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Strong and Weak Forms for
One-Dimensional Problems

In this chapter, the strong and weak forms for several one-dimensional physical problems are developed.

Thestrong formconsists of thegoverningequationsand theboundaryconditions for aphysical system.The

governingequations areusuallypartial differential equations, but in theone-dimensional case theybecome

ordinary differential equations. The weak form is an integral form of these equations, which is needed to

formulate the finite element method.

In some numerical methods for solving partial differential equations, the partial differential equations

can be discretized directly (i.e. written as linear algebraic equations suitable for computer solution). For

example, in the finite differencemethod, one can directlywrite the discrete linear algebraic equations from

the partial differential equations. However, this is not possible in the finite element method.

A roadmap for the development of the finite elementmethod is shown inFigure 3.1.As can be seen from

the roadmap, there are three distinct ingredients that are combined to arrive at the discrete equations (also

called the systemequations; for stress analysis theyare called stiffness equations),whichare then solvedby

a computer. These ingredients are

1. the strong form, which consists of the governing equations for the model and the boundary conditions

(these are also needed for any other method);

2. the weak form;

3. the approximation functions.

The approximation functions are combined with the weak form to obtain the discrete finite element

equations.

Thus, the path from for the governing differential equations is substantially more involved than that for

finitedifferencemethods. In thefinitedifferencemethod, there isnoneed foraweakform; thestrong formis

directly converted to a set of discrete equations. The need for aweak formmakes the finite elementmethod

more challenging intellectually. A number of subtle points, such as the difference between various

boundary conditions,must be learned for intelligent use of themethod. In return for this added complexity,

however, finite element methods can much more readily deal with the complicated shapes that need to be

analyzed in engineering design.

Todemonstrate thebasic steps in formulating the strongandweak forms,wewill consider axially loaded

elastic bars and heat conduction problems in one dimension. The strong forms for these problems will be

developed along with the boundary conditions. Then wewill develop weak forms for these problems and

show that they are equivalent to the strong forms. We will also examine various degrees of continuity, or

smoothness, which will play an important role in developing finite element methods.
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The weak form is the most intellectually challenging part in the development of finite elements, so a

student may encounter some difficulties in understanding this concept; it is probably different from

anything else that he has seen before in engineering analysis. However, an understanding of these

procedures and the implications of solving aweak form are crucial to understanding the character of finite

element solutions. Furthermore, the procedures are actually quite simple and repetitive, so once it is

understood for one strong form, the procedures can readily be applied to other strong forms.

3.1 THE STRONG FORM IN ONE-DIMENSIONAL PROBLEMS

3.1.1 The Strong Form for an Axially Loaded Elastic Bar

Consider the static responseof anelastic bar of variable cross section such as shown inFigure3.2.This is an

example of a problem in linear stress analysis or linear elasticity, where we seek to find the stress

distributionsðxÞ in the bar. The stresswill results from the deformation of the body,which is characterized

by the displacements of points in the body,uðxÞ. The displacement results in a strain denoted by eðxÞ; strain
is a dimensionless variable. As shown in Figure 3.2, the bar is subjected to a body force or distributed

loading bðxÞ. The body force could be due to gravity (if the bar were placed vertically instead of

horizontally as shown), amagnetic force or a thermal stress; in the one-dimensional case, wewill consider

body force per unit length, so the units of bðxÞ are force/length. In addition, loads can be prescribed at the
ends of the bar, where the displacement is not prescribed; these loads are called tractions and denoted by�t.
These loads are in units of force per area, and when multiplied by the area, give the applied force.

Strong form 
(Chapter 3) 

Weak form 
(Chapter 3) 

Discrete equations 
(Chapter 5)

Approximation of functions 
(Chapter 4) 

Figure 3.1 Roadmap for the development of the finite element method.
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Figure 3.2 A one-dimensional stress analysis (elasticity) problem.

42 STRONG AND WEAK FORMS FOR ONE-DIMENSIONAL PROBLEMS



The bar must satisfy the following conditions:

1. It must be in equilibrium.

2. It must satisfy the elastic stress–strain law, known as Hooke’s law: sðxÞ ¼ EðxÞeðxÞ.
3. The displacement field must be compatible.

4. It must satisfy the strain–displacement equation.

The differential equation for the bar is obtained from equilibrium of internal force pðxÞ and external force
bðxÞ acting on the body in the axial (along the x-axis) direction. Consider equilibrium of a segment of

the bar along the x-axis, as shown in Figure 3.2. Summing the forces in the x-direction gives

�pðxÞ þ b xþ�x

2

� �
�xþ pðxþ�xÞ ¼ 0:

Rearranging the terms in the above and dividing by�x, we obtain

pðxþ�xÞ � pðxÞ
�x

þ b xþ�x

2

� �
¼ 0:

If we take the limit of the above equation as�x ! 0, the first term is the derivative dp=dx and the second
term becomes bðxÞ. Therefore, the above can be written as

dpðxÞ
dx

þ bðxÞ ¼ 0: ð3:1Þ

This is the equilibrium equation expressed in terms of the internal force p. The stress is defined as the force

divided by the cross-sectional area:

sðxÞ ¼ pðxÞ
AðxÞ ; so pðxÞ ¼ AðxÞsðxÞ: ð3:2Þ

The strain–displacement (or kinematical) equation is obtained by applying the engineering definition of

strain that we used in Chapter 2 for an infinitesimal segment of the bar. The elongation of the segment is

given by uðxþ�xÞ � uðxÞ and the original length is�x; therefore, the strain is given by

eðxÞ ¼ elongation

original length
¼ uðxþ�xÞ � uðxÞ

�x
:

Taking the limit of theaboveas�x ! 0,we recognize that the right right-hand side is thederivativeofuðxÞ.
Therefore, the strain–displacement equation is

eðxÞ ¼ du

dx
: ð3:3Þ

The stress–strain law for a linear elastic material is Hooke’s law, which we already saw in Chapter 2:

sðxÞ ¼ EðxÞeðxÞ; ð3:4Þ

where E is Young’s modulus.
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Substituting (3.3) into (3.4) and the result into (3.1) yields

d

dx
AE

du

dx

� �
þ b ¼ 0; 0 < x < l: ð3:5Þ

The above is a second-order ordinary differential equation. In the above equation, u(x) is the dependent

variable, which is the unknown function, and x is the independent variable. In (3.5) and thereafter the

dependence of functions on xwill be often omitted. The differential equation (3.5) is a specific form of the

equilibrium equation (3.1). Equation (3.1) applies to both linear and nonlinear materials whereas (3.5)

assumes linearity in the definition of the strain (3.3) and the stress–strain law (3.4). Compatibility is

satisfied by requiring the displacement to be continuous. More will be said later about the degree of

smoothness, or continuity, which is required.

To solve the above differential equation,weneed to prescribe boundary conditions at the two ends of the

bar. For the purpose of illustration, we will consider the following specific boundary conditions: at x ¼ l,

the displacement, uðx ¼ lÞ, is prescribed; at x ¼ 0, the force per unit area, or traction, denoted by �t, is
prescribed. These conditions are written as

sð0Þ ¼ E
du

dx

� �
x¼0

¼ pð0Þ
Að0Þ � ��t;

uðlÞ ¼ �u:

ð3:6Þ

Note that the superposed bars designate denote a prescribed boundary value in the above and throughout

this book.

The traction�t has the same units as stress (force/area), but its sign is positivewhen it acts in the positive

x-direction regardless of which face it is acting on, whereas the stress is positive in tension and negative in

compression, so that on a negative face a positive stress corresponds to a negative traction; this will be

clarified in Section 3.5. Note that either the load or the displacement can be specified at a boundary point,

but not both.

The governing differential equation (3.5) along with the boundary conditions (3.6) is called the strong

form of the problem. To summarize, the strong form consists of the governing equation and the boundary

conditions, which for this example are

ðaÞ d

dx
AE

du

dx

� �
þ b ¼ 0 on 0 < x < l;

ðbÞ sðx ¼ 0Þ ¼ E
du

dx

� �
x¼0

¼ ��t;

ðcÞ uðx ¼ lÞ ¼ �u:

ð3:7Þ

It should be noted that�t, �u and b are given. They are the data that describe the problem. The unknown is the

displacement uðxÞ.

3.1.2 The Strong Form for Heat Conduction in One Dimension1

Heat flow occurs when there is a temperature difference within a body or between the body and its

surroundingmedium.Heat is transferred in the form of conduction, convection and thermal radiation. The

heat flow through thewall of a heated room in thewinter is an example of conduction.On the other hand, in

convectiveheat transfer, the energy transfer to the bodydepends on the temperature difference between the

surface of the body and the surrounding medium. In this Section, we will focus on heat conduction. A

discussion involving convection is given in Section 3.5.

1Reccommended for Science and Engineering Track.
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Consider a cross section of awall of thickness l as shown in Figure 3.3. Our objective is to determine the

temperature distribution. Let AðxÞ be the area normal to the direction of heat flow and let sðxÞ be the heat
generated per unit thickness of thewall, denoted by l. This is often called aheat source.Acommonexample

of a heat source is the heat generated in an electric wire due to resistance. In the one-dimensional case, the

rate of heat generation is measured in units of energy per time; in SI units, the units of energy are joules (J)

per unit length (meters, m) and time (seconds, s). Recall that the unit of power is watts (1 W ¼ 1 J s�1). A

heat source sðxÞ is considered positivewhen heat is generated, i.e. added to the system, and negativewhen

heat is withdrawn from the system. Heat flux, denoted by qðxÞ, is defined as a the rate of heat flow across a

surface. Its units are heat rate per unit area; in SI units,W m�2. It is positivewhen heat flows in the positive

x-direction. We will consider a steady-state problem, i.e. a system that is not changing with time.

To establish the differential equation that governs the system, we consider energy balance (or con-

servation of energy) in a control volume of the wall. Energy balance requires that the rate of heat energy

(qA) that is generated in the control volume must equal the heat energy leaving the control volume, as the

temperature, and hence the energy in the control volume, is constant in a steady-state problem. The heat

energy leaving the control volume is the difference between the flow in at on the left-hand side, qA, and the

flow out on the right-hand side, qðxþ�xÞAðxþ�xÞ. Thus, energy balance for the control volume can be

written as

sðxþ�x=2Þ�x|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
heat generated

þ qðxÞAðxÞ|fflfflfflfflffl{zfflfflfflfflffl}
heat flow in

� qðxþ�xÞAðxþ�xÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
heat flow out

¼ 0:

Note that theheatfluxesaremultipliedby thearea toobtaina theheat rate,whereas the source s ismultiplied

by the length of the segment. Rearranging terms in the above and dividing by�x, we obtain

qðxþ�xÞAðxþ�xÞ � qðxÞAðxÞ
�x

¼ sðxþ�x=2Þ:

If we take the limit of the above equation as�x ! 0, the first term coincides with the derivative dðqAÞ=dx
and the second term reduces to sðxÞ. Therefore, the above can be written as

dðqAÞ
dx

¼ s: ð3:8Þ
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Figure 3.3 A one-dimensional heat conduction problem.
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The constitutive equation for heat flow,which relates the heat flux to the temperature, is knownasFourier’s

law and is given by

q ¼ �k
dT

dx
; ð3:9Þ

where T is the temperature and k is the thermal conductivity (which must be positive); in SI units, the

dimensions of thermal conductivity are Wm�1 oC�1. A negative sign appears in (3.9) because the heat

flows from high (hot) to low temperature (cold), i.e. opposite to the direction of the gradient of the

temperature field.

Inserting (3.9) into (3.8) yields

d

dx
Ak

dT

dx

� �
þ s ¼ 0; 0 < x < l: ð3:10Þ

When Ak is constant, we obtain

Ak
d2T

dx2
þ s ¼ 0; 0 < x < l: ð3:11Þ

At the two ends of the problem domain, either the flux or the temperaturemust be prescribed; these are the

boundaryconditions.Weconsider the specificboundaryconditionsof theprescribed temperatureT atx ¼ l

and prescribed flux q at x ¼ 0. The prescribed flux q is positive if heat (energy) flows out of the bar, i.e.

qðx ¼ 0Þ ¼ �q. The strong form for the heat conduction problem is then given by

d

dx
Ak

dT

dx

� �
þ s ¼ 0 on 0 < x < l;

� q ¼ k
dT

dx
¼ q on x ¼ 0;

T ¼ T on x ¼ l:

ð3:12Þ

3.1.3 Diffusion in One Dimension2

Diffusion is a processwhere amaterial is transported by atomicmotion. Thus, in the absence of themotion

of a fluid, materials in the fluid are diffused throughout the fluid by atomic motion. Examples are the

diffusionofperfume into a roomwhenaheavilyperfumedpersonwalks in, thediffusionof contaminants in

a lake and the diffusion of salt into a glass ofwater (thewaterwill get salty by diffusion even in the absence

of fluid motion).

Diffusion also occurs in solids. One of the simplest forms of diffusion in solids occurs when two

materials come in contactwith each other. There are twobasicmechanisms for diffusion in solids: vacancy

diffusion and interstitial diffusion. Vacancy diffusion occurs primarily when the diffusing atoms are of a

similar size. A diffusing atom requires a vacancy in the other solid for it to move. Interstitial diffusion,

schematically depicted in Figure 3.4, occurs when a diffusing atom is small enough to move between the

atoms in the other solid. This type of diffusion requires no vacancy defects.

Let c be the concentration of diffusing atomswith the dimension of atoms m�3. The flux of atoms, qðxÞ
(atoms m�2 s�1), is positive in the direction fromhigher to lower concentration. The relationship between

flux and concentration is known as Fick’s first law, which is given as

q ¼ �k
dc

dx
;

2Recommended for Science and Engineering Track.
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where k is the diffusion coefficient, m�2 s�1. The balance equation for steady-state diffusion can be

developed from Figure 3.4 by the same procedures that we used to derive the heat conduction equation by

imposing conservation of each species of atoms and Fick’s law. The equations are identical in structure to

the steady-state heat conduction equation and differ only in the constants and variables:

d

dx
Ak

dc

dx

� �
¼ 0 on 0 < x < l:

3.2 THE WEAK FORM IN ONE DIMENSION

To develop the finite element equations, the partial differential equations must be restated in an integral

form called the weak form. A weak form of the differential equations is equivalent to the governing

equation and boundary conditions, i.e. the strong form. In many disciplines, the weak form has specific

names; for example, it is called the principle of virtual work in stress analysis.

To show how weak forms are developed, we first consider the strong form of the stress analysis

problem given in (3.7). We start by multiplying the governing equation (3.7a) and the traction boundary

condition (3.7b) by anarbitrary functionwðxÞ and integrating over the domains onwhich theyhold: for the

governing equation, the pertinent domain is the interval ½0; l�, whereas for the traction boundary condition,
it is the cross-sectional area at x ¼ 0 (no integral is neededbecause this conditiononlyholds only at a point,

but we do multiply by the area A). The resulting two equations are

ðaÞ
Z l

0

w
d

dx
AE

du

dx

� �
þ b

� �
dx ¼ 0 8w;

ðbÞ wA E
du

dx
þ t

� �� �
x¼0

¼ 0 8w:

ð3:13Þ

The function wðxÞ is called theweight function; in more mathematical treatments, it is also called the test

function. In the above, 8w denotes thatwðxÞ is an arbitrary function, i.e. (3.13) has to hold for all functions

x
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Figure 3.4 Interstitial diffusion in an atomic lattice.
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wðxÞ. The arbitrariness of the weight function is crucial, as otherwise a weak form is not equivalent to the

strong form(seeSection3.7).Theweight functioncanbe thoughtofas anenforcer:whatever itmultiplies is

enforced to be zero by its arbitrariness.

Youmight have noticed thatwe did not enforce the boundary condition on the displacement in (3.13) by

theweight function. Itwill be seen that it is easy to construct trial or candidate solutionsuðxÞ that satisfy this
displacement boundary condition, sowewill assume that all candidate solutions of Equation (3.13) satisfy

this boundary condition. Similarly, you will shortly see that it is convenient to have all weight functions

satisfy

wðlÞ ¼ 0: ð3:14Þ

So we impose this restriction on the set of weight functions.

As you will see, in solving a weak form, a set of admissible solutions uðxÞ that satisfy certain

conditions is considered. These solutions are called trial solutions. They are also called candidate solutions.

One could use (3.13) to develop a finite element method, but because of the second derivative of uðxÞ
in the expression, very smooth trial solutions would be needed; such smooth trial solutions would be

difficult to construct in more than one dimension. Furthermore, the resulting stiffness matrix would not

be symmetric, because the first integral is not symmetric in wðxÞ and uðxÞ: For this reason, we will

transform (3.13) into a form containing only first derivatives. This will lead to a symmetric stiffness

matrix, allow us to use less smooth solutions and will simplify the treatment of the traction boundary

condition.

For convenience, we rewrite (3.13a) in the equivalent form:

Z l

0

w
d

dx
AE

du

dx

� �
dxþ

Z l

0

wb dx ¼ 0 8w: ð3:15Þ

Toobtain aweak form inwhich only first derivatives appear,we first recall the rule for taking the derivative

of a product:

d

dx
ðwf Þ ¼ w

df

dx
þ f

dw

dx
) w

df

dx
¼ d

dx
ðwf Þ � f

dw

dx
:

Integrating the above equation on the right over the domain [0, l], we obtain

Z l

0

w
df

dx
dx ¼

Z l

0

d

dx
ðwf Þdx�

Z l

0

f
dw

dx
dx:

The fundamental theorem of calculus states that the integral of a derivative of a function is the function

itself. This theoremenables us to replace the first integral on the right-hand side by a set of boundary values

and rewrite the equation as

Z l

0

w
df

dx
dx ¼ ðwf Þjl0 �

Z l

0

f
dw

dx
dx � ðwf Þx¼l � ðwf Þx¼0 �

Z l

0

f
dw

dx
dx: ð3:16Þ

Theabove formula isknownas integrationbyparts.Wewillfindthat integrationbyparts isusefulwhenever

we relate strong forms to weak forms.
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To apply the integration by parts formula to (3.15), let f ¼ AEðdu=dxÞ. Then (3.16) can be written as

Z l

0

w
d

dx
AE

du

dx

� �
dx ¼ wAE

du

dx

� �����l
0

�
Z l

0

dw

dx
AE

du

dx
dx: ð3:17Þ

Using (3.17), (3.15) can be written as follows:

wAE
du

dx|ffl{zffl}
s

0
BB@

1
CCA
��������
l

0

�
Z l

0

dw

dx
AE

du

dx
dxþ

Z l

0

wb dx ¼ 0 8w with wðlÞ ¼ 0: ð3:18Þ

Wenote that by the stress–strain law and strain–displacement equations, the underscored boundary term is

the stress s (as shown), so the above can be rewritten as

ðwAsÞx¼l � ðwAsÞx¼0 �
Z l

0

dw

dx
AE

du

dx
dxþ

Z l

0

wb dx ¼ 0 8w with wðlÞ ¼ 0:

The first term in the above vanishes because of (3.14): this is why it is convenient to construct weight

functions that vanish on prescribed displacement boundaries. Though the term looks quite insignificant, it

would lead to loss of symmetry in the final equations.

From (3.13b), we can see that the second term equals ðwAtÞx¼0, so the above equation becomes

Z l

0

dw

dx
AE

du

dx
dx ¼ ðwAtÞx¼0 þ

Z l

0

wb dx 8w with wðlÞ ¼ 0: ð3:19Þ

Let us recapitulate what we have done. We have multiplied the governing equation and traction

boundary by an arbitrary, smooth weight function and integrated the products over the domains where

they hold.We have added the expressions and transformed the integral so that the derivatives are of lower

order.

We now come to the crux of this development:We state that the trial solution that satisfies the above for

all smooth wðxÞ with wðlÞ ¼ 0 is the solution. So the solution is obtained as follows:

Find uðxÞ among the smooth functions that satisfy uðlÞ ¼ u such thatZ l

0

dw

dx
AE

du

dx
dx ¼ ðwAtÞx¼0 þ

Z l

0

wb dx 8w with wðlÞ ¼ 0:
ð3:20Þ

The above is called theweak form. The name originates from the fact that solutions to theweak form need

not be as smooth as solutions of the strong form, i.e. they have weaker continuity requirements. This is

explained later.

Understandinghowasolution to adifferential equationcanbeobtainedby this rather abstract statement,

and why it is a useful solution, is not easy. It takes most students considerable thought and experience to

comprehend the process. To facilitate this, we will give two examples in which a solution is obtained to a

specific problem.
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Wewill showin thenextsection that theweak form(3.20) is equivalent to theequilibriumequation (3.7a)

and traction boundary condition (3.7b). In otherwords, the trial solution that satisfies (3.20) is the solution

of the strong form. The proof of this statement inSection 3.4 is a crucial step in the theory offinite elements.

In getting to (3.19), we have gone through a set ofmathematical steps that are correct, butwe have no basis

for saying that the solution to theweak form is a solution of the strong form unless we can show that (3.20)

implies (3.7).

It is important to remember that the trial solutions uðxÞ must satisfy the displacement boundary

conditions (3.7c). Satisfying the displacement boundary condition is essential for the trial solutions, so

theseboundaryconditionsareoftencalledessential boundaryconditions.Wewill see inSection3.4 that the

traction boundary conditions emanate naturally from the weak form (3.20), so trial solutions need not be

constructed to satisfy the traction boundary conditions. Therefore, these boundary conditions are called

natural boundary conditions.Additional smoothness requirements on the trial solutions will be discussed

in Sections 3.3 and 3.9.

A trial solution that is smooth and satisfies the essential boundary conditions is called admissible.

Similarly, aweight function that is smooth and vanishes on essential boundaries is admissible.Whenweak

forms are used to solve a problem, the trial solutions and weight functions must be admissible.

Note that in (3.20), the integral is symmetric inw and u. This will lead to a symmetric stiffness matrix.

Furthermore, the highest order derivative that appears in the integral is of first order: this will have

important ramifications on the construction of finite element methods.

3.3 CONTINUITY

Although we have now developed the weak form, we still have not specified how smooth the weight

functions and trial solutions must be. Before examining this topic, we will examine the concept of

smoothness, i.e. continuity. A function is called a Cn function if its derivatives of order j for 0 � j � n

exist andare continuous functions in theentire domain.Wewill be concernedmainlywithC0; C�1 andC1

functions. Examples of these are illustrated in Figure 3.5. As can be seen, a C0 function is piecewise

continuously differentiable, i.e. its first derivative is continuous except at selected points. The derivative of

a C0 function is a C�1 function. So for example, if the displacement is a C0 function, the strain is a C�1

function.Similarly, if a temperaturefield is aC0 function, theflux is aC�1 function if the conductivity isC0.

In general, the derivative of a Cn function is Cn�1.

The degree of smoothness ofC0; C�1 andC1 functions can be remembered by some simplemnemonic

devices. As can be seen from Figure 3.5, aC�1 function can have both kinks and jumps. AC0 function has

no jumps, i.e. discontinuities, but it has kinks. A C1 function has no kinks or jumps. Thus, there is a

progression of smoothness as the superscript increases that is summarized in Table 3.1. In the literature,

jumps in the function are often called strongdiscontinuities,whereas kinks are calledweakdiscontinuities.

It isworthmentioning thatCADdatabases for smooth surfaces usually employ functions that are at least

C1 ; themost common are spline functions.Otherwise, the surfacewould possess kinks stemming from the

function description, e.g. in a car there would be kinks in the sheet metal wherever C1 continuity is not

observed. We will see that finite elements usually employ C0 functions.

x 

f (x) 

0C  

C –1

1C

Jumps 
Kinks

Figure 3.5 Examples of C�1, C0 and C1 functions.

50 STRONG AND WEAK FORMS FOR ONE-DIMENSIONAL PROBLEMS



3.4 THE EQUIVALENCE BETWEEN THE WEAK AND STRONG FORMS

In the previous section, we constructed the weak form from the strong form. To show the equivalence

between the two, wewill now show the converse: the weak form implies the strong form. This will insure

that when we solve the weak form, then we have a solution to the strong form.

The proof that the weak form implies the strong form can be obtained by simply reversing the steps by

whichweobtained theweakform.So insteadofusing integrationbyparts toeliminate the secondderivative

of uðxÞ, we reverse the formula to obtain an integral with a higher derivative and a boundary term. For this

purpose, interchange the terms in (3.17), which gives

Z l

0

dw

dx
AE

du

dx
dx ¼ wAE

du

dx

� �����l
0

�
Z l

0

w
d

dx
AE

du

dx

� �
dx:

Substituting the above into (3.20) and placing the integral terms on the left-hand side and the boundary

terms on the right-hand side gives

Z l

0

w
d

dx
AE

du

dx

� �
þ b

� �
dxþ wAðt þ sÞx¼0 ¼ 0 8w with wðlÞ ¼ 0: ð3:21Þ

Thekeytomaking theproofpossible is thearbitrarinessofwðxÞ. It canbeassumed tobeanythingweneed in

order to prove the equivalence. Our selection ofwðxÞ is guided by having seen this proof before –Whatwe

will do is not immediately obvious, but you will see it works! First, we let

w ¼ cðxÞ d

dx
AE

du

dx

� �
þ b

� �
; ð3:22Þ

where cðxÞ is smooth, cðxÞ > 0 on 0 < x < l and cðxÞ vanishes on the boundaries. An example of a

function satisfying the above requirements is cðxÞ ¼ xðl� xÞ. Because of how cðxÞ is constructed, it
follows that wðlÞ ¼ 0, so the requirement that w ¼ 0 on the prescribed displacement boundary, i.e. the

essential boundary, is met.

Inserting (3.22) into (3.21) yields

Z l

0

c
d

dx
AE

du

dx

� �
þ b

� �2
dx ¼ 0: ð3:23Þ

The boundary term vanishes because we have constructed the weight function so that wð0Þ ¼ 0. As the

integrand in (3.23) is the product of a positive function and the square of a function, it must be positive at

Table 3.1 Smoothness of functions.

Smoothness Kinks Jumps Comments

C �1 Yes Yes Piecewise continuous

C0 Yes No Piecewise continuously differentiable

C1 No No Continuously differentiable
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every point in the problemdomain. So the onlyway the equality in (3.23) ismet is if the integrand is zero at

every point! Hence, it follows that

d

dx
AE

du

dx

� �
þ b ¼ 0; 0 < x < l; ð3:24Þ

which is precisely the differential equation in the strong form, (3.7a).

From (3.24) it follows that the integral in (3.21) vanishes, so we are left with

ðwAðt þ sÞÞx¼0 ¼ 0 8w with wðlÞ ¼ 0: ð3:25Þ

As theweight function is arbitrary,we select it such thatwð0Þ ¼ 1 andwðlÞ ¼ 0. It is very easy to construct

such a function, for example, ðl� xÞ=l is a suitableweight function; any smooth function that you candraw

on the interval [0, l] that vanishes at x ¼ l is also suitable.

As the cross-sectional area A(0) 6¼ 0 and wð0Þ 6¼ 0, it follows that

s ¼ �t at x ¼ 0; ð3:26Þ

which is the natural (prescribed traction) boundary condition, Equation (3.7b).

The last remaining equation of the strong form, the displacement boundary condition (3.7c), is satisfied

by all trial solutions by construction, i.e. as can be seen from (3.20) we required that uðlÞ ¼ u . Therefore,

we can conclude that the trial solution that satisfies the weak form satisfies the strong form.

Another way to prove the equivalence to the strong form starting from (3.20) that is more instructive

about the character of the equivalence is as follows. We first let

rðxÞ ¼ d

dx
AE

du

dx

� �
þ b for 0 < x < l

and

r0 ¼ Að0Þsð0Þ þ t:

The variable rðxÞ is called the residual; rðxÞ is the error in Equation (3.7a) and r0 is the error in the traction
boundary condition (3.7b). Note that when rðxÞ ¼ 0, the equilibrium equation (3.7a) is met exactly and

when r0 ¼ 0 the traction boundary condition (3.7b) is met exactly.

Equation (3.20) can then be written as

Z l

0

wðxÞrðxÞ dxþ wð0Þr0 ¼ 0 8w with wðlÞ ¼ 0: ð3:27Þ

We now prove that rðxÞ ¼ 0 by contradiction. Assume that at some point 0 < a < l, rðaÞ 6¼ 0. Then

assuming rðxÞ is smooth, itmust benonzero in a small neighborhoodof x ¼ aas shown inFigure3.6(a).We

have complete latitude in the construction ofwðxÞ as it is an arbitrary smooth function. Soweconstruct it as

shown in Figure 3.6(b). Equation (3.27) then becomes

Z l

0

wðxÞrðxÞ dxþ wð0Þr0 � 1

2
rðaÞ� 6¼ 0:
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The above implies that (3.27) is violated, so by contradiction rðaÞ cannot be nonzero. This can be repeated
at anyother point in the open interval 0 < x < l, so it follows that rðxÞ ¼ 0 for 0 < x < l, i.e. the governing

equation (3.27) is met. We now let wð0Þ ¼ 1; as the integral vanishes because rðxÞ ¼ 0 for 0 < x < l, it

follows from (3.27) that r0 ¼ 0 and hence the traction boundary condition is also met.

We can see from the above why we have said that multiplying the equation, or to be more precise

the residual, by the weight function enforces the equation: because of the arbitrariness of the weight

function, anything it multiplies must vanish. The proofs of the equivalence of the strong and weak

forms hinge critically on the weak form holding for any smooth function. In the first proof (Equations

(3.7)–(3.20)),we selected a special arbitraryweight function (basedon foresight as to how the proofwould

evolve) that has to be smooth, whereas in the second proof, we used the arbitrariness and smoothness

directly. Theweight function in Figure 3.6(b)may not appear particularly smooth, but it is as smooth aswe

need for this proof.

Example 3.1

Develop the weak form for the strong form:

ðaÞ d

dx
AE

du

Ex

� �
þ 10Ax ¼ 0; 0 < x < 2;

ðbÞ ux¼0 � uð0Þ ¼ 10�4;

ðcÞ sx¼2 ¼ E
du

dx

� �
x¼2

¼ 10:

ð3:28Þ

Equation (3.28c) is a condition on the derivative of uðxÞ, so it is a natural boundary condition; (3.28b) is a
condition on uðxÞ, so it is an essential boundary condition. Therefore, as theweight functionmust vanish

on the essential boundaries, we consider all smooth weight functionswðxÞ such thatwð0Þ ¼ 0. The trial

solutions uðxÞmust satisfy the essential boundary condition uð0Þ ¼ 10�4.

x  

wr  

( )w x  

a

•

x  a  

xa  

( )w x  

wr  

a  

a

1 1 

x  

( )r x  ( )r x  

a

δ δ

xx

(a)

(b)

(c)

Figure 3.6 Illustrationof the equivalence between theweak and strong forms: (a) an example of the residual function;

(b)choiceof theweight functionand(c)product of residualandweight functions.On the left, theprocedure is shownfora

C� function; on the right for a C�1 function.
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We start by multiplying the governing equation and the natural boundary condition over the domains

where they hold by an arbitrary weight function:

ðaÞ
Z2
0

w
d

dx
AE

du

dx

� �� �
þ 10Ax

� �
dx ¼ 0 8wðxÞ;

ðbÞ ðwAðE du

dx
� 10ÞÞx¼2 ¼ 0 8wð2Þ:

ð3:29Þ

Nextwe integrate thefirst equation in theabovebyparts, exactlyaswedid ingoing from(3.13a) to (3.17):

Z2
0

w
d

dx
AE

du

dx

� �� �
dx ¼ wAE

du

dx

� �����x¼2

x¼0

�
Z2
0

dw

dx
AE

du

dx
dx: ð3:30Þ

We have constructed the weight functions so that wð0Þ ¼ 0; therefore, the first term on the RHS of the

above vanishes at x ¼ 0. Substituting (3.30) into (3.29a) gives

�
Z2
0

AE
dw

dx

du

dx
dxþ

Z2
0

10wAx dxþ wAE
du

dx

� �
x¼2

¼ 0 8wðxÞ with wð0Þ ¼ 0: ð3:31Þ

Substituting (3.29b) into the last term of (3.31) gives (after a change of sign)

Z2
0

AE
dw

dx

du

dx
dx�

Z2
0

10wAx dx� 10ðwAÞx¼2 ¼ 0 8wðxÞ with wð0Þ ¼ 0: ð3:32Þ

Thus, the weak form is as follows: find uðxÞ such that for all smooth uðxÞ with uð0Þ ¼ 10�4, such that

(3.32) holds for all smooth wðxÞ with wð0Þ ¼ 0.

Example 3.2

Develop the weak form for the strong form:

d2u

dx2
¼ 0 on 1 < x < 3;

du

dx

� �
x¼1

¼ 2; uð3Þ ¼ 1:

ð3:33Þ

The conditions on the weight function and trial solution can be inferred from the boundary conditions.

The boundary point x ¼ 1 is a natural boundary as the derivative is prescribed there, whereas the

boundary x ¼ 3 is an essential boundary as the solution itself is prescribed. Therefore, we require that

wð3Þ ¼ 0 and that the trial solution satisfies the essential boundary condition uð3Þ ¼ 1.

Next we multiply the governing equation by the weight function and integrate over the problem

domain; similarly, we multiply the natural boundary condition by the weight function, which yields

ðaÞ
Z3
1

w
d2u

dx2
dx ¼ 0;

ðbÞ w
du

dx
� 2

� �� �
x¼1

¼ 0:

ð3:34Þ
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Integration by parts of the integrand in (3.34a) gives

Z3
1

w
d2u

dx2
dx ¼ w

du

dx

� �
x¼3

� w
du

dx

� �
x¼1

�
Z3
1

dw

dx

du

dx
dx: ð3:35Þ

As wð3Þ ¼ 0, the first term on the RHS in the above vanishes. Substituting (3.35) into (3.34a) gives

�
Z3
1

dw

dx

du

dx
dx� w

du

dx

� �
x¼1

¼ 0: ð3:36Þ

Adding (3.34b) to (3.36) gives

Z3
1

dw

dx

du

dx
dxþ 2wð1Þ ¼ 0: ð3:37Þ

So theweak form is: finda smooth functionuðxÞwithuð3Þ ¼ 1 forwhich (3.37) holds for all smoothwðxÞ
with wð3Þ ¼ 0.

To show that the weak form implies the strong form, we reverse the preceding steps. Integration by

parts of the first term in (3.37) gives

Z3
1

dw

dx

du

dx
dx ¼ w

du

dx

� �����3
1

�
Z3
1

w
d2u

dx2
dx: ð3:38Þ

Next we substitute (3.38) into (3.37), giving

w
du

dx

� �
x¼3

� w
du

dx

� �
x¼1

�
Z3
1

w
d2u

dx2
dxþ 2wð1Þ ¼ 0: ð3:39Þ

Since on the essential boundary, the weight function vanishes, i.e. wð3Þ ¼ 0, the first term in the above

drops out. Collecting terms and changing signs give

Z3
1

w
d2u

dx2
dxþ w

du

dx
� 2

� �� �
x¼1

¼ 0: ð3:40Þ

We now use the same arguments as Equations (3.22)–(3.26). As wðxÞ is arbitrary, let

w ¼ cðxÞ d
2uðxÞ
dx2

;

where

cðxÞ ¼
0; x ¼ 1;
> 0; 1 < x < 3;
0; x ¼ 3:

8<
:
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Then (3.40) becomes

Z3
1

cðxÞ d2u

dx2

� �2

dx ¼ 0:

As the integrand is positive in the interval ½1; 3�, it follows that the only way that the integrand can

vanish is if

d2uðxÞ
dx2

¼ 0 for 1 < x < 3;

which is the differential equation in the strong form (3.33).

Now let wðxÞ be a smooth function that vanishes at x ¼ 3 but equals one at x ¼ 1. You can draw an

infinite number of such functions: any curve between those points with the specified end values will do.

As we already know that the integral in (3.40) vanishes, we are left with

w
du

dx
� 2

� �� �
x¼1

¼ 0 ) du

dx
� 2

� �
x¼1

¼ 0;

so the natural boundary condition is satisfied. As the essential boundary condition is satisfied by all trial

solutions, we can then conclude that the solution of the weak form is the solution to the strong form.

Example 3.3

Obtain a solution to the weak form in Example 3.1 by using trial solutions and weight functions of the

form

uðxÞ ¼ a0 þ a1x;

wðxÞ ¼ b0 þ b1x;

where a0 and a1 are unknown parameters and b0 and b1 are arbitrary parameters. Assume that A is

constant andE ¼ 105. To be admissible theweight functionmust vanish at x ¼ 0, sob0 ¼ 0. For the trial

solution to be admissible, it must satisfy the essential boundary condition uð0Þ ¼ 10�4, so a0 ¼ 10�4.

From this simplification, it follows that only one unknown parameter and one arbitrary parameter

remain, and

uðxÞ ¼ 10�4 þ a1x;
duðxÞ
dx

¼ a1;

wðxÞ ¼ b1x;
dw

dx
¼ b1:

ð3:41Þ

Substituting the above into the weak form (3.32) yields

Z2
0

b1a1E dx�
Z2
0

b1x 10 dx� ðb1x 10Þx¼2 ¼ 0:

Evaluating the integrals and factoring out b1 gives

b1ð2a1E � 20� 20Þ ¼ 0:
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As the above must hold for all b1, it follows that the term in the parentheses must vanish, so

a1 ¼ 20=E ¼ 2� 10�4. Substituting this result into (3.41) gives the weak solution, which we indicate

by superscript ‘lin’ as it is obtained from linear trial solutions: ulin ¼ 10�4ð1þ 2xÞ and slin ¼ 20 (the

stress-strain lawmust be used to obtain the stresses). The results are shown in Figure 3.7 and compared to

the exact solution given by

uexðxÞ ¼ 10�4ð1þ 3x� x3=6Þ; sexðxÞ ¼ 10ð3� x2=2Þ:

Observe that even this very simple linear approximation for a trial solution gives a reasonably accurate

result, but it is not exact. We will see the same lack of exactness in finite element solutions.

Repeat the above with quadratic trial solutions and weight functions

uðxÞ ¼ a0 þ a1xþ a2x2; wðxÞ ¼ b0 þ b1xþ b2x
2:

As before, because of the conditions on the essential boundaries, a0 ¼ 10�4 andb0 ¼ 0. Substituting the

above fields with the given values of a0 and b0 into the weak form gives

Z2
0

ðb1 þ 2b2xÞðEða1 þ 2a2xÞÞdx�
Z2
0

ðb1xþ b2x
2Þ10 dx� ððb1xþ b2x

2Þ 10Þx¼2 ¼ 0:

Integrating, factoring out b1, b2 and rearranging the terms gives

b1½Eð2a1 þ 4a2Þ � 40� þ b2 4a1 þ 32a2
3

� �
E � 200

3

� �
¼ 0:

As the abovemust hold for arbitraryweight functions, itmust hold for arbitraryb1 andb2. Therefore, the
coefficients ofb1 andb2 must vanish (recall the scalar product theorem),whichgives the following linear

algebraic equation in a1 and a2:
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Figure 3.7 Comparison of linear (lin) and quadratic (quad) approximations to the exact solution of (a) displace-

ments and (b) stresses.
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The solution is a1 ¼ 3� 10�4 and a2 ¼ �0:5� 10�4. The resulting displacements and stresses are

uquad ¼ 10�4ð1þ 3x� 0:5x2Þ; squad ¼ 10ð3� xÞ:

Theweak solution is shown in Figure 3.7, fromwhich you can see that the two-parameter, quadratic trial

solution matches the exact solution more closely than the one-parameter linear trial solution.

3.5 ONE-DIMENSIONAL STRESS ANALYSIS WITH ARBITRARY
BOUNDARY CONDITIONS

3.5.1 Strong Form for One-Dimensional Stress Analysis

We will now consider a more general situation, where instead of specifying a stress boundary condition

at x ¼ 0 and a displacement boundary condition at x ¼ l, displacement and stress boundary conditions

can be prescribed at either end. For this purpose, we will need a more general notation for the

boundaries.

The boundary of the one-dimensional domain, which consists of two end points, is denoted by �. The
portion of the boundary where the displacements are prescribed is denoted by�u ; the boundary where the

traction is prescribed is denoted by�t. In this general notation, both�u and�t can be empty sets (no points),

one point or two points. The traction and displacement both cannot be prescribed at the same boundary

point. Physically, this can be seen to be impossible by considering a bar such as that in Figure 3.2. If

we could prescribe both the displacement and the force on the right-hand side, this would mean that

the deformation of the bar is independent of the applied force. It would also mean that the material

properties have no effect on the force–displacement behavior of the bar. Obviously, this is physically

unrealistic, so any boundary point is either a prescribed traction or a prescribed displacement

boundary. We write this as �t \ �u ¼ 0. We will see from subsequent examples that this can be

generalized to other systems: Natural boundary conditions and essential boundary conditions cannot

be applied at the same boundary points.

We will often call boundaries with essential boundary conditions essential boundaries; similarly,

boundaries with natural boundary conditions will be called natural boundaries. We can then say that a

boundary cannot be both a natural and an essential boundary. It also follows from the theory of boundary

value problems that one type of boundary condition is needed at each boundary point, i.e. we cannot have

anyboundary atwhich neither an essential nor a natural boundary condition is applied.Thus, anyboundary

is either anessential boundaryor anatural boundaryand their union is the entireboundary.Mathematically,

this can be written as �t [ �u ¼ �.
To summarize the above, at any boundary, either the function or its derivative must be specified, but we

cannot specify both at the same boundary. So any boundary must be an essential boundary or a natural

boundary, but it cannot be both. These conditions are very important and can bemathematically expressed

by the two conditions that we have stated above:

�t [ �u ¼ �; �t \ �u ¼ 0: ð3:42Þ

The two boundaries are said to be complementary: the essential boundary plus its complement, the natural

boundary, constitute the total boundary, and vice versa.

Using the above notation, we summarize the strong form for one-dimensional stress analysis (3.7) in

Box 3.1.
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Box 3.1. Strong form for 1D stress analysis

d

dx
AE

du

dx

� �
þ b ¼ 0; 0 < x < l;

sn ¼ En
du

dx
¼ t on �t;

u ¼ u on �u:

ð3:43Þ

In the above, we have added a unit normal to the body and denoted it by n; as can be seen from Figure 3.2,

n ¼ �1 at x ¼ 0andn ¼ þ1 at x ¼ l. This trick enables us towrite theboundary condition in termsof the

tractions applied at either end. For example, when a positive force per unit area is applied at the left-hand

end of the bar in Figure 3.2, the stress at that end is negative, i.e. compressive, and sn ¼ �s ¼ t. At any

right-hand boundary point, n ¼ þ1 and so sn ¼ s ¼ t.

3.5.2 Weak Form for One-Dimensional Stress Analysis

In this section, we will develop the weak form for one-dimensional stress analysis (3.43), with arbitrary

boundary conditions. We first rewrite the formula for integration by parts in the notation introduced in

Section 3.2:

Z
�

w
df

dx
dx ¼ ðwfnÞj� �

Z
�

f
dw

dx
dx ¼ ðwfnÞj�u

þ ðwfnÞj�t
�
Z
�

f
dw

dx
dx: ð3:44Þ

In theabove, the subscript�on the integral indicates that the integral is evaluatedover theone-dimensional

problem domain, i.e. the notation� indicates any limits of integration, such as ½0; l�, ½a; b�. The subscript�
indicates that the preceding quantity is evaluated at all boundary points, whereas the subscripts �u and �t

indicate that theprecedingquantities areevaluatedon theprescribeddisplacement and tractionboundaries,

respectively. The second equality follows from the complementarity of the traction and displacement

boundaries: Since, as indicated by (3.42), the total boundary is the sum of the traction and displacement

boundaries, the boundary term can be expressed as the sum of the traction and displacement boundaries.

Theweight functions are constructed so thatw ¼ 0 on�u, and the trial solutions are constructed so that

u ¼ u on �u.

Wemultiply thefirst twoequations in the strong form(3.43)by theweight functionand integrateover the

domains overwhich theyhold: the domain� for the differential equation and the domain�t for the traction

boundary condition. This gives

ðaÞ
Z
�

w
d

dx
AE

du

dx

� �
þ b

� �
dx ¼ 0 8w;

ðbÞ ðwAðt � snÞÞj�t
¼ 0 8w:

ð3:45Þ

Denoting f ¼ AEðdu=dxÞ and using integration by parts (3.44) of the first term in (3.45a) and combining

with (3.45b) yields

ðwAsnÞj�u
þ ðwAtÞj�t

�
Z
�

dw

dx
AE

du

dx
dxþ

Z
�

wb dx ¼ 0 8w with w ¼ 0 on �u: ð3:46Þ
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The boundary term on �u vanishes because wj�u
¼ 0. The weak form then becomesZ

�

dw

dx
AE

du

dx
dx ¼ ðwAtÞj�t

þ
Z
�

wb dx 8w with w ¼ 0 on �u:

Atthispoint,weintroducesomenewnotation, sowewillnotneedtokeeprepeating thephrase‘uðxÞ issmooth

enoughandsatisfies theessentialboundarycondition’.For this purpose,wewilldenote the set of all functions

thataresmoothenoughbyH1.H1 functionsareC0 continuous.Mathematically, this isexpressedasH1 	 C0.

However,not allC0 functionsare suitable trial solutions.Wewill furtherelaborateonthis inSection3.9; H1 is

a space of functions with square integrable derivatives.

We denote the set of all functions that are admissible trial solutions by U, where

U ¼ uðxÞ uðxÞ 2 H1; u ¼ u on �u

��� 	
: ð3:47Þ

Anyfunction in the setU has to satisfyall conditions that follow thevertical bar.Thus, the abovedenotes the

set of all functions that are smooth enough (the first condition after the bar) and satisfy the essential

boundary condition (the condition after the comma). Thus, we can indicate that a function uðxÞ is an
admissible trial solution by stating that uðxÞ is in the set U, or uðxÞ 2 U.

We will similarly denote the set of all admissibleweight functions by

U0 ¼ wðxÞ wðxÞ 2 H1; w ¼ 0 on �u

��� 	
: ð3:48Þ

Notice that this set of functions is identical to U, except that the weight functions must vanish on the

essential boundaries. This space is distinguished from U by the subscript nought.

Such sets of functions are often called function spaces, or just spaces. The function spaceH1 contains an

infinite number of functions. Therefore, it is called an infinite-dimensional set. For a discussion of various

spaces, the reader may wish to consult Ciarlet (1978), Oden and Reddy (1978) and Hughes (1987).

With these definitions, we can write the weak form ((3.45), (3.47) and (3.48)) as in Box 3.2.

Box 3.2. Weak form for 1D stress analysis

Find uðxÞ 2 U such thatZ
�

dw

dx
AE

du

dx
dx ¼ ðwAtÞj�t

þ
Z
�

wb dx 8w 2 U0: ð3:49Þ

Note that the functions wðxÞ and uðxÞ appear symmetrically in the first integral in (3.49), whereas they do

not in (3.45a). In (3.49), both the trial solutions andweight functions appear as first derivatives, whereas in

the first integral in (3.45a), the weight functions appear directly and the trial solution appears as a second

derivative. It will be seen that consequently (3.49) leads to a symmetric stiffness matrix and a set of

symmetric linear algebraic equations, whereas (3.45a) does not.

3.6 ONE-DIMENSIONAL HEAT CONDUCTION WITH ARBITRARY
BOUNDARY CONDITIONS3

3.6.1 Strong Form for Heat Conduction in One Dimension with Arbitrary
Boundary Conditions

Following the same procedure as in Section 3.5.1, the portion of the boundary where the temperature is

prescribed, i.e. the essential boundary, is denoted by �T and the boundary where the flux is prescribed is

3Recommended for Science and Engineering Track.
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denoted by �q ; these are the boundaries with natural boundary conditions. These boundaries are

complementary, so

�q [ �T ¼ �; �q \ �T ¼ 0: ð3:50Þ

With theunit normal used in (3.43),we can express thenatural boundary condition asqn ¼ q. For example,

positive flux q causes heat inflow (negative q ) on the left boundary point where qn ¼ �q ¼ q and heat

outflow (positive q ) on the right boundary point where qn ¼ q ¼ q.

We can then rewrite the strong form (3.12) as shown in Box. 3.3.

Box 3.3. Strong form for 1D heat conduction problems

d

dx
Ak

dT

dx

� �
þ s ¼ 0 on �;

qn ¼ �kn
dT

dx
¼ q on �q;

T ¼ T on �T :

ð3:51Þ

3.6.2 Weak Form for Heat Conduction in One Dimension with Arbitrary
Boundary Conditions

Weagainmultiply thefirst twoequations in the strong form (3.51)by theweight function and integrateover

the domains overwhich theyhold, the domain� for the differential equation and the domain�q for the flux

boundary condition, which yields

ðaÞ
Z
�

w
d

dx
Ak

dT

dx

� �
dxþ

Z
�

ws dx ¼ 0 8w;

ðbÞ ðwAðqn� qÞÞj�q
¼ 0 8w:

ð3:52Þ

Using integration by parts of the first term in (3.52a) gives

Z
�

dw

dx
Ak

dT

dx
dx ¼ wAk

dT

dx
n

� �����
�

þ
Z
�

ws dx 8w with w ¼ 0 on �T : ð3:53Þ

Recalling that w ¼ 0 on �T and combining (3.53) with (3.52b) gives

Box 3.4: Weak form for 1D heat conduction problems

Find TðxÞ 2 U such thatZ
�

dw

dx
Ak

dT

dx
dx ¼ �ðwAqÞ

���
�q

þ
Z
�

ws dx 8w 2 U0: ð3:54Þ

Notice the similarity between (3.54) and (3.49).
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3.7 TWO-POINT BOUNDARY VALUE PROBLEM WITH GENERALIZED
BOUNDARY CONDITIONS 4

3.7.1 Strong Form for Two-Point Boundary Value Problems with Generalized
Boundary Conditions

The equations developed in this chapter for heat conduction, diffusion and elasticity problems are all of the

following form:

d

dx
A�

d�

dx

� �
þ f ¼ 0 on �: ð3:55Þ

Such one-dimensional problems are called two-point boundary value problems. Table 3.2 gives the

particular meanings of the above variables and parameters for several applications. The natural boundary

conditions can also be generalized as (based on Becker et al. (1981))

�n
d�

dx
� �

� �
þ bð�� �Þ ¼ 0 on ��: ð3:56Þ

Equation (3.56) is a natural boundary condition because the derivative of the solution appears in it. (3.56)

reduces to the standard natural boundary conditions considered in the previous sections when bðxÞ ¼ 0.

Notice that the essential boundary condition can be recovered as a limiting case of (3.56) when bðxÞ is a
penalty parameter, i.e. a large number (see Chapter 2). In this case,� � ��and Equation (3.56) is called a

generalized boundary condition.

An example of the above generalized boundary condition is an elastic bar with a spring attached as

shown in Figure 3.8. In this case, bðlÞ ¼ k and (3.56) reduces to

EðlÞnðlÞ du
dx

ðlÞ � t

� �
þ kðuðlÞ � uÞ ¼ 0 at x ¼ l; ð3:57Þ

where bðlÞ ¼ k is the spring constant. If the spring stiffness is set to a very large value, the above boundary

condition enforces uðlÞ ¼ u; if we let k ¼ 0, the above boundary condition corresponds to a prescribed

traction boundary. In practice, such generalized boundary conditions (3.57) are often used to model the

influence of the surroundings. For example, if the bar is a simplifiedmodel of a building and its foundation,

the spring can represent the stiffness of the soil.

4Recommended for Advanced Track.

Table 3.2 Conversion table for alternate physical equations of the general form (3.55)

and (3.56).

Field/parameter Elasticity Heat conduction Diffusion

� u T c

� E k k

f b s s
�� �t ��q ��q
�� �u �T �c

�� �t �q �q

�� �u �T �c

b k h h
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Another example of the applicationof this boundary condition is convective heat transfer,where energy is

transferred between the surface of the wall and the surrounding medium. Suppose convective heat transfer

occurs at x ¼ l. Let TðlÞ be thewall temperature at x ¼ l and T be the temperature in the medium. Then the

flux at the boundary x ¼ l is given by qðlÞ ¼ hðTðlÞ � TÞ, so bðlÞ ¼ h and the boundary condition is

kn
du

dx
þ hðTðlÞ � TÞ ¼ 0; ð3:58Þ

where h is convection coefficient, which has dimensions of W m�2 oC�1. Note that when the convection

coefficient is very large, the temperature T is immediately felt at x ¼ l and thus the essential boundary

condition is again enforced as a limiting case of the natural boundary condition.

There are two approaches to deal with the boundary condition (3.56).Wewill call them the penalty and

partitionmethods. In the penaltymethod, the essential boundary condition is enforced as a limiting case of

the natural boundary condition by equating bðxÞ to a penalty parameter. The resulting strong form for the

penalty method is given in Box. 3.5.

Box 3.5. General strong form for 1D problems-penalty method

d

dx
A�

d�

dx

� �
þ f ¼ 0 on �;

�n
d�

dx
� �

� �
þ bð�� �Þ ¼ 0 on �:

ð3:59Þ

In the partition approach, the total boundary is partitioned into the natural boundary, ��, and the

complementary essential boundary, ��. The natural boundary condition has the generalized form defined

by Equation (3.56). The resulting strong form for the partition method is summarized in Box 3.6.

Box 3.6. General strong form for 1D problems-partition method

ðaÞ d

dx
A�

d�

dx

� �
þ f ¼ 0 on �;

ðbÞ �n
d�

dx
� �

� �
þ bð�� �Þ ¼ 0 on ��;

ðcÞ � ¼ � on ��:

ð3:60Þ

3.7.2 Weak Form for Two-Point Boundary Value Problems with Generalized
Boundary Conditions

In this section, we will derive the general weak form for two-point boundary value problems. Both the

penalty and partition methods described in Section 3.7.1 will be considered. To obtain the general weak

( )u l

( )ku l-

u

t

k

Figure 3.8 An example of the generalized boundary for elasticity problem.
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form for thepenaltymethod,wemultiply the twoequations in the strong form(3.59) by theweight function

and integrate over the domains over which they hold: the domain � for the differential equation and the

domain � for the generalized boundary condition.

ðaÞ
Z
�

w
d

dx
A�

d�

dx

� �
þ f

� �
dx ¼ 0 8w;

ðbÞ wA �n
d�

dx
� �

� �
þ bð�� �Þ

� �����
�

¼ 0 8w:
ð3:61Þ

After integrating by parts the first term in (3.61a) and adding (3.61b), the general weak form for 1D

problems is summarized in Box 3.7.

BOX 3.7. General weak form for 1D problems-penalty method

Find �ðxÞ 2 H1 such thatZ
�

dw

dx
A�

d�

dx
dx�

Z
�

wf dx� wAð�� bð�� �ÞÞ��
�
¼ 0 8w 2 H1: ð3:62Þ

Note that in the penalty method, �� � �, the weight function is arbitrary on �, i.e. 8wðxÞ 2 H1, and the

solution is not a priori enforced to vanish on the essential boundary, i.e. �ðxÞ 2 H1. The essential boundary

condition is obtained as a limiting case of the natural boundary condition bymaking bðxÞ very large, i.e. a
penalty parameter.

In the partition method, the general weak form for one-dimensional problems is given in Box 3.8.

Box 3.8. General weak form for 1D problems-partition method

Find �ðxÞ 2 U such thatZ
�

dw

dx
A�

d�

dx
dx�

Z
�

wf dx� wAð�� bð�� �ÞÞ
���
��

¼ 0 8w 2 U0; ð3:63Þ

where U and U0 are given in (3.47) and (3.48), respectively. Notice that in the partition approach, the

weight function vanishes on the essential boundary, ��, i.e., 8w 2 U0. The boundaries �� and �� are

complementary.

3.8 ADVECTION–DIFFUSION 5

Inmanysituations, a substance isboth transportedanddiffused throughamedium.Forexample, apollutant

in an aquifer is dispersed by both diffusion and the movement of thewater in the aquifer. In cooling ponds

for power plants, heat energymoves through the pond by both diffusion and transport due tomotion of the

water. If sugar is added to a cup of coffee, it will disperse throughout the cup by diffusion; dispersal is

accelerated by stirring, which advects the sugar. The dispersal due tomotion of the fluid has several names

besides advection: convection and transport are two other widely used names.

5Recommnded for Advanced Track.
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3.8.1 Strong Form of Advection–Diffusion Equation

Consider the one-dimensional advection–diffusion of a species in a one-dimensional model of cross-

sectional areaAðxÞ, it could be a pipe or an aquifer; the concentration of the species or energy is denoted by
�ðxÞ. In an aquifer, the flowmay extend to a large distance normal to the plane, sowe consider a unit depth,

where depth is the dimension perpendicular to the plane. In a pipe,AðxÞ is simply the cross-sectional area.

The velocity of the fluid is denoted by vðxÞ, and it is assumed to be constant in the cross section at each

point along the axis, i.e. for each x. A source sðxÞ is considered; it may be positive or negative. The latter

indicates decay or destruction of the species. For example, in the transport of a radioactive contaminant,

sðxÞ is thechange inaparticular isotope,whichmaydecreasedue todecayor increasedue to formation.The

fluid is assumed to be incompressible, which has some ramifications that you will see later.

The conservation principle states that the species (be it a material, an energy or a state) is conserved in

each control volume�x. Therefore, the amount of species enteringminus the amount of leaving equals the

amount produced (a negative volumewhen the species decays). In this case, we have twomechanisms for

inflowandoutflow, the advection,which is ðAv�Þx, anddiffusion,which isqðxÞ. The conservationprinciple
can then be expressed as

ðAv�Þx þ ðAqÞx � ðAv�Þxþ�x � ðAqÞxþ�x þ�xsxþ�x=2 ¼ 0:

Dividing by�x and taking the limit�x ! 0, we obtain (after a change of sign)

dðAv�Þ
dx

þ dðAqÞ
dx

� s ¼ 0: ð3:64Þ

We now consider the incompressibility of the fluid. For an incompressible fluid, the volume of material

entering a control volume equals the volume of material leaving, which gives

ðAvÞx ¼ ðAvÞxþ�x:

Putting the right-hand side on the left-hand side, dividing by�x and letting�x ! 0, we obtain

dðAvÞ
dx

¼ 0: ð3:65Þ

If we use the derivative product rule on the first term of (3.64), we obtain

dðAv�Þ
dx

¼ dðAvÞ
dx

�þ Av
d�

dx
; ð3:66Þ

where the first term on the RHS vanishes by (3.65), so substituting (3.66) into (3.64) yields

Av
d�

dx
þ dðAqÞ

dx
� s ¼ 0: ð3:67Þ

This is the conservation equation for a species in a moving incompressible fluid. If the diffusion is linear,

Fick’s first law holds, so

q ¼ �k
d�

dx
; ð3:68Þ
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where k is the diffusivity. Substituting (3.68) into (3.67) gives

Av
d�

dx
� d

dx
Ak

d�

dx

� �
� s ¼ 0: ð3:69Þ

Theabove is called the advection–diffusion equation.Thefirst termaccounts for the advection (sometimes

called the transport) of thematerial. The second termaccounts for thediffusion.The third term is the source

term.

We consider the usual essential and natural boundary conditions

ðaÞ � ¼ � on ��;

ðbÞ � k
d�

dx
n ¼ qn ¼ q on �q;

ð3:70Þ

where �� and �q are complementary, see (3.50).

The advection–diffusion equation is important in its own right, but it is also a model for many other

equations. Equations similar to the advection–diffusion equation are found throughout the field of

computational fluid dynamics. For example, the vorticity equation is of this form. If we replace � by v,

then the second term in (3.66) corresponds to the transport term in theNavier–Stokes equations, which are

the fundamental equations of fluid dynamics.

3.8.2 Weak Form of Advection–Diffusion Equation

We obtain the weak form of (3.69) by multiplying the governing equation by an arbitrary weight function

wðxÞ and integrating over the domain. Similarly, theweak statement of the natural boundary conditions is

obtained bymultiplying (3.70b) with theweight function and the areaA. The resultingweak equations are

ðaÞ
ð
�

w Av
d�

dx

� �
� d

dx
Ak

d�

dx

� �
� s

� �
dx ¼ 0 8w;

ðbÞ Aw kn
d�

dx
þ q

� �����
�q

¼ 0 8w:
: ð3:71Þ

The spaces of trial solution and weight function are exactly as before, see (3.47) and (3.48).

We can see that the second term in Equation (3.71a) is unsymmetric in w and � and involves a second
derivative, which wewant to avoid as it would require smoother trial solutions than is convenient.We can

reduce the order of the derivatives by integration by parts.

Thefirst term in (3.71a) is puzzlingas it involvesafirst derivativeonly, but it is not symmetric. It turnsout

that we cannot make this term symmetric via integration by parts, as the integrand then becomes

ðdw=dxÞAv�: In this case, integration by parts just switches the derivative from the trial solution to the

weight function. So we leave this term as it is.

Integration by parts of the second term in (3.71a) and combining with (3. 71b) gives

Z
�

wAv
d�

dx

� �
dx þ

Z
�

dw

dx
Ak

d�

dx

� �
dx �

Z
�

ws dxþ ðAwqÞ
���
�q

¼ 0; ð3:72Þ

Theweak formis thenas follows:find the trial solution�ðxÞ 2 U such that (3.72)holds forallwðxÞ 2 U0.

We will not prove that the weak form implies the strong form; the procedure is exactly like before and

consists of simply reversing the preceding steps. An important property of (3.72) is that the first term is not

symmetric in wðxÞ and �ðxÞ. Therefore, the discrete equations for this weak form will not be symmetric.
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Equation (3.72) and its boundary conditions become trickywhen k ¼ 0. In that case, there is no diffusion,

only transport. Treatment of this special case is beyond this book, see Donea and Huerta (2002).

Instead of the flux boundary condition (3.70b), the total inflow of material at the boundary is often

prescribed by the alternate boundary condition

ð�k
d�

dx
þ v�Þn ¼ qT : ð3:73Þ

Integrating the first term in (3.72) by parts and adding the product of theweight function, areaA and (3.73)

gives

�
Z
�

dw

dx
Av� dxþ

Z
�

dw

dx
Ak

d�

dx

� �
dx�

Z
�

ws dxþ ðAwqTÞ
���
�q

¼ 0: ð3:74Þ

Theweak form then consists of Equation (3.74) together with an essential boundary condition (3.70a) and

the generalized boundary condition (3.73).

3.9 MINIMUM POTENTIAL ENERGY 6

An alternative approach for developing the finite element equations that is widely used is based on

variational principles. The theory that deals with variational principles is called variational calculus, and

at first glance it can seem quite intimidating to undergraduate students. Here we will give a simple

introduction in the context of one-dimensional stress analysis and heat conduction. We will also show that

the outcomeof thesevariational principles is equivalent to theweak formfor symmetric systems suchas heat

conductionandelasticity.Therefore, thefiniteelementequationsarealso identical.Finally,wewill showhow

variationalprinciplescanbedevelopedfromweakforms.Thevariationalprinciplecorresponding totheweak

form for elasticity is called the theorem of minimum potential energy. This theorem is stated in Box 3.9.

Box 3.9. Theorem of minimum potential energy

The solution of the strong form is the minimizer of

WðuðxÞÞ for 8uðxÞ 2 U where WðuðxÞÞ ¼ 1

2

Z
�

AE
du

dx

� �2

dx

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Wint

�
Z
�

ub dxþ ðuAtÞj�t

0
@

1
A

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Wext

:ð3:75Þ

In elasticity,W is the potential energy of the system.Wehave indicated by the subscripts ‘int’ and ‘ext’ that

the first term is physically the internal energy and the second term the external energy.

Wewill now show that theminimizer ofWðuðxÞÞ corresponds to theweak form,whichwe already know

implies the strong form. Showing that the equation for theminimizer ofWðuðxÞÞ is theweak form implies

that theminimizer is the solution, aswehavealready shown that the solution to theweak formis the solution

of the strong form.

One of the major intellectual hurdles in learning variational principles is to understand the meaning of

WðuðxÞÞ.WðuðxÞÞ is a function of a function. Such a function of a function is called a functional. Wewill

now examine howWðuðxÞÞ varies as the function uðxÞ is changed (or varied). An infinitesimal change in a

function is called a variation of the function and denoted by �uðxÞ � �wðxÞ, where wðxÞ is an arbitrary

function (we will use both symbols) and 0 < � 
 1, i.e. it is a very small positive number.

6Recommended for Structural Mechanics and Advanced Tracks.
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The corresponding change in the functional is called the variation in the functional and denoted by �W,

which is defined by

�W ¼ WðuðxÞ þ �wðxÞÞ �WðuðxÞÞ � WðuðxÞ þ �uðxÞÞ �WðuðxÞÞ: ð3:76Þ

Thisequation is analogous to thedefinitionofadifferential except that in the latteroneconsidersachange in

the independent variable seeOden andReddy (1983) andReddy (2000) for details onvariational calculus.

A differential gives the change in a function due to a change of the independent variable. Avariation of a

functional gives the change in a functional due to a change in the function. If you replace ‘function’ by

‘functional’ and ‘independent variable’ by ‘function’ in the first sentence, you have the second sentence.

From the statement of minimum potential energy given in Box 3.9, it is clear that the function

uðxÞ þ �wðxÞmust still be in U. To meet this condition, wðxÞmust be smooth and vanish on the essential

boundaries, i.e.

wðxÞ 2 U0: ð3:77Þ

Let us evaluate the variation of the first term in �Wint. From the definition of the variation of a functional,

Equation (3.76), it follows that

�Wint ¼ 1

2

Z
�

AE
du

dx
þ �

dw

dx

� �2

dx� 1

2

Z
�

AE
du

dx

� �2

dx

¼ 1

2

Z
�

AE
du

dx

� �2

þ 2�
du

dx

dw

dx
þ �2

dw

dx

� �2
 !

dx� 1

2

Z
�

AE
du

dx

� �2

dx:

ð3:78Þ

The first and fourth terms in the above cancel. The third term can be neglected because � is small, so its

square is a second-order term. We are left with

�Wint ¼ �

Z
�

AE
dw

dx

� �
du

dx

� �
dx: ð3:79Þ

The variation in the external work is evaluated by using the definition of a variation and the second term in

Equation (3.75); we divide it into the parts due to the body force and traction for clarity. This gives

�W�
ext ¼

Z
�

ðuþ �wÞb dx�
Z
�

ub dx ¼ �

Z
�

wb dx

�W�
ext ¼ ðuþ �wÞA�tj�t

�ðu�tÞAj�t
¼ �ðwA�tÞj�t

ð3:80Þ

�Wext ¼ �W�
ext þ �W�

ext ¼ �

Z
�

wbdxþ ðwA�tÞj�t

0
@

1
A ð3:81Þ

At the minimum of WðuðxÞÞ, the variation of the functional must vanish, just as the differentials or the

derivatives of a function vanish at a minimum of a function. This is expressed as �W ¼ 0. Thus, we have

0 ¼ �W ¼ �Wint � �Wext: ð3:82Þ

Substituting (3.79)–(3.81) into the above and dividing by � yields the following: for uðxÞ 2 U,

�W=� ¼
Z
�

AE
dw

dx

� �
du

dx

� �
dx�

Z
�

wb dx� ðwAtÞ
����
�t

¼ 0; wðxÞ 2 U0: ð3:83Þ

68 STRONG AND WEAK FORMS FOR ONE-DIMENSIONAL PROBLEMS



Do you recognize the above? It is precisely the statement of the weak form, Equation (3.49) that we

developed in Section 3.6. Also recall that we have shown in Section 3.4 that the weak form implies the

strong form, so it follows that the minimizer of the potential energy functional gives the strong form.

To be precise,we have only shown that a stationary point of the energy corresponds to the strong form. It

can also be shown that the stationary point is a minimizer, see Equation (3.75) or Becker, Carey and Oden

(1981, pp. 60–62).

In most books on variational principles, the change in the function uðxÞ, instead of being denoted by

�wðxÞ, is denoted by �uðxÞ. Equation (3.83) is then written as follows. Find u 2 U such that

�W ¼
Z
�

AE
du

dx

� �
dð�uÞ
dx

� �
dx�

Z
�

�ub dx� ð�uA tÞ
���
�t

¼ 0 8�u 2 U0: ð3:84Þ

Thiscanbe further simplifiedbyusing the strain–displacement equationand the stress-strain lawin thefirst

terms in the first integrand in (3.84), which gives

�W ¼
Z
�

As �edx

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
�Wint

�
Z
�

b�udxþ ð�tA�u Þj�t

0
@

1
A

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�Wext

¼ 0
ð3:85Þ

The above is called the principle of virtual work: the admissible displacement field (u 2 U) for which the

variation in the internalwork �Wint equals thevariation in the externalwork �Wext for all8�u 2 U0 satisfies

equilibrium and the natural boundary conditions. Note that (3.85) is identical to theweak forms (3.49) and

(3.83), just the nomenclature is different.

Avery interesting feature of the minimum potential energy principle is its relationship to the energy of

the system. Consider the termWint in Equation (3.75). Substituting the strain–displacement equation (3.3)

and Hooke’s law (3.4) enables us to write it as

Wint ¼
Z
�

wint A dx ¼ 1

2

Z
�

AEe2 dx: ð3:86Þ

If we examine a graph of a linear law, Figure 3.9, we can see that the energy per unit volume is

wint ¼ ð1=2ÞEe2. Thus,Wint, the integral of the energy density over the volume, is the total internal energy

int
1
2

w σε=
dwint

de

e

s

Figure 3.9 Definition of internal energy density or strain energy density wint.
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of the system, which is why the subscript ‘int’, which is short for ‘internal’, is appended to this term. This

energy is also called the strain energy, which is the potential energy that is stored in a body when it

is deformed.This energy canbe recoveredwhen thebody is unloaded.Thinkof ametal ruler that is bentor a

spring that is compressed; when the force is released, they spring back releasing the stored energy. The

second term is also an energy, as the two terms that comprise Wext are products of force (b or t) and

displacement u; in any case, it has to be an energy for the equation to be dimensionally consistent.

We can rewrite the functional in Equation (3.75) as

W ¼ Wint �Wext ð3:87Þ

by using the definitions underscored, and the variational principle is �W ¼ 0. This clarifies the physical

meaningof theprincipleofminimumpotential energy: the solution is theminimizer (i.e. a stationarypoint)

of the potential energyW among all admissible displacement functions.

Manyfinite element textsuse the theoremofminimumpotential energy as ameans for formulatingfinite

elementmethods.Thenaturalquestion that emerges in theseapproaches to teachingfiniteelements is:How

did this theorem come about and how can corresponding principles be developed for other differential

equations? In fact, the development of variational principles took many years and was a topic of intense

research in the eighteenth and nineteenth centuries. Variational principles cannot be constructed by simple

rules like we have used for weak forms. However, some weak forms can be converted to variational

principles, and in the next section, we show how to construct a variational principle for 1D stress analysis

and heat conduction.

An attractive feature of the potential energy theorem is that it holds for any elastic system. Thus, if we

write the energy for any other system, we can quickly derive finite element equations for that system; this

will be seen inChapter 10 for beams.Variational principles are also very useful in the study of the accuracy

and convergence of finite elements.

The disadvantage of variational approach is that there are many systems to which they are not readily

applicable. Simple variational principles cannot be developed for the advection–diffusion equation for

which we developed a weak form in Section 3.7 by the same straightforward procedure as for the other

equations.Variational principles canonlybedeveloped for systems that are self-adjoint. Theweak formfor

the advection–diffusion equation is not symmetric, and it is not a self-adjoint system (see Becker, Carey

and Oden (1981) for definition of self-adjoint systems).

Variationalprinciples identical to those forelasticityapply toheat transfer andotherdiffusionequations.

This is not surprising, as the equations are identical except for the parameters. As an example, the

variational principle for heat conduction is given in Box 3.10.

Box 3.10. Variational principle for heat conduction

Let WðTðxÞÞ ¼ 1

2
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�

Ak
dT

dx

� �2

dx

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
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���
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@
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|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Wext

;

then the solution of the strong form of (3.51) is the minimizer ofWðTðxÞÞ for 8TðxÞ 2 U.

The functional in this variational principle is not a physical energy; in fact, the temperature itself

corresponds to the physical energy. However, the functional is often called an energy even for diffusion

equations; wewill call it amathematical energy. The proof of the equivalence of this principle to theweak

form (and hence to the strong form) of the heat conduction equations just involves replacing the symbols in

(3.78)–(3.83) according to Table 3.2; the mathematics is identical regardless of the symbols.
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3.10 INTEGRABILITY 7

So far we have left the issue of the smoothness of the weight functions and trial solutions rather nebulous.

We will now define the degree of smoothness required in weak forms more precisely. Many readers may

want to skip this material on an initial reading, as the rest of the book is quite understandable without an

understanding of this material.

The degree of smoothness that is required in theweight and trial functions is determined by how smooth

they need to be so that the integrals in the weak form, such as (3.54), can be evaluated. This is called the

integrability of the weak form. If the weight and trial functions are too rough, then the integrals cannot be

evaluated, so then obviously the weak form is not usable.

Wenext roughlyexaminehowsmooth is smoothenough. If you lookat aC�1 function that is not singular

(does not become infinite), you can see that it is obviously integrable, as the area under such a function is

well defined. Even the derivative of a C�1 function is integrable, for at a point of discontinuity x ¼ a of

magnitude p, the derivative is theDirac delta function p�ðx� aÞ. By the definitionof aDirac delta function
(See Appendix A5), Z x2

x1

p�ðx� aÞ dx ¼ p if x1 � a � x2:

So the integral of the derivative of aC�1 function is well defined. However, the product of the derivatives

of the weight and trial functions appears in the weak form. If both of these functions are C�1, and the

discontinuities occur at the same point, say x ¼ a, then the weak form will contain the termR x2
x1

p2�ðx� aÞ2 dx. The integrand here can be thought of as ‘infinity squared’: there is no meaningful

way to obtain this integral. So C�1 continuity of the weight and trial functions is not sufficient.

On the contrary, if theweight and trial functions areC0 and not singular, then the derivatives areC�1 and

the integrand will be the product of two C�1 functions. You can sketch some functions and see that the

product of thederivativesof twoC�1 functionswill alsobeC�1 as longas the functions are bounded (donot

become infinite). Since a bounded C�1 function is integrable, C0 continuity is smooth enough for the

weight and trial functions.

This continuity requirement can also be justified physically. For example, in stress analysis, a C�1

displacement field would have gaps or overlaps at the points of discontinuity of the function. This would

violate compatibility of the displacement field. Although gaps are dealt with inmore advancedmethods to

model fracture, they are not within the scope of themethods that we are developing here. Similarly in heat

conduction, aC�1 temperature fieldwould entail an infinite heat flux at the points of discontinuity,which is

not physically reasonable. Thus, the notions of required smoothness, which arise from the integrability of

the weak form, also have a physical basis.

In mathematical treatments of the finite element method, a more precise description of the required

degree of smoothness is made: the weight and trial functions are required to possess square integrable

derivatives. A derivative of a function uðxÞ is called square integrable ifWintð�Þ, defined as

Wintð�Þ ¼ 1

2

Z
�

�A
d�

dx

� �2

dx; ð3:88Þ

is bounded, i.e.Wintð�Þ < 1. The value of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wintð�Þ

p
is often called an energy norm. For heat conduction,

� ¼ T and �ðxÞ ¼ kðxÞ > 0. In elasticity, �ðxÞ ¼ EðxÞ > 0 and � ¼ u and (3.88) corresponds to the strain

energy, which appears in the principle of minimum potential energy.

It can be proven that H1 is a subspace of C0, i.e. H1 	 C0, so any function inH1 is also a C0 function.

However, the converse is not true:C0 functions that are not inH1 exist. An example of a function that isC0,

7Recommended for Advanced Track.
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but not H1, is examined in Problem 3.8. However, such functions are usually not of the kind found in

standard finite element analysis (except in fracture mechanics), so most readers will find that the

specification of the required degree of smoothness by C0 continuity is sufficient.
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Problems

Problem 3.1
Show that the weak form of

d

dx
AE

du

dx

� �
þ 2x ¼ 0 on 1 < x < 3;

sð1Þ ¼ E
du

dx

� �
x¼1

¼ 0:1;

uð3Þ ¼ 0:001

is given by

Z3
1

dw

dx
AE

du

dx
dx ¼ �0:1ðwAÞx¼1 þ

Z3
1

2xw dx 8w with wð3Þ ¼ 0:

Problem 3.2
Show that the weak form in Problem 3.1 implies the strong form.

Problem 3.3
Consider a trial (candidate) solution of the form uðxÞ ¼ a0 þ a1ðx� 3Þ and a weight function of the same

form.Obtain a solution to theweak form inProblem3.1.Check the equilibriumequation in the strong form

in Problem 3.1; is it satisfied?

Check the natural boundary condition; is it satisfied?

Problem 3.4
Repeat Problem 3.3 with the trial solution uðxÞ ¼ a0 þ a1ðx� 3Þ þ a2ðx� 3Þ2.
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Problem 3.5
Obtain the weak form for the equations of heat conduction with the boundary conditions Tð0Þ ¼ 100 and

qð10Þ ¼ hT . The condition on the right is a convection condition.

Problem 3.6
Given the strong form for the heat conduction problem in a circular plate:

k
d

dr
r
dT

dr

� �
þ rs ¼ 0; 0 < r � R:

natural boundary condition :
dT

dr
ðr ¼ 0Þ ¼ 0;

essential boundary condition : Tðr ¼ RÞ ¼ 0;

where R is the total radius of the plate, s is the heat source per unit length along the plate radius, T is the

temperature and k is the conductivity. Assume that k, s and R are given:

a. Construct the weak form for the above strong form.

b. Use quadratic trial (candidate) solutions of the form T ¼ a0 þ a1r þ a2r2 and weight functions of the
same form to obtain a solution of the weak form.

c. Solve the differential equationwith the boundary conditions and show that the temperature distribution

along the radius is given by

T ¼ s

4k
ðR2 � r2Þ:

Problem 3.7
Given the strong form for the circular bar in torsion (Figure 3.10):

d

dx
JG

d�

dx

� �
þ m ¼ 0; 0 � x � l;

natural boundary condition : Mðx ¼ lÞ ¼ JG
d�

dx

� �
l

¼ M;

essential boundary condition : �ðx ¼ 0Þ ¼ �;

( )m x

x

( )M x l M= =  

(          )0xf f= =

l

0=x x l=

Figure 3.10 Cylindrical bar in torsion of Problem 3.7.
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wheremðxÞ is a distributed moment per unit length,M is the torsion moment, � is the angle of rotation,G

is the shear modulus and J is the polar moment of inertia given byJ ¼ �C4=2, where C is the radius of the

circular shaft.

a. Construct the weak form for the circular bar in torsion.

b. Assume thatm(x) = 0 and integrate the differential equation given above. Find the integration constants

using boundary conditions.

Problem 3.8
Consider a problem on 0 � x � l which has a solution of the form

u ¼
� 1

2

� �l
x

l
; x � l

2
;

x

l
� 1

2

� �l

� 1

2

� �l
x

l
; x >

l

2
:

8>>><
>>>:

a. Show that for l > 0 the solution u is C0 in the interval 0 � x � l.

b. Show that for 0 < l � 1=2 the solution u is not in H1.

Problem 3.9
Consider an elastic barwith a variable distributed spring pðxÞ along its length as shown in Figure 3.11. The
distributed spring imposes an axial force on the bar in proportion to the displacement.

Consider a bar of length l, cross-sectional area AðxÞ, Young’s modulus EðxÞ with body force bðxÞ and
boundary conditions as shown in Figure 3.11.

a. Construct the strong form.

b. Construct the weak form.

Problem 3.10
Consider an elastic bar in Figure 3.2. The bar is subjected to a temperature field TðxÞ. The temperature

causes expansion of the bar and the stress-strain law is

sðxÞ ¼ EðxÞðeðxÞ � aðxÞTðxÞÞ;

where a is the coefficient of thermal expansion, which may be a function of x.

p(x) 

t

l

x

b x( )

Figure 3.11 Elastic bar with distributed springs of Problem 3.9.
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a. Develop the strong form by replacing the standard Hooke’s law with the above in the equilibrium

equation; use the boundary conditions given in Problem 3.1.

b. Construct the weak form for (3.43) when the above law holds.

Problem 3.11
Find the weak form for the following strong form:

�
d2u

dx2
� luþ 2x2 ¼ 0; �; l are constants; 0 < x < 1;

subject to uð0Þ ¼ 1; uð1Þ ¼ �2.

Problem 3.12
Themotion of an electric charge flux qV is proportional to the voltage gradient. This is described byOhm’s

law:

qV ¼ �kV
dV

dx
;

where kV is electric conductivity and V is the voltage. Denote QV as the electric charge source.

Construct the strong form by imposing the condition that the electric charge is conserved.

Problem 3.13
Find the weak form for the following strong form:

x
d2u

dx2
þ du

dx
� x ¼ 0; 0 � x � 1;

subject to uð0Þ ¼ uð1Þ ¼ 0.

Problem 3.14
Consider a bar in Figure 3.12 subjected to linear body force bðxÞ ¼ cx. The bar has a constant cross-

sectional area A and Young’s modulus E. Assume quadratic trial solution and weight function

uðxÞ ¼ a1 þ a2xþ a3x2; wðxÞ ¼ b1 þ b2xþ b3x
2;

where ai are undetermined parameters.

a. For what value of aI is uðxÞ kinematically admissible?

321

x

L/2 L/2

Figure 3.12 Elastic bar subjected to linear body force of Problem 3.14.
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b. Using the weak form, set up the equations for aI and solve them. To obtain the equations, express the

principle of virtual work in the form b2ð� � �Þ þ b3ð� � �Þ ¼ 0. By the scalar product theorem, each of the

parenthesized terms, i.e. the coefficients of bI , must vanish.

c. Solve the problem in Figure 3.12 using two 2-node elements considered in Chapter 2 of equal size.

Approximate the external load at node 2 by integrating the body force from x ¼ L=4 to x ¼ 3L=4.
Likewise, compute the external at node 3 by integrating the body force from x ¼ 3L=4 to x ¼ L.

Problem 3.15
Consider the bar in Problem 3.14.

a. Using an approximate solution of the form uðxÞ ¼ a0 þ a1xþ a2x2, determine uðxÞ by the theorem of

minimum potential energy. Hint: after enforcing admissibility, substitute the above trial solution into

(3.75) and minimize with respect to independent parameters.

b. Compare the solution obtained in part (a) to an exact solution of the equation E
d2u

dx2
þ cx ¼ 0.

c. Does sðLÞ ¼ 0 for the approximate solutions?

d. Check whether the stress obtained from uðxÞ by s ¼ E
du

dx
satisfies the equilibrium.
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4
Approximation of Trial
Solutions, Weight Functions
and Gauss Quadrature for
One-Dimensional Problems

We now consider the next important ingredient of the finite element method (FEM): the construction of

the approximations. In Chapter 3, we derived weak forms for the elasticity and heat conduction

problems in one dimension. The weak forms involve weight functions and trial solutions for the

temperature, displacements, solute concentrations and so on. In the FEM, the weight functions and

trial solutions are constructed by subdividing the domain of the problem into elements and constructing

functions within each element. These functions have to be carefully chosen so that the FEM is

convergent: The accuracy of a correctly developed FEM improves with mesh refinement, i.e. as element

size, denoted by h, decreases, the solution tends to the correct solution. This property of the FEM is of

great practical importance, as mesh refinement is used by practitioners to control the quality of the finite

element solutions.

For example, the accuracy of a solution is often checked by rerunning the same problem with a finer

mesh; if the difference between the coarse andfinemesh solutions is small, it canbe inferred that the coarse

meshsolution isquiteaccurate.Onthecontrary, ifa solutionchangesmarkedlywith refinementof themesh,

the coarse mesh solution is inaccurate, and even the finer mesh may still be inadequate.

Although themathematical theoryof convergence is beyond the scopeof thebook, loosely speaking, the

two necessary conditions for convergence of the FEM are continuity and completeness. This can

schematically be expressed as

Continuity þ Completeness ! Convergence

Bycontinuitywemean that the trial solutionsandweight functionsaresufficiently smooth.Thedegreeof

smoothness that is required depends on the order of the derivatives that appear in the weak form. For the

second-orderdifferential equationsconsidered inChapter 3,where thederivatives in theweak formarefirst

derivatives, we have seen that the weight functions and trial solutions must be C0 continuous.

Completeness is amathematical term that refers to thecapabilityof a seriesoffunctions toapproximatea

given smooth function with arbitrary accuracy. For convergence of the FEM, it is sufficient that as the

element sizes approach zero, the trial solutions and weight functions and their derivatives up to and
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