
Graphical models, message-passing algorithms, and

variational methods: Part I

Martin Wainwright

Department of Statistics, and

Department of Electrical Engineering and Computer Science,

UC Berkeley, Berkeley, CA USA

Email: wainwrig@{stat,eecs}.berkeley.edu

For further information (tutorial slides, films of course lectures), see:

www.eecs.berkeley.edu/ewainwrig/

Introduction

• graphical models provide a rich framework for describing large-scale

multivariate statistical models

• used and studied in many fields:

– statistical physics

– computer vision

– machine learning

– computational biology

– communication and information theory

–

• based on correspondences between graph theory and probability

theory

Some broad questions

• Representation:

– What phenomena can be captured by different classes of

graphical models?

– Link between graph structure and representational power?

• Statistical issues:

– How to perform inference (data −→ hidden phenomenon)?

– How to fit parameters and choose between competing models?

• Computation:

– How to structure computation so as to maximize efficiency?

– Links between computational complexity and graph structure?

Outline

1. Background and set-up

(a) Background on graphical models

(b) Illustrative applications

2. Basics of graphical models

(a) Classes of graphical models

(b) Local factorization and Markov properties

3. Exact message-passing on (junction) trees

(a) Elimination algorithm

(b) Sum-product and max-product on trees

(c) Junction trees

4. Parameter estimation

(a) Maximum likelihood

(b) Proportional iterative fitting and related algorithsm

(c) Expectation maximization

Example: Hidden Markov models

q q

1 2 3 T

1 2 3 T

X X X X

Y Y Y Y

(a) Hidden Markov model (b) Coupled HMM

• HMMs are widely used in various applications

discrete Xt: computational biology, speech processing, etc.

Gaussian Xt: control theory, signal processing, etc.

coupled HMMs: fusion of video/audio streams

• frequently wish to solve smoothing problem of computing

p(xt | y1, . . . , yT)

• exact computation in HMMs is tractable, but coupled HMMs require

algorithms for approximate computation (e.g., structured mean field)

Example: Image processing and computer vision (I)

(a) Natural image (b) Lattice (c) Multiscale quadtree

• frequently wish to compute log likelihoods (e.g., for classification), or

marginals/modes (e.g., for denoising, deblurring, de-convolution, coding)

• exact algorithms available for tree-structured models; approximate

techniques (e.g., belief propagation and variants) required for more

complex models

Example: Computer vision (II)

• disparity for stereo vision: estimate depth in scenes based on two (or

more) images taken from different positions

• global approaches: disparity map based on optimization in an MRF

θst(ds, dt)

θs(ds)θt(dt)

• grid-structured graph G = (V,E)

• ds ≡ disparity at grid position s

• θs(ds) ≡ image data fidelity term

• θst(ds, dt) ≡ disparity coupling

• optimal disparity map bd found by solving MAP estimation problem for

this Markov random field

• computationally intractable (NP-hard) in general, but iterative

message-passing algorithms (e.g., belief propagation) solve many

practical instances

Stereo pairs: Dom St. Stephan, Passau

Source: http://www.usm.maine.edu/ rhodes/

Example: Graphical codes for communication

Goal: Achieve reliable communication over a noisy channel.

DecoderEncoder
Channel
Noisy

00000 10010 00000

source

0

X Y X̂

• wide variety of applications: satellite communication, sensor

networks, computer memory, neural communication

• error-control codes based on careful addition of redundancy, with

their fundamental limits determined by Shannon theory

• key implementational issues: efficient construction, encoding and

decoding

• very active area of current research: graphical codes (e.g., turbo

codes, low-density parity check codes) and iterative

message-passing algorithms (belief propagation; max-product)

Graphical codes and decoding (continued)

Parity check matrix Factor graph

H =

2

6

6

4

1 0 1 0 1 0 1

0 1 1 0 0 1 1

0 0 0 1 1 1 1

3

7

7

5

Codeword: [0 1 0 1 0 1 0]

Non-codeword: [0 0 0 0 0 1 1]

ψ1357

ψ2367

ψ4567

x1

x2

x3

x4

x5

x6

x7

• Decoding: requires finding maximum likelihood codeword:

bxML = arg max
x

p(y |x) s. t. Hx = 0 (mod 2).

• use of belief propagation as an approximate decoder has revolutionized

the field of error-control coding

Outline

1. Background and set-up

(a) Background on graphical models

(b) Illustrative applications

2. Basics of graphical models

(a) Classes of graphical models

(b) Local factorization and Markov properties

3. Exact message-passing on trees

(a) Elimination algorithm

(b) Sum-product and max-product on trees

(c) Junction trees

4. Parameter estimation

(a) Maximum likelihood

(b) Proportional iterative fitting and related algorithsm

(c) Expectation maximization

Undirected graphical models (Markov random fields)

Undirected graph combined with random vector X = (X1, . . . , Xn)

• given an undirected graph G = (V,E), each node s has an

associated random variable Xs

• for each subset A ⊆ V , define XA := {Xs, s ∈ A}.

1

2

3 4

5 6

7

A

B

S

Maximal cliques (123), (345), (456), (47) Vertex cutset S

• a clique C ⊆ V is a subset of vertices all joined by edges

• a vertex cutset is a subset S ⊂ V whose removal breaks the graph

into two or more pieces

Factorization and Markov properties

The graph G can be used to impose constraints on the random vector

X = XV (or on the distribution p) in different ways.

Markov property: X is Markov w.r.t G if XA and XB are

conditionally indpt. given XS whenever S separates A and B.

Factorization: The distribution p factorizes according to G if it can

be expressed as a product over cliques:

p(x) =
1

Z

∏

C∈C

ψC(xC)︸ ︷︷ ︸

compatibility function on clique C

Illustrative example: Ising/Potts model for images

xs xt

ψst(xs, xt)

• discrete variables Xs ∈ {0, 1, . . . ,m− 1} (e.g., gray-scale levels)

• pairwise interaction ψst(xs, xt) =

a b b

b a b

b b a

• for example, setting a > b imposes smoothness on adjacent pixels

(i.e., {Xs = Xt} more likely than {Xs 6= Xt})

Directed graphical models

• factorization of probability distribution based on parent → child

structure of a directed acyclic graph (DAG)

s

π(s)

• denoting π(s) = {set of parents of child s}, we have:

p(x) =
∏

s∈V

p
(
xs | xπ(s)

)
︸ ︷︷ ︸
parent-child conditional distributions

Illustrative example: Hidden Markov model (HMM)

q q

1 2 3 T

1 2 3 T

X X X X

Y Y Y Y

• hidden Markov chain (X1, X2, . . . , Xn) specified by conditional

probability distributions p(xt+1 | xt)

• noisy observations Yt of Xt specified by conditional p(yt | xt)

• HMM can also be represented as an undirected model on the same

graph with

ψ1(x1) = p(x1)

ψt, t+1(xt, xt+1) = p(xt+1 | xt)

ψtt(xt, yt) = p(yt | xt)

Factor graph representations

• bipartite graphs in which

– circular nodes (◦) represent variables

– square nodes (�) represent compatibility functions ψC
x7x6x4 x2 4567 x3

x1
x5 2367

 1357
x1

x1

x2

x2

x3

x3

• factor graphs provide a finer-grained representation of factorization

(e.g., 3-way interaction versus pairwise interactions)

• frequently used in communication theory

Representational equivalence: Factorization and

Markov property

• both factorization and Markov properties are useful

characterizations

Markov property: X is Markov w.r.t G if XA and XB are

conditionally indpt. given XS whenever S separates A and B.

Factorization: The distribution p factorizes according to G if it can

be expressed as a product over cliques:

p(x) =
1

Z

∏

C∈C

ψC(xC)︸ ︷︷ ︸

compatibility function on clique C

Theorem: (Hammersley-Clifford) For strictly positive p(·), the

Markov property and the Factorization property are equivalent.

Outline

1. Background and set-up

(a) Background on graphical models

(b) Illustrative applications

2. Basics of graphical models

(a) Classes of graphical models

(b) Local factorization and Markov properties

3. Exact message-passing on trees

(a) Elimination algorithm

(b) Sum-product and max-product on trees

(c) Junction trees

4. Parameter estimation

(a) Maximum likelihood

(b) Proportional iterative fitting and related algorithsm

(c) Expectation maximization

Computational problems of interest

Given an undirected graphical model (possibly with observations y):

p(x | y) =
1

Z

∏

C∈C

ψC(xC)
∏

s∈V

ψs(xs; ys)

Quantities of interest:

(a) the log normalization constant logZ

(b) marginal distributions or other local statistics

(c) modes or most probable configurations

Relevant dimensions often grow rapidly in graph size =⇒ major

computational challenges.

Example: Consider a naive approach to computing the normalization constant for

binary random variables:

Z =
X

x∈{0,1}n

Y

C∈C

exp
˘

ψC(xC)
¯

Complexity scales exponentially as 2n.

Elimination algorithm (I)

Suppose that we want to compute the marginal distribution p(x1):

∑

x2,...,x6

[
ψ12(x1, x2)ψ13(x1, x3)ψ34(x3, x4)ψ35(x3, x5)ψ246(x2, x4, x6)

]
.

1

2

3

4

5

6

Exploit distributivity of sum and product operations:

p(x1) ∝
∑

x2

[
ψ12(x1, x2)

∑

x3

ψ13(x1, x3)
∑

x4

ψ34(x3, x4)×

∑

x5

ψ35(x3, x5)
∑

x6

ψ246(x2, x4, x6)
]
.

Elimination algorithm (II;A)

Order of summation ≡ order of removing nodes from graph.

1

2

3

4

5

6

Summing over variable x6 amounts to eliminating 6 and attached edges

from the graph:

p(x1) ∝
∑

x2

[
ψ12(x1, x2)

∑

x3

ψ13(x1, x3)
∑

x4

ψ34(x3, x4)×

∑

x5

ψ35(x3, x5)
{∑

x6

ψ246(x2, x4, x6)
}]
.

Elimination algorithm (II;B)

Order of summation ≡ order of removing nodes from graph.

1

2

3

4

5

6

After eliminating x6, left with a residual potential ψ̃24

p(x1) ∝
∑

x2

[
ψ12(x1, x2)

∑

x3

ψ13(x1, x3)
∑

x4

ψ34(x3, x4)×

∑

x5

ψ35(x3, x5)
{
ψ̃24(x2, x4)

}]
.

Elimination algorithm (III)

Order of summation ≡ order of removing nodes from graph.

1

2

3

4

5

6

Similarly eliminating variable x5 modifies ψ13(x1, x3):

p(x1) ∝
∑

x2

[
ψ12(x1, x2)

∑

x3

ψ13(x1, x3)
∑

x4

ψ34(x3, x4)×

∑

x5

ψ35(x3, x5)ψ̃24(x2, x4)
]
.

Elimination algorithm (IV)

Order of summation ≡ order of removing nodes from graph.

1

2

3

4

5

6

Eliminating variable x4 leads to a new coupling term ψ23(x2, x3):

p(x1) ∝
∑

x2

ψ12(x1, x2)
∑

x3

ψ̃13(x1, x3)
∑

x4

ψ34(x3, x4)ψ̃24(x2, x4).

︸ ︷︷ ︸
ψ23(x2, x3).

Elimination algorithm (V)

Order of summation ≡ order of removing nodes from graph.

1

2

3

4

5

6

Finally summing/eliminating x2 and x3 yields the answer:

p(x1) ∝
∑

x2

ψ12(x1, x2)
[∑

x3

ψ̃13(x1, x3)ψ13(x2, x3)
]
.

Summary of elimination algorithm

• Exploits distributive law with sum and product to perform partial

summations in a particular order.

• Graphical effect of summing over variable xi:

(a) eliminate node i and all its edges from the graph, and

(b) join all neighbors {j | (i, j) ∈ E} with a residual edge

• Computational complexity depends on the clique size of the

residual graph that is created.

• Choice of elimination ordering

(a) Desirable to choose ordering that leads to small residual graph.

(b) Optimal choice of ordering is NP-hard.

Sum-product algorithm on (junction) trees

• sum-product generalizes many special purpose algorithms

– transfer matrix method (statistical physics)

– α− β algorithm, forward-backward algorithm (e.g., Rabiner, 1990)

– Kalman filtering (Kalman, 1960; Kalman & Bucy, 1961)

– peeling algorithms (Felsenstein, 1973)

• given an undirected tree (graph wtihout cycles) with root node,

elimination ≡ leaf-stripping

Root r

ℓa

ℓb

ℓc

ℓd

ℓe

• suppose that we wanted to compute marginals p(xs) at all nodes

simultaneously

– running elimination algorithm n times (once for each node s ∈ V)

fails to recycle calculations — very wasteful!

Sum-product on trees (I)

• sum-product algorithm provides an O(n) algorithm for computing

marginal at every tree node simultaneously

• consider the following parameterization on a tree:

p(x) =
1

Z

∏

s∈V

ψs(xs)
∏

(s,t)∈E

ψst(xs, xt)

• simplest example: consider effect of eliminating xt from edge (s, t)

s t

Mts

• effect of eliminating xt can be represented as “message-passing”:

p(x1) ∝ ψs(xs)
∑

xt

[ψt(xt)ψst(xs, xt)]︸ ︷︷ ︸

Message Mts(xs) from t→ s

Sum-product on trees (II)

• children of t (when eliminated) introduce other “messages”

Mut,Mvt,Mwt

s t

u

v

w

Mts

Mwt

Mut

• correspondence between elimination and message-passing:

p(x1) ∝ ψs(xs)
[∑

xt

ψt(xt)ψst(xs, xt)

︸ ︷︷ ︸
Mut(xt)Mvt(xt)Mwt(xt)︸ ︷︷ ︸

]

Message t→ s Messages from children to t

• leads to the message-update equation:

Mts(xs) ←
∑

xt

ψt(xt)ψst(xs, xt)
∏

u∈N(t)\s

Mut(xt)

Sum-product on trees (III)

• in general, node s has multiple neighbors (each the root of a

subtree)

s t

u

v

w

a

b

Mts

Mwt

Mut

• marginal p(xs) can be computed from a product of incoming

messages:

p(xs) ∝ ψs(xs)︸ ︷︷ ︸ Mts(xs) Mbs(xs) Mas(xs)︸ ︷︷ ︸
Local evidence Contributions of neighboring subtrees

• sum-product updates are applied in parallel across entire tree

Summary: sum-product algorithm on a tree

Tu

Tv

Tw

w

u

v

s

t
Mut

Mwt

Mvt

Mts

Mts ≡ message from node t to s

N(t) ≡ neighbors of node t

Sum-product: for marginals

(generalizes α− β algorithm; Kalman filter)

Proposition: On any tree, sum-product updates converge after a finite

number of iterations (at most graph diameter), and yield exact

marginal distributions.

Update: Mts(xs) ←
P

x′

t
∈Xt

n
ψst(xs, x

′
t) ψt(x

′
t)

Q
v∈N(t)\s

Mvt(xt)
o

.

Marginals: p(xs) ∝ ψt(xt)
Q

t∈N(s)Mts(xs).

Max-product algorithm on trees (I)

• consider problem of computing a mode

x̂ ∈ arg max
x

p(x)

of a distribution in graphical model form

• key observation: distributive law also applies to maximum and

product operations, so global maximization can be broken down

• simple example: maximization of p(x) ∝ ψ12(x1, x2)ψ13(x1, x3) can

be decomposed as

max
x1

{[
max
x2

ψ12(x1, x2)
] [

max
x3

ψ13(x1, x3)
]}

• systematic procedure via max-product message-passing:

– generalizes various special purpose methods (e.g., peeling techniques,

Viterbi algorithm)

– can be understood as non-serial dynamic programming

Max-product algorithm on trees (II)

• purpose of max-product: computing modes via max-marginals:

p̃(x1) ∝ max
x′

2,...x
′

n

p(x1, x
′
2, x

′
3, . . . , x

′
n)

partial maximization with x1 held fixed

• max-product updates on a tree

Mts(xs) ← max
x′

t
∈Xt

{
ψst(xs, x

′
t) ψt(x

′
t)

∏

v∈N(t)\s

Mvt(xt)
}
.

Proposition: On any tree, max-product updates converge in a finite

number of steps, and yield the max-marginals as:

p̃(xs) ∝ ψs(xs)
∏

t∈N(s)

Mts(xs).

From max-marginals, a mode can be determined by a “back-tracking”

procedure on the tree.

What to do for graphs with cycles?

Idea: Cluster nodes within cliques of graph with cycles to form a

clique tree. Run a standard tree algorithm on this clique tree.

Caution: A naive approach will fail!

1

2 3

4

1 2

2 4

2

3 44

1 31

(a) Original graph (b) Clique tree

Need to enforce consistency between the copy of x3 in cluster {1, 3}

and that in {3, 4}.

Running intersection and junction trees

Definition: A clique tree satisfies the running intersection

property if for any two clique nodes C1 and C2, all nodes on the

unique path joining them contain the intersection C1 ∩ C2.

Key property: Running intersection ensures probabilistic

consistency of calculations on the clique tree.

A clique tree with this property is known as a junction tree.

Question: What types of graphs have junction trees?

Junction trees and triangulated graphs

Definition: A graph is triangulated means that every cycle of

length four or longer has a chord.

1 2

65

3

4

7 8

1 2

54

7 8

6

3

(a) Untriangulated (b) Triangulated version

Proposition: A graph G has a junction tree if and only if it is

triangulated. (Lauritzen, 1996)

Junction tree for exact inference

Algorithm: (Lauritzen & Spiegelhalter, 1988)

1. Given an undirected graph G, form a triangulated graph G̃ by

adding edges as necessary.

2. Form the clique graph (in which nodes are cliques of the

triangulated graph).

3. Extract a junction tree (using a maximum weight spanning tree

algorithm on weighted clique graph).

4. Run sum/max-product on the resulting junction tree.

Note: Separator sets are formed by the intersections of cliques

adjacent in the junction tree.

Theoretical justification of junction tree

A. Theorem: For an undirected graph G, the following properties are

equivalent:

(a) Graph G is triangulated.

(b) The clique graph of G has a junction tree.

(c) There is an elimination ordering for G that does not lead to any

added edges.

B. Theorem: Given a triangulated graph, weight the edges of the

clique graph by the cardinality |A ∩B| of the intersection of the

adjacent cliques A and B. Then any maximum-weight spanning

tree of the clique graph is a junction tree.

Illustration of junction tree (I)

1 2

65

9

3

4

7 8

1. Begin with (original) untriangulated graph.

Illustration of junction tree (II)

1 2

65

9

3

4

7 8

1 2

5

9

3

4

7 8

6

2. Triangulate the graph by adding edges to remove chordless cycles.

Illustration of junction tree (III)

1 2

5

9

3

4

7 8

6

1 2 4

4 7 8

2
4 5

8

6 8 9

2
5 6

8

2 3 6

3

1

1

2

2

2

2

3. Form the clique graph associated with the triangulated graph. Place

weights on the edges of the clique graph, corresponding to the

cardinality of the intersections (separator sets).

Illustration of junction tree (IV)

1 2 4

4 7 8

2
4 5

8

6 8 9

2
5 6

8

2 3 6

3

1

1

2

2

2

2

2 6

4 8 6 8

2 4

2 5 8

1 2 4

4 7 8

2
4 5

8

6 8 9

2
5 6

8

2 3 6

4. Run a maximum weight spanning tree algorithm on the weight

clique graph to find a junction tree. Run standard algorithms on

the resulting tree.

Comments on junction tree algorithm

• treewidth of a graph ≡ size of largest clique in junction tree

• complexity of running tree algorithms scales exponentially in size of

largest clique

• junction tree depends critically on triangulation ordering (same as

elimination ordering)

• choice of optimal ordering is NP-hard, but good heuristics exist

• junction tree formalism widely used, but limited to graphs of

bounded treewidth

Junction tree representation

Junction tree representation guarantees that p(x) can be factored as:

p(x) =

∏
C∈Cmax

p(xC)
∏

S∈Csep
p(xS)

where

Cmax ≡ set of all maximal cliques in triangulated graph G̃

Csep ≡ set of all separator sets (intersections of adjacent cliques)

Special case for tree:

p(x) =
∏

s∈V

p(xs)
∏

(s,t)∈E

p(xs, xt)

p(xs)p(xt)

Outline

1. Background and set-up

(a) Background on graphical models

(b) Illustrative applications

2. Basics of graphical models

(a) Classes of graphical models

(b) Local factorization and Markov properties

3. Exact message-passing on trees

(a) Elimination algorithm

(b) Sum-product and max-product on trees

(c) Junction trees

4. Parameter estimation

(a) Maximum likelihood

(b) Proportional iterative fitting and related algorithsm

(c) Expectation maximization

Parameter estimation

• to this point, have assumed that model parameters (e.g., ψ123) and

graph structure were known

• in many applications, both are unknown and must be estimated on

the basis of available data

Suppose that we are given independent and identically distributed

samples z1, . . . , zN from unknown model p(x;ψ):

• Parameter estimation: Assuming knowledge of the graph

structure, how to estimate the compatibility functions ψ?

• Model selection: How to estimate the graph structure (possibly

in addition to ψ)?

Maximum likelihood (ML) for parameter estimation

• choose parameters ψ to maximize log likelihood of data

L(ψ; z) =
1

N
log p(z(1), . . . , z(N);ψ)

(b)
=

1

N

N∑

i=1

log p(z(i);ψ)

where equality (b) follows from independence assumption

• under mild regularity conditions, ML estimate

ψ̂ML := arg maxL(ψ; z) is asymptotically consistent

ψ̂ML d
→ ψ∗

• for small sample sizes N , regularized ML frequently better behaved:

ψ̂RML ∈ arg max
ψ
{L(ψ; z) + λ‖ψ‖}

for some regularizing function ‖ · ‖.

ML optimality in fully observed models (I)

• convenient for studying optimality conditions: rewrite

ψC(xC) = exp {
∑
J θC;JI [xC = J]}

where I [xC = J] is an indicator function

• Example:

ψst(xs, xt) =

a00 a01

a10 a11

 =

exp(θ00) exp(θ01)

exp(θ10) exp(θ11)

• with this reformulation, log likelihood can be written in the form

L(θ; z) =
∑

C

θC µ̂C − logZ(θ)

where µ̂C,J = 1
N

∑N
i=1 I [z(i) = J] are the empirical marginals

ML optimality in fully observed models (II)

• taking derivatives with respect to θ yields

µ̂C,J︸︷︷︸ =
∂

∂θC,J
logZ(θ) = Eθ {I [xC = J]}︸ ︷︷ ︸

Empirical marginals Model marginals

• ML optimality ⇐⇒ empirical marginals are matched to model

marginals

• one iterative algorithm for ML estimation: generate sequence of

iterates {θn} by naive gradient ascent :

θn+1
C,J ← θnC,J + α

[
µ̂C,J − E{I [xC = J]}

]
︸ ︷︷ ︸
current error

Iterative proportional fitting (IPF)

Alternative iterative algorithm for solving ML optimality equations:

(due to Darroch & Ratcliff, 1972)

1. Initialize ψ0 to uniform functions (or equivalently, θ0 = 0).

2. Choose a clique C and update associated compatibility function:

Scaling form: ψ
(n+1)
C = ψ

(n)
C

µ̂C

µC(ψn)

Exponential form: θ
(n+1)
C = θ

(n)
C + [log µ̂C − log µC(θn)] .

where µC(ψn) ≡ µC(θn) are current marginals predicted by model

3. Iterate updates until convergence.

Comments

• IPF ≡ co-ordinate ascent on the log likelihood.

• special case of successive projection algorithms (Csiszar & Tusnady, 1984)

Parameter estimation in partially observed models

• many models allow only partial/noisy observations—say

p(y | x)—of the hidden quantities x

• log likelihood now takes the form

L(y; θ) =
1

N

N∑

i=1

log p(y(i); θ) =
1

N

N∑

i=1

log

{
∑

z

p(y(i) | z)p(z; θ)

}
.

Data augmentation:

• suppose that we had observed the complete data (y(i); z(i)), and

define complete log likelihood

Clike(z,y; θ) =
1

N

N∑

i=1

log p(z(i),y(i); θ).

• in this case, ML estimation would reduce to fully observed case

• Strategy: Make educated guesses at hidden data, and then

average over the uncertainty.

Expectation-maximization (EM) algorithm (I)

• iterative updates on pair {θn, qn(z | y)} where

– θn ≡ current estimate of the parameters

– qn(z | y) ≡ current predictive distribution

EM Algorithm:

1. E-step: Compute expected complete log likelihood:

E(θ, θn; qn) =
∑

z

qn(z | y;θn)Clike(z,y; θ)

where qn(z | y; θn) is conditional distribution under model p(z; θn).

2. M-step Update parameter estimate by maximization

θn+1 ← arg max
θ
E(θ, θn; qn)

Expectation-maximization (EM) algorithm (II)

• alternative interpretation in lifted space (Csiszar & Tusnady, 1984)

• recall Kullback-Leibler divergence between distributions

D(r ‖ s) =
∑

x

r(x) log
r(x)

s(x)

• KL divergence is one measure of distance between probability

distributions

• link to EM: define an auxiliary function

A(q, θ) = D
(
q(z |y)p̂(y) ‖ p(z,y; θ)

)

where p̂(y) is the empirical distribution

Expectation-maximization (EM) algorithm (III)

• maximum likelihood (ML) equivalent to minimizing KL divergence

D
(
p̂(y) ‖ p(y; θ)

)
︸ ︷︷ ︸

= −H(p̂)−
∑

y

p̂(y) log p(y; θ)

︸ ︷︷ ︸
KL emp. vs fit negative log likelihood

Lemma: Auxiliary function is an upper bound on desired KL

divergence:

D
(
p̂(y) ‖ p(y; θ)

)
≤ A(q, θ) = D

(
q(z |y)p̂(y) ‖ p(z,y; θ)

)

for all choices of q, with equality for q(z |y) = p(z |y; θ).

EM algorithm is simply co-ordinate descent on this auxiliary function:

1. E-step: q(z |y, θn) = arg min
q
A(q, θn)

2. M-step: θn+1 = arg min
θ
A(qn, θ)

