2.1

The laws of indices

Introduction

A power, or an index, is used to write a product of numbers very compactly. The plural of index is indices. In this leaflet we remind you of how this is done, and state a number of rules, or laws, which can be used to simplify expressions involving indices.

1. Powers, or indices

We write the expression

$$
3 \times 3 \times 3 \times 3 \quad \text { as } \quad 3^{4}
$$

We read this as 'three to the power four'.
Similarly

$$
z \times z \times z=z^{3}
$$

We read this as ' z to the power three' or ' z cubed'.
In the expression b^{c}, the index is c and the number b is called the base. Your calculator will probably have a button to evaluate powers of numbers. It may be marked x^{y}. Check this, and then use your calculator to verify that

$$
7^{4}=2401 \quad \text { and } \quad 25^{5}=9765625
$$

Exercises

1. Without using a calculator work out the value of
a) 4^{2},
b) 5^{3},
c) 2^{5},
d) $\left(\frac{1}{2}\right)^{2}$,
e) $\left(\frac{1}{3}\right)^{2}$,
f) $\left(\frac{2}{5}\right)^{3}$.
2. Write the following expressions more concisely by using an index.
a) $a \times a \times a \times a$,
b) $(y z) \times(y z) \times(y z)$,
c) $\left(\frac{a}{b}\right) \times\left(\frac{a}{b}\right) \times\left(\frac{a}{b}\right)$.

Answers

1. a) 16 ,
b) 125 ,
c) 32 ,
d) $\frac{1}{4}$,
e) $\frac{1}{9}$,
f) $\frac{8}{125}$.
2. a) a^{4},
b) $(y z)^{3}$,
c) $\left(\frac{a}{b}\right)^{3}$.

2. The laws of indices

To manipulate expressions involving indices we use rules known as the laws of indices. The laws should be used precisely as they are stated - do not be tempted to make up variations of your own! The three most important laws are given here:

First law

$$
a^{m} \times a^{n}=a^{m+n}
$$

When expressions with the same base are multiplied, the indices are added.

Example

We can write

$$
7^{6} \times 7^{4}=7^{6+4}=7^{10}
$$

You could verify this by evaluating both sides separately.

Example

$$
z^{4} \times z^{3}=z^{4+3}=z^{7}
$$

Second Law

$$
\frac{a^{m}}{a^{n}}=a^{m-n}
$$

When expressions with the same base are divided, the indices are subtracted.

Example

We can write

$$
\frac{8^{5}}{8^{3}}=8^{5-3}=8^{2} \quad \text { and similarly } \quad \frac{z^{7}}{z^{4}}=z^{7-4}=z^{3}
$$

Third law

$$
\left(a^{m}\right)^{n}=a^{m n}
$$

Note that m and n have been multiplied to yield the new index $m n$.

Example

$$
\left(6^{4}\right)^{2}=6^{4 \times 2}=6^{8} \quad \text { and } \quad\left(e^{x}\right)^{y}=e^{x y}
$$

It will also be useful to note the following important results:

$$
a^{0}=1, \quad a^{1}=a
$$

Exercises

1. In each case choose an appropriate law to simplify the expression:
a) $5^{3} \times 5^{13}$,
b) $8^{13} \div 8^{5}$,
c) $x^{6} \times x^{5}$,
d) $\left(a^{3}\right)^{4}$,
e) $\frac{y^{7}}{y^{3}}$,
f) $\frac{x^{8}}{x^{7}}$.
2. Use one of the laws to simplify, if possible, $a^{6} \times b^{5}$.

Answers

1. a) 5^{16},
b) 8^{8},
c) x^{11},
d) a^{12},
e) y^{4}, f) $x^{1}=x$.
2. This cannot be simplified because the bases are not the same.
