 1 zx.zy
zx.zy z2y + 1

]

−1

(20)

we find out that

K =
zxx.zyy − z2xy
(1 + z2x + z2y)

2

and

H =
zxx(1 + z2y)− 2zxyzxzy + zyy(1 + z2x)

(1 + z2x + z2y)
3

2

(21)

We can visualize a surface using its Gaussian curvature, K, and Mean cur-
vature, H, at each point. See the following figure.

Figure 3: deciding the shape a surface at each point given its K and H
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