7.5

Properties of Trapezoids and Kites

In your own words, write the meaning of each vocabulary term.

refer to your vocab cards

trapezoid

a polygon with one set of Il lines

bases

the parallel lines on a trapezoid

base angles

the two angles touching the base

legs

the non-parallel sides on a trapezoid

isosceles trapezoid

when the legs are =

midsegment of a trapezoid

the segment connecting the midpoints of the two legs.

kite

a polygon with two adjacent congrnent sides

Theorems

Theorem 7.14 Isosceles Trapezoid Base Angles Theorem

If a trapezoid is isosceles, then each pair of base angles is congruent.

If trapezoid ABCD is isosceles, then $\angle A \cong \angle D$ and $\angle B \cong \angle C$.

Theorem 7.15 Isosceles Trapezoid Base Angles Converse

If a trapezoid has a pair of congruent base angles, then it is an isosceles trapezoid.

If $\angle A \cong \angle D$ (or if $\angle B \cong \angle C$), then trapezoid ABCD is isosceles.

Theorem 7.16 Isosceles Trapezoid Diagonals Theorem

A trapezoid is isosceles if and only if its diagonals are congruent. Trapezoid ABCD is isosceles if and only if $AC \cong BD$.

Theorem 7.17 Trapezoid Midsegment Theorem

The midsegment of a trapezoid is parallel to each base, and its length is one-half the sum of the lengths of the bases.

If \overline{MN} is the midsegment of trapezoid ABCD, then $\overline{MN} || \overline{AB} ||$ and $\overline{MN} || \overline{DC}$ and $MN = \frac{1}{2}(AB + CD)$.

Theorem 7.18 Kite Diagonals Theorem

If a quadrilateral is a kite, then its diagonals are perpendicular. If quadrilateral ABCD is a kite, then $AC \perp BD$.

Theorem 7.19 Kite Opposite Angles Theorem

If a quadrilateral is a kite, then exactly one pair of opposite angles are congruent.

If quadrilateral ABCD is a kite and $\overline{BC} \cong \overline{BA}$, then $\angle A \cong \angle C$ and $\angle B \not\cong \angle D$.

Extra Practice

1. Show that the quadrilateral with vertices at Q(0, 3), R(0, 6), S(-6, 0), and T(-3, 0)is a trapezoid. Decide whether the trapezoid is isosceles. Then find the length of the midsegment of the trapezoid.

Yes... it is an isosceles trapezoid
length = distance formula for (-4.5,0) (0,4.5)

$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$
(-4.5-0) + (0-4.5) 2

Extra Practice

In Exercises 2 and 3, find $m \angle K$ and $m \angle L$.

2.

$$180 = 23 + 4k$$

In Exercises 4 and 5, find CD.

4.

3.

every quadrilateral 360 = 4L + 4K + 4M + 4J 360 = 2x + 270 360 = 2x + 270 360 = 2x + 270 360 = 270 360 = 270 360 = 270 360 = 270

1 pair of = oppx

70= x 50 XL=70°

4K=70°

5.

In Exercises 6 and 7, find the value of x.

midsegment =
$$\frac{1}{2}$$
 (base + base)
 $3x-2 = \frac{1}{2}(x+11+3x+3)$
 $= \frac{1}{2}(4x+14)$
 $= \frac{1}{2}(4x)+\frac{1}{2}(14)$

$$3x-2=2x+7$$

 $-2x+2=-2x+2$
 $|x=9|$

100 = X

the one diagonal HF is bisected so $9 = \frac{\times}{10} - 1$ +1 +1 $10(10) = (\frac{\times}{10})10$