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LECTURE 5
SIMULTANEOUS EQUATIONS IV: LIMITED INFORMATION ML (LIML)

In this lecture, we consider ML estimation of a single equation which is a part of the system of simultaneous
equations. Without loss of generality, we can focus on the �rst equation:

y1i = X 0
1;i�1 + u1i

= Y 01;i1 + Z
0
1;i�1 + u1i;

where Y1;i and Z1;i are the vectors of included endogenous and exogenous regressors respectively, as de�ned
in Lecture 2. For the included endogenous regressors we have the following reduced form equation

Y1;i = �1Z1;i +�2Z2;i + V1;i:

Note that we ignore Y �1;i, the vector of endogenous variables excluded from the �rst equation. The two above
equations can be written together as�
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or e�1 eY1;i = eB1Zi + eUi;
where

e�1 =

�
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�
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Assuming that eUijZi � N �0; e�1� ;
similarly to the derivation of equation (3) in Lecture 4, we obtain that the concentrated log-likelihood foreY1;i is
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�����
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�e�1 eY1;i � eB1Zi��e�1 eY1;i � eB1Zi�0
����� ;

where the last equality follows from the fact that due to restricted structure of e�1; ���e�1��� = 1:
Thus, the LIML is a special case of FIML with properly de�ned matrices of parameters. However, again,

due to the restricted structure of e�1; there exists a closed form expression for the LIML estimator. Let b�1
be the LIML estimator of �1 =

�
01; �

0
1

�0
; then using the matrix notation of Lecture 2, we can write

b�1 = (X 0
1 (In � �M)X1)

�1
X 0
1 (In � �M) y1;
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where

M = In � P;
P = Z (Z 0Z)

�1
Z 0;

and P is the projection matrix onto the space spanned by the exogenous variables Zi�s (included and excluded
from the �rst equation),

� = min
t

t0W1t

t0Wt
;

where

W =
�
y1 Y1

�0
M
�
y1 Y1

�
;

W1 =
�
y1 Y1

�0
M1

�
y1 Y1

�
;

and

M1 = In � P1;
P1 = Z1 (Z

0
1Z1)

�1
Z 01;

and M1 projection matrix onto space orthogonal to that spanned by Z1;i�s, the exogenous variables included
in the �rst equation. (As de�ned above, � is actually the smallest eigenvalue of W1W

�1:)
Next, we will show the asymptotic equivalence of LIML and 2SLS estimators. First, we will show that

� � 1:

t0W1t� t0Wt = t0
�
y1 Y1

�0
(M1 �M)

�
y1 Y1

�
t

= t0
�
y1 Y1

�0
(P � P1)

�
y1 Y1

�
t:

Since Z1 is a part of Z; PZ1 = Z1; and, therefore, PP1 = P1: Hence,

(P � P1) (P � P1) = P � P1P � PP1 + P1
= P � P1;

idempotent and, therefore, positive de�nite. Thus, t0W1t� t0Wt � 0 for any t and � � 1.
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Thus,
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u01Mu1
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:

Lastly,
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and, therefore,
n1=2 (�� 1)!p 0:

Next,

In � �M = In � �M +M �M
= In �M � (�� 1)M
= P � (�� 1)M:

Hence, the di¤erence between the LIML and 2SLS estimators is given by
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