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Introduction

The aim of this paper is to provide a short description of definite integration algorithms implemented in Mathemat-

ica Version 3.0.

$Version

Linux 3.0 HApril 25, 1997L

Proper Integrals

All proper integrals in Mathematica are evaluated by means of the Newton-Leibniz theorem

Å
a

b

f HxL Ç x = FHbL - FHaL
where FHxL is an antiderivative. It is well-known that the Newton-Leibniz formula in the given form does not hold

any  longer  if  the  antiderivative  FHxL  has  singularities  on  an  interval  of  integration  Ha, bL.  Let  us  consider  the

following integral

Å
0

4 x2 + 2 x + 4
þþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþ
x4 - 7 x2 + 2 x + 17

 Ç x

where the integrand is a smooth integrable function on an interval H0, 4L.



PlotA 4 + 2 x + x2
þþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþ
17 + 2 x - 7 x2 + x4

, 8x, 0, 4<E
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As  it  follows  from  the  Risch  structure  theorem  the  correspondent  indefinite  integral  is  doable  in  elementary

functions 

int = Å x2 + 2 x + 4
þþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþ
x4 + 2 x - 7 x2 + 17

 Çx

1
þþþþþ
2

tan-1ikjj
-x - 1
þþþþþþþþþþþþþþþþþþþþþ
x2 - 4

y
{zz -

1
þþþþþ
2

tan-1ikjj
x + 1

þþþþþþþþþþþþþþþþþþþ
x2 - 4

y
{zz

If we simply substitute limits of integration into the antiderivative we get an incorrect result.

Limit@int, x � 4D - Limit@int, x � 0D

-tan-1ikjj
1
þþþþþ
4
y
{zz - tan-1J 5

þþþþþþþþþ
12

N

This is because the antiderivative is not a continuous function on an interval H0, 4L. It has a jump at x = 2,  which

is easy to see in the following graphic.
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Plot@int, 8x, 0, 4<D
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The right way of applying the Newton-Leibniz theorem is to take into account an influence of the jump

Limit@int, x -> 4, Direction -> 1D -

Limit@int, x -> 2, Direction -> -1D +

Limit@int, x -> 2, Direction -> 1D -

Limit@int, x -> 0, Direction -> -1D

p - tan-1ikjj
1
þþþþþ
4
y
{zz - tan-1J 5

þþþþþþþþþ
12

N

Mathematica evaluates definite integrals in precisely that way.

Å
0

4 x2 + 2 x + 4
þþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþ
x4 - 7 x2 + 2 x + 17

 Çx

p - tan-1ikjj
1
þþþþþ
4
y
{zz - tan-1J 5

þþþþþþþþþ
12

N

The  origin  of  discontinuities  of  antiderivatives  along  the  path  of  integration  is  not  in  the  method  of  indefinite

integration  but  rather  in  the  integrand.  In  the  discussed  example,  the  integrand  has  four  singular  poles  that

become branch points for the antiderivative. 

NRoots@x4 - 7 x2 + 2 x + 17 == 0, xD
x == -1.95334 - 0.244028 É Ã x == -1.95334 + 0.244028 É Ã

x == 1.95334 - 0.755972 É Ã x == 1.95334 + 0.755972 É

Connected  in  pairs  these  points  make  two  branch  cuts.  And  the  path  of  integration  crosses  one  of  them.  The

following ContourPlot clearly exposes the problem.
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ContourPlot@Evaluate@Re@int �. x -> x + I yDD, 8x, -3, 4<, 8y, -3, 4<,
ContourShading -> False, Contours -> 20, PlotPoints -> 40,

Epilog -> 8Hue@0D, Thickness@0.005D, Line@880, 0<, 84, 0<<D<D

-3 -2 -1 0 1 2 3 4

-3

-2

-1

0

1

2

3

4
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We see that in a complex plane of the variable x the antiderivative has two branch cuts (bold black vertical lines)

and the path of integration, the line (0,4),  intersects the right branch cut.  Obviously, by varying the constant of

integration  we can change the form of the antiderivative so that we would get various forms of branch cuts. Here

we understand  the constant of  integration as  a  function f(x)  such that  df HxLþþþþþþþþþþþþdx  is  zero.  As a  simple example let  us

consider the step-wise constant function 
�!!!!!!!x2þþþþþþþþþx

SimplifyA�x

�!!!!!!
x2

þþþþþþþþþþþþ
x

E

0

Thinking hard, we can built an antiderivative that does not have a branch cut crossing a given interval of integra-

tion. However, we can never get rid of branch cuts!

Analysis of the singularities of antiderivatives is a time consuming and sometimes heuristic process, especially if

trigonometric or special functions are involved in antiderivatives.  In the latter case Integrate may not be able

to detect all singular points on the interval of integration, which will result in a warning message

— Integrate::gener : Unable to check convergence
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You should pay attention to the message since it warns you that the result of the integration might be wrong.

Improper Integrals

It  is  quite  clear  that  the  above  procedure  cannot  cover  the  whole  variety  of  definite  integrals.  There  are  two

reasons  behind  that.  First,  the correspondent  indefinite integral  cannot  be  expressed  in finite terms of  functions

represented in Mathematica. For instance,

Å Cos@Sin@xDD Çx

Å cosHsinHxLL Ç x

However, the definite integral with the specific limits of integration is doable.

Å
0

p

Cos@Sin@xDD Çx

p J0H1L
Second, even if an indefinite integral can be done, it requires a great deal of effort to find limits at the end points.

Here is an example,

Å
0

p

þþþþ2

Tan@xD1�p Çx

1
þþþþþ
2

p secikjj
1
þþþþþ
2
y
{zz

This  is  an  improper  integral  since  the  top  limit  is  a  singular  point  of  the  integrand.  The    result  of   indefinite

integration is

Å Tan@xD1�p Çx

p 2 F1 H 1+pþþþþþþþþþþ2 p , 1; 1 + 1+pþþþþþþþþþþ2 p ; -tan2HxLL tan1+ 1
þþþþþ
p HxL

þþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþ
1 + p

To  find  the  limit  at  x = pþþþþ2  one  has  to,  first,  develop  the  asymptotic  expansion  of  the  hypergeometric  Gauss

function  at  �,  and  second,  construct  the  asymptotic  scale  for  the  Puiseux  series.  Currently,  Mathematica’s

Series structure is based on  power series that allow only rational exponents.

Following we present a short description of the algorithm for evaluating improper integrals. The overall idea has

been given in [1] and  [3]. Some practical details regarding "logarithmic" cases are described in [2] and [4].
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Å The General Idea

By means of the Mellin integral transform and Parseval’s equality, a given improper integral is transformed to a

contour integral over the straight line         Hg - É�, g + É�L in a complex plane of the parameter z:

(1)Å
0

�

f1HxL f2J z
þþþþþ
x
N Ç x

þþþþþþþþþþ
x

=
1

þþþþþþþþþþþþþþ
2 p É

 Å
g-É�

g+É�

f1
*HsL f2

*HsL z-s Ç s

where f1
*HxL and f2

*HxL are Mellin transforms of f1HxL and f2HxL
f *HsL = Å

0

�

f HxL xs-1 Ç x

The  real  parameter  g  in  the  formula  (1)  is  defined  by  conditions  of  existence  of  Mellin  transforms

f1
*HxL and f2

*HxL.  Finally,  the  residue  theorem  is  used  to  evaluate  the  contour  integral  in  the  right  side  of  the

formula (1)

1
þþþþþþþþþþþþþþ
2 p É

 �
G

f HzL Ç z = Ç
k=1

m

res
z= ak

f HzL

where  G  is  a  closed  contour,  and  ak  are  poles  of  f(z)  that  lie  in  a  domain  bounded  by  G.  The  success  of  this

scheme depends  on  two factors:  first,  the  Mellin  image of  an  integrand  f1HxL f2H zþþþþx L  must exist,  and,  second,  it

should be represented in terms of Gamma functions. If these conditions are satisfied then the contour integral in

(1), called the Mellin-Barnes integral or the Meijer G-function, can almost always be expressed in finite terms of

hypergeometric  functions.  This  fact  is  known as  Slater’s theorem (see  [1]  and   [5]).  We  said  "almost  always",

since there is a special case of the G-function when the latter cannot be reduced to hypergeometric functions but

to  their  derivatives  with  respect  to  parameters.  By  analogy  with  linear  differential  equations  with  polynomial

coefficients,  such  a  singular  case  of  the  G-function is  named a  logarithmic case.  The  modified Bessel  function

K0HzL is such a classical example, since its series representation

K0HzL = -I0HzL logJ z
þþþþþ
2
N + È

k=0

�

 
y Hk + 1L
þþþþþþþþþþþþþþþþþþþþþþþþþþþ

k !2

i
kjjj

z2

þþþþþþþþ
4
y
{zzz

k

cannot be expressed via hypergeometrics.

Å Mellin-Barnes Integrals

These integrals are defined by (see[6])

1
þþþþþþþþþþþþþþ
2 p É

 �
L

gHsL z-s Ç s

where

g HsL =
À j=1

n G Ha j + sL À j=1
m G Hb j - sL

þþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþ
É

j=1

k
GHc j + sL À j=1

l GHd j - sL
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and the contour L is a line that separates poles of G Ha j + sL from G Hb j - sL. Let us investigate when the integral

exists.  On  a  straight  line  L, = Hg - É�, g + É�L  the  real  part  of  s ³ L  is  bounded,  and  �ImHsL� � �.  Using  the

Stirling asymptotic formula 

�GHx + É yL� =
�!!!!!!!!

2 p �y�x- 1
þþþþ2 È-

p

þþþþ2 �y� i
kjj1 + Oi

kjj
1

þþþþþþþþþ�y�
y
{zz
y
{zz, �y� � �

we  can  deduce  that  the  integrand  gHsL z-s  vanishes  exponentially  as  �Im(s)���  if  m + n - k - l > 0,  and

�argHzL� < pþþþþ2 Hm + n - k - lL. If m + n - k - l = 0, then z must be real and positive. Some additional conditions are

required here (see details in [1]). 

It is clear that we can not simply imply the residue theorem to this contour integral. We need initially to transform

the contour L to the closed one. There are two possibilities: we can either transform L into the left loop L-�, the

contour encircling all poles of G Ha j + sL, or to the right loop L+�, the contour encircling the poles of G Hb j - sL.
The criteria of which contour should be chosen appears from the convergence of the integral along that contour.

On  the  left-hand  loop  L-�,  the  imaginary  part  of  s ³ L-� is  bounded  and  ReHsL � -�.  Assuming  that

�argH-sL� < pþþþþ2 , and making use of the Stirling formula

GHzL =
�!!!!!!!!

2 p zz- 1
þþþþ2 È-z J1 + OJ 1

þþþþþ
z
NN, z � �, �argHzL� < p

and  the  reflection  formula  of  the  Gamma function,  we find that  the  Mellin-Barnes  integral  over  the  loop  L-�

exists, if n + l - m - k > 0. If n + l - m - k = 0, then z must be within the unit disk  z  < 1. If z is on a unit circle

 z  = 1, the integral converges if 

Re
i
k
jjjjjjÇ

j=1

n

a j + Ç
j=1

m

b j + Ç
j=1

k

c j + Ç
j=1

l

d j

y
{
zzzzzz < -k + n - 1

On the right-hand loop L+�, the imaginary part of s ³ L+� is bounded and ReHsL � +�. Proceeding similarly to

the  above,  we  find  that  the  Mellin-Barnes  integral  over  the  loop  L+�  exists,  if  n + l - m - k < 0.  If

n + l - m - k = 0, then z must be outside of the unit disk. Additional conditions are required if z is on a unit circle.

After determining the correct contour, the next step is to calculate residues of  the integrand. Since the integrand

contains only Gamma functions, this task is  more or less formal. We don’t even need to calculate residues of the

integrand, but  go straightforwardly to the generalized hypergeometric functions. The only obstacle is the logarith-

mic  case,  which  occurs  when  the  integrand  has  multiple  poles.  We  have  to  separate  two  subclasses  here:  the

integrand that has a finite number of multiple poles, and the integrand that has infinitely many multiple poles. The

Mathematica  integration  routine  has  a  full  implementation  of  the  former  case.  In  the  latter,  the  integration

artificially restricted by the second order poles, since for the higher order poles it would lead to infinite sums with

higher order polygamma functions. This class of infinite sums are extremely hard to deal with, symbolically and

numerically.   If  such  a  situation  is  detected  Integrate   returns  the  Meijer  G-function.  However,  there  are

some  very  special  transformations  of  the  G-function,  which  could  avoid  bulky  infinite  sums with  polygamma

functions,  and give a  nice result  in  terms of  known functions. In  [4]  I  demonstrated a few transformations that

reduce  the  order  of  the  G-function and  make it  possible  to  handle  special  class of  Bessel  integrals in  terms of

Bessel functions.
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Å An Example

Consider the integral

W = Å
0

� sinHxL
þþþþþþþþþþþþþþþþþþþþþþþþþþþþþ
x Hx2 + 1L  Ç x

According to the formula  (1), we have

W = Å
0

� 1
þþþþþþþþþþþþþþþþþþþ
x2 + 1

 sinJ 1
þþþþþþþþþþþþþ
1 � x

N Ç x
þþþþþþþþþþ
x

=
1

þþþþþþþþþþþþþþ
2 p É

 Å
g-É�

g+É�

f1
*HsL f2

*HsL Ç s

where f1
*HsL and f2

*HsL are Mellin transforms of È-x and sinH 1þþþþx L:

f1
*@sD = Å

0

� xs-1
þþþþþþþþþþþþþþ
x2 + 1

 Çx

If
i
kjjjReHsL > 0 Ä ReHsL < 2,

1
þþþþþ
2

p cscJ p s
þþþþþþþþþþ
2

N, Å
0

� xs-1

þþþþþþþþþþþþþþþþþþþ
x2 + 1

 Ç x
y
{zzz

f2
*@sD = Å

0

�

SinA 1
þþþþ
x
E xs-1 Çx

IfikjjReHsL > -1 Ä ReHsL < 1, -GH-sL sinJ p s
þþþþþþþþþþ
2

N, Å
0

�

xs-1 sinikjj
1
þþþþþ
x
y
{zz Ç xy{zz

Therefore, 

W = -
p

þþþþþþþþþþþþþþ
4 p É

 Å
g-É�

g+É�

GH-sL Ç s

where g is defined by conditions of the existence of Mellin transforms

0 < g = ReHsL < 1

As it follows from the previous section we can transform the integration contour  Hg - �, g + É�L  into the right

loop L+� . Then, using the residue theorem we evaluate the integral as a sum of residues  at simple poles s = 1,

2, ... .

W = -
p
þþþþþ
2

È
k=1

� H-1Lk
þþþþþþþþþþþþþþþ
k!

-
H1 - ÈL p
þþþþþþþþþþþþþþþþþþþþþþþþþþ

2 È
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Å Meijer G-Function

We did not intend to give a complete picture of the Meijer G-function here, but only necessary facts. In Version

3.0 the G-function is defined by

MeijerG@88a1, a2, ... , an<, 8an+1, an+2, ... , ap<<, 88b1, b2, ... , bm<, 8bm+1, bm+2, ... , bq<< , zD =

Gp,q
m,n 

i
kjjjz

©©©©©©©©©©
a1, a2,

b1, b2,
 

... , ap

... , bq

y
{zzz =

1
þþþþþþþþþþþþþþ
2 p É

 �
L

Ài=1
m GHbi + sL Ài=1

n GH1 - ai - sL
þþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþÀi=n+1

p GHai + sL Ài=m+1
q GH1 - bi - sL  z-s Ç s

and the contour  L  is  a  left  (or  right)  loop  L-�  (or  L+�)  separated  poles  of  G Hb j + sL  from G H1 - a j - sL.  The

current  implementation  of  the  Meijer  function  has  two  noticeable  features  that  differ  it  from  the  classical  G-

function. First, you are not allowed to choose or move the contour of integration, and, second, MeijerG has an

optional  parameter  (the  classical  G-function  does  not)  that  regulates  the  branch  cut.  The  Meijer  function  is

supported symbolically and numerically.

MeijerG@880<, 8<<, 880<, 8<<, zD
1

þþþþþþþþþþþþþþþþ
z + 1

MeijerGA88-1<, 81, 2<<, 990, 1
þþþþ
2
=, 8<=, 1

þþþþ
2
E

MeijerGi
kjj88-1<, 81, 2<<, ::0,

1
þþþþþ
2
>, 8<>,

1
þþþþþ
2
y
{zz

N@%D
0.209893

Only in very trivial cases MeijerG is simplified automatically to the lower level special functions. Beyond that

all further transformations are assigned to FunctionExpand:

FunctionExpand@%%D
�!!!!

p -
�!!!!

p I0H1L
þþþþþþþþþþþþþþþþþþþþþþþþþþþþ

È
-

2
�!!!!

p I1H1L
þþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþ

È

MeijerG is interlaced with indefinite and definite integration, and with solving linear differential equations with

polynomial coefficients. Here is an example related to definite integration:
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Å
1

� x2 BesselK@0, xD
þþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþ�!!!!!!!!!!!!!!

x2 - 1
 Çx

1
þþþþþ
4
�!!!!

p MeijerGi
kjj:8<, :-

1
þþþþþ
2
>>, 88-1, 0, 0<, 8<<, 1

þþþþþ
4
y
{zz

The  first  element  of  the  second  argument  of  MeijerG,  which  is  {-1,0,0},  indicates  that  the  integrand  of  the

correspondent  contour  integral  contains  the  product  of  three  Gamma  functions  GHs - 1L GHsL GHsL  and  has  an

infinite number of triple poles at s=-k, k=0,1,2, ... . From the design point of view it is definitely an advantage for

Integrate  to return a short object, MeijerG, rather than enormous infinite sums involving derivatives of the

Gamma function.

Å Hypergeometric Functions

The essential part of integration is the generalized hypergeometric function, which is defined by

HypergeometricPFQ@8a1, ..., ap<, 8b1, ..., bq<, zD = p Fq 
i
kjjjz

©©©©©©©©©©
a1, a2,

b1, b2,
 

... , ap

... , bq

y
{zzz =

È
k=0

� À j=1
p Ha jLkþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþÀ j=1
q Hb jLk  

zk

þþþþþþþþ
k !

where HaLk  is a Pochhammer symbol

Ha jLk = É
l=1

k

Ha j + l - 1L =
G Ha j + kL
þþþþþþþþþþþþþþþþþþþþþþþþþþþþþ

G Ha jL
Conditions of convergence can be easily obtained by applying the d’Alembert test. It follows, p Fq  converges for

all finite z  if p � q,  and for �z� < 1 if p = q + 1. Additional conditions  are required  on the circle of convergence

�z�=1. The above series definition of p Fq has an exceptional case, when p = 2 and q = 0 - such Hypergeomet-

ricPFQ  is defined via the confluent hypergeometric function HypergeometricU

HypergeometricPFQ@8a, b<, 8<, zD
i
kjj-

1
þþþþþ
z
y
{zz

a

Ui
kjja, a - b + 1, -

1
þþþþþ
z
y
{zz

For  �z� r 1  and  p = q + 1,  the  hypergeometric  function  is  defined  as  an  analytic  continuation  via  the  Mellin-

Barnes integral, with the branch cut [1, �):

q+1 Fq 
i
kjjjz

©©©©©©©©©©
a1, a2,

b1, b2,
 

... , aq+1

... , bq

y
{zzz =

Àk=1
q GHbkLþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþÀk=1
q+1 GHakL  

1
þþþþþþþþþþþþþþ
2 p É

 Å
g-É�

g+É�

G HsL À j=1
q+1 G Ha j - sL

þþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþÀ j=1
q G Hb j - sL  H-zL-s Ç s
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where the straight line Hg - É�, g + É�L separates poles of G(s) from G Ha j - sL.
Almost all symbolic simplifications of p Fq to the lower level functions are done automatically

Hypergeometric2F1A 1
þþþþ
3
,

1
þþþþ
3
,

4
þþþþ
3
,

1
þþþþ
2
E

1
þþþþþ
9
�!!!!

2
3 I�!!!!

3 p + 3 logH2LM

HypergeometricPFQA91, 1
þþþþ
3
,

1
þþþþ
3
=, 9 4

þþþþ
3
,

4
þþþþ
3
=, 1E

1
þþþþþ
9

yH1Likjj
1
þþþþþ
3
y
{zz

HypergeometricPFQ@81, 1, 1, 1<, 84, 4, 4<, -1D
27
þþþþþþþþþ
4

H-169 + 96 logH4L + 30 zH3LL

The exception is the Gauss function Hypergeometric2F1. Since it has so many different transformation and

simplification rules some of them are assigned to FunctionExpand:

Hypergeometric2F1A1, 1
þþþþ
4
,

5
þþþþ
4
,

1
þþþþ
4
E

2 F1 ikjj1,
1
þþþþþ
4

;
5
þþþþþ
4

;
1
þþþþþ
4
y
{zz

FunctionExpand@%D
cot-1 I�!!!!

2 M
þþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþ�!!!!

2
-

log I1 - 1þþþþþþþþþþ�!!!!!
2
M

þþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþ
2
�!!!!

2
+

log I1 + 1þþþþþþþþþþ�!!!!!
2
M

þþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþ
2
�!!!!

2

Principal-Value Integrals

Consider the integral

Å
-1

2 1
þþþþ
x

 Çx

— Integrate::idiv : Integral of
1
þþþþþþ

x
does not converge on8-1, 2<.

Å
-1

2 1
þþþþþ
x

 Ç x

mier.nb 11



which  does  not  exist  in  the  Riemann  sense,  since  it  has  a  nonintegrable  singularity  at  x = 0.  However,  if  we

isolate x = 0 by e1 > 0 from the left and by e2 > 0 from the right  and take a limit of correspondent integrals when

e1 � 0 and e2 � 0, we obtain

lim
e1�0
e2�0

i
kjjjÅ-1

-e1 1
þþþþþ
x

 Ç x + Å
e2

2 1
þþþþþ
x

 Ç x
y
{zzz = lim

e1�0
e2�0

HlogH2L + logHe1L - logHe2LL

The  double  limit  exists,  and  so  it  is  a  given integral,  if  and  only  if  e1=e2.  Such  understanding  of  divergent

integrals is called the principal-value or the  Cauchy principal-value. It is easy to see that if an integral exists

in the Riemann sense, it exists in the Cauchy sense. Thus, the class of Cauchy integrals is larger than the class

of Riemann integrals.

In Version 3.0, definite integrals in the Riemann sense and principal-value integrals are separated by the new

option PrincipalValue. If you want to evaluate an integral in the Cauchy sense, set the option Princi-

palValue  to True  (the default setting is False ). Here is an example

IntegrateA 1
þþþþ
x
, 8x, -1, 2<, PrincipalValue� TrueE

logH2L

IntegrateA 1
þþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþ
Sinh@5 x + 1D , 8x, -1, 1<, PrincipalValue� TrueE

1
þþþþþ
5

logHcothH2L tanhH3LL

IntegrateA x
þþþþþþþþþþþþþþþþþþþþþþ
Sin@3 xD , 9x, -

1
þþþþ
2

H3 pL, 3 p
þþþþþþþþþ
2

=, PrincipalValue� TrueE

4 C
þþþþþþþþþþþþ

9

If the integrand contains high-order polynomials, Integrate  returns  RootSum objects

IntegrateA 1
þþþþþþþþþþþþþþþþþþþþþþ
x7 + x + 1

, 8x, -2, 1<, PrincipalValue� TrueE
É p

þþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþ
1 + 7 RootH#17 + #1 + 1 &, 1L6 -

RootSumi
kjj#17 + #1 + 1 &,

logH-#1 - 2L
þþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþ

7 #16 + 1
&y
{zz + RootSumi

kjj#17 + #1 + 1 &,
logH1 - #1L
þþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþ

7 #16 + 1
&y
{zz

Here are examples of integrals with movable singularities
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IntegrateA 1
þþþþþþþþþþþþþþþþþþþþþþþþþþþþþ
a - Tan@xD2 , 9x, 0,

p
þþþþþ
2
=, PrincipalValue� TrueE

If
i
k
jjjja > 0,

p
þþþþþþþþþþþþþþþþþþþþþ
2 a + 2

, Å
0

p

þþþþþ2 1
þþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþ
a - tan2HxL  Ç x

y
{
zzzz

IntegrateA xl
þþþþþþþþþþþþ
x - a

, 8x, 0, �<, PrincipalValue� TrueE

If
i
kjjja > 0 Ä ReHlL > -1 Ä ReHlL < 0, -al p cotHp lL, Å

0

� xl
þþþþþþþþþþþþþþþþ
x - a

 Ç x
y
{zzz

Here Integrate  detects that the integrand has a singular point along the path of integration if the parameter a

is real positive.

New Classes of Integrals

In this section we give a short overview of  specific classes of definite integrals, which were essentially improved

in the new version. Mathematica  now is able to calculate almost all indefinite and about half of definite integrals

from  the  well-known collection  of  integrals  compiled  by  Gradshteyn  and  Ryzhik.  Moreover,  the  Version  3.0

makes it possible to calculate thousands of new integrals not included in any published handbooks.

Å integrals of rational functions

The RootSum  object has been linked to Integrate  to display the result of integration in a more elegant and

shorter way 

Å
0

1 x - 1
þþþþþþþþþþþþþþþþþþþþþþþþþ
x7 + x3 + 1

 Çx

RootSumi
kjj#17 + #13 + 1 &,

log H1 - #1L #1 - log H1 - #1L
þþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþ

7 #16 + 3 #12
&y
{zz -

RootSumi
kjj#17 + #13 + 1 &,

log H-#1L #1 - log H-#1L
þþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþ

7 #16 + 3 #12
&y
{zz

Å logarithmic and Polylogarithm integrals

Å
0

1 x2 Log@xD Log@x + 1D
þþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþ

x + 1
 Çx

1
þþþþþ
8
H-20 + p2 + 16 logH2L - zH3LL
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Å
0

1 Log@1 - xD3
þþþþþþþþþþþþþþþþþþþþþþþþþþþþþH1 - x zL2  Çx

-
6 Li3H zþþþþþþþþþþz-1 LþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþHz - 1L z

Å elliptic integrals

The  package,  conducted  an elliptic  integration,  is  now autoloaded  (as  are  as  all  other  integration packages),  so

you don’t need to worry about its loading anymore

Å
-

p

þþþþ4

p

þþþþ4 1
þþþþþþþþþþþþþþþþþþþþþþþþ�!!!!!!!!!!!!!!!!!!
Cos@xD

 Çx

4 FJ p
þþþþþ
8
° 2N

Å
0

p

þþþþ2 x
þþþþþþþþþþþþþþþþþþþþþþþþ�!!!!!!!!!!!!!!!!!!
Sin@xD

 Çx

3 F2 ikjj
1
þþþþþ
2

,
3
þþþþþ
4

, 1;
3
þþþþþ
2

,
3
þþþþþ
2

; 1y{zz

Å integrals involving Bessel functions

Å
0

�

t Exp@-t2D BesselI@2, tD BesselK@2, tD Çt

-3 +
1
þþþþþ
4
�!!!!

È K2
i
kjj

1
þþþþþ
2
y
{zz

Å
0

� BesselJ@1, xD Exp@- 2þþþþ
x
D

þþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþ
x

 Çx

2 J1H2L K1H2L

Å
0

�

AiryAi@xD2 Çx

-
GH- 1þþþþ6 Lþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþ

12
�!!!!

2
3 �!!!!

3
6

p3�2
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Å integrals involving non-analytic functions

Å
-1-I

2+2 I

Sin@Abs@xDD Çx

H3 + 3 ÉL i
k
jjjjj
�!!!!

2
þþþþþþþþþþþþþ

3
-

cosI�!!!!
2 M

þþþþþþþþþþþþþþþþþþþþþþþþþþþ
3
�!!!!

2
-

cosI2�!!!!
2 M

þþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþ
3
�!!!!

2

y
{
zzzzz

Å
0

3 p
þþþþþþþ2

Max@Sin@xD, Cos@2 xDD Çx

3
�!!!!

3
þþþþþþþþþþþþþþþþþþ

2

Additional Features

Mathematica’s capability for definite integration gained substantial power in the new version. Other essential

features  of  Integrate  not  discussed  in  the  previous  sections  are  convergence  tests  and  the  assumptions

mechanism. 

Å Conditions

In Version 3.0 Integrate  is "conditional."  In most cases, if the integrand or limits of integration contains

symbolic parameters, Integrate returns an If statement of the form

If[ conditions, answer, held integral ]

which gives necessary conditions for the existence of the integral. For example

Å
0

�

xl-1 Exp@-a xD Çx

IfJReHaL > 0 Ä ReHlL > 0, a-l GHlL, Å
0

�

È-x a xl-1 Ç xN

Setting  the  option  GenerateConditions  to  False  prevents  Integrate  from  returning  conditional

results (as in Version 2.2):

Integrate@xl-1 Exp@-a xD, 8x, 0, �<, GenerateConditions� FalseD
a-l GHlL

If a given definite integral has symbolic parameters, then the result of integration essentially always depends

on certain specific conditions  on those parameters. In this example the  restrictions  ReHaL > 0 and  ReHlL > 0
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came from conditions of the convergence.  Even when a definite integral is convergent, some other conditions

on parameters  might appear.  For instance, the presence of singularities on the integration path could lead to

essential  changes  when  the  parameters   vary.  The  next  section  is  devoted  to  the  convergence  of  definite

integrals. 

Å Convergence 

The new integration code contains criteria for the convergence of definite integrals. Each time Integrate

examines the integrand for convergence

Å
-1

1 Cos@xD
þþþþþþþþþþþþþþþþþþ

x
 Çx

— Integrate::idiv : Integral of
cosHxL
þþþþþþþþþþþþþþþþþþþþ

x
does not converge on8-1, 1<.

Å
-1

1 cosHxL
þþþþþþþþþþþþþþþþþþþ

x
 Ç x

This  integral  has a  nonintegrable singularity at  x = 0.  Thus,  Integrate  generates a warning message and

returns unevaluated. However, the integral exists in the Cauchy sense. Setting the option PrincipalValue

to True, we obtain

IntegrateA Cos@xD
þþþþþþþþþþþþþþþþþþ

x
, 8x, -1, 1<, PrincipalValue� TrueE �� FullSimplify

0

Consider another integral with a symbolic parameter a

Å
0

1

xr-1 ArcTan@xD Çx

If
i
k
jjjjjReHrL > -1,

yH0LI r+1þþþþþþþþþþ4 M - yH0LI r+3þþþþþþþþþþ4 M + p
þþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþ

4 r
, Å

0

1

xr-1 tan-1HxL Ç x
y
{
zzzzz

The integral has a singular point at x = 0, which is integrable only if ReHrL > -2. 

If you are sure that a particular integral is convergent or you don’t care about the convergence, you can avoid

testing  the  convergence  by  setting  the  option  GenerateConditions  to  False.  It  will  make  Inte-

grate  return an answer a bit faster. 

Setting GenerateConditions  to False  also lets you evaluate divergent integrals

IntegrateA 1
þþþþ
x
, 8x, 0, 2<, GenerateConditions� FalseE

logH2L
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Å Assumptions

The new option Assumption is used to specify particular assumptions on parameters in definite integrals.

Consider the integral with the arbitrary parameter y

Å
0

� È-x2-x y

þþþþþþþþþþþþþþþþþþþþþþþ�!!!!
x

 Ç x

Here we set the option Assumptions to ReHyL > 0

IntegrateA Exp@-x2 - x yD
þþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþ�!!!!

x
, 8x, 0, �<, Assumptions� Re@yD > 0E

1
þþþþþ
2

È
y2
þþþþþþþþ8

�!!!!
y K 1

þþþþþ4

i
kjjj

y2

þþþþþþþþ
8

y
{zzz

Setting Assumptions to ReHyL < 0, we get a different form of the answer

IntegrateA Exp@-x2 - x yD
þþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþ�!!!!

x
, 8x, 0, �<, Assumptions� Re@yD < 0E

È
y2
þþþþþþþþ8 p �!!!!!!!!- y II- 1

þþþþþ4
I y2

þþþþþþþ8 M + I 1
þþþþþ4
I y2

þþþþþþþ8 MM
þþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþ

2
�!!!!

2

though the integral is a continuous function with respect to the parameter y

PlotANIntegrateA Exp@-x2 - x yD
þþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþ�!!!!

x
, 8x, 0, �<E, 8y, -2, 2<E

-2 -1 1 2

2

3

4

5

ú Graphics ú

The next integral is discontinuous with respect to the parameter g
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IntegrateA Cos@xD H1 - Cos@g xDL
þþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþ

x2
, 8x, 0, �<, Assumptions� g > 1E

1
þþþþþ
2

p Hg - 1L

IntegrateA Cos@xD H1 - Cos@g xDL
þþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþ

x2
, 8x, 0, �<, Assumptions� -1 < g < 1E

0

IntegrateA Cos@xD H1 - Cos@g xDL
þþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþ

x2
, 8x, 0, �<, Assumptions� g < -1E

1
þþþþþ
2

p
i
k
jjjjjjj

1
þþþþþþþþþþþþþþþþþþþ"########1þþþþþþþ

g2

- 1
y
{
zzzzzzz

If the given assumptions exactly match the generated assumptions, then the latter don’t show up in the output;

otherwise, Integrate produces assumptions complementary to ones given:

Integrate@xn-1 H1 - xLm-1, 8x, 0, 1<, Assumptions� Re@nD > 0D

If
i
kjjjReHmL > 0,

GHmL GHnL
þþþþþþþþþþþþþþþþþþþþþþþþþþþþ
GHm + nL , Å

0

1H1 - xLm-1 xn-1 Ç x
y
{zzz
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