A Quick Guide to 3D Plotting with MATLAB, Mathematica, and Wolfram Alpha

We want a surface plot and a plot of the level curves of

$$
f(x, y)=\sin \left(x^{2}\right)+\cos \left(y^{2}\right) \quad \text { for } \quad(x, y) \in[-\pi, \pi] \times[-\pi, \pi]
$$

- Wolfram Alpha: (www.wolframalpha.com)

Type using plain language what you want. For example:

$$
\text { 3D plot of } \sin \left(x^{\wedge} 2\right)+\cos \left(y^{\wedge} 2\right) \text { for }\{x,-P i, P i\} \text { and }\{y,-P i, P i\}
$$

This gives the surface plot and the contour plot for the function.

Wolfram Alpha - Contour Plot:

- Mathematica: (you have access to Mathematica in the MERC lab (NC 4015))

Type the following:

```
f[x-,y_]=Sin[x^2] + Cos[y^2];
Plot3D[f[x,y],{x,-Pi,Pi},{y,-Pi,Pi}]
ContourPlot[f[x,y],{x,-Pi,Pi},{y,-Pi,Pi}]
```

Note: Mathematica uses capital letters for any built-in function (like sine, cosine, plot, etc.). Press Shift-Enter to evaluate what you have typed.
Mathematica - Surface Plot:

- MATLAB: (you have access to MATLAB in the MERC lab (NC 4015))

Start a new document in MATLAB and type the following commands.

```
clear;
dx=0.1; dy=0.1;
[x,y] = meshgrid(-pi:dx:pi,-pi:dy:pi);
f = sin(x.^2) + cos(x.^2);
surf(x,y,f)
contour(x,y,f)
```

Note: Everything in MATLAB is seen as a matrix.
The meshgrid command defines the domain: x in $-\pi$ by $d x$ to π, and y in $-\pi$ by $d y$ to π.
Save your file and press the green play button at the top of the editor (or simply press ctrl-enter)
MATLAB - Contour Plot:
MATLAB - Surface Plot:

