

Code review guide

Author: Jameel Nabbo
Website: www.jameelnabbo.com

Table of contents

Introduction
Code review Checklist

Steps to perform on code review task
Tips for code review

Starting the Code review
Writing the vulnerability

Introduction:
Preforming a code review job needs some concentration and focus on the written environment
and understanding of its IO (input/output) and processing system, and before preforming a code
review task we should make some checks and ensure that the application/system we’re testing is
up and running.

Notice: Read about the language that you will test its code, if you don’t have an idea about
the language this will be difficult.

Code review Checklist:
In some situations, with our clients, like preforming code review for banks, you may not use
your personal/work computer instead they may give you a private computer to perform the task.
In this situation we have to check and ask the developers or responsible persons to run the code
in front of our eyes within the written IDE, so we can see its up and running,

Notice: some clients give you the code and tell you to run it, also they may not have the
knowledge of how its developed, they may be uses outsource company to write the code, in this
situation, you have to build the application using the written IDE and report the build errors and
bugs to the project manager.

Never preform a code review job without having a working code, this is very dangerous, because
clients sometimes give us the wrong project and because for some reason we didn’t tested the
code in the IDE, and directly jumped into the code analysis we may have a problem latter on.

Moving on, we need to make a cheat-sheet that contain the following information, and this
information we’ll put them into the Code review Header area, so we can know what we did and
also the client as well:

Question Example answer
What is the application language Java,C#,C++,C,VB,PHP,Python etc,
How much lines in it 100,000K
What is the development IDE Eclipse , Visual studio, Net beans, Xcode

,Android Studio , Zend PHP…
What is the development environment .Net 4.5 , Java SE , Java EE
Are there any dependencies in the application
written in a deferent language?

Assembly DLL, C++ libraries etc..

Answering the above questions will help us understand the project and have an idea about what
tasks can be performed to well done this job.

Then we have to make a clone of the project(s) and build it, by us or by the responsible person in
the company.

Steps to perform on code review task:

1- Build the project
2- Understand the environment
3- Create a cheat sheet of the external libraries used
4- Run the code within its IDE
5- Insert break points on the main functions (if possible) to understand the data submitted

and parameters in the run time.
6- Create a new folder for the project, and copy all code files into it as the following:

6.A: Remove all dependencies in the project
6.B: Remove all DLL files and exclude all files that doesn’t have codes in it.
6.C Make sure the code files you copied have same structure as the original project.

Summary of what we did:

We built the project and confirmed its working on the run time, also we created a new
folder and excluded all other dependencies that is not code with the same project
structure.

Now we are good to go for the code analysis using manual and automated ways, but
there’s things to understand before jumping to the stage:

1- Automated tools generate lots of false positive/negatives alerts.
2- The Manual code review first is a must.
3- Don’t depend on the what automated tools founds.

Tips for code review

Tip Description
Review fewer than 400 lines of code at a time Developers should review no more than 200

to 400 lines of code (LOC) at a time. The
brain can only effectively process so much
information at a time; beyond 400 LOC, the
ability to find defects diminishes.

In practice, a review of 200-400 LOC over 60
to 90 minutes should yield 70-90% defect
discovery. So, if 10 defects existed in the
code, a properly conducted review would find
between seven and nine of them.

Take your time. Inspection rates should under
500 LOC per hour

It can be tempting to tear through a review,
assuming that someone else will catch the
errors that you don´t find. However, a
research shows a significant drop in defect
density at rates faster than 500 LOC per hour.
Code reviews in reasonable quantity, at a
slower pace for a limited amount of time
results in the most effective code review.

Do not review for more than 60 minutes at a
time

Just as you shouldn´t review code too quickly,
you also should not review for too long in one
sitting. When people engage in any activity
requiring concentrated effort over a period of
time, performance starts dropping off after
about 60 minutes. Studies show that taking
breaks from a task over a period of time can
greatly improve quality of work. Conducting
more frequent reviews should reduce the need
to ever have to conduct a review of this
length.

Set goals and capture metrics and screenshots Using SMART criteria, start with external
metrics. For example, "reduce support calls
by 15%," or "cut the percentage of defects
injected by development in half." This
information should give you a quantifiable

picture of how your code is improving. "Fix
more bugs" is not an effective goal.

It´s also useful to watch internal process
metrics, including:

Inspection rate: the speed with which a review
is performed
Defect rate: the number of bugs found per
hour of review
Defect density: the average number of bugs
found per line of code
Realistically, only automated or strictly
controlled processes can provide repeatable
metrics. A metrics-driven code review tool
gathers data automatically so that your
information is accurate and without human
bias. To get a better sense of effective code
review reporting, you can see how our code
review tool, Collaborator, does it.

Starting the Code review:
Starting the task by analyzing the main entry points for the application for example:

Java SE: we start looking at the main function
Java EE: we start looking at the config functions
C#: we look at the startup class
Python: we look at main function etc.

After we understand the application’s main entry point we start analyzing the calls that made to
initiate the application startup and analyze them one by one.

Then we start move into the first calls that made up by functions and procedures and what is the
return points, notice that some applications made up using MVC logics which is stand for

Model View Controller

Model: database tier or business logic
View: user’s tier or business logic
Controller: processing tier, and act as interface between View and Model.

So, in the MVC app’s also catching the main entry point is deferent than other logic, in MVC we
start look at the main config area that links all controllers in the application, also the MVC logic
is not only made up for web applications, it also can be Desktop/mobile/ or IOT application.

For example, in the same .Net Framework we have also deferent environment and this can be
categorized as the project type:
Mobile applications / Web applications / IOT applications / Desktop applications /

When looking to the functions we track the return points and data presentation points, here’s an
example of an XSS in sample code written in PHP,

Index.HTML -> have a form that submit the username to another PHP page
Hello.PHP -> prints the input that coming from index.html page using post request,

In the PHP page:
<?php
$username = $_POST[‘username’];
Echo $username;
?>

As we can see in the code above its 100% vulnerable to XSS at least, here’s how:

If the user puts for example <script>alert (1) </script> this string will go to the PHP page and
then printed on the page without any filtration on it. And as we can see there’s no filtration or
protection made in the backend side before presenting this information.

So, the main idea of analyzing functions is to understand their behaviors and the way they
written, and what is their input, output and how this output made.

Here’s a summary about a functions and procedures
checklist:

Question Description
What is this function doing? Understand how this functions works, for

example is it responsible for resetting user
password?, or selecting user’s data from the
database and pass it to another function who
process these data in a readable format!

How this function executed? We should understand how this function have
been executed, for example: this function is
executed after providing the user a valid
session that have expiry time.

What is the inputs or parameters for this
function.

This step is very important since lots of the
vulnerabilities show up in this point, for
example this function is accepting two
parameters and then pass a database select
statement.

Is there any validation made on the input When executing the code and taking the
Params, we should track what king of
validation made on these functions and start
think about a way to bypass them,

What is the returned values after running this
function

After tracking how the function works and
understanding its behavior, we should track
the returned (Processed input) after complete
execution of this function.

As we can see in the checklist above, we should make these steps on all the functions that the
code have manually and then write them into our report in case we found a vulnerability within
it.

Another important point is to also see how the code preforming data manipulation inside of the
memory, for example
Int number = ReadUserInput ();

The (number) variable has been defined as an integer, but what if we pass a number
9999999999999999 that’s more than the int32 in memory what will happen? also what if we
pass strings instead of passing numbers to the (number) variable also what will happen?

Asking the mentioned questions for the scenario above will let us check if there’s any restrictions
made before assigning the return value to (number) variable like if there’s some if statements or
Try Catch blocks that handle the malicious user input in the real time.

Now preforming using the automated tools:

Language Tool

NodeJs https://github.com/ajinabraham/NodeJsScan

PHP

https://sourceforge.net/projects/rips-scanner

Java http://findbugs.sourceforge.net/
.Net https://msdn.microsoft.com/en-

us/library/bb429476(v=vs.80).aspx
JavaScript http://jshint.com
C# https://codecrawler.codeplex.com/
.Net, Java, C/C++,
HTML, JavaScript,
ASP, ColdFusion,
PHP, COBOL

http://www.scovetta.com/yasca.html

ASP, JSP, Perl,
PHP, Python

https://github.com/wireghoul/graudit

C, C#, PHP, Java,
Ruby, ASP,
JavaScript

https://github.com/CoolerVoid/codewarrior

Writing the vulnerability:
When you find a vulnerability, we should write the following in our report:

1- CWE
2- Vulnerability standard name
3- Vulnerability description
4- Vulnerability effect and risk
5- Line number and path for the Vulnerable code (screenshot is also fine).
6- How it can be fixed
7- Vulnerability type (Local/Remote).

Author: Jameel Nabbo
Website: www.jameelnabbo.com

