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There are many occasions where the base of a robotic manipulator is attached to a 

moving platform, such as on a moving ship, terrain or space shuttle. In this paper a 

dynamic model of a robotic manipulator mounted on a moving base is derived using 

both Newton-Euler and Lagrange-Euler methods. The presented models are simulated 

for a Mitsubishi PA10-6CE robotic manipulator characteristics mounted on a ship 

platform that is moving on ocean and the results are verified through both methods. 

In this simulation it is assumed that the inertia of the base of the robot is large enough 

and is not affected by the manipulator motion. However, the motion of the ship 

directly influences the dynamics of the manipulator in movements. Results and 

computation time of the two methods are compared and it is shown that the Newton-

Euler method needs less computation time than the Lagrange method.  
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1. Introduction  

One of the issues in robotics is where the base of a 

manipulator is not fixed. For example, there is a robot 

manipulator placed on a ship moving through the ocean 

or train on rails. In all of above cases motion of the 

base of the manipulator affects robots kinematic and 

dynamic, and subsequently causes deviation of the 

trajectory of robot arms and end effector from our 

desired trajectories. There have been many researches 

on the effects of base motion such as manipulator 

placed on underwater vehicles, space vehicles and 

manipulators on ships. In 1986 J. Joshi and A. 

Desrochers worked on a 1-DOF robot manipulator 

which was placed on a base with 3-DOF platform. 

They assumed that the base of the robot moves 

randomly and utilized a PID controller to control their 

linearized system [1]. Jamisola has provided a method 

called ‘dominant inertia’. In this method each joint's 

linear friction compensation and oscillatory control are 

used to obtain the lumped inertias. Moreover, models 

for static, coulomb and viscous frictions were obtained 

[2]. In 2007 identification of the dynamics of the 7-

DOF PA10 with Stribeck friction and transmission 

compliance model was performed [3]. A 2 DOF base 

motion on tank with a linear model was used in 

trajectory planning and SISO and MIMO controller 

were designed for it by  A.B. Tanner in 1987 [4]. In 

1999 F. M. Carter and D.B. Cherchas derived the 

dynamic model of a robotic manipulator on a mobile 

base with two and three DOF of motions. They used a 

PD controller for the system and no compensation was 

considered in the dynamic of the manipulator arm [5].  

A robot manipulator installed on a ship deck was 

considered in 2004 [6, 7]. The dynamics of the 6-DOF 

robot manipulator with 6-DOF base motion and 

different size of ships and height of waves on ship's 
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motion were considered. Also effects of sea-states and 

wave height on the ship motion are presented for 

different ship sizes. In other researches, modeling and 

motion planning for mechanisms on a non-inertial base 

with known trajectory is used for computing torques 

with a feedback controller. The friction was not 

considered and simulations are presented for a 1-DOF 

and 4-DOF manipulators on a 6-DOF base, they 

worked on reducing actuator energy usage in 2009 [8]. 

Few important dynamic and control problems, uniquely 

in space robotics are discussed in [9]. They particularly 

considered the free flying and free-floating space robots 

for tasks as space station repair and construction. Three 

methods for planning and controlling the motion of 

space robotic systems are presented. They suggested 

that a thorough understanding of dynamics of these 

systems will result in effective solutions to their control 

problems. 

An analysis of cooperating manipulators on a non-

fixed base is considered; dynamic equations two 6-

DOF manipulators and 6-DOF platform are presented 

and it is assumed that manipulator dynamics affect the 

platform but not actuate it [10]. A robot manipulator on 

a moving base was considered by C.M. Wronka and 

M.W. Dunnigan, The dynamic equations of robot 

manipulator on moving base were derived and they 

assumed that the base inertia was large enough not to 

be influenced by the manipulator motion [11]. 

This paper has the following sections. In section two 

the dynamic equations considering the base motion are 

derived by Newton-Euler and Lagrange-Euler methods. 

In section three the derived equations are applied to 

Mitsubishi PA10-6CE robotic manipulator. Finally, in 

section four equations are solved and results of two 

methods are compared. 

2. Model derivation  

The dynamic model of a manipulator on a moving 

platform is derived using the Newton-Euler and 

Lagrange-Euler approaches. In deriving the equations 

of the motions, the following assumptions are made. 

 The manipulator motion has no influence on 

the platform, i.e. the inertia of the platform is 

very high, 

 The motor inertias and friction terms are not 

considered in the model derivation. 

2.1. Lagrange-Euler method 

The general equation of motion of a manipulator 

can be conveniently expressed through the direct 

application of the Lagrange-Euler formulation of non-

conservative systems. Different notation of the 

kinematic and kinetic of robot manipulator are 

presented [11, 12]. The Lagrange-Euler equations are 

as Eq. 1: 

𝐝

𝐝𝐭
(

𝛛𝐋

𝛛𝐪̇𝐢

) −
𝛛𝐋

𝛛𝐪𝐢

= 𝛕𝐢         𝐢 = 𝟏, 𝟐, … . , 𝐧 (1) 

Where  

L: Lagrangian = K (kinetic energy) – P (potential 

energy) 

𝑞𝑖: Generalized coordinate of robot arm in base 

coordinate 

𝑞̇𝑖: First derivative of generalized coordinate 𝑞𝑖   

𝜏𝑖: Generalized force (or torque) applied to the system 

at joint i to drive link i 

The velocity ( 𝐕𝐢
𝟎 ) of a point of a rigid link in 

inertial coordinate can be expressed as: 

𝐕𝐢
𝟎 =

𝐝

𝐝𝐭
( 𝐫𝐢

𝟎 ) =
𝐝

𝐝𝐭
(𝐀𝐛 𝐀𝐢

𝟎 𝐫𝐢
𝐢 ) (2) 

Where 

𝐀𝐢
𝟎  : is the Denavit and Hartenberg (D-H) 

transformation matrix of the coordinates from i-th link 

to base. 

𝐀inertia
𝟎 = 𝐀𝐛: is a transformation matrix of the base to 

the inertial coordinate.  

𝒓𝒊
𝑖  is a point within the i-th link expressed in the i-th 

link coordinates. 

The time derivative of velocity can be found as: 

𝐝

𝐝𝐭
(𝐀𝐛 𝐀𝐢

𝟎 𝐫𝐢
𝐢 ) = (𝐀𝐛̇ 𝐀𝐢

𝟎 + 𝐀𝐛 ∑
𝛛 𝐀𝐢

𝟎

𝛛𝐪𝐣
𝐪̇𝐣

𝐢

𝐣=𝟏

) 𝐫𝐢
𝐢  (3) 

Where 

𝐀𝐢
𝟎  : is a function of joint angles 𝐪𝐣for j ∈ (1, .. , i). Let 

𝐔𝐢𝐣 =
𝛛 𝐀𝐢

𝟎

𝛛𝐪𝐣

 , 𝐔𝐢𝐣𝐤 =
𝛛𝐔𝐢𝐣

𝛛𝐪𝐤

 (4) 

              
𝛛 𝐀𝐢

𝟎

𝛛𝐪𝐣

= 𝐀𝐣−𝟏
𝟎

𝛛 𝐀𝐣
𝐣−𝟏

𝛛𝐪𝐣

𝐀𝐢
𝐣

= 𝐀𝐣−𝟏
𝟎 𝐐𝐝 𝐀𝐣

𝐣−𝟏
𝐀𝐢

𝐣
 

(5) 

𝐐𝐝=[

𝟎
𝟏

−𝟏
𝟎

𝟎 𝟎
𝟎 𝟎

𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎

] Algebraic operator 

The velocity vectors expressed in base coordinate 

results to: 
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𝐕𝐢
𝟎 = (𝐀𝐛̇ 𝐀𝐢

𝟎 + 𝐀𝐛 ∑  𝐔𝐢𝐣𝐪̇𝐣

𝐢

𝐣=𝟏

) 𝐫𝐢
𝐢  (6) 

 

1) Kinetic energy  

The kinetic energy of a particle with mass 𝑑𝑚 of 

link i can be defined as (Tr = trace): 

𝐝𝐤𝐢 =
𝟏

𝟐
𝐓𝐫 ( 𝐕𝐢

𝟎 ( 𝐕𝐢
𝟎 )

𝐓
) 𝐝𝐦 (7) 

By substituting Eq. 6 in Eq. 7  

 𝐝𝐤𝐢 =
𝟏

𝟐
𝐓𝐫 ((𝐀𝐛̇ 𝐀𝐢

𝟎 +

𝐀𝐛 ∑  𝐔𝐢𝐣𝐪𝐣̇
𝐢
𝐣=𝟏 ) 𝐫𝐢

𝐢 ((𝐀𝐛̇ 𝐀𝐢
𝟎 +

𝐀𝐛 ∑  𝐔𝐢𝐣𝐪𝐣̇
𝐢
𝐣=𝟏 ) 𝐫𝐢

𝐢 )
𝐓

 ) 𝐝𝐦 

(8) 

After integrating over the link volume and 

simplifying total kinetic energy of system comes to Eq. 

9 

𝐊 = ∑
𝟏

𝟐
𝐓𝐫(𝐀𝐛̇ 𝐀𝐢

𝟎 𝐉𝐢 𝐀𝟎
𝐢
𝐓𝐀̇𝐛

𝐓  

𝐧

𝐢=𝟏

)

+ ∑ ∑ 𝐓𝐫(

𝐢

𝐫=𝟏

𝐧

𝐢=𝟏

𝐀𝐛̇ 𝐀𝐢
𝟎 𝐉𝐢 𝐔𝐢𝐫

𝐓 𝐀̇𝐛
𝐓) 𝐪̇𝐫

+
𝟏

𝟐
∑ ∑ ∑ 𝐓𝐫(𝐀𝐛𝐔𝐢𝐫𝐉𝐢𝐔𝐢𝐬

𝐓 𝐀𝐛
𝐓)𝐪̇𝐫𝐪̇𝐬

𝐢

𝐬=𝟏

𝐢

𝐫=𝟏

𝐧

𝐢=𝟏

   

(9) 

 

2) Potential energy  

     Potential energy of each link can be defined as: 

𝐏𝐣 = −𝐦𝐣𝐠(𝐀𝐛 𝐀𝐢
𝟎 𝐑𝐣)     (10) 

Where 

𝐦𝐣 : is mass of each link 

𝒈: is earth gravity 

𝐑𝐣 = 𝐫𝐢
𝐢  : is a point within the i-th link expressed in 

the i-th link coordinates 

While the total potential energy of system becomes 

 

 

𝐏 = − ∑ 𝐦𝐣𝐠(𝐀𝐛 𝐀𝐣
𝟎 𝐑𝐣)

𝐧

𝐣=𝟏

   (11) 

 

3) Lagrange function   

Lagrange function simplifies to Eq. 12 

𝑳 = ∑
𝟏

𝟐
𝐓𝐫(𝐀𝐛̇ 𝐀𝐢

𝟎 𝐉𝐢 𝐀𝟎
𝐢
𝐓𝐀̇𝐛

𝐓  

𝐧

𝐢=𝟏

)

+ ∑ ∑ 𝐓𝐫(

𝐢

𝐫=𝟏

𝐧

𝐢=𝟏

𝐀𝐛̇ 𝐀𝐢
𝟎 𝐉𝐢 𝐔𝐢𝐫

𝐓 𝐀̇𝐛
𝐓) 𝐪̇𝐫

+
𝟏

𝟐
∑ ∑ ∑ 𝐓𝐫(𝐀𝐛𝐔𝐢𝐫𝐉𝐢𝐔𝐢𝐬

𝐓 𝐀𝐛
𝐓) 𝐪̇𝐫𝐪̇𝐬

𝐢

𝐬=𝟏

𝐢

𝐫=𝟏

𝐧

𝐢=𝟏

+ ∑ 𝐦𝐣𝐠(𝐀𝐛 𝐀𝐣
𝟎 𝐑𝐣)

𝐧

𝐣=𝟏

 

(12) 

After calculating  
𝜕𝐿

𝜕𝑞̇𝑖
 ,  

𝜕𝐿

𝜕𝑞𝑖
   𝑖 = 1,2, … . , 𝑛 the 

torques applied to the system at joint i are  

𝝉𝒊 = ∑ 𝐓𝐫(𝐀̈𝐛 𝐀𝐣
𝟎

𝐧

𝐣=𝐢

𝐉𝐣𝐔𝐣𝐢
𝐓𝐀𝐛

𝐓)

+ 𝟐 ∑ ∑ 𝐓𝐫(

𝐣

𝐫=𝟏

𝐧

𝐣=𝐢

𝐀𝐛̇𝐔𝐣𝐫𝐉𝐣𝐔𝐣𝐢
𝐓𝐀𝐛

𝐓) 𝐪̇𝐫    

+ ∑ ∑ ∑ 𝐓𝐫(𝐔𝐣𝐫𝐬

𝐣

𝐬=𝟏

𝐣

𝐫=𝟏

𝐧

𝐣=𝐢

𝐉𝐣 𝐔𝐣𝐢
𝐓 )𝐪̇𝐫𝐪̇𝐬

+ ∑ ∑ 𝐓𝐫(

𝐣

𝐫=𝟏

𝐧

𝐣=𝐢

𝐔𝐣𝐫𝐉𝐣𝐔𝐣𝐢
𝐓) 𝐪̈𝐫   

+ ∑ 𝐦𝐣𝐠(𝐀𝐛𝐔𝐣𝐢𝐑𝐣)

𝐧

𝐣=𝐢

 

(13) 

𝐃 = ∑ ∑ 𝐓𝐫(

𝐣

𝐫=𝟏

𝐧

𝐣=𝐢

𝐔𝐣𝐫𝐉𝐣𝐔𝐣𝐢
𝐓) (14) 

D is inertial acceleration-related symmetric matrix 

(independent of base motion). 

𝐡 = ∑ ∑ 𝐓𝐫(𝐔𝐣𝐫𝐬

𝐣

𝐫=𝟏

𝐧

𝐣=𝐢

𝐉𝐣 𝐔𝐣𝐢
𝐓 )𝐪̇𝐫 (15) 

 h is nonlinear Coriolis and centrifugal force vector 

(independent of base motion).  

𝐜 =  ∑ 𝐦𝐣𝐠(𝐀𝐛𝐔𝐣𝐢𝐑𝐣)

𝐧

𝐣=𝐢

 (16) 

c is gravity loading force vector. 
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𝐁𝐦𝐢 = ∑ 𝐓𝐫(𝐀̈𝐛 𝐀𝐣
𝟎

𝐧

𝐣=𝐢

𝐉𝐣𝐔𝐣𝐢
𝐓𝐀𝐛

𝐓)   (17) 

Bmi is inertial-like and Coriolis and centrifugal-like 

generalized forces induced by the platform motion on 

the manipulator. 

𝐁𝐦𝐜 = ∑ ∑ 𝐓𝐫(

𝐣

𝐫=𝟏

𝐧

𝐣=𝐢

𝐀𝐛̇𝐔𝐣𝐫𝐉𝐣𝐔𝐣𝐢
𝐓𝐀𝐛

𝐓) (18) 

Bmc is Coriolis and centrifugal-like forces induced 

by the platform and manipulator motion on the 

manipulator. 

𝝉𝒊  = D𝒒̈ + h𝒒̇ + c + Bmi + Bmc𝒒̇ (19) 

 

4) Base motion  

The base motion of the robot manipulator has not 

translational motion and is assumed to have only two 

rotations about X axis roll (α) and Y axis pitch (β) of 

inertia coordinate. 

 

𝐑𝐛 = 𝐑𝐨𝐭(𝐘𝐢𝐧𝐞𝐫𝐭𝐢𝐚, 𝛃). 𝐑𝐨𝐭(𝐗𝐢𝐧𝐞𝐫𝐭𝐢𝐚 , 𝛂) 

𝐑𝐛 = [
𝐜𝐨𝐬(𝛃) 𝟎 𝐬𝐢𝐧(𝛃)

𝟎 𝟏 𝟎
− 𝐬𝐢𝐧(𝛃) 𝟎 𝐜𝐨𝐬(𝛃)

] . 

           [

𝟏 𝟎 𝟎
𝟎 𝐜𝐨𝐬(𝛂) −𝐬𝐢𝐧(𝛂)
𝟎 𝐬𝐢𝐧(𝛂) 𝐜𝐨𝐬(𝛂)

]  

 =  [

𝐜𝐨𝐬(𝛃) 𝐬𝐢𝐧(𝛂) 𝐬𝐢𝐧(𝛃) 𝐜𝐨𝐬(𝛂) 𝐬𝐢𝐧(𝛃)
𝟎 𝐜𝐨𝐬(𝛂) − 𝐬𝐢𝐧(𝛂)

− 𝐬𝐢𝐧(𝛃) 𝐬𝐢𝐧(𝛂) 𝐜𝐨𝐬(𝛃) 𝐜𝐨𝐬(𝛂) 𝐜𝐨𝐬(𝛃)
] 

(20) 

The above rotation matrix appears in the rotation 

part of the base motion as: 

𝐀𝐛 = 

[

𝐜𝐨𝐬(𝛃)

𝟎

𝐬𝐢𝐧(𝛂) 𝐬𝐢𝐧(𝛃)

𝐜𝐨𝐬(𝛂)
𝐜𝐨𝐬(𝛂) 𝐬𝐢𝐧(𝛃) 𝟎

− 𝐬𝐢𝐧(𝛂)           𝟎

− 𝐬𝐢𝐧(𝛃) 𝐬𝐢𝐧(𝛂) 𝐜𝐨𝐬(𝛃) 𝐜𝐨𝐬(𝛂) 𝐜𝐨𝐬(𝛃) 𝟎
𝟎 𝟎       𝟎                    𝟏

] 
(21) 

First and second derivatives of the translation 

matrix are expressed as: 

𝐀̇𝐛 =
𝐝

𝐝𝐭
(𝐀𝐛) =

𝛛𝐀𝐛

𝛛𝛂
𝛂̇ +

𝛛𝐀𝐛

𝛛𝛃
𝛃̇ (22) 

𝐀̈𝐛 =
𝐝

𝐝𝐭
(𝐀̇𝐛) =

𝛛𝟐𝐀𝐛

𝛛𝛂𝟐
𝛂̇𝟐 + 𝟐

𝛛𝟐𝐀𝐛

𝛛𝛂𝛛𝛃
𝛂̇𝛃̇

+
𝛛𝟐𝐀𝐛

𝛛𝛃𝟐
𝛃̇𝟐 +

𝛛𝐀𝐛

𝛛𝛂
𝛂̈

+
𝛛𝐀𝐛

𝛛𝛃
𝛃̈ 

(23) 

In Lagrange-Euler method the base disturbances are 

imported to dynamic equations as two rotations; 

(2DOF) of base to inertia translation matrix Ab as sin 

trajectories expressed in Eq. 24, 25. 

𝛂 = 𝐀𝐫𝐨𝐥𝐥 𝐬𝐢𝐧(
𝟐𝛑𝐭

𝐓𝐫𝐨𝐥𝐥

+ 𝛗𝐫𝐨𝐥𝐥) (24) 

𝛃 = 𝐀𝐩𝐢𝐭𝐜𝐡 𝐬𝐢𝐧(
𝟐𝛑𝐭

𝐓𝐩𝐢𝐭𝐜𝐡

+ 𝛗𝐩𝐢𝐭𝐜𝐡) 
(25) 

 

2.2. Newton-Euler method 

In deriving the dynamic equations through this 

method, Iterative Newton-Euler formulation is used [8]. 

In this method constraint forces do not eliminate and 

they extend through the equations. Knowing the 

position, velocity and acceleration of joints and also 

mass distribution and kinematic of links, torques that 

cause this motion are calculated. There are two steps of 

calculation: 

1) Iterative outward to compute velocities and 

accelerations  

To compute forces acting on the links, first 

rotational and linear velocities and accelerations of 

links and then forces and torques exerted on the center 

of mass of each link should be calculated. For this 

purpose one should iteratively start from link 1 outward 

to link n and compute the required velocities and 

accelerations as: 

𝛚𝐢+𝟏 = 𝐑𝐢
𝐢+𝟏𝐢+𝟏 𝛚𝐢 + 𝛉̇𝐢+𝟏 𝐙𝐢+𝟏

𝐢+𝟏𝐢  (26) 

𝜔𝑖+1
𝑖+1  : Angular velocity of link i+1 

𝑅𝑖
𝑖+1  : Denavit and Hartenberg (D-H) transformation 

matrix of the coordinates from i-th link to i+1-th 

𝑍𝑖+1
𝑖+1 : Rotation axis component of link i+1 expressed 

in i+1 coordinate 

𝛚̇𝐢+𝟏
𝐢+𝟏 = 𝐑𝐢

𝐢+𝟏 𝛚̇𝐢
𝐢                    

+ 𝐑𝐢
𝐢+𝟏 𝛚𝐢

𝐢 ∗ 𝛉̇𝐢+𝟏 𝐙𝐢+𝟏
𝐢+𝟏   +𝛉̈𝐢+𝟏 𝐙𝐢+𝟏

𝐢+𝟏  
(27) 

𝜔̇𝑖+1
𝑖+1 : Angular acceleration of link i+1 

 

𝐯̇𝐢+𝟏
𝐢+𝟏 = 𝐑𝐢

𝐢+𝟏 ( 𝛚̇𝐢
𝐢 ∗ 𝐏𝐢+𝟏

𝐢  

+ 𝛚𝐢
𝐢 ∗ ( 𝛚𝐢

𝐢 ∗ 𝐏𝐢+𝟏
𝐢 ) + 𝐯̇𝐢

𝐢 ) 
(28) 

𝑣̇𝑖+1
𝑖+1 : Linear acceleration of each link-frame origin 

𝑃𝑖+1
𝑖 : Position vector of i+1 coordinate origin with 

respect to i coordinate origin expressed in i coordinate 
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𝐯̇𝐜𝐢+𝟏
𝐢+𝟏 = 𝛚̇𝐢+𝟏 ∗ 𝐏𝐜𝐢+𝟏

𝐢+𝟏 +𝐢+𝟏 𝛚𝐢+𝟏
𝐢+𝟏  

∗ ( 𝛚𝐢+𝟏
𝐢+𝟏

∗ 𝐏𝐜𝐢+𝟏
𝐢+𝟏 ) 𝐯̇𝐢+𝟏

𝐢+𝟏   
(29) 

𝑣̇𝑐𝑖+1
𝑖+1 : Linear acceleration of the center of mass of 

each link 

𝑃𝑐𝑖+1
𝑖+1 : Position vector of center of mass of link i+1 

expressed in i+1 coordinate 

Force and torque acting on a link could be extracted 

from Eq. 30 

𝐅𝐢+𝟏
𝐢+𝟏 = 𝐦𝐢+𝟏 𝐯̇𝐜𝐢+𝟏

𝐢+𝟏  (30) 

𝐹𝑖+1
𝑖+1 : Inertial force acting at center of mass of each 

link 

mi+1: Mass of each link 

𝐍𝐢+𝟏
𝐢+𝟏 = 𝐈𝐢+𝟏

𝐂𝐢+𝟏 𝛚̇𝐢+𝟏
𝐢+𝟏  

+ 𝛚𝐢+𝟏
𝐢+𝟏 ∗ 𝐈𝐢+𝟏

𝐂𝐢+𝟏 𝛚𝐢+𝟏
𝐢+𝟏  

(31) 

𝑁𝑖+1
𝑖+1 : Inertial torque acting at center of mass of each 

link 

𝐼𝑖+1
𝐶𝑖+1 : The Inertia tensor written in the frame at 

center of mass 

 

2) Iterative inward to compute force and torque 

Having computed the force and torque acting on 

each link, joint torques need to be calculate. Next 

equations are evaluated link by link from link n inward 

to base of robot Eq. 32 to Eq. 34. 

𝐟𝐢
𝐢 = 𝐑𝐢+𝟏

𝐢 𝐟𝐢+𝟏
𝐢+𝟏 + 𝐅𝐢

𝐢    (32) 

𝑓𝑖
𝑖 : Force exerted on link i by link i-1 

𝐧𝐢
𝐢 = 𝐍𝐢

𝐢 + 𝐑𝐢+𝟏
𝐢 𝐧𝐢+𝟏

𝐢+𝟏  

+ 𝐏𝐜𝐢
𝐢 ∗ 𝐅𝐢

𝐢 + 𝐏𝐢+𝟏
𝐢 ∗ 𝐑𝐢+𝟏

𝐢 𝐟𝐢+𝟏
𝐢+𝟏  

(33) 

𝑛𝑖
𝑖 : Torque exerted on link i by link i-1 

𝛕𝐢 = 𝐧𝐢 𝐢
𝐓 𝐙𝐢

𝐢  (34) 

𝜏𝑖: Joint torques 

 

3) Base motion  

In Newton-Euler method base rotational motions 

are imported as base parameters. Since it doesn't have 

translational motion, the base parameter becomes 

𝐰𝟎
𝟎 = [

𝛂
𝛃
𝟎

] , 𝐰̇𝟎
𝟎 = [

𝛂̇
𝛃̇
𝟎

] , 𝐕𝟎
𝟎 = [

𝟎
𝟎
𝟎

] (35) 

2.3. Formula derivation  

Formulas that are derived in both approaches 

describe the platform and manipulator arm dynamic. 

These are used to create codes in Maple software and 

simulated which are described in next section. 

3. Dynamic Implementation on Mitsubishi PA10-

6CE Robotic Manipulator Mounted on a Ship 

Platform  

Dynamic derivation analyses in different references 

are in various coordinate attachments, notations, etc. 

Therefore for each of the methods different simulation 

techniques are employed. In this study the derived 

equations are simulated for Mitsubishi PA10-6CE 

which is 6-DOF revolute manipulator. The picture of 

this robot is shown in figure 1. Depending on method 

and its corresponding coordinated assignment 

technique, the inertial matrices are different for each 

link, it is mentionable that these discrepancies have 

been considered in simulation of this manipulator.    

 

Figure 1. Mitsubishi PA10-6CE robotic manipulator [14] 

3.1. Lagrange-Euler method 

In this method at the beginning 𝑨𝒊
𝟎  is calculated 

which is Denavit and Hartenberg (D-H) transformation 

matrix of the coordinates from i-th link to base. 

According to this coordinate assignment is done on 

robot manipulator through the way which is expressed 

in [12]. We can see the coordinates assigned to robot 

manipulator in figure 2 (right) and Denavit and 

Hartenberg (D-H) table 1.  
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Figure 2. Coordinate assignment for Mitsubishi PA10-6CE 

robotic manipulator in Lagrange(right) and Newton(left) 

methods 

 

Table 1. Denavit and Hartenberg (D-H) table for Lagrange 

method 

Link 

number 
 𝜶𝒊 𝒂𝒊 𝒅𝒊 𝜽𝒊 

1  90 0 0.317 𝜃1 + 𝜋 

2  0 0.45 0 𝜃2 + 𝜋/2 

3  90 0 0 𝜃3 + 𝜋/2 

4  90 0 0.48 𝜃4 + 𝜋 

5  90 0 0 𝜃5 + 𝜋 

6  0 0 0.07 𝜃6 

 

In the next step inertias (𝐉𝐢), masses (𝐦𝐢) and vector 

of center of mass (𝐑𝐢) of links are imported to 

equations as company specifications of Mitsubishi 

PA10-6CE robot manipulator. Inertia term in both 

Lagrange and Euler methods are defined related to 

distinguished attached coordinates. 

 

1) Base motion  

 After all transformation matrix of the base to the 

inertia coordinate should be calculated. For this aim 

base motions should be known (α , β) to calculate 𝑨𝒃, α 

and β are the base motion parameters. When a ship is 

moving on the ocean, waves of water apply 

disturbances on it and due to the fact that the 

manipulator is placed on the ship the wave influences 

on manipulator's motion. There have been many 

researches on the ocean waves and frequency of waves 

which reaches to the surface of ship. The frequency 

depends on size and weight of the ships figure 3 [4]. 

Here specific type of ship is surveyed as an instance 

table 2. 

 

Figure 3. Ship displacements [4] 

 

Table 2. Ship frequencies resonse as function of sea state 

Parameter 

Boat 

length 

(m) 

Boat 

heave 

(m) 

Pitch 

period 

(sec) 

Roll 

period 

(Sec) 

Value 
45.72-

76.2 
0.67 4 11.5 

For a boat with mentioned specifications, waves are 

acting with different periods in different directions, 

amplitudes specifications that are considered in roll and 

pitch frequencies on surface of ship are expressed in 

table 3. 

 

Table 3. Parameters of base sinusoids wave frequency [4] 

Parameter 𝐀𝐫𝐨𝐥𝐥 𝐀𝐩𝐢𝐭𝐜𝐡 𝐓𝐫𝐨𝐥𝐥 𝐓𝐩𝐢𝐭𝐜𝐡 𝛗𝐫𝐨𝐥𝐥 𝛗𝐩𝐢𝐭𝐜𝐡 

Value 0.3 0.3 11.5 4 𝜋/2 0 
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2) Gravity  

Gravity terms which influences the inertia of links is 

entered as 

𝐠 = [

𝟎
𝟎

−𝟗. 𝟖𝟎𝟔𝟐
𝟎

]   (36) 

Sinusoidal trajectory followed by all manipulator 

joints has been employed in all simulations table 4. 

𝛉𝐢 = 𝐀𝐢 𝐜𝐨𝐬(𝛚𝐢𝐭) − 𝟏               

 𝐢 = 𝟏 … 𝟔                
(37) 

 

Table 4. Joints sin trajectories specifications 

 Joint

1 

Joint

2 

Joint

3 

Joint

4 

Joint

5 

Joint

6 

𝑨𝒊 -1 -0.7 0.7 -1.2 -1 12 

𝝎𝒊 2𝜋 5⁄  2𝜋 4.5⁄  2𝜋 4⁄  2𝜋 4.2⁄  2𝜋 3⁄  2𝜋 4.1⁄  

 

3.2. Newton-Euler method 

In this method like Lagrange method Denavit and 

Hartenberg (D-H) transformation matrix of the 

coordinates from i-th link to i+1-th link 𝐑𝐢
𝐢+𝟏  are 

calculated and coordinate assignment is performed by 

manner expressed [13]. Figure 2 (left) and Denavit and 

Hartenberg (D-H) table 5. 

 

 

Table 5. Denavit and Hartenberg (D-H) table for Newton 

method 

Link  

number 
𝜶𝒊−𝟏 𝒂𝒊−𝟏 𝒅𝒊 𝜽𝒊 

1 0 0 0.317 𝜃1 + 𝜋 

2 90 0 0 𝜃2 + 𝜋/2 

3 0 0.45 0 𝜃3 + 𝜋/2 

4 90 0 0.48 𝜃4 + 𝜋 

5 90 0 0 𝜃5 + 𝜋 

6 90 0 0.07 𝜃6 

In the next step rotation axis ( 𝐙𝐢+𝟏
𝐢+𝟏 ), position vector 

of coordinate ( 𝐏𝐢+𝟏
𝐢 ), Position vector of center of mass 

( 𝐏𝐜𝐢+𝟏
𝐢+𝟏 ), link mass (𝐦𝐢), inertia of links about center 

of mass ( 𝐈𝐢+𝟏
𝐂𝐢+𝟏 ) are calculated from geometry and 

mass distribution of links and are imported to 

computations. 

3) Base motion  

In this method base motion are imported in 

calculations different from the Lagrange method as Eq. 

35 specifies 2-DOF motion of the base. 

4. Result and Discussion  

The dynamic equation of a manipulator arm with 

base motion is derived in two different methods. The 

derived equations of motion are simplified sufficiently 

and are solved in time domain with 100HZ frequency 

in Maple v15 software. In the dynamic simulations, the 

full capacity of an Intel PC core i5 CPU 2.8 GHz with 8 

MB cash and 4 GB RAM is employed. Calculations in 

Newton method lasted 27.5 (sec) and it was increased 

to 57.53 (sec) in the Lagrange method due to more 

complicated equations. The results are shown and 

compared in Figure 4, and also the torque error 

between two methods is calculated and shown in Figure 

5. It is observable that there are negligible differences 

in the results between two methods. Further, it is shown 

that the torque error between two methods is decreased 

from the base of the robot towards the end effector 

(from link 1 to link 6). At the end it is shown that the 

Lagrange method is better candidate to be used in cases 

where the base of the robot has translational and 

rotational acceleration and velocity motion 

simultaneously; however, it needs more calculation 

time. Further, it is demonstrated that the Newton-Euler 

method is easier to use for cases where there is only the 

rotational base motion and it needs less calculation 

time. 
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Figure 4. Joint torques under base motion 

  

 

Figure 5: Joint Torque Errors between Newton Euler 

and Lagrange Methods 
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