
Linear programming II



Review: LP problem — 1/33 —

• The standard form of LP problem is (primal problem):

max z = cx
s.t. Ax ≤ b, x ≥ 0

• The corresponding dual problem is:

min bT y
s.t. AT y ≥ cT , y ≥ 0

• Strong Duality Theorem: If the primal problem has an optimal solution, then
the dual also has an optimal solution and there is no duality gap.



Complementary Slackness Theorem — 2/33 —

The result obtained from proving the strong duality theorem is a theorem itself
called “Complementary Slackness Theorem”, which states:

If x∗ and y∗ are feasible solutions of primal and dual problems, then x∗ and y∗ are
both optimal if and only if

1. y∗T (b − Ax∗) = 0

2. (y∗T A − c)x∗ = 0

This implies that if a primal constraint is not “bounded”, its corresponding variables
in the dual problem must be 0, and vice versa.

This theorem is useful for solving LP problems, and the foundation of another class
of LP solver called “interior problem” method.



Complementary Slackness Theorem example — 3/33 —

Consider our simple LP problem:

max z = x1 + x2,

s.t. x1 + 2x2 ≤ 100
2x1 + x2 ≤ 100
x1, x2 ≥ 0

Its dual problem is:

min z = 100y1 + 100y2,

s.t. y1 + 2y2 ≥ 1
2y1 + y2 ≥ 1
y1, y2 ≥ 0



The the Complementary Slackness Theorem states:

y1(100 − x1 − 2x2) = 0
y2(100 − 2x1 − x2) = 0

x1(y1 + 2y2 − 1) = 0
x2(2y1 + y2 − 1) = 0

At the optimal, we have x = [100/3, 100/3], y = [1/3, 1/3]. The complementary
slackness holds, and all the constrains are bounded in both primal and dual
problems.



Complementary Slackness Theorem example (cont.) — 5/33 —

Modify the simple LP problem a bit:

max z = 3x1 + x2,

s.t. x1 + 2x2 ≤ 100
2x1 + x2 ≤ 100
x1, x2 ≥ 0

and its dual problem is:

min z = 100y1 + 100y2,

s.t. y1 + 2y2 ≥ 3
2y1 + y2 ≥ 1
y1, y2 ≥ 0



Now the the Complementary Slackness Theorem states:

y1(100 − x1 − 2x2) = 0
y2(100 − 2x1 − x2) = 0

x1(y1 + 2y2 − 3) = 0
x2(2y1 + y2 − 1) = 0

For this LP problem, the optimal solutions are x = [50, 0], y = [0, 1.5]. The
complementary slackness still holds. We observe that:

• In the primal problem:

– The first constrain is unbounded, so its corresponding variable in the dual
problem (y1) has to be 0.

– The second constrain is bounded, so its corresponding variable in the dual
problem (y2) can be non-zero.

• In the dual problem:

– The first constrain is bounded, so its corresponding variable in the primal
problem (x1) is free.

– The second constrain is unbounded, so its corresponding variable in the
primal problem (x2) has to be 0.



Primal/Dual optimality conditions — 7/33 —

Given the primal and dual problem with slack/surplus variables added:

Primal: Dual:
max cx min bT y
s.t. Ax + w = b, x,w ≥ 0 s.t. AT y − z = cT , y, z ≥ 0

• The Complementary Slackness Theorem states that at optimal solution, we
should have: x jz j = 0,∀ j, and wiyi = 0,∀i.

• To put this in matrix notation, define X = diag(x), which means X is a diagonal
matrix with x j as diagonal elements.

• Define e as a vector of 1’s.

• Now the complementary conditions can be written as: XZe = 0, WYe = 0.



We wil have the optimality conditions for the primal/dual problems as:

Ax + w − b = 0
AT y − z − cT = 0

XZe = 0
WYe = 0

x, y,w, z ≥ 0

• The first two conditions are simply the constraints for primal/dual problems.

• The next two are complementary slackness.

• The last one is the non-negativity constraint.

Ignoring the non-negativity constraints, this is a set of 2n + 2m equations with
2n + 2m unknowns (n and m are the number of unknowns and constraints in the
primal problem), which can be solved using Newton’s method.

Such approach is called “primal-dual interior point method”.



Primal-dual interior point method — 9/33 —

• The primal-dual interior point method finds the primal-dual optimal solution
(x∗, y∗,w∗, z∗) by applying Newton’s method to the primal-dual optimality
conditions.

• The direction and length of the steps are modified in each step so that the
non-negativity condition is strictly satisfied in each iteration.

To be specific, define the following function F : R2n+2m → R2n+2m:

F(x, y,w, z) =


Ax + w − b

AT y − z − cT

XZe
WYe


The goal is to find solution for F = 0.



Applying Newton’s method, if at iteration k the variables are (xk, yk,wk, zk), we
obtain a search direction (δx, δy, δw, δz) by solving the linear equations:

F′(xk, yk,wk, zk)


δx
δy
δw
δz

 = −F(xk, yk,wk, zk).

Here F′ is the Jacobian. At iteration k, the equations are:
A 0 I 0
0 AT 0 −I
Z 0 0 X
0 W Y 0



δx
δy
δw
δz

 =

−Axk − wk + b
−AT yk + zk + cT

−XkZke
−WkYke


Then the update will be obtained as: (xk, yk,wk, zk) + α(δx, δy, δw, δz) with α ∈ (0, 1].
α is chosen so that the result from the next iteration is feasible.

Given that at current iteration, both primal and dual are strictly feasible, the first two
terms on the right hand side are 0.



An improved algorithm — 11/33 —

The algorithm in its current setup is not ideal because often only a small step can
be taken before the positivity constraints are violated. A more flexible version is
proposed as follow.

• The value of XZe +WYe represents the duality gap.

• Instead of trying to eliminate the duality gap, reducing the duality gap by some
factor in each step.

In order word, we replace the complementary slackness by:

XZe = µxe
WYe = µye

When µx, µy → 0 as k → inf, the solution from this system will converge to the
optimal solution of the original LP problem. Easy selections of µ’s are µk

x = (xk)T z/n
and µk

y = (wk)T y/m. Here n and m are dimensions of x and y respectively.



Under the new algorithm, at the kth iteration, the Newton equations become:
A 0 I −0
0 AT 0 −I
Z 0 0 X
0 W Y 0



δx
δy
δw
δz

 =


0
0

−XkZke + µk
xe

−WkYke + µk
ye

 (1)

This provides the general primal-dual interior point method as follow:

1. Choose strictly feasible initial solution (x0, y0,w0, z0), and set k = 0. Then Repeat
following two steps until convergence.

2. Solve system (1) to obtain the updates (δx, δy, δw, δz).

3. Update the solution: (xk+1, yk+1,wk+1, zk+1) = (xk, yk,wk, zk) + αk(δx, δy, δw, δz). αk

is chosen so that all variables are greater than or equal to 0.



The Barrier Problem — 13/33 —

The interior point algorithm is closely related to the Barrier Problem. Go back to
the primal problem:

max z = cx
s.t. Ax + w = b, x,w ≥ 0.

The non-negativity constraints can be replaced by adding two barrier terms in the
objective function. The barrier term is defined as B(x) =

∑
j log x j, which is finite as

long as x j is positive. Then the primal problem becomes:

max z = cx + µxB(x) + µyB(w)
s.t. Ax + w = b.

The barrier terms make sure x and w won’t become negative.

Before trying to solve this problem, we need some knowledge about Lagrange
multiplier.



Lagrange multiplier — 14/33 —

The method Lagrange multiplier is a general algorithm for optimization problems
with equality constraints. For example, consider a problem:

max f (x, y)
s.t. g(x, y) = c

We introduce a new variable λ called Lagrange multiplier and form the following
new objective function :

L(x, y, λ) = f (x, y) + λ[g(x, y) − c]

We will then optimize L with respect to x, y and λ using typical method. Note that
the condition ∂L/∂λ = 0 at optimal solution guarantees that the constraints will be
satisfied.



The Barrier Problem (cont.) — 15/33 —

Go back to the barrier problem, the Lagrangian for this problem is (using y as the
multiplier):

L(x, y,w) = cx + µxB(x) + µyB(w) + yT (b − w − Ax).

The optimal solution for the problem satisfies (check this!):

c + µxX−1e − AT y = 0
µyW−1e − y = 0
b − w − Ax = 0

Define new variables z = µxX−1e and rewrite these conditions, we obtain exactly the
same set of equations as the relaxed optimality conditions for primal-dual problem.



Introduction to quadratic programming — 16/33 —

We have discussed linear programming, where both the objective function and
constraints are linear functions of the unknowns.

The quadratic programming (QP) problem has quadratic objective function and
linear constraints:

max f (x) =
1
2

xT Bx + cx

s.t. Ax ≤ b, x ≥ 0

The algorithm for solving QP problem is very similar to that for LP. But first we need
to introduce the KKT condition.



KKT conditions — 17/33 —

The Karush-Kuhn-Tucker (KKT) conditions are a set of necessary conditions for a
solution to be optimal in a general non-linear programming problem.
Consider the following problem :

max f (x)
s.t. gi(x) ≤ 0, i = 1, . . . , I

h j(x) = 0, j = 1, . . . , J

The Lagrangian is: L(x, µ, λ) = f (x) −
∑

i yigi(x) −
∑

j z jh j(x). Then at the optimal
solution, following KKT conditions must be satisfied:

• Primal feasibility: gi(x∗) ≤ 0, h j(x∗) = 0.

• Dual feasibility: yi ≥ 0. (what about z j?)

• Complementary slackness: yigi(x∗) = 0.

• Stationary: ∇ f (x∗) −
∑

i yi∇gi(x) −
∑

j z j∇h j(x) = 0.



Optimal solution for QP — 18/33 —

Following the same procedure, the Lagrangian for the QP problem can be
expressed as : L(x, µ, λ) = 1

2 xT Bx + cx − yT (Ax − b) + zT x.

Then the KKT conditions for the QP problem is:

• Primal feasibility: Ax ≤ b, x ≥ 0.

• Dual feasibility: y ≥ 0, z ≥ 0 (pay attention to the sign of z).

• Complementary slackness: Y(Ax − b) = 0, Zx = 0.

• Stationary: Bx + c − AT y + z = 0.

Y and Z are diagonal matrices with y and z at diagonal.

This can be solved using the interior-point method.



To be specific, add slack variable w (= b − Ax), the optimality conditions become:

Ax + w − b = 0
Bx + c − AT y + z = 0

Zx = 0
Yw = 0

x, y, z,w ≥ 0

The unknowns are x, y, z,w. We can then obtain the Jacobians, form the Newton
equation and solve for the optimal solution iteratively.



QP in R — 20/33 —

The quadprog package provide functions (solve.QP.compact) to solve quadratic
programming problem.
Pay attention to the definition of function parameters. They are slightly different
from what I have used in the standard form!

solve.QP package:quadprog R Documentation

Solve a Quadratic Programming Problem

Description:

This routine implements the dual method of Goldfarb and Idnani

(1982, 1983) for solving quadratic programming problems of the

form min(-dˆT b + 1/2 bˆT D b) with the constraints AˆT b >= b_0.

Usage:

solve.QP(Dmat, dvec, Amat, bvec, meq=0, factorized=FALSE)

Arguments:

Dmat: matrix appearing in the quadratic function to be minimized.



dvec: vector appearing in the quadratic function to be minimized.

Amat: matrix defining the constraints under which we want to

minimize the quadratic function.

bvec: vector holding the values of b_0 (defaults to zero).

meq: the first meq constraints are treated as equality

constraints, all further as inequality constraints (defaults

to 0).

factorized: logical flag: if TRUE, then we are passing Rˆ(-1) (where

D = RˆT R) instead of the matrix D in the argument Dmat.



QP example — 22/33 —

To solve min 1
2(x2

1 + x2
2), s.t. 2x1 + x2 ≥ 1.

> Dmat = diag(rep(1,2))

> dvec = rep(0,2)

> Amat = matrix(c(2,1))

> b = 1

> solve.QP(Dmat=Dmat,dvec=rep(0,2),Amat=Amat, bvec=b)

$solution

[1] 0.4 0.2

$value

[1] 0.1

$unconstrained.solution

[1] 0 0

$iterations

[1] 2 0

$Lagrangian

[1] 0.2

$iact

[1] 1



Review — 23/33 —

We have covered in previous two classes:

• LP problem set up.

• Simplex method.

• Duality.

• Interior point algorithm.

• Quadratic programming.

Now you should be able to formulate a LP/QP problem and solve it. But how are
these useful in statistics?

• Remember LP is essentially an optimization algorithm.

• There are plenty of optimization problems in statistics, e.g., MLE.

• It’s just a matter of formulating the objective function and constraints.



LP in statistics I: quantile regression — 24/33 —

Motivation:

• Goal of regression: to tease out the relationship between outcome and
covariates. Traditional regression: mean of the outcome depends on covariates.

• Problem: data are not always well-behaved. Are mean regression methods
sufficient in all circumstances?
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Quantile regression:

• provides a much more exhaustive description of the data.

• The collection of regressions at all quantiles would give a complete picture of
outcome-covariate relationships.



Quantile regression model — 25/33 —

Regress conditional quantiles of response on the covariates. Assume the outcome
Y is continuous and that X is the vector of covariates.

• Classical model: Qτ(Y |X) = Xβτ

• Qτ(Y |X) is the τth conditional quantile of Y given X.

• βτ is the parameter of interest.

The above model is equivalent to specifying

Y = Xβτ + ε, Qτ(ε|X) = 0 .

In comparison, the mean regression is:

Y = Xβ + ε, E[ε|X] = 0 .



Pros and cons — 26/33 —

Advantages:

• Regression at a sequence of quantiles provides a more complete view of data.

• Inference is robust to outliers.

• Estimation is more efficient when residual normality is highly violated.

• Allows interpretation in the outcome’s original scale of measurement.

Disadvantages:

• To be useful, needs to regress on a set of quantiles: computational burden.

• Solution has no closed form.

• Adaptation to non-continuous outcomes is difficult.



The loss function — 27/33 —

Link between estimands and loss functions.

• To obtain sample mean of {y1, y2, ..., yn}, minimize
∑

i (yi − b)2.

• To obtain sample median of {y1, y2, ..., yn}, minimize
∑

i |yi − b|.

It can be shown that to obtain the sample τth quantile, one needs to minimize
asymmetric absolute loss, that is, compute

Q̂τ(Y) = argmin
b

∑
i:yi≥b

τ|yi − b| +
∑
i:yi<b

(1 − τ)|yi − b|

 .

For convenience, defined ρτ(x) = x[τ − 1(x < 0)].

1



Estimator — 28/33 —

The classical linear quantile regression model is fitted by determining

β̂τ = argmin
b

n∑
i=1

ρτ(yi − xib).

The estimator have all “expected” properties:

• Scale equivariance:

β̂τ(ay, X) = aβ̂τ(y, X), β̂τ(−ay, X) = −aβ̂1−τ(y, X)

• Shift (or regression) equivariance:

β̂τ(y + Xγ, X) = β̂τ(y, X) + γ

• Equivariance to reparametrization of design:

β̂τ(y, XA) = A−1β̂τ(y, X)



Asymmetric Double Exponential (ADE) distribution — 29/33 —

• Least-squares estimator⇔ MLE if residuals are normal.

• QR estimator⇔ MLE if residuals are ADE.

• Density function for ADE: f (y; µ, σ, τ) = τ(1−τ)
σ

exp
{
−ρτ

(
y−µ
σ

)}
.
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• If residuals are iid ADE(0, 1, τ), then the log-likelihood for βτ is

`(βτ; Y,X, τ) = −
n∑

i=1

ρτ (yi − xiβτ) + c0



Model fitting — 30/33 —

The QR question β̂τ = argminb
∑n

i=1 ρτ(yi − xib) can be framed into an LP problem.

First define a set of new variables:

ui ≡ [yi − xib]+
vi ≡ [yi − xib]−

b+ ≡ [b]+
b− ≡ [b]−

The the problem can be formulated as:

max −

n∑
i=1

[τui + (1 − τ)vi]

s.t. yi = xib+ − xib− + ui − vi

ui, vi ≥ 0, i = 1, . . . , n
b+, b− ≥ 0

This is a standard LP problem can be solved by Simplex/Interior point method.



A little more details — 31/33 —

Written in matrix notation, and make ui, vi, b+, b− as unknowns, get

max − [0, 0, τ, 1 − τ]


b+
b−
u
v


s.t. [X,−X, I,−I]


b+
b−
u
v

 = y

b+,b−,u, v ≥ 0

The dual problem is:

min yT d

s.t.


XT

−XT

I
−I

 d ≥ −


0
0
τ

1 − τ


d is unrestricted



Manipulating the constraints, get

XT d = 0
−τ ≤ d ≤ 1 − τ

Define a new variable a = 1 − τ − d, the original LP problem can be formulated as:

max yT a
s.t. XT a = 0

0 ≤ a ≤ 1

Adding slack variables s for the ≤ constraints, the problem can be formulated in the
standard form, and can be solved by using either Simplex or Interior Point methods.

max yT a
s.t. XT a = 0

a + s = 1
a, s ≥ 0



In this form, y (n-vector) are outcomes, X (n × p matrix) are predictors, a and s
(n-vectors) are unknowns. There are 2n unknowns and p + n constraints.

Once we have optimal a, d can be obtained given τ (the quantile). Then depending
on which constraints are hit in the dual problem, one can determine the set of basic
variables in primal problem, and then solve for β.


