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Modern Control 
A. Stability, Controllability, Observability 
 
The mathematical structure most naturally adapted to the description of systems is the 
state space representation. The state of a system is described at any instant by a set of 
state variables, for example the position and velocity of all the mass components of a 
mechanical system, or the current and voltage though and across every device in an 
electrical system or the temperature and pressure at every point of a thermodynamic 
system. The state of a system at any time can then be predicted from a knowledge of the 
initial state and the inputs that have acted upon the system over time.   
 

 
 
The state of a system is the smallest set of variables 

1 2
, ,

n
x x xK such that knowledge of 

these variables at t = 0, together with knowledge of all inputs 
1 2
, ,

m
u u uK  for t ≥ 0, 

completely determines the outputs 
1 2
, ,

r
y y yK  for t ≥ 0.  

The n-dimensional space whose coordinates consist of the x1 axis, x2 axis, ….xn axis is 
called the state space of the system. Any state of a system is represented by a vector in 
state space. 
 
A system that can be described by a finite number n of state variables is a lumped 
parameter system, governed by a set of n first-order differential equations: 
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or in vector notation 
x f(x,u, )

y g(x,u, )

t

t

=

=

&
 

 
The lumped system is linear if the functions f(x,u,t) and g(x,u,t) can be expressed as 
linear functions of the state and input vectors: 

x A( )x B( )u

y C( )x D( )u

t t

t t

= +

= +

&
 

 
For linear, time invariant continuous systems, the matrices A, B, C, D are constant:  
 

DuCxy

BuAx x

+=

+=&
 

 
where  A: [n x n] system matrix 
 B: [n x m] input matrix 
  C: [r x n] output matrix   
 D: [r x m] transmission matrix 
 
 
 
 
 

n + m 
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In general, when the eigenvalues of the system matrix A are distinct, the state equations 
can be transformed into "modal canonical" form: 

m m

m m

x A x B u

y C x D u

= +

= +

&
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where the system matrix Am is the diagonal matrix of eigenvalues ( , 1.. )i i n! = , 
decoupling all the states.  The eigenvalues of the system matrix are the poles of the 
system. If all the eigenvalues (system poles) have real parts less than zero, the system is 
stable.  
 
A continuous LTI system is stable if the real parts of the eigenvalues of the system 
matrix A are all less than zero. 
 
The Bm matrix of the modal canonical form tells us about the controllability of the 
system. Is it possible to find a set of inputs u to a system which can change the state x of 
a system from any initial state x(0) to any final state x(T) in finite time T?. The answer 
is yes, provided all state variables are capable of being affected by the input. 
For any state 

i
x ,  i i ix x!= + ib u&  

If any row 
i
b  of the matrix Bm is zero, the corresponding state ix cannot be affected by 

any of the inputs. The behavior of the state ix  is governed solely by the natural response 
of the system i i ix x!=& .  The state ix is uncontrollable. 
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A system is controllable if all the state variables are capable of being affected by the 
system inputs. 
 
The Cm matrix of the modal canonical form tells us about the observability of the 
system.  Is it possible to estimate any initial state x(0) of a system from a record of the 
outputs y(t) over a finite time?. The answer is yes, provided all state variables influence 
the output.  
 
For any state 

j
x ,  j j i i

i j

x x

!

= + +"y c c Du  

If any column jc  of the output matrix Cm is zero, the corresponding state jx  cannot 

affect the output jy . The state jx is unobservable. 

A system is observable if all the state variables are capable of affecting the system 
outputs. 
 
On this basis, the state of a system can be divided into four categories: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Controllable 
Unobservable 

Controllable 
Observable 

Uncontrollable 
Observable 

Uncontrollable 
Unobservable 

u 

y 
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A more general test for controllability which holds for systems with multiplicities in 
eigenvalues is to evaluate the rank of the "controllability matrix" Mc (n x nm) 

2 n-1
cM = B AB A B A B! "

# $
L  

For a controllable system, the controllablity matrix must have rank n  

Also we define the "observability matrix" Mo (nr x n) 
2

o

n-1

C

CA

CA
M =

.

.

CA

! "
# $
# $
# $
# $
# $
# $
# $
# $
% &

 

For an observable system, the observability matrix must have rank n 
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B State Feedback 
 
We will use state space design to design control schemes to stabilize a system and to 
track a reference input command signal. We may have situations where all the state 
variables can be measured and used in feedback. Typically however only a limited 
number of output variables can be measured. In addition, there may be constraints on 
the transient response of the closed loop (overshoot, settling time) or restrictions on the 
control input. Optimal control approaches can be used to trade off the conflicting 
constraints.  
 
First consider the task of stabilizing a process described by the state equations: 

( )

( )

f

g

=

=

x x,u

y x,u

&
 

If the system is controllable, that is all state variables are capable of being affected by 
the input, then we can write a "control law" for the system ( )h=u x  by feeding back the 
state variables (or estimates of the state variables). 
 

 
 
For a linear time-invariant single-input single-output process represented by the block 
diagram: 
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we can use a linear control law given by  u = -Kx = [ ]

!
!
!
!
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The overall closed loop state space representation can be found from the block diagram: 

x Ax B(-Kx)

y Cx D(-Kx)

= +

= +

&
 

or 
f

f

x A x

y C x

=

=

&
 

where  Af = A-BK  is the closed loop system matrix. 
 Cf = C-DK  is the closed loop output matrix 

 
Modern control design is concerned with choosing the values of the feedback gain 
vector K to produce the desired closed loop response.  
 
 
Pole Placement 

Choose the values of the observer gain [ ]1 2 nK K K=K L  to place the closed 

loop system poles (the eigenvalues of the closed loop system matrix Af) to satisfy the 
design constraints (e.g. percent overshoot, settling time etc.) 

Assuming the desired poles are to be located at [ ]1 2 n
! ! !L , then find K such 

that eig(A-BK) = [ ]1 2 n
! ! !L   
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Optimal Control 
 
Choose the values of K = [ ]nKKK L21  to minimize the performance index: 

0

( )T T
x Qx u RuI dt

!

= +"  

 where Q : [nxn] symmetric state weighting matrix 
      R : [mxm] symmetric control weighting matrix 
 
The coefficients in Q and R are chosen by the designer and represent weighting 
penalties on the state variables and control inputs respectively. The penalties are 
quadratic, so large deviations are penalized much more than small ones. For fast 
tracking, you want to penalize deviations of the state variables from their regulated 
values, so you would choose high coefficients in the Q matrix. At the same time, you do 
not want to use too much control effort, so you choose high values in the R matrix to 
penalize excessive control inputs. A reasonable rule of thumb is to initially choose 
diagonal matrices Q and R such that 

1/
ii
Q = maximum acceptable value of 2

i
x! "# $  

1/
ii
R = maximum acceptable value of 2

i
u! "# $  

 
In optimal control, once the designer has selected the values of the Q and R matrices, 
the solution of the minimization problem can be calculated as: 

K = R-1BTS 
where S :[nxn] symmetric matrix satisfying the matrix Ricatti equation: 

ATS + SA - SBR-1BTS + Q = 0 
 
The proof is given in the Appendix  
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Observer Design 
 
The control law we have been using so far has assumed that all the state variables x are 
available for feedback. In most cases, we cannot measure all the state variables of the 
system. To apply the control law, we need to make estimates of the state variables x̂  
derived from the measured outputs of the system and the system inputs. This implies 
that the system is observable, that is, the measured output variables can capture the 
behavior of all the state variables. The subsystem that estimates the state variables is 
called an "observer" and its function is to output an estimate x̂  from measured output y 
and calculated input u. 
 

 
 
The observer block operates on the difference between the measured output y and the 
estimated output ˆ ˆy Cx Du= +  

 
 
The [nx1] gain vector L is the observer gain and is set by the system designer. 
The observer error x%  = x - x̂  between the actual and estimated state variables is 
described by: 

{ }ˆ ˆ ˆ
ex x-x Ax Bu- Ax Bu L(y-y) Ax-LCx (A-LC)x A x= = + + + = = =&&% & % % % %  

where Ae = A-LC is the observer system matrix. 
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To design an observer for a state space control system, you want to ensure that the 
observer error is brought to zero faster than the dominant time constant for the system.  

You choose the values of the observer gain [ ]1 2 . . .L
T

nL L L=  to place the 

observer poles (the eigenvalues of the observer system matrix Ae) 2-5 times faster than 
the system poles.  

Assuming the desired observer poles are to be located at [ ]1 2 n
! ! !L , then find L 

such that eig(A-LC)= [ ]1 2 n
! ! !L  

 
 
Reference Gain 
 
The block diagram for a single-input single-output tracking system to track a reference 
input r(t) is shown below: 
 

 
 
At steady state we want the output to track the input, that is: - 0
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Robust Control 
 
When the system is subject to uncontrolled disturbances w, it is useful to augment the 
state vector with an extra state variable, the integral of the error signal: 

 
 
The integral action attenuates the steady state error due to the uncontrolled disturbance 
 

Cx D D
I
x e r y r u w= = ! = ! ! !&  
 
The augmented state equations become 
 

10 -C -D -D
î î +

0 A B 0 B
u r w

! " ! " ! " ! "
= + +# $ # $ # $ # $
% & % & % & % &

&  where î =
x

I
x! "
# $
% &

 

 
and the feedback control law is 

[ ]K î
I

u K= !  

Pole Placement or Optimal Control techniques can then be used on the augmented 
state equations.
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C Case Study of Modern Control Design 
 
Satellite Attitude Control 
 

 
MILSTAR Telecommunications Satellite 

Satellites require attitude control for proper orientation of antennas and sensors with 
respect to the earth. A simplified one-axis model of a satellite is shown below with 
motion about an axis perpendicular to the page.  

 
Franklin et al, Feedback Control of Dynamic Systems 

4th Ed, Prentice-Hall, 2002 

Gas jets provide the control moment for changing the orientation !  of the satellite. 
Uncontrolled disturbance torques DM  can occur as a result of solar pressure or orbit 
perturbations.  The equation of motion about one axis of the satellite is given by 
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;c DJ F d M! = +&&  

 
where J is the moment of inertia of the satellite about its mass center, 

c
F d  is the control 

torque applied by the gas jets, and the disturbance moment MD results from solar 
pressure acting on any asymmetry in the attached solar panels. !  is the angle of the 
satellite axis with respect to an inertial reference frame. Normalizing, we define: 
 

;c D
F d M

u w
J J

= =  

and obtain 
u w! = +&&  

 
with initial conditions (0) 0; (0) 0! != =& , assuming that the initial satellite pointing 
angle and the initial satellite angular velocity are both zero. 
 
Full State Feedback 
Neglecting the disturbance moment, the motion about one axis of a communications 
satellite is given by 

cJ F d! =&&  

Convert to state space form with 
1 2

; ; ;c
F d

x x u
J

! != = =&   

Then the state equation is: 
0 1 0

0 0 1
x x u

! " ! "
= +# $ # $
% & % &

&  

Find the optimal state feedback gain vector K to minimize the performance index: 

2 2
1

0

( )I x wu dt

!

= +"  

Solution: 

The weighting matrices are [ ]
1 0

;
0 0

Q R w
! "

= =# $
% &

 

Solve the matrix Ricatti equation 
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The optimal feedback gain K depends on the designers choice of the relative penalty w 
placed on the control effort u2.  Large values of w correspond to the design decision to 
conserve “fuel” and limit the accumulated control input. This results in low feedback 
gain values and correspondingly slow system response to a tracking command. The 
opposite is true for small values of w.  
After the feedback gain K is computed, the system poles can be calculated as the 
eigenvalues of the closed loop system matrix Af = A-BK.  For the satellite example 
derived above, the system poles are found as follows: 

1 1
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The poles are at 2
1

n n
j! "# " #= $ ± $  where 

1

4
1

;
2

n
w! "
#

= = . This suggests that 

the optimum pole placements for the satellite design lie along the constant 1

2

! =  line 

in the complex plane at a radial distance from the origin 
1

4

n
w!
"

=  
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Large values of w correspond to “slow” poles close to the origin and a slow response to 
the tracking command.  Small values of w correspond to “fast” poles with fast response 
to the tracking command. 
The principal advantage of the modern control approach is that the design decisions are 
related directly to the balance between performance and cost.   
 
Observer-based control 
Design an observer based state space control scheme for a satellite with integral action 
to track a step input command 1

r
! = . The control system must achieve the following 

specifications for the step response: 
• Settling time  < 5s 
• Overshoot  < 10% 

• Control effort u  < 10  

• Satellite angular velocity  !& < 1 rad/s 

• Zero steady state error to a disturbance 2w = !  
 
Solution: 
Augment the state variables Cx

I
x e r y r= = ! = !&  

0 1 0 0 1 0

0 0 1 0 0 0

0 0 0 1 0 1

î î u r w

!" # " # " # " #
$ % $ % $ % $ %

= + + +$ % $ % $ % $ %
$ % $ % $ % $ %& ' & ' & ' & '

&  

for ( )1 2 3
; ; ;r dt! " ! " ! "= # = =$ &  
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Find the optimal state feedback gain vector [ ]1 2IK K K  to minimize the 

performance index: 

0

( )T T
î Qî u RuI dt

!

= +"  

Choose the weighting matrices corresponding to the given design constraints: 

Q = 
4 0 0

0 0.8 0

0 0 1

! "
# $
# $
# $% &

; R = [ 0.01 ] 

Solve the matrix Ricatti equation (using MATLAB’s lqr command) 
The optimal gains are: 

[ ]20; 24 12K
I
K = ! =  

Design an observer with poles 5 times faster than the system poles  
101

2530
L=

! "
# $
% &

 

Simulate the satellite control system 
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Meets design specifications 
 
 
Summary 
 
The state space representation of systems allows for direct access to the internal 
behavior of a system. For LTI systems, linear algebra techniques can be used to design 
control systems involving: 

• Determining the feedback gain vector K by pole placement or optimal control. 
• Determining the observer gain vector L by pole placement 
• Determining the reference gain 

r
K for zero steady state error 

• Determining the augmented feedback gain vector[ ]I
K -K  for attenuating 

disturbances 
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Appendix  The Optimal Linear Quadratic Regulator  
 
Problem 
Given a process BuAxx +=&  with initial state x(0); calculate the feedback gain vector  
K = [ ]nKKK L21  such that u = -Kx  minimizes the performance index 

0

( )T T
x Qx u RuI dt

!

= +"  where Q and R are symmetric weighting matrices. 

Solution 
With feedback xABK)x-Ax f== (&  

Write 
0

T
x PxI dt

!

= "   where P = Q + KTRK 

We postulate the existence of an exact differential, such that 

( ) PxxSxx
TT

!=
dt

d  

the differential is: 

)xSAS(Axx)S(AxSxx)(AxSxSxx f
T
f

T
f

TT
f

TT
+=+=+ &&  

=> )1(LLf
T
f SASAP +=!  

=>  ( )
0

0

T T
x Sx x Sx

d
I dt

dt

! !
= " = " =#  xT(0)Sx(0) 

Expand (1) 

( ) )2(LL0RKKQBKAS)SBK(A
TTTT =++!+!  

Let K̂ be the optimal K, then KK !+ˆ will be suboptimal.  
Substitute K̂  in (2) 

 ( )ˆ ˆ ˆ ˆ (3)T T T T
(A K B )S S A BK Q K RK 0! + ! + + = LL  

Substitute  KK !+ˆ in (2)  

( ) ( )( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
T TT T

(A K+äK B )S S A B K+äK Q K+äK R K+äK 0! + ! + + =  

Expanding and ignoring products of small quantities 
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( )ˆ ˆ ˆ ˆ

ˆ ˆ ˆ (4)

T T T T

T T T T T

(A K B )S S A BK Q K RK

äK B S SBäK K RäK+äK RK+K RäK 0 

! + ! + +

! ! + = KK

 

Subtract (3) from (4) 

 ( ) ( ) 0äKSBRKSBKRäK
TTT =!+! ˆˆ  

Set  ˆ T
RK B S=  => ˆ -1 T

K R B S=  
and set ˆ TK R SB=  => ˆ T -1

K SBR= => ˆ -1 T
K R B S= since S and R are symmetric 

 So:   =>  optimal LLSBRK
T-1

=ˆ  (5) 

where S is found by substituting (5) into (2) 

( )T -1 T -1 T -1 -1 T
(A SBR B )S S A BR B S Q SBR RR B S 0! + ! + + =  

=> ATS + SA - SBR-1BTS + Q = 0    the matrix Ricatti equation 
 
  
 


