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ABSTRACT 
IPv6 over Low power Wireless Personal Area Networks 

(6LoWPAN) has accelerated the integration of Wireless Sensor 

Networks (WSNs) and smart objects with the Internet. At the 

same time, the Constrained Application Protocol (CoAP) has 

made it possible to provide resource constrained devices with 

RESTful web service functionalities and consequently to integrate 

WSNs and smart objects with the Web. The use of Web services 

on top of IP based WSNs facilitates the software reusability and 

reduces the complexity of the application development. This work 

focuses on RESTful WSNs. It describes CoAP, highlights the 

main differences with HTTP and reports the results of a simple 

experiment showing the benefits of CoAP in terms of power 

consumption compared to HTTP. The paper also describes the 

design and development of an end-to-end IP based architecture 

integrating a CoAP over 6LowPAN Contiki based WSN with an 

HTTP over IP based application. The application allows a user to 

access WSN data directly from a Web browser. The main system’s 

building blocks and functionalities are described.             

Categories and Subject Descriptors 
C.2.2 [Computer-Communication Networks]: Network 

Protocols – Applications.

General Terms 
Performance, Design, Standardization.  

Keywords 
Web applications, Web of Things, REST, CoAP.  

1. INTRODUCTION 
Recent advances in Wireless Sensor Network (WSN) technology 

and the use of the Internet Protocol (IP) in resource constrained 

devices has radically changed the Internet landscape. Trillions of 

smart objects will be connected to the Internet to form the so 

called Internet of Things (IoT). The IoT will connect physical 

(analogic) environments to the (digital) Internet, unleashing 

exciting possibilities and challenges for a variety of application 

domains, such as smart metering, e-health logistics, building and 

home automation [7].  

The use of IP technology on embedded devices has been recently 

promoted by the work of the IP for Smart Objects (IPSO) 

Alliance1, a cluster of major IT/telecom players and wireless 

silicon vendors. At the same time, the Internet Engineering Task 

Force (IETF) has done substantial standardization activity on 

IPv6 over Low power Wireless Personal Area Networks 
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(6LoWPAN) [8]. This new standard enables the use of IPv6 in 

Low-power and Lossy Networks (LLNs), such as those based on 

the IEEE 802.15.4 standard [10]. In addition to 6LowPAN, IETF 

Routing over Low-power and Lossy networks (ROLL) Working 

Group has designed and specified a new IP routing protocol for 

smart object internetworking. The protocol is called IPv6 Routing 

Protocol for Low-power and Lossy networks (RPL) [9]. 

One of the major benefits of IP based networking in LLNs is to 

enable the use of standard web service architectures without using 

application gateways. As a consequence, smart objects will not 

only be integrated with the internet but also with the Web. This 

integration is defined as the Web of Things (WoT). The advantage 

of the WoT is that smart object applications can be built on top 

Representational State Transfer (REST) architectures. REST 

architectures allow applications to rely on loosely coupled 

services which can be shared and reused. In a REST architecture a 

resource is an abstraction controlled by the server and identified 

by a Universal Resource Identifier (URI). The resources are 

decoupled by the services and therefore resources can be 

arbitrarily represented by means of various formats, such as XML 

or JSON. The resources are accessed and manipulated by an 

application protocol based on client/server request/responses. 

REST is not tied to a particular application protocol. However, 

the vast majority of REST architectures nowadays use Hypertext 

Transfer Protocol (HTTP). HTTP manipulates resources by means 

of its methods GET, POST, PUT, etc [6]. 

REST architectures allow IoT and Machine-to-Machine (M2M) 

applications to be developed on top of web services which can be 

shared and reused. The sensors become abstract resources 

identified by URIs, represented with arbitrary formats and 

manipulated with the same methods as HTTP. As a consequence,  

RESTful WSNs drastically reduce the application development 

complexity.  

The use of web service in LLNs is not straightforward as a 

consequence of the differences between Internet applications and 

IoT or M2M applications. IoT or M2M applications are short-

lived and web services reside in battery operated devices which 

most of the time sleep and wakeup only when there is data traffic 

to be exchanged. In addition, such applications require a multicast 

and asynchronous communication compared to the unicast and 

synchronous approach of standard Internet applications [11].  

The Internet Engineering Task Force (IETF) Constrained 

RESTful environments (CoRE) Working Group has done major 

standardization work for introducing the web service paradigm 

into networks of smart objects. The CoRE group has defined a 

REST based web transfer protocol called Constrained Application 

Protocol (CoAP). CoAP includes the HTTP functionalities which 

have been re-designed taking into account the low processing 

power and energy consumption constraints of small embedded 



devices such as sensors. In order to make the protocol suitable to 

IoT and M2M applications, various new functionalities have been 

added [12].  

With 6LoWPAN technology becoming mature, the WoT has 

started playing major role among the research community. 

Various research papers proposing REST/HTTP architectures for 

WSNs have recently appeared. The work in [1] proposes a 

RESTful architecture which allows instruments and other 

producers of physical information to directly publish their data. In 

[2], the authors propose a REST/HTTP framework for Home 

Automation. The work in [3] proposes a toolkit which allows the 

user to create web services provided by a specific device and to 

automatically expose them via a REST API. The authors in [4] 

show how different applications can be built on top of RESTful 

WSNs. The work in [5] illustrates the real world implementation 

of a RESTful WSN. The network is deployed across various 

university buildings and it is thought for the development of 

applications and services for professors and students.         

The aforementioned research work focuses on RESTful WSNs but 

do not use CoAP as application protocol. The activity of the 

CoRE group has only recently started and therefore CoAP has not 

yet been considered.  

In this work we present a RESTful WSN based on CoAP. It has 

twofold objective. Firstly, it describes the major differences 

between CoAP and HTTP and compares the two protocols in 

terms of power consumption and overhead. In order to 

demonstrate the benefits of CoAP, we ran two simple experiments 

with the Contiki Operating System: the first one using CoAP over 

6LoWPAN and the second one using HTTP over 6LoWPAN. The 

results show that the power consumption is drastically lower when 

using CoAP compared to HTTP.  

Secondly, the paper describes the design and development of an 

end-to-end IP based architecture integrating a CoAP over 

6LowPAN Contiki based WSN with an HTTP over IP based 

application. The application allows a user to access WSN data 

directly from a Web browser. The system has been designed for 

Greenhouse monitoring. However, it is work in progress and it 

has not yet been deployed. Therefore, the aim of the paper is to 

show how the use of CoAP and 6LoWPAN simplifies the 

integration of WSNs with Web applications. The paper provides 

an overview of the basic application building blocks focusing on 

the gateway which connects HTTP clients to the WSN.

The rest of the paper is organized as follows. Section 2 describes 

the major functionalities of CoAP highlighting the differences 

with HTTP. It also gives a brief overview of the existing open 

source implementation of CoAP. Section 3 reports the results of 

an experiment illustrating the benefit of CoAP in terms of power 

consumption compared to HTTP. Section 4 describes the design 

and development of an end-to-end IP based architecture 

integrating a CoAP over 6LowPAN Contiki based WSN with an 

HTTP over IP based application. Section 5 concludes the paper.  

2. Constrained Application Protocol 
In March 2010, the IETF CoRE Working Group has started the 

standardization activity on CoAP. CoAP is a web transfer 

protocol optimized for resource constrained networks typical of 

IoT and M2M applications. CoAP is based on a REST 

architecture in which resources are server-controlled abstractions 

made available by an application process and identified by 

Universal Resource Identifiers (URIs). The resources can be 

manipulated by means of the same methods as the ones used by 

HTTP: GET, PUT, POST and DELETE.  

CoAP is not a blind compression of HTTP. It consists of a subset 

of HTTP functionalities which have been re-designed taking into 

account the low processing power and energy consumption 

constraints of small embedded devices such as sensors. In 

addition, various mechanisms and have been modified and some 

new functionalities have been added in order to make the protocol 

suitable to IoT and M2M applications. The HTTP and CoAP 

protocol stacks are illustrated in Figure 1.     

Figure 1. HTTP and CoAP protocol stacks 

The first significant difference between HTTP and CoAP is the 

transport layer. HTTP relies on the Transmission Control Protocol 

(TCP). TCP’s flow control mechanism is not appropriate for 

LLNs and its overhead is considered too high for short-lived 

transactions. In addition, TCP does not have multicast support 

and is rather sensitive to mobility. CoAP is built on top of the 

User Datagram Protocol (UDP) and therefore has significantly 

lower overhead and multicast support. 

CoAP is organized in two layers. The Transaction layer handles 

the single message exchange between end points. The messages 

exchanged on this layer can be of four types: Confirmable (it 

requires an acknowledgment), Non-confirmable (it does not need 

to be acknowledged), Acknowledgment (it acknowledges a 

Confirmable message) and Reset (it indicates that a Confirmable 

message has been receive but context is missing to be processed). 

The Request/Response layer is responsible for the transmission of 

requests and responses for the resource manipulation and 

transmission. This is the layer where the REST based 

communication occurs. A REST request is piggybacked on a 

Confirmable or Non-confirmable message, while a REST 

response is piggybacked on the related Acknowledgment message.    

The dual layer approach allows CoAP to provide reliability 

mechanisms even without the use of TCP as transport protocol. In 

fact, a Confirmable message is retransmitted using a default 

timeout and exponential back-off between retransmissions, until 

the recipient sends the Acknowledgement message. In addition, it 

enables asynchronous communication which is a key requirement 

for IoT and M2M applications. When a CoAP server receives a 

request which is not able to handle immediately, it first 

acknowledges the reception of the message and sends back the 

response in an off-line fashion. Tokens are used for 

request/response matching in asynchronous communication. 

The transaction layer also provides support for multicast and 

congestion control [14]. 

One of the major design goals of CoAP has been to keep the 

message overhead as small as possible and limit the use of 

fragmentation. HTTP has a significantly large overhead. This 

implies packet fragmentation and consequent performance 

degradation of LLNs. CoAP uses a short fixed-length compact 



binary header of 4 bytes followed by compact binary options. A 

typical request has a total header of about 10-20 bytes. Next 

Section shows the significant advantage of the compact overhead 

of CoAP in terms of battery lifetime with respect to HTTP. 

Since a resource on a CoAP server likely changes over time, the 

protocol allows a client to constantly observe the resources. This 

is done by means of observations: the client (the observer) 

registers itself to the resource (the subject) by means of a modified 

GET request sent to the server. The server establishes an 

observation relationship between the client and the resource. 

Whenever the state of the resource changes, the server notifies 

each client having an observation relationship with the resource. 

The duration of the observation relationship is negotiated during 

the registration procedure [13]. 

Although CoAP is work in progress, various open source 

implementations are already available. The two most known 

operating systems for WSNs, Contiki and Tiny OS, have already 

released a CoAP implementation. In addition, there are two open 

source implementations not specifically designed for WSNs: an 

implementation in C language called libcoap2 and one in Python 

language called CoAPy3.      

3. CoAP  power consumption evaluation 
The use of UDP as transport protocol and the reduction of the 

packet header size significantly improve the power consumption 

and battery lifetime in WSNs. In order to evaluate the 

performance improvement of CoAP compared to HTTP, we 

executed a simple experiment. We generated a series of web 

service requests first between a CoAP client/server system and 

then between an HTTP client/server system.  

The CoAP server is implemented by means of a Tmote Sky sensor 

mote running Contiki with 6LoWPAN/RPL on the network layer 

and CoAP on the application layer. The CoAP implementation of 

Contiki already includes many features of the protocol, such as 

message syntax and semantics, methods, response codes, option 

fields, URIs and resource discovery. However, being work in 

progress there are still important functionalities missing such as 

asynchronous transactions, observations and congestion control. 

The CoAP client is implemented by running libcoap on a Linux 

Ubuntu machine with a USB Contiki-gateway which interfaces 

with the WSN. This is one of the basic building blocks of the 

gateway described in Section 4.  

The HTTP server is obtained with the same Tmote Sky platform 

as in the CoAP server and Contiki loaded with the HTTP server 

instead of the CoAP server. The HTTP client is obtained by 

replacing libcoap with cURL4, a command line program including 

HTTP functionalities. In both experiments the client polls the 

server every 10 seconds for 20 minutes by requesting temperature 

and humidity. When using CoAP the request has the following 

format: GET coap://[<mote_ip_address>]:<port_number>/ 

readings, where mote_ip_address is the mote’s IPv6 address, 

port_number is the mote’s port number and readings is the 

resource the client is requesting for (in this case temperature and 

humidity). When using HTTP the request has the following 

format: GET 
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3 http://coapy.sourceforge.net/

4 http://curl.haxx.se/

http://[<moteip_address>]:<port_number>/readings where the 

parameters have the same meaning as when using CoAP.  

In both CoAP and HTTP cases, the server responds by sending 

the sensor readings embedded into a Java Script Object Notation 

(JSON) file. JSON is a lightweight text based open standard for 

data client/server data exchange.   An example of the response’s 

payload is the following: {"sensor":" 0212:7400:0002:0202 

","readings":{"hum":31,"temp":23.1}}, where the sensor is 

recognized by the last four groups of its IPv6 address, hum is the 

humidity resource and temp is the temperature resource.   

CoAP also supports other payload encoding standards such as the 

widely used Extensible Markup Language (XML). However, the 

verbosity and parsing complexity of XML makes this language 

not appropriate for constrained devices. Although the compact 

data representation in JSON is more suitable for WSNs, JSON 

does not have the flexibility of XML. As a consequence, there has 

been significant effort to develop binary XML based 

representations such as the Extensible XML Interchange (EXI) 

[6].  

Table 1 illustrates the results of the comparison between CoAP 

and HTTP in terms of byte transferred per transaction, power 

consumption and battery lifetime.  

The power consumption has been calculated by means of 

Energest, a tool able to estimate the power consumption of Tmote 

Sky motes [15]. The results have been taken in steady state 

conditions.   

Table 1. Comparison between CoAP and HTTP  

Bytes per-

transaction 

Power Lifetime 

CoAP 154 0.744 mW 151 days 

HTTP 1451 1.333 mW 84 days 

As illustrated in Table 1, an HTTP transaction has a number of 

bytes 10 times larger than the CoAP transaction. This is a 

consequence of the significant header compression executed in 

CoAP. In fact, as discussed in Section 2, CoAP uses a short fixed-

length compact binary header of 4 bytes and a typical request has 

a total header of about 10-20 bytes. After being encapsulated in 

the UDP, 6LoWPAN and MAC layer headers, the CoAP packet 

can be transfer into a single MAC frame which has a size of 127 

bytes.    

It is straightforward that the higher number of bytes transferred in 

an HTTP transaction implies a more intensive activity of the 

mote’s transceiver and CPU and consequently higher power 

consumption (1.33 mW in HTTP against 0.74 mW in CoAP). In 

both experiments, the server mote was powered with 2 AA Zinc-

carbon. The figures of the power consumption lead to an 

estimation of the battery lifetime of 84 days in HTTP and 151 in 

CoAP. Note that the battery lifetime in both cases is 

unrealistically short as a consequence of the high number of client 

requests generated during the experiment.     

It is worth underlining that the results presented in this paragraph 

do not exhaustively compare the two protocols. The simple 

experiment presented is only intended to illustrate how the UDP 

binding and the header compression introduced in CoAP improve 

the power consumption of WSNs.  



4. Integration of a CoAP based WSN with 

a Web application 
The use of an IP based communication and a REST based Web 

architecture in LLNs facilitates the integration of WSNs with 

Internet based Web applications. This Section describes the 

design and development of an end-to-end IP based architecture 

integrating a CoAP over 6LowPAN Contiki based WSN with an 

HTTP over IP based application. The aim of the application is to 

allow a user to access WSN data directly from a Web browser, as 

illustrated in Figure 2.  

Figure 2. Integration between WSNs and the Web 

The system has been designed for experimental greenhouse 

monitoring. However, it is work in progress and it has not yet 

been deployed. The aim of this Section is to illustrate the building 

blocks and functionalities of the first basic prototype. A key 

component of the system is the gateway described in paragraph 

4.1.  

4.1 Gateway design and development 
When the sensor’s resources are exposed by the device itself with 

an application protocol like CoAP, the gateway’s complexity is 

significantly reduced with compared to the case in which the 

sensor’s resources are exposed by an application gateway. In fact, 

an application gateway needs to have full knowledge of the 

functionalities of each connected device. This reduces the 

architecture flexibility and hampers the system scalability. This is 

one of the major problems of non IP based WSN communication 

standards such as ZigBee. ZigBee does not have a standard IP 

networking layer which implies that a standard web service 

architecture cannot be implemented on top of ZigBee. Besides 

hampering the interoperability, the lack of a web service 

architecture requires the use of application gateways when 

interconnecting ZigBee WSNs to the Internet.     

In this work, the gateway integrating the CoAP based WSN with 

the HTTP based Web application consists of a Linux Ubuntu 

machine with a Contiki-gateway attached via USB port. The main 

building blocks of the software running on the gateway are 

illustrated in Figure 3.  

Figure 3. Gateway's main building blocks 

As illustrated in Figure 3, the main gateway’s building blocks are 

the web server, the database and the CoAP client. For simplicity, 

the first gateway prototype includes all the building blocks in the 

same box. In a second phase the application will be deployed on 

an application server. Therefore the application logic and the data 

collection functionality will reside into two different machines. 

This clearly reduces the complexity of the gateway and improves 

the system scalability.  

The web server includes a set of services which are used to 

retrieve data either from the database or directly from the CoAP 

client. When the Web server sends the Web client historical data 

already available in the database, the web server directly accesses 

the database without communicating with the CoAP client and 

sends the data back to the Web client. When the Web Server 

needs to send fresh data coming from the WSN (upon client 

request or upon changes of the WSN resources), the web server 

bypasses the database and directly communicates with the CoAP 

client. Since the Web application has been developed with Google 

Web Toolkit (GWT), the web server at the moment is the built-in 

GWT’s server called Jetty. When the application will be deployed 

on an application server a different web server will be chosen. 

The database stores data coming from the CoAP client and makes 

them available to the web server. The database chosen is Apache 

CouchDB5. Apache CaouchDB is a document-oriented database 

which can be queried and indexed with MapReduce technique 

using JavaScript. It stores JSON documents and provides a 

RESTful API. Since the CoAP client receives WSN data already 

in JSON documents, the storage operation is rather simple and 

does not require any intermediate data manipulation. However, 

the system has not yet been tested under high frequency 

measurement conditions and therefore the database scalability has 

not yet been evaluated. If a high number of stored documents 

results in slow database access, an extra data processing layer 

might be needed in order to reduce the data accesse latency.  

The libcoap CoAP client module is responsible for 

communicating with the WSN. In the current prototype the 

gateway-WSN data exchanges are always initiated by the CoAP 

client. This is a consequence of the fact that Contiki does not yet 

support observations. We are currently adding this functionality 

so that the WSN can spontaneously send the CoAP client data 

upon resource status change. Once retrieved the JSON data from 

the WSN, the CoAP client add a time stamp and stores them into 

the database. The time stamp is needed when providing the web 

server with historical data. 

For simplicity, the current gateway implementation does not 

include proxy functionality between HTTP and CoAP. Therefore 

there is not translation between the HTTP request and the CoAP 

request and vice versa. Upon receiving the HTTP request, the web 

server invokes the CoAP client with the parameters included in 

the HTTP requests (IPv6 address and port of the mote and the 

resource of interest). This implies that the gateway is not 

completely transparent to the application and to the WSN. A 

proxy module able to do the HTTP-CoAP translation and vice 

versa needs to be implemented in order to increase the 

transparency of the gateway. This will also facilitate the gateway 

in handling more complicated operations such as observations. In 

this case for example, a mechanism that translates an HTTP 

subscription (e.g. long-polling) needs to be translated in a CoAP 

observation relationship. There is at the moment an ongoing 

discussion in the CoRE group to decide on issues related to 

HTTP-CoAP mapping [16].        
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5. Conclusions 
This paper discussed the integration of WSNs with the Web. This 

is being facilitated by the development of CoAP, an IETF 

protocol providing LLNs with a RESTful architecture. CoAP 

offers the same methods for the resource manipulation as HTTP. 

In addition, CoAP supports additional functionalities typical of 

IoT and M2M applications, such as multicast, asynchronous 

communication and subscriptions. Unlike HTTP, CoAP is built 

on top of UDP and has a compact packet overhead. The paper 

illustrated how the introduction of UDP and the packet overhead 

compression drastically reduce the mote’s power consumption 

and consequently increase the battery lifetime. The paper also 

described the design and development of an end-to-end IP based 

architecture integrating a CoAP over 6LowPAN Contiki based 

WSN with an HTTP over IP based application. The application 

allows a user to access WSN data directly from a Web browser. 

The paper described the main building blocks of the gateway 

connecting the Web client with the WSN. The gateway is still in 

prototype phase and it requires the development of proxy and 

observation functionalities. The database performance needs to be 

tested for scalability purpose. The application will be deployed 

and tested in a greenhouse monitoring testbed.                   

6. ACKNOWLEDGMENTS 
This work has been done in the scope of the ITEA project 

Interoperable Sensor Networks (ISN) in collaboration with the 

company Freemind6. The authors acknowledge IWOIB for their 

financial support.  

7. REFERENCES 
[1] Dawson-Haggerty, S., et al. sMAP – a Simple Measurement 

and Actuation Profile for Physical Information. In 

Proceedings of 8th ACM Conference on Embedded 

Networked Sensor Systems (SenSys), 2010. 

[2] Kovatsch, M., et al. Embedding Internet Technology for 

Home Automation. In  Proceedings of IEEE Conference on 

Emerging Technologies and Factory Automation (ETFA), 

2010. 

[3] Mayer, S., et al. Facilitating the Integration and Interaction 

of Real-World Services for the Web of Things. In 

Proceedings of Urban Internet of Things – Towards 

Programmable Real-time Cities (UrbanIOT), 2010.  

[4] Guinard, D., et al. A Resource Oriented Architecture for the 

Web of Things. In Proceedings of Internet of Things 2010 

International Conference (IoT), 2010. 

[5] Castellani, A. P., et al. Architecture and Protocols for the 

Internet of Things: A Case Study. In Proceedings of First 

International Workshop on the Web of Things (WoT), 2010.  

[6]  Shelby, Z. Embedded Web Services. IEEE Wireless 

Communications, pp. 52-57, December 2010.  

[7] Atzori, L., et al. The Internet of Things: A survey. Computer 

Networks, pp. 2787-2805, October 2010.  

[8]  Kushalnagar, N, IPv6 over Low-Power Wireless Personal 

Area Networks (6LoWPANs): Overview, Assumptions, 

Problem Statement, and Goals. RFC 4919. 

                                                                 
6 http://www.freemind-group.com/fmc2/

[9] Vasseur, J. P., and Dunkels, A., Interconnecting Smart 

Objects with IP: The Next Internet. Morgan Kaufmann, 

2010. 

[10] Shelby, Z., and Bormann, C., 6LoWPAN: The Wireless 

Embedded Internet, Wiley, 2009. 

[11] Trifa, V., et al. Design and Implementation of a Gateway for 

Web-based Interaction and Management of Embedded 

Devices. In Proceedings of the 2nd International Workshop 

on Sensor Network Engineering (IWSNE), 2009. 

[12] Shelby, Z., et al. Constrained Application Protocol (CoAP). 

Internet-Draft. draft-ietf-core-coap-04.  

[13] Hartke, K., et al. Observing Resources in CoAP. Internet-

Draft. draft-ietf-core-observe-01.  

[14] Eggert, L., Congestion Control for the Constrained 

Application Protocol (CoAP). Internet-Draft. draft-eggert-

core-congestion-control-01.  

[15]  Dunkels, A., et al. Demo abstract: Software-based sensor 

node energy estimation. In Proceedings of the Fifth ACM 

Conference on Networked Embedded Sensor Systems 

(SenSys), 2007.  

[16] Castellani, A., et al. Best Practice to map HTTP to COAP 

and viceversa. Internet-Draft. draft-castellani-core-http-coap-

mapping-00.txt.  


