HOMEWORK 10 Due: next class 3/8

1. Suppose your Statistics professor reports test grades as z-scores, and you got a score of 2.20 on the midterm exam. Are you happy? Write a sentence explaining what your score means.

YES! That means I have very high scores. My scores are 2.2 standard deviations above the mean scores of the class. I am in the top 2% of the class. (If you look at the z-table, you would see that 98.61% of the class got points below my scores. So I am actually in the top 1.5% !)
2. A town's January high temperatures average $36^{\circ} \mathrm{F}$ with a standard deviation of $10^{\circ} \mathrm{F}$, while in July the mean high temperature is $74^{\circ} \mathrm{F}$ and the standard deviation is $8^{\circ} \mathrm{F}$. In which month is it more unusual to have a day with a high temperature of $55^{\circ} \mathrm{F}$? Explain.

We need to compare the z -scores:
For January: $\quad z=\frac{x-\mu}{\sigma}=\frac{55-36}{10}=1.9$
For July: $\quad z=\frac{x-\mu}{\sigma}=\frac{55-74}{8}=-2.375$
This means that $55^{\circ} \mathrm{F}$ is 1.9 standard deviations above the mean of January high temperatures, and $55^{\circ} \mathrm{F}$ is about 2.4 standard deviations below the mean of July's high temperatures. Thus, the $55^{\circ} \mathrm{F}$ is more unusual in July.
3. The time that it takes me to make dinner is approximately normal with mean 40 minutes and standard deviation 15 minutes.
a. Carefully draw a normal distribution curve on which this mean and standard deviation are correctly indicated.

b. What is the probability that I can make dinner in less than 20 minutes?

$$
z=\frac{x-\mu}{\sigma}=\frac{20-40}{15}=-1.34
$$

You can look up this z-score in the z-table, or using your calculator: normalcdf(-99999,-1.34).
Either of them will give you the answer about 0.09.
That it, the probability that I can make dinner in less than 20 minutes is about 9%.
c. What is the chance that I spend more than an hour in the kitchen preparing dinner?

$$
\begin{aligned}
& 1 \text { hour }=60 \mathrm{~min} \\
& z=\frac{x-\mu}{\sigma}=\frac{60-40}{15}=1.34
\end{aligned}
$$

You can look up this z-score in the z-table (but then you need to subtract the probability from 1), or using your calculator: normalcdf($1.34,999999$). Either of them will give you the answer about 0.09 .

That it, the probability that I spend more than one hour in the kitchen preparing dinner is about 9% again.
d. How often will I spend between 30 and 45 minutes at the stove making dinner?

$$
\begin{aligned}
& z=\frac{x-\mu}{\sigma}=\frac{30-40}{15}=-0.67 \\
& z=\frac{x-\mu}{\sigma}=\frac{45-40}{15}=0.33
\end{aligned}
$$

You can look up these z -scores in the z -table (then subtract the smaller one from the greater one), or using your calculator: normalcdf($-0.67,0.33$). Either of them will give you the answer about 0.38 .

That it, the probability that I spend between 30 and 45 minutes at the stove making dinner is about 38% again.
4. John Beale of Stanford, CA, recorded the speeds of cars driving past his house, where the speed limit read 20 mph . Suppose that these recordings follow an approximately normal distribution. The mean of 100 readings was 23.84 mph , with a standard deviation of 3.56 mph .
a. How many standard deviations from the mean would a car going under the speed limit be?

$$
z=\frac{x-\mu}{\sigma}=\frac{20-23.84}{3.56}=-1.08
$$

Thus, about 1.08 standard deviations below the mean would a car going under the speed limit be..
b. Which would be more unusual, a car traveling 34 mph or one going 10 mph ?
$z=\frac{x-\mu}{\sigma}=\frac{34-23.84}{3.56}=2.85$
$z=\frac{x-\mu}{\sigma}=\frac{10-23.84}{3.56}=-3.89$

Since the z -score of 10 mph is more extreme (farther from zero), going with 10 mph is more unusual.
c. What is the probability that a car goes with a speed of 30 mph or more?

$$
z=\frac{x-\mu}{\sigma}=\frac{30-23.84}{3.56}=1.73
$$

You can look up this z-score in the z-table (but then you need to subtract the probability from 1), or using your calculator: normalcdf($1.73,999999$). Either of them will give you the answer about 0.042 .

That it, the probability that a car goes with a speed of 30 mph or more is about 4.2%.
d. What is the probability that a car goes with a speed of 15 mph or less?

$$
z=\frac{x-\mu}{\sigma}=\frac{15-23.84}{3.56}=-2.48
$$

You can look up this z-score in the z-table, or using your calculator: normalcdf(-99999,-2.48). Either of them will give you the answer about 0.0066.
That it, the probability that a car goes with a speed of 15 mph or less is about 0.66%.
5. In a large section of a statistics class, the points for the final exam are approximately normally distributed with a mean of 68 and a standard deviation of 9 . Grades are assigned according to the following rules:

- The top 10% receive As
- The next 20% receive Bs
- The middle 40% receive Cs
- The next 20% receive Ds
- The bottom 10% receive Fs

Find the lowest score on the final exam that would qualify a student for an $\mathrm{A}, \mathrm{a} \mathrm{B}, \mathrm{a} \mathrm{C}$, and a D .

The cutoff value between F and D: you can look up $10 \%=0.01$ in the z-table (INSIDE the table) and read back the z-score. Or you can use the calculator: DISTR $\rightarrow 3$:invNorm(0.1). Either way,
you should get the z -score of -1.28 . Then, to find the actual score we are looking for use the formula:
$x=z \cdot \sigma+\mu=-1.28 \cdot 9+68=58.47$

Thus, students who got 58.47 or less points on the final received an \mathbf{F}.

The cutoff value between D and C: you can look up $30 \%=0.03$ in the z-table (INSIDE the table) and read back the z-score. Or you can use the calculator: DISTR $\rightarrow 3$:invNorm(0.3). Either way, you should get the z-score of -0.524 . Then, to find the actual score we are looking for use the formula:
$x=z \cdot \sigma+\mu=-0.524 \cdot 9+68=63.28$

Thus, students who got points between 58.47 and 63.28 got a D.

The cutoff value between C and B: you can look up $70 \%=0.07$ in the z-table (INSIDE the table) and read back the z-score. Or you can use the calculator: DISTR $\rightarrow 3$:invNorm(0.7). Either way, you should get the z -score of 0.524 . Then, to find the actual score we are looking for use the formula:
$x=z \cdot \sigma+\mu=0.524 \cdot 9+68=72.72$
Thus, students who got points between 63.28 and 72.72 got a C.
The cutoff value between B and A: you can look up $90 \%=0.09$ in the z-table (INSIDE the table) and read back the z-score. Or you can use the calculator: DISTR $\rightarrow 3$:invNorm(0.9). Either way, you should get the z -score of 1.28 . Then, to find the actual score we are looking for use the formula:
$x=z \cdot \sigma+\mu=1.28 \cdot 9+68=79.52$
Thus, students who got points between 72.72 and 79.52 got a \mathbf{B}, and students who got more than 79.52 points received an A.

