LECTURE 5

SIMULTANEOUS EQUATIONS IV: LIMITED INFORMATION ML (LIML)

In this lecture, we consider ML estimation of a single equation which is a part of the system of simultaneous equations. Without loss of generality, we can focus on the first equation:

$$
\begin{aligned}
y_{1 i} & =X_{1, i}^{\prime} \delta_{1}+u_{1 i} \\
& =Y_{1, i}^{\prime} \gamma_{1}+Z_{1, i}^{\prime} \beta_{1}+u_{1 i}
\end{aligned}
$$

where $Y_{1, i}$ and $Z_{1, i}$ are the vectors of included endogenous and exogenous regressors respectively, as defined in Lecture 2. For the included endogenous regressors we have the following reduced form equation

$$
Y_{1, i}=\Pi_{1} Z_{1, i}+\Pi_{2} Z_{2, i}+V_{1, i}
$$

Note that we ignore $Y_{1, i}^{*}$, the vector of endogenous variables excluded from the first equation. The two above equations can be written together as

$$
\left(\begin{array}{cc}
1 & -\gamma_{1}^{\prime} \\
0 & I_{m_{1}}
\end{array}\right)\binom{y_{1 i}}{Y_{1, i}}=\left(\begin{array}{cc}
\beta_{1}^{\prime} & 0 \\
\Pi_{1} & \Pi_{2}
\end{array}\right)\binom{Z_{1, i}}{Z_{2, i}}+\binom{u_{1 i}}{V_{1, i}}
$$

or

$$
\widetilde{\Gamma}_{1} \widetilde{Y}_{1, i}=\widetilde{B}_{1} Z_{i}+\widetilde{U}_{i}
$$

where

$$
\begin{aligned}
\widetilde{\Gamma}_{1} & =\left(\begin{array}{cc}
1 & -\gamma_{1}^{\prime} \\
0 & I_{m_{1}}
\end{array}\right) \\
\widetilde{B}_{1} & =\left(\begin{array}{cc}
\beta_{1}^{\prime} & 0 \\
\Pi_{1} & \Pi_{2}
\end{array}\right) \\
\widetilde{Y}_{1, i} & =\binom{y_{1 i}}{Y_{1, i}} \\
\widetilde{U}_{i} & =\binom{u_{1 i}}{V_{1, i}}
\end{aligned}
$$

Assuming that

$$
\widetilde{U}_{i} \mid Z_{i} \sim N\left(0, \widetilde{\Sigma}_{1}\right)
$$

similarly to the derivation of equation (3) in Lecture 4, we obtain that the concentrated log-likelihood for $\widetilde{Y}_{1, i}$ is

$$
\begin{aligned}
Q_{n}\left(\widetilde{\Gamma}_{1}, \widetilde{B}_{1}\right) & =-\frac{\left(m_{1}+1\right)}{2}(\log (2 \pi)+1)+\log \left|\widetilde{\Gamma}_{1}\right|-\frac{1}{2} \log \left|n^{-1} \sum_{i=1}^{n}\left(\widetilde{\Gamma}_{1} \widetilde{Y}_{1, i}-\widetilde{B}_{1} Z_{i}\right)\left(\widetilde{\Gamma}_{1} \widetilde{Y}_{1, i}-\widetilde{B}_{1} Z_{i}\right)^{\prime}\right| \\
& =-\frac{\left(m_{1}+1\right)}{2}(\log (2 \pi)+1)-\frac{1}{2} \log \left|n^{-1} \sum_{i=1}^{n}\left(\widetilde{\Gamma}_{1} \widetilde{Y}_{1, i}-\widetilde{B}_{1} Z_{i}\right)\left(\widetilde{\Gamma}_{1} \widetilde{Y}_{1, i}-\widetilde{B}_{1} Z_{i}\right)^{\prime}\right|
\end{aligned}
$$

where the last equality follows from the fact that due to restricted structure of $\widetilde{\Gamma}_{1},\left|\widetilde{\Gamma}_{1}\right|=1$.
Thus, the LIML is a special case of FIML with properly defined matrices of parameters. However, again, due to the restricted structure of $\widetilde{\Gamma}_{1}$, there exists a closed form expression for the LIML estimator. Let $\widehat{\delta}_{1}$ be the LIML estimator of $\delta_{1}=\left(\gamma_{1}^{\prime}, \beta_{1}^{\prime}\right)^{\prime}$, then using the matrix notation of Lecture 2, we can write

$$
\widehat{\delta}_{1}=\left(X_{1}^{\prime}\left(I_{n}-\lambda M\right) X_{1}\right)^{-1} X_{1}^{\prime}\left(I_{n}-\lambda M\right) y_{1}
$$

where

$$
\begin{aligned}
M & =I_{n}-P \\
P & =Z\left(Z^{\prime} Z\right)^{-1} Z^{\prime},
\end{aligned}
$$

and P is the projection matrix onto the space spanned by the exogenous variables Z_{i} 's (included and excluded from the first equation),

$$
\lambda=\min _{t} \frac{t^{\prime} W_{1} t}{t^{\prime} W t}
$$

where

$$
\begin{aligned}
W & =\left(\begin{array}{ll}
y_{1} & Y_{1}
\end{array}\right)^{\prime} M\left(\begin{array}{cc}
y_{1} & Y_{1}
\end{array}\right) \\
W_{1} & =\left(\begin{array}{ll}
y_{1} & Y_{1}
\end{array}\right)^{\prime} M_{1}\left(\begin{array}{ll}
y_{1} & Y_{1}
\end{array}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
M_{1} & =I_{n}-P_{1}, \\
P_{1} & =Z_{1}\left(Z_{1}^{\prime} Z_{1}\right)^{-1} Z_{1}^{\prime},
\end{aligned}
$$

and M_{1} projection matrix onto space orthogonal to that spanned by $Z_{1, i}$'s, the exogenous variables included in the first equation. (As defined above, λ is actually the smallest eigenvalue of $W_{1} W^{-1}$.)

Next, we will show the asymptotic equivalence of LIML and 2SLS estimators. First, we will show that $\lambda \geq 1$.

$$
\begin{aligned}
t^{\prime} W_{1} t-t^{\prime} W t & =t^{\prime}\left(\begin{array}{cc}
y_{1} & Y_{1}
\end{array}\right)^{\prime}\left(M_{1}-M\right)\left(\begin{array}{cc}
y_{1} & Y_{1}
\end{array}\right) t \\
& =t^{\prime}\left(\begin{array}{ll}
y_{1} & Y_{1}
\end{array}\right)^{\prime}\left(P-P_{1}\right)\left(\begin{array}{cc}
y_{1} & Y_{1}
\end{array}\right) t
\end{aligned}
$$

Since Z_{1} is a part of $Z, P Z_{1}=Z_{1}$, and, therefore, $P P_{1}=P_{1}$. Hence,

$$
\begin{aligned}
\left(P-P_{1}\right)\left(P-P_{1}\right) & =P-P_{1} P-P P_{1}+P_{1} \\
& =P-P_{1},
\end{aligned}
$$

idempotent and, therefore, positive definite. Thus, $t^{\prime} W_{1} t-t^{\prime} W t \geq 0$ for any t and $\lambda \geq 1$.
Next, define

$$
u_{1}=\left(\begin{array}{c}
u_{1 i} \\
\vdots \\
u_{1 n}
\end{array}\right)
$$

We have

$$
\begin{aligned}
& \min _{t} \frac{t^{\prime} W_{1} t}{t^{\prime} W t} \\
\leq & \frac{\left(\begin{array}{ll}
1 & -\gamma_{1}^{\prime}
\end{array}\right) W_{1}\left(\begin{array}{ll}
1 & -\gamma_{1}^{\prime}
\end{array}\right)^{\prime}}{\left(\begin{array}{ll}
1 & -\gamma_{1}^{\prime}
\end{array}\right) W\left(\begin{array}{ll}
1 & -\gamma_{1}^{\prime}
\end{array}\right)^{\prime}} \\
\leq & \frac{\left(\begin{array}{ll}
1 & -\gamma_{1}^{\prime}
\end{array}\right)\left(\begin{array}{ll}
y_{1} & Y_{1}
\end{array}\right)^{\prime} M_{1}\left(\begin{array}{ll}
y_{1} & Y_{1}
\end{array}\right)\left(\begin{array}{ll}
1 & -\gamma_{1}^{\prime}
\end{array}\right)^{\prime}}{\left(\begin{array}{ll}
1 & -\gamma_{1}^{\prime}
\end{array}\right)\left(\begin{array}{ll}
y_{1} & Y_{1}
\end{array}\right)^{\prime} M\left(\begin{array}{ll}
y_{1} & Y_{1}
\end{array}\right)\left(\begin{array}{ll}
1 & -\gamma_{1}^{\prime}
\end{array}\right)^{\prime}} \\
= & \frac{\left(Z_{1} \beta_{1}+u_{1}\right)^{\prime} M_{1}\left(Z_{1} \beta_{1}+u_{1}\right)}{\left(Z_{1} \beta_{1}+u_{1}\right)^{\prime} M\left(Z_{1} \beta_{1}+u_{1}\right)} \\
= & \frac{u_{1}^{\prime} M_{1} u_{1}}{u_{1}^{\prime} M u_{1}} .
\end{aligned}
$$

Thus,

$$
0 \leq \lambda-1 \leq \frac{u_{1}^{\prime}\left(M_{1}-M\right) u_{1}}{u_{1}^{\prime} M u_{1}}=\frac{u_{1}^{\prime}\left(P-P_{1}\right) u_{1}}{u_{1}^{\prime} M u_{1}}
$$

Lastly,

$$
\begin{aligned}
n^{1 / 2} \frac{u_{1}^{\prime}\left(P-P_{1}\right) u_{1}}{u_{1}^{\prime} M u_{1}} & =\frac{\frac{u_{1}^{\prime} Z}{n^{1 / 2}}\left(\frac{Z^{\prime} Z}{n}\right)^{-1} \frac{Z^{\prime} u_{1}}{n}-\frac{u_{1}^{\prime} Z_{1}}{n^{1 / 2}}\left(\frac{Z_{1}^{\prime} Z_{1}}{n}\right)^{-1} \frac{Z_{1}^{\prime} u_{1}}{n}}{\frac{u_{1}^{\prime} u_{1}}{n}-\frac{u_{1}^{\prime} Z}{n}\left(\frac{Z^{\prime} Z}{n}\right)^{-1} \frac{Z^{\prime} u_{1}}{n}} \\
& \rightarrow p 0
\end{aligned}
$$

and, therefore,

$$
n^{1 / 2}(\lambda-1) \rightarrow_{p} 0
$$

Next,

$$
\begin{aligned}
I_{n}-\lambda M & =I_{n}-\lambda M+M-M \\
& =I_{n}-M-(\lambda-1) M \\
& =P-(\lambda-1) M
\end{aligned}
$$

Hence, the difference between the LIML and 2SLS estimators is given by

$$
\begin{aligned}
n^{1 / 2}\left(\widehat{\delta}_{1}-\widehat{\delta}_{1}^{2 S L S}\right) & =\left(\frac{X_{1}^{\prime}\left(I_{n}-\lambda M\right) X_{1}}{n}\right)^{-1} \frac{X_{1}^{\prime}\left(I_{n}-\lambda M\right) u_{1}}{n^{1 / 2}}-\left(\frac{X_{1}^{\prime} P X_{1}}{n}\right)^{-1} \frac{X_{1}^{\prime} P u_{1}}{n^{1 / 2}} \\
& =\left(\frac{X_{1}^{\prime} P X_{1}-(\lambda-1) X_{1}^{\prime} M X_{1}}{n}\right)^{-1} \frac{X_{1}^{\prime} P u_{1}-(\lambda-1) X_{1}^{\prime} M u_{1}}{n^{1 / 2}}-\left(\frac{X_{1}^{\prime} P X_{1}}{n}\right)^{-1} \frac{X_{1}^{\prime} P u_{1}}{n^{1 / 2}} \\
& =\left(\left(\frac{X_{1}^{\prime} P X_{1}-(\lambda-1) X_{1}^{\prime} M X_{1}}{n}\right)^{-1}-\left(\frac{X_{1}^{\prime} P X_{1}}{n}\right)^{-1}\right) \frac{X_{1}^{\prime} P u_{1}}{n^{1 / 2}} \\
& -\left(\frac{X_{1}^{\prime} P X_{1}-(\lambda-1) X_{1}^{\prime} M X_{1}}{n}\right)^{-1} \frac{(\lambda-1) X_{1}^{\prime} M u_{1}}{n^{1 / 2}} \\
& \rightarrow p .
\end{aligned}
$$

