The Unit Circle

Exact Measurements and Symmetry

Consider the unit circle: a circle of radius 1 , centered at the origin. The x and y-axes break up the plane into four quadrants, labeled 1-4, as shown below:

Now look at Quadrant 1. If we sketch in a ray at an angle of $\frac{\pi}{4}$ radians (45 degrees), we can calculate the coordinate (x, y) by using Pythagoras' Theorem to determine the lengths of the legs (remember, the x coordinate is the length of the horizontal leg, the y-coordinate the length of the vertical leg):

Therefore, we have these exact measurements:

- $\quad \sin \frac{\pi}{4}=\frac{\sqrt{2}}{2}, \cos \frac{\pi}{4}=\frac{\sqrt{2}}{2}$ and $\tan \frac{\pi}{4}=1$.

We can also sketch rays at angles of $\frac{\pi}{6}$ radians (30 degrees) and $\frac{\pi}{3}$ radians (60 degrees) in Quadrant 1. These form parts of an equilateral (all sides and angles equal) triangle. Using Pythagoras' Theorem, we can determine exact coordinates as shown below:

This gives us more exact measurements:

- $\sin \frac{\pi}{6}=\frac{1}{2}, \cos \frac{\pi}{6}=\frac{\sqrt{3}}{2}$ and $\tan \frac{\pi}{6}=\frac{\sqrt{3}}{3}$,
- $\sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}, \cos \frac{\pi}{3}=\frac{1}{2}$ and $\tan \frac{\pi}{3}=\sqrt{3}$.

You should memorize these so-called "First Quadrant Exact Measures". A neat way to memorize these values is shown on the next page:

- First Quadrant Exact Measures:

1) Set up a table with three columns: angle measures for $0,30,45,60$ and 90 degrees and their equivalent radians, and a column for the cosine and sine values of these angles.
2) Fill in "blank roots over 2 " in the cosine and sine columns.
3) Fill in these blank roots with 4, 3, 2, 1, 0 for the cosine, and $0,1,2,3,4$ for the sine.
4) Simplify what you can, and you have the table!

Other Quadrants:

The cosine, sine and tangent values change sign according to the quadrant in which the angle θ is located, according to this table:

Quadrant 2	Quadrant 1
$\cos \theta<0$	$\cos \theta>0$
$\sin \theta>0$	$\sin \theta>0$
$\tan \theta<0$	$\tan \theta>0$
Quadrant 3	Quadrant 4
$\cos \theta<0$	$\cos \theta>0$
$\sin \theta<0$	$\sin \theta<0$
$\tan \theta>0$	$\tan \theta<0$

To determine exact values in other quadrants, use symmetry to "revert" to a reference angle in the first quadrant, then attach a negative sign if necessary.

Examples:

- $\cos \frac{2 \pi}{3}=-\frac{1}{2}$ since the angle $\frac{2 \pi}{3}$ is in Quadrant 2, where the cosine is negative, and the angle $\frac{2 \pi}{3}$ is symmetrical with the angle $\frac{\pi}{3}$ in Quadrant 1. So we look up $\cos \frac{\pi}{3}$ on our table, see that it is $\frac{1}{2}$, then attach the negative sign.
- $\sin \frac{3 \pi}{4}=\frac{\sqrt{2}}{2}$. The angle $\frac{3 \pi}{4}$ is in Quadrant 2, where the sine is positive. The angle $\frac{3 \pi}{4}$ is symmaterical with the angle $\frac{\pi}{4}$ in Quadrant 1. We look up $\sin \frac{\pi}{4}=\frac{\sqrt{2}}{2}$, and keep the sign positive.

Note: the tangent column can be found by remembering that $\tan \theta=\frac{\sin \theta}{\cos \theta}$.

The Complete Unit Circle with Exact Measurements

Quadrant 1 θ	$\cos \theta$	$\sin \theta$		Quadrant 3 θ	$\cos \theta$	$\sin \theta$
$0(0 \mathrm{deg})$	1	0		$\pi(180 \mathrm{deg})$	-1	0
$\pi / 6(30 \mathrm{deg})$	$\sqrt{3} / 2$	$1 / 2$		$7 \pi / 6(210 \mathrm{deg})$	$-\sqrt{3} / 2$	$-1 / 2$
$\pi / 4(45 \mathrm{deg})$	$\sqrt{2} / 2$	$\sqrt{2} / 2$		$5 \pi / 4(225 \mathrm{deg})$	$-\sqrt{2} / 2$	$-\sqrt{2} / 2$
$\pi / 3(60 \mathrm{deg})$	$1 / 2$	$\sqrt{3} / 2$		$4 \pi / 3(240 \mathrm{deg})$	$-1 / 2$	$-\sqrt{3} / 2$
Quadrant 2 θ				Quadrant 4		
$\pi / 2(90 \mathrm{deg})$	0	1		$3 \pi / 2(270 \mathrm{deg})$	0	-1
$2 \pi / 3(120 \mathrm{deg})$	$-1 / 2$	$\sqrt{3} / 2$		$5 \pi / 3(300 \mathrm{deg})$	$1 / 2$	$-\sqrt{3} / 2$
$3 \pi / 4(135 \mathrm{deg})$	$-\sqrt{2} / 2$	$\sqrt{2} / 2$		$7 \pi / 4(315 \mathrm{deg})$	$\sqrt{2} / 2$	$-\sqrt{2} / 2$
$5 \pi / 6(150 \mathrm{deg})$	$-\sqrt{3} / 2$	$1 / 2$		$11 \pi / 6(330 \mathrm{deg})$	$\sqrt{3} / 2$	$-1 / 2$

