PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 1: INTRODUCTION



#### Handwritten Digit Recognition





















#### **Polynomial Curve Fitting**



#### **Sum-of-Squares Error Function**



# 0<sup>th</sup> Order Polynomial



## 1<sup>st</sup> Order Polynomial



# 3<sup>rd</sup> Order Polynomial



# 9<sup>th</sup> Order Polynomial



# **Over-fitting**



Root-Mean-Square (RMS) Error:  $E_{\rm RMS} = \sqrt{2E(\mathbf{w}^{\star})/N}$ 

## **Polynomial Coefficients**

|               | M = 0 | M = 1 | M=3    | M = 9       |
|---------------|-------|-------|--------|-------------|
| $w_0^{\star}$ | 0.19  | 0.82  | 0.31   | 0.35        |
| $w_1^{\star}$ |       | -1.27 | 7.99   | 232.37      |
| $w_2^{\star}$ |       |       | -25.43 | -5321.83    |
| $w_3^{\star}$ |       |       | 17.37  | 48568.31    |
| $w_4^{\star}$ |       |       |        | -231639.30  |
| $w_5^{\star}$ |       |       |        | 640042.26   |
| $w_6^{\star}$ |       |       |        | -1061800.52 |
| $w_7^{\star}$ |       |       |        | 1042400.18  |
| $w_8^{\star}$ |       |       |        | -557682.99  |
| $w_9^{\star}$ |       |       |        | 125201.43   |

#### Data Set Size: N = 15

9<sup>th</sup> Order Polynomial



#### Data Set Size: N = 100

9<sup>th</sup> Order Polynomial



## Regularization

Penalize large coefficient values

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

# **Regularization:** $\ln \lambda = -18$



### **Regularization:** $\ln \lambda = 0$



#### **Regularization:** $E_{\rm RMS}$ **vs.** $\ln \lambda$



## **Polynomial Coefficients**

|               | $\ln\lambda=-\infty$ | $\ln\lambda = -18$ | $\ln \lambda = 0$ |
|---------------|----------------------|--------------------|-------------------|
| $w_0^\star$   | 0.35                 | 0.35               | 0.13              |
| $w_1^{\star}$ | 232.37               | 4.74               | -0.05             |
| $w_2^{\star}$ | -5321.83             | -0.77              | -0.06             |
| $w_3^{\star}$ | 48568.31             | -31.97             | -0.05             |
| $w_4^{\star}$ | -231639.30           | -3.89              | -0.03             |
| $w_5^{\star}$ | 640042.26            | 55.28              | -0.02             |
| $w_6^{\star}$ | -1061800.52          | 41.32              | -0.01             |
| $w_7^{\star}$ | 1042400.18           | -45.95             | -0.00             |
| $w_8^{\star}$ | -557682.99           | -91.53             | 0.00              |
| $w_9^{\star}$ | 125201.43            | 72.68              | 0.01              |

# **Probability Theory**

**Apples and Oranges** 



# **Probability Theory**



#### **Marginal Probability**

$$p(X = x_i) = \frac{c_i}{N}.$$

Joint Probability

$$p(X = x_i, Y = y_j) = \frac{n_{ij}}{N}$$

**Conditional Probability** 

$$p(Y = y_j | X = x_i) = \frac{n_{ij}}{c_i}$$

# **Probability Theory**



Sum Rule  $p(X = x_i) = \frac{c_i}{N} = \frac{1}{N} \sum_{j=1}^{L} n_{ij}$   $= \sum_{i=1}^{L} p(X = x_i, Y = y_j)$ 

**Product Rule** 

$$p(X = x_i, Y = y_j) = \frac{n_{ij}}{N} = \frac{n_{ij}}{c_i} \cdot \frac{c_i}{N}$$
$$= p(Y = y_j | X = x_i) p(X = x_i)$$

# The Rules of Probability



#### Bayes' Theorem

$$p(Y|X) = \frac{p(X|Y)p(Y)}{p(X)}$$

$$p(X) = \sum_{Y} p(X|Y)p(Y)$$

posterior  $\infty$  likelihood  $\times$  prior

#### **Probability Densities**



### **Transformed Densities**



$$p_y(y) = p_x(x) \left| \frac{\mathrm{d}x}{\mathrm{d}y} \right|$$
$$= p_x(g(y)) |g'(y)|$$

#### Expectations

$$\mathbb{E}[f] = \sum_{x} p(x)f(x)$$

$$\mathbb{E}[f] = \int p(x)f(x) \,\mathrm{d}x$$

$$\mathbb{E}_{x}[f|y] = \sum_{x} p(x|y)f(x)$$

Conditional Expectation (discrete)

$$\mathbb{E}[f] \simeq \frac{1}{N} \sum_{n=1}^{N} f(x_n)$$

Approximate Expectation (discrete and continuous)

$$\operatorname{var}[f] = \mathbb{E}\left[\left(f(x) - \mathbb{E}[f(x)]\right)^2\right] = \mathbb{E}[f(x)^2] - \mathbb{E}[f(x)]^2$$

$$\operatorname{cov}[x, y] = \mathbb{E}_{x, y} \left[ \{ x - \mathbb{E}[x] \} \{ y - \mathbb{E}[y] \} \right]$$
$$= \mathbb{E}_{x, y} [xy] - \mathbb{E}[x] \mathbb{E}[y]$$

$$\begin{aligned} \operatorname{cov}[\mathbf{x}, \mathbf{y}] &= & \mathbb{E}_{\mathbf{x}, \mathbf{y}} \left[ \{ \mathbf{x} - \mathbb{E}[\mathbf{x}] \} \{ \mathbf{y}^{\mathrm{T}} - \mathbb{E}[\mathbf{y}^{\mathrm{T}}] \} \right] \\ &= & \mathbb{E}_{\mathbf{x}, \mathbf{y}}[\mathbf{x}\mathbf{y}^{\mathrm{T}}] - \mathbb{E}[\mathbf{x}] \mathbb{E}[\mathbf{y}^{\mathrm{T}}] \end{aligned}$$

#### The Gaussian Distribution

$$\mathcal{N}\left(x|\mu,\sigma^{2}\right) = \frac{1}{(2\pi\sigma^{2})^{1/2}} \exp\left\{-\frac{1}{2\sigma^{2}}(x-\mu)^{2}\right\}$$

$$\mathcal{N}(x|\mu,\sigma^{2}) \qquad \qquad \mathcal{N}(x|\mu,\sigma^{2}) > 0$$

$$\int_{-\infty}^{\infty} \mathcal{N}\left(x|\mu,\sigma^{2}\right) \, \mathrm{d}x = 1$$

#### **Gaussian Mean and Variance**

$$\mathbb{E}[x] = \int_{-\infty}^{\infty} \mathcal{N}(x|\mu, \sigma^2) \, x \, \mathrm{d}x = \mu$$

$$\mathbb{E}[x^2] = \int_{-\infty}^{\infty} \mathcal{N}(x|\mu,\sigma^2) x^2 \,\mathrm{d}x = \mu^2 + \sigma^2$$

 $\operatorname{var}[x] = \mathbb{E}[x^2] - \mathbb{E}[x]^2 = \sigma^2$ 

#### The Multivariate Gaussian

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}$$



#### **Gaussian Parameter Estimation**



# Maximum (Log) Likelihood

$$\ln p\left(\mathbf{x}|\mu,\sigma^{2}\right) = -\frac{1}{2\sigma^{2}}\sum_{n=1}^{N}(x_{n}-\mu)^{2} - \frac{N}{2}\ln\sigma^{2} - \frac{N}{2}\ln(2\pi)$$

- -

$$\mu_{\rm ML} = \frac{1}{N} \sum_{n=1}^{N} x_n \qquad \sigma_{\rm ML}^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \mu_{\rm ML})^2$$

# Properties of $\mu_{ m ML}$ and $\sigma_{ m ML}^2$

$$\mathbb{E}[\mu_{\mathrm{ML}}] = \mu$$
$$\mathbb{E}[\sigma_{\mathrm{ML}}^2] = \left(\frac{N-1}{N}\right)\sigma^2$$
$$\widetilde{\sigma}^2 = \frac{N}{N-1}\sigma_{\mathrm{ML}}^2$$
$$= \frac{1}{N-1}\sum_{n=1}^N (x_n - \mu_{\mathrm{ML}})^2$$



#### **Curve Fitting Re-visited**



## Maximum Likelihood

$$p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta) = \prod_{n=1}^{N} \mathcal{N}\left(t_n | y(x_n, \mathbf{w}), \beta^{-1}\right)$$

$$\ln p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta) = -\underbrace{\frac{\beta}{2} \sum_{n=1}^{N} \left\{ y(x_n, \mathbf{w}) - t_n \right\}^2}_{\beta E(\mathbf{w})} + \frac{N}{2} \ln \beta - \frac{N}{2} \ln(2\pi)$$

Determine  $\mathbf{w}_{\mathrm{ML}}$  by minimizing sum-of-squares error,  $E(\mathbf{w})$ .

$$\frac{1}{\beta_{\rm ML}} = \frac{1}{N} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}_{\rm ML}) - t_n\}^2$$

#### **Predictive Distribution**

$$p(t|x, \mathbf{w}_{\mathrm{ML}}, \beta_{\mathrm{ML}}) = \mathcal{N}\left(t|y(x, \mathbf{w}_{\mathrm{ML}}), \beta_{\mathrm{ML}}^{-1}\right)$$



#### MAP: A Step towards Bayes

$$p(\mathbf{w}|\alpha) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I}) = \left(\frac{\alpha}{2\pi}\right)^{(M+1)/2} \exp\left\{-\frac{\alpha}{2}\mathbf{w}^{\mathrm{T}}\mathbf{w}\right\}$$

$$p(\mathbf{w}|\mathbf{x}, \mathbf{t}, \alpha, \beta) \propto p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta)p(\mathbf{w}|\alpha)$$

$$\beta \widetilde{E}(\mathbf{w}) = \frac{\beta}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\alpha}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}$$

Determine  $\mathbf{w}_{\mathrm{MAP}}$  by minimizing regularized sum-of-squares error,  $\widetilde{E}(\mathbf{w})$ .

$$p(t|x, \mathbf{x}, \mathbf{t}) = \int p(t|x, \mathbf{w}) p(\mathbf{w}|\mathbf{x}, \mathbf{t}) \, \mathrm{d}\mathbf{w} = \mathcal{N}\left(t|m(x), s^2(x)\right)$$

$$m(x) = \beta \phi(x)^{\mathrm{T}} \mathbf{S} \sum_{n=1}^{N} \phi(x_n) t_n \qquad s^2(x) = \beta^{-1} + \phi(x)^{\mathrm{T}} \mathbf{S} \phi(x)$$
$$\mathbf{S}^{-1} = \alpha \mathbf{I} + \beta \sum_{n=1}^{N} \phi(x_n) \phi(x_n)^{\mathrm{T}} \qquad \phi(x_n) = \left(x_n^0, \dots, x_n^M\right)^{\mathrm{T}}$$

#### **Bayesian Predictive Distribution**

$$p(t|x, \mathbf{x}, \mathbf{t}) = \mathcal{N}\left(t|m(x), s^2(x)\right)$$



#### **Model Selection**

#### **Cross-Validation**



## **Curse of Dimensionality**



## Curse of Dimensionality

Polynomial curve fitting, M=3

$$y(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{i=1}^{D} w_i x_i + \sum_{i=1}^{D} \sum_{j=1}^{D} w_{ij} x_i x_j + \sum_{i=1}^{D} \sum_{j=1}^{D} \sum_{k=1}^{D} w_{ijk} x_i x_j x_k$$

Gaussian Densities in higher dimensions



## **Decision Theory**

Inference step

Determine either  $p(t|\mathbf{x})$  or  $p(\mathbf{x}, t)$ .

Decision step For given  $\mathbf{x}$ , determine optimal t.

## Minimum Misclassification Rate



## Minimum Expected Loss

Example: classify medical images as 'cancer' or 'normal'

 $\begin{array}{c} \text{Decision} \\ \text{cancer normal} \\ \begin{array}{c} \text{pcancer} \\ \text{normal} \end{array} \begin{pmatrix} 0 & 1000 \\ 1 & 0 \end{pmatrix} \end{array}$ 

#### Minimum Expected Loss

$$\mathbb{E}[L] = \sum_{k} \sum_{j} \int_{\mathcal{R}_{j}} L_{kj} p(\mathbf{x}, \mathcal{C}_{k}) \, \mathrm{d}\mathbf{x}$$

#### Regions $\mathcal{R}_j$ are chosen to minimize

$$\mathbb{E}[L] = \sum_{k} L_{kj} p(\mathcal{C}_k | \mathbf{x})$$

#### **Reject Option**



# Why Separate Inference and Decision?

- Minimizing risk (loss matrix may change over time)
- Reject option
- Unbalanced class priors
- Combining models

## **Decision Theory for Regression**

Inference step

Determine  $p(\mathbf{x}, t)$ .

Decision step

For given x, make optimal prediction, y(x), for t.

Loss function:  $\mathbb{E}[L] = \iint L(t, y(\mathbf{x}))p(\mathbf{x}, t) \, \mathrm{d}\mathbf{x} \, \mathrm{d}t$ 

#### The Squared Loss Function

$$\mathbb{E}[L] = \iint \{y(\mathbf{x}) - t\}^2 p(\mathbf{x}, t) \,\mathrm{d}\mathbf{x} \,\mathrm{d}t$$

$$\{y(\mathbf{x}) - t\}^2 = \{y(\mathbf{x}) - \mathbb{E}[t|\mathbf{x}] + \mathbb{E}[t|\mathbf{x}] - t\}^2 = \{y(\mathbf{x}) - \mathbb{E}[t|\mathbf{x}]\}^2 + 2\{y(\mathbf{x}) - \mathbb{E}[t|\mathbf{x}]\}\{\mathbb{E}[t|\mathbf{x}] - t\} + \{\mathbb{E}[t|\mathbf{x}] - t\}^2$$

$$\mathbb{E}[L] = \int \left\{ y(\mathbf{x}) - \mathbb{E}[t|\mathbf{x}] \right\}^2 p(\mathbf{x}) \, \mathrm{d}\mathbf{x} + \int \operatorname{var}\left[t|\mathbf{x}\right] p(\mathbf{x}) \, \mathrm{d}\mathbf{x}$$
$$y(\mathbf{x}) = \mathbb{E}[t|\mathbf{x}]$$

#### **Generative vs Discriminative**

Generative approach:

Model  $p(t, \mathbf{x}) = p(\mathbf{x}|t)p(t)$ Use Bayes' theorem  $p(t|\mathbf{x}) = \frac{p(\mathbf{x}|t)p(t)}{p(\mathbf{x})}$ 

Discriminative approach: Model  $p(t|\mathbf{x})$  directly

$$\mathbf{H}[x] = -\sum_{x} p(x) \log_2 p(x)$$

Important quantity in

- coding theory
- statistical physics
- machine learning

Coding theory: *x* discrete with 8 possible states; how many bits to transmit the state of *x*?

All states equally likely

$$H[x] = -8 \times \frac{1}{8} \log_2 \frac{1}{8} = 3$$
 bits.

| x    | a             | b             | с             | d              | е              | f              | g              | h              |
|------|---------------|---------------|---------------|----------------|----------------|----------------|----------------|----------------|
| p(x) | $\frac{1}{2}$ | $\frac{1}{4}$ | $\frac{1}{8}$ | $\frac{1}{16}$ | $\frac{1}{64}$ | $\frac{1}{64}$ | $\frac{1}{64}$ | $\frac{1}{64}$ |
| code | 0             | 10            | 110           | 1110           | 111100         | 111101         | 111110         | 111111         |

$$\begin{split} \mathrm{H}[x] &= -\frac{1}{2}\log_2\frac{1}{2} - \frac{1}{4}\log_2\frac{1}{4} - \frac{1}{8}\log_2\frac{1}{8} - \frac{1}{16}\log_2\frac{1}{16} - \frac{4}{64}\log_2\frac{1}{64} \\ &= 2 \text{ bits} \end{split}$$

average code length =  $\frac{1}{2} \times 1 + \frac{1}{4} \times 2 + \frac{1}{8} \times 3 + \frac{1}{16} \times 4 + 4 \times \frac{1}{64} \times 6$ = 2 bits

In how many ways can N identical objects be allocated Mbins? 771

$$W = \frac{N!}{\prod_i n_i!}$$

$$H = \frac{1}{N} \ln W \simeq -\lim_{N \to \infty} \sum_{i} \left(\frac{n_i}{N}\right) \ln \left(\frac{n_i}{N}\right) = -\sum_{i} p_i \ln p_i$$
py maximized when  $\forall i : p_i = \frac{1}{2\pi}$ 

Entropy PiM



# **Differential Entropy**

Put bins of width  $\Delta\,$  along the real line

$$\lim_{\Delta \to 0} \left\{ -\sum_{i} p(x_i) \Delta \ln p(x_i) \right\} = -\int p(x) \ln p(x) \, \mathrm{d}x$$

Differential entropy maximized (for fixed  $\sigma^2$ ) when

$$p(x) = \mathcal{N}(x|\mu, \sigma^2)$$

in which case

$$H[x] = \frac{1}{2} \left\{ 1 + \ln(2\pi\sigma^2) \right\}.$$

## **Conditional Entropy**

$$H[\mathbf{y}|\mathbf{x}] = -\iint p(\mathbf{y}, \mathbf{x}) \ln p(\mathbf{y}|\mathbf{x}) \,\mathrm{d}\mathbf{y} \,\mathrm{d}\mathbf{x}$$

 $H[\mathbf{x}, \mathbf{y}] = H[\mathbf{y}|\mathbf{x}] + H[\mathbf{x}]$ 

## The Kullback-Leibler Divergence

$$\begin{aligned} \operatorname{KL}(p \| q) &= -\int p(\mathbf{x}) \ln q(\mathbf{x}) \, \mathrm{d}\mathbf{x} - \left( -\int p(\mathbf{x}) \ln p(\mathbf{x}) \, \mathrm{d}\mathbf{x} \right) \\ &= -\int p(\mathbf{x}) \ln \left\{ \frac{q(\mathbf{x})}{p(\mathbf{x})} \right\} \, \mathrm{d}\mathbf{x} \end{aligned}$$

$$\mathrm{KL}(p||q) \simeq \frac{1}{N} \sum_{n=1}^{N} \left\{ -\ln q(\mathbf{x}_n | \boldsymbol{\theta}) + \ln p(\mathbf{x}_n) \right\}$$

 $\operatorname{KL}(p||q) \ge 0$   $\operatorname{KL}(p||q) \not\equiv \operatorname{KL}(q||p)$ 

## **Mutual Information**

$$I[\mathbf{x}, \mathbf{y}] \equiv KL(p(\mathbf{x}, \mathbf{y}) || p(\mathbf{x}) p(\mathbf{y}))$$
  
=  $-\iint p(\mathbf{x}, \mathbf{y}) \ln \left( \frac{p(\mathbf{x}) p(\mathbf{y})}{p(\mathbf{x}, \mathbf{y})} \right) d\mathbf{x} d\mathbf{y}$ 

$$I[\mathbf{x}, \mathbf{y}] = H[\mathbf{x}] - H[\mathbf{x}|\mathbf{y}] = H[\mathbf{y}] - H[\mathbf{y}|\mathbf{x}]$$