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7.2 Preface

Philosophy This text grew out of chapters 17-20 in Advanced Engineer-
ing Mathematics, Second Edition (Jones and Bartlett Publishers), by Dennis
G. Zill and the late Michael R. Cullen. This present work represents an ex-
pansion and revision of that original material and is intended for use in either
a one-semester or a one-quarter course. Its aim is to introduce the basic prin-
ciples and applications of complex analysis to undergraduates who have no
prior knowledge of this subject.

The motivation to adapt the material from Advanced Engineering Math-
ematics into a stand-alone text sprang from our dissatisfaction with the suc-
cession of textbooks that we have used over the years in our departmental
undergraduate course offering in complex analysis. It has been our experience
that books claiming to be accessible to undergraduates were often written at a
level that was too advanced for our audience. The “audience” for our junior-
level course consists of some majors in mathematics, some majors in physics,
but mostly majors from electrical engineering and computer science. At our
institution, a typical student majoring in science or engineering does not take
theory-oriented mathematics courses in methods of proof, linear algebra, ab-
stract algebra, advanced calculus, or introductory real analysis. Moreover,
the only prerequisite for our undergraduate course in complex variables is
the completion of the third semester of the calculus sequence. For the most
part, then, calculus is all that we assume by way of preparation for a student
to use this text, although some working knowledge of differential equations
would be helpful in the sections devoted to applications. We have kept the
theory in this introductory text to what we hope is a manageable level, con-
centrating only on what we feel is necessary. Many concepts are conveyed
in an informal and conceptual style and driven by examples, rather than the
formal definition/theorem/proof. We think it would be fair to characterize
this text as a continuation of the study of calculus, but also the study of the
calculus of functions of a complex variable. Do not misinterpret the preceding
words; we have not abandoned theory in favor of “cookbook recipes”; proofs
of major results are presented and much of the standard terminology is used.
Indeed, there are many problems in the exercise sets in which a student is
asked to prove something. We freely admit that any student—not just ma-
jors in mathematics—can gain some mathematical maturity and insight by
attempting a proof. But we know, too, that most students have no idea how
to start a proof. Thus, in some of our “proof” problems, either the reader

ix



x Preface

is guided through the starting steps or a strong hint on how to proceed is
provided.

The writing herein is straightforward and reflects the no-nonsense style
of Advanced Engineering Mathematics.

Content We have purposely limited the number of chapters in this text
to seven. This was done for two “reasons”: to provide an appropriate quantity
of material so that most of it can reasonably be covered in a one-term course,
and at the same time to keep the cost of the text within reason.

Here is a brief description of the topics covered in the seven chapters.

• Chapter 1 The complex number system and the complex plane are
examined in detail.

• Chapter 2 Functions of a complex variable, limits, continuity, and
mappings are introduced.

• Chapter 3 The all-important concepts of the derivative of a complex
function and analyticity of a function are presented.

• Chapter 4 The trigonometric, exponential, hyperbolic, and logarith-
mic functions are covered. The subtle notions of multiple-valued func-
tions and branches are also discussed.

• Chapter 5 The chapter begins with a review of real integrals (in-
cluding line integrals). The definitions of real line integrals are used to
motivate the definition of the complex integral. The famous Cauchy-
Goursat theorem and the Cauchy integral formulas are introduced in
this chapter. Although we use Green’s theorem to prove Cauchy’s the-
orem, a sketch of the proof of Goursat’s version of this same theorem is
given in an appendix.

• Chapter 6 This chapter introduces the concepts of complex sequences
and infinite series. The focus of the chapter is on Laurent series, residues,
and the residue theorem. Evaluation of complex as well as real integrals,
summation of infinite series, and calculation of inverse Laplace and in-
verse Fourier transforms are some of the applications of residue theory
that are covered.

• Chapter 7 Complex mappings that are conformal are defined and
used to solve certain problems involving Laplace’s partial differential
equation.

Features Each chapter begins with its own opening page that includes a
table of contents and a brief introduction describing the material to be covered
in the chapter. Moreover, each section in a chapter starts with introduc-
tory comments on the specifics covered in that section. Almost every section
ends with a feature called Remarks in which we talk to the students about
areas where real and complex calculus differ or discuss additional interesting
topics (such as the Riemann sphere and Riemann surfaces) that are related
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to, but not formally covered in, the section. Several of the longer sections,
although unified by subject matter, have been partitioned into subsections;
this was done to facilitate covering the material over several class periods.
The corresponding exercise sets were divided in the same manner in order to
make the assignment of homework easier. Comments, clarifications, and some
warnings are liberally scattered throughout the text by means of annotations
in the left margin marked by the symbol �.

There are a lot of examples and we have tried very hard to supply all
pertinent details in the solutions of the examples. Because applications of
complex variables are often compiled into a single chapter placed at the end
of the text, instructors are sometimes hard pressed to cover any applications
in the course. Complex analysis is a powerful tool in applied mathematics. So
to facilitate covering this beautiful aspect of the subject, we have chosen to
end each chapter with a separate section on applications. The exercise sets are
constructed in a pyramidal fashion and each set has at least two parts. The
first part of an exercise set is a generous supply of routine drill-type problems;
the second part consists of conceptual word and geometrical problems. In
many exercise sets, there is a third part devoted to the use of technology.
Since the default operational mode of all computer algebra systems is complex
variables, we have placed an emphasis on that type of software. Although we
have discussed the use of Mathematica in the text proper, the problems are
generic in nature. Answers to selected odd-numbered problems are given in
the back of the text. Since the conceptual problems could also be used as
topics for classroom discussion, we decided not to include their answers. Each
chapter ends with a Chapter Review Quiz. We thought that something more
conceptual would be a bit more interesting than the rehashing of the same
old problems given in the traditional Chapter Review Exercises. Lastly, to
illustrate the subtleties of the action of complex mappings, we have used two
colors.

Acknowledgments We would like to express our appreciation to our
colleague at Loyola Marymount University, Lily Khadjavi, for volunteering to
use a preliminary version of this text. We greatly appreciate her careful read-
ing of the manuscript. We also wish to acknowledge the valuable input from
students who used this book, in particular: Patrick Cahalan, Willa Crosby,
Kellie Dyerly, Sarah Howard, and Matt Kursar. A deeply felt “thank you”
goes to the following reviewers for their words of encouragement, criticisms,
and thoughtful suggestions:

Nicolae H. Pavel, Ohio University

Marcos Jardim, University of Pennsylvania

Ilia A. Binder, Harvard University

Finally, we thank the editorial and production staff at Jones and Bartlett,
especially our production manager, Amy Rose, for their many contributions
and cooperation in the making of this text.
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A Request Although the preliminary versions of this book were class
tested for several semesters, experience has taught us that errors—typos or
just plain mistakes—seem to be an inescapable by-product of the textbook-
writing endeavor. We apologize in advance for any errors that you may find
and urge you to bring them to our attention.

Dennis G. Zill
Patrick D. Shanahan
Los Angeles, CA
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1.6 Applications

Chapter 1 Review Quiz

Introduction In elementary courses you learned
about the existence, and some of the properties,
of complex numbers. But in courses in calculus,
it is most likely that you did not even see a com-
plex number. In this text we study nothing but
complex numbers and the calculus of functions
of a complex variable.

We begin with an in-depth examination of
the arithmetic and algebra of complex numbers.

1



2 Chapter 1 Complex Numbers and the Complex Plane

1.1 Complex Numbers and Their Properties

1.1No one person “invented” complex numbers, but controversies surrounding the use of these
numbers existed in the sixteenth century. In their quest to solve polynomial equations by
formulas involving radicals, early dabblers in mathematics were forced to admit that there
were other kinds of numbers besides positive integers. Equations such as x2 + 2x + 2 = 0
and x3 = 6x + 4 that yielded “solutions” 1 +

√
−1 and 3

√
2 +
√
−2 + 3

√
2−
√
−2 caused

particular consternation within the community of fledgling mathematical scholars because
everyone knew that there are no numbers such as

√
−1 and

√
−2, numbers whose square is

negative. Such “numbers” exist only in one’s imagination, or as one philosopher opined, “the
imaginary, (the) bosom child of complex mysticism.” Over time these “imaginary numbers”
did not go away, mainly because mathematicians as a group are tenacious and some are even
practical. A famous mathematician held that even though “they exist in our imagination
. . . nothing prevents us from . . . employing them in calculations.” Mathematicians
also hate to throw anything away. After all, a memory still lingered that negative numbers
at first were branded “fictitious.” The concept of number evolved over centuries; gradually
the set of numbers grew from just positive integers to include rational numbers, negative
numbers, and irrational numbers. But in the eighteenth century the number concept took a
gigantic evolutionary step forward when the German mathematician Carl Friedrich Gauss
put the so-called imaginary numbers—or complex numbers, as they were now beginning to
be called—on a logical and consistent footing by treating them as an extension of the real
number system.

Our goal in this first section is to examine some basic definitions and the arithmetic of
complex numbers.

The Imaginary Unit Even after gaining wide respectability, through
the seminal works of Karl Friedrich Gauss and the French mathematician Au-
gustin Louis Cauchy, the unfortunate name “imaginary” has survived down
the centuries. The symbol i was originally used as a disguise for the embar-
rassing symbol

√
−1. We now say that i is the imaginary unit and define

it by the property i2 = –1. Using the imaginary unit, we build a general
complex number out of two real numbers.

Definition 1.1 Complex Number

A complex number is any number of the form z = a + ib where a and
b are real numbers and i is the imaginary unit.

�Note: The imaginary part of
z = 4 − 9i is −9 not −9i.

Terminology The notations a + ib and a + bi are used interchangeably.
The real number a in z = a+ ib is called the real part of z; the real number b
is called the imaginary part of z. The real and imaginary parts of a complex
number z are abbreviated Re(z) and Im(z), respectively. For example, if
z = 4 − 9i, then Re(z) = 4 and Im(z) = −9. A real constant multiple
of the imaginary unit is called a pure imaginary number. For example,
z = 6i is a pure imaginary number. Two complex numbers are equal if their
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corresponding real and imaginary parts are equal. Since this simple concept
is sometimes useful, we formalize the last statement in the next definition.

Definition 1.2 Equality

Complex numbers z1 = a1 + ib1 and z2 = a2 + ib2 are equal, z1 = z2, if
a1 = a2 and b1 = b2.

In terms of the symbols Re(z) and Im(z), Definition 1.2 states that z1 = z2 if
Re(z1) = Re(z2) and Im(z1) = Im(z2).

The totality of complex numbers or the set of complex numbers is usually
denoted by the symbol C. Because any real number a can be written as
z = a + 0i, we see that the set R of real numbers is a subset of C.

Arithmetic Operations Complex numbers can be added, subtracted,
multiplied, and divided. If z1 = a1 + ib1 and z2 = a2 + ib2, these operations
are defined as follows.

Addition: z1 + z2 = (a1 + ib1) + (a2 + ib2) = (a1 + a2) + i(b1 + b2)

Subtraction: z1−z2 = (a1 + ib1)− (a2 + ib2) = (a1 − a2) + i(b1 − b2)

Multiplication: z1 · z2 = (a1 + ib1)(a2 + ib2)

= a1a2 − b1b2 + i(b1a2 + a1b2)

Division:
z1

z2
=

a1 + ib1

a2 + ib2
, a2 �= 0, or b2 �= 0

=
a1a2 + b1b2

a2
2 + b2

2

+ i
b1a2 − a1b2

a2
2 + b2

2

The familiar commutative, associative, and distributive laws hold for com-
plex numbers:

Commutative laws:


 z1 + z2 = z2 + z1

z1z2 = z2z1

Associative laws:


 z1 + (z2 + z3) = (z1 + z2) + z3

z1(z2z3) = (z1z2)z3

Distributive law: z1(z2 + z3) = z1z2 + z1z3

In view of these laws, there is no need to memorize the definitions of
addition, subtraction, and multiplication.
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Addition, Subtraction, and Multiplication

(i) To add (subtract ) two complex numbers, simply add (subtract ) the
corresponding real and imaginary parts.

(ii) To multiply two complex numbers, use the distributive law and the
fact that i2 = −1.

The definition of division deserves further elaboration, and so we will discuss
that operation in more detail shortly.

EXAMPLE 1 Addition and Multiplication

If z1 = 2 + 4i and z2 = −3 + 8i, find (a) z1 + z2 and (b) z1z2.

Solution (a) By adding real and imaginary parts, the sum of the two complex
numbers z1 and z2 is

z1 + z2 = (2 + 4i) + (−3 + 8i) = (2− 3) + (4 + 8)i = −1 + 12i.

(b) By the distributive law and i2 = −1, the product of z1 and z2 is

z1z2 = (2 + 4i) (−3 + 8i) = (2 + 4i) (−3) + (2 + 4i) (8i)

= −6− 12i + 16i + 32i2

= (−6− 32) + (16− 12)i = −38 + 4i.

Zero and Unity The zero in the complex number system is the num-
ber 0 + 0i and the unity is 1 + 0i. The zero and unity are denoted by 0 and
1, respectively. The zero is the additive identity in the complex number
system since, for any complex number z = a + ib, we have z + 0 = z. To see
this, we use the definition of addition:

z + 0 = (a + ib) + (0 + 0i) = a + 0 + i(b + 0) = a + ib = z.

Similarly, the unity is the multiplicative identity of the system since, for
any complex number z, we have z · 1 = z · (1 + 0i) = z.

There is also no need to memorize the definition of division, but before
discussing why this is so, we need to introduce another concept.

Conjugate If z is a complex number, the number obtained by changing
the sign of its imaginary part is called the complex conjugate, or simply
conjugate, of z and is denoted by the symbol z̄. In other words, if z = a+ ib,
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then its conjugate is z̄ = a− ib. For example, if z = 6 + 3i, then z̄ = 6− 3i;
if z = −5 − i, then z̄ = −5 + i. If z is a real number, say, z = 7, then
z̄ = 7. From the definitions of addition and subtraction of complex numbers,
it is readily shown that the conjugate of a sum and difference of two complex
numbers is the sum and difference of the conjugates:

z1 + z2 = z̄1 + z̄2, z1 − z2 = z̄1 − z̄2. (1)

Moreover, we have the following three additional properties:

z1z2 = z̄1z̄2,

(
z1

z2

)
=

z̄1

z̄2
, ¯̄z = z. (2)

Of course, the conjugate of any finite sum (product) of complex numbers is
the sum (product) of the conjugates.

The definitions of addition and multiplication show that the sum and
product of a complex number z with its conjugate z̄ is a real number:

z + z̄ = (a + ib) + (a− ib) = 2a (3)

zz̄ = (a + ib)(a− ib) = a2 − i2b2 = a2 + b2. (4)

The difference of a complex number z with its conjugate z̄ is a pure imaginary
number:

z − z̄ = (a + ib)− (a− ib) = 2ib. (5)

Since a = Re(z) and b = Im(z), (3) and (5) yield two useful formulas:

Re(z) =
z + z̄

2
and Im(z) =

z − z̄

2i
. (6)

However, (4) is the important relationship in this discussion because it enables
us to approach division in a practical manner.

Division

To divide z 1 by z 2, multiply the numerator and denominator of z1/z2 by
the conjugate of z 2. That is,

z1

z2
=

z1

z2
· z̄2

z̄2
=

z1z̄2

z2z̄2
(7)

and then use the fact that z2z̄2 is the sum of the squares of the real and
imaginary parts of z 2.

The procedure described in (7) is illustrated in the next example.

EXAMPLE 2 Division

If z1 = 2− 3i and z2 = 4 + 6i, find z1/z2.
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Solution We multiply numerator and denominator by the conjugate
z̄2 = 4− 6i of the denominator z2 = 4 + 6i and then use (4):

z1

z2
=

2− 3i
4 + 6i

=
2− 3i
4 + 6i

4− 6i
4− 6i

=
8− 12i− 12i + 18i2

42 + 62
=
−10− 24i

52
.

Because we want an answer in the form a + bi, we rewrite the last result by
dividing the real and imaginary parts of the numerator −10− 24i by 52 and
reducing to lowest terms:

z1

z2
= −10

52
− 24

52
i = − 5

26
− 6

13
i.

Inverses In the complex number system, every number z has a unique
additive inverse. As in the real number system, the additive inverse of
z = a + ib is its negative, −z, where −z = −a− ib. For any complex number
z, we have z + (−z) = 0. Similarly, every nonzero complex number z has a
multiplicative inverse. In symbols, for z �= 0 there exists one and only one
nonzero complex number z−1 such that zz−1 = 1. The multiplicative inverse
z−1 is the same as the reciprocal 1/z.

EXAMPLE 3 Reciprocal

�Answer should be in the form a+ib.

Find the reciprocal of z = 2− 3i.

Solution By the definition of division we obtain

1
z

=
1

2− 3i
=

1
2− 3i

2 + 3i
2 + 3i

=
2 + 3i
4 + 9

=
2 + 3i

13
.

1
z

= z−1 =
2
13

+
3
13

i.That is,

You should take a few seconds to verify the multiplication

zz−1 = (2− 3i)
(

2
13 + 3

13 i
)

= 1.

Remarks Comparison with Real Analysis

(i) Many of the properties of the real number system R hold in the
complex number system C, but there are some truly remarkable
differences as well. For example, the concept of order in the
real number system does not carry over to the complex number
system. In other words, we cannot compare two complex numbers
z1 = a1 + ib1, b1 �= 0, and z2 = a2 + ib2, b2 �= 0, by means of
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inequalities. Statements such as z1 < z2 or z2 ≥ z1 have no
meaning in C except in the special case when the two num-
bers z1 and z2 are real. See Problem 55 in Exercises 1.1.
Therefore, if you see a statement such as z1 = αz2, α > 0,
it is implicit from the use of the inequality α > 0 that the sym-
bol α represents a real number.

(ii) Some things that we take for granted as impossible in real analysis,
such as ex = −2 and sinx = 5 when x is a real variable, are per-
fectly correct and ordinary in complex analysis when the symbol x
is interpreted as a complex variable. See Example 3 in Section 4.1
and Example 2 in Section 4.3.

We will continue to point out other differences between real analysis and
complex analysis throughout the remainder of the text.

EXERCISES 1.1 Answers to selected odd-numbered problems begin on page ANS-2.

1. Evaluate the following powers of i.

(a) i8 (b) i11

(c) i42 (d) i105

2. Write the given number in the form a + ib.

(a) 2i3 − 3i2 + 5i (b) 3i5 − i4 + 7i3 − 10i2 − 9

(c)
5

i
+

2

i3
− 20

i18
(d) 2i6 +

(
2

−i

)3

+ 5i−5 − 12i

In Problems 3–20, write the given number in the form a + ib.

3. (5 − 9i) + (2 − 4i) 4. 3(4 − i) − 3(5 + 2i)

5. i(5 + 7i) 6. i(4 − i) + 4i(1 + 2i)

7. (2 − 3i)(4 + i) 8.
(

1
2
− 1

4
i
) (

2
3

+ 5
3
i
)

9. 3i +
1

2 − i
10.

i

1 + i

11.
2 − 4i

3 + 5i
12.

10 − 5i

6 + 2i

13.
(3 − i)(2 + 3i)

1 + i
14.

(1 + i)(1 − 2i)

(2 + i)(4 − 3i)

15.
(5 − 4i) − (3 + 7i)

(4 + 2i) + (2 − 3i)
16.

(4 + 5i) + 2i3

(2 + i)2

17. i(1 − i)(2 − i)(2 + 6i) 18. (1 + i)2(1 − i)3

19. (3 + 6i) + (4 − i)(3 + 5i) +
1

2 − i
20. (2 + 3i)

(
2 − i

1 + 2i

)2
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In Problems 21–24, use the binomial theorem∗

(A + B)n = An +
n

1!
An−1B +

n(n− 1)

2!
An−2B2 + · · ·

+
n(n− 1)(n− 2) · · · (n− k + 1)

k!
An−kBk + · · · + Bn,

where n = 1, 2, 3, . . . , to write the given number in the form a + ib.

21. (2 + 3i)2 22.
(
1 − 1

2
i
)3

23. (−2 + 2i)5 24. (1 + i)8

In Problems 25 and 26, find Re(z) and Im(z).

25. z =

(
i

3 − i

) (
1

2 + 3i

)
26. z =

1

(1 + i)(1 − 2i)(1 + 3i)

In Problems 27–30, let z = x + iy. Express the given quantity in terms of x and y.

27. Re(1/z) 28. Re(z2)

29. Im(2z + 4z̄ − 4i) 30. Im(z̄2 + z2)

In Problems 31–34, let z = x + iy. Express the given quantity in terms of the
symbols Re(z) and Im(z).

31. Re(iz) 32. Im(iz)

33. Im((1 + i)z) 34. Re(z2)

In Problems 35 and 36, show that the indicated numbers satisfy the given equation.
In each case explain why additional solutions can be found.

35. z2 + i = 0, z1 = −
√

2

2
+

√
2

2
i. Find an additional solution, z2.

36. z4 = −4; z1 = 1 + i, z2 = −1 + i. Find two additional solutions, z3 and z4.

In Problems 37–42, use Definition 1.2 to solve each equation for z = a + ib.

37. 2z = i(2 + 9i) 38. z − 2z̄ + 7 − 6i = 0

39. z2 = i 40. z̄2 = 4z

41. z + 2z̄ =
2 − i

1 + 3i
42.

z

1 + z̄
= 3 + 4i

In Problems 43 and 44, solve the given system of equations for z1 and z2.

43. iz1 − iz2 = 2 + 10i 44. iz1 + (1 + i)z2 = 1 + 2i

−z1 + (1 − i)z2 = 3 − 5i (2 − i)z1 + 2iz2 = 4i

Focus on Concepts

45. What can be said about the complex number z if z = z̄? If (z)2 = (z̄)2?

46. Think of an alternative solution to Problem 24. Then without doing any sig-
nificant work, evaluate (1 + i)5404.

∗Recall that the coefficients in the expansions of (A + B)2, (A + B)3, and so on, can
also be obtained using Pascal’s triangle.
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47. For n a nonnegative integer, in can be one of four values: 1, i, −1, and −i. In
each of the following four cases, express the integer exponent n in terms of the
symbol k, where k = 0, 1, 2, . . . .

(a) in = 1 (b) in = i

(c) in = −1 (d) in = −i

48. There is an alternative to the procedure given in (7). For example, the quotient
(5 + 6i)/(1 + i) must be expressible in the form a + ib:

5 + 6i

1 + i
= a + ib.

Therefore, 5+6i = (1+i)(a+ib). Use this last result to find the given quotient.
Use this method to find the reciprocal of 3 − 4i.

49. Assume for the moment that
√

1 + i makes sense in the complex number system.
How would you then demonstrate the validity of the equality

√
1 + i =

√
1
2

+ 1
2

√
2 + i

√
− 1

2
+ 1

2

√
2?

50. Suppose z1 and z2 are complex numbers. What can be said about z1 or z2 if
z1z2 = 0?

51. Suppose the product z1z2 of two complex numbers is a nonzero real constant.
Show that z2 = kz̄1, where k is a real number.

52. Without doing any significant work, explain why it follows immediately from
(2) and (3) that z1z̄2 + z̄1z2 = 2Re(z1z̄2).

53. Mathematicians like to prove that certain “things” within a mathematical sys-
tem are unique. For example, a proof of a proposition such as “The unity in
the complex number system is unique” usually starts out with the assumption
that there exist two different unities, say, 11 and 12, and then proceeds to show
that this assumption leads to some contradiction. Give one contradiction if it
is assumed that two different unities exist.

54. Follow the procedure outlined in Problem 53 to prove the proposition “The zero
in the complex number system is unique.”

55. A number system is said to be an ordered system provided it contains a
subset P with the following two properties:

First, for any nonzero number x in the system, either x or −x is (but not both)
in P.

Second, if x and y are numbers in P, then both xy and x + y are in P.

In the real number system the set P is the set of positive numbers. In the real
number system we say x is greater than y, written x > y, if and only if x − y
is in P . Discuss why the complex number system has no such subset P . [Hint :
Consider i and −i.]
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1.2 Complex Plane

1.2A complex number z = x + iy is uniquely determined by an ordered pair of real numbers
(x, y). The first and second entries of the ordered pairs correspond, in turn, with the
real and imaginary parts of the complex number. For example, the ordered pair (2, −3)
corresponds to the complex number z = 2 − 3i. Conversely, z = 2 − 3i determines the
ordered pair (2, −3). The numbers 7, i, and −5i are equivalent to (7, 0), (0, 1), (0,−5),
respectively. In this manner we are able to associate a complex number z = x + iy with a
point (x, y) in a coordinate plane.

Complex Plane Because of the correspondence between a complex
number z = x + iy and one and only one point (x, y) in a coordinate plane,
we shall use the terms complex number and point interchangeably. The coor-
dinate plane illustrated in Figure 1.1 is called the complex plane or simply
the z -plane. The horizontal or x-axis is called the real axis because each
point on that axis represents a real number. The vertical or y-axis is called
the imaginary axis because a point on that axis represents a pure imaginary
number.

y-axis

x-axis
or 

real axis

y

x

or
imaginary axis

z = x  + iy or
(x, y)

Figure 1.1 z-plane

Vectors In other courses you have undoubtedly seen that the numbers
in an ordered pair of real numbers can be interpreted as the components of
a vector. Thus, a complex number z = x + iy can also be viewed as a two-
dimensional position vector, that is, a vector whose initial point is the origin
and whose terminal point is the point (x, y). See Figure 1.2. This vector
interpretation prompts us to define the length of the vector z as the distance√

x2 + y2 from the origin to the point (x, y). This length is given a special
name.

y

x

z = x  + iy

Figure 1.2 z as a position vector
Definition 1.3 Modulus

The modulus of a complex number z = x + iy, is the real number

|z| =
√

x2 + y2. (1)

The modulus |z| of a complex number z is also called the absolute value
of z. We shall use both words modulus and absolute value throughout this
text.

EXAMPLE 1 Modulus of a Complex Number

If z = 2 − 3i, then from (1) we find the modulus of the number to be
|z| =

√
22 + (−3)2 =

√
13. If z = −9i, then (1) gives |−9i| =

√
(−9)2 = 9.
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Properties Recall from (4) of Section 1.1 that for any complex number
z = x + iy the product zz̄ is a real number; specifically, zz̄ is the sum of the
squares of the real and imaginary parts of z: zz̄ = x2 + y2. Inspection of (1)
then shows that |z|2 = x2 + y2. The relations

|z|2 = zz̄ and |z| =
√

zz̄ (2)

deserve to be stored in memory. The modulus of a complex number z has the
additional properties.

|z1z2| = |z1| |z2| and
∣∣∣∣z1

z2

∣∣∣∣ =
|z1|
|z2|

. (3)

Note that when z1 = z2 = z, the first property in (3) shows that

∣∣z2
∣∣ = |z|2 . (4)

The property |z1z2| = |z1| |z2| can be proved using (2) and is left as an
exercise. See Problem 49 in Exercises 1.2.

y

y

x

x

z2

z2

z1

z1

z1 + z2
or

(x1 + x2, y1 + y2)

z2 – z1
or

(x2 – x1, y2 – y1)
z
2 – z

1

(a) Vector sum

(b) Vector difference

Figure 1.3 Sum and difference

of vectors

Distance Again The addition of complex numbers z1 = x1 + iy1 and
z2 = x2 + iy2 given in Section 1.1, when stated in terms of ordered pairs:

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2)

is simply the component definition of vector addition. The vector interpre-
tation of the sum z1 + z2 is the vector shown in Figure 1.3(a) as the main
diagonal of a parallelogram whose initial point is the origin and terminal point
is (x1 +x2, y1 + y2). The difference z2− z1 can be drawn either starting from
the terminal point of z1 and ending at the terminal point of z2, or as a position
vector whose initial point is the origin and terminal point is (x2−x1, y2−y1).
See Figure 1.3(b). In the case z = z2−z1, it follows from (1) and Figure 1.3(b)
that the distance between two points z1 = x1 + iy1 and z2 = x2 + iy2

in the complex plane is the same as the distance between the origin and the
point (x2 − x1, y2 − y1); that is, |z| = |z2 − z1| = |(x2 − x1) + i(y2 − y1)| or

|z2 − z1| =
√

(x2 − x1)2 + (y2 − y1)2. (5)

When z1 = 0, we see again that the modulus |z2| represents the distance
between the origin and the point z2.

EXAMPLE 2 Set of Points in the Complex Plane

Describe the set of points z in the complex plane that satisfy |z| = |z − i|.

Solution We can interpret the given equation as equality of distances: The
distance from a point z to the origin equals the distance from z to the point
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i. Geometrically, it seems plausible from Figure 1.4 that the set of points z
lie on a horizontal line. To establish this analytically, we use (1) and (5) to
write |z| = |z − i| as: √

x2 + y2 =
√

x2 + (y − 1)2

x2 + y2 = x2 + (y − 1)2

x2 + y2 = x2 + y2 − 2y + 1.

|z – i|

|z|

y

x

z

i

Figure 1.4 Horizontal line is the set of

points satisfying |z| = |z − i|. The last equation yields y = 1
2 . Since the equality is true for arbitrary x,

y = 1
2 is an equation of the horizontal line shown in color in Figure 1.4.

Complex numbers satisfying |z| = |z − i| can then be written as z = x + 1
2 i.

Inequalities In the Remarks at the end of the last section we pointed
out that no order relation can be defined on the system of complex numbers.
However, since |z| is a real number, we can compare the absolute values of
two complex numbers. For example, if z1 = 3 + 4i and z2 = 5 − i, then
|z1| =

√
25 = 5 and |z2| =

√
26 and, consequently, |z1| < |z2|. In view of (1),

a geometric interpretation of the last inequality is simple: The point (3, 4) is
closer to the origin than the point (5, −1).

|z1|

|z1 + z2|

z1 + z2

z1

|z2|

y

x

Figure 1.5 Triangle with vector sides

Now consider the triangle given in Figure 1.5 with vertices at the origin,
z1, and z1 + z2. We know from geometry that the length of the side of the
triangle corresponding to the vector z1 + z2 cannot be longer than the sum
of the lengths of the remaining two sides. In symbols we can express this
observation by the inequality

|z1 + z2| ≤ |z1|+ |z2|. (6)�This inequality can be derived using
the properties of complex numbers
in Section 1.1. See Problem 50 in
Exercises 1.2. The result in (6) is known as the triangle inequality. Now from the identity

z1 = z1 + z2 + (−z2), (6) gives

|z1| = |z1 + z2 + (−z2)| ≤ |z1 + z2|+ |−z2| .

Since |z2| = |−z2| (see Problem 47 in Exercises 1.2), solving the last result for
|z1 + z2| yields another important inequality:

|z1 + z2| ≥ |z1| − |z2|. (7)

But because z1 + z2 = z2 + z1, (7) can be written in the alternative form
|z1 + z2| = |z2 + z1| ≥ |z2| − |z1| = − (|z1| − |z2|) and so combined with the
last result implies

|z1 + z2| ≥
∣∣ |z1| − |z2|

∣∣. (8)

It also follows from (6) by replacing z2 by −z2 that |z1 + (−z2)| ≤ |z1| +
|(−z2)| = |z1|+ |z2|. This result is the same as

|z1 − z2| ≤ |z1|+ |z2| . (9)
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From (8) with z2 replaced by −z2, we also find

|z1 − z2| ≥
∣∣ |z1| − |z2|

∣∣. (10)

In conclusion, we note that the triangle inequality (6) extends to any finite
sum of complex numbers:

|z1 + z2 + z3 + · · ·+ zn| ≤ |z1|+ |z2|+ |z3|+ · · ·+ |zn| . (11)

The inequalities (6)–(10) will be important when we work with integrals of a
function of a complex variable in Chapters 5 and 6.

EXAMPLE 3 An Upper Bound

Find an upper bound for
∣∣∣∣ −1
z4 − 5z + 1

∣∣∣∣ if |z| = 2.

Solution By the second result in (3), the absolute value of a quotient is the
quotient of the absolute values. Thus with |−1| = 1, we want to find a positive
real number M such that

1
|z4 − 5z + 1| ≤M.

To accomplish this task we want the denominator as small as possible. By
(10) we can write∣∣z4 − 5z + 1

∣∣ =
∣∣z4 − (5z − 1)

∣∣ ≥ ∣∣∣∣z4
∣∣− |5z − 1|

∣∣ . (12)

But to make the difference in the last expression in (12) as small as possible, we
want to make |5z − 1| as large as possible. From (9), |5z − 1| ≤ |5z|+ |−1| =
5|z|+ 1. Using |z| = 2, (12) becomes∣∣z4 − 5z + 1

∣∣ ≥ ∣∣∣∣z4
∣∣− |5z − 1|

∣∣ ≥ ∣∣∣|z|4 − (5 |z|+ 1)
∣∣∣

=
∣∣∣|z|4 − 5 |z| − 1

∣∣∣ = |16− 10− 1| = 5.

Hence for |z| = 2 we have

1
| z4 − 5z + 1 | ≤

1
5
.

Remarks

We have seen that the triangle inequality |z1 + z2| ≤ |z1|+ |z2| indicates
that the length of the vector z1 + z2 cannot exceed the sum of the lengths
of the individual vectors z1 and z2. But the results given in (3) are
interesting. The product z1z2 and quotient z1/z2, (z2 �= 0), are complex
numbers and so are vectors in the complex plane. The equalities |z1z2| =
|z1| |z2| and |z1/z2| = |z1| / |z2| indicate that the lengths of the vectors
z1z2 and z1/z2 are exactly equal to the product of the lengths and to the
quotient of the lengths, respectively, of the individual vectors z1 and z2.
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EXERCISES 1.2 Answers to selected odd-numbered problems begin on page ANS-2.

In Problems 1–4, interpret z1 and z2 as vectors. Graph z1, z2, and the indicated

sum and difference as vectors.

1. z1 = 4 + 2i, z2 = −2 + 5i; z1 + z2, z1 − z2

2. z1 = 1 − i, z2 = 1 + i; z1 + z2, z1 − z2

3. z1 = 5 + 4i, z2 = −3i; 3z1 + 5z2, z1 − 2z2

4. z1 = 4 − 3i, z2 = −2 + 3i; 2z1 + 4z2, z1 − z2

5. Given that z1 = 5 − 2i and z2 = −1 − i, find a vector z3 in the same direction
as z1 + z2 but four times as long.

6. (a) Plot the points z1 = −2 − 8i, z2 = 3i, z3 = −6 − 5i.

(b) The points in part (a) determine a triangle with vertices at z1, z2, and z3,
respectively. Express each side of the triangle as a difference of vectors.

7. In Problem 6, determine whether the points z1, z2, and z3 are the vertices of a
right triangle.

8. The three points z1 = 1 + 5i, z2 = −4− i, z3 = 3 + i are vertices of a triangle.
Find the length of the median from z1 to the side z3 − z2.

In Problems 9–12, find the modulus of the given complex number.

9. (1− i)2 10. i(2− i)− 4
(
1 + 1

4 i
)

11.
2i

3− 4i
12.

1− 2i
1 + i

+
2− i

1− i

In Problems 13 and 14, let z = x + iy. Express the given quantity in terms of x

and y.

13. |z − 1− 3i|2 14. |z + 5z̄|

In Problems 15 and 16, determine which of the given two complex numbers is closest

to the origin. Which is closest to 1 + i?

15. 10 + 8i, 11− 6i 16. 1
2 −

1
4 i,

2
3 + 1

6 i

In Problems 17–26, describe the set of points z in the complex plane that satisfy

the given equation.

17. Re((1 + i)z − 1) = 0 18. [Im(iz̄)]2 = 2

19. |z − i| = |z − 1| 20. z̄ = z−1

21. Im(z2) = 2 22. Re(z2) =
∣∣√3− i

∣∣
23. |z − 1| = 1 24. |z − i| = 2 |z − 1|
25. |z − 2| = Re(z) 26. |z| = Re(z)

In Problems 27 and 28, establish the given inequality.

27. If |z| = 2, then | z + 6 + 8i | ≤ 13.

28. If |z| = 1, then 1 ≤
∣∣ z2 − 3

∣∣ ≤ 4.

29. Find an upper bound for the modulus of 3z2 + 2z + 1 if |z| ≤ 1.
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30. Find an upper bound for the reciprocal of the modulus of z4−5z2 +6 if |z| = 2.
[Hint : z4 − 5z2 + 6 =

(
z2 − 3

) (
z2 − 2

)
.]

In Problems 31 and 32, find a number z that satisfies the given equation.

31. |z| − z = 2 + i 32. |z|2 + 1 + 12i = 6z

Focus on Concepts

33. (a) Draw the pair of points z = a + ib and z̄ = a− ib in the complex plane if

a > 0, b > 0; a > 0, b < 0; a < 0, b > 0; and a < 0, b < 0.

(b) In general, how would you describe geometrically the relationship between
a complex number z = a + ib and its conjugate z̄ = a− ib?

(c) Describe geometrically the relationship between z = a+ib and z1 = −a+ib.

34. How would you describe geometrically the relationship between a nonzero com-
plex number z = a + ib and its

(a) negative, −z?

(b) inverse, z−1? [Hint : Reread Problem 33 and then recall z−1 = z̄/|z|2.]

35. Consider the complex numbers z1 = 4+i, z2 = −2+i, z3 = −2−2i, z4 = 3−5i.

(a) Use four different sketches to plot the four pairs of points z1, iz1; z2, iz2; z3, iz3;
and z4, iz4.

(b) In general, how would you describe geometrically the effect of multiplying
a complex number z = x + iy by i? By −i?

36. What is the only complex number with modulus 0?

37. Under what circumstances does |z1 + z2| = |z1| + |z2|?

38. Let z = x + iy. Using complex notation, find an equation of a circle of radius
5 centered at (3, −6).

39. Describe the set of points z in the complex plane that satisfy z = cos θ+ i sin θ,
where θ is measured in radians from the positive x-axis.

40. Let z = x+ iy. Using complex notation, find an equation of an ellipse with foci
(−2, 1), (2, 1) whose major axis is 8 units long.

41. Suppose z = x + iy. In (6) of Section 1.1 we saw that x and y could be ex-
pressed in terms of z and z̄. Use these results to express the following Cartesian
equations in complex form.

(a) x = 3 (b) y = 10

(c) y = x (d) x + 2y = 8

42. Using complex notation, find a parametric equation of the line segment between
any two distinct complex numbers z1 and z2 in the complex plane.

43. Suppose z1, z2, and z3 are three distinct points in the complex plane and k is
a real number. Interpret z3 − z2 = k(z2 − z1) geometrically.

44. Suppose z1 �= z2. Interpret Re(z1z̄2) = 0 geometrically in terms of vectors z1

and z2.

45. Suppose w = z̄/z. Without doing any calculations, explain why |w| = 1.



16 Chapter 1 Complex Numbers and the Complex Plane

46. Without doing any calculations, explain why the inequalities |Re(z)| ≤ |z| and
|Im(z)| ≤ |z| hold for all complex numbers z.

47. Show that

(a) |z| = |−z| (b) |z| = |z̄|.

48. For any two complex numbers z1 and z2, show that

|z1 + z2|2 + |z1 − z2|2 = 2
(
|z1|2 + |z2|2

)
.

49. In this problem we will start you out in the proof of the first property |z1z2| =

|z1| |z2| in (3). By the first result in (2) we can write |z1z2|2 = (z1z2)(z1z2).
Now use the first property in (2) of Section 1.1 to continue the proof.

50. In this problem we guide you through an analytical proof of the triangle in-
equality (6).

Since |z1 + z2| and |z1| + |z2| are positive real numbers, we have

|z1 + z2| ≤ |z1| + |z2| if and only if |z1 + z2|2 ≤ (|z1| + |z2|)2. Thus, it suffices
to show that |z1 + z2|2 ≤ (|z1| + |z2|)2.
(a) Explain why |z1 + z2|2 = |z1|2 + 2Re(z1z̄2) + |z2|2.

(b) Explain why (|z1| + |z2|)2 = |z1|2 + 2 |z1z̄2| + |z2|2.

(c) Use parts (a) and (b) along with the results in Problem 46 to derive (6).

1.3 Polar Form of Complex Numbers

1.3Recall from calculus that a point P in the plane whose rectangular coordinates are
(x, y) can also be described in terms of polar coordinates. The polar coordinate system,
invented by Isaac Newton, consists of point O called the pole and the horizontal half-line
emanating from the pole called the polar axis. If r is a directed distance from the pole to
P and θ is an angle of inclination (in radians) measured from the polar axis to the line OP,
then the point can be described by the ordered pair (r, θ), called the polar coordinates of
P . See Figure 1.6.

Polar Form Suppose, as shown in Figure 1.7, that a polar coordinate
system is superimposed on the complex plane with the polar axis coinciding
with the positive x-axis and the pole O at the origin. Then x, y, r and θ are
related by x = r cos θ, y = r sin θ. These equations enable us to express a
nonzero complex number z = x + iy as z = (r cos θ)+ i(r sin θ) or

z = r (cos θ + i sin θ). (1)O

r

P(r,    ) θ

θ

pole polar
axis

Figure 1.6 Polar coordinates

We say that (1) is the polar form or polar representation of the complex
number z. Again, from Figure 1.7 we see that the coordinate r can be inter-
preted as the distance from the origin to the point (x, y). In other words, we
shall adopt the convention that r is never negative† so that we can take r to

†In general, in the polar description (r, θ) of a point P in the Cartesian plane, we can
have r ≥ 0 or r < 0.
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be the modulus of z, that is, r = |z|. The angle θ of inclination of the vector
z, which will always be measured in radians from the positive real axis, is
positive when measured counterclockwise and negative when measured clock-
wise. The angle θ is called an argument of z and is denoted by θ = arg(z).
An argument θ of a complex number must satisfy the equations cos θ = x/r
and sin θ = y/r. An argument of a complex number z is not unique since
cos θ and sin θ are 2π-periodic; in other words, if θ0 is an argument of z,
then necessarily the angles θ0 ± 2π, θ0 ± 4π, . . . are also arguments of z. In
practice we use tan θ = y/x to find θ. However, because tan θ is π-periodic,
some care must be exercised in using the last equation. A calculator will give
only angles satisfying −π/2 < tan−1(y/x) < π/2, that is, angles in the first
and fourth quadrants. We have to choose θ consistent with the quadrant in
which z is located; this may require adding or subtracting π to tan−1(y/x)
when appropriate. The following example illustrates how this is done.

O

(r,    ) or (x, y)

y = r sin

 θ

 θ

x = r cos θ

θ

polar
axis

y

x

Figure 1.7 Polar coordinates in the

complex plane

�Be careful using tan−1(y/x)

EXAMPLE 1 A Complex Number in Polar Form

Express −
√

3− i in polar form.

Solution With x = −
√

3 and y = −1 we obtain r = |z| =
√(
−
√

3
)2

+ (−1)2

= 2. Now y/x = −1/(−
√

3 ) = 1/
√

3, and so a calculator gives tan−1
(
1/
√

3
)

= π/6, which is an angle whose terminal side is in the first quadrant. But
since the point (−

√
3, −1) lies in the third quadrant, we take the solution of

tan θ = −1/(−
√

3) = 1/
√

3 to be θ = arg(z) = π/6 + π = 7π/6. See Figure
1.8. It follows from (1) that a polar form of the number is

z = 2
(

cos
7π
6

+ i sin
7π
6

)
. (2)

 π

y

x
–√ 3 

z = –√ 3 – i 
–1

7
 6  π

6

Figure 1.8 arg
(
−
√

3 − i
)

Principal Argument The symbol arg(z) actually represents a set of
values, but the argument θ of a complex number that lies in the interval
−π < θ ≤ π is called the principal value of arg(z) or the principal argu-
ment of z. The principal argument of z is unique and is represented by the
symbol Arg(z), that is,

−π < Arg(z) ≤ π.

For example, if z = i, we see in Figure 1.9 that some values of arg(i) are
π/2, 5π/2, −3π/2, and so on, but Arg(i) = π/2. Similarly, we see from
Figure 1.10 that the argument of −

√
3 − i that lies in the interval (−π, π),

the principal argument of z, is Arg(z) = π/6− π = −5π/6. Using Arg(z) we
can express the complex number in (2) in the alternative polar form:

z = 2
[
cos

(
−5π

6

)
+ i sin

(
−5π

6

)]
.
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y

x

i 

 π3
 2

 π5
 2

 π
 2–

Figure 1.9 Some arguments of i

 π

y

x
–√ 3 

z = –√ 3 – i 

Arg(z) = –5   /6

 π
6

–1

Figure 1.10 Principal argument

z = −
√

3 − i

In general, arg(z) and Arg(z) are related by

arg(z) = Arg(z) + 2nπ, n = 0, ±1, ±2, . . . . (3)

For example, arg(i) =
π

2
+ 2nπ. For the choices n = 0 and n = −1, (3) gives

arg(i) = Arg(i) = π/2 and arg(i) = −3π/2, respectively.

Multiplication and Division The polar form of a complex number
is especially convenient when multiplying or dividing two complex numbers.
Suppose

z1 = r1(cos θ1 + i sin θ1) and z2 = r2(cos θ2 + i sin θ2),

where θ1 and θ2 are any arguments of z1 and z2, respectively. Then

z1z2 = r1r2 [cos θ1 cos θ2 − sin θ1 sin θ2 + i (sin θ1 cos θ2 + cos θ1 sin θ2)] (4)

and, for z2 �= 0,
z1

z2
=

r1

r2
[cos θ1 cos θ2 + sin θ1 sin θ2 + i (sin θ1 cos θ2 − cos θ1 sin θ2)] . (5)

From the addition formulas‡ for the cosine and sine, (4) and (5) can be rewrit-
ten as

z1z2 = r1r2 [cos (θ1 + θ2) + i sin (θ1 + θ2)] (6)

and
z1

z2
=

r1

r2
[cos (θ1 − θ2) + i sin (θ1 − θ2)] . (7)

y

x

z1

z2

z1z2

1 +     2

 θ2

 θ

 θ   θ

1

Figure 1.11 arg (z1z2) = θ1 + θ2

Inspection of the expressions in (6) and (7) and Figure 1.11 shows that the
lengths of the two vectors z1z2 and z1/z2 are the product of the lengths of z1

and z2 and the quotient of the lengths of z1 and z2, respectively. See (3) of
Section 1.2. Moreover, the arguments of z1z2 and z1/z2 are given by

arg(z1z2) = arg(z1) + arg(z2) and arg
(

z1

z2

)
= arg(z1)− arg(z2). (8)

‡cos(A±B) = cosA cosB ∓ sinA sinB and sin(A±B) = sinA cosB ± cosA sinB
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EXAMPLE 2 Argument of a Product and of a Quotient

We have just seen that for z1 = i and z2 = −
√

3− i that Arg(z1) = π/2 and
Arg(z2) = −5π/6, respectively. Thus arguments for the product and quotient

z1z2 = i(−
√

3− i) = 1−
√

3i and
z1

z2
=

i

−
√

3− i
= −1

4
−
√

3
4

i

can be obtained from (8):

arg(z1z2) =
π

2
+

(
−5π

6

)
= −π

3
and arg

(
z1

z2

)
=

π

2
−

(
−5π

6

)
=

4π
3

.

Integer Powers of z We can find integer powers of a complex number
z from the results in (6) and (7). For example, if z = r(cos θ + i sin θ), then
with z1 = z2 = z, (6) gives

z2 = r2 [cos (θ + θ) + i sin (θ + θ)] = r2 (cos 2θ + i sin 2θ) .

Since z3 = z2z, it then follows that

z3 = r3 (cos 3θ + i sin 3θ) ,

and so on. In addition, if we take arg(1) = 0, then (7) gives

1
z2

= z−2 = r−2[cos(−2θ) + i sin(−2θ)].

Continuing in this manner, we obtain a formula for the nth power of z for any
integer n:

zn = rn (cosnθ + i sinnθ). (9)

When n = 0, we get the familiar result z0 = 1.

EXAMPLE 3 Power of a Complex Number

Compute z3 for z = −
√

3− i.

Solution In (2) of Example 1 we saw that a polar form of the given number
is z = 2[cos (7π/6) + i sin (7π/6)]. Using (9) with r = 2, θ = 7π/6, and n = 3
we get

(
−
√

3− i
)3

= 23

[
cos

(
3
7π
6

)
+ i sin

(
3
7π
6

)]
= 8

[
cos

7π
2

+ i sin
7π
2

]
= −8i

since cos(7π/2) = 0 and sin(7π/2) = –1.
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Note in Example 3, if we also want the value of z−3, then we could proceed
in two ways: either find the reciprocal of z3 = −8i or use (9) with n = −3.

de Moivre’s Formula When z = cos θ + i sin θ, we have |z| = r = 1,
and so (9) yields

(cos θ + i sin θ)n = cosnθ + i sinnθ. (10)

This last result is known as de Moivre’s formula and is useful in deriving
certain trigonometric identities involving cosnθ and sinnθ. See Problems 33
and 34 in Exercises 1.3.

EXAMPLE 4 de Moivre’s Formula

From (10), with θ = π/6, cos θ =
√

3/2 and sin θ = 1/2:

(√
3

2
+

1
2
i

)3

= cos 3θ + i sin 3θ = cos
(
3 · π

6

)
+ i sin

(
3 · π

6

)

= cos
π

2
+ i sin

π

2
= i.

Remarks Comparison with Real Analysis

(i) Observe in Example 2 that even though we used the principal argu-
ments of z1 and z2 that arg(z1/z2) = 4π/3 �= Arg(z1/z2). Although
(8) is true for any arguments of z1 and z2, it is not true, in gen-
eral, that Arg(z1z2) =Arg(z1)+Arg(z2) and Arg(z1/z2) = Arg(z1)−
Arg(z2). See Problems 37 and 38 in Exercises 1.3.

(ii) An argument can be assigned to any nonzero complex number z.
However, for z = 0, arg(z) cannot be defined in any way that is
meaningful.

(iii) If we take arg(z) from the interval (−π, π), the relationship between
a complex number z and its argument is single-valued; that is, every
nonzero complex number has precisely one angle in (−π, π). But
there is nothing special about the interval (−π, π); we also establish
a single-valued relationship by using the interval (0, 2π) to define
the principal value of the argument of z. For the interval (−π, π),
the negative real axis is analogous to a barrier that we agree not to
cross; the technical name for this barrier is a branch cut. If we use
(0, 2π), the branch cut is the positive real axis. The concept of a
branch cut is important and will be examined in greater detail when
we study functions in Chapters 2 and 4.
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(iv) The “cosine i sine” part of the polar form of a complex number is
sometimes abbreviated cis. That is,

z = r (cos θ + i sin θ) = r cis θ.

This notation, used mainly in engineering, will not be used in this
text.

EXERCISES 1.3 Answers to selected odd-numbered problems begin on page ANS-2.

In Problems 1–10, write the given complex number in polar form first using an

argument θ �= Arg(z) and then using θ = Arg(z).

1. 2 2. −10

3. −3i 4. 6i

5. 1 + i 6. 5− 5i

7. −
√

3 + i 8. −2− 2
√

3i

9.
3

−1 + i
10.

12√
3 + i

In Problems 11 and 12, use a calculator to write the given complex number in polar

form first using an argument θ �= Arg(z) and then using θ = Arg(z).

11. −
√

2 +
√

7i 12. −12− 5i

In Problems 13 and 14, write the complex number whose polar coordinates (r, θ)

are given in the form a + ib. Use a calculator if necessary.

13. (4, −5π/3) 14. (2, 2)

In Problems 15–18, write the complex number whose polar form is given in the form

a + ib. Use a calculator if necessary.

15. z = 5
(

cos
7π
6

+ i sin
7π
6

)
16. z = 8

√
2

(
cos

11π
4

+ i sin
11π
4

)

17. z = 6
(
cos

π

8
+ i sin

π

8

)
18. z = 10

(
cos

π

5
+ i sin

π

5

)
In Problems 19 and 20, use (6) and (7) to find z1z2 and z1/z2. Write the number

in the form a + ib.

19. z1 = 2
(
cos

π

8
+ i sin

π

8

)
, z2 = 4

(
cos

3π

8
+ i sin

3π

8

)

20. z1 =
√

2
(
cos

π

4
+ i sin

π

4

)
, z2 =

√
3

(
cos

π

12
+ i sin

π

12

)

In Problems 21–24, write each complex number in polar form. Then use either (6)

or (7) to obtain the polar form of the given number. Finally, write the polar form

in the form a + ib.

21. (3− 3i)(5 + 5
√

3i) 22. (4 + 4i)(−1 + i)

23.
−i

1 + i
24.

√
2 +
√

6i
−1 +

√
3i
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In Problems 25–30, use (9) to compute the indicated powers.

25.
(
1 +
√

3i
)9

26. (2− 2i)5

27.
(

1
2 + 1

2 i
)10

28. (−
√

2 +
√

6i)4

29.
[(√

2 cos
π

8
+ i
√

2 sin
π

8

)]12

30.
[√

3
(

cos
2π
9

+ i sin
2π
9

)]6

In Problems 31 and 32, write the given complex number in polar form and in then

in the form a + ib.

31.
(
cos

π

9
+ i sin

π

9

)12 [
2

(
cos

π

6
+ i sin

π

6

)]5

32.

[
8

(
cos

3π

8
+ i sin

3π

8

)]3

[
2

(
cos

π

16
+ i sin

π

16

)]10

33. Use de Moivre’s formula (10) with n = 2 to find trigonometric identities for
cos 2θ and sin 2θ.

34. Use de Moivre’s formula (10) with n = 3 to find trigonometric identities for
cos 3θ and sin 3θ.

In Problems 35 and 36, find a positive integer n for which the equality holds.

35.
(√

3
2 + 1

2 i
)n

= −1 36.
(
−

√
2

2 +
√

2
2 i

)n

= 1

37. For the complex numbers z1 = −1 and z2 = 5i, verify that:

(a) Arg(z1z2) �= Arg(z1) + Arg(z2)

(b) Arg(z1/z2) �= Arg(z1) − Arg(z2).

38. For the complex numbers given in Problem 37, verify that:

(a) arg(z1z2) = arg(z1) + arg(z2)

(b) arg(z1/z2) = arg(z1) − arg(z2).

Focus on Concepts

39. Suppose that z = r(cos θ + i sin θ). Describe geometrically the effect of multi-
plying z by a complex number of the form z1 = cosα+ i sinα, when α > 0 and
when α < 0.

40. Suppose z = cos θ + i sin θ. If n is an integer, evaluate zn + z̄n and zn − z̄n.

41. Write an equation that relates arg(z) to arg(1/z), z �= 0.

42. Are there any special cases in which Arg(z1z2) = Arg(z1) + Arg(z2)? Prove
your assertions.

43. How are the complex numbers z1 and z2 related if arg(z1) = arg(z2)?

44. Describe the set of points z in the complex plane that satisfy arg(z) = π/4.

45. Student A states that, even though she can’t find it in the text, she thinks that
arg(z̄) = − arg(z). For example, she says, if z = 1 + i, then z̄ = 1 − i and
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arg(z) = π/4 and arg(z̄) = −π/4. Student B disagrees because he feels that
he has a counterexample: If z = i, then z̄ = −i; we can take arg(i) = π/2
and arg(−i) = 3π/2 and so arg(i) �= − arg(−i). Take sides and defend your
position.

46. Suppose z1, z2, and z1z2 are complex numbers in the first quadrant and that
the points z = 0, z = 1, z1, z2, and z1z2 are labeled O, A, B, C, and D,
respectively. Study the formula in (6) and then discuss how the triangles OAB
and OCD are related.

47. Suppose z1 = r1 (cos θ1 + i sin θ1) and z2 = r2 (cos θ2 + i sin θ2). If z1 = z2,
then how are r1 and r2 related? How are θ1 and θ2 related?

48. Suppose z1 is in the first quadrant. For each z2, discuss the quadrant in which
z1z2 could be located.

(a) z2 =
1

2
+

√
3

2
i (b) z2 = −

√
3

2
+

1

2
i

(c) z2 = −i (d) z2 = −1

49. (a) For z �= 1, verify the identity

1 + z + z2 + · · · + zn =
1 − zn+1

1 − z
.

(b) Use part (a) and appropriate results from this section to establish that

1 + cos θ + cos 2θ + · · · + cosnθ =
1

2
+

sin
(
n + 1

2

)
θ

sin 1
2
θ

for 0 < θ < 2π. The foregoing result is known as Lagrange’s identity
and is useful in the theory of Fourier series.

50. Suppose z1, z2, z3, and z4 are four distinct complex numbers. Interpret geo-
metrically:

arg

(
z1 − z2

z3 − z4

)
=

π

2
.

1.4 Powers and Roots
1.4Recall from algebra that –2 and 2 are said to be square roots of the number 4 because

(−2)2 = 4 and (2)2 = 4. In other words, the two square roots of 4 are distinct solutions of
the equation w2 = 4. In like manner we say w = 3 is a cube root of 27 since w3 = 33 = 27.
This last equation points us again in the direction of complex variables since any real number
has only one real cube root and two complex roots. In general, we say that a number w is
an nth root of a nonzero complex number z if wn = z, where n is a positive integer. For
example, you are urged to verify that w1 = 1

2

√
2 + 1

2

√
2i and w2 = −1

2

√
2 − 1

2

√
2i are the

two square roots of the complex number z = i because w2
1 = i and w2

2 = i. See Problem 39
in Exercises 1.1.

We will now demonstrate that there are exactly n solutions of the equation wn = z.
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Roots Suppose z = r(cos θ + i sin θ) and w = ρ(cosφ + i sinφ) are polar
forms of the complex numbers z and w. Then, in view of (9) of Section 1.3,
the equation wn = z becomes

ρn(cosnφ + i sinnφ) = r(cos θ + i sin θ). (1)

From (1), we can conclude that

ρn = r (2)

and cosnφ + i sinnφ = cos θ + i sin θ. (3)

See Problem 47 in Exercises 1.3.
From (2), we define ρ = n

√
r to be the unique positive nth root of the

positive real number r. From (3), the definition of equality of two complex
numbers implies that

cosnφ = cos θ and sinnφ = sin θ.

These equalities, in turn, indicate that the arguments θ and φ are related by
nφ = θ + 2kπ, where k is an integer. Thus,

φ =
θ + 2kπ

n
.

As k takes on the successive integer values k = 0, 1, 2, . . . , n− 1 we obtain
n distinct nth roots of z; these roots have the same modulus n

√
r but different

arguments. Notice that for k ≥ n we obtain the same roots because the sine
and cosine are 2π-periodic. To see why this is so, suppose k = n + m, where
m = 0, 1, 2, . . . . Then

φ =
θ + 2(n + m)π

n
=

θ + 2mπ

n
+ 2π

and sinφ = sin
(

θ + 2mπ

n

)
, cosφ = cos

(
θ + 2mπ

n

)
.

We summarize this result. The n nth roots of a nonzero complex number
z = r(cos θ + i sin θ) are given by

wk = n
√

r

[
cos

(
θ + 2kπ

n

)
+ i sin

(
θ + 2kπ

n

)]
, (4)

where k = 0, 1, 2, . . . , n− 1.

EXAMPLE 1 Cube Roots of a Complex Number

Find the three cube roots of z = i.

Solution Keep in mind that we are basically solving the equation w3 = i.
Now with r = 1, θ = arg(i) = π/2, a polar form of the given number is given
by z = cos(π/2) + i sin(π/2). From (4), with n = 3, we then obtain

wk = 3
√

1
[
cos

(
π/2 + 2kπ

3

)
+ i sin

(
π/2 + 2kπ

3

)]
, k = 0, 1, 2.



1.4 Powers and Roots 25

Hence the three roots are,

k = 0, w0 = cos
π

6
+ i sin

π

6
=
√

3
2

+
1
2
i

k = 1, w1 = cos
5π
6

+ i sin
5π
6

= −
√

3
2

+
1
2
i

k = 2, w2 = cos
3π
2

+ i sin
3π
2

= −i.

Principal nth Root On page 17 we pointed out that the symbol
arg(z) really stands for a set of arguments for a complex number z. Stated
another way, for a given complex number z �= 0, arg(z) is infinite-valued. In
like manner, z1/n is n-valued; that is, the symbol z1/n represents the set of
n nth roots wk of z. The unique root of a complex number z (obtained by
using the principal value of arg(z) with k = 0) is naturally referred to as the
principal nth root of w. In Example 1, since Arg(i) = π/2, we see that
w0 = 1

2

√
3+ 1

2 i is the principal cube root of i. The choice of Arg(z) and k = 0
guarantees us that when z is a positive real number r, the principal nth root
is n
√

r.
�

√
4 = 2 and 3√27 = 3 are the prin-

cipal square root of 4 and the prin-
cipal cube root of 27, respectively.

y

x

w1 w0

w2

Figure 1.12 Three cube roots of i

Since the roots given by (4) have the same modulus, the n nth roots of a
nonzero complex number z lie on a circle of radius n

√
r centered at the origin

in the complex plane. Moreover, since the difference between the arguments
of any two successive roots wk and wk+1 is 2π/n, the n nth roots of z are
equally spaced on this circle, beginning with the root whose argument is θ/n.
Figure 1.12 shows the three cube roots of i obtained in Example 1 spaced at
equal angular intervals of 2π/3 on the circumference of a unit circle beginning
with the root w0 whose argument is π/6.

As the next example shows, the roots of a complex number do not have
to be “nice” numbers as in Example 1.

EXAMPLE 2 Fourth Roots of a Complex Number

Find the four fourth roots of z = 1 + i.

Solution In this case, r =
√

2 and θ = arg(z) = π/4. From (4) with n = 4,
we obtain

wk = 4
√

2
[
cos

(
π/4 + 2kπ

4

)
+ i sin

(
π/4 + 2kπ

4

)]
, k = 0, 1, 2, 3.

With the aid of a calculator we find

k = 0, w0 = 4
√

2
[
cos

π

16
+ i sin

π

16

]
≈ 1.1664 + 0.2320i

k = 1, w1 = 4
√

2
[
cos

9π
16

+ i sin
9π
16

]
≈ −0.2320 + 1.1664i

k = 2, w2 = 4
√

2
[
cos

17π
16

+ i sin
17π
16

]
≈ −1.1664− 0.2320i

k = 3, w3 = 4
√

2
[
cos

25π
16

+ i sin
25π
16

]
≈ 0.2320− 1.1664i.
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y

x

w1

w0

w3

w2

Figure 1.13 Four fourth roots of 1 + i

As shown in Figure 1.13, the four roots lie on a circle centered at the origin of
radius r = 4

√
2 ≈ 1.19 and are spaced at equal angular intervals of 2π/4 = π/2

radians, beginning with the root whose argument is π/16.

Remarks Comparison with Real Analysis

(i) As a consequence of (4), we can say that the complex number system
is closed under the operation of extracting roots. This means that
for any z in C, z1/n is also in C. The real number system does not
possess a similar closure property since, if x is in R, x1/n is not
necessarily in R.

(ii) Geometrically, the n nth roots of a complex number z can also be
interpreted as the vertices of a regular polygon with n sides that is
inscribed within a circle of radius n

√
r centered at the origin. You

can see the plausibility of this fact by reinspecting Figures 1.12 and
1.13. See Problem 19 in Exercises 1.4.

(iii) When m and n are positive integers with no common factors, then
(4) enables us to define a rational power of z, that is, zm/n. It
can be shown that the set of values (z1/n)m is the same as the set of
values (zm)1/n. This set of n common values is defined to be zm/n.
See Problems 25 and 26 in Exercises 1.4.

EXERCISES 1.4 Answers to selected odd-numbered problems begin on page ANS-3.

In Problems 1–14, use (4) to compute all roots. Give the principal nth root in each

case. Sketch the roots w0, w1, . . . , wn−1 on an appropriate circle centered at the

origin.

1. (8)1/3 2. (−1)1/4

3. (−9)1/2 4. (−125)1/3

5. (i)1/2 6. (−i)1/3

7. (−1 + i)1/3 8. (1 + i)1/5

9. (−1 +
√

3i)1/2 10. (−1−
√

3i)1/4

11. (3 + 4i)1/2 12. (5 + 12i)1/2

13.
(

16i
1 + i

)1/8

14.
(

1 + i√
3 + i

)1/6

15. (a) Verify that (4 + 3i)2 = 7 + 24i.

(b) Use part (a) to find the two values of (7 + 24i)1/2.
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16. Rework Problem 15 using (4).

17. Find all solutions of the equation z4 + 1 = 0.

18. Use the fact that 8i = (2 + 2i)2 to find all solutions of the equation

z2 − 8z + 16 = 8i.

The n distinct nth roots of unity are the solutions of the equation wn = 1.

Problems 19–22 deal with roots of unity.

19. (a) Show that the n nth roots of unity are given by

(1)1/n = cos
2kπ

n
+ i sin

2kπ

n
, k = 0, 1, 2, . . . , n− 1.

(b) Find n nth roots of unity for n = 3, n = 4, and n = 5.

(c) Carefully plot the roots of unity found in part (b). Sketch the regular
polygons formed with the roots as vertices. [Hint : See (ii) in the Remarks.]

20. Suppose w is a cube root of unity corresponding to k = 1. See Problem 19(a).

(a) How are w and w2 related?

(b) Verify by direct computation that

1 + w + w2 = 0.

(c) Explain how the result in part (b) follows from the basic definition that w
is a cube root of 1, that is, w3 = 1. [Hint : Factor.]

21. For a fixed n, if we take k = 1 in Problem 19(a), we obtain the root

wn = cos
2π

n
+ i sin

2π

n
.

Explain why the n nth roots of unity can then be written

1, wn, w
2
n, w

3
n, . . . , w

n−1
n .

22. Consider the equation (z + 2)n + zn = 0, where n is a positive integer. By any
means, solve the equation for z when n = 1. When n = 2.

23. Consider the equation in Problem 22.

(a) In the complex plane, determine the location of all solutions z when n = 6.
[Hint : Write the equation in the form [(z + 2)/ (−z)]6 = 1 and use part
(a) of Problem 19.]

(b) Reexamine the solutions of the equation in Problem 22 for n = 1 and n = 2.
Form a conjecture as to the location of all solutions of (z + 2)n + zn = 0.

24. For the n nth roots of unity given in Problem 21, show that

1 + wn + w2
n + w3

n + · · · + wn−1
n = 0.

[Hint : Multiply the sum 1 + wn + w2
n + w3

n + · · · + wn−1
n by wn − 1.]

Before working Problems 25 and 26, read (iii) in the Remarks. If m and n are
positive integers with no common factors, then the n values of the rational power
zm/n are

wk = n
√
rm

[
cos

m

n
(θ + 2kπ) + i sin

m

n
(θ + 2kπ)

]
, (5)

k = 0, 1, 2, . . . , n− 1. The wk are the n distinct solutions of wn = zm.
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25. (a) First compute the set of values i1/2 using (4). Then compute (i1/2)3 using
(9) of Section 1.3.

(b) Now compute i3. Then compute (i3)1/2 using (4). Compare these values
with the results of part (b).

(c) Lastly, compute i3/2 using formula (5).

26. Use (5) to find all solutions of the equation w2 = (−1 + i)5.

Focus on Concepts

27. The vector given in Figure 1.14 represents one value of z1/n. Using only the
figure and trigonometry—that is, do not use formula (4)—find the remaining
values of z1/n when n = 3. Repeat for n = 4, and n = 5.

y

x

Figure 1.14 Figure for Problem 27

28. Suppose n denotes a nonnegative integer. Determine the values of n such
that zn = 1 possesses only real solutions. Defend your answer with sound
mathematics.

29. (a) Proceed as in Example 2 to find the approximate values of the two square
roots w0 and w1 of 1 + i.

(b) Show that the exact values of the roots in part (a) are

w0 =

√
1 +

√
2

2
+ i

√√
2 − 1

2
, w1 = −

√
1 +

√
2

2
− i

√√
2 − 1

2
.

30. Discuss: What geometric significance does the result in Problem 24 have?

31. Discuss: A real number can have a complex nth root. Can a nonreal complex
number have a real nth root?

32. Suppose w is located in the first quadrant and is a cube root of a complex
number z. Can there exist a second cube root of z located in the first quadrant?
Defend your answer with sound mathematics.

33. Suppose z is a complex number that possesses a fourth root w that is neither
real nor pure imaginary. Explain why the remaining fourth roots are neither
real nor pure imaginary.

34. Suppose z = r(cos θ + i sin θ) is complex number such that 1 < r < 2 and
0 < θ ≤ π/4. Suppose further that w0 is a cube root of z corresponding to
k = 0. Carefully sketch w0, w2

0, and w3
0 in the complex plane.

Computer Lab Assignments

In Problems 35–40, use a CAS§ to first find zn = w for the given complex number

and the indicated value of n. Then, using the output and the same value of n,

determine whether w1/n = (zn)1/n = z. If not, explain why not.

35. 2.5 − i; n = 10 36. −0.5 + 0.3i; n = 5

37. 1 + 3i; n = 8 38. 2 + 2i; n = 12

39. i; n = 21 40. −1 +
√

3 i; n = 11

§Throughout this text we shall use the abbreviation CAS for “computer algebra system.”
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1.5 Sets of Points in the Complex Plane

1.5In the preceding sections we examined some rudiments of the algebra and geometry of
complex numbers. But we have barely scratched the surface of the subject known as complex
analysis; the main thrust of our study lies ahead. Our goal in the chapters that follow is to
examine functions of a single complex variable z = x+iy and the calculus of these functions.

Before introducing the notion of a function in Chapter 2, we need to state some essential
definitions and terminology about sets in the complex plane.

Circles Suppose z0 = x0 + iy0. Since |z − z0| =
√

(x− x0)2 + (y − y0)2
is the distance between the points z = x + iy and z0 = x0 + iy0, the points
z = x + iy that satisfy the equation

|z − z0| = ρ, ρ > 0, (1)

lie on a circle of radius ρ centered at the point z0. See Figure 1.15.

z0

ρ

ρ|z – z0|= 

Figure 1.15 Circle of radius ρ

EXAMPLE 1 Two Circles

(a) |z| = 1 is an equation of a unit circle centered at the origin.

(b) By rewriting |z − 1 + 3i| = 5 as |z − (1− 3i)| = 5, we see from (1) that
the equation describes a circle of radius 5 centered at the point z0 = 1−3i.

Disks and Neighborhoods The points z that satisfy the inequality
|z − z0| ≤ ρ can be either on the circle |z − z0| = ρ or within the circle. We
say that the set of points defined by |z − z0| ≤ ρ is a disk of radius ρ centered
at z0. But the points z that satisfy the strict inequality |z − z0| < ρ lie within,
and not on, a circle of radius ρ centered at the point z0. This set is called
a neighborhood of z0. Occasionally, we will need to use a neighborhood of
z0 that also excludes z0. Such a neighborhood is defined by the simultaneous
inequality 0 < |z − z0| < ρ and is called a deleted neighborhood of z0. For
example, |z| < 1 defines a neighborhood of the origin, whereas 0 < |z| < 1
defines a deleted neighborhood of the origin; |z − 3 + 4i| < 0.01 defines a
neighborhood of 3− 4i, whereas the inequality 0 < |z − 3 + 4i| < 0.01 defines
a deleted neighborhood of 3− 4i.

z0

Figure 1.16 Open set

Open Sets A point z0 is said to be an interior point of a set S of
the complex plane if there exists some neighborhood of z0 that lies entirely
within S. If every point z of a set S is an interior point, then S is said to be
an open set. See Figure 1.16. For example, the inequality Re(z) > 1 defines
a right half-plane, which is an open set. All complex numbers z = x + iy
for which x > 1 are in this set. If we choose, for example, z0 = 1.1 + 2i,
then a neighborhood of z0 lying entirely in the set is defined by
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y

x

x = 1

|z – (1.1 + 2i)|< 0.05

z = 1.1 + 2i

Figure 1.17 Open set with magnified view of

point near x = 1

y

not in S

in S

x

x = 1

Figure 1.18 Set S not open

|z − (1.1 + 2i)| < 0.05. See Figure 1.17. On the other hand, the set S of
points in the complex plane defined by Re(z) ≥ 1 is not open because every
neighborhood of a point lying on the line x = 1 must contain points in S and
points not in S. See Figure 1.18.

EXAMPLE 2 Some Open Sets

Figure 1.19 illustrates some additional open sets.

y

x

y

x

y

x

y

x

(b) –1 < Re(z) < 1; infinite vertical strip(a) Im(z) < 0; lower half-plane

(d) 1 < |z| < 2; interior of circular ring(c) |z| > 1; exterior of unit circle

Figure 1.19 Four examples of open sets



1.5 Sets of Points in the Complex Plane 31

If every neighborhood of a point z0 of a set S contains at least one point
of S and at least one point not in S, then z0 is said to be a boundary point
of S. For the set of points defined by Re(z) ≥ 1, the points on the vertical
line x = 1 are boundary points. The points that lie on the circle |z − i| = 2
are boundary points for the disk |z − i| ≤ 2 as well as for the neighborhood
|z − i| < 2 of z = i. The collection of boundary points of a set S is called
the boundary of S. The circle |z − i| = 2 is the boundary for both the disk
|z − i| ≤ 2 and the neighborhood |z − i| < 2 of z = i. A point z that is neither
an interior point nor a boundary point of a set S is said to be an exterior
point of S; in other words, z0 is an exterior point of a set S if there exists
some neighborhood of z0 that contains no points of S. Figure 1.20 shows a
typical set S with interior, boundary, and exterior.

y

x

Exterior

Boundary

Interior
S

Figure 1.20 Interior, boundary, and

exterior of set S

An open set S can be as simple as the complex plane with a single point
z0 deleted. The boundary of this “punctured plane” is z0, and the only
candidate for an exterior point is z0. However, S has no exterior points since
no neighborhood of z0 can be free of points of the plane.

Annulus The set S1 of points satisfying the inequality ρ1 < |z − z0| lie
exterior to the circle of radius ρ1 centered at z0, whereas the set S2 of points
satisfying |z − z0| < ρ2 lie interior to the circle of radius ρ2 centered at z0.
Thus, if 0 < ρ1 < ρ2, the set of points satisfying the simultaneous inequality

ρ1 < |z − z0| < ρ2, (2)

is the intersection of the sets S1 and S2. This intersection is an open circular
ring centered at z0. Figure 1.19(d) illustrates such a ring centered at the
origin. The set defined by (2) is called an open circular annulus. By
allowing ρ1 = 0, we obtain a deleted neighborhood of z0.

z1

z2

Figure 1.21 Connected set

Domain If any pair of points z1 and z2 in a set S can be connected by
a polygonal line that consists of a finite number of line segments joined end
to end that lies entirely in the set, then the set S is said to be connected.
See Figure 1.21. An open connected set is called a domain. Each of the
open sets in Figure 1.19 is connected and so are domains. The set of numbers
z satisfying Re(z) �= 4 is an open set but is not connected since it is not
possible to join points on either side of the vertical line x = 4 by a polygonal
line without leaving the set (bear in mind that the points on the line x = 4
are not in the set). A neighborhood of a point z0 is a connected set.

�Note: “Closed” does not mean “not
open.”

Regions A region is a set of points in the complex plane with all, some,
or none of its boundary points. Since an open set does not contain any
boundary points, it is automatically a region. A region that contains all its
boundary points is said to be closed. The disk defined by |z − z0| ≤ ρ is an
example of a closed region and is referred to as a closed disk. A neighborhood
of a point z0 defined by |z − z0| < ρ is an open set or an open region and is
said to be an open disk. If the center z0 is deleted from either a closed disk
or an open disk, the regions defined by 0 < |z − z0| ≤ ρ or 0 < |z − z0| < ρ
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are called punctured disks. A punctured open disk is the same as a deleted
neighborhood of z0. A region can be neither open nor closed; the annular
region defined by the inequality 1 ≤ |z − 5| < 3 contains only some of its
boundary points (the points lying on the circle |z − 5| = 1), and so it is
neither open nor closed. In (2) we defined a circular annular region; in a
more general interpretation, an annulus or annular region may have the
appearance shown in Figure 1.22.

Figure 1.22 Annular region

Bounded Sets Finally, we say that a set S in the complex plane is
bounded if there exists a real number R > 0 such that |z| < R every z
in S. That is, S is bounded if it can be completely enclosed within some
neighborhood of the origin. In Figure 1.23, the set S shown in color is bounded
because it is contained entirely within the dashed circular neighborhood of
the origin. A set is unbounded if it is not bounded. For example, the set in
Figure 1.19(d) is bounded, whereas the sets in Figures 1.19(a), 1.19(b), and
1.19(c) are unbounded.

y

S

x

|z|< R

Figure 1.23 The set S is bounded

since some neighborhood of the ori-

gin encloses S entirely.

Remarks Comparison with Real Analysis

In your study of mathematics you undoubtedly found that you had to deal
with the concept of infinity. For example, in a course in calculus you dealt
with limits at infinity, where the behavior of functions was examined as x
either increased or decreased without bound. Since we have exactly two
directions on a number line, it is convenient to represent the notions of
“increasing without bound” and “decreasing without bound” symbolically
by x → +∞ and x → −∞, respectively. It turns out that we can get
along just fine without the designation ±∞ by dealing with an “ideal
point” called the point at infinity, which is denoted simply by ∞. To
do this we identify any real number a with a point (x0, y0) on a unit
circle x2 + y2 = 1 by drawing a straight line from the point (a, 0) on
the x-axis or horizontal number line to the point (0, 1) on the circle.
The point (x0, y0) is the point of intersection of the line with the circle.
See Problem 47 in Exercises 1.5. It should be clear from Figure 1.24(a)
that the farther the point (a, 0) is from the origin, the nearer (x0, y0)
is to (0, 1). The only point on the circle that does not correspond to
a real number a is (0, 1). To complete the correspondence with all the
points on the circle, we identify (0, 1) with ∞. The set consisting of the
real numbers R adjoined with ∞ is called the extended real-number
system.

In our current study the analogue of the number line is the complex
plane. Recall that since C is not ordered, the notions of z either
“increasing” or “decreasing” have no meaning. However, we know that
by increasing the modulus |z| of a complex number z, the number moves
farther from the origin. If we allow |z| to become unbounded, say, along
the real and imaginary axes, we do not have to distinguish between
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“directions” on these axes by notations such as z → +∞, z → −∞, z →
+i∞, and z → −i∞. In complex analysis, only the notion of ∞ is used
because we can extend the complex number system C in a manner analo-
gous to that just described for the real number system R. This time, how-
ever, we associate a complex number with a point on a unit sphere called
the Riemann sphere. By drawing a line from the number z = a + ib,
written as (a, b, 0), in the complex plane to the north pole (0, 0, 1) of
the sphere x2 + y2 + u2 = 1, we determine a unique point (x0, y0, u0)
on a unit sphere. As can be visualized from Figure 1.24(b), a complex
number with a very large modulus is far from the origin (0, 0, 0) and,
correspondingly, the point (x0, y0, u0) is close to (0, 0, 1). In this manner
each complex number is identified with a single point on the sphere. See
Problems 48–50 in Exercises 1.5. Because the point (0, 0, 1) corresponds
to no number z in the plane, we correspond it with ∞. Of course, the
system consisting of C adjoined with the “ideal point” ∞ is called the
extended complex-number system.

This way of corresponding or mapping the complex numbers onto a
sphere—north pole (0, 0, 1) excluded—is called a stereographic pro-
jection.

For a finite number z, we have z +∞ = ∞ + z = ∞, and for z �= 0,
z ·∞ =∞·z =∞. Moreover, for z �= 0 we write z/0 =∞ and for z �=∞,
z/∞ = 0. Expressions such as ∞ −∞, ∞/∞, ∞0, and 1∞ cannot be
given a meaningful definition and are called indeterminate.

(x0, y0)

(a, b, 0)

Number 
line

(0, 1)

(a, 0)

(a) Unit circle (b) Unit sphere

(0, 0, 1)

Complex
plane

(x0, y0, u0)

Figure 1.24 The method of correspondence in (b) is a stereographic projection.

EXERCISES 1.5 Answers to selected odd-numbered problems begin on page ANS-4.

In Problems 1–12, sketch the graph of the given equation in the complex plane.

1. |z − 4 + 3i| = 5 2. |z + 2 + 2i| = 2

3. |z + 3i| = 2 4. |2z − 1| = 4

5. Re(z) = 5 6. Im(z) = −2
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7. Im(z̄ + 3i) = 6 8. Im(z − i) = Re(z + 4 − 3i)

9. |Re (1 + iz̄)| = 3 10. z2 + z̄2 = 2

11. Re(z2) = 1 12. arg(z) = π/4

In Problems 13–24, sketch the set S of points in the complex plane satisfying the

given inequality. Determine whether the set is (a) open, (b) closed, (c) a domain,

(d) bounded, or (e) connected.

13. Re(z) < −1 14. |Re (z) | > 2

15. Im(z) > 3 16. Re ((2 + i)z + 1) > 0

17. 2 < Re(z − 1) < 4 18. −1 ≤ Im(z) < 4

19. Re(z2) > 0 20. Im(z) < Re(z)

21. |z − i| > 1 22. 2 < |z − i| < 3

23. 1 ≤ |z − 1 − i| < 2 24. 2 ≤ |z − 3 + 4i| ≤ 5

25. Give the boundary points of the sets in Problems 13–24.

26. Consider the set S consisting of the complex plane with the circle |z| = 5
deleted. Give the boundary points of S. Is S connected?

In Problems 27 and 28, sketch the set of points in the complex plane satisfying the

given inequality.

27. 0 ≤ arg(z) ≤ π/6 28. −π < arg(z) < π/2

In Problems 29 and 30, describe the shaded set in the given figure using arg(z) and

an inequality.

29.

y

x

 π2   /3

 π–2   /3

Figure 1.25 Figure for Problem 29

30.
y

x

Figure 1.26 Figure for Problem 30

In Problems 31 and 32, solve the given pair of simultaneous equations.

31. |z| = 2, |z − 2| = 2 32. |z − i| = 5, arg(z) = π/4

Focus on Concepts

33. On page 31 we stated that if ρ1 > 0, then the set of points satisfying
ρ1 < |z − z0| is the exterior to the circle of radius ρ1 centered at z0. In gen-
eral, describe the set if ρ1 = 0. In particular, describe the set defined by
|z + 2 − 5i| > 0.
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34. (a) What are the boundary points of a deleted neighborhood of z0?

(b) What are the boundary points of the complex plane?

(c) Give several examples, not including the one given on page 32, of a set S
in the complex plane that is neither open nor closed.

35. Use complex notation and inequalities in parts (a) and (b).

(a) Make up a list of five sets in the complex plane that are connected.

(b) Make up a list of five sets in the complex plane that are not connected.

36. Consider the disk centered at z0 defined by |z − z0| ≤ ρ. Demonstrate that
this set is bounded by finding an R > 0 so that all points z in the disk satisfy
|z| < R. [Hint : See the discussion on inequalities in Section 1.2.]

37. Suppose z0 and z1 are distinct points. Using only the concept of distance,
describe in words the set of points z in the complex plane that satisfy |z − z0| =
|z − z1|.

38. Using only the concept of distance, describe in words the set of points z in the
complex plane that satisfies |z − i| + |z + i| = 1.

In Problems 39 and 40, describe the shaded set in the given figure by filling in the
two blanks in the set notation

{ z: and/or }

using complex notation for equations or inequalities and one of the words and or or.

39.
y

x

Figure 1.27 Figure for Problem 39

40.

y

xr R–R –r

Figure 1.28 Figure for Problem 40

41. Consider the set S of points in the complex plane defined by {i/n} , n =
1, 2, 3, . . . . Discuss which of the following terms apply to S: boundary, open,
closed, connected, bounded.

42. Consider a finite set S of complex numbers {z1, z2, z3, . . . , zn}. Discuss
whether S is necessarily bounded. Defend your answer with sound mathemat-
ics.

43. A set S is said to be convex if each pair of points P and Q in S can be joined
by a line segment PQ such that every point on the line segment also lies in S.
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Determine which of the sets S in the complex plane defined by the following
conditions are convex.

(a) |z − 2 + i| < 3 (b) 1 < |z| < 2

(c) x > 2, y ≤ −1 (d) y < x2

(e) Re(z) ≤ 5 (f) Re(z) �= 0

44. Discuss: Is a convex set, defined in Problem 43, necessarily connected?

45. Discuss and decide whether the empty set ∅ is an open set.

46. Suppose S1 and S2 are open sets in the complex plane.

(a) Discuss: Is the union S1∪S2 an open set? If you think the statement is true,
try to prove it. If you think the statement is false, find a counterexample.

(b) Repeat part (a) for the intersection S1 ∩ S2.

Before answering Problems 47–50, reread the Remarks on the end of this section.

47. Find the point (x0, y0) on the unit circle that corresponds to each of the real
numbers: − 1

4
, 1

2
, −3, 1, 10. See Figure 1.24(a).

48. Find a point (x0, y0, u0) on the unit sphere that corresponds to the complex
number 2 + 5i. See Figure 1.24(b).

49. Describe the set of points on the unit sphere that correspond to each of the
following sets in the complex plane.

(a) the numbers on unit circle |z| = 1

(b) the numbers within the open disk |z| < 1

(c) the numbers that are exterior to unit circle, that is, |z| > 1

50. Express the coordinates of the point (x0, y0, u0) on the unit sphere in Figure
1.24(b) in terms of the coordinates of the point (a, b, 0) in the complex plane.
Use these formulas to verify your answer to Problem 48. [Hint : First show
that all points on the line containing (0, 0, 1) and (a, b, 0) are of the form
(ta, tb, 1 − t).]

1.6 Applications

1.6In this section we are going to examine a few simple applications of complex numbers. It
will be assumed in the discussion that the reader has some familiarity with methods for
solving elementary ordinary differential equations.

We saw how to find roots of complex numbers in Section 1.4. With that background we
are now in a position to examine how to solve a quadratic equation with complex coefficients
using the complex version of the quadratic formula. We then examine how complex numbers
and the complex exponential are used in differential equations. This last discussion leads us
to Euler’s formula and a new compact way of writing the polar form of a complex number.
Lastly, we explore some ways complex numbers are used in electrical engineering.

Algebra You probably encountered complex numbers for the first time
in a beginning course in algebra where you learned that roots of polynomial
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equations can be complex as well as real. For example, any second degree, or
quadratic, polynomial equation can solved by completing the square. In the
general case, ax2 + bx + c = 0, where the coefficients a �= 0, b, and c are real,
completion of the square in x yields the quadratic formula:

x =
−b±

√
b2 − 4ac

2a
. (1)

When the discriminant b2 − 4ac is negative, the roots of the equation are
complex. For example, by (1) the two roots of x2 − 2x + 10 = 0 are

x =
−(−2)±

√
(−2)2 − 4(1)(10)
2(1)

=
2±
√
−36

2
. (2)

In beginning courses the imaginary unit i is written i =
√
−1 and the assump-

tion is made that the laws of exponents hold so that a number such as
√
−36

can be written
√
−36 =

√
36
√
−1 = 6i. Let us denote the two complex roots

in (2) as z1 = 1 + 3i and z2 = 1− 3i.�Note: The roots z1 and z2 are con-
jugates. See Problem 20 in Exer-
cises 1.6.

Quadratic Formula The quadratic formula is perfectly valid when the
coefficients a �= 0, b, and c of a quadratic polynomial equation az2+bz+c = 0
are complex numbers. Although the formula can be obtained in exactly the
same manner as (1), we choose to write the result as

z =
−b + (b2 − 4ac)1/2

2a
. (3)

Notice that the numerator of the right-hand side of (3) looks a little different
than the traditional −b ±

√
b2 − 4ac given in (1). Bear in mind that when

b2 − 4ac �= 0, the symbol
(
b2 − 4ac

)1/2 represents the set of two square roots
of the complex number b2−4ac. Thus, (3) gives two complex solutions. From
this point on we reserve the use of the symbol

√
to real numbers where

√
a

denotes the nonnegative root of the real number a ≥ 0. The next example
illustrates the use of (3).

�Interpretation of
√

in this text

EXAMPLE 1 Using the Quadratic Formula

Solve the quadratic equation z2 + (1− i)z − 3i = 0.

Solution From (3), with a = 1, b = 1− i, and c = −3i we have

z =
−(1− i) + [(1− i)2 − 4(−3i)]1/2

2
=

1
2

[
−1 + i + (10i)1/2

]
. (4)

To compute (10i)1/2 we use (4) of Section 1.4 with r =
√

10, θ = π/2, and
n = 2, k = 0, k = 1. The two square roots of 10i are:

w0 =
√

10
(
cos

π

4
+ i sin

π

4

)
=
√

10
(

1√
2

+
1√
2
i

)
=
√

5 +
√

5i
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and

w1 =
√

10
(

cos
5π
4

+ i sin
5π
4

)
=
√

10
(
− 1√

2
− 1√

2
i

)
= −
√

5−
√

5i.

Therefore, (4) gives two values:

z1 =
1
2

[
−1 + i +

(√
5 +
√

5i
)]

and z2 =
1
2

[
−1 + i +

(
−
√

5−
√

5i
)]

.

These solutions of the original equation, written in the form z = a + ib, are

z1 =
1
2

(√
5− 1

)
+

1
2

(√
5 + 1

)
i and z2 = −1

2

(√
5 + 1

)
− 1

2

(√
5− 1

)
i.�Note: The roots z1 and z2 are not

conjugates. See Problem 24 in Ex-
ercises 1.6.

Factoring a Quadratic Polynomial By finding all the roots of a
polynomial equation we can factor the polynomial completely. This statement
follows as a corollary to an important theorem that will be proved in Section
5.5. For the present, note that if z1 and z2 are the roots defined by (3), then
a quadratic polynomial az2 + bz + c factors as

az2 + bz + c = a(z − z1)(z − z2). (5)

For example, we have already used (2) to show that the quadratic equation
x2 − 2x + 10 = 0 has roots z1 = 1 + 3i and z2 = 1 − 3i. With a = 1, (5)
enables us to factor the polynomial x2 − 2x + 10 using complex numbers:

x2 − 2x + 10 = [x− (1 + 3i)] [x− (1− 3i)] = (x− 1− 3i)(x− 1 + 3i).

Similarly, the factorization of the quadratic polynomial in Example 1 is

z2 + (1− i)z − 3i = (z − z1)(z − z2)

=
[
z − 1

2

(√
5− 1

)
− 1

2

(√
5 + 1

)
i

] [
z +

1
2

(√
5 + 1

)
+

1
2

(√
5− 1

)
i

]

Because a first course in calculus deals principally with real quantities, you
probably did not see any complex numbers until you took a course in differ-
ential equations or in electrical engineering.

Differential Equations The first step in solving a linear second-order
ordinary differential equation ay′′ + by′ + cy = f(x) with real coefficients a,
b, and c is to solve the associated homogeneous equation ay′′ + by′ + cy = 0.
The latter equation possesses solutions of the form y = emx. To see this, we
substitute y = emx, y′ = memx, y′′ = m2emx into ay′′ + by′ + cy = 0:

ay′′ + by′ + cy = am2emx + bmemx + cemx = emx
(
am2 + bm + c

)
= 0.

From emx
(
am2 + bm + c

)
= 0, we see that y = emx is a solution of the homo-

geneous equation whenever m is root of the polynomial equation am2 + bm+
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c = 0. The latter quadratic equation is known as the auxiliary equation.
Now when the coefficients of a polynomial equation are real, the equation can-
not have just one complex root; that is, complex roots must always appear
in conjugate pairs. Thus, if the auxiliary equation possesses complex roots
α + iβ, α − iβ, β > 0, then two solutions of ay′′ + by′ + cy = 0 are complex
exponential functions y = e(α+iβ)x and y = e(α−iβ)x. In order to obtain real
solutions of the differential equation we use Euler’s formula

eiθ = cos θ + i sin θ, (6)

where θ is real. With θ replaced, in turn, by β and –β, we use (6) to write

e(α+iβ)x = eαxeiβx = eαx(cosβx + i sinβx) and e(α−iβ)x = eαxe−iβx = eαx(cosβx− i sinβx). (7)

Now since the differential equation is homogeneous, the linear combinations

y1 =
1
2

[
e(α+iβ)x + e(α−iβ)x

]
and y2 =

1
2i

[
e(α+iβ)x − e(α−iβ)x

]
are also solutions. But in view of (7), both of the foregoing expressions are
real functions

y1 = eαx cosβx and y2 = eαx sinβx. (8)

EXAMPLE 2 Solving a Differential Equation

Solve the differential equation y′′ + 2y′ + 2y = 0.

Solution We apply the quadratic formula to the auxiliary equation m2 +
2m+2 = 0 and obtain the complex roots m1 = −1+i and m2 = m1 = −1−i.
With the identifications α = −1 and β = 1, (8) gives us two solutions
y1 = e−x cosx and y2 = e−x sinx.

You may recall that the so-called general solution of a homogeneous lin-
ear nth-order differential equations consists of a linear combination of n lin-
early independent solutions. Thus in Example 2, the general solution of the
given second-order differential equation is y1 = c1y1 + c2y2 = c1e

−x cosx +
c2e

−x sinx, where c1 and c2 are arbitrary constants.

Exponential Form of a Complex Number We hasten to point
out that the results given in (6) and (7) were assumptions at that point
because the complex exponential function has not been defined as yet. As a
brief preview of the material in Sections 2.1 and 4.1, the complex exponential
ez is the complex number defined by

ez = ex+iy = ex(cos y + i sin y). (9)
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Although the proof is postponed until Section 4.1, (9) can be used to show
that the familiar law of exponents holds for complex numbers z1 and z2:

ez1ez2 = ez1+z2 . (10)

Because of (10), the results in (7) are valid. Moreover, note that Euler’s for-
mula (4) is a special case of (9) when z is a pure imaginary number, that is,
with x = 0 and y replaced by θ. Euler’s formula provides a notational conve-
nience for several concepts considered earlier in this chapter. The polar form
of a complex number z, z = r(cos θ + i sin θ), can now be written compactly
as

z = reiθ. (11)

This convenient form is called the exponential form of a complex number z.
For example, i = eπi/2 and 1 + i =

√
2eπi/4. Also, the formula for the n nth

roots of a complex number, (4) of Section 1.4, becomes

z1/n = n
√

rei(θ+2kπ)/n, k = 0, 1, 2, . . . , n− 1. (12)

Electrical Engineering In applying mathematics to physical sit-
uations, engineers and mathematicians often approach the same problem in
completely different ways. For example, consider the problem of finding the
steady-state current ip(t) in an LRC -series circuit in which the charge q(t) on
the capacitor for time t > 0 is described by the differential equation

L
d2q

dt2
+ R

dq

dt
+

1
C

q = E0 sin γ t (13)

where the positive constants L, R, and C are, in turn, the inductance, re-
sistance, and capacitance. Now to find the steady-state current ip(t), we
first find the steady-state charge on the capacitor by finding a particular
solution qp(t) of (13). Proceeding as we would in a course in differential equa-
tions, we will use the method of undetermined coefficients to find qp(t). This
entails assuming a particular solution of the form qp(t) = A sin γt + B cos γt,
substituting this expression into the differential equation, simplifying, equat-
ing coefficients, and solving for the unknown coefficients A and B. It is left
as an exercise to show that A = E0X/(−γZ2) and B = E0R/(−γZ2), where
the quantities

X = Lγ − 1/Cγ and Z =
√

X2 + R2 (14)

are called, respectively, the reactance and impedance of the circuit. Thus,
the steady-state solution or steady-state charge in the circuit is

qp(t) = −E0X

γZ2
sin γt− E0R

γZ2
cos γt.

From this solution and ip(t) = q′p(t) we obtain the steady-state current:

ip(t) =
E0

Z

(
R

Z
sin γt− X

Z
cos γt

)
. (15)
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Electrical engineers often solve circuit problems such as this by using com-
plex analysis. First of all, to avoid confusion with the current i, an electrical
engineer will denote the imaginary unit i by the symbol j; in other words,
j2 = −1. Since current i is related to charge q by i = dq/dt, the differential
equation (13) is the same as

L
di

dt
+ Ri +

1
C

q = E0 sin γt. (16)

Now in view of Euler’s formula (6), if θ is replaced by the symbol γ, then
the impressed voltage E0 sin γ t is the same as Im(E0e

jγt). Because of this
last form, the method of undetermined coefficients suggests that we try a
solution of (16) in the form of a constant multiple of a complex exponential,
that is, ip(t) = Im(Aejγt). We substitute this last expression into equation
(16), assume that the complex exponential satisfies the “usual” differentiation
rules, use the fact that charge q is an antiderivative of the current i, and equate
coefficients of ejγt. The result is (jLγ + R + 1/jCγ)A = E0 and from this
we obtain

A =
E0

R + j

(
Lγ − 1

Cγ

) =
E0

R + jX
, (17)

where X is the reactance given in (14). The denominator of the last
expression, Zc = R + j(Lγ − 1/Cγ) = R + jX, is called the complex
impedance of the circuit. Since the modulus of the complex impedance

is |Zc| =
√

R2 + (Lγ − 1/Cγ)2, we see from (14) that the impedance Z and
the complex impedance Zc are related by Z = |Zc|.

Now from the exponential form of a complex number given in (11), we
can write the complex impedance as

Zc = |Zc| ejθ = Zejθ where tan θ =
Lγ − 1

Cγ

R
.

Hence (17) becomes A = E0/Zc = E0/(Zejθ), and so the steady-state current
is given by

ip(t) = Im
(

E0

Z
e−jθejγt

)
. (18)

You are encouraged to verify that the expression in (18) is the same as that
given in (15).

Remarks Comparison with Real Analysis

We have seen in this section that if z1 is a complex root of a polynomial
equation, then z2 = z̄1 is another root whenever all the coefficients of the
polynomial are real, but that z̄1 is not necessarily a root of the equation
when at least one coefficient is not real. In the latter case, we can obtain
another factor of the polynomial by dividing it by z − z1. We note that
synthetic division is valid in complex analysis. See Problems 25 and 26
in Exercises 1.6.
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EXERCISES 1.6 Answers to selected odd-numbered problems begin on page ANS-6.

In Problems 1–6, solve the given quadratic equation using the quadratic formula.

Then use (5) to factor the polynomial.

1. z2 + iz − 2 = 0 2. iz2 − z + i = 0

3. z2 − (1 + i)z + 6 − 17i = 0 4. z2 − (1 + 9i)z − 20 + 5i = 0

5. z2 + 2z −
√

3i = 0

6. 3z2 + (2 − 3i)z − 1 − 3i = 0 [Hint: See Problem 15 in Exercises 1.4.]

In Problems 7–12, express the given complex number in the exponential form

z = reiθ.

7. −10 8. −2πi

9. −4 − 4i 10.
2

1 + i

11. (3 − i)2 12. (1 + i)20

In Problems 13–16, find solutions of the given homogeneous differential equation.

13. y′′ − 4y′ + 13y = 0 14. 3y′′ + 2y′ + y = 0

15. y′′ + y′ + y = 0 16. y′′ + 2y′ + 4y = 0

In Problems 17 and 18, find the steady-state charge qp(t) and steady-state current

ip(t) for the LRC -series circuit described by the given differential equation. Find the

complex impedance and impedance of the circuit. Use the real method or complex

method discussed on page 41 as instructed.

17. 0.5
d2q

dt2
+ 3

dq

dt
+ 12.5q = 10 cos 5t 18.

d2q

dt2
+ 2

dq

dt
+ 2q = 100 sin t

Focus on Concepts

19. Discuss how (3) can be used to find the four roots of z4 − 2z2 + 1 − 2i = 0.
Carry out your ideas.

20. If z1 is a root of a polynomial equation with real coefficients, then its conjugate
z2 = z̄1 is also a root. Prove this result in the case of a quadratic equation
az2 + bz + c = 0, where a = 0, b, and c are real. Start with the properties of
conjugates given in (1) and (2) of Section 1.1.

In Problems 21 and 22, use Problem 20 and (5) of this section to factor the given

quadratic polynomial if the indicated complex number is one root.

21. 4z2 + 12z + 34 = 0; z1 = −3

2
+

5

2
i

22. 5z2 − 2z + 4 = 0; z1 =
1

5
+

√
19

5
i

23. (a) Find a quadratic polynomial equation for which 2 − i is one root.

(b) Is your answer to part (a) unique? Elaborate in detail.

24. If z1 is a root of a polynomial equation with nonreal coefficients, then its conju-
gate z2 = z̄1 is not a root. Prove this result in the case of a quadratic equation
az2 + bz + c = 0, where at least one of the coefficients a �= 0, b, or c is not real.
Use your work from Problem 20 and indicate at what point out we can make
this conclusion.
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In Problems 25 and 26, factor the given quadratic polynomial if the indicated com-

plex number is one root. [Hint : Consider long division or synthetic division.]

25. 3iz2 + (9 − 16i)z − 17 − i; z1 = 5 + 2i

26. 4z2 + (−13 + 18i)z − 5 − 10i; z1 = 3 − 4i

In Problems 27 and 28, establish the plausibility of Euler’s formula (6) in the two

ways that are specified.

27. The Maclaurin series ex =
∑∞

n=0

1

n!
xn = 1+x+

1

2!
x2 +

1

3!
x3 + · · · is known to

converge for all values of x. Taking the last statement at face value, substitute
x = iθ, θ real, into the series and simplify the powers of in. See what results
when you separate the series into real and imaginary parts.

28. (a) Verify that y1 = cos θ and y2 = sin θ satisfy the homogeneous linear second-

order differential equation
d2y

dθ2
+y = 0. Since the set of solutions consisting

of y1 and y2 is linearly independent, the general solution of the differential
equation is y = c1 cos θ + c2 sin θ.

(b) Verify that y = eiθ, where i is the imaginary unit and θ is a real variable,
also satisfies the differential equation given in part (a).

(c) Since y = eiθ is a solution of the differential equation, it must be obtainable
from the general solution given in part (a); in other words, there must exist
specific coefficients c1 and c2 such that eiθ = c1 cos θ+ c2 sin θ. Verify from
y = eiθ that y(0) = 1 and y′(0) = i. Use these two conditions to determine
c1 and c2.

29. Find a homogeneous linear second-order differential equation for which
y = e−5x cos 2x is a solution.

30. (a) By differentiating Equation (13) with respect to t, show that the current
in the LRC -series is described by

L
d2i

dt2
+ R

di

dt
+

1

C
i = E0 γ cos γt.

(b) Use the method of undetermined coefficients to find a particular solution
ip1(t) = Aejγ t of the differential equation

L
d2i

dt2
+ R

di

dt
+

1

C
i = E0γe

jγt.

(c) How can the result of part (b) be used to find a particular solution ip(t) of
the differential equation in part (a). Carry out your thoughts and verify
that ip(t) is the same as (15).

Computer Lab Assignments

In Problems 31–34, use a CAS as an aid in factoring the given quadratic polynomial.

31. z2 − 3iz − 2 32. z2 −
√

3z − i

33. iz2 − (2 + 3i)z + 1 + 5i 34. (3 + i)z2 + (1 + 7i)z − 10
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In Problems 35 and 36, use a CAS to solve the given polynomial equation. In

Mathematica the command Solve will find all roots of polynomial equations up to

degree four by means of a formula.

35. z3 − 4z2 + 10 = 0 36. z4 + 4iz2 + 10i = 0

In Problems 37 and 38, use a CAS to solve the given polynomial equation. The com-

mand NSolve in Mathematica will approximate all roots of polynomial equations

of degree five or higher.

37. z5 − z − 12 = 0 38. z6 − z4 + 3iz3 − 1 = 0

Projects

39. Cubic Formula In this project you are asked to investigate the solution of
a cubic polynomial equation by means of a formula using radicals, that is, a
combination of square roots and cube roots of expressions involving the coeffi-
cients.

(a) To solve a general cubic equation z3 + az2 + bz + c = 0 it is sufficient to
solve a depressed cubic equation x3 = mx + n since the general cubic
equation can be reduced to this special case by eliminating the term az2.
Verify this by means of the substitution z = x−a/3 and identify m and n.

(b) Use the procedure outlined in part (a) to find the depressed cubic equation
for z3 + 3z2 − 3z − 9 = 0.

(c) A solution of x3 = mx + n is given by

x =

[
n

2
+

(
n2

4
− m3

27

)1/2
]1/3

+

[
n

2
−

(
n2

4
− m3

27

)1/2
]1/3

.

Use this formula to solve the depressed cubic equation found in part (b).

(d) Graph the polynomial z3 + 3z2 − 3z − 9 and the polynomial from the
depressed cubic equation in part (b); then estimate the x-intercepts from
the graphs.

(e) Compare your results from part (d) with the solutions found in part (c).
Resolve any apparent differences. Find the three solutions of z3 + 3z2 −
3z − 9 = 0.

(f) Do some additional reading to find geometrically motivated proofs (using a
square and a cube) to derive the quadratic formula and the formula given
in part (c) for the solution of the depressed cubic equation. Why is the
name quadratic formula used when the prefix quad stems from the Latin
word for the number four?

40. Complex Matrices In this project we assume that you have either had some
experience with matrices or are willing to learn something about them.

Certain complex matrices, that is, matrices whose entries are complex num-
bers, are important in applied mathematics. An n × n complex matrix A is
said to be:

Hermitian if ĀT = A,

Skew-Hermitian if ĀT = −A,

Unitary if ĀT = A−1.
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Here the symbol Ā means the conjugate of the matrix A, which is the matrix
obtained by taking the conjugate of each entry of A. ĀT is then the transpose
of Ā, which is the matrix obtained by interchanging the rows with the columns.
The negative −A is the matrix formed by negating all the entries of A; the
matrix A−1 is the multiplicative inverse of A.

(a) Which of the following matrices are Hermitian, skew-Hermitian, or unitary?

A =




3i 10 −10 − 2i

−10 0 4 + i

10 − 2i −4 + i −5i




B =




1 0 0

0
2 + i√

10

−2 + i√
10

0
2 + i√

10

2 − i√
10




C =




2 1 + 7i −6 + 2i

1 − 7i 4 1 + i

−6 − 2i 1 − i 0




(b) What can be said about the entries on the main diagonal of a Hermitian
matrix? Prove your assertion.

(c) What can be said about the entries on the main diagonal of a skew-
Hermitian matrix? Prove your assertion.

(d) Prove that the eigenvalues of a Hermitian matrix are real.

(e) Prove that the eigenvalues of a skew-Hermitian matrix are either pure
imaginary or zero.

(f) Prove that the eigenvalues of unitary matrix are unimodular; that is,
|λ| = 1. Describe where these eigenvalues are located in the complex plane.

(g) Prove that the modulus of a unitary matrix is one, that is, |detA| = 1.

(h) Do some additional reading and find an application of each of these types
of matrices.

(i) What are the real analogues of these three matrices?

CHAPTER 1 REVIEW QUIZ
Answers to selected odd-numbered problems begin
on page ANS-6.

In Problems 1–22, answer true or false. If the statement is false, justify your
answer by either explaining why it is false or giving a counterexample; if the
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statement is true, justify your answer by either proving the statement or citing
an appropriate result in this chapter.

1. Re(z1z2) = Re(z1)Re(z2)

2. Im(4 + 7i) = 7i

3. | z − 1 | = | z̄ − 1 |

4. If Im(z) > 0, then Re(1/z) > 0.

5. i < 10i

6. If z �= 0, then Arg(z + z̄) = 0.

7. |x + iy| ≤ |x| + |y|

8. arg(z̄) = arg

(
1

z

)

9. If z̄ = −z, then z is pure imaginary.

10. arg(−2 + 10i) = π − tan−1(5) + 2nπ for n an integer.

11. If z is a root of a polynomial equation anz
n + an−1z

n−1 + · · · + a1z + a0 = 0,
then z̄ is also a root.

12. For any nonzero complex number z, there are an infinite number of values for
arg(z).

13. If |z − 2| < 2, then |Arg(z) | < π/2.

14. The set S of complex numbers z = x + iy whose real and imaginary parts are
related by y = sinx is a bounded set.

15. The set S of complex numbers z satisfying |z| < 1 or | z − 3i | < 1 is a domain.

16. Consider a set of S of complex numbers. If the set A of all real parts of the
numbers in S is bounded and the set B of all imaginary parts of the numbers
in S is bounded, then necessarily the set S is bounded.

17. The sector defined by −π/6 < arg(z) ≤ π/6 is neither open or nor closed.

18. For z �= 0, there are exactly five values of z3/5 = (z3)1/5.

19. A boundary point of a set S is a point in S.

20. The complex plane with the real and imaginary axes deleted has no boundary
points.

21. Im
(
eiθ

)
= sin θ.

22. The equation zn = 1, n a positive integer, will have only real solutions for n = 1
and n = 2.

In Problems 23–50, try to fill in the blanks without referring back to the text.

23. If a + ib =
3 − i

2 + 3i
+

2 − 2i

1 − 5i
, then a = and b = .

24. If z =
4i

−3 − 4i
, then |z| = .

25. If |z| = Re(z), then z is .

26. If z = 3 + 4i, then Re
(z

z̄

)
= .
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27. The principal argument of z = −1 − i is .

28. z̄2
1 + z̄2

2 = .

29. arg
(
(1 + i)5

)
= ,

∣∣ (1 + i)6
∣∣ = , Im

(
(1 + i)7

)
= ,

and Re
(
(1 + i)8

)
= .

30.
(

1
2

+
√

3
2
i
)483

= .

31. If z is a point in the second quadrant, then iz̄ is in the quadrant.

32. i127 − 5i9 + 2i−1 = .

33. Of the three points z1 = 2.5 + 1.9i, z2 = 1.5 − 2.9i, and z3 = −2.4 + 2.2i,
is the farthest from the origin.

34. If 3iz̄ − 2z = 6, then z = .

35. If 2x− 3yi + 9 = −x + 2yi + 5i, then z = .

36. If z =
5

−
√

3 + i
, then Arg(z) = .

37. If z �= 0 is a real number, then z+z−1 is real. Other complex numbers z = x+iy
for which z + z−1 is real are defined by |z| = .

38. The position vector of length 10 passing through (1, −1) is the same as the
complex number z = .

39. The vector z = (2 + 2i)(
√

3 + i) lies in the quadrant.

40. The boundary of the set S of complex numbers z satisfying both Im(y) > 0
and | z − 3i | > 1 is .

41. In words, the region in the complex plane for which Re(z) < Im(z) is .

42. The region in the complex plane consisting of the two disks |z + i| ≤ 1 and
|z − i| ≤ 1 is (connected/not connected).

43. Suppose that z0 is not a real number. The circles |z − z0| = |z̄0 − z0| and
|z − z̄0| = |z0 − z̄0| intersect on the (real axis/imaginary axis).

44. In complex notation, an equation of the circle with center −1 that passes
through 2 − i is .

45. A positive integer n for which (1 + i)n = 4096 is n = .

46.

∣∣∣∣ (4 − 5i)658

(5 + 4i)658

∣∣∣∣= .

47. From (cos θ+ i sin θ)4 = cos 4θ+ i sin 4θ we get the real trigonometric identities
cos 4θ = and sin 4θ = .

48. When z is a point within the open disk defined by |z| < 4, an upper bound for∣∣ z3 − 2z2 + 6z + 2
∣∣ is given by .

49. In Problem 20 in Exercises 1.6 we saw that if z1 is a root of a polynomial
equation with real coefficients, then its conjugate z2 = z̄1 is also a root. Assume
that the cubic polynomial equation az3 + bz2 + cz + d = 0, where a, b, c, and
d are real, has exactly three roots. One of the roots must be real because

.

50. (a) Interpret the circular mnemonic for positive integer powers of i given in
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Figure 1.29. Use this mnemonic to find in for the following values of n:

5, 9, 13, 17, 21, . . . ; in =
6, 10, 14, 18, 22, . . . ; in =
7, 11, 15, 19, 23, . . . ; in =
8, 12, 16, 20, 24, . . . ; in =

(b) Reinspect the powers n in the four rows in part (a) and then divide each
these powers by 4. Based on your discovery, discern an easy rule for deter-
mining in for any positive integer n. Use your rule to compute

i33 = , i68 = , i87 = , i102 = , i624 = .

x

y

i2

i5

i

i4

i3

Figure 1.29 Figure for Problem 50
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Chapter 2 Review Quiz

Introduction In the last chapter we introduced
complex numbers and examined some of their al-
gebraic and geometric properties. In this chap-
ter we turn our attention to the study of func-
tions from a set of complex numbers to another
set of complex numbers. Unlike the functions
studied in elementary calculus, we shall see that
we cannot draw the graph of a complex function.
Therefore, we introduce the notion of a mapping
as an alternative way of graphically representing
a complex function. The concepts of a limit of a
complex function and continuity of a complex
function are also introduced in this chapter.49
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2.1 Complex Functions

2.1One of the most important concepts in mathematics is that of a function. You may recall
from previous courses that a function is a certain kind of correspondence between two sets;
more specifically:

A function f from a set A to a set B is a rule of correspondence that assigns
to each element in A one and only one element in B.

We often think of a function as a rule or a machine that accepts inputs from the set A and
returns outputs in the set B. In elementary calculus we studied functions whose inputs and
outputs were real numbers. Such functions are called real-valued functions of a real
variable. In this section we begin our study of functions whose inputs and outputs are
complex numbers. Naturally, we call these functions complex functions of a complex
variable, or complex functions for short. As we will see, many interesting and useful
complex functions are simply generalizations of well-known functions from calculus.

Function Suppose that f is a function from the set A to the set B. If
f assigns to the element a in A the element b in B, then we say that b is the
image of a under f , or the value of f at a, and we write b = f(a). The
set A—the set of inputs—is called the domain of f and the set of images in
B—the set of outputs—is called the range of f . We denote the domain and
range of a function f by Dom(f) and Range(f), respectively. As an example,
consider the “squaring” function f(x) = x2 defined for the real variable x.
Since any real number can be squared, the domain of f is the set R of all
real numbers. That is, Dom(f) = A = R. The range of f consists of all real
numbers x2 where x is a real number. Of course, x2 ≥ 0 for all real x, and
it is easy to see from the graph of f that the range of f is the set of all
nonnegative real numbers. Thus, Range(f) is the interval [0,∞). The range
of f need not be the same as the set B. For instance, because the interval
[0,∞) is a subset of both R and the set C of all complex numbers, f can be
viewed as a function from A = R to B = R or f can be viewed as a function
from A = R to B = C. In both cases, the range of f is contained in but not
equal to the set B.

As the following definition indicates, a complex function is a function
whose inputs and outputs are complex numbers.

Definition 2.1 Complex Function

A complex function is a function f whose domain and range are subsets
of the set C of complex numbers.

�Notation used throughout this text.

A complex function is also called a complex-valued function of a
complex variable. For the most part we will use the usual symbols f , g,
and h to denote complex functions. In addition, inputs to a complex function
f will typically be denoted by the variable z and outputs by the variable
w = f(z). When referring to a complex function we will use three notations
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interchangeably, for example, f(z) = z− i, w = z− i, or, simply, the function
z − i. Throughout this text the notation w = f(z) will always denote a
complex function, whereas the notation y = f(x) will be reserved to represent
a real-valued function of a real variable x.

EXAMPLE 1 Complex Function

(a) The expression z2 − (2 + i)z can be evaluated at any complex number z
and always yields a single complex number, and so f(z) = z2 − (2 + i)z
defines a complex function. Values of f are found by using the arithmetic
operations for complex numbers given in Section 1.1. For instance, at the
points z = i and z = 1 + i we have:

and

f(i) = (i)2 − (2 + i)(i) = −1− 2i+ 1 = −2i

f(1 + i) = (1 + i)2 − (2 + i)(1 + i) = 2i− 1− 3i = −1− i.

(b) The expression g(z) = z + 2 Re(z) also defines a complex function. Some
values of g are:

and

g(i) = i+ 2Re (i) = i+ 2(0) = i

g(2− 3i) = 2− 3i+ 2Re (2− 3i) = 2− 3i+ 2(2) = 6− 3i.

When the domain of a complex function is not explicitly stated, we assume
the domain to be the set of all complex numbers z for which f(z) is defined.
This set is sometimes referred to as the natural domain of f . For example,
the functions f(z) = z2 − (2 + i)z and g(z) = z + 2 Re(z) in Example 1 are
defined for all complex numbers z, and so, Dom(f) = C and Dom(g) = C.
The complex function h(z) = z/

(
z2 + 1

)
is not defined at z = i and z = −i

because the denominator z2+1 is equal to 0 when z = ±i. Therefore, Dom(h)
is the set of all complex numbers except i and −i.

In the section introduction, we defined a real-valued function of a real
variable to be a function whose domain and range are subsets of the set R of
real numbers. Because R is a subset of the set C of the complex numbers,
every real-valued function of a real variable is also a complex function. We
will soon see that real-valued functions of two real variables x and y are also
special types of complex functions. These functions will play an important role
in the study of complex analysis. In order to avoid repeating the cumbersome
terminology real-valued function of a real variable and real-valued function of
two real variables, we use the term real function from this point on to refer
to any type of function studied in a single or multivariable calculus course.

Real and Imaginary Parts of a Complex Function It is
often helpful to express the inputs and the outputs a complex function in
terms of their real and imaginary parts. If w = f(z) is a complex function,
then the image of a complex number z = x+ iy under f is a complex number
w = u + iv. By simplifying the expression f(x + iy), we can write the real
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variables u and v in terms of the real variables x and y. For example, by
replacing the symbol z with x+ iy in the complex function w = z2, we obtain:

w = u+ iv = (x+ iy)2 = x2 − y2 + 2xyi. (1)

From (1) the real variables u and v are given by u = x2 − y2 and v = 2xy,
respectively. This example illustrates that, if w = u + iv = f(x + iy) is
a complex function, then both u and v are real functions of the two real
variables x and y. That is, by setting z = x+ iy, we can express any complex
function w = f(z) in terms of two real functions as:

f(z) = u(x, y) + iv(x, y). (2)

The functions u(x, y) and v(x, y) in (2) are called the real and imaginary
parts of f , respectively.

EXAMPLE 2 Real and Imaginary Parts of a Function

Find the real and imaginary parts of the functions: (a) f(z) = z2 − (2 + i)z
and (b) g(z) = z + 2 Re(z).

Solution In each case, we replace the symbol z by x+ iy, then simplify.

(a) f(z) = (x+ iy)2 − (2 + i) (x+ iy) = x2 − 2x+ y − y2 + (2xy − x− 2y) i.
So, u(x, y) = x2 − 2x+ y − y2 and v(x, y) = 2xy − x− 2y.

(b) Since g(z) = x + iy + 2 Re(x + iy) = 3x + iy, we have u(x, y) = 3x and
v(x, y) = y.

�A function f can be defined without
using the symbol z.

Every complex function is completely determined by the real functions
u(x, y) and v(x, y) in (2). Thus, a complex function w = f(z) can be defined
by arbitrarily specifying two real functions u(x, y) and v(x, y), even though
w = u + iv may not be obtainable through familiar operations performed
solely on the symbol z. For example, if we take, say, u(x, y) = xy2 and
v(x, y) = x2− 4y3, then f(z) = xy2 + i(x2− 4y3) defines a complex function.
In order to find the value of f at the point z = 3+2i, we substitute x = 3 and
y = 2 into the expression for f to obtain f(3 + 2i) = 3 · 22 + i(32 − 4 · 23) =
12− 23i.

We note in passing that complex functions defined in terms of u(x, y)
and v(x, y) can always be expressed, if desired, in terms of operations on the
symbols z and z̄. See Problem 32 in Exercises 2.1.

Exponential Function In Section 1.6 we informally introduced the
complex exponential function ez. This complex function is an example of one
that is defined by specifying its real and imaginary parts.
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Definition 2.2 Complex Exponential Function

The function ez defined by:

ez = ex cos y + iex sin y (3)

is called the complex exponential function.

By Definition 2.2, the real and imaginary parts of the complex exponential
function are u(x, y) = ex cos y and v(x, y) = ex sin y, respectively. Thus,
values of the complex exponential function w = ez are found by expressing
the point z as z = x+ iy and then substituting the values of x and y in (3).
The following example illustrates this procedure.

EXAMPLE 3 Values of the Complex Exponential Function

Find the values of the complex exponential function ez at the following points.

(a) z = 0 (b) z = i (c) z = 2 + πi

Solution In each part we substitute x = Re(z) and y = Im(z) into (3) and
then simplify.

(a) For z = 0, we have x = 0 and y = 0, and so e0 = e0 cos 0 + ie0 sin 0.
Since e0 = 1 (for the real exponential function), cos 0 = 1, and sin 0 = 0,
e0 = e0 cos 0 + i sin 0 simplifies to e0 = 1.

(b) For z = i, we have x = 0 and y = 1, and so:

ei = e0 cos 1 + ie0 sin 1 = cos 1 + i sin 1 ≈ 0.5403 + 0.8415i.

(c) For z = 2+πi, we have x = 2 and y = π, and so e2+πi = e2 cosπ+ie2 sinπ.
Since cosπ = −1 and sinπ = 0, this simplifies to e2+πi = −e2.

Exponential Form of a Complex Number As pointed out in
Section 1.6, the exponential function enables us to express the polar form of
a nonzero complex number z = r(cos θ + i sin θ) in a particularly convenient
and compact form:

z = reiθ. (4)

We call (4) the exponential form of the complex number z. For example,
a polar form of the complex number 3i is 3 [cos (π/2) + i sin (π/2)], whereas
an exponential form of 3i is 3eiπ/2. Bear in mind that in the exponential
form (4) of a complex number, the value of θ = arg(z) is not unique. This
is similar to the situation with the polar form of a complex number. You
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are encouraged to verify that
√

2eiπ/4,
√

2ei9π/4, and
√

2ei17π/4 are all valid
exponential forms of the complex number 1 + i.

If z is a real number, that is, if z = x+ 0i, then (3) gives ez = ex cos 0 +
iex sin 0 = ex. In other words, the complex exponential function agrees with
the usual real exponential function for real z. Many well-known properties
of the real exponential function are also satisfied by the complex exponential
function. For instance, if z1 and z2 are complex numbers, then (3) can be
used to show that:

e0 = 1, (5)

ez1ez2 = ez1+z2 , (6)

ez1

ez2
= ez1−z2 , (7)

(ez1)n = enz1 for n = 0,±1,±2, . . . . (8)

Proofs of properties (5)–(8) will be given in Section 4.1 where the complex
exponential function is discussed in greater detail.

While the real and complex exponential functions have many similarities,
they also have some surprising and important differences. Perhaps the most
unexpected difference is:

The complex exponential function is periodic.

In Problem 33 in Exercises 2.1 you are asked to show that that ez+2πi = ez

for all complex numbers z. This result implies that the complex exponential
function has a pure imaginary period 2πi.

Polar Coordinates Up to this point, the real and imaginary parts of
a complex function were determined using the Cartesian description x+ iy of
the complex variable z. It is equally valid, and, oftentimes, more convenient to
express the complex variable z using either the polar form z = r(cos θ+i sin θ)
or, equivalently, the exponential form z = reiθ. Given a complex function
w = f(z), if we replace the symbol z with r(cos θ+ i sin θ), then we can write
this function as:

f(z) = u(r, θ) + iv(r, θ). (9)

We still call the real functions u(r, θ) and v(r, θ) in (9) the real and imaginary
parts of f , respectively. For example, replacing z with r(cos θ+ i sin θ) in the
function f(z) = z2, yields, by de Moivre’s formula,

f(z) = (r(cos θ + i sin θ))2 = r2 cos 2θ + ir2 sin 2θ.

�The functions u (r, θ) and v(r, θ) are
not the same as the functions u(x, y)
and v(x, y).

Thus, using the polar form of z we have shown that the real and imaginary
parts of f(z) = z2 are

u(r, θ) = r2 cos 2θ and v(r, θ) = r2 sin 2θ, (10)
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respectively. Because we used a polar rather than a Cartesian description of
the variable z, the functions u and v in (10) are not the same as the functions
u and v in (1) previously computed for the function z2.

As with Cartesian coordinates, a complex function can be defined by
specifying its real and imaginary parts in polar coordinates. The expression
f(z) = r3 cos θ+(2r sin θ)i, therefore, defines a complex function. To find the
value of this function at, say, the point z = 2i, we first express 2i in polar
form:

2i = 2
(
cos
π

2
+ i sin

π

2

)
.

We then set r = 2 and θ = π/2 in the expression for f to obtain:

f(2i) = (2)3 cos
π

2
+

(
2 · 2 sin

π

2

)
i = 8 · 0 + (4 · 1)i = 4i.

Remarks Comparison with Real Analysis

(i) The complex exponential function provides a good example of how
complex functions can be similar to and, at the same time, differ-
ent from their real counterparts. Both the complex and the real
exponential function satisfy properties (5)–(8). On the other hand,
the complex exponential function is periodic and, from part (c) of
Example 3, a value of the complex exponential function can be a
negative real number. Neither of these properties are shared by the
real exponential function.

(ii) In this section we made the important observation that every com-
plex function can be defined in terms of two real functions u(x, y)
and v(x, y) as f(z) = u(x, y)+iv(x, y). This implies that the study
of complex functions is closely related to the study of real multivari-
able functions of two real variables. The notions of limit, continuity,
derivative, and integral of such real functions will be used to develop
and aid our understanding of the analogous concepts for complex
functions.

(iii) On page 51 we discussed that real-valued functions of a real vari-
able and real-valued functions of two real variables can be viewed as
special types of complex functions. Other special types of complex
functions that we encounter in the study of complex analysis include
the following:
Real-valued functions of a complex variable are functions
y = f(z) where z is a complex number and y is a real number.
The functions x = Re(z) and r = |z| are both examples of this type
of function.
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Complex-valued functions of a real variable are functions
w = f(t) where t is a real number and w is a complex number.
It is customary to express such functions in terms of two real-valued
functions of the real variable t, w(t) = x(t) + iy(t). For example,
w(t) = 3t+ i cos t is a complex-valued function of a real variable t.

These special types of complex functions will appear in various places
throughout the text.

EXERCISES 2.1 Answers to selected odd-numbered problems begin on page ANS-7.

In Problems 1–8, evaluate the given complex function f at the indicated points.

1. f(z) = z2z̄ − 2i (a) 2i (b) 1 + i (c) 3 − 2i

2. f(z) = −z3 + 2z + z̄ (a) i (b) 2 − i (c) 1 + 2i

3. f(z) = loge |z| + iArg(z) (a) 1 (b) 4i (c) 1 + i

4. f(z) = |z|2 − 2Re(iz) + z (a) 3 − 4i (b) 2 − i (c) 1 + 2i

5. f(z) = (xy − x2) + i(3x+ y) (a) 3i (b) 4 + i (c) 3 − 5i

6. f(z) = ez (a) 2 − π i (b)
π

3
i (c) loge 2 − 5π

6
i

7. f(z) = r + i cos2 θ (a) 3 (b) −2i (c) 2 − i

8. f(z) = r sin
θ

2
+ i cos 2θ (a) −2 (b) 1 + i (c) −5i

In Problems 9–16, find the real and imaginary parts u and v of the given complex

function f as functions of x and y.

9. f(z) = 6z − 5 + 9i 10. f(z) = −3z + 2z̄ − i

11. f(z) = z3 − 2z + 6 12. f(z) = z2 + z̄2

13. f(z) =
z̄

z + 1
14. f(z) = z +

1

z

15. f(z) = e2z+i 16. f(z) = ez2

In Problems 17–22, find the real and imaginary parts u and v of the given complex

function f as functions of r and θ.

17. f(z) = z̄ 18. f(z) = |z|

19. f(z) = z4 20. f(z) = z +
1

z

21. f(z) = ez 22. f(z) = x2 + y2 − yi

In Problems 23–26, find the natural domain of the given complex function f .

23. f(z) = 2Re(z) − iz2 24. f(z) =
3z + 2i

z3 + 4z2 + z

25. f(z) =
iz

|z − 1| 26. f(z) =
iz

|z| − 1
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Focus on Concepts

27. Discuss: Do the following expressions define complex functions f(z)? Defend
your answer.

(a) arg(z) (b) Arg(z) (c) cos(arg(z)) + i sin(arg(z))

(d) z1/2 (e) |z| (f) Re(z)

28. Find the range of each of the following complex functions.

(a) f(z) = Im(z) defined on the closed disk |z| ≤ 2

(b) f(z) = |z| defined on the square 0 ≤ Re(z) ≤ 1, 0 ≤ Im(z) ≤ 1

(c) f(z) = z̄ defined on the upper half-plane Im(z) > 0

29. Find the natural domain and the range of each of the following complex func-
tions.

(a) f(z) =
z

|z| . [Hint : In order to determine the range, consider |f(z)|.]

(b) f(z) = 3 + 4i+
5z

|z| .

(c) f(z) =
z + z̄

z − z̄
.

30. Give an example of a complex function whose natural domain consists of all
complex numbers except 0, 1 + i, and 1 − i.

31. Determine the natural domain and range of the complex function
f(z) = cos (x− y) + i sin (x− y).

32. Suppose that z = x + iy. Reread Section 1.1 and determine how to express x
and y in terms of z and z̄. Then write the following functions in terms of the
symbols z and z̄.

(a) f(z) = x2 + y2 (b) f(z) = x− 2y + 2 + (6x+ y)i

(c) f(z) = x2 − y2 − (5xy)i (d) f(z) = 3y2 +
(
3x2

)
i

33. In this problem we examine some properties of the complex exponential func-
tion.

(a) If z = x+ iy, then show that |ez| = ex.

(b) Are there any complex numbers z with the property that ez = 0? [Hint :
Use part (a).]

(c) Show that f(z) = ez is a function that is periodic with pure imaginary
period 2πi. That is, show that ez+2πi = ez for all complex numbers z.

34. Use (3) to prove that ez = ez for all complex z.

35. What can be said about z if
∣∣e−z

∣∣ < 1?

36. Let f(z) =
eiz + e−iz

2
.

(a) Show that f is periodic with real period 2π.

(b) Suppose that z is real. That is, z = x + 0i. Use (3) to rewrite f(x + 0i).
What well-known real function do you get?
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37. What is the period of each of the following complex functions?

(a) f(z) = ez+π (b) f(z) = eπz

(c) f(z) = e2iz (d) f(z) = e3z+i

38. If f(z) is a complex function with pure imaginary period i, then what is the
period of the function g(z) = f(iz − 2)?

2.2 Complex Functions as Mappings

2.2Recall that if f is a real-valued function of a real variable, then the graph of f is a curve in
the Cartesian plane. Graphs are used extensively to investigate properties of real functions
in elementary courses. However, we’ll see that the graph of a complex function lies in
four-dimensional space, and so we cannot use graphs to study complex functions. In this
section we discuss the concept of a complex mapping, which was developed by the German
mathematician Bernhard Riemann to give a geometric representation of a complex function.
The basic idea is this. Every complex function describes a correspondence between points in
two copies of the complex plane. Specifically, the point z in the z-plane is associated with the
unique point w = f(z) in the w-plane. We use the alternative term complex mapping in
place of “complex function” when considering the function as this correspondence between
points in the z-plane and points in the w-plane. The geometric representation of a complex
mapping w = f(z) attributed to Riemann consists of two figures: the first, a subset S of
points in the z-plane, and the second, the set S′ of the images of points in S under w = f(z)
in the w-plane.

Mappings A useful tool for the study of real functions in elementary
calculus is the graph of the function. Recall that if y = f(x) is a real-valued
function of a real variable x, then the graph of f is defined to be the set
of all points (x, f(x)) in the two-dimensional Cartesian plane. An analogous
definition can be made for a complex function. However, if w = f(z) is a
complex function, then both z and w lie in a complex plane. It follows that
the set of all points (z, f(z)) lies in four-dimensional space (two dimensions
from the input z and two dimensions from the output w). Of course, a subset
of four-dimensional space cannot be easily illustrated. Therefore:

We cannot draw the graph a complex function.

The concept of a complex mapping provides an alternative way of giving
a geometric representation of a complex function. As described in the section
introduction, we use the term complex mapping to refer to the correspon-
dence determined by a complex function w = f(z) between points in a z-plane
and images in a w-plane. If the point z0 in the z-plane corresponds to the
point w0 in the w-plane, that is, if w0 = f(z0), then we say that f maps z0
onto w0 or, equivalently, that z0 is mapped onto w0 by f .

As an example of this type of geometric thinking, consider the real func-
tion f(x) = x+ 2. Rather than representing this function with a line of slope
1 and y-intercept (0, 2), consider how one copy of the real line (the x-line) is
mapped onto another copy of the real line (the y-line) by f . Each point on the
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x-line is mapped onto a point two units to the right on the y-line (0 is mapped
onto 2, while 3 is mapped onto 5, and so on). Therefore, the real function
f(x) = x+2 can be thought of as a mapping that translates each point in the
real line two units to the right. You can visualize the action of this mapping
by imagining the real line as an infinite rigid rod that is physically moved two
units to the right.

On order to create a geometric representation of a complex mapping, we
begin with two copies of the complex plane, the z-plane and the w-plane,
drawn either side-by-side or one above the other. A complex mapping is
represented by drawing a set S of points in the z-plane and the corresponding
set of images of the points in S under f in the w-plane. This idea is illustrated
in Figure 2.1 where a set S in the z-plane is shown in color in Figure 2.1(a)
and a set labeled S′, which represents the set of the images of points in S
under w = f(z), is shown in gray in Figure 2.1(b). From this point on we will
use notation similar to that in Figure 2.1 when discussing mappings.

Notation: S ′

If w = f(z) is a complex mapping and if S is a set of points in the
z-plane, then we call the set of images of the points in S under f the
image of S under f , and we denote this set by the symbol S′.∗

If the set S has additional properties, such as S is a domain or a curve,
then we also use symbols such as D and D′ or C and C ′, respectively, to
denote the set and its image under a complex mapping. The notation f(C)
is also sometimes used to denote the image of a curve C under w = f(z).

y

x

w = f (z)

v

u

S
S′

(a) The set S in the z-plane (b) The image of S in the w-plane

Figure 2.1 The image of a set S under a mapping w = f(z)

An illustration like Figure 2.1 is meant to convey information about the
general relationship between an arbitrary point z and its image w = f(z).
As such, the set S needs to be chosen with some care. For example, if f
is a function whose domain and range are the set of complex numbers C,
then choosing S = C will result in a figure consisting solely of two complex

∗The set S is sometimes called the pre-image of S′ under f .
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planes. Clearly, such an illustration would give no insight into how points in
the z-plane are mapped onto points in the w-plane by f .

EXAMPLE 1 Image of a Half-Plane under w = iz

Find the image of the half-plane Re(z) ≥ 2 under the complex mapping w = iz
and represent the mapping graphically.

Solution Let S be the half-plane consisting of all complex points z with
Re(z) ≥ 2. We proceed as illustrated in Figure 2.1. Consider first the vertical
boundary line x = 2 of S shown in color in Figure 2.2(a). For any point z on
this line we have z = 2 + iy where −∞ < y < ∞. The value of f(z) = iz
at a point on this line is w = f(2 + iy) = i (2 + iy) = −y + 2i. Because the
set of points w = −y + 2i, −∞ < y < ∞, is the line v = 2 in the w-plane,
we conclude that the vertical line x = 2 in the z-plane is mapped onto the
horizontal line v = 2 in the w-plane by the mapping w = iz. Therefore, the
vertical line shown in color in Figure 2.2(a) is mapped onto the horizontal line
shown in black in Figure 2.2(b) by this mapping.

y

x

S

(a) The half-plane S

2

v

S ′

u

w = iz

(b) The image, S ′, of the half-plane S

2i

Figure 2.2 The mapping w = iz

Now consider the entire half-plane S shown in color in Figure 2.2(a). This
set can be described by the two simultaneous inequalities,

x ≥ 2 and −∞ < y <∞. (1)

In order to describe the image of S, we express the mapping w = iz in terms
of its real and imaginary parts u and v; then we use the bounds given by (1)
on x and y in the z-plane to determine bounds on u and v in the w-plane. By
replacing the symbol z by x+ iy in w = iz, we obtain w = i(x+ iy) = −y+ ix,
and so the real and imaginary parts of w = iz are:

u(x, y) = −y and v(x, y) = x. (2)

From (1) and (2) we conclude that v ≥ 2 and −∞ < u < ∞. That is, the
set S′, the image of S under w = iz, consists of all points w = u + iv in the
w-plane that satisfy the simultaneous inequalities v ≥ 2 and −∞ < u < ∞.
In words, the set S′ consists of all points in the half-plane lying on or above
the horizontal line v = 2. This image can also be described by the single
inequality Im(w) ≥ 2. In summary, the half-plane Re(z) ≥ 2 shown in color
in Figure 2.2(a) is mapped onto the half-plane Im(w) ≥ 2 shown in gray in
Figure 2.2(b) by the complex mapping w = iz.

In Example 1, the set S and its image S′ are both half-planes. This might
lead you to believe that there is some simple geometric way to visualize the
image of other sets in the complex plane under the mapping w = iz. (We
will see that this is the case in Section 2.3.) For most mappings, however, the
relationship between S and S′ is more complicated. This is illustrated in the
following example.
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EXAMPLE 2 Image of a Line under w = z 2

Find the image of the vertical line x = 1 under the complex mapping w = z2

and represent the mapping graphically.

Solution Let C be the set of points on the vertical line x = 1 or, equivalently,
the set of points z = 1 + iy with −∞ < y < ∞. We proceed as in Example
1. From (1) of Section 2.1, the real and imaginary parts of w = z2 are
u(x, y) = x2 − y2 and v(x, y) = 2xy, respectively. For a point z = 1 + iy in
C, we have u(1, y) = 1 − y2 and v(1, y) = 2y. This implies that the image
of S is the set of points w = u+ iv satisfying the simultaneous equations:

and

u = 1− y2 (3)

v = 2y (4)

for −∞ < y <∞. Equations (3) and (4) are parametric equations in the real
parameter y, and they define a curve in the w-plane. We can find a Cartesian
equation in u and v for this curve by eliminating the parameter y. In order
to do so, we solve (4) for y and then substitute this expression into (3):

u = 1−
(v

2

)2

= 1− v
2

4
. (5)

y

x

C

(a) The vertical line Re(z) = 1

2 3 41–1
–1

1
2
3
4

–2
–3
–4

–2–3–4

2 3 41–1
–1

1
2
3
4

–2
–3
–4

–2–3–4

v

C ′

u

w = z2

(b) The image of C is the parabola
       u = 1– �� v2

Figure 2.3 The mapping w = z2
Since y can take on any real value and since v = 2y, it follows that v can take
on any real value in (5). Consequently, C ′—the image of C—is a parabola
in the w-plane with vertex at (1,0) and u-intercepts at (0, ±2). See Figure
2.3(b). In conclusion, we have shown that the vertical line x = 1 shown in
color in Figure 2.3(a) is mapped onto the parabola u = 1− 1

4v
2 shown in black

in Figure 2.3(b) by the complex mapping w = z2.

In contrast to Figure 2.2, the representation of the mapping w = z2 shown
in Figure 2.3 gives little insight into what the images of other sets in the plane
might be. Mapping by this “complex squaring function” will be examined in
greater detail in Section 2.4.

Parametric Curves in the Complex Plane For a simple
complex function, the manner in which the complex plane is mapped might
be evident after analyzing the image of a single set, but for most functions an
understanding of the mapping is obtained only after looking at the images of a
variety of sets. We can often gain a good understanding of a complex mapping
by analyzing the images of curves (one-dimensional subsets of the complex
plane) and this process is facilitated by the use of parametric equations.

If x = x(t) and y = y(t) are real-valued functions of a real variable
t, then the set C of all points (x(t), y(t)), where a ≤ t ≤ b, is called a
parametric curve. The equations x = x(t), y = y(t), and a ≤ t ≤ b are
called parametric equations of C. A parametric curve can be regarded as
lying in the complex plane by letting x and y represent the real and imaginary
parts of a point in the complex plane. In other words, if x = x(t), y = y(t),
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and a ≤ t ≤ b are parametric equations of a curve C in the Cartesian plane,
then the set of points z(t) = x(t) + iy(t), a ≤ t ≤ b, is a description of the
curve C in the complex plane. For example, consider the parametric equations
x = cos t, y = sin t, 0 ≤ t ≤ 2π, of a curve C in the xy-plane (the curve C is a
circle centered at (0,0) with radius 1). The set of points z(t) = cos t+ i sin t,
0 ≤ t ≤ 2π, describes the curve C in the complex plane. If, say, t = 0, then
the point (cos 0, sin 0) = (1, 0) is on the curve C in the Cartesian plane, while
the point z(0) = cos 0 + i sin 0 = 1 represents this point on C in the complex
plane. This discussion is summarized in the following definition.

�In a parametrization
z (t) = x (t) + iy (t),
t is a real variable.

Definition 2.3 Parametric Curves in the Complex Plane

If x(t) and y(t) are real-valued functions of a real variable t, then the
set C consisting of all points z(t) = x(t) + iy(t), a ≤ t ≤ b, is called a
parametric curve or a complex parametric curve. The complex-
valued function of the real variable t, z(t) = x(t) + iy(t), is called a
parametrization of C.

Properties of curves in the Cartesian plane such as continuous, differen-
tiable, smooth, simple, and closed can all be reformulated to be properties of
curves in the complex plane. These properties are important in the study of
the complex integral and will be discussed in Chapter 5.

Two of the most elementary curves in the plane are lines and circles.
Parametrizations of these curves in the complex plane can be derived from
parametrizations in the Cartesian plane. It is also relatively easy to find these
parametrizations directly by using the geometry of the complex plane. For
example, suppose that we wish to find a parametrization of the line in the
complex plane containing the points z0 and z1. We know from Chapter 1 that
z1 − z0 represents the vector originating at z0 and terminating at z1, shown
in color in Figure 2.4. If z is any point on the line containing z0 and z1, then
inspection of Figure 2.4 indicates that the vector z−z0 is a real multiple of the
vector z1−z0. Therefore, if z is on the line containing z0 and z1, then there is
a real number t such that z−z0 = t (z1 − z0). Solving this equation for z gives
a parametrization z(t) = z0 + t (z1 − z0) = z0 (1− t) + z1t, −∞ < t <∞, for
the line. Note that if we restrict the parameter t to the interval [0, 1], then
the points z(t) range from z0 to z1, and this gives a parametrization of the
line segment from z0 to z1. On the other hand, if we restrict t to the interval
[0,∞], then we obtain a parametrization of the ray emanating from z0 and
containing z1. These parametrizations are included in the following summary.

z1 – z0

z1

z0

z

y

x

Figure 2.4 Parametrization of a line

�These are not the only parametriza-
tions possible! See Problem 28 in
Exercises 2.2.

Common Parametric Curves in the Complex Plane

Line
A parametrization of the line containing the points z0 and z1 is:

z(t) = z0(1− t) + z1t, −∞ < t <∞. (6)
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Line Segment
A parametrization of the line segment from z0 to z1 is:

z(t) = z0(1− t) + z1t, 0 ≤ t ≤ 1. (7)

Ray
A parametrization of the ray emanating from z0 and containing z1 is:

z(t) = z0(1− t) + z1t, 0 ≤ t <∞. (8)

Circle
A parametrization of the circle centered at z0 with radius r is:

z(t) = z0 + r (cos t+ i sin t) , 0 ≤ t ≤ 2π. (9)

In exponential notation, this parametrization is:

z(t) = z0 + reit, 0 ≤ t ≤ 2π. (10)

Restricting the values of the parameter t in (9) or (10) gives parametriza-
tions of circular arcs. For example, by setting z0 = 0 and r = 1 in (10) we see
that z(t) = eit, 0 ≤ t ≤ π, is a parametrization of the semicircular arc of the
unit circle centered at the origin and lying in the upper half-plane Im(z) ≥ 0.

Parametric curves are important in the study of complex mappings be-
cause it is easy to determine a parametrization of the image of a para-
metric curve. For example, if w = iz and C is the line x = 2 given by
z(t) = 2+ it, −∞ < t <∞, then the value of f(z) = iz at a point on this line
is w = f(2+it) = i(2+it) = −t+2i, and so the image of z(t) is w(t) = −t+2i.
Put another way, w(t) = −t + 2i, −∞ < t < ∞, is a parametrization of the
image C′. Thus, C ′ is the line v = 2. In summary, we have the following
procedure for finding the images of curves under a complex mapping.

Image of a Parametric Curve under a Complex
Mapping

If w = f(z) is a complex mapping and if C is a curve parametrized by
z(t), a ≤ t ≤ b, then

w(t) = f(z(t)), a ≤ t ≤ b (11)

is a parametrization of the image, C ′ of C under w = f(z).

In some instances it is convenient to represent a complex mapping using
a single copy of the complex plane. We do so by superimposing the w-plane
on top of the z-plane, so that the real and imaginary axes in each copy of the
plane coincide. Because such a figure simultaneously represents both the z-
and the w-planes, we omit all labels x, y, u, and v from the axes. For example,
if we plot the half-plane S and its image S′ from Example 1 in the same copy
of the complex plane, then we see that the half-plane S′ may be obtained
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by rotating the half-plane S through an angle π/2 radians counter-clockwise
about the origin. This observation about the mapping w = iz will be verified
in Section 2.3. In the following examples, we represent a complex mapping
using a single copy of the complex plane.

EXAMPLE 3 Image of a Parametric Curve

Use (11) to find the image of the line segment from 1 to i under the complex
mapping w = iz.

Solution Let C denote the line segment from 1 to i and let C ′ denote its
image under f(z) = iz. By identifying z0 = 1 and z1 = i in (7), we obtain a
parametrization z(t) = 1− t+ it, 0 ≤ t ≤ 1, of C. The image C ′ is then given
by (11):

w(t) = f(z(t)) = i(1− t+ it) = −i(1− t)− t, 0 ≤ t ≤ 1.

With the identifications z0 = −i and z1 = −1 in (7), we see that w(t) is a
parametrization of the line segment from −i to −1. Therefore, C ′ is the line
segment from −i to −1. This mapping is depicted in Figure 2.5 using a single
copy of the complex plane. In Figure 2.5, the line segment shown in color is
mapped onto the line segment shown in black by w = iz.

C

C ′

– i

i

w = iz

–1 1

Figure 2.5 The mapping w = iz

EXAMPLE 4 Image of a Parametric Curve

Find the image of the semicircle shown in color in Figure 2.6 under the complex
mapping w = z2.

C ′

4i

2i

2 4

C

w = z2

Figure 2.6 The mapping w = z2

Solution Let C denote the semicircle shown in Figure 2.6 and let C ′ denote
its image under f(z) = z2. We proceed as in Example 3. By setting z0 = 0
and r = 2 in (10) we obtain the following parametrization of C:

z(t) = 2eit, 0 ≤ t ≤ π.

Thus, from (11) we have that:

w(t) = f(z(t)) =
(
2eit

)2
= 4e2it, 0 ≤ t ≤ π, (12)

is a parametrization of C ′. If we set t = 1
2s in (12), then we obtain a new

parametrization of C ′:

W (s) = 4eis, 0 ≤ s ≤ 2π. (13)

From (10) with z0 = 0 and r = 4, we find that (13) defines a circle centered at
0 with radius 4. Therefore, the image C ′ is the circle |w| = 4. We represent
this mapping in Figure 2.6 using a single copy of the plane. In this figure, the
semicircle shown in color is mapped onto the circle shown in black by w = z2.
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Use of Computers Computer algebra systems such as Maple and
Mathematica perform standard algebraic operations with complex numbers.
This capability combined with the ability to graph a parametric curve makes
these systems excellent tools for exploring properties of complex mappings.
In Mathematica, for example, a complex function can be defined using the
command

f[z ] := an expression in z .

A complex parametrization can be defined similarly using the command

g[t ] := an expression in t .

From (11), it follows that w[t ] := f[g[t]] is a parametrization of the image
of the curve. This image can be graphed using the parametric plot command:

ParametricPlot[ {Re[w[t]], Im[w[t]]}, {t, a, b}]

where a and b are the upper and lower bounds on t respectively. For example,
Mathematica was used to produce Figure 2.7, which shows the image of the
circle |z| = 2 under the complex mapping w = z2 + iz − Re(z).

–6 –4 –2 2 4 6
–2

–4

2

4

v

u

Figure 2.7 The image of a circle under

w = z2 + iz − Re(z)

Remarks Comparison with Real Analysis

(i) In this section we introduced an important difference between real
and complex analysis, namely, that we cannot graph a complex func-
tion. Instead, we represent a complex function with two images: the
first a subset S in the complex plane, and the second, the image S′

of the set S under a complex mapping. A complete understanding of
a complex mapping is obtained when we understand the relationship
between any set S and its image S′.

(ii) Complex mappings are closely related to parametric curves in the
plane. In later sections, we use this relationship to help visualize the
notions of limit, continuity, and differentiability of complex func-
tions. Parametric curves will also be of central importance in the
study of complex integrals much as they were in the study of real
line integrals.

EXERCISES 2.2 Answers to selected odd-numbered problems begin on page ANS-7.

In Problems 1–8, proceed as in Example 1 or Example 2 to find the image S′ of the

set S under the given complex mapping w = f(z).

1. f(z) = z̄; S is the horizontal line y = 3

2. f(z) = z̄; S is the line y = x

3. f(z) = 3z; S is the half-plane Im(z) > 2
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4. f(z) = 3z; S is the infinite vertical strip 2 ≤ Re(z) < 3

5. f(z) = (1 + i)z; S is the vertical line x = 2

6. f(z) = (1 + i)z; S is the line y = 2x+ 1

7. f(z) = iz + 4; S is the half-plane Im(z) ≤ 1

8. f(z) = iz + 4; S is the infinite horizontal strip −1 < Im(z) < 2

In Problems 9–14, find the image of the given line under the complex mapping

w = z2.

9. y = 1 10. x = −3

11. x = 0 12. y = 0

13. y = x 14. y = −x

In Problems 15–20, (a) plot the parametric curve C given by z(t) and describe the

curve in words, (b) find a parametrization of the image, C′, of C under the given

complex mapping w = f(z), and (c) plot C′ and describe this curve in words.

15. z(t) = 2(1 − t) + it, 0 ≤ t ≤ 1; f(z) = 3z

16. z(t) = i(1 − t) + (1 + i)t, 0 ≤ t < ∞; f(z) = −z

17. z(t) = 1 + 2eit, 0 ≤ t ≤ 2π; f(z) = z + 1 − i

18. z(t) = i+ eit, 0 ≤ t ≤ π; f(z) = (z − i)3

19. z(t) = t, 0 ≤ t ≤ 2; f(z) = eiπz

20. z(t) = 4eit, 0 ≤ t ≤ π, f(z) = Re(z)

In Problems 21–26, use parametrizations to find the image, C′, of the curve C under

the given complex mapping w = f(z).

21. f(z) = z3; C is the positive imaginary axis

22. f(z) = iz; C is the circle |z − 1| = 2

23. f(z) = 1/z; C is the circle |z| = 2

24. f(z) = 1/z; C is the line segment from 1 − i to 2 − 2i

25. f(z) = z+ z̄; C is the semicircle of the unit circle |z| = 1 in the upper half-plane
Im(z) ≥ 0

26. f(z) = ez; C is the ray emanating from the origin and containing 2 +
√

3i

Focus on Concepts

27. In this problem we will find the image of the line x = 1 under the complex
mapping w = 1/z.

(a) The line x = 1 consists of all points z = 1 + iy where −∞ < y < ∞. Find
the real and imaginary parts u and v of f(z) = 1/z at a point z = 1 + iy
on this line.

(b) Show that
(
u− 1

2

)2
+ v2 = 1

4
for the functions u and v from part (a).
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(c) Based on part (b), describe the image of the line x = 1 under the complex
mapping w = 1/z.

(d) Is there a point on the line x = 1 that maps onto 0? Do you want to alter
your description of the image in part (c)?

28. Consider the parametrization z(t) = i(1 − t) + 3t, 0 ≤ t ≤ 1.

(a) Describe in words this parametric curve.

(b) What is the difference between the curve in part (a) and the curve defined
by the parametrization z(t) = 3(1 − t) + it, 0 ≤ t ≤ 1?

(c) What is the difference between the curve in part (a) and the curve defined
by the parametrization z(t) = 3

2
t+ i

(
1 − 1

2
t
)
, 0 ≤ t ≤ 2?

(d) Find a parametrization of the line segment from 1 + 2i to 2 + i where the
parameter satisfies 0 ≤ t ≤ 3.

29. Use parametrizations to find the image of the circle |z − z0| = R under the
mapping f(z) = iz − 2.

30. Consider the line y = mx+ b in the complex plane.

(a) Give a parametrization z(t) for the line.

(b) Describe in words the image of the line under the complex mapping
w = z + 2 − 3i.

(c) Describe in words the image of the line under the complex mapping w = 3z.

31. The complex mapping w = z̄ is called reflection about the real axis. Explain
why.

32. Let f(z) = az where a is a complex constant and |a| = 1.

(a) Show that |f(z1) − f(z2)| = |z1 − z2| for all complex numbers z1 and z2.

(b) Give a geometric interpretation of the result in (a).

(c) What does your answer to (b) tell you about the image of a circle under
the complex mapping w = az.

33. In this problem we investigate the effect of the mapping w = az, where a is a
complex constant and a �= 0, on angles between rays emanating from the origin.

(a) Let C be a ray in the complex plane emanating from the origin. Use
parametrizations to show that the image C′ of C under w = az is also a
ray emanating from the origin.

(b) Consider two rays C1 and C2 emanating from the origin such that C1

contains the point z1 = a1 + ib1 and C2 contains the point z2 = a2 + ib2. In
multivariable calculus, you saw that the angle θ between the rays C1 and
C2 (which is the same as the angle between the position vectors (a1, b1)
and (a2, b2)) is given by:

θ = arccos

(
a1a2 + b1b2√

a2
1 + b21

√
a2
2 + b22

)
= arccos

(
z1z̄2 + z̄1z2
2 |z1| |z2|

)
. (14)

Let C′
1 and C′

2 be the images of C1 and C2 under w = az. Use part (a) and
(14) to show that the angle between C′

1 and C′
2 is the same as the angle

between C1 and C2.



68 Chapter 2 Complex Functions and Mappings

34. Consider the complex mapping w = z2.

(a) Repeat Problem 33(a) for the mapping w = z2.

(b) Experiment with different rays. What effect does the complex mapping
w = z2 appear to have on angles between rays emanating from the origin?

Computer Lab Assignments

In Problems 35–38, use a CAS to (a) plot the image of the unit circle under the

given complex mapping w = f(z), and (b) plot the image of the line segment from

1 to 1 + i under the given complex mapping w = f(z).

35. f(z) = z2 + (1 + i)z − 3 36. f(z) = iz3 + z − i

37. f(z) = z4 − z 38. f(z) = z3 − z̄

2.3 Linear Mappings

2.3Recall that a real function of the form f(x) = ax+ b where a and b are any real constants is
called a linear function. In keeping with the similarities between real and complex analysis,
we define a complex linear function to be a function of the form f(z) = az + b where
a and b are any complex constants. Just as real linear functions are the easiest types of
real functions to graph, complex linear functions are the easiest types of complex functions
to visualize as mappings of the complex plane. In this section, we will show that every
nonconstant complex linear mapping can be described as a composition of three basic types
of motions: a translation, a rotation, and a magnification.

Before looking at a general complex linear mapping f(z) = az+ b, we investi-
gate three special types of linear mappings called translations, rotations, and
magnifications. Throughout this section we use the symbols T , R, and M to
represent mapping by translation, rotation, and magnification, respectively.

Translations A complex linear function

T (z) = z + b, b �= 0, (1)

is called a translation. If we set z = x+ iy and b = x0 + iy0 in (1), then we
obtain:

T (z) = (x+ iy) + (x0 + iy0) = x+ x0 + i(y + y0).

(x0, y0)

(x, y) or z

(x+x0, y+y0) or T(z)

Figure 2.8 Translation

Thus, the image of the point (x, y) under T is the point (x+x0, y+y0). From
Figure 2.8 we see that if we plot (x, y) and (x+x0, y+ y0) in the same copy
of the complex plane, then the vector originating at (x, y) and terminating
at (x+ x0, y + y0) is (x0, y0); equivalently, if we plot z and T (z) in the same
copy of the complex plane, then the vector originating at z and terminating at
T (z) is (x0, y0). Therefore, the linear mapping T (z) = z+b can be visualized
in a single copy of the complex plane as the process of translating the point
z along the vector (x0, y0) to the point T (z). Since (x0, y0) is the vector
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representation of the complex number b, the mapping T (z) = z + b is also
called a translation by b.

EXAMPLE 1 Image of a Square under Translation

Find the image S′ of the square S with vertices at 1 + i, 2 + i, 2 + 2i, and
1 + 2i under the linear mapping T (z) = z + 2− i.

Solution We will represent S and S′ in the same copy of the complex plane.
The mapping T is a translation, and so S′ can be determined as follows.
Identifying b = x0 + iy0 = 2 + i(−1) in (1), we plot the vector (2, −1)
originating at each point in S. See Figure 2.9. The set of terminal points of
these vectors is S′, the image of S under T . Inspection of Figure 2.9 indicates
that S′ is a square with vertices at:

T (1 + i) = (1 + i) + (2− i) = 3 T (2 + i) = (2 + i) + (2− i) = 4

T (2 + 2i) = (2 + 2i) + (2− i) = 4 + i T (1 + 2i) = (1 + 2i) + (2− i) = 3 + i.

3i

2i

i

S

z

1 2 3

S′

T(z)

Figure 2.9 Image of a square under

translation

Therefore, the square S shown in color in Figure 2.9 is mapped onto the square
S′ shown in black by the translation T (z) = z + 2− i.

From our geometric description, it is clear that a translation does not
change the shape or size of a figure in the complex plane. That is, the image
of a line, circle, or triangle under a translation will also be a line, circle, or
triangle, respectively. See Problems 23 and 24 in Exercises 2.3. A mapping
with this property is sometimes called a rigid motion.

Rotations A complex linear function

R(z) = az, |a| = 1, (2)

is called a rotation. Although it may seem that the requirement |a| = 1 is a
major restriction in (2), it is not. Keep in mind that the constant a in (2) is
a complex constant. If α is any nonzero complex number, then a = α/ |α| is
a complex number for which |a| = 1. So, for any nonzero complex number α,
we have that R(z) =

α

|α|z is a rotation.

Consider the rotation R given by (2) and, for the moment, assume that
Arg(a) > 0. Since |a| = 1 and Arg(a) > 0, we can write a in exponential form
as a = eiθ with 0 < θ ≤ π. If we set a = eiθ and z = reiφ in (2), then by
property (6) of Section 2.1 we obtain the following description of R:

R(z) = eiθreiφ = rei(θ+φ). (3)

From (3), we see that the modulus of R(z) is r, which is the same as the
modulus of z. Therefore, if z and R(z) are plotted in the same copy of the
complex plane, then both points lie on a circle centered at 0 with radius r. See
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Figure 2.10. Observe also from (3) that an argument of R(z) is θ + φ, which
is θ radians greater than an argument of z. Therefore, the linear mapping
R(z) = az can be visualized in a single copy of the complex plane as the
process of rotating the point z counterclockwise through an angle of θ radians
about the origin to the point R(z). See Figure 2.10. Clearly, this increases
the argument of z by θ radians but does not change its modulus. In a similar
manner, if Arg(a) < 0, then the linear mapping R(z) = az can be visualized in
a single copy of the complex plane as the process of rotating points clockwise
through an angle of θ radians about the origin. For this reason the angle
θ =Arg(a) is called an angle of rotation of R.

z

R(z)

θ

φ
r

Figure 2.10 Rotation

EXAMPLE 2 Image of a Line under Rotation

Find the image of the real axis y = 0 under the linear mapping

R(z) =
(

1
2

√
2 + 1

2

√
2 i

)
z.

Solution Let C denote the real axis y = 0 and let C ′ denote the image of C
under R. Since

∣∣ 1
2

√
2 + 1

2

√
2 i

∣∣ = 1, the complex mapping R(z) is a rotation.
In order to determine the angle of rotation, we write the complex number
1
2

√
2 + 1

2

√
2 i in exponential form 1

2

√
2 + 1

2

√
2 i = eiπ/4. If z and R(z) are

plotted in the same copy of the complex plane, then the point z is rotated
counterclockwise through π/4 radians about the origin to the point R(z). The
image C ′ is, therefore, the line v = u, which contains the origin and makes an
angle of π/4 radians with the real axis. This mapping is depicted in a single
copy of the complex plane in Figure 2.11 where the real axis shown in color
is mapped onto the line shown in black by R(z) =

(
1
2

√
2 + 1

2

√
2i

)
z.

R

C

C ′

π/4

Figure 2.11 Image of a line under

rotation

As with translations, rotations will not change the shape or size of a figure
in the complex plane. Thus, the image of a line, circle, or triangle under a
rotation will also be a line, circle, or triangle, respectively.

Magnifications The final type of special linear function we consider
is magnification. A complex linear function

M(z) = az, a > 0, (4)

is called a magnification. Recall from the Remarks at the end of Section 1.1
that since there is no concept of order in the complex number system, it is
implicit in the inequality a > 0 that the symbol a represents a real number.
Therefore, if z = x+ iy, then M(z) = az = ax+ iay, and so the image of the
point (x, y) is the point (ax, ay). Using the exponential form z = reiθ of z,
we can also express the function in (4) as:

M(z) = a
(
reiθ

)
= (ar) eiθ. (5)
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The product ar in (5) is a real number since both a and r are real numbers,
and from this it follows that the magnitude of M(z) is ar. Assume that
a > 1. Then from (5) we have that the complex points z and M(z) have
the same argument θ but different moduli r �= ar. If we plot both z and
M(z) in the same copy of the complex plane, then M(z) is the unique point
on the ray emanating from 0 and containing z whose distance from 0 is ar.
Since a > 1, M(z) is a times farther from the origin than z. Thus, the linear
mapping M(z) = az can be visualized in a single copy of the complex plane
as the process of magnifying the modulus of the point z by a factor of a to
obtain the point M(z). See Figure 2.12. The real number a is called the
magnification factor of M . If 0 < a < 1, then the point M(z) is a times
closer to the origin than the point z. This special case of a magnification is
called a contraction.

ar

r

M(z)

Figure 2.12 Magnification

EXAMPLE 3 Image of a Circle under Magnification

Find the image of the circle C given by |z| = 2 under the linear mapping
M(z) = 3z.

Solution SinceM is a magnification with magnification factor of 3, each point
on the circle |z| = 2 will be mapped onto a point with the same argument
but with modulus magnified by 3. Thus, each point in the image will have
modulus 3 · 2 = 6. The image points can have any argument since the points
z in the circle |z| = 2 can have any argument. Therefore, the image C ′ is the
circle |w| = 6 that is centered at the origin and has radius 6. In Figure 2.13
we illustrate this mapping in a single copy of the complex plane. Under the
mapping M(z) = 3z, the circle C shown in color in Figure 2.13 is mapped
onto the circle C ′ shown in black in Figure 2.13.

MC

C′

4 62

Figure 2.13 Image of a circle under

magnification

Although a magnification mapping will change the size of a figure in the
complex plane, it will not change its basic shape. For example, the image of
a triangle S under a magnification M(z) = az is also a triangle S′. Since the
lengths of the sides of S′ are all a times longer than the lengths of the sides
S, it follows that S and S′ are similar triangles.

Linear Mappings We are now ready to show that a general linear
mapping f(z) = az + b is a composition of a rotation, a magnification, and
a translation. Recall that if f and g are two functions, then the composition
of f and g is the function f ◦ g defined by f ◦ g(z) = f (g(z)). The value
w = f ◦ g(z) is determined by first evaluating the function g at z, then
evaluating the function f at g(z). In a similar manner, the image, S′′, of set
S under a composition w = f ◦ g(z) is determined by first finding the image,
S′, of S under g, and then finding the image S′′ of S′ under f .

Now suppose that f(z) = az+ b is a complex linear function. We assume
that a �= 0; otherwise, our mapping would be the constant map f(z) = b,
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which maps every point in the complex plane onto the single point b. Observe
that we can express f as:

f(z) = az + b = |a|
(
a

|a|z
)

+ b. (6)

Now, step by step, we investigate what happens to a point z0 under the
composition in (6). First z0 is multiplied by the complex number a/ |a|. Since∣∣∣∣ a|a|

∣∣∣∣ =
|a|
|a| = 1, the complex mapping w =

a

|a|z is a rotation that rotates the

point z0 through an angle of θ = Arg
(
a

|a|

)
radians about the origin. The

angle of rotation can also be written as θ = Arg(a) since 1/ |a| is a real number.
Let z1 be the image of z0 under this rotation by Arg(a). The next step in
(6) is to multiply z1 by |a|. Because |a| > 0 is a real number, the complex
mapping w = |a| z is a magnification with a magnification factor |a|. Now let
z2 be the image of z1 under magnification by |a|. The last step in our linear
mapping in (6) is to add b to z2. The complex mapping w = z + b translates
z2 by b onto the point w0 = f(z0). We now summarize this description of a
linear mapping.

Image of a Point under a Linear Mapping

Let f(z) = az+ b be a linear mapping with a �= 0 and let z0 be a point in
the complex plane. If the point w0 = f(z0) is plotted in the same copy of
the complex plane as z0, then w0 is the point obtained by

(i) rotating z0 through an angle of Arg(a) about the origin,

(ii) magnifying the result by |a|, and

(iii) translating the result by b.

This description of the image of a point z0 under a linear mapping also
describes the image of any set of points S. In particular, the image, S′, of a
set S under f(z) = az + b is the set of points obtained by rotating S through
Arg(a), magnifying by |a|, and then translating by b.

From (6) we see that every nonconstant complex linear mapping is a
composition of at most one rotation, one magnification, and one translation.
We emphasize the phrase “at most” in order to stress the fact that one or
more of the maps involved may be the identity mapping f(z) = z (which
maps every complex number onto itself). For instance, the linear mapping
f(z) = 3z + i involves a magnification by 3 and a translation by i, but no
rotation. Put another way, the mapping f(z) = 3z + i is the composition of
rotation through 0 radians, magnification by 3, and translation by i. It is
also evident from (6) that if a �= 0 is a complex number, R(z) is a rotation
through Arg(a), M(z) is a magnification by |a|, and T (z) is a translation by
b, then the composition f(z) = T ◦M ◦ R(z) = T (M(R(z))) is a complex
linear function. In addition, since the composition of any finite number of
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linear functions is again a linear function, it follows that the composition of
finitely many rotations, magnifications, and translations is a linear mapping.

We have seen that translations, rotations, and magnifications all preserve
the basic shape of a figure in the complex plane. A linear mapping, therefore,
will also preserve the basic shape of a figure in the complex plane. This
observation is an important property of complex linear mappings and is worth
repeating.

A complex linear mapping w = az + b with a �= 0 can distort the size of a
figure in the complex plane, but it cannot alter the basic shape of the figure.

When describing a linear function as a composition of a rotation, a mag-
nification, and a translation, keep in mind that the order of composition is
important. In order to see that this is so, consider the mapping f(z) = 2z+ i,
which magnifies by 2, then translates by i; so, 0 maps onto i under f . If we
reverse the order of composition—that is, if we translate by i, then magnify by
2—the effect is 0 maps onto 2i. Therefore, reversing the order of composition
can give a different mapping. In some special cases, however, changing the
order of composition does not change the mapping. See Problems 27 and 28
in Exercises 2.3.

�Note: The order in which you per-
form the steps in a linear mapping
is important!

A complex linear mapping can always be represented as a composition
in more than one way. The complex mapping f(z) = 2z + i, for example,
can also be expressed as f(z) = 2(z + i/2). Therefore, a magnification by 2
followed by translation by i is the same mapping as translation by i/2 followed
by magnification by 2.

EXAMPLE 4 Image of a Rectangle under a Linear Mapping

Find the image of the rectangle with vertices −1+ i, 1+ i, 1+2i, and −1+2i
under the linear mapping f(z) = 4iz + 2 + 3i.

Solution Let S be the rectangle with the given vertices and let S′ denote the
image of S under f . We will plot S and S′ in the same copy of the complex
plane. Because f is a linear mapping, our foregoing discussion implies that
S′ has the same shape as S. That is, S′ is also a rectangle. Thus, in order
to determine S′, we need only find its vertices, which are the images of the
vertices of S under f :

f(−1 + i) = −2− i f(1 + i) = −2 + 7i
f(1 + 2i) = −6 + 7i f(−1 + 2i) = −6− i.

Therefore, S′ is the rectangle with vertices −2−i, −2+7i, −6+7i, and −6−i.

The linear mapping f(z) = 4iz + 2 + 3i in Example 4 can also be viewed
as a composition of a rotation, a magnification, and a translation. Because
Arg(4i) = π/2 and |4i| = 4, f acts by rotating through an angle of π/2 radians
about the origin, magnifying by 4, then translating by 2 + 3i. This sequence
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S
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8

(a) Rotation by π/2 (b) Magnification by 4 (c) Translation by 2 + 3i

Figure 2.14 Linear mapping of a rectangle

of mappings is depicted in Figure 2.14. In Figure 2.14(a), the rectangle S
shown in color is rotated through π/2 onto the rectangle S1 shown in black;
in Figure 2.14(b), the rectangle S1 shown in color is magnified by 4 onto the
rectangle S2 shown in black; and finally, in Figure 2.14(c), the rectangle S2

shown in color is translated by 2 + 3i onto the rectangle S′ shown in black.

EXAMPLE 5 A Linear Mapping of a Triangle

Find a complex linear function that maps the equilateral triangle with vertices
1 + i, 2 + i, and 3

2 +
(
1 + 1

2

√
3
)
i onto the equilateral triangle with vertices i,√

3 + 2i, and 3i.

Solution Let S1 denote the triangle with vertices 1 + i, 2 + i, and 3
2 +(

1 + 1
2

√
3
)
i shown in color in Figure 2.15(a), and let S′ represent the triangle

with vertices i, 3i, and
√

3 + 2i shown in black in Figure 2.15(d). There are
many ways to find a linear mapping that maps S1 onto S′. One approach is
the following: We first translate S1 to have one of its vertices at the origin.
If we decide that the vertex 1 + i should be mapped onto 0, then this is
accomplished by the translation T1(z) = z − (1 + i). Let S2 be the image
of S1 under T1. Then S2 is the triangle with vertices 0, 1, and 1

2 + 1
2

√
3i

shown in black in Figure 2.15(a). From Figure 2.15(a), we see that the angle
between the imaginary axis and the edge of S2 containing the vertices 0 and
1
2 + 1

2

√
3i is π/6. Thus, a rotation through an angle of π/6 radians counter-

clockwise about the origin will map S2 onto a triangle with two vertices on the
imaginary axis. This rotation is given by R(z) =

(
eiπ/6

)
z =

(
1
2

√
3 + 1

2 i
)
z,

and the image of S2 under R is the triangle S3 with vertices at 0, 1
2

√
3 + 1

2 i,
and i shown in black in Figure 2.15(b). It is easy to verify that each side of
the triangle S3 has length 1. Because each side of the desired triangle S′ has
length 2, we next magnify S3 by a factor of 2. The magnification M(z) = 2z
maps the triangle S3 shown in color in Figure 2.15(c) onto the triangle S4

with vertices 0,
√

3 + i, and 2i shown in black in Figure 2.15(c). Finally, we
translate S4 by i using the mapping T2(z) = z+ i. This translation maps the
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triangle S4 shown in color in Figure 2.15(d) onto the triangle S′ with vertices
i,
√

3 + 2i, and 3i shown in black in Figure 2.15(d).

(a) Translation by –1–i

3

2

1

1 2 3

S1

T1

S2π/6

(b) Rotation by π/6

3

2

1

1 2 3

S3

R S2

(c) Magnification by 2

3

2

1

1 2 3

S4

M
S3

(d) Translation by i

3

2

1

1 2 3

T2

S ′

S4

Figure 2.15 Linear mapping of a triangle

In conclusion, we have found that the linear mapping:

f(z) = T2 ◦M ◦R ◦ T1(z) =
(√

3 + i
)
z + 1−

√
3 +
√

3 i

maps the triangle S1 onto the triangle S′.

Remarks Comparison with Real Analysis

The study of differential calculus is based on the principle that real linear
functions are the easiest types of functions to understand (whether it be
from an algebraic, numerical, or graphical point of view). One of the many
uses of the derivative of a real function f is to find a linear function that
approximates f in a neighborhood of a point x0. In particular, recall that
the linear approximation of a differentiable function f(x) at x = x0 is the
linear function l(x) = f(x0)+ f ′(x0)(x−x0). Geometrically, the graph of
the linear approximation is the tangent line to the graph of f at the point
(z0, f(z0)). Although there is no analogous geometric interpretation for
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complex functions, the linear approximation formula can be applied to
complex functions once an appropriate definition of the derivative of com-
plex function is given. That is, if f ′(z0) represents the derivative of the
complex function f(z) at z0 (this will be defined in Section 3.1), then
the linear approximation of f in a neighborhood of z0 is the com-
plex linear function l(z) = f(z0) + f ′(z0) (z − z0). Geometrically, l(z)
approximates how f(z) acts as a complex mapping near the point z0.
For example, we will see in Chapter 3 that the derivative of the complex
function f(z) = z2 is f ′(z) = 2z. Therefore, the linear approximation of
f(z) = z2 at z0 = 1+i is l(z) = 2i+2(1+i)(z−1−i) = 2

√
2

(
eiπ/4z

)
−2i.

Near the point z = 1 + i the mapping w = z2 can be approximated by
the linear mapping consisting of the composition of rotation through π/4,
magnification by 2

√
2, and translation by −2i. In Figure 2.16, the image

of the circle |z − (1 + i)| = 0.25 under f is shown in black and the image
of this circle under l is shown in color. Figure 2.16 indicates that, for
the circle | z − (1 + i) | = 0.25, the linear mapping l gives an accurate
approximation of the complex mapping f .

–1.5 1.5–1 –0.5 0.5

0.5

1

2

3

1.5

2.5

1

image under l

image under f

Figure 2.16 Linear approximation of

w = z2

EXERCISES 2.3 Answers to selected odd-numbered problems begin on page ANS-9.

In Problems 1–6, (a) find the image of the closed disk |z| ≤ 1 under the given linear

mapping w = f(z) and (b) represent the linear mapping with a sequence of plots as

in Figure 2.14.

1. f(z) = z + 3i 2. f(z) = z + 2 − i

3. f(z) = 3iz 4. f(z) = (1 + i)z

5. f(z) = 2z − i 6. f(z) = (6 − 5i)z + 1 − 3i

In Problems 7–12, (a) find the image of the triangle with vertices 0, 1, and i under

the given linear mapping w = f(z) and (b) represent the linear mapping with a

sequence of plots as in Figure 2.14.

7. f(z) = z + 2i 8. f(z) = 3z

9. f(z) = eiπ/4z 10. f(z) = 1
2
i z

11. f(z) = −3z + i 12. f(z) = (1 − i)z − 2

In Problems 13–16, express the given linear mapping w = f(z) as a composition of

a rotation, magnification, and a translation as in (6). Then describe the action of

the linear mapping in words.

13. f(z) = 3iz + 4 14. f(z) = 5
(
cos

π

5
+ i sin

π

5

)
z + 7i

15. f(z) = −1

2
z + 1 −

√
3i 16. f(z) = (3 − 2i)z + 12
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In Problems 17–20, find a linear mapping that maps the set S onto the set S′. (Note:

there may be more than one linear mapping that works.)

17. S is the triangle with vertices 0, 1, and 1 + i. S′ is the triangle with vertices
2i, 3i, and −1 + 3i.

18. S is the circle |z − 1| = 3. S′ is the circle |z + i| = 5.

19. S is the imaginary axis. S′ is the line through the points i and 1 + 2i.

20. S is the square with vertices 1 + i, −1 + i, −1 − i, and 1 − i. S′ is the square
with vertices 1, 2 + i, 1 + 2i, and i.

21. Find two different linear mappings that map the square with vertices 0, 1, 1+ i,
and i, onto the square with vertices −1, 0, i, −1 + i.

22. Find two different linear mappings that map the half-plane Re(z) ≥ 2 onto the
half-plane Re(z) ≥ 5.

23. Consider the line segment parametrized by z(t) = z0 (1 − t) + z1t, 0 ≤ t ≤ 1.

(a) Find a parametrization of the image of the line segment under the trans-
lation T (z) = z + b, b �= 0. Describe the image in words.

(b) Find a parametrization of the image of the line segment under the rotation
R(z) = az, |a| = 1. Describe the image in words.

(c) Find a parametrization of the image of the line segment under the magni-
fication M(z) = az, a > 0. Describe the image in words.

24. Repeat Problem 23 for the circle parametrized by z(t) = z0 + reit.

25. In parts (a)–(c), express the given composition of mappings as a linear mapping
f(z) = az + b.

(a) rotation through π/4, magnification by 2, and translation by 1 + i

(b) magnification by 2, translation by
√

2, and rotation through π/4

(c) translation by 1
2

√
2, rotation through π/4, then magnification by 2

(d) What do you notice about the linear mappings in (a)–(c)?

26. Consider the complex linear mapping f(z) =
(
1 +

√
3i

)
z + i. In each part,

find the translation T , rotation R, and magnification M that satisfy the given
equation and then describe the mapping f in words using T , R, and M .

(a) f(z) = T ◦M ◦R(z). (b) f(z) = M ◦ T ◦R(z)

(c) f(z) = R ◦M ◦ T (z)

Focus on Concepts

27. (a) Prove that the composition of two translations T1(z) = z+ b1, b1 �= 0, and
T2(z) = z + b2, b2 �= 0, is a translation. Does the order of composition
matter?

(b) Prove that the composition of two rotations R1(z) = a1z, |a1| = 1, and
R2(z) = a2z, |a2| = 1, is a rotation. Does the order of composition matter?

(c) Prove that the composition of two magnifications M1(z) = a1z, a1 > 0, and
M2(z) = a2z, a2 > 0, is a magnification. Does the order of composition
matter?
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28. We say that two mappings f and g commute if f ◦ g(z) = g ◦ f(z) for all z.
That is, two mappings commute if the order in which you compose them does
not change the mapping.

(a) Can a translation and a nonidentity rotation commute?

(b) Can a translation and a nonidentity magnification commute?

(c) Can a nonidentity rotation and a nonidentity magnification commute?

29. Recall from Problem 31 in Exercises 2.2 that the mapping f(z) = z̄ is called
reflection about the real axis. Using the mapping f(z) = z̄ and any linear
mappings, find a mapping g that reflects about the imaginary axis. That is,
express the mapping g(x + iy) = −x + iy in terms of complex constants and
the symbol z̄.

30. Describe how to obtain the image w0 = f(z0) of a point z0 under the mapping
f(z) = az̄ + b in terms of translation, rotation, magnification, and reflection.

31. What can you say about a linear mapping f if you know that |z| = |f(z)| for
all complex numbers z?

32. What can you say about a linear mapping f if you know that |z2 − z1| =
|f(z2) − f(z1)| for all complex numbers z1 and z2?

33. A fixed point of a mapping f is a point z0 with the property that f(z0) = z0.

(a) Does the linear mapping f(z) = az + b have a fixed point z0? If so, then
find z0 in terms of a and b.

(b) Give an example of a complex linear mapping that has no fixed points.

(c) Give an example of a complex linear mapping that has more than one fixed
point. [Hint : There is only one such mapping.]

(d) Prove that if z0 is a fixed point of the complex linear mapping f and if f
commutes with the complex linear mapping g (see Problem 28), then z0 is
a fixed point of g.

34. Suppose that the set S is mapped onto the set S′ by the complex mapping
w = f(z). If S = S′ as subsets of a single copy of the complex plane, then S is
said to be invariant under f . Notice that it is not necessary that f(z) = z for
all z in S in order for S to be invariant under f .

(a) Explain why the closed disk |z| ≤ 2 is invariant under the rotation
R(z) = az, |a| = 1.

(b) What are the invariant sets under a translation T (z) = z + b, b �= 0?

(c) What are the invariant sets under a magnification M(z) = az, a > 0?

35. In this problem we show that a linear mapping is uniquely determined by the
images of two points.

(a) Let f(z) = az + b be a complex linear function with a �= 0 and assume
that f(z1) = w1 and f(z2) = w2. Find two formulas that express a and b
in terms of z1, z2, w1, and w2. Explain why these formulas imply that the
linear mapping f is uniquely determined by the images of two points.

(b) Show that a linear function is not uniquely determined by the image of
one point. That is, find two different linear functions f1 and f2 that agree
at one point.
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36. (a) Given two complex numbers w1 and w2, does there always exist a linear
function that maps 0 onto w1 and 1 onto w2? Explain.

(b) Given three complex numbers w1, w2, and w3, does there always exist a
linear function that maps 0 onto w1, 1 onto w2, and i onto w3? Explain.

37. In Chapter 1 we used the triangle inequality to obtain bounds on the modulus
of certain expressions in z given a bound on the modulus of z. For example,
if |z| ≤ 1, then |(1 + i)z − 2| ≤ 2 +

√
2. Justify this inequality using linear

mappings, then determine a value of z for which |(1 + i)z − 2| = 2 +
√

2.

38. Consider the complex function f(z) = 2iz+1− i defined on the closed annulus
2 ≤ |z| ≤ 3.

(a) Use linear mappings to determine upper and lower bounds on the mod-
ulus of f(z) = 2iz + 1 − i. That is, find real values L and M such that
L ≤ |2iz + 1 − i| ≤ M .

(b) Find values of z that attain your bounds in (a). In other words, find z0
and z1 such that |f(z0)| = L and |f(z1)| = M .

(c) Determine upper and lower bounds on the modulus of the function
g(z) = 1/f(z) defined on the closed annulus 2 ≤ |z| ≤ 3.

Projects

39. Groups of Isometries In this project we investigate the relationship be-
tween complex analysis and the Euclidean geometry of the Cartesian plane.

The Euclidean distance between two points (x1, y1) and (x2, y2) in the
Cartiesian plane is

d ((x1, y1), (x2, y2)) =

√
(x2 − x1)

2 + (y2 − y1)
2.

Of course, if we consider the complex representations z1 = x1 + iy1 and z2 =
x2 + iy2 of these points, then the Euclidean distance is given by the modulus

d(z1, z2) = |z2 − z1| .

A function from the plane to the plane that preserves the Euclidean distance
between every pair of points is called a Euclidean isometry of the plane. In
particular, a complex mapping w = f(z) is a Euclidean isometry of the plane if

|z2 − z1| = |f(z1) − f(z2)|

for every pair of complex numbers z1 and z2.

(a) Prove that every linear mapping of the form f(z) = az + b where |a| = 1
is a Euclidean isometry.

A group is an algebraic structure that occurs in many areas of mathemat-
ics. A group is a set G together with a special type of function ∗ from G×G to
G. The function ∗ is called a binary operation on G, and it is customary to
use the notation a ∗ b instead of ∗(a, b) to represent a value of ∗. We now give
the formal definition of a group. A group is a set G together with a binary
operation ∗ on G, which satisfies the following three properties:

(i) for all elements a, b, and c in G, a ∗ (b ∗ c) = (a ∗ b) ∗ c,
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(ii) there exists an element e in G such that e ∗ a = a ∗ e = a for all a in
G, and

(iii) for every element a in G there exists an element b in G such that
a ∗ b = b ∗ a = e. (The element b is called the inverse of a in G and is denoted
by a−1.)

Let Isom+(E) denote the set of all complex functions of the form f(z) = az+ b
where |a| = 1. In the remaining part of this project you are asked to demon-
strate that Isom+(E) is a group with composition of functions as the binary
operation. This group is called the group of orientation-preserving isome-
tries of the Euclidean plane.

(b) Prove that composition of functions is a binary operation on Isom+(E).
That is, prove that if f and g are functions in Isom+(E), then the function
f ◦ g defined by f ◦ g(z) = f (g(z)) is an element in Isom+(E).

(c) Prove that the set Isom+(E) with composition satisfies property (i) of a
group.

(d) Prove that the set Isom+(E) with composition satisfies property (ii) of a
group. That is, show that there exists a function e in Isom+(E) such that
e ◦ f = f ◦ e = f for all functions f in Isom+(E).

(e) Prove that the set Isom+(E) with composition satisfies property (iii) of a
group.

2.4 Special Power Functions

2.4A complex polynomial function is a function of the form p(z) = anzn+an−1z
n−1+ . . .+

a1z + a0 where n is a positive integer and an, an−1, . . . , a1, a0 are complex constants. In
general, a complex polynomial mapping can be quite complicated, but in many special cases
the action of the mapping is easily understood. For instance, the complex linear functions
studied in Section 2.3 are complex polynomials of degree n = 1.

In this section we study complex polynomials of the form f(z) = zn, n ≥ 2. Unlike
the linear mappings studied in the previous section, the mappings w = zn, n ≥ 2, do not
preserve the basic shape of every figure in the complex plane. Associated to the function
zn, n ≥ 2, we also have the principal nth root function z1/n. The principal nth root
functions are inverse functions of the functions zn defined on a sufficiently restricted domain.
Consequently, complex mappings associated to zn and z1/n are closely related.

Power Functions Recall that a real function of the form f(x) = xa,
where a is a real constant, is called a power function. We form a complex
power function by allowing the input or the exponent a to be a complex
number. In other words, a complex power function is a function of the
form f(z) = zα where α is a complex constant. If α is an integer, then the
power function zα can be evaluated using the algebraic operations on complex

numbers from Chapter 1. For example, z2 = z · z and z−3 =
1

z · z · z . We
can also use the formulas for taking roots of complex numbers from Section
1.4 to define power functions with fractional exponents of the form 1/n. For
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instance, we can define z1/4 to be the function that gives the principal fourth
root of z. In this section we will restrict our attention to special complex
power functions of the form zn and z1/n where n ≥ 2 and n is an integer.
More complicated complex power functions such as z

√
2−i will be discussed in

Section 4.2 following the introduction of the complex logarithmic function.

2.4.1 The Power Function zn

In this subsection we consider complex power functions of the form zn, n ≥ 2.
It is natural to begin our investigation with the simplest of these functions,
the complex squaring function z2.

The Function z 2 Values of the complex power function f(z) = z2

are easily found using complex multiplication. For example, at z = 2 − i,
we have f(2 − i) = (2 − i)2 = (2 − i) · (2 − i) = 3 − 4i. Understanding the
complex mapping w = z2, however, requires a little more work. We begin by
expressing this mapping in exponential notation by replacing the symbol z
with reiθ:

w = z2 =
(
reiθ

)2
= r2ei2θ. (1)

From (1) we see that the modulus r2 of the point w is the square of the
modulus r of the point z, and that the argument 2θ of w is twice the argument
θ of z. If we plot both z and w in the same copy of the complex plane, then
w is obtained by magnifying z by a factor of r and then by rotating the
result through the angle θ about the origin. In Figure 2.17 we depict the
relationship between z and w = z2 when r > 1 and θ > 0. If 0 < r < 1, then
z is contracted by a factor of r, and if θ < 0, then the rotation is clockwise.

z2

zr

r2

2

θ

θ

Figure 2.17 The mapping w = z2

It is important to note that the magnification or contraction factor and
the rotation angle associated to w = f(z) = z2 depend on where the point z is
located in the complex plane. For example, since f(2) = 4 and f(i/2) = −1

4 ,
the point z = 2 is magnified by 2 but not rotated, whereas the point z = i/2
is contracted by 1

2 and rotated through π/4. In general, the squaring function
z2 does not magnify the modulus of points on the unit circle |z| = 1 and it
does not rotate points on the positive real axis.

The description of the mapping w = z2 in terms of a magnification and
rotation can be used to visualize the image of some special sets. For example,
consider a ray emanating from the origin and making an angle of φ with the
positive real axis. All points on this ray have an argument of φ and so the
images of these points under w = z2 have an argument of 2φ. Thus, the
images lie on a ray emanating from the origin and making an angle of 2φ
with the positive real axis. Moreover, since the modulus ρ of a point on the
ray can be any value in the interval [0,∞], the modulus ρ2 of a point in the
image can also be any value in the interval [0,∞]. This implies that a ray
emanating from the origin making an angle of φ with the positive real axis is
mapped onto a ray emanating from the origin making an angle 2φ with the
positive real axis by w = z2. We can also justify this mapping property of z2

by parametrizing the ray and its image using (8) and (11) of Section 2.2.
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EXAMPLE 1 Image of a Circular Arc under w = z2

Find the image of the circular arc defined by |z| = 2, 0 ≤ arg(z) ≤ π/2, under
the mapping w = z2.

y

C

2

4

x

u

v

(a) The circular arc of |z|= 2

(b) The image of C

w = z2

C�

Figure 2.18 The mapping w = z2

Solution Let C be the circular arc defined by |z| = 2,
0 ≤ arg(z) ≤ π/2, shown in color in Figure 2.18(a), and let C ′ denote the
image of C under w = z2. Since each point in C has modulus 2 and since
the mapping w = z2 squares the modulus of a point, it follows that each
point in C ′ has modulus 22 = 4. This implies that the image C ′ must be
contained in the circle |w| = 4 centered at the origin with radius 4. Since
the arguments of the points in C take on every value in the interval [0, π/2]
and since the mapping w = z2 doubles the argument of a point, it follows
that the points in C ′ have arguments that take on every value in the inter-
val [2 · 0, 2 · (π/2)] = [0, π]. That is, the set C ′ is the semicircle defined by
|w| = 4, 0 ≤ arg(w) ≤ π. In conclusion, we have shown that w = z2 maps the
circular arc C shown in color in Figure 2.18(a) onto the semicircle C ′ shown
in black in Figure 2.18(b).

y

x

(a) The half-plane Re(z) > 0

(b) Image of the half-plane in (a)

w = z2

u

v

Figure 2.19 The mapping w = z2

An alternative way to find the image in Example 1 would be to use
a parametrization. From (10) of Section 2.2, the circular arc C can be
parametrized by z(t) = 2eit, 0 ≤ t ≤ π/2, and by (11) of Section 2.2 its image
C ′ is given by w(t) = f(z(t)) = 4ei2t, 0 ≤ t ≤ π/2. By replacing the parameter
t in w(t) with the new parameter s = 2t, we obtain W (s) = 4eis, 0 ≤ s ≤ π,
which is a parametrization of the semicircle |w| = 4, 0 ≤ arg(w) ≤ π.

In a similar manner, we find that the squaring function maps a semi-
circle |z| = r, −π/2 ≤ arg(z) ≤ π/2, onto a circle |w| = r2. Since the
right half-plane Re (z) ≥ 0 consists of the collection of semicircles |z| = r,
−π/2 ≤ arg(z) ≤ π/2, where r takes on every value in the interval [0,∞),
we have that the image of this half-plane consists of the collection of circles
|w| = r2 where r takes on any value in [0,∞). This implies that w = z2 maps
the right half-plane Re (z) ≥ 0 onto the entire complex plane. We illustrate
this property in Figure 2.19. Observe that the images of the two semicircles
centered at 0 shown in color in Figure 2.19(a) are the two circles shown in
black in Figure 2.19(b). Since w = z2 squares the modulus of a point, the
semicircle with smaller radius in Figure 2.19(a) is mapped onto the circle with
smaller radius in Figure 2.19(b), while the semicircle with larger radius in Fig-
ure 2.19(a) is mapped onto the circle with larger radius in Figure 2.19(b). We
also see in Figure 2.19 that the ray emanating from the origin and containing
the point i and the ray emanating from the origin and containing the point
−i are both mapped onto the nonpositive real axis. Thus, the imaginary axis
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shown in color in Figure 2.19(a) is mapped onto the set consisting of the point
w = 0 together with the negative u-axis shown in black in Figure 2.19(b).

In order to gain a deeper understanding of the mapping w = z2 we next
consider the images of vertical and horizontal lines in the complex plane.

EXAMPLE 2 Image of a Vertical Line under w = z2

Find the image of the vertical line x = k under the mapping w = z2.

Solution In this example it is convenient to work with real and imaginary
parts of w = z2 which, from (1) in Section 2.1, are u(x, y) = x2 − y2 and
v(x, y) = 2xy, respectively. Since the vertical line x = k consists of the points
z = k + iy, −∞ < y <∞, it follows that the image of this line consists of all
points w = u+ iv where

u = k2 − y2, v = 2ky, −∞ < y <∞. (2)

If k �= 0, then we can eliminate the variable y from (2) by solving the second
equation for y = v/2k and then substituting this expression into the remaining
equation and inequality. After simplification, this yields:

u = k2 − v
2

4k2
, −∞ < v <∞. (3)

Thus, the image of the line x = k (with k �= 0) under w = z2 is the set of
points in the w-plane satisfying (3). That is, the image is a parabola that
opens in the direction of the negative u-axis, has its vertex at

(
k2, 0

)
, and has

v-intercepts at
(
0,±2k2

)
. Notice that the image given by (3) is unchanged if

k is replaced by −k. This implies that if k �= 0, then the pair of vertical lines
x = k and x = −k are both mapped onto the parabola u = k2 − v2/

(
4k2

)
by

w = z2.
The action of the mapping w = z2 on vertical lines is depicted in Figure

2.20. The vertical lines x = k, k �= 0, shown in color in Figure 2.20(a) are
mapped onto the parabolas shown in black in Figure 2.20(b). In particular,
from (3) we have that the lines x = 3 and x = −3 shown in color in Figure
2.20(a) are mapped onto the parabola with vertex at (9, 0) shown in black
in Figure 2.20(b). In a similar manner, the lines x = ±2 are mapped onto
the parabola with vertex at (4, 0), and the lines x = ±1 are mapped onto the
parabola with vertex at (1, 0). In the case when k = 0, it follows from (2)
that the image of the line x = 0 (which is the imaginary axis) is given by:

u = −y2, v = 0, −∞ < y <∞.
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(a) Vertical lines in the z-plane

(b) The images of the lines in (a)
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Figure 2.20 The mapping w = z2
Therefore, we also have that the imaginary axis is mapped onto the negative
real axis by w = z2. See Figure 2.20.
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With minor modifications, the method of Example 2 can be used to show
that a horizontal line y = k, k �= 0, is mapped onto the parabola

u =
v2

4k2
− k2 (4)

5 10 15
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x

(a) Horizontal lines in the z-plane

(b) The images of the lines in (a)
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Figure 2.21 The mapping w = z2

by w = z2. Again we see that the image in (4) is unchanged if k is replaced
by −k, and so the pair of horizontal lines y = k and y = −k, k �= 0, are
both mapped by w = z2 onto the parabola given by (4). If k = 0, then the
horizontal line y = 0 (which is the real axis) is mapped onto the positive real
axis. Therefore, the horizontal lines y = k, k �= 0, shown in color in Figure
2.21(a) are mapped by w = z2 onto the parabolas shown in black in Figure
2.21(b). Specifically, the lines y = ±3 are mapped onto the parabola with
vertex at (−9, 0), the lines y = ±2 are mapped onto the parabola with vertex
at (−4, 0), and the lines y = ±1 are mapped onto the parabola with vertex at
(−1, 0).

EXAMPLE 3 Image of a Triangle under w = z2

Find the image of the triangle with vertices 0, 1 + i, and 1 − i under the
mapping w = z2.

Solution Let S denote the triangle with vertices at 0, 1 + i, and 1 − i, and
let S′ denote its image under w = z2. Each of the three sides of S will be
treated separately. The side of S containing the vertices 0 and 1 + i lies on a
ray emanating from the origin and making an angle of π/4 radians with the
positive x-axis. By our previous discussion, the image of this segment must
lie on a ray making an angle of 2 (π/4) = π/2 radians with the positive u-axis.
Furthermore, since the moduli of the points on the edge containing 0 and 1+ i
vary from 0 to

√
2, the moduli of the images of these points vary from 02 = 0

to
(√

2
)2

= 2. Thus, the image of this side is a vertical line segment from 0 to
2i contained in the v-axis and shown in black in Figure 2.22(b). In a similar
manner, we find that the image of the side of S containing the vertices 0 and
1 − i is a vertical line segment from 0 to −2i contained in the v-axis. See
Figure 2.22. The remaining side of S contains the vertices 1 − i and 1 + i.
This side consists of the set of points z = 1+iy, −1 ≤ y ≤ 1. Because this side
is contained in the vertical line x = 1, it follows from (2) and (3) of Example
2 that its image is a parabolic segment given by:

u = 1− v
2

4
, −2 ≤ v ≤ 2.
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Thus, we have shown that the image of triangle S shown in color in Figure
2.22(a) is the figure S′ shown in black in Figure 2.22(b).

(a) A triangle in the z-plane

(b) The image of the triangle in (a)
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w = z2

Figure 2.22 The mapping w = z2

The Function zn, n > 2 An analysis similar to that used for the
mapping w = z2 can be applied to the mapping w = zn, n > 2. By replacing
the symbol z with reiθ we obtain:

w = zn = rneinθ. (5)

Consequently, if z and w = zn are plotted in the same copy of the complex
plane, then this mapping can be visualized as the process of magnifying or
contracting the modulus r of z to the modulus rn of w, and by rotating z
about the origin to increase an argument θ of z to an argument nθ of w.

We can use this description of w = zn to show that a ray emanating from
the origin and making an angle of φ radians with the positive x-axis is mapped
onto a ray emanating from the origin and making an angle of nφ radians with
the positive u-axis. This property is illustrated for the mapping w = z3 in
Figure 2.23. Each ray shown in color in Figure 2.23(a) is mapped onto a ray
shown in black in Figure 2.23(b). Since the mapping w = z3 increases the
argument of a point by a factor of 3, the ray nearest the x-axis in the first
quadrant in Figure 2.23(a) is mapped onto the ray in the first quadrant in
Figure 2.23(b), and the remaining ray in the first quadrant in Figure 2.23(a) is
mapped onto the ray in the second quadrant in Figure 2.23(b). Similarly, the
ray nearest the x-axis in the fourth quadrant in Figure 2.23(a) is mapped onto
the ray in the fourth quadrant in Figure 2.23(b), and the remaining ray in the
fourth quadrant of Figure 2.23(a) is mapped onto the ray in the third quadrant
in Figure 2.23(b).

(a) Rays in the z-plane (b) Images of the rays in (a)
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Figure 2.23 The mapping w = z3
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EXAMPLE 4 Image of a Circular Wedge under w = z3

Determine the image of the quarter disk defined by the inequalities |z| ≤ 2,
0 ≤ arg(z) ≤ π/2, under the mapping w = z3.

Solution Let S denote the quarter disk and let S′ denote its image under
w = z3. Since the moduli of the points in S vary from 0 to 2 and since the
mapping w = z3 cubes the modulus of a point, it follows that the moduli
of the points in S′ vary from 03 = 0 to 23 = 8. In addition, because the
arguments of the points in S vary from 0 to π/2 and because the mapping
w = z3 triples the argument of a point, we also have that the arguments of
the points in S′ vary from 0 to 3π/2. Therefore, S′ is the set given by the
inequalities |w| ≤ 8, 0 ≤ arg(w) ≤ 3π/2, shown in gray in Figure 2.24(b). In
summary, the set S shown in color in Figure 2.24(a) is mapped onto the set
S′ shown in gray in Figure 2.24(b) by w = z3.

(a) The set S for Example 4

(b) The image of S

y
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u

w = z3

Figure 2.24 The mapping w = z3

2.4.2 The Power Function z1/n

We now investigate complex power functions of the form z1/n where n is an
integer and n ≥ 2. We begin with the case n = 2.

Principal Square Root Function z1/2 In (4) of Section 1.4 we
saw that the n nth roots of a nonzero complex number z = r (cos θ + i sin θ) =
reiθ are given by:

n
√
r

[
cos

(
θ + 2kπ
n

)
+ i sin

(
θ + 2kπ
n

)]
= n
√
rei(θ+2kπ)/n

where k = 0, 1, 2, . . . , n− 1. In particular, for n = 2, we have that the two
square roots of z are:

√
r

[
cos

(
θ + 2kπ

2

)
+ i sin

(
θ + 2kπ

2

)]
=
√
rei(θ+2kπ)/2 (6)

for k = 0, 1. The formula in (6) does not define a function because it assigns
two complex numbers (one for k = 0 and one for k = 1) to the complex
number z. However, by setting θ =Arg(z) and k = 0 in (6) we can define a
function that assigns to z the unique principal square root. Naturally, this
function is called the principal square root function.

Definition 2.4 Principal Square Root Function

The function z1/2 defined by:

z1/2 =
√
|z|eiArg(z)/2 (7)

is called the principal square root function.
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If we set θ =Arg(z) and replace z with reiθ in (7), then we obtain an
alternative description of the principal square root function for |z| > 0:

z1/2 =
√
reiθ/2, θ = Arg(z). (8)

You should take note that the symbol z1/2 used in Definition 2.4 represents
something different from the same symbol used in Section 1.4. In (7) we
use z1/2 to represent the value of the principal square root of the complex
number z, whereas in Section 1.4 the symbol z1/2 was used to represent the
set of two square roots of the complex number z. This repetition of notation is
unfortunate, but widely used. For the most part, the context in which you see
the symbol z1/2 should make it clear whether we are referring to the principal
square root or the set of square roots. In order to avoid confusion we will, at
times, also explicitly state “the principal square root function z1/2” or “the
function f(z) = z1/2 given by (7).”

�Note

EXAMPLE 5 Values of z1/2

Find the values of the principal square root function z1/2 at the following
points:

(a) z = 4 (b) z = −2i (c) z = −1 + i

Solution In each part we use (7) to determine the value of z1/2.

(a) For z = 4, we have |z| = |4| = 4 and Arg(z) =Arg(4) = 0, and so from
(7) we obtain:

41/2 =
√

4ei(0/2) = 2ei(0) = 2.

(b) For z = −2i, we have |z| = |−2i| = 2 and Arg(z) =Arg(−2i) = −π/2,
and so from (7) we obtain:

( −2i)1/2 =
√

2ei(−π/2)/2 =
√

2e−iπ/4 = 1− i.

(c) For z = −1 + i, we have |z| = |−1 + i| =
√

2 and Arg(z) =Arg(−1 + i) =
3π/4, and so from (7) we obtain:

(−1 + i)1/2 =
√(√

2
)
ei(3π/4)/2 = 4

√
2ei(3π/8) ≈ 0.4551 + 1.0987i.

It is important that we use the principal argument when we evaluate the
principal square root function of Definition 2.4. Using a different choice for
the argument of z can give a different function. For example, in Section 1.4
we saw that the two square roots of i are 1

2

√
2 + 1

2

√
2 i and − 1

2

√
2 − 1

2

√
2 i.

For z = i we have that |z| = 1 and Arg(z) = π/2. It follows from (7) that:

i1/2 =
√

1ei(π/2)/2 = 1 · ei π/4 =
√

2
2

+
√

2
2
i.
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Therefore, only the first of these two roots of i is the value of the principal
square root function. Of course, we can define other “square root” functions.
For example, suppose we let θ be the unique value of the argument of z
in the interval π < θ ≤ 3π. Then f(z) =

√
|z|eiθ/2 defines a function for

which f(i) = −1
2

√
2− 1

2

√
2i. The function f is not the principal square root

function but it is closely related. Since π < Arg(z) + 2π ≤ 3π, it follows that
θ = Arg(z) + 2π, and so

f(z) =
√
|z|eiθ/2 =

√
|z|ei(Arg(z)+2π)/2 =

√
|z|eiArg(z)/2eiπ.

Because eiπ = −1, the foregoing expression simplifies to f(z) = −
√
|z|eiArg(z)/2.

That is, we have shown that the function f(z) =
√
|z|eiθ/2, π < θ ≤ 3π, is

the negative of the principal square root function z1/2.

Inverse Functions The principal square root function z1/2 given by
(7) is an inverse function of the squaring function z2 examined in the first
part of this section. Before elaborating on this statement, we need to review
some general terminology regarding inverse functions.

A real function must be one-to-one in order to have an inverse function.
The same is true for a complex function. The definition of a one-to-one
complex function is analogous to that for a real function. Namely, a complex
function f is one-to-one if each point w in the range of f is the image of
a unique point z, called the pre-image of w, in the domain of f . That is, f
is one-to-one if whenever f(z1) = f(z2), then z1 = z2. Put another way, if
z1 �= z2, then f(z1) �= f(z2). This says that a one-to-one complex function will
not map distinct points in the z-plane onto the same point in the w-plane. For
example, the function f(z) = z2 is not one-to-one because f(i) = f(−i) = −1.
If f is a one-to-one complex function, then for any point w in the range of
f there is a unique pre-image in the z-plane, which we denote by f−1(w).
This correspondence between a point w and its pre-image f−1(w) defines the
inverse function of a one-to-one complex function.

Definition 2.5 Inverse Function

If f is a one-to-one complex function with domain A and range B, then
the inverse function of f , denoted by f−1, is the function with domain
B and range A defined by f−1(z) = w if f(w) = z.

It follows immediately from Definition 2.5 that if a set S is mapped onto
a set S′ by a one-to-one function f , then f−1 maps S′ onto S. In other
words, the complex mappings f and f−1 “undo” each other. It also follows
from Definition 2.5 that if f has an inverse function, then f

(
f−1(z)

)
= z and

f−1 (f(z)) = z. That is, the two compositions f ◦ f−1 and f−1 ◦ f are the
identity function.
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EXAMPLE 6 Inverse Function of f(z) = z + 3i

Show that the complex function f(z) = z + 3i is one-to-one on the entire
complex plane and find a formula for its inverse function.

�Solve the equation z = f(w) for w
to find a formula for w = f−1(z).

Solution One way of showing that f is one-to-one is to show that the equality
f(z1) = f(z2) implies the equality z1 = z2. For the function f(z) = z + 3i,
this follows immediately since z1 + 3i = z2 + 3i implies that z1 = z2. As with
real functions, the inverse function of f can often be found algebraically by
solving the equation z = f(w) for the symbol w. Solving z = w + 3i for w,
we obtain w = z − 3i and so f−1(z) = z − 3i.

From Section 2.3 we know that the mapping f(z) = z+3i in Example 6 is
a translation by 3i and that f−1(z) = z− 3i is a translation by −3i. Suppose
we represent these mappings in a single copy of the complex plane. Since
translating a point by 3i and then translating the image by −3i moves the
original point back onto itself, we see that the mappings f and f−1 “undo”
each other.

Inverse Functions of zn, n > 2 We now describe how to obtain
an inverse function of the power function zn, n ≥ 2. This requires some
explanation since the function f(z) = zn, n ≥ 2, is not one-to-one. In order
to see that this is so, consider the points z1 = reiθ and z2 = rei(θ+2π/n) with
r �= 0. Because n ≥ 2, the points z1 and z2 are distinct. That is, z1 �= z2.
From (5) we have that f(z1) = rneinθ and f(z2) = rnei(nθ+2π) = rneinθei2π =
rneinθ. Therefore, f is not one-to-one since f(z1) = f(z2) but z1 �= z2. In
fact, the n distinct points z1 = reiθ, z2 = rei(θ+2π/n), z3 = rei(θ+4π/n), . . . ,
zn = rei(θ+2(n−1)π/n) are all mapped onto the single point w = rneinθ by
f(z) = zn. This fact is illustrated for n = 6 in Figure 2.25. The six points
z1, z2, . . . , z6 with equal modulus and arguments that differ by 2π/6 = π/3
shown in Figure 2.25 are all mapped onto the same point by f(z) = z6.

y
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z6

z5

z4

2π/6

Figure 2.25 Points mapped onto the

same point by f(z) = z6

The preceding discussion appears to imply that the function f(z) = zn,
n ≥ 2, does not have an inverse function because it is not one-to-one. You
have encountered this problem before, when defining inverse functions for
certain real functions in elementary calculus. For example, the real functions
f(x) = x2 and g(x) = sinx are not one-to-one, yet we still have the inverse
functions f−1(x) =

√
x and g−1(x) = arcsinx. The key to defining these

inverse functions is to appropriately restrict the domains of the functions
f(x) = x2 and g(x) = sinx to sets on which the functions are one-to-one.
For example, whereas the real function f(x) = x2 defined on the interval
(−∞,∞) is not one-to-one, the same function defined on the interval [0,∞) is
one-to-one. Similarly, g(x) = sinx is not one-to-one on the interval (−∞,∞),
but it is one-to-one on the interval [−π/2, π/2]. The function f−1(x) =

√
x is

the inverse function of the function f(x) = x2 defined on the interval [0, ∞).
Since Dom(f) = [0, ∞) and Range(f) = [0, ∞), the domain and range of
f−1(x) =

√
x are both [0, ∞) as well. See Figure 2.26. In a similar manner,

g−1(x) = arcsinx is the inverse function of the function g(x) = sinx defined
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(a) f(x) = x2 (b) f –1(x) = √x
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Figure 2.26 f(x) = x2 defined on [0, ∞) and its inverse function.

(a) g(x) = sin x (b) g–1(x) = arcsin x
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Figure 2.27 g(x) = sinx defined on [−π/2, π/2] and its inverse function.

on [−π/2, π/2]. The domain and range of g−1 are [−1, 1] and [−π/2, π/2],
respectively. See Figure 2.27. We use this same idea for the complex power
function zn, n ≥ 2. That is, in order to define an inverse function for f(z) =
zn, n ≥ 2, we must restrict the domain of f to a set on which f is a one-to-one
function. One such choice of this “restricted domain” when n = 2 is found in
the following example.

EXAMPLE 7 A Restricted Domain for f(z) = z2

Show that f(z) = z2 is a one-to-one function on the set A defined by
−π/2 < arg(z) ≤ π/2 and shown in color in Figure 2.28.

y

x

z

–z

A

Figure 2.28 A domain on which

f (z) = z2 is one-to-one

Solution As in Example 6, we show that f is one-to-one by demonstrating
that if z1 and z2 are in A and if f (z1) = f (z2), then z1 = z2. If f (z1) = f (z2),
then z21 = z22 , or, equivalently, z21 − z22 = 0. By factoring this expression, we
obtain (z1 − z2) (z1 + z2) = 0. It follows that either z1 = z2 or z1 = −z2. By
definition of the set A, both z1 and z2 are nonzero.† Recall from Problem 34
in Exercises 1.2 that the complex points z and −z are symmetric about the
origin. Inspection of Figure 2.28 shows that if z2 is in A, then –z2 is not in

†If z = 0, then arg(z) is not defined.
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A. This implies that z1 �= −z2, since z1 is in A. Therefore, we conclude that
z1 = z2, and this proves that f is a one-to-one function on A.

The technique of Example 7 does not extend to the function zn, n > 2.
For this reason we present an alternative approach to show that f(z) = z2

is one-to-one on A, which can be modified to show that f(z) = zn, n > 2,
is one-to-one on an appropriate domain. As in Example 7, we will prove
that f(z) = z2 is one-to-one on A by showing that if f(z1) = f(z2) for two
complex numbers z1 and z2 in A, then z1 = z2. Suppose that z1 and z2 are
in A, then we may write z1 = r1eiθ1 and z2 = r2eiθ2 with −π/2 < θ1 ≤ π/2
and −π/2 < θ2 ≤ π/2. If f(z1) = f(z2), then it follows from (1) that:

r21e
i2θ1 = r22e

i2θ2 . (9)

From (9) we conclude that the complex numbers r21e
i2θ1 and r22e

i2θ2 have the
same modulus and principal argument:

r21 = r22 and Arg
(
r21e

i2θ1
)

= Arg
(
r22e

i2θ2
)
. (10)

Because both r1 and r2 are positive, the first equation in (10) implies that
r1 = r2. Moreover, since −π/2 < θ1 ≤ π/2 and −π/2 < θ2 ≤ π/2, it follows
that −π < 2θ1 ≤ π, and −π < 2θ2 ≤ π. This means that Arg

(
r21e

i2θ1
)

= 2θ1
and Arg

(
r22e

i2θ2
)

= 2θ2. This fact combined with the second equation in (10)
implies that 2θ1 = 2θ2, or θ1 = θ2. Therefore, z1 and z2 are equal because
they have the same modulus and principal argument.

�Remember: Arg(z) is in the interval
(−π, π].

An Inverse of f(z) = z2 In Example 7 we saw that the squaring
function z2 is one-to-one on the set A defined by −π/2 < arg(z) ≤ π/2. It
follows from Definition 2.5 that this function has a well-defined inverse func-
tion f−1. We now proceed to show that this inverse function is the principal
square root function z1/2 from Definition 2.4. In order to do so, let z = reiθ

and w = ρeiφ where θ and φ are the principal arguments of z and w respec-
tively. Suppose that w = f−1(z). Since the range of f−1 is the domain of f ,
the principal argument φ of w must satisfy:

−π
2
< φ ≤ π

2
. (11)

On the other hand, by Definition 2.5, f(w) = w2 = z. Hence, w is one
of the two square roots of z given by (6). That is, either w =

√
reiθ/2 or

w =
√
rei(θ+2π)/2. Assume that w is the latter. That is, assume that

w =
√
rei(θ+2π)/2. (12)

Because θ = Arg(z), we have −π < θ ≤ π, and so, π/2 < (θ + 2π) /2 ≤ 3π/2.
From this and (12) we conclude that the principal argument φ of w must
satisfy either −π < φ ≤ −π/2 or π/2 < φ ≤ π. However, this cannot be
true since −π/2 < φ ≤ π/2 by (11), and so our assumption in (12) must be
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x u

vy

w = z1/2

(b) Range of z1/2(a) Domain of z1/2

Figure 2.29 The principal square root function w = z1/2

incorrect. Therefore, we conclude that w =
√
reiθ/2, which is the value of the

principal square root function z1/2 given by (8).
Since z1/2 is an inverse function of f(z) = z2 defined on the set

−π/2 < arg(z) ≤ π/2, it follows that the domain and range of z1/2 are the
range and domain of f , respectively. In particular, Range

(
z1/2

)
= A, that is,

the range of z1/2 is the set of complex w satisfying −π/2 < arg(w) ≤ π/2.
In order to find Dom

(
z1/2

)
we need to find the range of f . On page 82 we

saw that w = z2 maps the right half-plane Re(z) ≥ 0 onto the entire complex
plane. See Figure 2.19. The set A is equal to the right half-plane Re(z) ≥ 0
excluding the set of points on the ray emanating from the origin and contain-
ing the point −i. That is, A does not include the point z = 0 or the points
satisfying arg(z) = −π/2. However, we have seen that the image of the set
arg(z) = π/2—the positive imaginary axis—is the same as the image of the
set arg(z) = −π/2. Both sets are mapped onto the negative real axis. Since
the set arg(z) = π/2 is contained in A, it follows that the only difference be-
tween the image of the set A and the image of the right half-plane Re(z) ≥ 0
is the image of the point z = 0, which is the point w = 0. That is, the set
A defined by −π/2 < arg(z) ≤ π/2 is mapped onto the entire complex plane
excluding the point w = 0 by w = z2, and so the domain of f−1(z) = z1/2 is
the entire complex plane C excluding 0. In summary, we have shown that the
principal square root function w = z1/2 maps the complex plane C excluding
0 onto the set defined by −π/2 < arg(w) ≤ π/2. This mapping is depicted
in Figure 2.29. The circle |z| = r shown in color in Figure 2.29(a) is mapped
onto the semicircle |w| = √r, −π/2 < arg(w) ≤ π/2, shown in black in Figure
2.29(b) by w = z1/2. Furthermore, the negative real axis shown in color in
Figure 2.29(a) is mapped by w = z1/2 onto the positive imaginary axis shown
in black in Figure 2.29(b). Of course, if needed, the principal square root
function can be extended to include the point 0 in its domain.

The Mapping w = z1/2 As a mapping, the function z2 squares the
modulus of a point and doubles its argument. Because the principal square
root function z1/2 is an inverse function of z2, it follows that the mapping
w = z1/2 takes the square root of the modulus of a point and halves its
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principal argument. That is, if w = z1/2, then we have |w| =
√
|z| and

Arg(w) = 1
2Arg(z). These relations follow directly from (7) and are helpful

in determining the images of sets under w = z1/2.

EXAMPLE 8 Image of a Circular Sector under w = z1/2

Find the image of the set S defined by |z| ≤ 3, π/2 ≤ arg(z) ≤ 3π/4, under
the principal square root function.

x

S

y

w = z1/2

(a) A circular sector

3

3π/4

u

S ′

v

(b) The image of the set in (a)

√33π/8

π/4

Figure 2.30 The mapping w = z1/2

Solution Let S′ denote the image of S under w = z1/2. Since |z| ≤ 3
for points in S and since z1/2 takes the square root of the modulus of a
point, we must have that |w| ≤

√
3 for points w in S′. In addition, since

π/2 ≤ arg(z) ≤ 3π/4 for points in S and since z1/2 halves the argument of a
point, it follows that π/4 ≤ arg(w) ≤ 3π/8 for points w in S′. Therefore, we
have shown that the set S shown in color in Figure 2.30(a) is mapped onto
the set S′ shown in gray in Figure 2.30(b) by w = z1/2.

Principal nth Root Function By modifying the argument given
on page 91 that the function f(z) = z2 is one-to-one on the set defined
by −π/2 < arg(z) ≤ π/2, we can show that the complex power function
f(z) = zn, n > 2, is one-to-one on the set defined by

−π
n
< arg(z) ≤ π

n
. (13)

It is also relatively easy to see that the image of the set defined by (13) under
the mapping w = zn is the entire complex plane C excluding w = 0. There-
fore, there is a well-defined inverse function for f . Analogous to the case n = 2,
this inverse function of zn is called the principal nth root function z1/n.
The domain of z1/n is the set of all nonzero complex numbers, and the range
of z1/n is the set of complex numbers w satisfying −π/n < arg(w) ≤ π/n. A
purely algebraic description of the principal nth root function is given by the
following formula, which is analogous to (7).

Definition 2.6 Principal nth Root Functions

For n ≥ 2, the function z1/n defined by:

z1/n = n
√
|z|eiArg(z)/n (14)

is called the principal nth root function.

Notice that the principal square root function z1/2 from Definition 2.4
is simply a special case of (14) with n = 2. Notice also that in Definition
2.6 we use the symbol z1/n to represent something different than the same
symbol used in Section 1.4. As with the symbol z1/2, whether z1/n represents
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the principal nth root or the set of principal nth roots will be clear from the
context or stated explicitly.

By setting z = reiθ with θ = Arg(z) we can also express the principal nth
root function as:

z1/n = n
√
reiθ/n, θ = Arg(z). (15)

EXAMPLE 9 Values of z1/n

Find the value of the given principal nth root function z1/n at the given
point z.

(a) z1/3; z = i (b) z1/5; z = 1−
√

3i

Solution In each part we use (14).

(a) For z = i, we have |z| = 1 and Arg(z) = π/2. Substituting these values
in (14) with n = 3 we obtain:

i1/3 = 3
√

1ei(π/2)/3 = eiπ/6 =
√

3
2

+
1
2
i.

(b) For z = 1−
√

3i, we have |z| = 2 and Arg(z) = −π/3. Substituting these
values in (14) with n = 5 we obtain:

(
1−
√

3i
)1/5

= 5
√

2ei(−π/3)/5 = 5
√

2e−i(π/15) ≈ 1.1236− 0.2388i.

Multiple-Valued Functions In Section 1.4 we saw that a nonzero
complex number z has n distinct nth roots in the complex plane. This means
that the process of “taking the nth root” of a complex number z does not
define a complex function because it assigns a set of n complex numbers to
the complex number z. We introduced the symbol z1/n in Section 1.4 to rep-
resent the set consisting of the n nth roots of z. A similar type of process
is that of finding the argument of a complex number z. Because the symbol
arg(z) represents an infinite set of values, it also does not represent a com-
plex function. These types of operations on complex numbers are examples
of multiple-valued functions. This term often leads to confusion since a
multiple-valued function is not a function; a function, by definition, must be
single-valued. However unfortunate, the term multiple-valued function is a
standard one in complex analysis and so we shall use it from this point on.
We will adopt the following functional notation for multiple-valued functions.
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Notation: Multiple-Valued Functions

When representing multiple-valued functions with functional notation, we
will use uppercase letters such as F (z) = z1/2 or G(z) = arg(z). Lower-
case letters such as f and g will be reserved to represent functions.

This notation will help avoid confusion associated to the symbols like z1/n.
For example, we should assume that g(z) = z1/3 refers to the principal cube
root function defined by (14) with n = 3, whereas, G(z) = z1/3 represents
the multiple-valued function that assigns the three cube roots of z to the
value of z. Thus, we have g(i) = 1

2

√
3 + 1

2 i from Example 9(a) and G(i) ={
1
2

√
3 + 1

2 i,−
1
2

√
3 + 1

2 i,−i
}

from Example 1 of Section 1.4.

x

y

w = z2

(a) A maps onto A′

A
u

v

A′

x

y

w = z2

(b) B maps onto B ′

B
u

v

B′

Figure 2.31 The mapping w = z2

Remarks

(i) In (5) in Exercises 1.4 we defined a rational power of z. One way
to define a power function zm/n where m/n is a rational number is
as a composition of the principal nth root function and the power
function zm. That is, we can define zm/n =

(
z1/n

)m
. Thus, for

m/n = 2/3 and z = 8i you should verify that (8i)2/3 = 2 + 2
√

3i.
Of course, using a root other than the principal nth root gives a
possibly different function.

(ii) You have undoubtedly noticed that the complex linear mappings
studied in Section 2.3 are much easier to visualize than the map-
pings by complex power functions studied in this section. In part,
mappings by complex power functions are more intricate because
these functions are not one-to-one. The visualization of a complex
mapping that is multiple-to-one is difficult and it follows that the
multiple-valued functions, which are “inverses” to the multiple-to-
one functions, are also hard to visualize. A technique attributed
to the mathematician Bernhard Riemann (1826–1866) for visualiz-
ing multiple-to-one and multiple-valued functions is to construct a
Riemann surface for the mapping. Since a rigorous description of
Riemann surfaces is beyond the scope of this text, our discussion of
these surfaces will be informal.

We begin with a description of a Riemann surface for the
complex squaring function f(z) = z2 defined on the closed unit disk
|z| ≤ 1. On page 89 we saw that f(z) = z2 is not one-to-one. It
follows from Example 7 that f(z) = z2 is one-to-one on the set A
defined by |z| ≤ 1, −π/2 < arg(z) ≤ π/2. Under the complex map-
ping w = z2, the set A shown in color in Figure 2.31(a) is mapped
onto the closed unit disk |w| ≤ 1 shown in gray in Figure 2.31(a). In
a similar manner, we can show that w = z2 is a one-to-one mapping
of the set B defined by |z| ≤ 1, π/2 < arg(z) ≤ 3π/2, onto the closed
unit disk |w| ≤ 1. See Figure 2.31(b). Since the unit disk |z| ≤ 1 is
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the union of the sets A and B, the image of the disk |z| ≤ 1 under
w = z2 covers the disk |w| ≤ 1 twice (once by A and once by B). We
visualize this “covering” by considering two image disks for w = z2.
Let A′ denote the image of A under f and let B′ denote the image of
B under f . See Figure 2.31. Now imagine that the disks A′ and B′

have been cut open along the negative real axis as shown in Figure
2.32. The edges shown in black in Figure 2.32 of the cut disks A′ and
B′ are the images of edges shown in color of A and B, respectively.
Similarly, the dashed edges of A′ and B′ shown in Figure 2.32 are the
images of the dashed edges of A and B, respectively. We construct
a Riemannn surface for f(z) = z2 by stacking the cut disks A′ and
B′ one atop the other in xyz-space and attaching them by gluing
together their edges. The black edge of A′ shown in Figure 2.32 is
glued to the dashed edge of B′ shown in Figure 2.32, and the dashed
edge of A′ is glued to the black edge of B′. After attaching in this
manner we obtain the Riemann surface shown in Figure 2.33. We
assume that this surface is lying directly above the closed unit disk
|w| ≤ 1. Although w = z2 is not a one-to-one mapping of the closed
unit disk |z| ≤ 1 onto the closed unit disk |w| ≤ 1, it is a one-
to-one mapping of the closed unit disk |z| ≤ 1 onto the Riemann
surface that we have constructed. Moreover, the two-to-one covering
nature of the mapping w = z2 can be visualized by mapping the disk
|z| ≤ 1 onto the Riemann surface, then projecting the points of the
Riemann surface vertically down onto the disk |w| ≤ 1. In addition,
by reversing the order in this procedure, we can also use this Riemann
surface to help visualize the multiple-valued function F (z) = z1/2.

Another interesting Riemann surface is one for the multiple-
valued function G(z) = arg(z) defined on the punctured disk
0 < |z| ≤ 1. To construct this surface, we take a copy of the
punctured disk 0 < |z| ≤ 1 and cut it open along the negative real
axis. See Figure 2.34(a). Call this cut disk A0 and let it represent
the points in the domain written in exponential notation as reiθ

with −π < θ ≤ π. Take another copy of the cut disk, call it A1,
and let it represent the points in the domain written as reiθ with
π < θ ≤ 3π. Similarly, let A−1 be a cut disk that represents the
points in the domain written as reiθ with −3π < θ ≤ −π. Continue
in this manner to produce an infinite set of cut disks . . . A−2, A−1,
A0, A1, A2 . . . . In general, the cut disk An represents points in
the domain of G expressed as reiθ with (2n − 1)π < θ ≤ (2n + 1)π.
Now place each disk An in xyz -space so that the point reiθ with
(2n − 1)π < θ ≤ (2n + 1)π lies at height θ directly above the
point reiθ in the xy-plane. The cut disk A0 placed in xyz -space
is shown in Figure 2.34(b). The collection of all the cut disks
in xyz -space forms the Riemann surface for the multiple-valued
function G(z) = arg(z) shown in Figure 2.35. The Riemann surface
indicates how this multiple-valued function maps the punctured
disk 0 < |z| ≤ 1 onto the real line. Namely, a vertical line passing
through any point z in 0 < |z| ≤ 1 intersects this Riemann surface
at infinitely many points. The heights of the points of intersection

A′ B ′

Figure 2.32 The cut disks A′ and B′
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(a) The cut disks A′ and B′ in xyz-space

(b) Riemann surface in xyz-space
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Figure 2.33 A Riemann surface for

f(z) = z2
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A0

(a) The cut disk A0 (b) A0 placed in xyz-space

π

–π
–1

–11

1

0 0

0

Figure 2.34 The cut disk A0

represent different choices for the argument of z. Therefore, by hor-
izontally projecting the points of intersection onto the vertical axis,
we see the infinitely many images of G(z) = arg(z).

3π

2π

–2π

–3π

π

–π

–1

–1

1

1

0

0 0

Figure 2.35 The Riemann surface for

G(z) = arg(z)

EXERCISES 2.4 Answers to selected odd-numbered problems begin on page ANS-9.

2.4.1 The Power Function zn

In Problems 1–14, find the image of the given set under the mapping w = z2.

Represent the mapping by drawing the set and its image.

1. the ray arg(z) =
π

3
2. the ray arg(z) = −3π

4

3. the line x = 3 4. the line y = −5

5. the line y = −1

4
6. the line x =

3

2

7. the positive imaginary axis 8. the line y = x

9. the circular arc |z| =
1

2
, 0 ≤ arg(z) ≤ π

10. the circular arc |z| =
4

3
, −π

2
≤ arg(z) ≤ π

6

11. the triangle with vertices 0, 1, and 1 + i

12. the triangle with vertices 0, 1 + 2i, and −1 + 2i

13. the square with vertices 0, 1, 1 + i, and i

14. the polygon with vertices 0, 1, 1 + i, and −1 + i

In Problems 15–20, find the image of the given set under the given composition of

a linear function with the squaring function.

15. the ray arg(z) =
π

3
; f(z) = 2z2 + 1 − i

16. the line segment from 0 to –1+ i; f(z) =
√

2z2 + 2 − i

17. the line x = 2; f(z) = iz2 − 3

18. the line y = −3; f(z) = −z2 + i
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19. the circular arc |z| = 2, 0 ≤ arg(z) ≤ π

2
; f(z) = 1

4
eiπ/4z2

20. the triangle with vertices 0, 1, and 1 + i; f(z) = − 1
4
iz2 + 1

21. Find the image of the ray arg(z) = π/6 under each of the following mappings.

(a) f(z) = z3 (b) f(z) = z4 (c) f(z) = z5

22. Find the image of the first quadrant of the complex plane under each of the
following mappings.

(a) f(z) = z2 (b) f(z) = z3 (c) f(z) = z4

23. Find the image of the region 1 ≤ |z| ≤ 2, π/4 ≤ arg(z) ≤ 3π/4, shown in Figure
2.36 under each of the following mappings.

(a) f(z) = z2 (b) f(z) = z3 (c) f(z) = z4

y

x

i

2i

π/4

Figure 2.36 Figure for Problems

23 and 24 24. Find the image of the region shown in Figure 2.36 under each of the following
mappings.

(a) f(z) = 3z2 + i (b) f(z) = (i+ 1) z3 + 1 (c) f(z) = 1
2
z4 − i

2.4.2 The Power Function z1/n

In Problems 25–30, use (14) to find the value of the given principal nth root function

at the given value of z.

25. z1/2, z = −i 26. z1/2, z = 2 + i

27. z1/3, z = −1 28. z1/3, z = −3 + 3i

29. z1/4, z = −1 +
√

3i 30. z1/5, z = −4
√

3 + 4i

In Problems 31–38, find the image of the given set under the principal square root

mapping w = z1/2. Represent the mapping by drawing the set and its image.

31. the ray arg(z) =
π

4
32. the ray arg(z) = −2π

3

33. the positive imaginary axis 34. the negative real axis

35. the arc |z| = 9, −π

2
≤ arg(z) ≤ π 36. the arc |z| =

4

7
, −π

2
≤ arg(z) ≤ π

4

37. the parabola x =
9

4
− y2

9
38. the parabola x =

y2

10
− 5

2

39. Find the image of the region shown in Figure 2.37 under the principal square
root function w = z1/2.

y

x

x = 4 –

20

15

10

5

5 10 15 20
–5

–10

–10 –5–15–20

–15

–20

1
16

y2

Figure 2.37 Figure for Problem 39

x

y

3π/4

Figure 2.38 Figure for Problem 40
40. Find the image of the region shown in Figure 2.38 under the principal square

root function w = z1/2. (Be careful near the negative real axis!)

Focus on Concepts

41. Use a procedure similar to that used in Example 2 to find the image of the
hyperbola xy = k, k �= 0, under w = z2.

42. Use a procedure similar to that used in Example 2 to find the image of the
hyperbola x2 − y2 = k, k �= 0, under the mapping w = z2.
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43. Find two sets in the complex plane that are mapped onto the ray arg(w) = π/2
by the function w = z2.

44. Find two sets in the complex plane that are mapped onto the set bounded by
the curves u = −v, u = 1− 1

4
v2, and the real axis v = 0 by the function w = z2.

45. In Example 2 it was shown that the image of a vertical line x = k, k �= 0, under

w = z2 is the parabola u = k2 − v2

4k2
. Use this result, your knowledge of linear

mappings, and the fact that w = − (iz)2 to prove that the image of a horizontal

line y = k, k �= 0, is the parabola u = −
(
k2 − v2

4k2

)
.

46. Find three sets in the complex plane that map onto the set arg(w) = π under
the mapping w = z3.

47. Find four sets in the complex plane that map onto the circle |w| = 4 under the
mapping w = z4.

48. Do lines that pass through the origin map onto lines under w = zn, n ≥ 2?
Explain.

49. Do parabolas with vertices on the x-axis map onto lines under w = z1/2?
Explain.

50. (a) Proceed as in Example 6 to show that the complex linear function
f(z) = az + b, a �= 0, is one-to-one on the entire complex plane.

(b) Find a formula for the inverse function of the function in (a).

51. (a) Proceed as in Example 6 to show that the complex function f(z) =
a

z
+ b,

a �= 0, is one-to-one on the set |z| > 0.

(b) Find a formula for the inverse function of the function in (a).

52. Find the image of the half-plane Im(z) ≥ 0 under each of the following principal
nth root functions.

(a) f(z) = z1/2 (b) f(z) = z1/3 (c) f(z) = z1/4

53. Find the image of the region |z| ≤ 8, π/2 ≤ arg (z) ≤ 3π/4, under each of the
following principal nth root functions.

(a) f(z) = z1/2 (b) f(z) = z1/3 (c) f(z) = z1/4

54. Find a function that maps the entire complex plane onto the set
2π/3 < arg(w) ≤ 4π/3.

55. Read part (ii) of the Remarks, and then describe how to construct a Riemann
surface for the function f(z) = z3.

56. Consider the complex function f(z) = 2iz2 − i defined on the quarter disk
|z| ≤ 2, 0 ≤ arg(z) ≤ π/2.

(a) Use mappings to determine upper and lower bounds on the modulus
of f(z) = 2iz2 − i. That is, find real values L and M such that
L ≤

∣∣2iz2 − i
∣∣ ≤ M .

(b) Find values of z that achieve your bounds in (a). In other words, find z0
and z1 such that |f(z0)| = L and |f(z1)| = M .

57. Consider the complex function f(z) = 1
3
z2 +1−i defined on the set 2 ≤ |z| ≤ 3,

0 ≤ arg(z) ≤ π.
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(a) Use mappings to determine upper and lower bounds on the modulus of
f(z).

(b) Find values of z that attain your bounds in (a). In other words, find z0
and z1 such that |f(z0)| = L and |f(z1)| = M .

2.5 Reciprocal Function

2.5In Sections 2.3 and 2.4 we examined some special types of complex polynomial functions
as mappings of the complex plane. Analogous to real functions, we define a complex
rational function to be a function of the form f(z) = p(z)/q (z) where both p(z) and q(z)
are complex polynomial functions. In this section, we study the most basic complex rational
function, the reciprocal function 1/z, as a mapping of the complex plane. An important
property of the reciprocal mapping is that it maps certain lines onto circles.

Reciprocal Function The function 1/z, whose domain is the set of
all nonzero complex numbers, is called the reciprocal function. To study
the reciprocal function as a complex mapping w = 1/z, we begin by expressing
this function in exponential notation. Given z �= 0, if we set z = reiθ, then
we obtain:

w =
1
z

=
1
reiθ

=
1
r
e−iθ. (1)

From (1), we see that the modulus of w is the reciprocal of the modulus of z
and that the argument of w is the negative of the argument of z. Therefore,
the reciprocal function maps a point in the z-plane with polar coordinates
(r, θ) onto a point in the w-plane with polar coordinates (1/r, −θ). In Figure
2.39, we illustrate the relationship between z and w = 1/z in a single copy of
the complex plane. As we shall see, a simple way to visualize the reciprocal
function as a complex mapping is as a composition of inversion in the unit
circle followed by reflection across the real axis. We now proceed to define
and analyze each of these mappings.

r

z

1/z
1/r

–

θ

θ

Figure 2.39 The reciprocal mapping

Inversion in the Unit Circle The function

g(z) =
1
r
eiθ, (2)

whose domain is the set of all nonzero complex numbers, is called inversion
in the unit circle. We will describe this mapping by considering separately
the images of points on the unit circle, points outside the unit circle, and
points inside the unit circle. Consider first a point z on the unit circle. Since
z = 1 · eiθ, it follows from (2) that g (z) = 1

1e
iθ = z. Therefore, each point

on the unit circle is mapped onto itself by g. If, on the other hand, z is a
nonzero complex number that does not lie on the unit circle, then we can
write z as z = reiθ with r �= 1. When r > 1 (that is, when z is outside of the
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v

(b) The images of z1, z2, and z3 in the w-plane(a) Points z1, z2, and z3 in the z-plane

x u

y

z2

z3

z1

g(z1)

g(z3)

g(z2)w =    eiθ

1

1

1

1

1
r

Figure 2.40 Inversion in the unit circle

unit circle), we have that |g(z)| =
∣∣∣∣1r eiθ

∣∣∣∣ =
1
r
< 1. So, the image under g of

a point z outside the unit circle is a point inside the unit circle. Conversely,

if r < 1 (that is, if z is inside the unit circle), then |g(z)| = 1
r
> 1, and we

conclude that if z is inside the unit circle, then its image under g is outside the
unit circle. The mapping w = eiθ/r is represented in Figure 2.40. The circle
|z| = 1 shown in color in Figure 2.40(a) is mapped onto the circle |w| = 1
shown in black in Figure 2.40(b). In addition, w = eiθ/r maps the region
shown in light color in Figure 2.40(a) into the region shown in light gray in
Figure 2.40(b), and it maps the region shown in dark color in Figure 2.40(a)
into the region shown in dark gray in Figure 2.40(b).

We end our discussion of inversion in the unit circle by observing from
(2) that the arguments of z and g(z) are equal. It follows that if z1 �= 0 is
a point with modulus r in the z-plane, then g(z1) is the unique point in the
w-plane with modulus 1/r lying on a ray emanating from the origin making
an angle of arg(z0) with the positive u-axis. See Figure 2.40. In addition,
since the moduli of z and g(z) are inversely proportional, the farther a point
z is from 0 in the z-plane, the closer its image g(z) is to 0 in the w-plane, and,
conversely, the closer z is to 0, the farther g(z) is from 0.

Complex Conjugation The second complex mapping that is helpful
for describing the reciprocal mapping is a reflection across the real axis. Un-
der this mapping the image of the point (x, y) is (x, −y). It is easy to verify
that this complex mapping is given by the function c(z) = z̄, which we call the
complex conjugation function. In Figure 2.41, we illustrate the relation-
ship between z and its image c(z) in a single copy of the complex plane. By
replacing the symbol z with reiθ we can also express the complex conjugation
function as c(z) = reiθ = r̄eiθ. Because r is real, we have r̄ = r. Furthermore,
from Problem 34 in Exercises 2.1, we have eiθ = e−iθ. Therefore, the complex
conjugation function can be written as c(z) = z̄ = re−iθ.

z

c(z)

z̄

Figure 2.41 Complex conjugation
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Reciprocal Mapping The reciprocal function f(z) = 1/z can be
written as the composition of inversion in the unit circle and complex conju-
gation. Using the exponential forms c(z) = re−iθ and g(z) = eiθ/r of these
functions we find that the composition c ◦ g is given by:

c(g(z)) = c
(

1
r
eiθ

)
=

1
r
e−iθ.

By comparing this expression with (1), we see that c(g(z)) = f(z) = 1/z.
This implies that, as a mapping, the reciprocal function first inverts in the
unit circle, then reflects across the real axis.

Image of a Point under the Reciprocal Mapping

Let z0 be a nonzero point in the complex plane. If the point w0 = f(z0) =
1/z0 is plotted in the same copy of the complex plane as z0, then w0 is
the point obtained by:

(i) inverting z 0 in the unit circle, then

(ii) reflecting the result across the real axis.

EXAMPLE 1 Image of a Semicircle under w = 1/z

Find the image of the semicircle |z| = 2, 0 ≤ arg(z) ≤ π, under the reciprocal
mapping w = 1/z.

C

w = 1/z

C ′
1 2

Figure 2.42 The reciprocal mapping

Solution Let C denote the semicircle and let C ′ denote its image under
w = 1/z. In order to find C ′, we first invert C in the unit circle, then we
reflect the result across the real axis. Under inversion in the unit circle, points
with modulus 2 have images with modulus 1

2 . Moreover, inversion in the unit
circle does not change arguments. So, the image of the C under inversion in
the unit circle is the semicircle |w| = 1

2 , 0 ≤ arg(w) ≤ π. Reflecting this set
across the real axis negates the argument of a point but does not change its
modulus. Hence, the image after reflection across the real axis is the semicircle
given by |w| = 1

2 , −π ≤ arg(w) ≤ 0. We represent this mapping in Figure
2.42 using a single copy of the complex plane. The semicircle C shown in color
is mapped onto the semicircle C ′ shown in black in Figure 2.42 by w = 1/z.

Using reasoning similar to that in Example 1 we can show that the recip-
rocal function maps the circle |z| = k, k �= 0, onto the circle |w| = 1/k. As
the next example illustrates, the reciprocal function also maps certain lines
onto circles.
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EXAMPLE 2 Image of a Line under w = 1/z

Find the image of the vertical line x = 1 under the reciprocal mapping
w = 1/z.

w = 1/z

1

Figure 2.43 The reciprocal mapping

Solution The vertical line x = 1 consists of the set of points z = 1 + iy,
−∞ < y < ∞. After replacing the symbol z with 1 + iy in w = 1/z and
simplifying, we obtain:

w =
1

1 + iy
=

1
1 + y2

− y

1 + y2
i.

It follows that the image of the vertical line x = 1 under w = 1/z consists of
all points u+ iv satisfying:

u =
1

1 + y2
, v =

−y
1 + y2

, and −∞ < y <∞. (3)

We can describe this image with a single Cartesian equation by eliminating
the variable y. Observe from (3) that v = −yu. The first equation in (3)
implies that u �= 0, and so can rewrite this equation as y = −v/u. Now we
substitute y = −v/u into the first equation of (3) and simplify to obtain the
quadratic equation u2 − u + v2 = 0. Therefore, after completing the square
in the variable u, we see that the image given in (3) is also given by:

(
u− 1

2

)2

+ v2 =
1
4
, u �= 0. (4)

The equation in (4) defines a circle centered at
(

1
2 , 0

)
with radius 1

2 . However,
because u �= 0, the point (0, 0) is not in the image. Using the complex variable
w = u+ iv, we can describe this image by

∣∣w − 1
2

∣∣ = 1
2 , w �= 0. We represent

this mapping using a single copy of the complex plane. In Figure 2.43, the
line x = 1 shown in color is mapped onto the circle

∣∣w − 1
2

∣∣ = 1
2 excluding the

point w = 0 shown in black by w = 1/z.

The solution in Example 2 is somewhat unsatisfactory since the image is
not the entire circle

∣∣w − 1
2

∣∣ = 1
2 . This occurred because points on the line

x = 1 with extremely large modulus map onto points on the circle
∣∣w − 1

2

∣∣ = 1
2

that are extremely close to 0, but there is no point on the line x = 1 that
actually maps onto 0. In order to obtain the entire circle as the image of
the line we must consider the reciprocal function defined on the extended
complex-number system.

In the Remarks in Section 1.5 we saw that the extended complex-number
system consists of all the points in the complex plane adjoined with the ideal
point∞. In the context of mappings this set of points is commonly referred to
as the extended complex plane. The important property of the extended
complex plane for our discussion here is the correspondence, described in
Section 1.5, between points on the extended complex plane and the points on
the complex plane. In particular, points in the extended complex plane that
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are near the ideal point∞ correspond to points with extremely large modulus
in the complex plane.

We use this correspondence to extend the reciprocal function to a function
whose domain and range are the extended complex plane. Since (1) already
defines the reciprocal function for all points z �= 0 or ∞ in the extended
complex plane, we extend this function by specifying the images of 0 and ∞.
A natural way to determine the image of these points is to consider the images
of points nearby. Observe that if z = reiθ is a point that is close to 0, then

r is a small positive real number. It follows that w =
1
z

=
1
r
e−iθ is a point

whose modulus 1/r is large. That is, in the extended complex plane, if z is
a point that is near 0, then w = 1/z is a point that is near the ideal point
∞. It is therefore reasonable to define the reciprocal function f(z) = 1/z on
the extended complex plane so that f(0) =∞. In a similar manner, we note
that if z is a point that is near ∞ in the extended complex plane, then f(z)
is a point that is near 0. Thus, it is also reasonable to define the reciprocal
function on the extended complex plane so that f(∞) = 0.

Definition 2.7 The Reciprocal Function on the Extended
Complex Plane

The reciprocal function on the extended complex plane is the
function defined by:

f(z) =




1/z, if z �= 0 or ∞
∞, if z = 0

0, if z =∞.

Rather than introduce new notation, we shall let the notation 1/z repre-
sent both the reciprocal function and the reciprocal function on the extended
complex plane. Whenever the ideal point∞ is mentioned, you should assume
that 1/z represents the reciprocal function defined on the extended complex
plane.

EXAMPLE 3 Image of a Line under w = 1/z

Find the image of the vertical line x = 1 under the reciprocal function on the
extended complex plane.

Solution We begin by noting that since the line x = 1 is an unbounded
set in the complex plane, it follows that the ideal point ∞ is on the line in
the extended complex plane. In Example 2 we found that the image of the
points z �=∞ on the line x = 1 is the circle

∣∣w − 1
2

∣∣ = 1
2 excluding the point

w = 0. Thus, we need only find the image of the ideal point to determine
the image of the line under the reciprocal function on the extended complex
plane. From Definition 2.7 we have that f(∞) = 0, and so w = 0 is the image
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of the ideal point. This “fills in” the missing point in the circle
∣∣w − 1

2

∣∣ = 1
2 .

Therefore, the vertical line x = 1 is mapped onto the entire circle
∣∣w − 1

2

∣∣ = 1
2

by the reciprocal mapping on the extended complex plane. This mapping can
be represented by Figure 2.43 with the “hole” at w = 0 filled in.

Because the ideal point∞ is on every vertical line in the extended complex
plane, we have that the image of any vertical line x = k with k �= 0 is the

entire circle
∣∣∣∣w − 1

2k

∣∣∣∣ =
∣∣∣∣ 1
2k

∣∣∣∣ under the reciprocal function on the extended

complex plane. See Problem 23 in Exercises 2.5. In a similar manner, we can
also show that horizontal lines are mapped to circles by w = 1/z. We now
summarize these mapping properties of w = 1/z.

Mapping Lines to Circles with w = 1/z

The reciprocal function on the extended complex plane maps:

(i) the vertical line x = k with k �= 0 onto the circle∣∣∣∣w − 1
2k

∣∣∣∣ =
∣∣∣∣ 1
2k

∣∣∣∣ , and (5)

(ii) the horizontal line y = k with k �= 0 onto the circle∣∣∣∣w +
1
2k
i

∣∣∣∣ =
∣∣∣∣ 1
2k

∣∣∣∣ . (6)

These two mapping properties of the reciprocal function are illustrated in
Figure 2.44. The vertical lines x = k, k �= 0, shown in color in Figure 2.44(a)
are mapped by w = 1/z onto the circles centered on the real axis shown in
black in Figure 2.44(b). The image of the line x = k, k �= 0, contains the point
(1/k, 0). Thus, we see that the vertical line x = 2 shown in Figure 2.44(a)

y v

x u

w = 1/z

1

1–1–2–3 2 3

–1

–2

–3

2

3

(a) Vertical and horizontal lines (b) Images of the lines in (a)

1–1–2–3 2 3

1

–1

–2

–3

2

3

Figure 2.44 Images of vertical and horizontal lines under the reciprocal mapping
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maps onto the circle centered on the real axis containing
(

1
2 , 0

)
shown in

Figure 2.44(b), and so on. Similarly, the horizontal lines y = k, k �= 0, shown
in color in Figure 2.44(a) are mapped by w = 1/z onto the circles centered
on the imaginary axis shown in black in Figure 2.44(b). Since the image of
the line y = k, k �= 0, contains the point (0, −1/k), we have that the line
y = 2 shown in Figure 2.44(a) is the circle centered on the imaginary axis
containing the point

(
0, − 1

2

)
shown in Figure 2.44(b), and so on.

EXAMPLE 4 Mapping of a Semi-infinite Strip

Find the image of the semi-infinite horizontal strip defined by 1 ≤ y ≤ 2,
x ≥ 0, under w = 1/z.

Solution Let S denote the semi-infinite horizontal strip defined by 1 ≤ y ≤ 2,
x ≥ 0. The boundary of S consists of the line segment x = 0, 1 ≤ y ≤ 2,
and the two half-lines y = 1 and y = 2, 0 ≤ x < ∞. We first determine the
images of these boundary curves. The line segment x = 0, 1 ≤ y ≤ 2, can also
be described as the set 1 ≤ |z| ≤ 2, arg(z) = π/2. Since w = 1/z, it follows
that 1

2 ≤ |w| ≤ 1. In addition, from (1) we have that arg(w) = arg (1/z) =
− arg(z), and so, arg(w) = −π/2. Thus, the image of the line segment x = 0,
1 ≤ y ≤ 2, is the line segment on the v-axis from −1

2 i to −i. We now consider
the horizontal half-line y = 1, 0 ≤ x <∞. By identifying k = 1 in (6), we see
that the image of this half-line is an arc in the circle

∣∣w + 1
2 i

∣∣ = 1
2 . Because the

arguments of the points on the half-line satisfy 0 < arg(z) ≤ π/2, it follows
that the arguments of the points in its image satisfy −π/2 ≤ arg(w) < 0.
Moreover, the ideal point ∞ is on the half-line, and so the point w = 0 is in
its image. Thus, we see that the image of the half-line y = 1, 0 ≤ x < ∞, is
the circular arc defined by

∣∣w + 1
2 i

∣∣ = 1
2 , −π/2 ≤ arg(w) ≤ 0. In a similar

manner, we find the image of the horizontal half-line y = 2, 0 ≤ x < ∞,
is the circular arc

∣∣w + 1
4 i

∣∣ = 1
4 , −π/2 ≤ arg(w) ≤ 0. We conclude by

observing that, from (6), every half-line y = k, 1 ≤ k ≤ 2, lying between
the boundary half-lines y = 1 and y = 2 in the strip S maps onto a circular

arc
∣∣∣∣w +

1
2k
i

∣∣∣∣ =
1
2k

, −π/2 ≤ arg(w) ≤ 0, lying between the circular arcs∣∣w + 1
2 i

∣∣ = 1
2 and

∣∣w + 1
4 i

∣∣ = 1
4 , −π/2 ≤ arg(w) ≤ 0. Therefore, the semi-

infinite strip S shown in color in Figure 2.45(a) is mapped on to the set S′

shown in gray in Figure 2.45(b) by the complex mapping w = 1/z.

v

u

w = 1/z

1

1–1 2 3

–1

–2

2

(a) The semi-infinite strip S

(b) The image of S

y

x

1

1–1 2 3

–1

–2

2

S

S ′

Figure 2.45 The reciprocal mapping

Remarks

It is easy to verify that the reciprocal function f(z) = 1/z is one-to-one.
Therefore, f has a well-defined inverse function f−1. We find a formula
for the inverse function f−1(z) by solving the equation z = f(w)
for w. Clearly, this gives f−1(z) = 1/z. This observation extends our
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understanding of the complex mapping w = 1/z. For example, we have
seen that the image of the line x = 1 under the reciprocal mapping is
the circle

∣∣w − 1
2

∣∣ = 1
2 . Since f−1(z) = 1/z = f(z), it then follows that

the image of the circle
∣∣z − 1

2

∣∣ = 1
2 under the reciprocal mapping is the

line u = 1. In a similar manner, we see that the circles
∣∣∣∣w − 1

2k

∣∣∣∣ =
∣∣∣∣ 1
2k

∣∣∣∣
and

∣∣∣∣w +
1
2k
i

∣∣∣∣ =
∣∣∣∣ 1
2k

∣∣∣∣ are mapped onto the lines x = k and y = k,

respectively.

EXERCISES 2.5 Answers to selected odd-numbered problems begin on page ANS-10.

In Problems 1–10, find the image of the given set under the reciprocal mapping

w = 1/z on the extended complex plane.

1. the circle |z| = 5

2. the semicircle |z| = 1
2
, π/2 ≤ arg(z) ≤ 3π/2

3. the semicircle |z| = 3, −π/4 ≤ arg(z) ≤ 3π/4

4. the quarter circle |z| = 1
4
, π/2 ≤ arg(z) ≤ π

5. the annulus 1
3
≤ |z| ≤ 2

6. the region 1 ≤ |z| ≤ 4, 0 ≤ arg(z) ≤ 2π/3

7. the ray arg(z) = π/4

8. the line segment from −1 to 1 on the real axis excluding the point z = 0

9. the line y = 4

10. the line x = 1
6

In Problems 11–14, use the Remarks at the end of Section 2.5 to find the image of

the given set under the reciprocal mapping w = 1/z on the extended complex plane.

11. the circle |z + i| = 1 12. the circle
∣∣z + 1

3
i
∣∣ = 1

3

13. the circle |z − 2| = 2 14. the circle
∣∣z + 1

4

∣∣ = 1
4

In Problems 15–18, find the image of the given set S under the mapping w = 1/z

on the extended complex plane.

15.

x = –2 x = –1

y

x

S

Figure 2.46 Figure for Problem 15

16.

|z| = 3

y

x

S

Figure 2.47 Figure for Problem 16
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17.

|z| = 

y = x 

y

x
S

1
2

Figure 2.48 Figure for Problem 17

18.

y = 1

x = 1

y

x

S

Figure 2.49 Figure for Problem 18

19. Consider the function h(z) =
2i

z
+ 1 defined on the extended complex plane.

(a) Using the fact that h is a composition of the reciprocal function f(z) = 1/z
and the linear function g(z) = 2iz + 1, that is, h(z) = g(f(z)), describe in
words the action of the mapping w = h(z).

(b) Determine the image of the line x = 4 under w = h(z).

(c) Determine the image of the circle |z + 2| = 2 under w = h(z).

20. Consider the function h(z) =
1

2iz − 1
defined on the extended complex plane.

(a) Using the fact that h is a composition of the linear function g(z) = 2iz− 1
and the reciprocal function f(z) = 1/z, that is, h(z) = f(g(z)), describe in
words the action of the mapping w = h(z).

(b) Determine the image of the line y = 1 under w = h(z).

(c) Determine the image of the circle |z + i| = 1
2

under w = h(z).

21. Consider the function h(z) = 1/z2 defined on the extended complex plane.

(a) Write h as a composition of the reciprocal function and the squaring func-
tion.

(b) Determine the image of the circle
∣∣z + 1

2
i
∣∣ = 1

2
under the mapping

w = h(z).

(c) Determine the image of the circle |z − 1| = 1 under the mapping w = h(z).

22. Consider the mapping h(z) =
3i

z2
+1+i defined on the extended complex plane.

(a) Write h as a composition of a linear, the reciprocal, and the squaring
function.

(b) Determine the image of the circle
∣∣z + 1

2
i
∣∣ = 1

2
under the mapping

w = h(z).

(c) Determine the image of the circle |z − 1| = 1 under the mapping w = h(z).

Focus on Concepts

23. Show that the image of the line x = k, x �= 0, under the reciprocal map defined

on the extended complex plane is the circle

∣∣∣∣w − 1

2k

∣∣∣∣ =

∣∣∣∣ 1

2k

∣∣∣∣.
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24. According to the Remarks in Section 2.5, since f(z) = 1/z is its own inverse
function, the mapping w = 1/z on the extended complex plane maps the circle∣∣z − 1

2

∣∣ = 1
2

to the line Re(w) = 1. Verify this fact directly using the real and
imaginary parts of f as in Example 1.

25. If A, B, C, and D are real numbers, then the set of points in the plane satisfying
the equation:

A
(
x2 + y2) +Bx+ Cy +D = 0 (7)

is called a generalized circle.

(a) Show that if A = 0, then the generalized circle is a line.

(b) Suppose that A �= 0 and let ∆ = B2+C2−4AD. Complete the square in x

and y to show that a generalized circle is a circle centered at

(
−B
2A

,
−C
2A

)

with radius

√
∆

2A
provided ∆ > 0. (If ∆ < 0, the generalized circle is often

called an imaginary circle.)

26. In this problem we will show that the image of a generalized circle (7) under
the reciprocal mapping w = 1/z is a generalized circle.

(a) Rewrite (7) in polar coordinates using the equations x = r cos θ and
y = r sin θ.

(b) Show that, in polar form, the reciprocal function w = 1/z is given by:

w =
1

r
(cos θ − i sin θ) .

(c) Let w = u + iv. Note that, from part (b), u =
1

r
cos θ and v = −1

r
sin θ.

Now rewrite the equation from part (a) in terms of u and v using these
equations.

(d) Conclude from parts (a)–(c) that the image of the generalized circle (7)
under w = 1/z is the generalized circle given by:

D
(
u2 + v2) +Bu− Cv +A = 0. (8)

27. Consider the line L given by the equation Bx+ Cy +D = 0.

(a) Use Problems 25 and 26 to determine when the image of the line L under
the reciprocal mapping w = 1/z is a line.

(b) If the image of L is a line L′, then what is the slope of L′? How does this
slope compare with the slope of L?

(c) Use Problems 25 and 26 to determine when the image of the line L is a
circle.

(d) If the image of L is a circle S′, then what are the center and radius of S′?

28. Consider the circle S given by the equation A
(
x2 + y2

)
+ Bx + Cy + D = 0

with B2 + C2 − 4AD > 0.

(a) Use Problems 25 and 26 to determine when the image of the circle S is a
line.

(b) Use Problems 25 and 26 to determine when the image of the circle S is a
circle.
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(c) If the image of S is a circle S′, then what are center and radius of S′? How
do these values compare with the center and radius of S?

29. Consider the complex function f(z) =
1 + i

z
+ 2 defined on the annulus

1 ≤ |z| ≤ 2.

(a) Use mappings to determine upper and lower bounds on the modulus of

f(z) =
1 + i

z
+ 2. That is, find real values L and M such that

L ≤
∣∣∣∣1 + i

z
+ 2

∣∣∣∣ ≤ M .

(b) Find values of z that attain your bounds in (a). In other words, find z0
and z1 such that z0 and z1 are in the annulus 1 ≤ |z| ≤ 2 and |f(z0)| = L
and |f(z1)| = M .

30. Consider the complex function f(z) =
1

z
+ i defined on the half-plane x ≥ 2.

(a) Use mappings to determine an upper bound M on the modulus of f(z).

(b) Find a value of z that attains your bound in (a). That is, find z0 such that
z0 is in the half-plane x ≥ 2 and |f(z0)| = M .

2.6 Limits and Continuity

2.6The most important concept in elementary calculus is that of the limit. Recall that
lim

x→x0
f(x) = L intuitively means that values f(x) of the function f can be made arbi-

trarily close to the real number L if values of x are chosen sufficiently close to, but not
equal to, the real number x0. In real analysis, the concepts of continuity, the derivative,
and the definite integral were all defined using the concept of a limit. Complex limits play
an equally important role in study of complex analysis. The concept of a complex limit is
similar to that of a real limit in the sense that lim

z→z0
f(z) = L will mean that the values f(z)

of the complex function f can be made arbitrarily close the complex number L if values
of z are chosen sufficiently close to, but not equal to, the complex number z0. Although
outwardly similar, there is an important difference between these two concepts of limit. In
a real limit, there are two directions from which x can approach x0 on the real line, namely,
from the left or from the right. In a complex limit, however, there are infinitely many
directions from which z can approach z0 in the complex plane. In order for a complex limit
to exist, each way in which z can approach z0 must yield the same limiting value.

In this section we will define the limit of a complex function, examine some of its
properties, and introduce the concept of continuity for functions of a complex variable.

2.6.1 Limits

Real Limits The description of a real limit given in the section intro-
duction is only an intuitive definition of this concept. In order to give the
rigorous definition of a real limit, we must precisely state what is meant by
the phrases “arbitrarily close to” and “sufficiently close to.” The first thing to
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recognize is that a precise statement of these terms should involve the use of
absolute values since |a− b| measures the distance between two points on the
real number line. On the real line, the points x and x0 are close if |x− x0| is a
small positive number. Similarly, the points f(x) and L are close if |f(x)− L|
is a small positive number. In mathematics, it is customary to let the Greek
letters ε and δ represent small positive real numbers. Hence, the expression
“f(x) can be made arbitrarily close to L” can be made precise by stating
that for any real number ε > 0, x can be chosen so that |f(x)− L| < ε. In
our intuitive definition we require that |f(x)− L| < ε whenever values of x
are “sufficiently close to, but not equal to, x0.” This means that there is
some distance δ > 0 with the property that if x is within distance δ of x0
and x �= x0, then |f(x)− L| < ε. In other words, if 0 < |x− x0| < δ, then
|f(x)− L| < ε. The real number δ is not unique and, in general, depends on
the choice of ε, the function f , and the point x0. In summary, we have the
following precise definition of the real limit:

Limit of a Real Function f(x)

The limit of f as x tends x0 exists and is equal to L

if for every ε > 0 there exists a δ > 0 such that |f(x)− L| < ε (1)

whenever 0 < |x− x0| < δ.

y = L – ε

y = L + 

y = f(x)

ε

L

y

x0

x

Figure 2.50 Geometric meaning of a

real limit

The geometric interpretation of (1) is shown in Figure 2.50. In this figure
we see that the graph of the function y = f(x) over the interval (x0−δ, x0+δ),
excluding the point x0, lies between the lines y = L − ε and y = L + ε
shown dashed in Figure 2.50. In the terminology of mappings, the interval
(x0 − δ, x0 + δ), excluding the point x = x0, shown in color on the x-axis
is mapped onto the set shown in black in the interval (L − ε, L + ε) on the
y-axis. For the limit to exist, the relationship exhibited in Figure 2.50 must
exist for any choice of ε > 0. We also see in Figure 2.50 that if a smaller ε is
chosen, then a smaller δ may be needed.

Complex Limits A complex limit is, in essence, the same as a real
limit except that it is based on a notion of “close” in the complex plane.
Because the distance in the complex plane between two points z1 and z2 is
given by the modulus of the difference of z1 and z2, the precise definition of
a complex limit will involve |z2 − z1|. For example, the phrase “f(z) can be
made arbitrarily close to the complex number L,” can be stated precisely as:
for every ε > 0, z can be chosen so that |f(z)− L| < ε. Since the modulus of
a complex number is a real number, both ε and δ still represent small positive
real numbers in the following definition of a complex limit. The complex
analogue of (1) is:
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Definition 2.8 Limit of a Complex Function

Suppose that a complex function f is defined in a deleted neighborhood
of z0 and suppose that L is a complex number. The limit of f as z
tends to z 0 exists and is equal to L, written as lim

z→z0
f(z) = L, if

for every ε > 0 there exists a δ > 0 such that |f(z)− L| < ε whenever
0 < |z − z0| < δ.

Because a complex function f has no graph, we rely on the concept of
complex mappings to gain a geometric understanding of Definition 2.8. Recall
from Section 1.5 that the set of points w in the complex plane satisfying
|w − L| < ε is called a neighborhood of L, and that this set consists of all
points in the complex plane lying within, but not on, a circle of radius ε
centered at the point L. Also recall from Section 1.5 that the set of points
satisfying the inequalities 0 < |z − z0| < δ is called a deleted neighborhood of
z0 and consists of all points in the neighborhood |z − z0| < δ excluding the
point z0. By Definition 2.8, if lim

z→z0
f(z) = L and if ε is any positive number,

then there is a deleted neighborhood of z0 of radius δ with the property that
for every point z in this deleted neighborhood, f(z) is in the ε neighborhood
of L. That is, f maps the deleted neighborhood 0 < |z − z0| < δ in the
z-plane into the neighborhood |w − L| < ε in the w-plane. In Figure 2.51(a),
the deleted neighborhood of z0 shown in color is mapped onto the set shown
in dark gray in Figure 2.51(b). As required by Definition 2.8, the image lies
within the ε-neighborhood of L shown in light gray in Figure 2.51(b).

y

z0
z

x

δ

δ(a) Deleted    -neighborhood of z0

v

L
f(z)

u

ε

ε

(b)    -neighborhood of L

Figure 2.51 The geometric meaning

of a complex limit

Complex and real limits have many common properties, but there is at
least one very important difference. For real functions, lim

x→x0
f(x) = L if and

only if lim
x→x+

0

f(x) = L and lim
x→x−

0

f(x) = L. That is, there are two directions

from which x can approach x0 on the real line, from the right (denoted by
x → x+0 ) or from the left (denoted by x → x−0 ). The real limit exists if and
only if these two one-sided limits have the same value. For example, consider
the real function defined by:

f(x) =


 x

2, x < 0

x− 1, x ≥ 0
.

The limit of f as x approaches to 0 does not exist since lim
x→0−

f(x) = lim
x→0−

x2 = 0,

but lim
x→0+

f(x) = lim
x→0+

(x− 1) = −1. See Figure 2.52.

y

x

4

3

2

1

1–1–2 2
–1

Figure 2.52 The limit of f does not

exist as x approaches 0.

y

x

z0

Figure 2.53 Different ways to approach

z0 in a limit

For limits of complex functions, z is allowed to approach z0 from any
direction in the complex plane, that is, along any curve or path through z0.
See Figure 2.53. In order that lim

z→z0
f(z) exists and equals L, we require that

f(z) approach the same complex number L along every possible curve through
z0. Put in a negative way:



2.6 Limits and Continuity 113

Criterion for the Nonexistence of a Limit

If f approaches two complex numbers L1 �= L2 for two different curves or
paths through z0, then lim

z→z0
f(z) does not exist.

EXAMPLE 1 A Limit That Does Not Exist

Show that lim
z→0

z

z̄
does not exist.

Solution We show that this limit does not exist by finding two different ways
of letting z approach 0 that yield different values for lim

z→0

z

z̄
. First, we let z

approach 0 along the real axis. That is, we consider complex numbers of the
form z = x + 0i where the real number x is approaching 0. For these points
we have:

lim
z→0

z

z̄
= lim

x→0

x+ 0i
x− 0i

= lim
x→0

1 = 1. (2)

On the other hand, if we let z approach 0 along the imaginary axis, then
z = 0 + iy where the real number y is approaching 0. For this approach we
have:

lim
z→0

z

z̄
= lim

y→0

0 + iy
0− iy = lim

y→0
(−1) = −1. (3)

Since the values in (2) and (3) are not the same, we conclude that lim
z→0

z

z̄
does

not exist.

The limit lim
z→0

z

z̄
from Example 1 did not exist because the values of lim

z→0

z

z̄
as z approached 0 along the real and imaginary axes did not agree. However,
even if these two values did agree, the complex limit may still fail to exist.
See Problems 19 and 20 in Exercises 2.6. In general, computing values of
lim

z→z0
f(z) as z approaches z0 from different directions, as in Example 1, can

prove that a limit does not exist, but this technique cannot be used to prove
that a limit does exist. In order to prove that a limit does exist we must use
Definition 2.8 directly. This requires demonstrating that for every positive
real number ε there is an appropriate choice of δ that meets the requirements
of Definition 2.8. Such proofs are commonly called “epsilon-delta proofs.”
Even for relatively simple functions, epsilon-delta proofs can be quite involved.
Since this is an introductory text, we restrict our attention to what, in our
opinion, are straightforward examples of epsilon-delta proofs.

EXAMPLE 2 An Epsilon-Delta Proof of a Limit

Prove that lim
z→1+i

(2 + i)z = 1 + 3i.
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Solution According to Definition 2.8, lim
z→1+i

(2 + i)z = 1 + 3i, if, for

every ε > 0, there is a δ > 0 such that |(2 + i)z − (1 + 3i)| < ε when-
ever 0 < |z − (1 + i)| < δ. Proving that the limit exists requires that we
find an appropriate value of δ for a given value of ε. In other words, for a
given value of ε we must find a positive number δ with the property that if
0 < |z − (1 + i)| < δ, then |(2 + i)z − (1 + 3i)| < ε. One way of finding δ is
to “work backwards.” The idea is to start with the inequality:

|(2 + i)z − (1 + 3i)| < ε (4)

and then use properties of complex numbers and the modulus to manipulate
this inequality until it involves the expression |z − (1 + i)|. Thus, a natural
first step is to factor (2 + i) out of the left-hand side of (4):

|2 + i| ·
∣∣∣∣z − 1 + 3i

2 + i

∣∣∣∣ < ε. (5)

Because |2 + i| =
√

5 and
1 + 3i
2 + i

= 1 + i, (5) is equivalent to:

√
5 · |z − (1 + i)| < ε or |z − (1 + i)| < ε√

5
. (6)

Thus, (6) indicates that we should take δ = ε/
√

5. Keep in mind that the
choice of δ is not unique. Our choice of δ = ε/

√
5 is a result of the particular

algebraic manipulations that we employed to obtain (6). Having found δ we
now present the formal proof that lim

z→1+i
(2+i)z = 1+3i that does not indicate

how the choice of δ was made:
Given ε > 0, let δ = ε/

√
5. If 0 < |z − (1 + i)| < δ, then we have

|z − (1 + i)| < ε/
√

5. Multiplying both sides of the last inequality by |2 + i| =√
5 we obtain:

|2 + i| · |z − (1 + i)| <
√

5 · ε√
5

or |(2 + i)z − (1 + 3i)| < ε.

Therefore, |(2 + i)z − (1 + 3i)| < ε whenever 0 < |z − (1 + i)| < δ. So,
according to Definition 2.8, we have proven that lim

z→1+i
(2 + i)z = 1 + 3i.

Real Multivariable Limits The epsilon-delta proof from Example
2 illustrates the important fact that although the theory of complex limits is
based on Definition 2.8, this definition does not provide a convenient method
for computing limits. We now present a practical method for computing com-
plex limits in Theorem 2.1. In addition to being a useful computational tool,
this theorem also establishes an important connection between the complex
limit of f(z) = u(x, y) + iv(x, y) and the real limits of the real-valued func-
tions of two real variables u(x, y) and v(x, y) . Since every complex function
is completely determined by the real functions u and v, it should not be sur-
prising that the limit of a complex function can be expressed in terms of the
real limits of u and v.
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Before stating Theorem 2.1, we recall some of the important concepts
regarding limits of real-valued functions of two real variables F (x, y). The
following definition of lim

(x,y)→(x0,y0)
F (x, y) = L is analogous to both (1) and

Definition 2.8.

Limit of the Real Function F (x, y)

The limit of F as (x, y) tends to (x0, y0) exists and is equal to
the real number L if for every ε > 0 there exists a δ > 0 such that (7)
|F (x, y)− L| < ε whenever 0 <

√
(x− x0)2 + (y − y0)2 < δ.

The expression
√

(x− x0)2 + (y − y0)2 in (7) represents the distance be-
tween the points (x, y) and (x0, y0) in the Cartesian plane. Using (7), it is
relatively easy to prove that:

lim
(x,y)→(x0,y0)

1 = 1, lim
(x,y)→(x0,y0)

x = x0, and lim
(x,y)→(x0,y0)

y = y0. (8)

If lim
(x,y)→(x0,y0)

F (x, y) = L and lim
(x,y)→(x0,y0)

G(x, y) =M , then (7) can also be

used to show:

lim
(x,y)→(x0,y0)

cF (x, y) = cL, c a real constant, (9)

lim
(x,y)→(x0,y0)

(F (x, y)±G(x, y)) = L±M, (10)

lim
(x,y)→(x0,y0)

F (x, y) ·G(x, y) = L ·M, (11)

lim
(x,y)→(x0,y0)

F (x, y)
G (x, y)

=
L

M
, M �= 0. (12)and

Limits involving polynomial expressions in x and y can be easily computed
using the limits in (8) combined with properties (9)–(12). For example,

lim
(x,y)→(1,2)

(
3xy2 − y

)
= 3

(
lim

(x,y)→(1,2)
x

) (
lim

(x,y)→(1,2)
y

) (
lim

(x,y)→(1,2)
y

)
− lim

(x,y)→(1,2)
y

= 3 · 1 · 2 · 2− 2 = 10.
In general, if p(x, y) is a two-variable polynomial function, then (8)–(12)

can be used to show that

lim
(x,y)→(x0,y0)

p(x, y) = p(x0, y0). (13)

If p(x, y) and q(x, y) are two-variable polynomial functions and q(x0, y0) �= 0,
then (13) and (12) give:

lim
(x,y)→(x0,y0)

p(x, y)
q(x, y)

=
p(x0, y0)
q(x0, y0)

. (14)
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We now present Theorem 2.1, which relates real limits of u(x, y) and v(x, y)
with the complex limit of f(z) = u(x, y) + iv(x, y). An epsilon-delta proof
of Theorem 2.1 can be found in Appendix I.

Theorem 2.1 Real and Imaginary Parts of a Limit

Suppose that f(z) = u(x, y) + iv(x, y), z0 = x0 + iy0, and L = u0 + iv0.
Then lim

z→z0
f(z) = L if and only if

lim
(x,y)→(x0,y0)

u(x, y) = u0 and lim
(x,y)→(x0,y0)

v(x, y) = v0.

Theorem 2.1 has many uses. First and foremost, it allows us to compute
many complex limits by simply computing a pair of real limits.

EXAMPLE 3 Using Theorem 2.1 to Compute a Limit

Use Theorem 2.1 to compute lim
z→1+i

(
z2 + i

)
.

Solution Since f(z) = z2 + i = x2− y2 +(2xy + 1) i, we can apply Theorem
2.1 with u(x, y) = x2 − y2, v(x, y) = 2xy + 1, and z0 = 1 + i. Identifying
x0 = 1 and y0 = 1, we find u0 and v0 by computing the two real limits:

u0 = lim
(x,y)→(1,1)

(
x2 − y2

)
and v0 = lim

(x,y)→(1,1)
(2xy + 1) .

Since both of these limits involve only multivariable polynomial functions, we
can use (13) to obtain:

u0 = lim
(x,y)→(1,1)

(
x2 − y2

)
= 12 − 12 = 0

v0 = lim
(x,y)→(1,1)

(2xy + 1) = 2 · 1 · 1 + 1 = 3,and

and so L = u0 + iv0 = 0 + i(3) = 3i. Therefore, lim
z→1+i

(
z2 + i

)
= 3i.

In addition to computing specific limits, Theorem 2.1 is also an important
theoretical tool that allows us to derive many properties of complex limits
from properties of real limits. The following theorem gives an example of this
procedure.
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Theorem 2.2 Properties of Complex Limits

Suppose that f and g are complex functions. If lim
z→z0

f(z) = L and

lim
z→z0

g(z) =M , then

(i) lim
z→z0

cf(z) = cL, c a complex constant,

(ii) lim
z→z0

(f(z)± g(z)) = L±M ,

(iii) lim
z→z0

f(z) · g(z) = L ·M , and

(iv) lim
z→z0

f(z)
g(z)

=
L

M
, provided M �= 0.

Proof of (i) Each part of Theorem 2.2 follows from Theorem 2.1 and the
analogous property (9)–(12). We will prove part (i) and leave the remaining
parts as exercises.

Let f(z) = u(x, y)+ iv(x, y), z0 = x0 + iy0, L = u0 + iv0, and c = a+ ib.
Since lim

z→z0
f(z) = L, it follows from Theorem 2.1 that lim

(x,y)→(x0,y0)
u(x, y) =

u0 and lim
(x,y)→(x0,y0)

v(x, y) = v0. By (9) and (10), we have

lim
(x,y)→(x0,y0)

(au(x, y)− bv(x, y)) = au0 − bv0

lim
(x,y)→(x0,y0)

(bu(x, y) + av(x, y)) = bu0 + av0.and

However, Re (cf(z)) = au(x, y) − bv(x, y) and Im (cf(z)) = bu(x, y) +
av(x, y). Therefore, by Theorem 2.1,

lim
z→z0

cf(z) = au0 − bv0 + i (bu0 + av0) = cL.
✎

Of course the results in Theorems 2.2(ii) and 2.2(iii) hold for any finite
sum of functions or finite product of functions, respectively. After establishing
a couple of basic complex limits, we can use Theorem 2.2 to compute a large
number of limits in a very direct manner. The two basic limits that we need
are those of the complex constant function f(z) = c, where c is a complex
constant, and the complex identity function f(z) = z. In Problem 45 in
Exercises 2.6 you will be asked to show that:

lim
z→z0

c = c, c a complex constant, (15)

lim
z→z0

z = z0. (16)and

The following example illustrates how these basic limits can be combined with
the Theorem 2.2 to compute limits of complex rational functions.
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EXAMPLE 4 Computing Limits with Theorem 2.2

Use Theorem 2.2 and the basic limits (15) and (16) to compute the limits

(a) lim
z→i

(3 + i)z4 − z2 + 2z
z + 1

(b) lim
z→1+

√
3i

z2 − 2z + 4
z − 1−

√
3i

Solution

(a) By Theorem 2.2(iii) and (16), we have:

lim
z→i
z2 = lim

z→i
z · z =

(
lim
z→i

z

)
·
(

lim
z→i

z

)
= i · i = −1.

Similarly, lim
z→i
z4 = i4 = 1. Using these limits, Theorems 2.2(i), 2.2(ii),

and the limit in (16), we obtain:

lim
z→i

(
(3 + i)z4 − z2 + 2z

)
= (3 + i) lim

z→i
z4 − lim

z→i
z2 + 2 lim

z→i
z

= (3 + i)(1)− (−1) + 2(i)
= 4 + 3i,

and lim
z→i

(z + 1) = 1 + i. Therefore, by Theorem 2.2(iv), we have:

lim
z→i

(3 + i)z4 − z2 + 2z
z + 1

=
lim
z→i

(
(3 + i)z4 − z2 + 2z

)
lim
z→i

(z + 1)
=

4 + 3i
1 + i

.

After carrying out the division, we obtain lim
z→i

(3 + i)z4 − z2 + 2z
z + 1

=
7
2
− 1

2
i.

(b) In order to find lim
z→1+

√
3i

z2 − 2z + 4
z − 1−

√
3i

, we proceed as in (a):

lim
z→1+

√
3i

(
z2 − 2z + 4

)
=

(
1 +
√

3i
)2

− 2
(
1 +
√

3i
)

+ 4

= −2 + 2
√

3i− 2− 2
√

3i+ 4 = 0,

and lim
z→1+

√
3i

(
z − 1−

√
3i

)
= 1 +

√
3i − 1 −

√
3i = 0. It appears that

we cannot apply Theorem 2.2(iv) since the limit of the denominator is 0.
However, in the previous calculation we found that 1 +

√
3i is a root of

the quadratic polynomial z2−2z+4. From Section 1.6, recall that if z1 is
a root of a quadratic polynomial, then z−z1 is a factor of the polynomial.
Using long division, we find that

z2 − 2z + 4 =
(
z − 1 +

√
3i

) (
z − 1−

√
3i

)
.
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See (5) in Section 1.6 and Problems 25 and 26 in Exercises 1.6. Because
z is not allowed to take on the value 1 +

√
3i in the limit, we can cancel

the common factor in the numerator and denominator of the rational
function. That is,

lim
z→1+

√
3i

z2 − 2z + 4
z − 1−

√
3i

= lim
z→1+

√
3i

(
z − 1 +

√
3i

) (
z − 1−

√
3i

)
z − 1−

√
3i

= lim
z→1+

√
3i

(
z − 1 +

√
3i

)
.

By Theorem 2.2(ii) and the limits in (15) and (16), we then have

lim
z→1+

√
3i

(
z − 1 +

√
3i

)
= 1 +

√
3i− 1 +

√
3i = 2

√
3i.

Therefore, lim
z→1+

√
3i

z2 − 2z + 4
z − 1−

√
3i

= 2
√

3i.

In Section 3.1 we will calculate the limit in part (b) of Example 4 in a
different manner.

2.6.2 Continuity

Continuity of Real Functions Recall that if the limit of a real
function f as x approaches the point x0 exists and agrees with the value of
the function f at x0, then we say that f is continuous at the point x0. In
symbols, this definition is given by:

Continuity of a Real Function f(x)

A function f is continuous at a point x0 if lim
x→x0

f(x) = f(x0). (17)

Observe that in order for the equation lim
x→x0

f(x) = f(x0) in (17) to be sat-

isfied, three things must be true. The limit lim
x→x0

f(x) must exist, f must be

defined at x0, and these two values must be equal. If any one of these three
conditions fail, then f cannot be continuous at x0. For example, the function

f(x) =


 x

2, x < 0

x− 1, x ≥ 0
,

illustrated in Figure 2.52 is not continuous at the point x = 0 since lim
x→0
f(x)

does not exist. On a similar note, even though lim
x→1

x2 − 1
x− 1

= 2, the function

f(x) =
x2 − 1
x− 1

is not continuous at x = 1 because f(1) is not defined.
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In real analysis, we visualize the concept of continuity using the graph of
the function f . Informally, a function f is continuous if there are no breaks
or holes in the graph of f . Since we cannot graph a complex function, our
discussion of the continuity of complex functions will be primarily algebraic
in nature.

Continuity of Complex Functions The definition of continuity
for a complex function is, in essence, the same as that for a real function.
That is, a complex function f is continuous at a point z0 if the limit of f as
z approaches z0 exists and is the same as the value of f at z0. This gives the
following definition for complex functions, which is analogous to (17).

Definition 2.9 Continuity of a Complex Function

A complex function f is continuous at a point z 0 if

lim
z→z0

f(z) = f(z0).

Analogous to real functions, if a complex f is continuous at a point, then the
following three conditions must be met.

Criteria for Continuity at a Point

A complex function f is continuous at a point z0 if each of the following
three conditions hold:

(i) lim
z→z0

f(z) exists,

(ii) f is defined at z0, and

(iii) lim
z→z0

f(z) = f(z0).

If a complex function f is not continuous at a point z0 then we say that f is

discontinuous at z0. For example, the function f(z) =
1

1 + z2
is discontin-

uous at z = i and z = −i.

EXAMPLE 5 Checking Continuity at a Point

Consider the function f(z) = z2 − iz + 2. In order to determine if f is
continuous at, say, the point z0 = 1 − i, we must find lim

z→z0
f(z) and f(z0),

then check to see whether these two complex values are equal. From Theorem
2.2 and the limits in (15) and (16) we obtain:

lim
z→z0

f(z) = lim
z→1−i

(
z2 − iz + 2

)
= (1− i)2 − i (1− i) + 2 = 1− 3i.
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Furthermore, for z0 = 1− i we have:

f(z0) = f(1− i) = (1− i)2 − i (1− i) + 2 = 1− 3i.

Since lim
z→z0

f(z) = f(z0), we conclude that f(z) = z2 − iz + 2 is continuous at

the point z0 = 1− i.

As Example 5 indicates, the continuity of complex polynomial and ratio-
nal functions is easily determined using Theorem 2.2 and the limits in (15) and
(16). More complicated functions, however, often require other techniques.

EXAMPLE 6 Discontinuity of Principal Square Root Function

Show that the principal square root function f(z) = z1/2 defined by (7) of
Section 2.4 is discontinuous at the point z0 = −1.

Solution We show that f(z) = z1/2 is discontinuous at z0 = −1 by demon-
strating that the limit lim

z→z0
f(z) = lim

z→−1
z1/2 does not exist. In order to do so,

we present two ways of letting z approach −1 that yield different values of this
limit. Before we begin, recall from (7) of Section 2.4 that the principal square
root function is defined by z1/2 =

√
|z|eiArg(z)/2. Now consider z approaching

−1 along the quarter of the unit circle lying in the second quadrant. See
Figure 2.54. That is, consider the points |z| = 1, π/2 < arg(z) < π. In expo-
nential form, this approach can be described as z = eiθ, π/2 < θ < π, with θ
approaching π. Thus, by setting |z| = 1 and letting Arg(z) = θ approach π,
we obtain:

lim
z→−1

z1/2 = lim
z→−1

√
|z|eiArg(z)/2 = lim

θ→π

√
1eiθ/2.

y

x

z = e iθ

–1

Figure 2.54 Figure for Example 6

However, since eiθ/2 = cos (θ/2) + i sin (θ/2), this simplifies to:

lim
z→−1

z1/2 = lim
θ→π

(
cos
θ

2
+ i sin

θ

2

)
= cos

π

2
+ i sin

π

2
= 0 + i(1) = i. (18)

Next, we let z approach −1 along the quarter of the unit circle lying in the
third quadrant. Again refer to Figure 2.54. Along this curve we have the
points z = eiθ, −π < θ < −π/2, with θ approaching −π. By setting |z| = 1
and letting Arg(z) = θ approach −π we find:

lim
z→−1

z1/2 = lim
z→−1

√
|z|eiArg(z)/2 = lim

θ→−π
eiθ/2 = lim

θ→−π

(
cos
θ

2
+ i sin

θ

2

)
= −i. (19)

Because the complex values in (18) and (19) do not agree, we conclude that
lim

z→−1
z1/2 does not exist. Therefore, the principal square root function f(z) =

z1/2 is discontinuous at the point z0 = −1.
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In Definition 2.9 we defined continuity of a complex function f at a single
point z0 in the complex plane. We are often also interested in the continuity
of a function on a set of points in the complex plane. A complex function
f is continuous on a set S if f is continuous at z0 for each z0 in S. For
example, using Theorem 2.2 and the limits in (15) and (16), as in Example
5, we can show that f(z) = z2 − iz + 2 is continuous at any point z0 in the
complex plane. Therefore, we say that f is continuous on C. The function

f(z) =
1

z2 + 1
is continuous on the set consisting of all complex z such that

z �= ±i.

Properties of Continuous Functions Because the concept of
continuity is defined using the complex limit, various properties of complex
limits can be translated into statements about continuity. Consider Theorem
2.1, which describes the connection between the complex limit of f(z) =
u(x, y)+iv(x, y) and the real limits of u and v. Using the following definition
of continuity for real functions F (x, y), we can restate this theorem about
limits as a theorem about continuity.

Continuity of a Real Function F (x, y)

A function F is continuous at a point (x0, y0) if

lim
(x,y)→(x0,y0)

F (x, y) = F (x0, y0). (20)

Again, this definition of continuity is analogous to (17). From (20) and The-
orem 2.1, we obtain the following result.

Theorem 2.3 Real and Imaginary Parts of a Continuous Function

Suppose that f(z) = u(x, y) + iv(x, y) and z0 = x0 + iy0. Then the
complex function f is continuous at the point z0 if and only if both real
functions u and v are continuous at the point (x0, y0).

Proof Assume that the complex function f is continuous at z0. Then from
Definition 2.9 we have:

lim
z→z0

f(z) = f(z0) = u(x0, y0) + iv(x0, y0). (21)

By Theorem 2.1, this implies that:

lim
(x,y)→(x0,y0)

u(x, y) = u(x0, y0) and lim
(x,y)→(x0,y0)

v(x, y) = v(x0, y0). (22)

Therefore, from (20), both u and v are continuous at (x0, y0). Conversely, if
u and v are continuous at (x0, y0), then

lim
(x,y)→(x0,y0)

u(x, y) = u(x0, y0) and lim
(x,y)→(x0,y0)

v(x, y) = v(x0, y0).
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It then follows from Theorem 2.1 that lim
z→z0

f(z) = u(x0, y0) + iv(x0, y0) =

f(z0). Therefore, f is continuous by Definition 2.9. ✎

EXAMPLE 7 Checking Continuity Using Theorem 2.3

Show that the function f(z) = z̄ is continuous on C.

Solution According to Theorem 2.3, f(z) = z̄ = x+ iy = x−iy is continuous
at z0 = x0 + iy0 if both u(x, y) = x and v(x, y) = −y are continuous at
(x0, y0). Because u and v are two-variable polynomial functions, it follows
from (13) that:

lim
(x,y)→(x0,y0)

u(x, y) = x0 and lim
(x,y)→(x0,y0)

v(x, y) = −y0.

This implies that u and v are continuous at (x0, y0), and, therefore, that f
is continuous at z0 = x0 + iy0 by Theorem 2.3. Since z0 = x0 + iy0 was an
arbitrary point, we conclude that the function f(z) = z̄ is continuous on C.

The algebraic properties of complex limits from Theorem 2.2 can also be
restated in terms of continuity of complex functions.

Theorem 2.4 Properties of Continuous Functions

If f and g are continuous at the point z0, then the following functions are
continuous at the point z0:

(i) cf , c a complex constant,

(ii) f ± g,

(iii) f · g, and

(iv)
f

g
provided g(z0) �= 0.

Proof of (ii) We prove only (ii); proofs of the remaining parts are simi-
lar. Since f and g are continuous at z0 we have that lim

z→z0
f(z) = f(z0) and

lim
z→z0

g(z) = g(z0). From Theorem 2.2(ii), it follows that lim
z→z0

(f(z) + g(z)) =

f(z0) + g(z0). Therefore, f + g is continuous at z0 by Definition 2.9. ✎

Of course, the results of Theorems 2.4(ii) and 2.4(iii) extend to any finite
sum or finite product of continuous functions, respectively. We can use these
facts to show that polynomials are continuous functions.

Theorem 2.5 Continuity of Polynomial Functions

Polynomial functions are continuous on the entire complex plane C.
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Proof Let p(z) = anzn +an−1z
n−1 + · · ·+a1z+a0 be a polynomial function

and let z0 be any point in the complex plane C. From (16) we have that the
identity function f(z) = z is continuous at z0, and by repeated application of
Theorem 2.4(iii), this implies that the power function f(z) = zn, where n is an
integer and n ≥ 1, is continuous at this point as well. Moreover, (15) implies
that every complex constant function f(z) = c is continuous at z0, and so it
follows from Theorem 2.4(i) that each of the functions anzn, an−1z

n−1, . . . ,
a1z, and a0 are continuous at z0. Now from repeated application of Theorem
2.4(ii) we see that p(z) = anzn + an−1z

n−1 + · · · + a1z + a0 is continuous
at z0. Since z0 was allowed to be any point in the complex plane, we have
shown that the polynomial function p is continuous on the entire complex
plane C. ✎

Since a rational function f(z) = p(z)/q (z) is quotient of the polynomial
functions p and q, it follows from Theorem 2.5 and Theorem 2.4(iv) that f is
continuous at every point z0 for which q(z0) �= 0. In other words,

Continuity of Rational Functions

Rational functions are continuous on their domains.

Bounded Functions Continuous complex functions have many im-
portant properties that are analogous to properties of continuous real func-
tions. For instance, recall that if a real function f is continuous on a closed
interval I on the real line, then f is bounded on I. This means that there is a
real number M > 0 such that |f(x)| ≤M for all x in I. An analogous result
for real functions F (x, y) states that if F (x, y) is continuous on a closed and
bounded region R of the Cartesian plane, then there is a real number M > 0
such that |F (x, y)| ≤M for all (x, y) in R, and we say F is bounded on R.

Now suppose that the function f(z) = u(x, y) + iv(x, y) is defined on a
closed and bounded region R in the complex plane. As with real functions, we
say that the complex f is bounded on R if there exists a real constantM > 0
such that |f(z)| < M for all z in R. If f is continuous on R, then Theorem
2.3 tells us that u and v are continuous real functions on R. It follows that
the real function F (x, y) =

√
[u(x, y)]2 + [v(x, y)]2 is also continuous on R

since the square root function is continuous. Because F is continuous on the
closed and bounded region R, we conclude that F is bounded on R. That is,
there is a real constant M > 0 such that |F (x, y)| ≤ M for all (x, y) in R.
However, since |f(z)| = F (x, y), we have that |f(z)| ≤ M for all z in R. In
other words, the complex function f is bounded on R. This establishes the
following important property of continuous complex functions.

A Bounding Property

If a complex function f is continuous on a closed and bounded region R,
then f is bounded on R. That is, there is a real constant M > 0 such that
|f(z)| ≤M for all z in R.
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While this result assures us that a bound M exists for f on R, it offers
no practical approach to find it. One approach to find a bound is to use
the triangle inequality. See Example 3 in Section 1.2. Another approach to
determine a bound is to use complex mappings. See Problems 37 and 38 in
Exercises 2.3, Problems 56 and 57 in Exercises 2.4, and Problems 29 and 30
in Exercises 2.5. In Chapter 5, we will see that for a special class of important
complex functions, the bound can only be attained by a point in the boundary
of R.

Branches In Section 2.4 we discussed, briefly, the concept of a multiple-
valued function F (z) that assigns a set of complex numbers to the input z.
(Recall that our convention is to always use uppercase letters such as F , G,
and H to represent multiple-valued functions.) Examples of multiple-valued
functions include F (z) = z1/n, which assigns to the input z the set of n nth
roots of z, and G(z) = arg(z), which assigns to the input z the infinite set
of arguments of z. In practice, it is often the case that we need a consistent
way of choosing just one of the roots of a complex number or, maybe, just
one of the arguments of a complex number. That is, we are usually interested
in computing just one of the values of a multiple-valued function. If we make
this choice of value with the concept of continuity in mind, then we obtain
a function that is called a branch of a multiple-valued function. In more
rigorous terms, a branch of a multiple-valued function F is a function f1 that
is continuous on some domain and that assigns exactly one of the multiple-
values of F to each point z in that domain.

Notation: Branches

When representing branches of a multiple-valued function F with func-
tional notation, we will use lowercase letters with a numerical subscript
such as f1, f2, and so on.

The requirement that a branch be continuous means that the domain of
a branch is different from the domain of the multiple-valued function. For
example, the multiple-valued function F (z) = z1/2 that assigns to each input
z the set of two square roots of z is defined for all nonzero complex numbers
z. Even though the principal square root function f(z) = z1/2 does assign
exactly one value of F to each input z (namely, it assigns to z the principal
square root of z), f is not a branch of F . The reason for this is that the
principal square root function is not continuous on its domain. In particular,
in Example 6 we showed that f(z) = z1/2 is not continuous at z0 = −1. The
argument used in Example 6 can be easily modified to show that f(z) = z1/2

is discontinuous at every point on the negative real axis. Therefore, in order
to obtain a branch of F (z) = z1/2 that agrees with the principal square root
function, we must restrict the domain to exclude points on the negative real
axis. This gives the function

f1(z) =
√
reiθ/2, −π < θ < π. (23)
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We call the function f1 defined by (23) the principal branch of F (z) = z1/2

because the value of θ represents the principal argument of z for all z in
Dom (f1). In the following example we show that f1 is, in fact, a branch of
F .

EXAMPLE 8 A Branch of F (z) = z1/2

Show that the function f1 defined by (23) is a branch of the multiple-valued
function F (z) = z1/2.

Solution The domain of the function f1 is the set Dom(f1) defined by
|z| > 0, −π < arg(z) < π, shown in gray in Figure 2.55. From (8) of Section
2.4, we see that the function f1 agrees with the principal square root function
f on this set. Thus, f1 does assign to the input z exactly one of the values of
F (z) = z1/2. It remains to show that f1 is a continuous function on its domain.
In order to see that this is so, let z be a point with |z| > 0, −π < arg(z) < π. If
z = x+ iy and x > 0, then z = reiθ where r =

√
x2 + y2 and θ = tan−1(y/x).

Since −π/2 < tan−1(y/x) < π/2, the inequality −π < θ < π is satisfied.
Thus, substituting the expressions for r and θ in (23) we obtain:

f1(z) = 4
√
x2 + y2ei tan−1(y/x)/2

= 4
√
x2 + y2 cos

(
tan−1 (y/x)

2

)
+ i 4

√
x2 + y2 sin

(
tan−1 (y/x)

2

)
.

y

x

Figure 2.55 The domain D of the

branch f1 Because the real and imaginary parts of f1 are continuous real functions for
x > 0, we conclude from Theorem 2.5 that f1 is continuous for x > 0. A
similar argument can be made for points with y > 0 using θ = cot−1(x/y)
and for points with y < 0 using θ = − cot−1(x/y). In each case, we conclude
from Theorem 2.5 that f1 is continuous. Therefore, the function f1 defined in
(23) is a branch of the multiple-valued function F (z) = z1/2.

Branch Cuts and Points Although the multiple-valued function
F (z) = z1/2 is defined for all nonzero complex numbers C, the principal
branch f1 is defined only on the domain |z| > 0, −π < arg(z) < π. In
general, a branch cut for a branch f1 of a multiple-valued function F is
a portion of a curve that is excluded from the domain of F so that f1 is
continuous on the remaining points. Therefore, the nonpositive real axis,
shown in color in Figure 2.55, is a branch cut for the principal branch f1
given by (23) of the multiple-valued function F (z) = z1/2. A different branch
of F with the same branch cut is given by f2(z) =

√
reiθ/2, π < θ < 3π. These

branches are distinct because for, say, z = i we have f1(i) = 1
2

√
2+ 1

2

√
2i, but

f2(i) = −1
2

√
2− 1

2

√
2i. Notice that if we set φ = θ − 2π, then the branch f2

can be expressed as f2(z) =
√
rei(φ+2π)/2 =

√
reiφ/2eiπ, −π < φ < π. Since

eiπ = −1, this simplifies to f2(z) = −√reiφ/2, −π < φ < π. Thus, we have
shown that f2 = −f1. You can think of these two branches of F (z) = z1/2 as
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being analogous to the positive and negative square roots of a positive real
number.

Other branches of F (z) = z1/2 can be defined in a manner similar to
(23) using any ray emanating from the origin as a branch cut. For example,
f3(z) =

√
reiθ/2, −3π/4 < θ < 5π/4, defines a branch of F (z) = z1/2. The

branch cut for f3 is the ray arg(z) = −3π/4 together with the point z = 0.
x

y

y

x
0

Values of arg
increasing

Values of arg
increasing

Values of arg
decreasing

1

1 – εi

1 + εi

(a) z = 1 is not a branch point

(b) z = 0 is a branch point

Figure 2.56 G (z) = arg(z)

It is not a coincidence that the point z = 0 is on the branch cut for f1,
f2, and f3. The point z = 0 must be on the branch cut of every branch
of the multiple-valued function F (z) = z1/2. In general, a point with the
property that it is on the branch cut of every branch is called a branch
point of F . Alternatively, a branch point is a point z0 with the following
property: If we traverse any circle centered at z0 with sufficiently small radius
starting at a point z1, then the values of any branch do not return to the
value at z1. For example, consider any branch of the multiple-valued function
G(z) = arg(z). At the point, say, z0 = 1, if we traverse the small circle
|z − 1| = ε counterclockwise from the point z1 = 1− εi, then the values of the
branch increase until we reach the point 1 + εi; then the values of the branch
decrease back down to the value of the branch at z1. See Figure 2.56(a). This
means that the point z0 = 1 is not a branch point. On the other hand, suppose
we repeat this process for the point z0 = 0. For the small circle |z| = ε, the
values of the branch increase along the entire circle. See Figure 2.56(b). By
the time we have returned to our starting point, the value of the branch is no
longer the same; it has increased by 2π. Therefore, z0 = 0 is a branch point
of G(z) = arg(z).

Remarks Comparison with Real Analysis

(i) Analogous to real analysis, we can also define the concepts of infinite
limits and limits at infinity for complex functions. Intuitively, the
limit lim

z→∞
f(z) = L means that values f(z) of the function f can

be made arbitrarily close to L if values of z are chosen so that |z| is
sufficiently large. A precise statement of a limit at infinity is:

The limit of f as z tends to ∞ exists and is equal to L if for
every ε > 0 there exists a δ > 0 such that |f(z)− L| < ε
whenever |z| > 1/δ.

Using this definition it is not hard to show that:

lim
z→∞

f(z) = L if and only if lim
z→0
f

(
1
z

)
= L. (24)

Similarly, the infinite limit lim
z→z0

f(z) =∞ is defined by:

The limit of f as z tends to z 0 is ∞ if forevery ε > 0 there
is a δ > 0 such that |f(z)| > 1/ε whenever 0 < |z − z0| < δ.
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From this definition we obtain the following result:

lim
z→z0

f(z) =∞ if and only if lim
z→z0

1
f(z)

= 0. (25)

See Problems 21–26 in Exercises 2.6.

(ii) In real analysis we visualize a continuous function as a function whose
graph has no breaks or holes in it. It is natural to ask if there is an
analogous property for continuous complex functions. The answer is
yes, but this property must be stated in terms of complex mappings.
We begin by recalling that a parametric curve defined by paramet-
ric equations x = x(t) and y = y(t) is called continuous if the real
functions x and y are continuous. In a similar manner, we say that
a complex parametric curve defined by z(t) = x(t)+ iy(t) is contin-
uous if both x(t) and y(t) are continuous real functions. As with
parametric curves in the Cartesian plane, a continuous parametric
curve in the complex plane has no breaks or holes in it. Such curves
provide a means to visualize continuous complex functions.

If a complex function f is continuous on a set S, then the image of
every continuous parametric curve in S must be a continuous curve.

To see why this is so, consider a continuous complex function
f(z) = u(x, y) + iv(x, y) and a continuous parametric curve de-
fined by z(t) = x(t) + iy(t). From Theorem 2.3, u(x, y) and
v(x, y) are continuous real functions. Moreover, since x(t) and
y(t) are continuous functions, it follows from multivariable calculus
that the compositions u(x(t), y(t)) and v(x(t), y(t)) are continuous
functions. Therefore, the image of the parametric curve given by
w(t) = f(z(t)) = u(x(t), y(t)) + iv(x(t), y(t)) is continuous. See
Problems 57–60 in Exercises 2.6.

EXERCISES 2.6 Answers to selected odd-numbered problems begin on page ANS-10.

2.6.1 Limits

In Problems 1–8, use Theorem 2.1 and the properties of real limits on page 115 to

compute the given complex limit.

1. lim
z→2i

(
z2 − z̄

)
2. lim

z→1+i

z − z̄

z + z̄

3. lim
z→1−i

(
|z|2 − iz̄

)
4. lim

z→3i

Im
(
z2

)
z + Re (z)

5. lim
z→πi

ez 6. lim
z→i

zez

7. lim
z→2+i

(ez + z) 8. lim
z→i

(
loge

∣∣x2 + y2
∣∣ + i arctan

y

x

)
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In Problems 9–16, use Theorem 2.2 and the basic limits (15) and (16) to compute

the given complex limit.

9. lim
z→2−i

(
z2 − z

)
10. lim

z→i

(
z5 − z2 + z

)

11. lim
z→eiπ/4

(
z +

1

z

)
12. lim

z→1+i

z2 + 1

z2 − 1

13. lim
z→−i

z4 − 1

z + i
14. lim

z→2+i

z2 − (2 + i)2

z − (2 + i)

15. lim
z→z0

(az + b) − (az0 + b)

z − z0
16. lim

z→−3+i
√

2

z + 3 − i
√

2

z2 + 6z + 11

17. Consider the limit lim
z→0

Re(z)

Im(z)
.

(a) What value does the limit approach as z approaches 0 along the line y = x?

(b) What value does the limit approach as z approaches 0 along the imaginary
axis?

(c) Based on your answers for (a) and (b), what can you say about lim
z→0

Re(z)

Im(z)
?

18. Consider the limit lim
z→i

(|z| + iArg (iz)).

(a) What value does the limit approach as z approaches i along the unit circle
|z| = 1 in the first quadrant?

(b) What value does the limit approach as z approaches i along the unit circle
|z| = 1 in the second quadrant?

(c) Based on your answers for (a) and (b), what can you say about
lim
z→i

(|z| + iArg (iz))?

19. Consider the limit lim
z→0

(z
z̄

)2

.

(a) What value does the limit approach as z approaches 0 along the real axis?

(b) What value does the limit approach as z approaches 0 along the imaginary
axis?

(c) Do the answers from (a) and (b) imply that lim
z→0

(z
z̄

)2

exists? Explain.

(d) What value does the limit approach as z approaches 0 along the line y = x?

(e) What can you say about lim
z→0

(z
z̄

)2

?

20. Consider the limit lim
z→0

(
2y2

x2
− x2 − y2

y2
i

)
.

(a) What value does the limit approach as z approaches 0 along the line y = x?

(b) What value does the limit approach as z approaches 0 along the line
y = −x?

(c) Do the answers from (a) and (b) imply that lim
z→0

(
2y2

x2
− x2 − y2

y2
i

)
exists?

Explain.
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(d) What value does the limit approach as z approaches 0 along the line
y = 2x?

(e) What can you say about lim
z→0

(
2y2

x2
− x2 − y2

y2
i

)
?

Problems 21–26 involve concepts of infinite limits and limits at infinity discussed in

(i) of the Remarks. In Problems 21–26, use (24) or (25), Theorem 2.2, and the basic

limits (15) and (16) to compute the given complex limit.

21. lim
z→∞

z2 + iz − 2

(1 + 2i)z2
22. lim

z→∞

iz + 1

2z − i

23. lim
z→i

z2 − 1

z2 + 1
24. lim

z→−i/2

(1 − i)z + i

2z + i

25. lim
z→∞

z2 − (2 + 3i)z + 1

iz − 3
26. lim

z→i

z2 + 1

z2 + z + 1 − i

2.6.2 Continuity

In Problems 27–34, show that the function f is continuous at the given point.

27. f(z) = z2 − iz + 3 − 2i; z0 = 2 − i

28. f(z) = z3 − 1

z
; z0 = 3i

29. f(z) =
z3

z3 + 3z2 + z
; z0 = i

30. f(z) =
z − 3i

z2 + 2z − 1
; z0 = 1 + i

31. f(z) =




z3 − 1

z − 1
, |z| �= 1

3, |z| = 1

; z0 = 1

32. f(z) =




z3 − 1

z2 + z + 1
, |z| �= 1

−1 + i
√

3

2
, |z| = 1

; z0 =
1 + i

√
3

2

33. f(z) = z̄ − 3Re(z) + i; z0 = 3 − 2i

34. f(z) =
Re(z)

z + iz
− 2z2; z0 = eiπ/4

In Problems 35–40, show that the function f is discontinuous at the given point.

35. f(z) =
z2 + 1

z + i
; z0 = −i 36. f(z) =

1

|z| − 1
; z0 = i

37. f(z) = Arg(z); z = −1 38. f(z) = Arg(iz); z0 = i

39. f(z) =




z3 − 1

z − 1
, |z| �= 1

3, |z| = 1

; z0 = i 40. f(z) =




z

|z| , z �= 0

1, z = 0
; z0 = 0
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In Problems 41–44, use Theorem 2.3 to determine the largest region in the complex

plane on which the function f is continuous.

41. f(z) = Re(z) Im(z) 42. f(z) = z̄

43. f(z) =
z − 1

zz̄ − 4
44. f(z) =

z2

(|z| − 1) Im(z)

Focus on Concepts

45. Use Theorem 2.1 to prove:

(a) lim
z→z0

c = c, where c is a constant. (b) lim
z→z0

z = z0.

46. Use Theorem 2.1 to show that lim
z→z0

z̄ = z̄0.

47. Use Theorem 2.2 and Problem 46 to show that

(a) lim
z→z0

Re(z) = Re(z0).

(b) lim
z→z0

Im(z) = Im(z0).

(c) lim
z→z0

|z| = |z0|.

48. The following is an epsilon-delta proof that lim
z→z0

z = z0. Fill in the missing

parts.

Proof By Definition 2.8, lim
z→z0

z = z0 if for every ε > 0 there is a δ > 0 such

that | | < ε whenever 0 < | | < δ. Setting δ = will ensure
that the previous statement is true.

49. The following is an epsilon-delta proof that lim
z→z0

z̄ = z̄0. Provide the missing

justifications in the proof.

Proof By Definition 2.8, lim
z→z0

z̄ = z̄0 if for every ε > 0 there is a δ > 0 such that

| | < ε whenever 0 < | | < δ. By properties of complex modulus
and conjugation, |z − z0| = |z − z0| = | |. Therefore, if 0 < |z − z0| < δ
and δ = , then |z̄ − z̄0| < ε.

50. In this problem we will develop the epsilon-delta proof that
lim

z→1+i
((1 − i) z + 2i) = 2 + 2i.

(a) Write down the epsilon-delta definition (Definition 2.8) of
lim

z→1+i
[(1 − i) z + 2i] = 2 + 2i.

(b) Factor out (1 − i) from the inequality involving ε (from part (a)) and sim-
plify. Now rewrite this inequality in the form |z − (1 + i)| < .

(c) Based on your work from part (b), what should δ be set equal to?

(d) Write the epsilon-delta proof that lim
z→1+i

[(1 − i) z + 2i] = 2 + 2i.

51. (a) Is it true that lim
z→z0

f(z) = lim
z→z0

f(z̄) for any complex function f? If so,

then give a brief justification; if not, then find a counterexample.

(b) If f(z) is a continuous function at z0, then is it true that f(z) is continuous
at z0?
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52. If f is a function for which lim
x→0

f(x+ i0) = 0 and lim
y→0

f(0 + iy) = 0, then can

you conclude that lim
z→0

f(z) = 0? Explain.

53. (a) Prove that the function f(z) = Arg(z) is discontinuous at every point on
the negative real axis.

(b) Prove that the function f1 defined by

f1(z) = θ, −π < θ < π

is a branch of the multiple-valued function F (z) = arg(z). [Hint : See
Example 8.]

54. Consider the multiple-valued function F (z) = z1/3 that assigns to z the set of
three cube roots of z. Explicitly define three distinct branches f1, f2, and f3
of F , all of which have the nonnegative real axis as a branch cut.

55. Consider the multiple-valued function F (z) = (z − 1 + i)1/2.

(a) What is the branch point of F? Explain.

(b) Explicitly define two distinct branches of f1 and f2 of F . In each case,
state the branch cut.

56. Consider the multiple-valued function F (z) =
(
z2 + 1

)1/2
. What are the branch

points (there are two of them) of F? Explain.

Computer Lab Assignments

Reread part (ii) of the Remarks at the end of Section 2.6. In Problems 57–60, use a

CAS to show that the given function is not continuous inside the unit circle by plot-

ting the image of the given continuous parametric curve. (Be careful, Mathematica

and Maple plots can sometimes be misleading.)

57. f(z) = z+ Arg(z), z(t) = − 1
2

+ 1
2

√
3it, −1 ≤ t ≤ 1

58. f(z) = 4
√
reiθ/4, θ = Arg(z), z(t) = − 1

2
+ 1

2

√
3it, −1 ≤ t ≤ 1

59. f(z) =
√
reiθ/2, θ = Arg(z), z(t) = − 1

2
+ 1

4
eit, 0 ≤ t ≤ 2π

60. f(z) = |z − 1|Arg(−z) + iArg(iz), z(t) = 1
2
eit, 0 ≤ t ≤ 2π

2.7 Applications

2.7In this chapter we saw that one of the main differences between real and complex functions
is the inability to draw the graph of a complex function. This motivated the introduction of
mappings as an alternative method for graphically representing complex functions. There
are, however, other ways to visualize complex functions. In this section we will show that
complex functions give complex representations of two-dimensional vector fields. In later
chapters, we will use the complex representation of a vector field to solve applied problems
in the areas of fluid flow, heat flow, gravitation, and electrostatics.
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Vector Fields In multivariable calculus, a vector-valued function of
two real variables

F(x, y) = (P (x, y), Q(x, y)) (1)

is also called a two-dimensional vector field. Using the standard orthog-
onal unit basis vectors i and j, we can also express the vector field in (1)
as:

F(x, y) = P (x, y)i +Q(x, y)j. (2)

For example, the function F(x, y) = (x + y)i + (2xy)j is a two-dimensional
vector field, for which, say, F(1, 3) = (1 + 3)i + (2 · 1 · 3)j = 4i + 6j. Values
of a function F given by (2) are vectors that can be plotted as position vec-
tors with initial point at the origin. However, in order to obtain a graphical
representation of the vector field (2) that displays the relation between the
input (x, y) and the output F(x, y), we plot the vector F(x, y) with initial
point (x, y) and terminal point (x+ P (x, y), y +Q(x, y)). For example,
in Figure 2.57(a) the four functional values F(1, 1) = i − j, F(0, 1) = −j,
F(1, −2) = i+2j, and F(−2, 1) = −2i−j of the vector field F(x, y) = xi−yj
are plotted as position vectors, whereas in Figure 2.57(b) we have a portion
of the graphical representation of the vector field obtained by plotting these
four vectors with initial point at (x, y). Specifically, Figure 2.57(b) consists
of the four vectors i− j, −j, i + 2j, and −2i− j plotted with initial points at
(1, 1), (0, 1), (1, −2), and (−2, 1), and terminal points (2, 0), (0, 0), (2, 0),
and (−4, 0), respectively.

x

y

–1 1 2 3 4–2–3–4

–4

–3

–2

–1

1

2

3

4

(a) Values of F plotted as position vectors

(1, –1)

(1, 2)

(–2, –1)

x

y

–1 1 2 3 4–2–3–4

–4

–3

–2

–1

1

2

3

4

(b) Values of F plotted with initial point at (x, y)

(1, –2)

(1, 1)(0, 1)(–2, 1)

Figure 2.57 Some vector values of the

function F(x, y) = xi − yj Complex Functions as Vector Fields There is a natural way to
represent a vector field F(x, y) = P (x, y)i+Q(x, y)j with a complex function
f . Namely, we use the functions P and Q as the real and imaginary parts of
f , in which case, we say that the complex function f(z) = P (x, y)+ iQ(x, y)
is the complex representation of the vector field F(x, y) = P (x, y)i +
Q(x, y)j. Conversely, any complex function f(z) = u(x, y)+iv(x, y) has an as-
sociated vector field F(x, y) = u(x, y)i+v(x, y)j. From this point on we shall
refer to both F(x, y) = P (x, y)i+Q(x, y)j and f(x, y) = u(x, y)+ iv(x, y)
as vector fields. As an example of this discussion, consider the vector field
f(z) = z̄. Since f(z) = x − iy, the function f is the complex representation
of the vector field F(x, y) = xi − yj. Part of this vector field was shown in
Figure 2.57(b). A more complete representation of the vector field f(z) = z̄
is shown in Figure 2.58 (this plot was created in Mathematica). Observe that
the vector field plotted in Figure 2.58 gives a graphical representation of the
complex function f(z) = z̄ that is different from a mapping. Compare with
Figure 2.41 in Section 2.5.

x

y

2

–2

–4

4

2–2–4–6 4

Figure 2.58 The vector field f(z) = z
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When plotting a vector field F associated with a complex function f it
is helpful to note that plotting the vector F(x, y) with initial point (x, y) is
equivalent to plotting the vector representation of the complex number f(z)
with initial point z. We illustrate this remark in the following example.

EXAMPLE 1 Plotting Vectors in a Vector Field

Plot the vectors in the vector field f(z) = z2 corresponding to the points
z = 1, 2 + i, 1 + i, and i.

x

y

1–1
–1

–2

–2 2 3 4 5 6

6

5

4

3

2

1

Figure 2.59 Vectors in the vector field

f(z) = z2

Solution By a straightforward computation we find that:

f(1) = 12 = 1, f(2 + i) = (2 + i)2 = 3 + 4i,

f(i) = i2 = −1, and f(1 + i) = (1 + i)2 = 2i.

This implies that in the vector field f(z) = z2 we have the vector representa-
tions of the complex numbers 1, 3+4i, −1, and 2i plotted with initial points
at 1, 2 + i, i, and 1 + i, respectively. These vectors are shown in Figure 2.59.

Use of Computers Plotting vector fields by hand is a simple but
tedious procedure. Fortunately, computer algebra systems such as Mathe-
matica and Maple have built-in commands to plot two-dimensional vector
fields. In Figure 2.60, the vector field f(z) = iy has been plotted using the
PlotVectorField command in Mathematica. Observe that the lengths of the
vectors in the Mathematica plot are much smaller than they should be. For
example at, say, z = 1 + i we have f(1 + i) = i, but the vector plotted at
z = 1 + i does not have length 1. The reason for this is that Mathematica
scales the vectors in a vector field in order to create a nicer image (in partic-
ular, Mathematica scales to ensure that no vectors overlap). Therefore, the
lengths of the vectors in Figure 2.60 do not accurately represents the absolute
lengths of vectors in this vector field. The vectors in Figure 2.60 do, however,
accurately represent the relative lengths of the vectors in the vector field.‡

x

y
4

3

2

1

4321

Figure 2.60 Mathematica plot of the

vector field f(z) = iy

In many applications the primary interest is in the directions and not the
magnitudes of the vectors in a vector field. For example, in the forthcoming
discussion we will be concerned with determining the paths along which parti-
cles move in a fluid flow. For this type of application, we can use a normalized
vector field. In a normalized vector field all vectors are scaled to have the
same length. Figure 2.61 displays a normalized vector field for f(z) = iy cre-
ated using the ScaleFunction option with the PlotVectorField command
in Mathematica. Compare with Figure 2.60.

x

y
4

3

2

1

4321

Figure 2.61 Mathematica plot of the

normalized vector field f(z) = iy

‡For more information on plotting vector fields in Mathematica, refer to the technical
report Guide to Standard Mathematical Packages published by Wolfram Research.
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Keep in mind that in many applications the magnitudes of the vectors are
important and, in such cases, a normalized vector field is inappropriate. We
will see examples of this in Chapter 5 when we discuss the circulation and net
flux of a fluid flow. In this text, whenever we use a normalized vector field,
we will explicitly state so. Therefore, in a graphical sense, the term vector
field will refer to a plot of a set of vectors that has not been normalized.

�Note: Normalized vector fields should
not be used for certain applications.

Fluid Flow One of the many uses of vector fields in applied mathe-
matics is to model fluid flow. Because we are confined to two dimensions in
complex analysis, let us consider only planar flows of a fluid. This means
that the movement of the fluid takes place in planes that are parallel to the
xy-plane and that the motion and the physical traits of the fluid are identical
in all planes. These assumptions allow us to analyze the flow of a single sheet
of the fluid. Suppose that f(z) = P (x, y) + iQ(x, y) represents a velocity
field of a planar flow in the complex plane. Then f(z) specifies the velocity
of a particle of the fluid located at the point z in the plane. The modulus
|f(z)| is the speed of the particle and the vector f(z) gives the direction of
the flow at that point.

For a velocity field f(z) = P (x, y) + iQ(x, y) of a planar flow, the
functions P and Q represent the components of the velocity in the x- and
y-directions, respectively. If z(t) = x(t) + iy(t) is a parametrization of the
path that a particle follows in the fluid flow, then the tangent vector z′(t) =
x′(t) + iy′(t) to the path must coincide with f(z(t)). Therefore, the real and
imaginary parts of the tangent vector to the path of a particle in the fluid
must satisfy the system of differential equations

dx

dt
= P (x, y)

dy

dt
= Q (x, y).

(3)

The family of solutions to the system of first-order differential equations (3)
is called the streamlines of the planar flow associated with f(z).

EXAMPLE 2 Streamlines

Find the streamlines of the planar flow associated with f(z) = z̄.

Solution Since f(z) = z̄ = x−iy, we identify P (x, y) = x andQ(x, y) = −y.
From (3) the streamlines of f are the family of solutions to the system of
differential equations

dx

dt
= x

dy

dt
= −y.
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These differential equations are independent of each other and so each can be
solved by separation of variables. This gives the general solutions x(t) = c1et

and y(t) = c2e−t where c1 and c2 are real constants. In order to plot the
curve z(t) = x(t) + iy(t), we eliminate the parameter t to obtain a Cartesian
equation in x and y. This is easily done by multiplying the two solutions to
obtain xy = c1c2. Because c1 and c2 can be any real constants, this family of
curves can be given by xy = c where c is a real constant. In conclusion, we
have shown that particles in the planar flow associated with f(z) = z̄ move
along curves in the family of hyperbolas xy = c. In Figure 2.62, we have used
Mathematica to plot the streamlines corresponding to c = ±1, ±4, and ±9 for
this flow. These streamlines are shown in black superimposed over the plot
of the normalized vector field of f(z) = z̄.

x

y

4–4 2

2

–2

–2

2

2 4

–4

–4 –2

4

Figure 2.62 Streamlines in the planar

flow assicated with f(z) = z

EXAMPLE 3 Streamlines

Find the streamlines of the planar flow associated with f(z) = z̄2.

Solution We proceed as in Example 2. Since the function f can be expressed
as f(z) = z̄2 = x2 − y2 − 2xyi, we identify P (x, y) = x2 − y2 and Q(x, y) =
−2xy. Thus, the streamlines of this flow satisfy the system of differential
equations:

dx

dt
= x2 − y2

dy

dt
= −2xy.

(4)

The chain rule of elementary calculus states that (dy/dx) · (dx/dt) = dy/dt,
and so after solving for dy/dx we have that(

dy

dt

)/(
dx

dt

)
=
dy

dx
.

Therefore, by dividing dy/dt = −2xy by dx/dt = x2 − y2, we find that the
system in (4) is equivalent to the first-order differential equation:

dy

dx
=
−2xy
x2 − y2 or 2xy dx+

(
x2 − y2

)
dy = 0. (5)

Recall that a differential equation of the form M(x, y)dx + N(x, y)dy = 0
is called exact if ∂M/∂y = ∂N/∂x. Given an exact differential equation, if
we can find a function F (x, y) for which ∂F/∂x = M and ∂F/∂y = N , then
F (x, y) = c is an implicit solution to the differential equation. Identifying
M(x, y) = 2xy and N(x, y) = x2 − y2, we see that our differential equation
in (5) is exact since

∂M

∂y
=
∂

∂y
(2xy) = 2x =

∂

∂x

(
x2 − y2

)
=
∂N

∂x
.
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To find a function F for which ∂F/∂x =M and ∂F/∂y = N , we first partially
integrate the function M(x, y) = 2xy with respect to the variable x:

F (x, y) =
∫

2xy dx = x2y + g(y).

x

y

4–4 2

2

–2

–2

–2 2 4–4

–4

4

Figure 2.63 Streamlines in the planar

flow associated with f(z) = z2

The function g(y) is then determined by taking the partial derivative of F with
respect to the variable y and setting this expression equal toN(x, y) = x2−y2:

∂F

∂y
= x2 + g′(y) = x2 − y2.

This implies that g′(y) = −y2, and so we can take g(y) = −1
3y

3. In conclusion,
F (x, y) = x2y− 1

3y
3 = c is an implicit solution of the differential equation in

(5), and so the streamlines of the planar flow associated with f(z) = z̄2 are
given by:

x2y − 1
3
y3 = c

where c is a real constant. In Figure 2.63, Mathematica has been used to plot
the streamlines corresponding to c = ±2

3 , ± 16
3 , ±18. These streamlines are

shown in black superimposed over the plot of the normalized vector field for
the flow.

EXERCISES 2.7 Answers to selected odd-numbered problems begin on page ANS-11.

In Problems 1–8, (a) plot the images of the complex numbers z = 1, 1+ i, 1− i, and

i under the given function f as position vectors, and (b) plot the images as vectors

in the vector field associated with f .

1. f(z) = 2z − i 2. f(z) = z3

3. f(z) = 1 − z2 4. f(z) =
1

z

5. f(z) = z − 1

z
6. f(z) = z1/2, the principal square root function

given by (7) of Section 2.4

7. f(z) =
1

z̄
8. f(z) = loge |z| + iArg(z)

In Problems 9–12, (a) find the streamlines of the planar flow associated with the

given complex function f and (b) sketch the streamlines.

9. f(z) = 1 − 2i 10. f(z) =
1

z̄

11. f(z) = iz 12. f(z) = (1 + i)z̄

Focus on Concepts

13. Let f be a complex function. Explain the relationship between the vector
field associated with f(z) and the vector field associated with g(z) = f(z − 1).
Illustrate with sketches using a simple function for f .
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14. Let f be a complex function. Explain the relationship between the vector field
associated with f(z) and the vector field associated with g(z) = if(z). Illustrate
with sketches using a simple function for f .

15. Consider the planar flow associated with f(z) = c where c is a complex constant.

(a) Find the streamlines of this flow.

(b) Explain why this flow is called a uniform flow.

16. Consider the planar flow associated with f(z) = 1 − 1/z2.

(a) Use a CAS to plot the vector field associated with f in the region |z| > 1.

(b) Verify analytically that the unit circle x2 + y2 = 1 is a streamline in this
flow.

(c) Explain why f(z) = 1 − 1/z2 is called a flow around the unit circle.

Computer Lab Assignments

In Problems 17–22, use a CAS to plot the vector field associated with the given

complex function f .

17. f(z) = 2z − i 18. f(z) = z3

19. f(z) = 1 − z2 20. f(z) =
1

z

21. f(z) = 2 + i 22. f(z) = 1 − 1

z̄2

CHAPTER 2 REVIEW QUIZ
Answers to selected odd-numbered problems begin
on page ANS-12.

In Problems 1–20, answer true or false. If the statement is false, justify your answer

by either explaining why it is false or giving a counterexample; if the statement is

true, justify your answer by either proving the statement or citing an appropriate

result in this chapter.

1. If f(z) is a complex function, then f(x+ 0i) must be a real number.

2. arg(z) is a complex function.

3. The domain of the function f(z) =
1

z2 + i
is all complex numbers.

4. The domain of the function f(z) = ez2−(1+i)z+2 is all complex numbers.

5. If f(z) is a complex function with u(x, y) = 0, then the range of f lies in the
imaginary axis.

6. The entire complex plane is mapped onto the real axis v = 0 by w = z + z̄.

7. The entire complex plane is mapped onto the unit circle |w| = 1 by w =
z

|z| .

8. The range of the function f(z) = Arg(z) is all real numbers.

9. The image of the circle |z − z0| = ρ under a linear mapping is a circle with a
(possibly) different center, but the same radius.
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10. The linear mapping w =
(
1 −

√
3i

)
z + 2 acts by rotating through an angle

of π/3 radians clockwise about the origin, magnifying by a factor of 2, then
translating by 2.

11. There is more than one linear mapping that takes the circle |z − 1| = 1 to the
circle |z + i| = 1.

12. The lines x = 3 and x = −3 are mapped onto to the same parabola by w = z2.

13. There are no solutions to the equation Arg(z) = Arg
(
z3

)
.

14. If f(z) = z1/4 is the principal fourth root function, then f(−1) = − 1
2

√
2+ 1

2

√
2i.

15. The complex number i is not in the range of the principal cube root function.

16. Under the mapping w = 1/z on the extended complex plane, the domain |z| > 3
is mapped onto the domain |w| < 1

3
.

17. If f is a complex function for which lim
z→2+i

Re(f(z)) = 4 and

lim
z→2+i

Im(f(z)) = −1, then lim
z→2+i

f(z) = 4 − i.

18. If f is a complex function for which lim
x→0

f(x + 0i) = 0 and lim
y→0

f(0 + iy) = 0,

then lim
z→0

f(z) = 0.

19. If f is a complex function that is continuous at the point z = 1 + i, then the
function g(z) = 3 [f(z)]2 − (2 + i)f(z) + i is continuous at z = 1 + i.

20. If f is a complex function that is continuous on the entire complex plane, then
the function g(z) = f(z) is continuous on the entire complex plane.

In Problems 21–40, try to fill in the blanks without referring back to the text.

21. If f(z) = z2 + iz̄ then the real and imaginary parts of f are u(x, y) =
and v(x, y) = .

22. If f(z) =
|z − 1|

z2 + 2iz + 2
, then the natural domain of f is .

23. If f(z) = z − z̄, then the range of f is contained in the axis.

24. The exponential function ez has real and imaginary parts u(x, y) =
and v(x, y) = .

25. A parametrization of the line segment from 1 + i to 2i is z(t) = .

26. A parametrization of the circle centered at 1−i with radius 3 is z(t) = .

27. Every complex linear mapping is a composition of at most one , one
, and one .

28. The complex mapping w = iz+2 rotates and , but does not .

29. The function z2 squares the modulus of z and its argument.

30. The image of the sector 0 ≤ arg(z) ≤ π/2 under the mapping w = z3 is
.

31. The image of horizontal and vertical lines under the mapping w = z2 is
.

32. The principal nth root function z1/n maps the complex plane onto the region
.
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33. If f(z) = z1/6 is the principal 6th root function, then f(−1) = .

34. The complex reciprocal function 1/z is a composition of in the
circle followed by reflection across the -axis.

35. According to the formal definition of a complex limit, lim
z→2i

(
z2 − i

)
= −4 − i

if for every ε > 0 there is a δ > 0 such that | | < ε whenever
0 < |z− | < δ.

36. If f(z) =
z + z̄

z
, then lim

x→0
f(x+ 0i) = and lim

y→0
f(0 + iy) = .

Therefore, lim
z→0

f(z) .

37. A complex function f is continuous at z = z0 if lim
z→z0

f(z) = .

38. The function f(z) = is an example of a function that is continuous
on the domain |z| > 0, −π < arg(z) < π.

39. The complex function f(z) =
x

y
+i loge x is continuous on the region .

40. Both and are examples of multiple-valued functions.
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Introduction In the preceding chapter we intro-
duced the notion of a complex function. Anal-
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develop the notions of derivatives and integrals
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focus will be on the definition and the properties
of the derivative of a complex function.
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3.1 Differentiability and Analyticity

3.1The calculus of complex functions deals with the usual concepts of derivatives and integrals
of these functions. In this section we shall give the limit definition of the derivative of a
complex function f(z). Although many of the concepts in this section will seem familiar to
you, such as the product, quotient, and chain rules of differentiation, there are important
differences between this material and the calculus of real functions f(x). As the subsequent
chapters of this text unfold, you will see that except for familiarity of names and definitions,
there is little similarity between the interpretations of quantities such as f ′(x) and f ′(z).

The Derivative Suppose z = x+iy and z0 = x0+iy0; then the change
in z0 is the difference ∆z = z − z0 or ∆z = x− x0 + i(y− y0) = ∆x+ i∆y. If
a complex function w = f(z) is defined at z and z0, then the corresponding
change in the function is the difference ∆w = f(z0 + ∆z) − f(z0). The
derivative of the function f is defined in terms of a limit of the difference
quotient ∆w/∆z as ∆z → 0.

Definition 3.1 Derivative of Complex Function

Suppose the complex function f is defined in a neighborhood of a point
z0. The derivative of f at z0, denoted by f ′(z0), is

f ′(z0) = lim
∆z→0

f(z0 + ∆z)− f(z0)
∆z

(1)

provided this limit exists.

If the limit in (1) exists, then the function f is said to be differentiable
at z0. Two other symbols denoting the derivative of w = f(z) are w′ and
dw/dz. If the latter notation is used, then the value of a derivative at a

specified point z0 is written
dw

dz

∣∣∣∣
z=z0

.

EXAMPLE 1 Using Definition 3.1

Use Definition 3.1 to find the derivative of f(z) = z2 − 5z.

Solution Because we are going to compute the derivative of f at any point,
we replace z0 in (1) by the symbol z. First,

f(z + ∆z) = (z + ∆z)2 − 5(z + ∆z) = z2 + 2z∆z + (∆z)2 − 5z − 5∆z.

Second,

f(z + ∆z)− f(z) = z2 + 2z∆z + (∆z)2 − 5z − 5∆z − (z2 − 5z)

= 2z∆z + (∆z)2 − 5∆z.
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Then, finally, (1) gives

f ′(z) = lim
∆z→0

2z∆z + (∆z)2 − 5∆z
∆z

= lim
∆z→0

∆z(2z + ∆z − 5)
∆z

= lim
∆z→0

(2z + ∆z − 5).

The limit is f ′(z) = 2z − 5.

Rules of Differentiation The familiar rules of differentiation in the
calculus of real variables carry over to the calculus of complex variables. If
f and g are differentiable at a point z, and c is a complex constant, then (1)
can be used to show:

Differentiation Rules

Constant Rules:
d

dz
c = 0 and

d

dz
cf(z) = cf ′(z) (2)

Sum Rule:
d

dz
[f(z)± g(z)] = f ′(z)± g′(z) (3)

Product Rule:
d

dz
[f(z)g(z)] = f(z)g′(z) + f ′(z)g(z) (4)

Quotient Rule:
d

dz

[
f(z)
g(z)

]
=
g(z)f ′(z)− f(z)g′(z)

[g(z)]2
(5)

Chain Rule:
d

dz
f(g(z)) = f ′(g(z)) g′(z). (6)

The power rule for differentiation of powers of z is also valid:

d

dz
zn = nzn−1, n an integer. (7)

Combining (7) with (6) gives the power rule for functions:

d

dz
[g(z)]n = n[g(z)]n−1

g′(z), n an integer. (8)
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EXAMPLE 2 Using the Rules of Differentiation

Differentiate:

(a) f(z) = 3z4 − 5z3 + 2z (b) f(z) =
z2

4z + 1
(c) f(z) =

(
iz2 + 3z

)5

Solution

(a) Using the power rule (7), the sum rule (3), along with (2), we obtain

f ′(z) = 3 · 4z3 − 5 · 3z2 + 2 · 1 = 12z3 − 15z2 + 2.

(b) From the quotient rule (5),

f ′(z) =
(4z + 1) · 2z − z2 · 4

(4z + 1)2
=

4z2 + 2z
(4z + 1)2

.

(c) In the power rule for functions (8) we identify n = 5, g(z) = iz2 +3z, and
g′(z) = 2iz + 3, so that

f ′(z) = 5(iz2 + 3z)4(2iz + 3).

For a complex function f to be differentiable at a point z0, we know from

the preceding chapter that the limit lim
∆z→0

f(z0 + ∆z)− f(z0)
∆z

must exist and

equal the same complex number from any direction; that is, the limit must
exist regardless how ∆z approaches 0. This means that in complex analysis,
the requirement of differentiability of a function f(z) at a point z0 is a far
greater demand than in real calculus of functions f(x) where we can approach
a real number x0 on the number line from only two directions. If a complex
function is made up by specifying its real and imaginary parts u and v, such
as f(z) = x+ 4iy, there is a good chance that it is not differentiable.

EXAMPLE 3 A Function That Is Nowhere Differentiable

Show that the function f(z) = x+ 4iy is not differentiable at any point z.

Solution Let z be any point in the complex plane. With ∆z = ∆x+ i∆y,

f(z + ∆z)− f(z) = (x+ ∆x) + 4i(y + ∆y)− x− 4iy = ∆x+ 4i∆y

and so lim
∆z→0

f(z + ∆z)− f(z)
∆z

= lim
∆z→0

∆x+ 4i∆y
∆x+ i∆y

. (9)

Now, as shown in Figure 3.1(a), if we let ∆z → 0 along a line parallel to
the x-axis, then ∆y = 0 and ∆z = ∆x and

lim
∆z→0

f(z + ∆z)− f(z)
∆z

= lim
∆z→0

∆x
∆x

= 1. (10)

y

z

x

(a) ∆z → 0 along a line parallel 
      to x-axis

∆z = ∆x

y

z

x

(b) ∆z → 0 along a line parallel 
      to y-axis

∆z = i∆y

Figure 3.1 Approaching z along a

horizontal line and then along a

vertical line
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On the other hand, if we let ∆z → 0 along a line parallel to the y-axis as
shown in Figure 3.1(b), then ∆x = 0 and ∆z = i∆y so that

lim
∆z→0

f(z + ∆z)− f(z)
∆z

= lim
∆z→0

4i∆y
i∆y

= 4. (11)

In view of the obvious fact that the values in (10) and (11) are different,
we conclude that f(z) = x + 4iy is nowhere differentiable; that is, f is not
differentiable at any point z.

The basic power rule (7) does not apply to powers of the conjugate of
z because, like the function in Example 3, the function f(z) = z̄ is nowhere
differentiable. See Problem 21 in Exercises 3.1.

Analytic Functions Even though the requirement of differentiability
is a stringent demand, there is a class of functions that is of great importance
whose members satisfy even more severe requirements. These functions are
called analytic functions.

Definition 3.2 Analyticity at a Point

A complex function w = f(z) is said to be analytic at a point z0 if f
is differentiable at z0 and at every point in some neighborhood of z0.

A function f is analytic in a domain D if it is analytic at every point
in D. The phrase “analytic on a domain D” is also used. Although we shall
not use these terms in this text, a function f that is analytic throughout a
domain D is called holomorphic or regular.

�Very Important You should reread Definition 3.2 carefully. Analyticity at a point is not
the same as differentiability at a point. Analyticity at a point is a neighbor-
hood property ; in other words, analyticity is a property that is defined over
an open set. It is left as an exercise to show that the function f(z) = |z|2 is
differentiable at z = 0 but is not differentiable anywhere else. Even though
f(z) = |z|2 is differentiable at z = 0, it is not analytic at that point because
there exists no neighborhood of z = 0 throughout which f is differentiable;
hence the function f(z) = |z|2 is nowhere analytic. See Problem 19 in Exer-
cises 3.1.

In contrast, the simple polynomial f(z) = z2 is differentiable at every
point z in the complex plane. Hence, f(z) = z2 is analytic everywhere.

Entire Functions A function that is analytic at every point z in the
complex plane is said to be an entire function. In view of differentiation
rules (2), (3), (7), and (5), we can conclude that polynomial functions are
differentiable at every point z in the complex plane and rational functions
are analytic throughout any domain D that contains no points at which the
denominator is zero. The following theorem summarizes these results.
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Theorem 3.1 Polynomial and Rational Functions

(i) A polynomial function p(z) = anz
n + an−1z

n−1 + · · · + a1z + a0,
where n is a nonnegative integer, is an entire function.

(ii) A rational function f(z) =
p(z)
q(z)

, where p and q are polynomial

functions, is analytic in any domain D that contains no point z0 for
which q(z0) = 0.

�1± i are zeros of the denominator
of f .

Singular Points Since the rational function f(z) = 4z/
(
z2 − 2z + 2

)
is discontinuous at 1+ i and 1− i, f fails to be analytic at these points. Thus
by (ii) of Theorem 3.1, f is not analytic in any domain containing one or both
of these points. In general, a point z at which a complex function w = f(z)
fails to be analytic is called a singular point of f . We will discuss singular
points in greater depth in Chapter 6.

If the functions f and g are analytic in a domain D, it can be proved that:

Analyticity of Sum, Product, and Quotient

The sum f(z) + g(z), difference f(z) − g(z), and product f(z)g(z) are
analytic. The quotient f(z)/g(z) is analytic provided g(z) �= 0 in D.

An Alternative Definition of f ′(z) Sometimes it is convenient
to define the derivative of a function f using an alternative form of the differ-
ence quotient ∆w/∆z. Since ∆z = z − z0, then z = z0 + ∆z, and so (1) can
be written as

f ′(z0) = lim
z→z0

f(z)− f(z0)
z − z0

. (12)

In contrast to what we did in Example 1, if we wish to compute f ′ at a
general point z using (12), then we replace z0 by the symbol z after the limit
is computed. See Problems 7–10 in Exercises 3.1.

As in real analysis, if a function f is differentiable at a point, the function
is necessarily continuous at the point. We use the form of the derivative given
in (12) to prove the last statement.

Theorem 3.2 Differentiability Implies Continuity

If f is differentiable at a point z0 in a domain D, then f is continuous
at z0.

Proof The limits lim
z→z0

f(z)− f(z0)
z − z0

and lim
z→z0

(z − z0) exist and equal f ′(z0)

and 0, respectively. Hence by Theorem 2.2(iii) of Section 2.6, we can write
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the following limit of a product as the product of the limits:

lim
z→z0

(f(z)− f(z0)) = lim
z→z0

f(z)− f(z0)
z − z0

· (z − z0)

= lim
z→z0

f(z)− f(z0)
z − z0

· lim
z→z0

(z − z0) = f ′(z0) · 0 = 0.

From lim
z→z0

(f(z)− f(z0)) = 0 we conclude that lim
z→z0

f(z) = f(z0). In view of

Definition 2.9, f is continuous at z0. ✎

Of course the converse of Theorem 3.2 is not true; continuity of a func-
tion f at a point does not guarantee that f is differentiable at the point. It
follows from Theorem 2.3 that the simple function f(z) = x + 4iy is contin-
uous everywhere because the real and imaginary parts of f , u(x, y) = x and
v(x, y) = 4y are continuous at any point (x, y). Yet we saw in Example 3
that f(z) = x+ 4iy is not differentiable at any point z.

As another consequence of differentiability, L’Hôpital’s rule for computing
limits of the indeterminate form 0/0, carries over to complex analysis.

Theorem 3.3 L’Hôpital’s Rule

Suppose f and g are functions that are analytic at a point z0 and
f(z0) = 0, g(z0) = 0, but g′(z0) �= 0. Then

lim
z→z0

f(z)
g(z)

=
f ′(z0)
g′(z0)

. (13)

The task of establishing (13) is neither long nor difficult. You are guided
through the steps of a proof in Problem 33 in Exercises 3.1.

EXAMPLE 4 Using L’Hôpital’s Rule

Compute lim
z→2+i

z2 − 4z + 5
z3 − z − 10i

.

Solution If we identify f(z) = z2 − 4z + 5 and g(z) = z3 − z − 10i, you
should verify that f(2 + i) = 0 and g(2 + i) = 0. The given limit has the
indeterminate form 0/0. Now since f and g are polynomial functions, both
functions are necessarily analytic at z0 = 2 + i. Using

f ′(z) = 2z − 4, g′(z) = 3z2 − 1, f ′(2 + i) = 2i, g′(2 + i) = 8 + 12i,

we see that (13) gives

lim
z→2+i

z2 − 4z + 5
z3 − z − 10i

=
f ′(2 + i)
g′(2 + i)

=
2i

8 + 12i
=

3
26

+
1
13
i.
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In part (b) of Example 4 in Section 2.6 we resorted to the lengthy proce-
dure of factoring and cancellation to compute the limit

lim
z→1+

√
3i

z2 − 2z + 4
z − 1−

√
3i
. (14)

A rereading of that example shows that the limit (14) has the indeterminate
form 0/0. With f(z) = z2 − 2z + 4, g(z) = z − 1−

√
3i, f ′(z) = 2z − 2, and

g′(z) = 1, L’Hôpital’s rule (13) gives immediately

lim
z→1+

√
3i

z2 − 2z + 4
z − 1−

√
3i

=
f ′(1 +

√
3i)

1
= 2

(
1 +
√

3i− 1
)

= 2
√

3i.

Remarks Comparison with Real Analysis

(i) In real calculus the derivative of a function y = f(x) at a point
x has many interpretations. For example, f ′(x) is the slope of the
tangent line to the graph of f at the point (x, f(x)). When the slope
is positive, negative, or zero, the function, in turn, is increasing,
decreasing, and possibly has a maximum or minimum. Also, f ′(x)
is the instantaneous rate of change of f at x. In a physical setting,
this rate of change can be interpreted as velocity of a moving object.
None of these interpretations carry over to complex calculus. Thus
it is fair to ask: What does the derivative of a complex function
w = f(z) represent? Here is the answer: In complex analysis the
primary concern is not what a derivative of function is or represents,
but rather, it is whether a function f actually has a derivative. The
fact that a complex function f possesses a derivative tells us a lot
about the function. As we have just seen, when f is differentiable at
z and at every point in some neighborhood of z, then f is analytic at
the point z. You will see the importance of analytic functions in the
remaining chapters of this book. For example, the derivative plays
an important role in the theory of mappings by complex functions.
Roughly, under a mapping defined by an analytic function f , the
magnitude and sense of an angle between two curves that intersect
a point z0 in the z-plane is preserved in the w-plane at all points at
which f ′(z) �= 0. See Chapter 7.

(ii) We pointed out in the foregoing discussion that f(z) = |z|2 was
differentiable only at the single point z = 0. In contrast, the real
function f(x) = |x|2 is differentiable everywhere. The real func-
tion f(x) = x is differentiable everywhere, but the complex function
f(z) = x = Re(z) is nowhere differentiable.

(iii) The differentiation formulas (2)–(8) are important, but not nearly
as important as in real analysis. In complex analysis we deal with
functions such as f(z) = 4x2 − iy and g(z) = xy + i(x + y), which,
even if they possess derivatives, cannot be differentiated by formulas
(2)–(8).
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(iv) In this section we have not mentioned the concept of higher-order
derivatives of complex functions. We will pursue this topic in depth
in Section 5.5. There is nothing surprising about the definitions of
higher derivatives; they are defined in exactly the same manner as in
real analysis. For example, the second derivative is the derivative of
the first derivative. In the case f(z) = 4z3 we see that f ′(z) = 12z2

and so the second derivative is f ′′(z) = 24z. But there is a major
difference between real and complex variables concerning the exis-
tence of higher-order derivatives. In real analysis, if a function f
possesses, say, a first derivative, there is no guarantee that f pos-
sesses any other higher derivatives. For example, on the interval
(−1, 1), f(x) = x3/2 is differentiable at x = 0, but f ′(x) = 3

2x
1/2 is

not differentiable at x = 0. In complex analysis, if a function f is
analytic in a domain D then, by assumption, f possesses a derivative
at each point in D. We will see in Section 5.5 that this fact alone
guarantees that f possesses higher-order derivatives at all points in
D. Indeed, an analytic function f is infinitely differentiable in D.

(v) The definition of “analytic at a point a” in real analysis differs from
the usual definition of that concept in complex analysis (Definition
3.2). In real analysis, analyticity of a function is defined in terms of
power series: A function y = f(x) is analytic at a point a if f has a
Taylor series at a that represents f in some neighborhood of a. In
view of Remark (iv), why are these two definitions not really that
different?

(vi) As in real calculus, it may be necessary to apply L’Hôpital’s rule
several times in succession to calculate a limit. In other words, if
f(z0), g(z0), f ′(z0), and g′(z0) are all zero, the limit lim

z→z0
f(z)/g (z)

may still exist. In general, if f , g, and their first n − 1 derivatives
are zero at z0 and g(n)(z0) �= 0, then

lim
z→z0

f(z)
g(z)

=
f (n)(z0)
g(n)(z0)

.

EXERCISES 3.1 Answers to selected odd-numbered problems begin on page ANS-12.

In Problems 1–6, use (1) of Definition 3.1 to find f ′(z) for the given function.

1. f(z) = 9iz + 2 − 3i 2. f(z) = 15z2 − 4z + 1 − 3i

3. f(z) = iz3 − 7z2 4. f(z) =
1

z

5. f(z) = z − 1

z
6. f(z) = −z−2

In Problems 7–10, use the alternative definition (12) to find f ′(z) for the given

function.

7. f(z) = 5z2 − 10z + 8 8. f(z) = z3

9. f(z) = z4 − z2 10. f(z) =
1

2iz
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In Problems 11–18, use the rules of differentiation to find f ′(z) for the given function.

11. f(z) = (2 − i)z5 + iz4 − 3z2 + i6 12. f(z) = 5(iz)3 − 10z2 + 3 − 4i

13. f(z) = (z6 − 1)(z2 − z + 1 − 5i) 14. f(z) = (z2 + 2z − 7i)2(z4 − 4iz)3

15. f(z) =
iz2 − 2z

3z + 1 − i
16. f(z) = −5iz2 +

2 + i

z2

17. f(z) =
(
z4 − 2iz2 + z

)10
18. f(z) =

(
(4 + 2i)z

(2 − i)z2 + 9i

)3

19. The function f(z) = |z|2 is continuous at the origin.

(a) Show that f is differentiable at the origin.

(b) Show that f is not differentiable at any point z �= 0.

20. Show that the function

f(z) =




0, z = 0

x3 − y3

x2 + y2
+ i

x3 + y3

x2 + y2
, z �= 0

is not differentiable at z = 0 by letting ∆z → 0 first along the x-axis and then
along the line y = x.

In Problems 21 and 22, proceed as in Example 3 to show that the given function is

nowhere differentiable.

21. f(z) = z̄ 22. f(z) = |z|

In Problems 23–26, use L’Hôpital’s rule to compute the given limit.

23. lim
z→i

z7 + i

z14 + 1
24. lim

z→
√

2+
√

2i

z4 + 16

z2 − 2
√

2z + 4

25. lim
z→1+i

z5 + 4z

z2 − 2z + 2
26. lim

z→
√

2i
z
z3 + 5z2 + 2z + 10

z5 + 2z3

In Problems 27–30, determine the points at which the given function is not analytic.

27. f(z) =
iz2 − 2z

3z + 1 − i
28. f(z) = −5iz2 +

2 + i

z2

29. f(z) =
(
z4 − 2iz2 + z

)10
30. f(z) =

(
(4 + 2i)z

(2 − i)z2 + 9i

)3

Focus on Concepts

31. Suppose f ′(z) exists at a point z. Is f ′(z) continuous at z?

32. (a) Let f(z) = z2. Write down the real and imaginary parts of f and f ′. What
do you observe?

(b) Repeat part (a) for f(z) = 3iz + 2.

(c) Make a conjecture about the relationship between real and imaginary parts
of f versus f ′.
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33. In this problem you are guided through the start of the proof of the proposition:

If functions f and g are analytic at a point z 0 and f(z0) = 0, g(z0) = 0,

but g′(z0) �= 0, then lim
z→z0

f(z)

g(z)
=
f ′(z0)

g′(z0)
.

Proof We begin with the hypothesis that f and g are analytic at a point z0.
Analyticity at z0 implies f and g are differentiable at z0. Hence from (12) both
limits,

f ′(z0) = lim
z→z0

f(z) − f(z0)

z − z0
and g′(z0) = lim

z→z0

g(z) − g(z0)

z − z0

exist. But since f(z0) = 0, g(z0) = 0, the foregoing limits are the same as

f ′(z0) = lim
z→z0

f(z)

z − z0
and g′(z0) = lim

z→z0

g(z)

z − z0
.

Now examine lim
z→z0

f(z)

g(z)
and finish the proof.

34. In this problem you are guided through the start of the proof of the product
rule.

Proof We begin with the hypothesis that f and g are differentiable at a point
z; that is, each of the following limits exist:

f ′(z) = lim
∆z→0

f(z + ∆z) − f(z)

∆z
and g′(z) = lim

∆z→0

g(z + ∆z) − g(z)

∆z

(a) Justify the equality

d

dz
[f(z)g(z)] = lim

∆z→0

f(z + ∆z)g(z + ∆z) − f(z)g(z)

∆z

= lim
∆z→0

[
f(z + ∆z) − f(z)

∆z
g(z + ∆z) + f(z)

g(z + ∆z) − g(z)

∆z

]
.

(b) Use Definition 2.9 to justify lim
∆z→0

g(z + ∆z) = g(z).

(c) Use Theorems 2.2(ii) and 2.2(iii) to finish the proof.

35. In Problem 21 you were asked to prove that f(z) = z̄ was nowhere differentiable.
In the event you used the polar form of the complex number ∆z you may skip
this problem. If you didn’t use ∆z = |∆z| (cos θ + i sin θ), then continue.

(a) If f(z) = z̄, show that

lim
∆z→0

f(z + ∆z) − f(z)

∆z
= lim

∆z→0

cos θ − i sin θ

cos θ + i sin θ
.

(b) Explain succinctly why the result in part (a) shows that f is nowhere
differentiable.
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3.2 Cauchy-Riemann Equations

3.2In the preceding section we saw that a function f of a complex variable z is analytic at a
point z when f is differentiable at z and differentiable at every point in some neighborhood
of z. This requirement is more stringent than simply differentiability at a point because a
complex function can be differentiable at a point z but yet be differentiable nowhere else.
A function f is analytic in a domain D if f is differentiable at all points in D. We shall
now develop a test for analyticity of a complex function f(z) = u(x, y) + iv(x, y) that is
based on partial derivatives of its real and imaginary parts u and v.

A Necessary Condition for Analyticity In the next theorem
we see that if a function f(z) = u(x, y) + iv(x, y) is differentiable at a point
z, then the functions u and v must satisfy a pair of equations that relate their
first-order partial derivatives.

Theorem 3.4 Cauchy-Riemann Equations

Suppose f(z) = u(x, y) + iv(x, y) is differentiable at a point z = x+ iy.
Then at z the first-order partial derivatives of u and v exist and satisfy
the Cauchy-Riemann equations

∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x
. (1)

Proof The derivative of f at z is given by

f ′(z) = lim
∆z→0

f(z + ∆z)− f(z)
∆z

. (2)

By writing f(z) = u(x, y) + iv(x, y) and ∆z = ∆x+ i∆y, (2) becomes

f ′(z) = lim
∆z→0

u(x+ ∆x, y + ∆y) + iv(x+ ∆x, y + ∆y)− u(x, y)− iv(x, y)
∆x+ i∆y

. (3)

Since the limit (2) is assumed to exist, ∆z can approach zero from any con-
venient direction. In particular, if we choose to let ∆z → 0 along a horizontal
line, then ∆y = 0 and ∆z = ∆x. We can then write (3) as

f ′(z) = lim
∆x→0

u(x+ ∆x, y)− u(x, y) + i [v(x+ ∆x, y)− v(x, y)]
∆x

= lim
∆x→0

u(x+ ∆x, y)− u(x, y)
∆x

+ i lim
∆x→0

v(x+ ∆x, y)− v(x, y)
∆x

.

(4)

The existence of f ′(z) implies that each limit in (4) exists. These limits are
the definitions of the first-order partial derivatives with respect to x of u and
v, respectively. Hence, we have shown two things: both ∂u/∂x and ∂v/∂x
exist at the point z, and that the derivative of f is

f ′(z) =
∂u

∂x
+ i
∂v

∂x
. (5)
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We now let ∆z → 0 along a vertical line. With ∆x = 0 and ∆z = i∆y,
(3) becomes

f ′(z) = lim
∆y→0

u(x, y + ∆y)− u(x, y)
i∆y

+ i lim
∆y→0

v(x, y + ∆y)− v(x, y)
i∆y

. (6)

In this case (6) shows us that ∂u/∂y and ∂v/∂y exist at z and that

f ′(z) = −i∂u
∂y

+
∂v

∂y
. (7)

By equating the real and imaginary parts of (5) and (7) we obtain the pair of
equations in (1). ✎

Because Theorem 3.4 states that the Cauchy-Riemann equations (1) hold
at z as a necessary consequence of f being differentiable at z, we cannot use
the theorem to help us determine where f is differentiable. But it is important
to realize that Theorem 3.4 can tell us where a function f does not possess a
derivative. If the equations in (1) are not satisfied at a point z, then f cannot
be differentiable at z. We have already seen in Example 3 of Section 3.1 that
f(z) = x + 4iy is not differentiable at any point z. If we identify u = x and
v = 4y, then ∂u/∂x = 1, ∂v/∂y = 4, ∂u/∂y = 0, and ∂v/∂x = 0. In view of

∂u

∂x
= 1 �= ∂v

∂y
= 4

the two equations in (1) cannot be simultaneously satisfied at any point z. In
other words, f is nowhere differentiable.

It also follows from Theorem 3.4 that if a complex function f(z) =
u(x, y)+iv(x, y) is analytic throughout a domainD, then the real functions u
and v satisfy the Cauchy-Riemann equations (1) at every point
in D.

EXAMPLE 1 Verifying Theorem 3.4

The polynomial function f(z) = z2+z is analytic for all z and can be written as
f(z) = x2−y2+x+i(2xy+y). Thus, u(x, y) = x2−y2+x and v(x, y) = 2xy+y.
For any point (x, y) in the complex plane we see that the Cauchy-Riemann
equations are satisfied:

∂u

∂x
= 2x+ 1 =

∂v

∂y
and

∂u

∂y
= −2y = −∂v

∂x
.
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The contrapositive∗ form of the sentence preceding Example 1 is:

Criterion for Non-analyticity

If the Cauchy-Riemann equations are not satisfied at every point z in a
domain D, then the function f(z) = u(x, y)+ iv(x, y) cannot be analytic
in D.

EXAMPLE 2 Using the Cauchy-Riemann Equations

Show that the complex function f(z) = 2x2 + y + i(y2 − x) is not analytic at
any point.

Solution We identify u(x, y) = 2x2 + y and v(x, y) = y2 − x. From

∂u

∂x
= 4x and

∂v

∂y
= 2y

∂u

∂y
= 1 and

∂v

∂x
= −1

(8)

we see that ∂u/∂y = −∂v/∂x but that the equality ∂u/∂x = ∂v/∂y is satisfied
only on the line y = 2x. However, for any point z on the line, there is no
neighborhood or open disk about z in which f is differentiable at every point.
We conclude that f is nowhere analytic.

A Sufficient Condition for Analyticity By themselves, the
Cauchy-Riemann equations do not ensure analyticity of a function f(z) =
u(x, y) + iv(x, y) at a point z = x + iy. It is possible for the Cauchy-
Riemann equations to be satisfied at z and yet f(z) may not be differentiable
at z, or f(z) may be differentiable at z but nowhere else. In either case, f
is not analytic at z. See Problem 35 in Exercises 3.2. However, when we
add the condition of continuity to u and v and to the four partial derivatives
∂u/∂x, ∂u/∂y, ∂v/∂x, and ∂v/∂y, it can be shown that the Cauchy-Riemann
equations are not only necessary but also sufficient to guarantee analyticity
of f(z) = u(x, y) + iv(x, y) at z. The proof is long and complicated and so
we state only the result.

Theorem 3.5 Criterion for Analyticity

Suppose the real functions u(x, y) and v(x, y) are continuous and have
continuous first-order partial derivatives in a domain D. If u and v satisfy
the Cauchy-Riemann equations (1) at all points of D, then the complex
function f(z) = u(x, y) + iv(x, y) is analytic in D.

∗A proposition “If P , then Q” is logically equivalent to its contrapositive “If not Q, then
not P .”
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EXAMPLE 3 Using Theorem 3.5

For the function f(z) =
x

x2 + y2
− i y

x2 + y2
, the real functions u(x, y) =

x

x2 + y2
and v(x, y) = − y

x2 + y2
are continuous except at the point where

x2 + y2 = 0, that is, at z = 0. Moreover, the first four first-order partial
derivatives

∂u

∂x
=

y2 − x2

(x2 + y2)2
,

∂u

∂y
= − 2xy

(x2 + y2)2
,

∂v

∂x
=

2xy
(x2 + y2)2

, and
∂v

∂y
=

y2 − x2

(x2 + y2)2

are continuous except at z = 0. Finally, we see from

∂u

∂x
=

y2 − x2

(x2 + y2)2
=
∂v

∂y
and

∂u

∂y
= − 2xy

(x2 + y2)2
= − ∂v

∂x

that the Cauchy-Riemann equations are satisfied except at z = 0. Thus we
conclude from Theorem 3.5 that f is analytic in any domain D that does not
contain the point z = 0.

The results in (5) and (7) were obtained under the basic assumption that
f was differentiable at the point z. In other words, (5) and (7) give us a
formula for computing the derivative f ′(z):

f ′(z) =
∂u

∂x
+ i
∂v

∂x
=
∂v

∂y
− i∂u
∂y
. (9)

For example, we already know from part (i) of Theorem 3.1 that f(z) = z2 is
entire and so is differentiable for all z. With u(x, y) = x2 − y2, ∂u/∂x = 2x,
v(x, y) = 2xy, and ∂v/∂y = 2y, we see from (9) that

f ′(z) = 2x+ i2y = 2(x+ iy) = 2z.

Recall that analyticity implies differentiability but not conversely. Theorem
3.5 has an analogue that gives the following criterion for differentiability.

Sufficient Conditions for Differentiability

If the real functions u(x,y) and v(x, y) are continuous and have continu-
ous first-order partial derivatives in some neighborhood of a point z, and
if u and v satisfy the Cauchy-Riemann equations (1) at z, then the com-
plex function f(z) = u(x, y) + iv(x, y) is differentiable at z and f ′(z) is
given by (9).
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EXAMPLE 4 A Function Differentiable on a Line

In Example 2 we saw that the complex function f(z) = 2x2 + y + i(y2 − x)
was nowhere analytic, but yet the Cauchy-Riemann equations were satisfied
on the line y = 2x. But since the functions u(x, y) = 2x2 + y, ∂u/∂x = 4x,
∂u/∂y = 1, v(x, y) = y2−x, ∂v/∂x = −1 and ∂v/∂y = 2y are continuous at
every point, it follows that f is differentiable on the line y = 2x. Moreover,
from (9) we see that the derivative of f at points on this line is given by
f ′(z) = 4x− i = 2y − i.

The following theorem is a direct consequence of the Cauchy-Riemann
equations. Its proof is left as an exercise. See Problems 29 and 30 in Exercises
3.2.

Theorem 3.6 Constant Functions

Suppose the function f(z) = u(x, y)+ iv(x, y) is analytic in a domain D.

(i) If |f (z)| is constant in D, then so is f(z).

(ii) If f ′(z) = 0 in D, then f(z) = c in D, where c is a constant.

Polar Coordinates In Section 2.1 we saw that a complex function
can be expressed in terms of polar coordinates. Indeed, the form f(z) =
u(r, θ) + iv(r, θ) is often more convenient to use. In polar coordinates the
Cauchy-Riemann equations become

∂u

∂r
=

1
r

∂v

∂θ
,

∂v

∂r
= −1

r

∂u

∂θ
. (10)

The polar version of (9) at a point z whose polar coordinates are (r, θ) is
then

f ′(z) = e−iθ

(
∂u

∂r
+ i
∂v

∂r

)
=

1
r
e−iθ

(
∂v

∂θ
− i∂u
∂θ

)
. (11)

See Problems 33 and 34 in Exercises 3.2.

Remarks Comparison with Real Analysis

In real calculus, one of the noteworthy properties of the exponential func-
tion f(x) = ex is that f ′(x) = ex. In (3) of Section 2.1 we gave the def-
inition of the complex exponential f(z) = ez. We are now in a position
to show that f(z) = ez is differentiable everywhere and that this complex
function shares the same derivative property as its real counterpart, that
is, f ′(z) = f(z). See Problem 25 in Exercises 3.2.
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EXERCISES 3.2 Answers to selected odd-numbered problems begin on page ANS-13.

In Problems 1 and 2, the given function is analytic for all z. Show that the Cauchy-

Riemann equations are satisfied at every point.

1. f(z) = z3 2. f(z) = 3z2 + 5z − 6i

In Problems 3–8, show that the given function is not analytic at any point.

3. f(z) = Re(z) 4. f(z) = y + ix

5. f(z) = 4z − 6z̄ + 3 6. f(z) = z̄2

7. f(z) = x2 + y2 8. f(z) =
x

x2 + y2
+ i

y

x2 + y2

In Problems 9–16, use Theorem 3.5 to show that the given function is analytic in

an appropriate domain.

9. f(z) = e−x cos y − ie−x sin y

10. f(z) = x+ sinx cosh y + i(y + cosx sinh y)

11. f(z) = ex2−y2
cos 2xy + iex2−y2

sin 2xy

12. f(z) = 4x2 + 5x− 4y2 + 9 + i(8xy + 5y − 1)

13. f(z) =
x− 1

(x− 1)2 + y2
− i

y

(x− 1)2 + y2

14. f(z) =
x3 + xy2 + x

x2 + y2
+ i

x2y + y3 − y

x2 + y2

15. f(z) =
cos θ

r
− i

sin θ

r

16. f(z) = 5r cos θ + r4 cos 4θ + i(5r sin θ + r4 sin 4θ)

In Problems 17 and 18, find real constants a, b, c, and d so that the given function

is analytic.

17. f(z) = 3x− y + 5 + i(ax+ by − 3)

18. f(z) = x2 + axy + by2 + i(cx2 + dxy + y2)

In Problems 19–22, show that the given function is not analytic at any point but is

differentiable along the indicated curve(s).

19. f(z) = x2 + y2 + 2ixy; x-axis

20. f(z) = 3x2y2 − 6ix2y2; coordinate axes

21. f(z) = x3 + 3xy2 − x+ i(y3 + 3x2y − y); coordinate axes

22. f(z) = x2 − x+ y + i(y2 − 5y − x); y = x+ 2

23. Use (9) to find the derivative of the function in Problem 9.

24. Use (9) to find the derivative of the function in Problem 11.

25. In Section 2.1 we defined the complex exponential function f(z) = ez in the
following manner ez = ex cos y + iex sin y.

(a) Show that f(z) = ez is an entire function.

(b) Show that f ′(z) = f(z)
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26. Show that |f ′(z)|2 = u2
x + v2

x = u2
y + v2

y.

Focus on Concepts

27. Suppose u(x, y) and v(x, y) are the real and imaginary parts of an analytic
function f . Can g(z) = v(x, y) + iu(x, y) be an analytic function? Discuss
and defend your answer with sound mathematics.

28. Suppose f(z) is analytic. Can g(z) = f(z) be analytic? Discuss and defend
your answer with sound mathematics.

29. In this problem you are guided through the start of the proof of the proposition:

If f is analytic in a domain D, and |f(z)| = c, where c is constant,
then f is constant throughout D.

Proof We begin with the hypothesis that |f(z)| = c. If f(z) = u(x, y)+iv(x, y)
then |f(z)|2 = c2 is the same as u2 + v2 = c2. The partial derivatives of the
last expression with respect to x and y are respectively

2uux + 2vvx = 0 and 2uuy + 2vvy = 0.

Complete the proof by using the Cauchy-Riemann equations to replace vx and
vy in the last pair of equations. Then solve for ux and uy and draw a conclusion.
Use the Cauchy-Riemann equations again and solve for vx and vy.

30. In this problem you are guided through the start of the proof of the proposition:

If f is analytic in a domain D, and f ′(z) = 0, then f is constant
throughout D.

Proof We begin with the hypothesis that f is analytic in D and hence it is
differentiable throughout D. Hence by (9) of this section and the assumption

that f ′(z) = 0 in D, we have f ′(z) =
∂u

∂x
+ i

∂v

∂x
= 0. Now complete the proof.

31. Use the proposition in Problem 30 to show that if f and g are analytic and
f ′(z) = g′(z), then f(z) = g(z) + c, where c is a constant. [Hint : Form
h(z) = f(z) − g(z).]

32. If f(z) and f (z) are both analytic in a domain D, then what can be said about
f throughout D?

33. Suppose x = r cos θ, y = r sin θ, and f(z) = u(x, y) + iv(x, y). Show that

∂u

∂r
=
∂u

∂x
cos θ +

∂u

∂y
sin θ,

∂u

∂θ
= −∂u

∂x
r sin θ +

∂u

∂y
r cos θ (12)

∂v

∂r
=
∂v

∂x
cos θ +

∂v

∂y
sin θ,

∂v

∂θ
= −∂v

∂x
r sin θ +

∂v

∂y
r cos θ. (13)and

Now use (1) in the foregoing expressions for vr and vθ. By comparing your re-
sults with the expressions for ur and uθ, deduce the Cauchy-Riemann equations
in polar coordinates given in (10).

34. Suppose the function f(z) = u(r, θ) + iv(r, θ) is differentiable at a point z
whose polar coordinates are (r, θ). Solve the two equations in (12) for ux and
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then solve the two equations in (13) for vx. Then show that the derivative of f
at (r, θ) is

f ′(z) = (cos θ − i sin θ)

(
∂u

∂r
+ i

∂v

∂r

)
= e−iθ

(
∂u

∂r
+ i

∂v

∂r

)
.

35. Consider the function

f(z) =




0, z = 0

z5

|z4| , z �= 0.

(a) Express f in the form f(z) = u(x, y) + iv(x, y),

(b) Show that f is not differentiable at the origin.

(c) Show that the Cauchy-Riemann equations are satisfied at the origin. [Hint :
Use the limit definitions of the partial derivatives ∂u/∂x, ∂u/∂y, ∂v/∂x,
and ∂v/∂y at (0, 0).]

3.3 Harmonic Functions
3.3In Section 5.5 we shall see that when a complex function f(z) = u(x, y) + iv(x, y) is

analytic at a point z, then all the derivatives of f : f ′(z), f ′′(z), f ′′′(z), ... are also analytic
at z. As a consequence of this remarkable fact, we can conclude that all partial derivatives
of the real functions u(x, y) and v(x, y) are continuous at z. From the continuity of the
partial derivatives we then know that the second-order mixed partial derivatives are equal.
This last fact, coupled with the Cauchy-Riemann equations, will be used in this section to
demonstrate that there is a connection between the real and imaginary parts of an analytic
function f(z) = u(x, y) + iv(x, y) and the second-order partial differential equation

∂2φ

∂x2
+
∂2φ

∂y2
= 0. (1)

This equation, one of the most famous in applied mathematics, is known as Laplace’s

equation in two variables. The sum
∂2φ

∂x2
+
∂2φ

∂y2
of the two second partial derivatives in (1)

is denoted by ∇2φ and is called the Laplacian of φ. Laplace’s equation is then abbreviated
as ∇2φ = 0.

Harmonic Functions A solution φ(x, y) of Laplace’s equation (1)
in a domain D of the plane is given a special name.

Definition 3.3 Harmonic Functions

A real-valued function φ of two real variables x and y that has continu-
ous first and second-order partial derivatives in a domain D and satisfies
Laplace’s equation is said to be harmonic in D.

Harmonic functions are encountered in the study of temperatures and
potentials.
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Theorem 3.7 Harmonic Functions

Suppose the complex function f(z) = u(x, y) + iv(x, y) is analytic in a
domain D. Then the functions u(x, y) and v(x, y) are harmonic in D.

Proof Assume f(z) = u(x, y) + iv(x, y) is analytic in a domain D and that
u and v have continuous second-order partial derivatives in D.† Since f is
analytic, the Cauchy-Riemann equations are satisfied at every point z. Differ-
entiating both sides of ∂u/∂x = ∂v/∂y with respect to x and differentiating
both sides of ∂u/∂y = −∂v/∂x with respect to y give, respectively,

∂2u

∂x2
=

∂2v

∂x∂y
and

∂2u

∂y2
= − ∂2v

∂y∂x
. (2)

With the assumption of continuity, the mixed partials ∂2v/∂x∂y and ∂2v/∂y∂x
are equal. Hence, by adding the two equations in (2) we see that

∂2u

∂x2
+
∂2u

∂y2
= 0 or ∇2u = 0.

This shows that u(x, y) is harmonic.
Now differentiating both sides of ∂u/∂x = ∂v/∂y with respect to y and

differentiating both sides of ∂u/∂y = −∂v/∂x with respect to x, give, in turn,
∂2u/∂y∂x = ∂2v/∂y

2 and ∂2u/∂x∂y = −∂2v/∂2x. Subtracting the last two
equations yields ∇2v = 0. ✎

EXAMPLE 1 Harmonic Functions

The function f(z) = z2 = x2 − y2 + 2xyi is entire. The functions u(x, y) =
x2 − y2 and v(x, y) = 2xy are necessarily harmonic in any domain D of the
complex plane.

Harmonic Conjugate Functions We have just shown that if a
function f(z) = u(x, y) + iv(x, y) is analytic in a domain D, then its real
and imaginary parts u and v are necessarily harmonic in D. Now suppose
u(x, y) is a given real function that is known to be harmonic in D. If it is
possible to find another real harmonic function v(x, y) so that u and v satisfy
the Cauchy-Riemann equations throughout the domain D, then the function
v(x, y) is called a harmonic conjugate of u(x, y). By combining the func-
tions as u(x, y) + iv(x, y) we obtain a function that is analytic in D.

†The continuity of the second-order partial derivatives of u and v is not part of the
hypothesis of the theorem. This fact will be proved in Chapter 5.
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EXAMPLE 2 Harmonic Conjugate

(a) Verify that the function u(x, y) = x3−3xy2−5y is harmonic in the entire
complex plane.

(b) Find the harmonic conjugate function of u.

Solution

(a) From the partial derivatives

∂u

∂x
= 3x2 − 3y2,

∂2u

∂x2
= 6x,

∂u

∂y
= −6xy − 5,

∂2u

∂y2
= −6x

we see that u satisfies Laplace’s equation

∂2u

∂x2
+
∂2u

∂y2
= 6x− 6x = 0.

(b) Since the conjugate harmonic function v must satisfy the Cauchy-Riemann
equations ∂v/∂y = ∂u/∂x and ∂v/∂x = −∂u/∂y, we must have

∂v

∂y
= 3x2 − 3y2 and

∂v

∂x
= 6xy + 5. (3)

Partial integration of the first equation in (3) with respect to the variable
y gives v(x, y) = 3x2y− y3 +h(x). The partial derivative with respect to
x of this last equation is

∂v

∂x
= 6xy + h′(x).

When this result is substituted into the second equation in (3) we obtain
h′(x) = 5, and so h(x) = 5x+ C, where C is a real constant. Therefore,
the harmonic conjugate of u is v(x, y) = 3x2y − y3 + 5x+ C.

In Example 2, by combining u and its harmonic conjugate v as u(x, y) +
iv(x, y), the resulting complex function

f(z) = x3 − 3xy2 − 5y + i(3x2 − y3 + 5x+ C)

is an analytic function throughout the domainD consisting, in this case, of the
entire complex plane. In Example 1, since f(z) = z2 = x2−y2+2xyi is entire,
the real function v(x, y) = 2xy is the harmonic conjugate of u(x, y) = x2−y2.
See Problem 20 in Exercises 3.3.
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Remarks Comparison with Real Analysis

In this section we have seen if f(z) = u(x, y) + iv(x, y) is an analytic
function in a domain D, then both functions u and v satisfy ∇2φ = 0
in D. There is another important connection between analytic functions
and Laplace’s equation. In applied mathematics it is often the case that
we wish to solve Laplace’s equation ∇2φ = 0 in a domain D in the xy-
plane, and for reasons that depend in a very fundamental manner on the
shape of D, it simply may not be possible to determine φ. But it may be
possible to devise a special analytic mapping f(z) = u(x, y)+ iv(x, y) or

u = u(x, y), v = v(x, y), (4)

from the xy-plane to the uv-plane so that D′, the image of D under
(4), not only has a more convenient shape but the function φ (x, y) that
satisfies Laplace’s equation in D also satisfies Laplace’s equation in D′.
We then solve Laplace’s equation in D′ (the solution Φ will be a function
of u and v) and then return to the xy-plane and φ (x, y) by means of (4).
This invariance of Laplace’s equation under the mapping will be utilized
in Chapters 4 and 7. See Figure 3.2.

y

x

z
w

D D′

v

u

w = f (z)

∇2φ = 0
∇2 = 0Φ

Figure 3.2 A solution of Laplace’s equation in D is found by solving it in D′.

EXERCISES 3.3 Answers to selected odd-numbered problems begin on page 000.

In Problems 1–8, verify that the given function u is harmonic in an appropriate

domain D.

1. u(x, y) = x 2. u(x, y) = 2x− 2xy

3. u(x, y) = x2 − y2 4. u(x, y) = x3 − 3xy2

5. u(x, y) = loge(x
2 + y2) 6. u(x, y) = cosx cosh y

7. u(x, y) = ex(x cos y − y sin y) 8. u(x, y) = −e−x sin y

9. For each of the functions u(x, y) in Problems 1, 3, 5, and 7, find v(x, y), the
harmonic conjugate of u. Form the corresponding analytic function f(z) =
u+ iv.

10. Repeat Problem 9 for each of the functions u(x, y) in Problems 2, 4, 6, and 8.
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In Problems 11 and 12, verify that the given function u is harmonic in an appropriate

domain D. Find its harmonic conjugate v and find analytic function f(z) = u+ iv

satisfying the indicated condition.

11. u(x, y) = xy + x+ 2y; f(2i) = −1 + 5i

12. u(x, y) = 4xy3 − 4x3y + x; f(1 + i) = 5 + 4i

13. (a) Show that v(x, y) =
x

x2 + y2
is harmonic in a domain D not containing

the origin.

(b) Find a function f(z) = u(x, y) + iv(x, y) that is analytic in domain D.

(c) Express the function f found in part (b) in terms of the symbol z.

14. Suppose f(z) = u(r, θ) + iv(r, θ) is analytic in a domain D not containing
the origin. Use the Cauchy-Riemann equations (10) of Section 3.2 in the form
rur = vθ and rvr = −uθ to show that u(r, θ) satisfies Laplace’s equation in
polar coordinates:

r2
∂2u

∂r2
+ r

∂u

∂r
+
∂2u

∂θ2
= 0. (5)

In Problems 15 and 16, use (5) to verify that the given function u is harmonic in a

domain D not containing the origin.

15. u(r, θ) = r3 cos 3θ

16. u(r, θ) =
10r2 − sin 2θ

r2

Focus on Concepts

17. (a) Verify that u(x, y) = ex2−y2
cos 2xy is harmonic in an appropriate

domain D.

(b) Find its harmonic conjugate v and find analytic function f(z) = u+ iv sat-
isfying f(0) = 1. [Hint : When integrating, think of reversing the product
rule.]

18. Express the function f found in Problem 11 in terms of the symbol z.

19. (a) Show that φ(x, y, z) =
1√

x2 + y2 + z2
is harmonic, that is, satisfies Laplace’s

equation
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
= 0 in a domain D of space not containing the

origin.

(b) Is the two-dimensional analogue of the function in part (a), φ(x, y) =
1√

x2 + y2
, harmonic in a domain D of the plane not containing the origin?

20. Construct an example accompanied by a brief explanation that illustrates the
following fact:

If v is a harmonic conjugate of u in some domain D, then u is, in
general, not a harmonic conjugate of v.

21. If f(z) = u(x, y)+ iv(x, y) is an analytic function in a domain D and f(z) �= 0
for all z in D, show that φ(x, y) = loge |f(z)| is harmonic in D.
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22. In this problem you are guided through the start of the proof of the proposition:

If u(x, y) is a harmonic function and v(x, y) is its harmonic con-
jugate, then the function φ(x, y) = u(x, y)v(x, y) is harmonic.

Proof Suppose f(z) = u(x, y) + iv(x, y) is analytic in a domain D. We saw
in Section 3.1 that the product of two analytic functions is analytic. Hence
[f(z)]2 is analytic. Now examine [f(z)]2 and finish the proof.

3.4 Applications

3.4In Section 3.3 we saw that if the function f(z) = u(x, y)+iv(x, y) is analytic in a domainD,
then the real and imaginary parts of f are harmonic; that is, both u and v have continuous
second-partial derivatives and satisfy Laplace’s equation in D:

∂2u

∂x2
+
∂2u

∂y2
= 0 and

∂2v

∂x2
+
∂2v

∂y2
= 0. (1)

Conversely, if we know that a function u(x, y) is harmonic in D, we can find a unique (up
to an additive constant) harmonic conjugate v(x, y) and construct a function f(z) that is
analytic in D.

In the physical sciences and engineering, Laplace’s partial differential equation is often
encountered as a mathematical model of some time-independent phenomenon, and in that
context the problem we face is to solve the equation subject to certain physical side con-
ditions called boundary conditions. See Problems 11–14 in Exercises 3.4. Because of the
link displayed in (1), analytic functions are the source of an unlimited number of solutions
of Laplace’s equation, and we may be able to find one that fits the problem at hand. See
Sections 4.5 and 7.5. This is just one reason why the theory of complex variables is so
essential in the serious study of applied mathematics.

We begin this section by showing that the level curves of the real and imaginary parts
of an analytic function f(z) = u(x, y) + iv(x, y) are two orthogonal families of curves.

Orthogonal Families Suppose the function f(z) = u(x, y)+iv(x, y)
is analytic in some domain D. Then the real and imaginary parts of f can be
used to define two families of curves in D. The equations

u(x, y) = c1 and v(x, y) = c2, (2)

L2

L1

(x0, y0)

u(x, y) = u0

v(x, y) = v0

Figure 3.3 Tangents L1 and L2 at

point of intersection z0 are

perpendicular.

where c1 and c2 are arbitrary real constants, are called level curves of u and
v, respectively. The level curves (2) are orthogonal families. Roughly, this
means that each curve in one family is orthogonal to each curve in the other
family. More precisely, at a point of intersection z0 = x0 + iy0, where we shall
assume that f ′(z0) �= 0, the tangent line L1 to the level curve u(x, y) = u0

and the tangent line L2 to the level curve v(x, y) = v0 are perpendicular.
See Figure 3.3. The numbers u0 and v0 are defined by evaluating u and v
at z0, that is, c1 = u(x0, y0) = u0 and c2 = v(x0, y0) = v0. To prove
that L1 and L2 are perpendicular at z0 we demonstrate that the slope of one
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tangent is the negative reciprocal of the slope of the other by showing that the
product of the two slopes is −1. We begin by differentiating u(x, y) = u0 and
v(x, y) = v0 with respect to x using the chain rule of partial differentiation:

∂u

∂x
+
∂u

∂y

dy

dx
= 0 and

∂v

∂x
+
∂v

∂y

dy

dx
= 0.

We then solve each of the foregoing equations for dy/dx:
slope of a tangent to curve u(x, y) = u0︷ ︸︸ ︷

dy

dx
= −∂u/∂x

∂u/∂y
,

slope of a tangent to curve v(x, y) = v0︷ ︸︸ ︷
dy

dx
= −∂v/∂x

∂v/∂y
, (3)

At (x0, y0) we see from (3), the Cauchy-Reimann equations ux = vy,
uy = −vx, and from f ′(z0) �= 0, that the product of the two slope functions is(

−∂u/∂x
∂u/∂y

) (
−∂v/∂x
∂v/∂y

)
=

(
∂v/∂y
∂v/∂x

) (
−∂v/∂x
∂v/∂y

)
= −1. (4)

EXAMPLE 1 Orthogonal Families

For f(z) = z2 = x2−y2+2xyi we identify u(x, y) = x2−y2 and v(x, y) = 2xy.
For this function, the families of level curves x2 − y2 = c1 and 2xy = c2 are
two families of hyperbolas. Since f is analytic for all z, these families are
orthogonal. At a specific point, say, z0 = 2 + i we find 22 − 12 = 3 = c1 and
2(2)(1) = 4 = c2 and two corresponding orthogonal curves are x2 − y2 = 3
and xy = 2. Inspection of Figure 3.4(a) shows x2−y2 = 3 in color and xy = 2
in black; the curves are orthogonal at z0 = 2 + i (and at −2− i, by symmetry
of the curves). In Figure 3.4(b) both families are superimposed on the same
coordinate axes, the curves in the family x2 − y2 = c1 are drawn in color
whereas the curves in family 2xy = c2 are in black.

y

x

(a) Curves are orthogonal at points
      of intersection

(b) Families x2 – y2 = c1 and 
       2xy = c2

(2, 1)

(–2, –1)

y

x

Figure 3.4 Orthogonal families

Gradient Vector In vector calculus, if f(x, y) is a differentiable scalar
function, then the gradient of f , written either grad f or ∇f (the symbol



166 Chapter 3 Analytic Functions

∇ is called a nabla or del), is defined to be the two-dimensional vector

∇f =
∂f

∂x
i +

∂ f

∂y
j. (5)

Tangent

Level curve

(x0, y0)

f(x, y) = c0

f(x0, y0)∇

Figure 3.5 Gradient is perpendicular

to level curve at (x0, y0)

As shown in color in Figure 3.5, the gradient vector ∇f(x0, y0) at a point
(x0, y0) is perpendicular to the level curve of f(x, y) passing through that
point, that is, to the level curve f(x, y) = c0, where c0 = f(x0, y0). To
see this, suppose that x = g(t), y = h(t), where x0 = g(t0), y0 = h(t0)
are parametric equations for the curve f(x, y) = c0. Then the derivative of
f(x(t), y(t)) = c0 with respect to t is

∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
= 0. (6)

This last result is the dot product of (5) with the tangent vector r′(t) = x′(t)i+
y′(t)j. Specifically, at t = t0, (6) shows that if r′(t0) �= 0, then
∇f(x0, y0) · r′(t0) = 0. This means that ∇f is perpendicular to the level
curve at (x0, y0).

Gradient Fields As discussed in Section 2.7, in complex analysis
two-dimensional vector fields F(x, y) = P (x, y)i +Q(x, y)j, defined in some
domain D of the plane, are of interest to us because F can be represented
equivalently as a complex function f(z) = P (x, y) + iQ(x, y). Of particular
importance in science are vector fields that can be written as the gradient of
some scalar function φ with continuous second partial derivatives. In other
words, F(x, y) = P (x, y)i +Q(x, y)j is the same as

F(x, y) = ∇φ =
∂φ

∂x
i +

∂φ

∂y
j, (7)

where P (x, y) = ∂φ/∂x and Q(x, y) = ∂φ/∂y. Such a vector field F is
called a gradient field and φ is called a potential function or simply the
potential for F. Gradient fields occur naturally in the study of electricity
and magnetism, fluid flows, gravitation, and steady-state temperatures. In a
gradient force field, such as a gravitational field, the work done by the force
upon a particle moving from position A to position B is the same for all paths
between these points. Moreover, the work done by the force along a closed
path is zero; in other words, the law of conservation of mechanical energy
holds: kinetic energy + potential energy = constant. For this reason, gradient
fields are also known as conservative fields.

�Note

In the study of electrostatics the electric field intensity F due to a collec-
tion of stationary charges in a region of the plane is given by F(x, y) = −∇φ,
where the real-valued function φ(x, y) is called the electrostatic potential.
Gauss’ law asserts that the divergence of the field F, that is, ∇ ·F, is propor-
tional to the charge density ρ, where ρ is a scalar function. If the region of the
plane is free of charges, then the divergence of F is zero‡: ∇·F = ∇·(−∇φ) = 0
or ∇2φ = 0. In other words: The potential function φ satisfies Laplace’s equa-
tion and is therefore harmonic in some domain D.

‡The electrostatic potential is then due to charges that are either outside the charge-free
region or on the boundary of the region.
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Complex Potential In general, if a potential function φ(x, y) satis-
fies Laplace’s equation in some domain D, it is harmonic, and we know from
Section 3.3 that there exists a harmonic conjugate function ψ(x, y) defined
in D so that the complex function

Ω(z) = φ(x, y) + iψ(x, y) (8)

is analytic in D. The function Ω(z) in (8) is called the complex potential
corresponding to the real potential φ. As we have seen in the initial discussion
of this section, the level curves of φ and ψ are orthogonal families. The level
curves of φ, φ(x, y) = c1, are called equipotential curves—that is, curves
along which the potential is constant. In the case in which φ represents
electrostatic potential, the electric field intensity F must be along the family
of curves orthogonal to the equipotential curves because the force of the field
is the gradient of the potential φ, F(x, y) = −∇φ, and as demonstrated in
(6), the gradient vector at a point (x0, y0) is perpendicular to a level curve of
φ at (x0, y0). For this reason the level curves ψ(x, y) = c2, curves that are
orthogonal to the family φ(x, y) = c1, are called lines of force and are the
paths along which a charged particle will move in the electrostatic field. See
Figure 3.6.

Lines of force
 = c2

Lower
potential

Higher
potential

ψ

Equipotential curves
 = c1φ

Figure 3.6 Electric field

Ideal Fluid In fluid mechanics a flow is said to be two-dimensional
or a planar flow if the fluid (which could be water, or even air, moving at
slow speeds) moves in planes parallel to the xy-plane and the motion and
physical properties of the fluid in each plane is precisely the same manner as
it is in the xy-plane. Suppose F(x, y) is the two-dimensional velocity field of
a nonviscous fluid that is incompressible, that is, a fluid for which div F =
0 or ∇ · F = 0. The flow is irrotational if curl F = 0 or ∇ × F = 0.§ An
incompressible fluid whose planar flow is irrotational is said to be an ideal
fluid. The velocity field F of an ideal fluid is a gradient field and can be repre-
sented by (7), where φ is a real-valued function called a velocity potential.
The level curves φ(x, y) = c1 are called equipotential curves or simply
equipotentials. Moreover, φ satisfies Laplace’s equation because div F = 0
is equivalent to ∇ · F = ∇ · (∇φ) = 0 or ∇2φ = 0 and so φ is harmonic. The
harmonic conjugate ψ(x, y) is called the stream function and its level curves
ψ(x, y) = c2 are called streamlines. Streamlines represent the actual paths
along which particles in the fluid will move. The function Ω(z) = φ(x, y) +
iψ(x, y) is called the complex velocity potential of the flow. See Fig-
ure 3.7.

Streamlines     = c2ψ

Equipotential curves
 = c1φ

y

x

Figure 3.7 Fluid flow

Heat Flow Finally, if φ(x, y) represents time-independent or steady-
state temperature that satisfies Laplace’s equation, then the level curves
φ(x, y) = c1 are curves along which the temperature is constant and are
called isotherms. The level curves ψ(x, y) = c2 of the harmonic conjugate
function of φ are the curves along which heat flows and are called flow lines
or flux lines. See Figure 3.8.

Flow lines or
flux lines

     = c2

Higher
temperature

Lower
temperature

ψ

y

x

Isotherms
  = c1φ

Figure 3.8 Flow of heat

§We will discuss fluid flow in greater detail in Section 5.6.
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Table 3.1 summarizes some of the applications of the complex potential
function Ω(z) and the names given to the level curves

φ(x, y) = c1 and ψ(x, y) = c2.

Application Level curves φ (x, y) = c1 Level curves ψ (x, y) = c2

electrostatics equipotential curves lines of force

fluid flow equipotential curves streamlines of flow

gravitation equipotential curves lines of force

heat flow isotherms lines of heat flux

Table 3.1 Complex potential function Ω(z) = φ(x, y) + iψ(x, y)

Dirichlet Problems A classical and important problem in applied
mathematics involving Laplace’s equation is illustrated in Figure 3.9 and put
into words next.

φ

y

D

C

x

∇2φ = 0 in D

Find     so that

φand     = g
on C

Figure 3.9 Dirichlet problem

Dirichlet Problem

Suppose that D is a domain in the plane and that g is a function defined
on the boundary C of D. The problem of finding a function φ(x, y), which
satisfies Laplace’s equation in D and which equals g on the boundary C
of D is called a Dirichlet problem .

Such problems arise frequently in the two-dimensional modeling of electro-
statics, fluid flow, gravitation, and heat flow.

In the next example we solve a Dirichlet problem. Although the problem
is quite simple, its solution will aid us in the solution of another problem in
Section 4.5.

y

x

∇2φ = 0

φ = k0 φ = k1

–1 1

Figure 3.10 Figure for Example 2

EXAMPLE 2 A Simple Dirichlet Problem

Solve the Dirichlet problem illustrated in Figure 3.10. The domain D is a
vertical infinite strip defined by −1 < x < 1, −∞ < y < ∞; the boundaries
of D are the vertical lines x = −1 and x = 1.

Solution The Dirichlet problem in Figure 3.10 is:

Solve:
∂2φ

∂x2
+
∂2φ

∂y2
= 0, −1 < x < 1, −∞ < y <∞. (9)

Subject to: φ(−1, y) = k0, φ(1, y) = k1, −∞ < y <∞, (10)

where k0 and k1 are constants.
The shape of D along with the fact that the two boundary conditions

are constant suggest that the function φ is independent of y; that is, it is
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reasonable to try to seek a solution of (9) of the form φ(x). With this latter
assumption, Laplace’s partial differential equation (9) becomes the ordinary
differential equation d2φ/dx2 = 0. Integrating twice gives the general solution
φ(x) = ax+b. The boundary conditions enable us to solve for the coefficients a
and b. In particular, from φ(−1) = k0 and φ(1) = k1 we must have a(−1)+b =
k0 and a(1) + b = k1, respectively. Adding the two simultaneous equations
gives 2b = k0 + k1, whereas subtracting the first equation from the second
yields 2a = k1 − k0. These two results give us a and b:

b =
k1 + k0

2
and a =

k1 − k0
2

.

�In Section 4.5, for purposes that will
be clear there, solution (11) will be
denoted as φ (x, y).

Therefore, we have the following solution of the given Dirichlet problem

φ(x) =
k1 − k0

2
x+

k1 + k0
2

. (11)

The problem in Example 2 can be interpreted as the determination the
electrostatic potential φ between two infinitely long parallel conducting plates
that are held at constant potentials. Since it satisfies Laplace’s equation in
D, φ is a harmonic function. Hence a harmonic conjugate ψ can be found
as follows. Because φ and ψ must satisfy the Cauchy-Riemann equations, we
have:

∂ψ

∂y
=
∂φ

∂x
=
k1 − k0

2
and

∂ψ

∂x
= −∂φ

∂y
= 0.

The second equation indicates that ψ is a function of y alone, and so integrat-
ing the first equation with respect to y we obtain:

ψ(y) =
k1 − k0

2
y,

where, for convenience, we have taken the constant of integration to be 0.
From (8), a complex potential function for the Dirichlet problem in Example
2 is then Ω(z) = φ(x) + iψ(y), or

Ω(z) =
k1 − k0

2
x +

k1 + k0
2

+ i
k1 − k0

2
y.

y

x

φ = k0 φ = k1

–1 1

Figure 3.11 The equipotential curves

and lines of force for Example 2

The level curves of φ or equipotential curves∗ are the vertical lines x = c1
shown in color in Figure 3.11, and the level curves of ψ or the lines of force
are the horizontal line segments y = c2 shown in black. The figure clearly
shows that the two families of level curves are orthogonal.

∗The level curves of φ are φ(x) = C1 or 1
2

(k1 − k0)x + 1
2

(k1 + k0) = C1. Solving for

x gives x =
(
C1 − 1

2
k1 − k0

)/
1
2

(k1 − k0). Set the constant on the right side of the last
equation equal to c1.
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Remarks

In Section 4.5 and in Chapter 7 we shall introduce a method which enables
us to solve Dirichlet problems using analytic mappings.

EXERCISES 3.4 Answers to selected odd-numbered problems begin on page ANS-13.

In Problems 1–4, identify the two families of level curves defined by the given analytic

function f . By hand, sketch two curves from each family on the same coordinate

axes.

1. f(z) = 2iz − 3 + i 2. f(z) = (z − 1)2

3. f(z) =
1

z
4. f(z) = z +

1

z

In Problems 5–8, the given analytic function f(z) = u + iv defines two families of

level curves u(x, y) = c1 and v(x, y) = c2. First use implicit differentiation to

compute dy/dx for each family and then verify that the families are orthogonal.

5. f(z) = x− 2x2 + 2y2 + i(y − 4xy)

6. f(z) = x3 − 3xy2 + i(3x2y − y3)

7. f(z) = e−x cos y − ie−x sin y

8. f(z) = x+
x

x2 + y2
+ i

(
y − y

x2 + y2

)

In Problems 9 and 10, the given real-valued function φ is the velocity potential for

the planar flow of an incompressible and irrotational fluid. Find the velocity field F

of the flow. Assume an appropriate domain D of the plane.

9. φ(x, y) =
x

x2 + y2
10. φ(x, y) = 1

2
A loge

(
x2 + (y + 1)2

)
, A > 0

11. (a) Find the potential φ if the domainD in Figure 3.10 is replaced by 0 < x < 1,
−∞ < y < ∞, and the potentials on the boundaries are φ(0, y) = 50,
φ(1, y) = 0.

(b) Find the complex potential Ω(z).

12. (a) Find the potential φ in the domain D between the two infinitely long con-
ducting plates parallel to the x-axis shown in Figure 3.12 if the potentials
on the boundaries are φ(x, −1) = 10 and φ(x, 2) = 20.

(b) Find the complex potential Ω(z).

(c) Sketch the equipotential curves and the lines of force.

y

φ = 20

φ = 10
–1

2

Figure 3.12 Figure for Problem 12

13. The potential φ(θ) between the two infinitely long conducting plates forming
an infinite wedge shown in Figure 3.13 satisfies Laplace’s equation in polar
coordinates in the form

d2φ

dθ2
= 0.

φ

π

= 30

φ = 0

/4

y

x

Figure 3.13 Figure for Problem 13
(a) Solve the differential equation subject to the boundary conditions

φ(π/4) = 30 and φ(0) = 0.
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(b) Find the complex potential Ω(z).

(c) Sketch the equipotential curves and the lines of force.

14. The steady-state temperature φ(r) between the two concentric circular con-
ducting cylinders shown in Figure 3.14 satisfies Laplace’s equation in polar
coordinates in the form

r2
d2φ

dr2
+ r

dφ

dr
= 0.

x

y

a
b

φ = k1

φ = k0

Figure 3.14 Figure for Problem 14

(a) Show that a solution of the differential equation subject to the bound-
ary conditions φ(a) = k0 and φ(b) = k1, where k0 and k1 are constant
potentials, is given by φ(r) = A loge r +B, where

A =
k0 − k1

loge(a/b)
and B =

−k0 loge b+ k1 loge a

loge(a/b)
.

[Hint : The differential equation is known as a Cauchy-Euler equation.]

(b) Find the complex potential Ω(z).

(c) Sketch the isotherms and the lines of heat flux.

Focus on Concepts

15. Consider the function f(z) = z +
1

z
. Describe the level curve v(x, y) = 0.

16. The level curves of u(x, y) = x2 − y2 and v(x, y) = 2xy discussed in Example
1 intersect at z = 0. Sketch the level curves that intersect at z = 0. Explain
why these level curves are not orthogonal.

17. Reread the discussion on orthogonal families on page 165 that includes the proof
that the tangent lines L1 and L2 are orthogonal. In the proof that concludes
with (4), explain where the assumption f ′(z0) �= 0 is used.

18. Suppose the two families of curves u(x, y) = c1 and v(x, y) = c2, are orthogonal
trajectories in a domain D. Discuss: Is the function f(z) = u(x, y) + iv(x, y)
necessarily analytic in D?

Computer Lab Assignments

In Problems 19 and 20, use a CAS or graphing software to plot some representative

curves in each of the orthogonal families u(x, y) = c1 and v(x, y) = c2 defined by

the given analytic function first on different coordinate axes and then on the same

set of coordinate axes.

19. f(z) =
z − 1

z + 1
20. f(z) =

√
r

(
cos

θ

2
+ i sin

θ

2

)
, r > 0, −π < θ < π

21. The function Ω(z) = A

(
z +

1

z

)
, A > 0, is a complex potential of a two-

dimensional fluid flow.

(a) Assume A = 1. Determine the potential function φ(x, y) and stream
function ψ(x, y) of the flow.

(b) Express the potential function φ and stream function ψ in terms of polar
coordinates.
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(c) Use a CAS or graphing software to plot representative curves from each
of the orthogonal families φ(r, θ) = c1 and ψ(r, θ) = c2 on the same
coordinate axes.

22. The function Ω(z) = loge

∣∣∣∣z + 1

z − 1

∣∣∣∣ + iArg

(
z + 1

z − 1

)
is a complex potential of a

two-dimensional electrostatic field.

(a) Show that the equipotential curves φ(x, y) = c1 and the lines of force
ψ(x, y) = c1 are, respectively

(x− coth c1)
2 + y2 = csch2 c1 and x2 + (y + cot c2)

2 = csc2 c2.

Observe that the equipotential curves and the lines of force are both fam-
ilies of circles.

(b) The centers of the equipotential curves in part (a) are (coth c1, 0). Approx-
imately, where are the centers located when c1 → ∞? When c1 → −∞?
Where are the centers located when c1 → 0+? When c1 → 0−?

(c) Verify that each circular line of force passes through z = 1 and through
z = −1.

(d) Use a CAS or graphing software to plot representative circles from each
family on the same coordinate axes. If you use a CAS do not use the
contour plot application.

CHAPTER 3 REVIEW QUIZ
Answers to selected odd-numbered problems begin
on page ANS-13.

In Problems 1–12, answer true or false. If the statement is false, justify your answer

by either explaining why it is false or giving a counterexample; if the statement is

true, justify your answer by either proving the statement or citing an appropriate

result in this chapter.

1. If a complex function f is differentiable at point z, then f is analytic at z.

2. The function is f(z) =
y

x2 + y2
+ i

x

x2 + y2
differentiable for all z �= 0.

3. The function f(z) = z2 + z is nowhere analytic.

4. The function f(z) = cos y − i sin y is nowhere differentiable.

5. There does not exist an analytic function f(z) = u (x, y) + iv (x, y) for which
u (x, y) = y3 + 5x.

6. The function u(x, y) = e4x cos 2y is the real part of an analytic function.

7. If f(z) = ex cos y + iex sin y, then f ′(z) = f(z).

8. If u(x, y) and v(x, y) are harmonic functions in a domain D, then the function

f(z) =

(
∂u

∂y
− ∂v

∂x

)
+ i

(
∂u

∂x
+
∂v

∂y

)
is analytic in D.

9. If g is an entire function, then f(z) =
(
iz2 + z

)
g(z) is necessarily an entire

function.

10. The Cauchy-Riemann equations are necessary conditions for differentiability.
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11. The Cauchy-Riemann equations can be satisfied at a point z, but the function
f(z) = u(x, y) + iv(x, y) can be nondifferentiable at z.

12. If the function f(z) = u(x, y)+iv(x, y) is analytic at a point z, then necessarily
the function g(z) = v(x, y) − iu(x, y) is analytic at z.

In Problems 13–22, try to fill in the blanks without referring back to the text.

13. If f(z) =
1

z2 + 5iz − 4
, then f ′(z) = .

14. The function f(z) =
1

z2 + 5iz − 4
is not analytic at .

15. The function f(z) = (2 − x)3 + i(y − 1)3 is differentiable at z = .

16. For f(z) = 2x3 + 3iy2, f ′(x+ ix2
)

= .

17. The function f(z) =
x− 1

(x− 1)2 + (y − 1)2
− i

y − 1

(x− 1)2 + (y − 1)2
is analytic in a

domain D not containing the point z = 1 + i. In D, f ′(z) = .

18. Find an analytic function f(z) = loge

√
x2 + y2 + i in a domain D

not containing the origin.

19. The function f(z) is analytic in a domain D and f(z) = c+ iv(x, y), where c
is a real constant. Then f is a in D.

20. lim
z→2i

z5 − 4iz4 − 4z3 + z2 − 4iz + 4

5z4 − 20iz3 − 21z2 − 4iz + 4
= .

21. u(x, y) = c1 where u(x, y) = e−x (x sin y − y cos y) and v(x, y) = c2 where
v(x, y) = are orthogonal families.

22. The statement “There exists a function f that is analytic for Re(z) ≥ 1 and is
not analytic anywhere else” is false because .





Elementary 
Functions

4

The mapping w = sin z. See page 208.
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Chapter 4 Review Quiz

Introduction In the last chapter we defined a
class of functions that is of the most interest in
complex analysis, the analytic functions. In this
chapter we shall define and study a number of
elementary complex analytic functions. In par-
ticular, we will investigate the complex expo-
nential, logarithmic, power, trigonometric, hy-
perbolic, inverse trigonometric, and inverse hy-
perbolic functions. All of these functions will
be shown to be analytic in a suitable domain
and their derivatives will be found to agree with
their real counterparts. We will also examine
how these functions act as mappings of the com-
plex plane. The set of elementary functions will
be a useful source of examples that will be used
for the remainder of this text.175



176 Chapter 4 Elementary Functions

4.1 Exponential and Logarithmic Functions

4.1The real exponential and logarithmic functions play an important role in the study of real
analysis and differential equations. In this section we define and study the complex ana-
logues of these functions. In the first part of this section, we study the complex exponential
function ez, which has already been introduced in Sections 1.6 and 2.1. One concept that
has not been discussed previously but will be addressed in this section is the exponential
mapping w = ez. In the second half of this section, we introduce the complex logarithm ln z
to solve exponential equations of the form ew = z. If x is a fixed positive real number, then
there is a single solution to the equation ey = x, namely the value y = loge x. However, we
will see that when z is a fixed nonzero complex number there are infinitely many solutions to
the equation ew = z. Therefore, the complex logarithm ln z is a “multiple-valued function”
in the interpretation of this term given in Section 2.4. The principal value of the complex
logarithm will be defined to be a (single-valued) function that assigns to the complex input
z one of the multiple values of ln z. This principal value function will be shown to be an
inverse function of the exponential function ez defined on a suitably restricted domain of
the complex plane. We conclude the section with a discussion of the analyticity of branches
of the logarithm.

4.1.1 Complex Exponential Function

Exponential Function and its Derivative We begin by re-
peating the definition of the complex exponential function given in Section
2.1.

Definition 4.1 Complex Exponential Function

The function ez defined by

ez = ex cos y + iex sin y (1)

is called the complex exponential function.

One reason why it is natural to call this function the exponential function
was pointed out in Section 2.1. Namely, the function defined by (1) agrees
with the real exponential function when z is real. That is, if z is real, then
z = x + 0i, and Definition 4.1 gives:

ex+0i = ex (cos 0 + i sin 0) = ex(1 + i · 0) = ex. (2)

The complex exponential function also shares important differential prop-
erties of the real exponential function. Recall that two important properties
of the real exponential function are that ex is differentiable everywhere and

that
d

dx
ex = ex for all x. The complex exponential function ez has similar

properties.
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Theorem 4.1 Analyticity of ez

The exponential function ez is entire and its derivative is given by:

d

dz
ez = ez. (3)

Proof In order to establish that ez is entire, we use the criterion for analyt-
icity given in Theorem 3.5. We first note that the real and imaginary parts,
u(x, y) = ex cos y and v(x, y) = ex sin y, of ez are continuous real functions
and have continuous first-order partial derivatives for all (x, y). In addition,
the Cauchy-Riemann equations in u and v are easily verified:

∂u

∂x
= ex cos y =

∂v

∂y
and

∂u

∂y
= −ex sin y = −∂v

∂x
.

Therefore, the exponential function ez is entire by Theorem 3.5. By (9) of

Section 3.2, the derivative of an analytic function f is given by f ′(z) =
∂u

∂x
+

i
∂v

∂x
, and so the derivative of ez is:

d

dz
ez =

∂u

∂x
+ i

∂v

∂x
= ex cos y + iex sin y = ez. ✎

Using the fact that the real and imaginary parts of an analytic function
are harmonic conjugates, we can also show that the only entire function f that
agrees with the real exponential function ex for real input and that satisfies
the differential equation f ′(z) = f(z) is the complex exponential function ez

defined by (1). See Problem 50 in Exercises 4.1.

EXAMPLE 1 Derivatives of Exponential Functions

Find the derivative of each of the following functions:

(a) iz4
(
z2 − ez

)
and (b) ez2−(1+i)z+3.

Solution (a) Using (3) and the product rule (4) in Section 3.1:

d

dz

[
iz4

(
z2 − ez

)]
= iz4 (2z − ez) + 4iz3

(
z2 − ez

)
= 6iz5 − iz4ez − 4iz3ez.

(b) Using (3) and the chain rule (6) in Section 3.1:

d

dz

[
ez2−(1+i)z+3

]
= ez2−(1+i)z+3 · (2z − 1− i) .
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Modulus, Argument, and Conjugate The modulus, argument,
and conjugate of the exponential function are easily determined from (1). If
we express the complex number w = ez in polar form:

w = ex cos y + iex sin y = r (cos θ + i sin θ) ,

then we see that r = ex and θ = y + 2nπ, for n = 0, ±1,±2, . . . . Because r
is the modulus and θ is an argument of w, we have:

|ez| = ex (4)
arg(ez) = y + 2nπ, n = 0, ±1,±2, . . . . (5)and

We know from calculus that ex > 0 for all real x, and so it follows from (4)
that |ez| > 0. This implies that ez �= 0 for all complex z. Put another way, the
point w = 0 is not in the range of the complex function w = ez. Equation (4)
does not, however, rule out the possibility that ez is a negative real number.
In fact, you should verify that if, say, z = πi, then eπi is real and eπi < 0.

A formula for the conjugate of the complex exponential ez is found using
properties of the real cosine and sine functions. Since the real cosine function
is even, we have cos y = cos(−y) for all y, and since the real sine function is
odd, we have − sin y = sin(−y) for all y, and so:

ez = ex cos y − iex sin y = ex cos(−y) + iex sin(−y) = ex−iy = ez̄.

Therefore, for all complex z, we have shown:

ez = ez̄. (6)

Algebraic Properties In Theorem 4.1 we proved that differentiating
the complex exponential function is, in essence, the same as differentiating
the real exponential function. These two functions also share the following
algebraic properties.

Theorem 4.2 Algebraic Properties of ez

If z1 and z2 are complex numbers, then

(i) e0 = 1

(ii) ez1ez2 = ez1+z2

(iii)
ez1

ez2
= ez1−z2

(iv) (ez1)n = enz1 , n = 0, ±1, ±2, . . . .

Proof of (i) and (ii) (i) The proof of property (i) follows from the obser-
vation that the complex exponential function agrees with the real exponential
function for real input. That is, by (2), we have e0+0i = e0, and we know
that, for the real exponential function, e0 = 1.
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(ii) Let z1 = x1 + iy1 and z2 = x2 + iy2. By Definition 4.1, we have:

ez1ez2 = (ex1 cos y1 + iex1 sin y1) (ex2 cos y2 + iex2 sin y2)

= ex1+x2 (cos y1 cos y2 − sin y1 sin y2)

+ iex1+x2 (sin y1 cos y2 + cos y1 sin y2) .

Using the addition formulas for the real cosine and sine functions given on
page 18 in Section 1.3, we can rewrite the foregoing expression as:

ez1ez2 = ex1+x2 cos(y1 + y2) + iex1+x2 sin(y1 + y2). (7)

From (1), the right-hand side of (7) is ez1+z2 . Therefore, we have shown that
ez1ez2 = ez1+z2 . ✎

The proofs of Theorem 4.2(iii) and 4.2(iv) follow in a similar manner.
See Problems 47 and 48 in Exercises 4.1.

Periodicity The most striking difference between the real and complex
exponential functions is the periodicity of ez. Analogous to real periodic
functions, we say that a complex function f is periodic with period T if
f(z + T ) = f(z) for all complex z. The real exponential function is not
periodic, but the complex exponential function is because it is defined using
the real cosine and sine functions, which are periodic. In particular, by (1)
and Theorem 4.2(ii) we have ez+2πi = eze2πi = ez (cos 2π + i sin 2π). Since
cos 2π = 1 and sin 2π = 0, this simplifies to:

ez+2πi = ez. (8)

In summary, we have shown that:

The complex exponential function ez is periodic with a pure imaginary
period 2πi.

That is, for the function f(z) = ez, we have f(z + 2πi) = f(z) for all z.

• z + 4   iπ

• z + 2   i

• z 

π

• z – 2   iπ

y

x

π4
π3
π2

–

π

π
–2π

–3π
–4π

Figure 4.1 The fundamental region of ez

Because (8) holds for all values of z we also have e(z+2πi)+2πi = ez+2πi.
This fact combined with (8) implies that ez+4πi = ez. Now by repeating this
process we find that ez+2nπi = ez for n = 0, ±1, ±2, . . . . Thus, −2πi, 4πi,
6πi, and so on, are also periods of ez. Furthermore, if the complex exponential
function ez maps the point z onto the point w, then it also maps the points
z ± 2πi, z ± 4πi, z ± 6πi, and so on, onto the point w. Thus, the complex
exponential function is not one-to-one, and all values ez are assumed in any
infinite horizontal strip of width 2π in the z-plane. That is, all values of the
function ez are assumed in the set −∞ < x <∞, y0 < y ≤ y0 + 2π, where y0

is a real constant. In Figure 4.1 we divide the complex plane into horizontal
strips obtained by setting y0 equal to any odd multiple of π. If the point z is
in the infinite horizontal strip −∞ < x < ∞, −π < y ≤ π, shown in color in
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Figure 4.1, then the values f(z) = ez, f(z+2πi) = ez+2πi, f(z−2πi) = ez−2πi,
and so on are the same. The infinite horizontal strip defined by:

−∞ < x <∞, −π < y ≤ π, (9)

is called the fundamental region of the complex exponential function.

The Exponential Mapping Because all values of the complex ex-
ponential function ez are assumed in the fundamental region defined by (9),
the image of this region under the mapping w = ez is the same as the image of
the entire complex plane. In order to determine the image of the fundamental
region under w = ez, we note that this region consists of the collection of ver-
tical line segments z(t) = a+ it, −π < t ≤ π, where a is any real number. By
(11) of Section 2.2, the image of the line segment z(t) = a+it, −π < t ≤ π, un-
der the exponential mapping is parametrized by w(t) = ez(t) = ea+it = eaeit,
−π < t ≤ π, and from (10) of Section 2.2 we see that w(t) defines a circle
centered at the origin with radius ea. Because a can be any real number,
the radius ea of this circle can be any nonzero positive real number. Thus,
the image of the fundamental region under the exponential mapping consists
of the collection of all circles centered at the origin with nonzero radius. In
other words, the image of the fundamental region −∞ < x <∞, −π < y ≤ π,
under w = ez is the set of all complex w with w �= 0, or, equivalently, the set
|w| > 0.∗ This agrees with our observation on page 178 that the point w = 0
is not in the range of the complex exponential function.

The mapping w = ez of the fundamental region is shown in Figure 4.2.
Each vertical line segment shown in color in Figure 4.2(a) is mapped onto
a circle show in black in Figure 4.2(b) by w = ez. As the x-intercept of a
vertical line segment increases, the radius of its image increases. Therefore,
the leftmost line segment maps onto the innermost circle, the middle line

y

x u

v

w = e z

π2

–

π

π

–2

–2–3–4 –1 1 2 3 4 42–2

–2

2

4

–4

–4

π

(a) Vertical line segments in the
      fundamental region

(b) Images of the line segments in
       (a) are circles

Figure 4.2 The image of the fundamental region under w = ez

∗This set is sometimes called the punctured complex plane.
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segment maps onto the middle circle, and the rightmost line segment maps
onto the outermost circle.

There was nothing particularly special about using vertical line segments
to determine the image of the fundamental region under w = ez. The image
can also be found in the same manner by using, say, horizontal lines in the
fundamental region. In order to see that this is so, consider the horizontal line
y = b. This line can be parametrized by z(t) = t+ib, −∞ < t <∞, and so its
image under w = ez is given by w(t) = ez(t) = et+ib = eteib, −∞ < t < ∞.
Define a new parameter by s = et, and observe that 0 < s < ∞ since
−∞ < t < ∞. Using the parameter s, the image is given by W (s) =
eibs, 0 < s < ∞, which, by (8) of Section 2.2, is the set consisting of all
points w �= 0 in the ray emanating from the origin and containing the point
eib = cos b + i sin b. Thus, we have shown that the image of the horizontal
line y = b under the mapping w = ez is the set of all points w �= 0 in the ray
emanating from the origin and making an angle of b radians with the positive
u-axis. The image can also be described by the equation arg(w) = b. We
represent this property of the complex exponential mapping in Figure 4.3.
Each of the horizontal lines shown in color in Figure 4.3(a) is mapped onto
a ray shown in black in Figure 4.3(b). As the y-intercept of a horizontal line
increases, the angle the image ray makes with the positive u-axis increases.
Therefore, the bottom-most line maps onto the ray in the third quadrant, the
middle line maps onto the ray in the first quadrant, and the top-most line
maps onto the ray in the second quadrant.

42–2
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2

4

–4

–4

(b) Images of the lines in (a)
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v
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–

π

π
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–2–3–4 –1 1 2 3 4

π

(a) Horizontal lines in the fundamental 
      region

w = e z

Figure 4.3 The mapping w = ez

We now summarize these properties of exponential mapping.

Exponential Mapping Properties

(i) w = ez maps the fundamental region −∞ < x < ∞, −π < y ≤ π,
onto the set |w| > 0.

(ii) w = ez maps the vertical line segment x = a, −π < y ≤ π, onto the
circle |w| = ea.

(iii) w = ez maps the horizontal line y = b, −∞ < x <∞, onto the ray
arg(w) = b.

EXAMPLE 2 Exponential Mapping of a Grid

Find the image of the grid shown in Figure 4.4(a) under w = ez.

y

x

2

1

–2

–1

–2 –1 1

(a) Figure for Example 2

2

Figure 4.4 The mapping w = ez

Solution The grid in Figure 4.4(a) consists of the vertical line segments
x = 0, 1, and 2, −2 ≤ y ≤ 2, and the horizontal line segments
y = −2, −1, 0, 1, and 2, 0 ≤ x ≤ 2. Using the property (ii) of the
exponential mapping, we have that the image of the vertical line segment
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x = 0, −2 ≤ y ≤ 2, is the circular arc |w| = e0 = 1, −2 ≤ arg(w) ≤ 2. In a
similar manner, the segments x = 1 and x = 2, −2 ≤ y ≤ 2, map onto the
arcs |w| = e and |w| = e2, −2 ≤ arg(w) ≤ 2, respectively. By property (iii) of
the exponential mapping, the horizontal line segment y = 0, 0 ≤ x ≤ 2, maps
onto the portion of the ray emanating from the origin defined by arg(w) = 0,
1 ≤ |w| ≤ e2. This image is the line segment from 1 to e2 on the u-axis. The
remaining horizontal segments y = −2, −1, 1, and 2 map in the same way
onto the segments defined by arg(w) = −2, arg(w) = −1, arg(w) = 1, and
arg(w) = 2, 1 ≤ |w| ≤ e2, respectively. Therefore, the vertical line segments
shown in color in Figure 4.4(a) map onto the circular arcs shown in black in
Figure 4.4(b) with the line segment x = a mapping onto the arc with radius
ea. In addition, the horizontal line segments shown in color in Figure 4.4(a)
map onto the black line segments in Figure 4.4(b) with the line segment y = b
mapping onto the line segment making an angle of b radians with the positive
u-axis.

4 6 82–2
–2

2

4

8

6

–4

–6
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–4–6–8

(b) Image of the grid in (a)

u

v

w = e z

Figure 4.4 The mapping w = ez

4.1.2 Complex Logarithmic Function

�Note: loge x will be used to denote
the real logarithm.

In real analysis, the natural logarithm function lnx is often defined as an
inverse function of the real exponential function ex. From this point on,
we will use the alternative notation loge x to represent the real exponential
function. Because the real exponential function is one-to-one on its domain R,
there is no ambiguity involved in defining this inverse function. The situation
is very different in complex analysis because the complex exponential function
ez is not a one-to-one function on its domain C. In fact, given a fixed nonzero
complex number z, the equation ew = z has infinitely many solutions. For
example, you should verify that 1

2πi,
5
2πi, and − 3

2πi are all solutions to the
equation ew = i. To see why the equation ew = z has infinitely many solutions,
in general, suppose that w = u+iv is a solution of ew = z. Then we must have
|ew| = |z| and arg(ew) = arg(z). From (4) and (5), it follows that eu = |z|
and v = arg(z), or, equivalently, u = loge |z| and v = arg(z). Therefore, given
a nonzero complex number z we have shown that:

If ew = z, then w = loge |z|+ i arg(z). (10)

Because there are infinitely many arguments of z, (10) gives infinitely many
solutions w to the equation ew = z. The set of values given by (10) defines a
multiple-valued function w = G(z), as described in Section 2.4, which is called
the complex logarithm of z and denoted by ln z. The following definition
summarizes this discussion.

Definition 4.2 Complex Logarithm

The multiple-valued function ln z defined by:

ln z = loge |z|+ i arg(z) (11)

is called the complex logarithm.
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Hereafter, the notation ln z will always be used to denote the multiple-
valued complex logarithm. By switching to exponential notation z = reiθ in
(11), we obtain the following alternative description of the complex logarithm:

ln z = loge r + i(θ + 2nπ), n = 0, ±1, ±2, . . .. (12)

�Note: ln z will be used to denote the
complex logarithm.

From (10) we see that the complex logarithm can be used to find all
solutions to the exponential equation ew = z when z is a nonzero complex
number.

EXAMPLE 3 Solving Exponential Equations

Find all complex solutions to each of the following equations.
(a) ew = i (b) ew = 1 + i (c) ew = −2

Solution For each equation ew = z, the set of solutions is given by w = ln z
where ln z is found using Definition 4.2.

(a) For z = i, we have |z| = 1 and arg(z) = π/2 + 2nπ. Thus, from (11) we
obtain:

w = ln i = loge 1 + i
(π

2
+ 2nπ

)
.

Since loge 1 = 0, this simplifies to:

w =
(4n + 1)π

2
i, n = 0,±1,±2 . . . .

Therefore, each of the values:

w = ...,−7π
2
i,−3π

2
i,
π

2
i,

5π
2
i, ...

satisfies the equation ew = i. The solutions to the equation ew = i given
on page 182 correspond to the values of ln i for n = 0, 1, and −1.

(b) For z = 1+ i, we have |z| =
√

2 and arg(z) = π/4+2nπ. Thus, from (11)
we obtain:

w = ln (1 + i) = loge

√
2 + i

(π
4

+ 2nπ
)
.

Because loge

√
2 = 1

2 loge 2, this can be rewritten as:

w =
1
2

loge 2 +
(8n + 1)π

4
i, n = 0,±1,±2, . . . .

Each value of w is a solution to ew = 1 + i.

(c) Again we use (11). Since z = −2, we have |z| = 2 and arg(z) = π + 2nπ,
and so:

w = ln(−2) = loge 2 + i (π + 2nπ) .
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That is,

w = loge 2 + (2n + 1)πi, n = 0,±1,±2, . . . .

Each value of w satisfies the equation ew = −2.

Logarithmic Identities Definition 4.2 can be used to prove that
the complex logarithm satisfies the following identities, which are analogous
to identities for the real logarithm.

Theorem 4.3 Algebraic Properties of ln z

If z1 and z2 are nonzero complex numbers and n is an integer, then

(i) ln (z1z2) = ln z1 + ln z2

(ii) ln
(
z1
z2

)
= ln z1 − ln z2

(iii) ln zn
1 = n ln z1.

Proof of (i) By Definition 4.2,

ln z1 + ln z2 = loge |z1|+ i arg (z1) + loge |z2|+ i arg (z2)
= loge |z1|+ loge |z2|+ i (arg (z1) + arg (z2)) . (13)

Because the real logarithm has the property loge a + loge b = loge (ab) for
a > 0 and b > 0, we can write loge |z1z2| = loge |z1| + loge |z2|. Moreover,
from (8) of Section 1.3, we have arg (z1) + arg (z2) = arg (z1z2). Therefore,
(13) can be rewritten as:

ln z1 + ln z2 = loge |z1z2|+ i arg (z1z2) = ln (z1z2) . ✎

Proofs of Theorems 4.3(ii) and 4.3(iii) are similar. See Problems 53 and
54 in Exercises 4.1.

Principal Value of a Complex Logarithm It is interesting
to note that the complex logarithm of a positive real number has infinitely
many values. For example, the complex logarithm ln 5 is the set of values
1.6094 + 2nπi, where n is any integer, whereas the real logarithm loge 5 has
a single value: loge 5 ≈ 1.6094. The unique value of ln 5 corresponding to
n = 0 is the same as the value of the real logarithm loge 5. In general, this
value of the complex logarithm is called the principal value of the complex
logarithm since it is found by using the principal argument Arg(z) in place of
the argument arg(z) in (11). We denote the principal value of the logarithm
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by the symbol Ln z. Thus, the expression f(z) = Ln z defines a function,
whereas, F (z) = ln z defines a multiple-valued function. We summarize this
discussion in the following definition.

�Notation used throughout this text

Definition 4.3 Principal Value of the Complex Logarithm

The complex function Ln z defined by:

Ln z = loge |z|+ iArg(z) (14)

is called the principal value of the complex logarithm.

We will use the terms logarithmic function and logarithm to refer to both
the multiple-valued function ln z and the function Ln z. In context, however,
it should be clear to which of these we are referring. From (14), we see that
the principal value of the complex logarithm can also be given by:

Ln z = loge r + iθ, −π < θ ≤ π. (15)

EXAMPLE 4 Principal Value of the Complex Logarithm

Compute the principal value of the complex logarithm Ln z for
(a) z = i (b) z = 1 + i (c) z = −2

Solution In each part we apply (14) of Definition 4.3.

(a) For z = i, we have |z| = 1 and Arg(z) = π/2, and so:

Ln i = loge 1 +
π

2
i.

However, since loge 1 = 0, this simplifies to:

Ln i =
π

2
i.

(b) For z = 1 + i, we have |z| =
√

2 and Arg(z) = π/4, and so:

Ln(1 + i) = loge

√
2 +

π

4
i.

Because loge

√
2 = 1

2 loge 2, this can also be written as:

Ln(1 + i) =
1
2

loge 2 +
π

4
i ≈ 0.3466 + 0.7854i.

(c) For z = −2, we have |z| = 2 and Arg(z) = π, and so:

Ln(−2) = loge 2 + πi ≈ 0.6931 + 3.1416i.
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Observe that each of the values found in parts (a)–(c) could have also
been found by setting n = 0 in the expressions for ln z from Example 3.

�Note: It is important to note that the identities for the complex logarithm in
Theorem 4.3 are not necessarily satisfied by the principal value of the com-
plex logarithm. For example, it is not true that Ln(z1z2) =Ln z1 + Ln z2 for
all complex numbers z1 and z2 (although it may be true for some complex
numbers). See Problem 55 in Exercises 4.1.

Ln z as an Inverse Function Because Ln z is one of the values of
the complex logarithm ln z, it follows from (10) that:

eLnz = z for all z �= 0. (16)

This suggests that the logarithmic function Ln z is an inverse function of
exponential function ez. Because the complex exponential function is not
one-to-one on its domain, this statement is not completely accurate. Rather,
the relationship between these functions is similar to the relationship be-
tween the squaring function z2 and the principal square root function z1/2 =√
|z|eiArg(z)/2 defined by (7) in Section 2.4. The exponential function must

first be restricted to a domain on which it is one-to-one in order to have a
well-defined inverse function. In Problem 52 in Exercises 4.1, you will be
asked to show that ez is a one-to-one function on the fundamental region
−∞ < x <∞, −π < y ≤ π, shown in Figure 4.1.

We now show that if the domain of ez is restricted to the fundamental
region, then the principal value of the complex logarithm Ln z is its inverse
function. To justify this claim, consider a point z = x+ iy in the fundamental
region −∞ < x <∞, −π < y ≤ π. From (4) and (5), we have that |ez| = ex

and arg (ez) = y+2nπ, n an integer. Thus, y is an argument of ez. Since z is
in the fundamental region, we also have −π < y ≤ π, and from this it follows
that y is the principal argument of ez. That is, Arg(ez) = y. In addition, for
the real logarithm we have loge e

x = x, and so from Definition 4.3 we obtain:

Ln ez = loge |ez|+ iArg (ez)
= loge e

x + iy

= x + iy.

Thus, we have shown that:

Ln ez = z if −∞ < x <∞ and − π < y ≤ π. (17)

From (16) and (17), we conclude that Ln z is the inverse function of ez de-
fined on the fundamental region. The following summarizes the relationship
between these functions.
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Ln z as an Inverse Function of ez

If the complex exponential function f(z) = ez is defined on the funda-
mental region −∞ < x < ∞,−π < y ≤ π, then f is one-to-one and
the inverse function of f is the principal value of the complex logarithm
f−1(z) = Ln z.

Bear in mind that (16) holds for all nonzero complex numbers z, but
(17) only holds if z is in the fundamental region. For example, for the point
z = 1 + 3

2πi, which is not in the fundamental region, we have:

Ln e1+3πi/2 = 1− 1
2
πi �= 1 +

3
2
πi.

y

x

Arg(z) → π

Arg(z) → –π

Figure 4.5 Ln z is discontinuous at z = 0

and on the negative real axis.

Analyticity The principal value of the complex logarithm Ln z is dis-
continuous at the point z = 0 since this function is not defined there. This
function also turns out to be discontinuous at every point on the negative
real axis. This is intuitively clear since the value of Ln z a point z near the
negative x-axis in the second quadrant has imaginary part close to π, whereas
the value of a nearby point in the third quadrant has imaginary part close
to −π. See Figure 4.5. The function Ln z is, however, continuous on the
set consisting of the complex plane excluding the nonpositive real axis. To
see that this is so, we appeal to Theorem 2.3, which states that a complex
function f(z) = u(x, y) + iv(x, y) is continuous at a point z = x + iy if
and only if both u and v are continuous real functions at (x, y). By (14),
the real and imaginary parts of Ln z are u(x, y) = loge |z| = loge

√
x2 + y2

and v(x, y) = Arg(z), respectively. From multivariable calculus we have that
the function u(x, y) = loge

√
x2 + y2 is continuous at all points in the plane

except (0, 0) and from Problem 53 in Exercises 2.6 we have that the function
v(x, y) = Arg(z) is continuous on the domain |z| > 0, −π < arg(z) < π.
Therefore, by Theorem 2.3, it follows that Ln z is a continuous function on
the domain

|z| > 0, −π < arg(z) < π, (18)

shown in gray in Figure 4.6. Put another way, the function f1 defined by:

f1(z) = loge r + iθ (19)

is continuous on the domain in (18) where r = |z| and θ = arg(z).

y

x

Figure 4.6 Branch cut for f1

Since the function f1 agrees with the principal value of the complex loga-
rithm Ln z where they are both defined, it follows that f1 assigns to the input
z one of the values of the multiple-valued function F (z) = ln z. Using the ter-
minology of Section 2.6, we have shown that the function f1 defined by (19) is
a branch of the multiple-valued function F (z) = ln z. (Recall that branches of
a multiple-valued function F are denoted by f1, f2, and so on.) This branch is
called the principal branch of the complex logarithm. The nonpositive
real axis shown in color in Figure 4.6 is a branch cut for f1 and the point
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z = 0 is a branch point. As the following theorem demonstrates, the branch
f1 is an analytic function on its domain.

Theorem 4.4 Analyticity of the Principal Branch of ln z

The principal branch f1 of the complex logarithm defined by (19) is an
analytic function and its derivative is given by:

f ′
1(z) =

1
z
. (20)

Proof We prove that f1 is analytic by using the polar coordinate analogue to
Theorem 3.5 of Section 3.2. Because f1 is defined on the domain given in (18),
if z is a point in this domain, then we can write z = reiθ with −π < θ < π.
Since the real and imaginary parts of f1 are u(r, θ) = loge r and v(r, θ) = θ,
respectively, we find that:

∂u

∂r
=

1
r
,

∂v

∂θ
= 1,

∂v

∂r
= 0, and

∂u

∂θ
= 0.

Thus, u and v satisfy the Cauchy-Riemann equations in polar coordinates
(10) in Section 3.2:

∂u

∂r
=

1
r

∂v

∂θ
and

∂v

∂r
= −1

r

∂u

∂θ
.

Because u, v, and the first partial derivatives of u and v are continuous at
all points in the domain given in (18), it follows from Theorem 3.5 that f1 is
analytic in this domain. In addition, from (11) of Section 3.2, the derivative
of f1 is given by:

f ′
1(z) = e−iθ

(
∂u

∂r
+ i

∂v

∂r

)
=

1
reiθ

=
1
z
. ✎

Because f1(z) = Ln z for each point z in the domain given in (18), it
follows from Theorem 4.4 that Ln z is differentiable in this domain, and that
its derivative is given by f ′

1. That is, if |z| > 0 and −π < arg(z) < π then:

d

dz
Ln z =

1
z
. (21)

EXAMPLE 5 Derivatives of Logarithmic Functions

Find the derivatives of the following functions in an appropriate domain:

(a) zLn z and (b) Ln(z + 1).
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Solution (a) From the differentiation rules of Section 3.1 we have that the
function zLn z is differentiable at all points where both of the functions z and
Ln z are differentiable. Because z is entire and Ln z is differentiable on the
domain given in (18), it follows that zLn z is differentiable on the domain
defined by |z| > 0, −π < arg(z) < π. In this domain the derivative is given
by the product rule (4) of Section 3.1 and (21):

d

dz
[zLn z] = z · 1

z
+ 1 · Ln z = 1 + Ln z.

(b) The function Ln(z + 1) is a composition of the functions Ln z and z + 1.
Because the function z+1 is entire, it follows from the chain rule that Ln(z+1)
is differentiable at all points w = z+1 such that |w| > 0 and −π < arg(w) < π.
In other words, this function is differentiable at the point w whenever w does
not lie on the nonpositive real axis. To determine the corresponding values
of z for which Ln(z + 1) is not differentiable, we first solve for z in terms of
w to obtain z = w − 1. The equation z = w − 1 defines a linear mapping of
the w-plane onto the z-plane given by translation by −1. Under this mapping
the nonpositive real axis is mapped onto the ray emanating from z = −1 and
containing the point z = −2 shown in color in Figure 4.7. Thus, if the point
w = z+1 is on the nonpositive real axis, then the point z is on the ray shown
in Figure 4.7. This implies that Ln(z + 1) is differentiable at all points z that
are not on this ray. For such points, the chain rule gives:

d

dz
Ln(z + 1) =

1
z + 1

· 1 =
1

z + 1
.

y

x
–1

Figure 4.7 Ln(z + 1) is not differentiable

on the ray shown in color.

Logarithmic Mapping The complex logarithmic mapping w = Ln z
can be understood in terms of the exponential mapping w = ez since these
functions are inverses of each other. For example, because w = ez maps the
fundamental region −∞ < x < ∞, −π < y ≤ π, in the z-plane onto the set
|w| > 0 in the w-plane, it follows that inverse mapping w = Ln z maps the
set |z| > 0 in the z-plane onto the region −∞ < u < ∞, −π < v ≤ π, in
the w-plane. Other properties of the exponential mapping can be similarly
restated as properties of the logarithmic mapping. The following summarizes
some of these properties.

Logarithmic Mapping Properties

(i) w = Ln z maps the set |z| > 0 onto the region −∞ < u < ∞,
−π < v ≤ π.

(ii) w = Ln z maps the circle |z| = r onto the vertical line segment
u = loge r,−π < v ≤ π.

(iii) w = Ln z maps the ray arg(z) = θ onto the horizontal line
v = θ, −∞ < u <∞.
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EXAMPLE 6 Logarithmic Mapping

Find the image of the annulus 2 ≤ |z| ≤ 4 under the logarithmic mapping
w =Ln z.

Solution From property (ii) of logarithmic mapping, the boundary cir-
cles |z| = 2 and |z| = 4 of the annulus map onto the vertical line segments
u = loge 2 and u = loge 4, −π < v ≤ π, respectively. In a similar man-
ner, each circle |z| = r, 2 ≤ r ≤ 4, maps onto a vertical line segment
u = loge r, −π < v ≤ π. Since the real logarithmic function is increasing
on its domain, it follows that u = loge r takes on all values in the interval
loge 2 ≤ u ≤ loge 4 when 2 ≤ r ≤ 4. Therefore, the image of the annu-
lus 2 ≤ |z| ≤ 4 shown in color in Figure 4.8(a) is the rectangular region
loge 2 ≤ u ≤ loge 4, −π < v ≤ π, shown in gray in Figure 4.8(b).

x

y

1

–1
–1 1 2 3 4–2–3–4

–2

–3

–4

2

3

4

u

v

1

–1
–1 1 2 3 4–2–3–4

–2

–3

–4

2

3

4

(a) The annulus 2≤|z|≤4

(b) The image of the annulus in (a)

w = Ln z

Figure 4.8 The mapping w = Ln z

Other Branches of ln z The principal branch of the complex loga-
rithm f1 defined in (19) is just one of many possible branches of the multiple-
valued function F (z) = ln z . We can define other branches of F by simply
changing the interval defining θ in (18) to a different interval of length 2π.
For example,

f2(z) = loge r + iθ, −π
2
< θ <

3π
2
,

defines a branch of F whose branch cut is the nonpositive imaginary axis. You
should verify that for the branch f2 we have f2(1) = 0, f2(2i) = loge 2 + 1

2πi,
and f2(−1− i) = 1

2 loge 2 + 5
4πi.

In the same way that we proved that the principal branch f1 of the com-
plex logarithm is analytic, we can also show that any branch

fk(z) = loge r + iθ, θ0 < θ < θ0 + 2π,

of F (z) = ln z is analytic on its domain, and its derivative is given by:

f ′
k(z) =

1
z
.

Remarks Comparison with Real Analysis

(i) Although the complex exponential and logarithmic functions are sim-
ilar to the real exponential and logarithmic functions in many ways,
it is important to keep in mind their differences.

• The real exponential function is one-to-one, but the complex
exponential is not.

• loge x is a single-valued function, but ln z is multiple-valued.
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• Many properties of real logarithms apply to the complex log-
arithm, such as ln (z1z2) = ln z1 + ln z2, but these properties
don’t always hold for the principal value Ln z.

(ii) Since the complex exponential function is not one-to-one, we can
use a Riemann surface, as described in the Remarks at the end
of Section 2.4, to help visualize the mapping w = ez. The Rie-
mann surface that we construct will also help us to visualize the
multiple-valued function w = ln z. Consider the mapping w = ez

on the half-plane x ≤ 0. Each half-infinite strip Sn defined by
(2n− 1)π < y ≤ (2n + 1)π, x ≤ 0, for n = 0, ±1, ±2, . . . is mapped
onto the punctured unit disk 0 < |w| ≤ 1 shown in Figure 4.9(b)
with the horizontal half-lines shown in color in Figure 4.9(a) map-
ping onto the segment −1 ≤ u < 0 shown in black in Figure 4.9(b).
Thus, w = ez describes an infinite-to-one covering of the punctured
unit disk. To visualize this covering, we imagine there being a dif-
ferent image disk Bn for each half-infinite strip Sn. Now cut each
disk Bn open along the segment −1 ≤ u < 0. We construct a Rie-
mann surface for w = ez by attaching, for each n, the cut disk Bn

to the cut disk Bn+1 along the edge that represents the image of the
half-infinite line y = (2n + 1)π. We place this surface in xyz -space
so that for each z in the half-plane, the images . . . z−1, z0, z1, . . .
of z in Bn−1, B0, B1, . . . , respectively, lie directly above the point
w = ez in the xy-plane. See Figure 4.10. By projecting the points
of the Riemann surface vertically down onto the xy-plane we see
the infinite-to-one nature of the mapping w = ez. Conversely, the
multiple-valued function F (z) = ln z may be visualized by consider-
ing all points in the Riemann surface lying directly above a point in
the xy-plane. These infinitely many points on the Riemann surface
correspond to the infinitely many values of F (z) in the half-plane
u ≤ 0.

x

y

u

v

(a) Collection of half-infinite strips Sn

(b) The image of each strip Sn
       is the punctured unit disk

π4
π3

π2

–

π

π

–2π

–3π

–4π

S1

S–1

S0

Figure 4.9 The mapping w = ez

3π

2π

–2π

–3π

π

–π
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1

1

0

0 0

Figure 4.10 A Riemann surface for

w = ez

EXERCISES 4.1 Answers to selected odd-numbered problems begin on page ANS-14.

4.1.1 Complex Exponential Function

In Problems 1–4, find the derivative f ′ of the given function f .

1. f(z) = z2ez+i 2. f(z) =
3e2z − ie−z

z3 − 1 + i

3. f(z) = eiz − e−iz 4. f(z) = ie1/z

In Problems 5–8, write the given expression in terms of x and y.

5.
∣∣∣ez2−z

∣∣∣ 6. arg
(
ez−i/z

)
7. arg

(
ei(z+z̄)

)
8. iez + 1
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In Problems 9–12, express the given function f in the form f(z) = u(x, y)+iv(x, y).

9. f(z) = e−iz 10. f(z) = e2z̄+i

11. f(z) = ez2
12. f(z) = e1/z

13. Use the sufficient conditions for differentiability from page 155 in Section 3.2
to determine where the function f(z) = e2z̄+i is differentiable.

14. Use the sufficient conditions for differentiability from page 155 in Section 3.2

to determine where the function f(z) = ez2
is differentiable.

In Problems 15–20, find the image of the given set under the exponential mapping.

15. The line y = −2.

16. The line x = 3.

17. The infinite strip 1 < x ≤ 2

18. The square with vertices at 0, 1, 1 + i, and i.

19. The rectangle 0 ≤ x ≤ loge 2, −π/4 ≤ y ≤ π/2.

20. The semi-infinite strip −∞ < x ≤ 0, 0 ≤ y ≤ π.

4.1.2 Complex Logarithmic Function

In Problems 21–26, find all complex values of the given logarithm.

21. ln (−5) 22. ln (−ei)

23. ln (−2 + 2i) 24. ln (1 + i)

25. ln
(√

2 +
√

6i
)

26. ln
(
−
√

3 + i
)

In Problems 27–32, write the principal value of the logarithm in the form a+ ib.

27. Ln (6 − 6i) 28. Ln
(
−e2

)
29. Ln (−12 + 5i) 30. Ln (3 − 4i)

31. Ln
[(

1 +
√

3i
)5

]
32. Ln

[
(1 + i)4

]
In Problems 33–36, find all complex values of z satisfying the given equation.

33. ez = 4i 34. e1/z = −1

35. ez−1 = −ie3 36. e2z + ez + 1 = 0

In Problems 37–40, find a domain in which the given function f is differentiable;

then find the derivative f ′.

37. f(z) = 3z2 − e2iz + iLn z 38. f(z) = (z + 1)Ln z

39. f(z) =
Ln(2z − i)

z2 + 1
40. f(z) = Ln

(
z2 + 1

)
In Problems 41–46, find the image of the given set under the mapping w =Ln z.

41. The ray arg (z) = π/6.

42. The positive y-axis.

43. The circle |z| = 4.

44. The region in the first quadrant bounded by the circles |z| = 1 and |z| = e.

45. The annulus 3 ≤ |z| ≤ 5.
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46. The region outside the unit circle |z| = 1 and between the rays arg(z) = π/4
and arg(z) = 3π/4.

Focus on Concepts

47. Use (1) to prove that ez1/ez2 = ez1−z2 .

48. Use (1) and de Moivre’s formula to prove that (ez1)n = enz1 , n an integer.

49. Determine where the complex function ez̄ is analytic.

50. In this problem, we will show that the complex exponential function defined by
(1) is the only complex entire function f that agrees with the real exponential
function ex when z is real and that has the property f ′(z) = f(z) for all z.

(a) Assume that f(z) = u(x, y) + iv(x, y) is an entire complex function for
which f ′(z) = f(z). Explain why u and v satisfy the differential equations:

ux(x, y) = u(x, y) and vx(x, y) = v(x, y).

(b) Show that u(x, y) = a(y)ex and v(x, y) = b(y)ex are solutions to the
differential equations in (a).

(c) Explain why the assumption that f(z) agrees with the real exponential
function for z real implies that a(0) = 1 and b(0) = 0.

(d) Explain why the functions a(y) and b(y) satisfy the system of differential
equations:

a(y) − b′(y) = 0

a′(y) + b(y) = 0.

(e) Solve the system of differential equations in (d) subject to the initial con-
ditions a(0) = 1 and b(0) = 0.

(f) Use parts (a)–(e) to show that the complex exponential function defined
by (1) is the only complex entire function f(z) that agrees with the real
exponential function when z is real and that has the property f ′(z) = f(z)
for all z.

51. Describe the image of the line y = x under the exponential function. [Hint:
Find a polar expression r(θ) of the image.]

52. Prove that ez is a one-to-one function on the fundamental region −∞ < x <∞,
−π < y ≤ π.

53. Prove that ln

(
z1
z2

)
= ln z1 − ln z2 for all nonzero complex numbers z1 and z2.

54. Prove that ln zn
1 = n ln z1 for all nonzero complex numbers z1 and all integers

n.

55. (a) Find two complex numbers z1 and z2 so that Ln (z1z2) �= Ln z1+Ln z2.

(b) Find two complex numbers z1 and z2 so that Ln (z1z2) = Ln z1+ Ln z2.

(c) What must be true about z1 and z2 if Ln (z1z2) = Ln z1+ Ln z2?

56. Is Ln zn
1 = nLn z1 for all integers n and complex numbers z1? Defend your

position with a short proof or a counterexample.
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Computer Lab Assignments

Most CASs have a built in function to evaluate Ln z. For example, in Mathematica,

the syntax Log[a+b I] finds the principal value of the complex logarithm of a+ bi.

To find a numerical approximation of this value enter the expression N[Log[a+b I]].

For example, Mathematica indicates that N[Log[2+3 I]] is approximately 1.28247+

0.982794i.

In Problems 57–62, use a CAS to compute Ln z.

57. z = −1 − i 58. z = 2 − 3i

59. z = 3 + πi 60. z = 13 +
√

2i

61. z = 4 + 10i 62. z =
12 − i

2 + 3i

In Problems 63–66, use a CAS to find one solution to the equation.

63. e5z−i = 12i 64. eiz = 2 − 5i

65. 3e(2+i)z = 5 − i 66. iez−2 = π

4.2 Complex Powers

4.2In Section 2.4 we examined special power functions of the form zn and z1/n for n an integer
and n ≥ 2. These functions generalized the usual squaring, cubing, square root, cube
root, and so on, functions of elementary calculus. In this section we analyze the problem
of raising a complex number to an arbitrary real or complex power. For simple integer
powers this process is easily understood in terms of complex multiplication. For example,
(1 + i)3 = (1 + i)(1 + i)(1 + i) = −2 + 2i. However, there is no similar description for a
complex power such as (1+ i)i. In order to define such expressions, we will use the complex
exponential and logarithmic functions from Section 4.1.

Complex Powers Complex powers, such as (1 + i)i mentioned in the
introduction, are defined in terms of the complex exponential and logarithmic
functions. In order to motivate this definition, recall from (10) in Section 4.1
that z = eln z for all nonzero complex numbers z. Thus, when n is an integer it
follows from Theorem 4.2(iv) that zn can be written as zn =

(
eln z

)n = en ln z.
This formula, which holds for integer exponents n, suggests the following
formula used to define the complex power zα for any complex exponent α.

Definition 4.4 Complex Powers

If α is a complex number and z �= 0, then the complex power zα is
defined to be:

zα = eα ln z. (1)
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In general, (1) gives an infinite set of values because the complex logarithm
ln z is multiple-valued. When n is an integer, however, the expression in (1)
is single-valued (in agreement with fact that zn is a function when n is an
integer). To see that this is so, we use Theorem 4.2(ii) to obtain:

zn = en ln z = en[loge |z|+i arg(z)] = en loge |z|en arg(z)i. (2)

If θ = Arg(z), then arg(z) = θ + 2kπ where k is an integer and so

en arg(z)i = en(θ+2kπ)i = enθie2nkπi.

From Definition 4.1 we have that e2nkπi = cos (2nkπ) + i sin (2nkπ). Because
n and k are integers, it follows that 2nkπ is an even multiple of π, and so
cos (2nkπ) = 1 and sin (2nkπ) = 0. Consequently, e2nkπi = 1 and (2) can be
rewritten as:

zn = en loge |z|enArg(z)i, (3)

which is single-valued.
Although the previous discussion shows that (1) can define a single-valued

function, you should bear in mind that, in general,

zα = eα ln z (4)

defines a multiple-valued function. We call the multiple-valued function given
by (4) a complex power function.

EXAMPLE 1 Complex Powers

Find the values of the given complex power: (a) i2i (b) (1 + i)i.

Solution In each part, the values of zα are found using (1).

(a) In part (a) of Example 3 in Section 4.1 we saw that:

ln i =
(4n + 1)π

2
i.

Thus, by identifying z = i and α = 2i in (1) we obtain:

i2i = e2i ln i = e2i[(4n+1)πi/2] = e−(4n+1)π�Note: All values of i2i are real.

for n = 0, ±1, ±2, . . . . The values of i2i corresponding to, say, n = −1,
0, and 1 are 12391.6, 0.0432, and 1.507× 10−7, respectively.

(b) In part (b) of Example 3 in Section 4.1 we saw that:

ln(1 + i) =
1
2

loge 2 +
(8n + 1)π

4
i

for n = 0, ±1, ±2, . . . . Thus, by identifying z = 1 + i and α = i in (1)
we obtain:

(1 + i)i = ei ln(1+i) = ei[(loge 2)/2+(8n+1)πi/4],

(1 + i)i = e−(8n+1)π/4+i(loge 2)/2,or

for n = 0, ±1, ±2, . . . .
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Complex powers defined by (1) satisfy the following properties that are
analogous to properties of real powers:

zα1zα2 = zα1+α2 ,
zα1

zα2
= zα1−α2 ,

(zα)n = znα for n = 0,±1,±2, . . . .
(5)

and

Each of these properties can be derived from Definition 4.4 and Theorem 4.2.
For example, by Definition 4.4, we have zα1zα2 = eα1 ln zeα2 ln z. This can be
rewritten as zα1zα2 = eα1 ln z+α2 ln z = e(α1+α2) ln z by using Theorem 4.2(ii).
Since e(α1+α2) ln z = zα1+α2 by (1), we have shown that zα1zα2 = zα1+α2 .

Not all properties of real exponents have analogous properties for complex
exponents. See the Remarks at the end of this section for an example.

Principal Value of a Complex Power As pointed out, the com-
plex power zα given in (1) is, in general, multiple-valued because it is defined
using the multiple-valued complex logarithm ln z. We can assign a unique
value to zα by using the principal value of the complex logarithm Ln z in
place of ln z. This particular value of the complex power is called the prin-
cipal value of zα. For example, since Ln i = πi/2, the principal value of i2i

is the value of i2i corresponding to n = 0 in part (a) of Example 1. That is,
the principal value of i2i is e−π ≈ 0.0432. We summarize this discussion in
the following definition.

Definition 4.5 Principal Value of a Complex Power

If α is a complex number and z �= 0, then the function defined by:

zα = eαLnz (6)

is called the principal value of the complex power zα.

�Note The notation zα will be used to denote both the multiple-valued power
function F (z) = zα of (4) and the principal value power function given
by (6). In context it will be clear which of these two we are referring to.

EXAMPLE 2 Principal Value of a Complex Power

Find the principal value of each complex power: (a) (−3)i/π (b) (2i)1−i

Solution In each part, we use (6) to find the principal value of zα.

(a) For z = −3, we have |z| = 3 and Arg(−3) = π, and so Ln (−3) = loge 3+iπ
by (14) in Section 4.1. Thus, by identifying z = −3 and α = i/π in (6),
we obtain:

(−3)i/π = e(i/π)Ln(−3) = e(i/π)(loge 3+iπ),

(−3)i/π = e−1+i(loge 3)/π.or
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Definition 4.1 in Section 4.1 gives

e−1+i(loge 3)/π = e−1

(
cos

loge 3
π

+ i sin
loge 3
π

)
,

and so, (−3)i/π ≈ 0.3456 + 0.1260i.

(b) For z = 2i, we have |z| = 2 and Arg(z) = π/2, and so Ln 2i = loge 2+iπ/2
by (14) in Section 4.1. By identifying z = 2i and α = 1 − i in (6) we
obtain:

(2i)1−i = e(1−i)Ln2i = e(1−i)(loge 2+iπ/2),

or (2i)1−i = eloge 2+π/2−i(loge 2−π/2).

We approximate this value using Definition 4.1 in Section 4.1:

(2i)1−i = eloge 2+π/2
[
cos

(
loge 2− π

2

)
− i sin

(
loge 2− π

2

)]
≈ 6.1474 + 7.4008i.

Analyticity In general, the principal value of a complex power zα de-
fined by (6) is not a continuous function on the complex plane because the
function Ln z is not continuous on the complex plane. However, since the
function eαz is continuous on the entire complex plane, and since the func-
tion Ln z is continuous on the domain |z| > 0, −π < arg(z) < π, it follows
that zα is continuous on the domain |z| > 0, −π < arg(z) < π. Using polar
coordinates r = |z| and θ = arg(z) we have found that the function defined
by:

f1(z) = eα(loge r+iθ), −π < θ < π (7)

is a branch of the multiple-valued function F (z) = zα = eα ln z. This particular
branch is called the principal branch of the complex power zα; its branch
cut is the nonpositive real axis, and z = 0 is a branch point.

�Recall: Branches of a multiple-valued
function F are denoted by f1, f2
and so on.

The branch f1 defined by (7) agrees with the principal value zα defined
by (6) on the domain |z| > 0, −π < arg(z) < π. Consequently, the derivative
of f1 can be found using the chain rule (6) of Section 3.1:

f ′
1(z) =

d

dz
eαLnz = eαLnz d

dz
[αLn z] = eαLnz α

z
. (8)

Using the principal value zα = eαLnz we find that (8) simplifies to f ′
1(z) =

α zα/z = α zα−1. That is, on the domain |z| > 0, −π < arg(z) < π, the
principal value of the complex power zα is differentiable and

d

dz
zα = α zα−1. (9)

This demonstrates that the power rule (7) of Section 3.1 holds for the principal
value of a complex power in the stated domain.
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Other branches of the multiple-valued function F (z) = zα can be defined
using the formula in (7) with a different interval of length 2π defining θ. For
example, f2(z) = eα(loge r+iθ), −π/4 < θ < 7π/4, defines a branch of F whose
branch cut is the ray arg(z) = −π/4 together with the branch point z = 0.

EXAMPLE 3 Derivative of a Power Function

Find the derivative of the principal value zi at the point z = 1 + i.

Solution Because the point z = 1 + i is in the domain |z| > 0,
−π < arg(z) < π, it follows from (9) that:

d

dz
zi = i zi−1,

and so,
d

dz
zi

∣∣∣∣
z=1+i

= i zi−1
∣∣
z=1+i

= i (1 + i)i−1.

We can use (5) to rewrite this value as:

i (1 + i)i−1 = i (1 + i)i (1 + i)−1 = i (1 + i)i 1
1 + i

=
1 + i

2
(1 + i)i

.

Moreover, from part (b) of Example 1 with n = 0, the principal value of (1+i)i

is:

(1 + i)i = e−π/4+i(loge 2)/2,

and so
d

dz
zi

∣∣∣∣
z=1+i

=
1 + i

2
e−π/4+i(loge 2)/2 ≈ 0.1370 + 0.2919i.

Remarks Comparison with Real Analysis

(i) As mentioned on page 196, there are some properties of real powers
that are not satisfied by complex powers. One example of this is
that for complex powers, (zα1)α2 �= zα1α2 unless α2 is an integer.
See Problem 14 in Exercises 4.2.

(ii) As with complex logarithms, some properties that do hold for com-
plex powers do not hold for principal values of complex powers. For
example, using Definition 4.4 and Theorem 4.2, we can prove that
(z1z2)

α = zα
1 z

α
2 for any nonzero complex numbers z1 and z2. How-

ever, this property does not hold for principal values of these complex
powers. In particular, if z1 = −1, z2 = i, and α = i, then from (6)
we have that the principal value of (−1 · i)i is eiLn(−i) = eπ/2. On
the other hand, the product of the principal values of (−1)i and ii

is eiLn(−1)eiLni = e−πe−π/2 = e−3π/2.
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EXERCISES 4.2 Answers to selected odd-numbered problems begin on page ANS-14.

In Problems 1–6, find all values of the given complex power.

1. (−1)3i 2. 32i/π

3. (1 + i)1−i 4.
(
1 +

√
3i

)i

5. (−i)i 6. (ei)
√

2

In Problems 7–12, find the principal value of the given complex power.

7. (−1)3i 8. 32i/π

9. 24i 10. ii/π

11.
(
1 +

√
3i

)3i
12. (1 + i)2−i

13. Verify that
zα1

zα2
= zα1−α2 for z �= 0.

14. (a) Verify that (zα)n = znα for z �= 0 and n an integer.

(b) Find an example that illustrates that for z �= 0 we can have
(zα1)α2 �= zα1α2 .

Let zα represent the principal value of the complex power defined on the domain

|z| > 0, −π < arg(z) < π. In Problems 15–18, find the derivative of the given

function at the given point.

15. z3/2; z = 1 + i 16. z2i; z = i

17. z1+i; z = 1 +
√

3i 18. z
√

2; z = −i

Focus on Concepts

19. For any complex number z �= 0, evaluate z0.

20. If α = x+ iy where x = 0, ±1, ±2, ... , then what can you say about 1α?

21. Show that if α = 1/n where n is a positive integer, then the principal value of
zα is the same as the principal nth root of z.

22. (a) Show that if α is a rational number (that is, α = m/n where m and n are
integers with no common factor), then zα is finite-valued. That is, show that
there are only finitely many values of zα.

(b) Show that if α is an irrational number (that is, not a rational number) or
a complex number, then zα is infinite-valued.

23. Which of the identities listed in (5) hold for the principal value of zα?

24. A useful property of real numbers is xaya = (xy)a.

(a) Does the property zαwα = (zw)α hold for complex powers?

(b) Does the property zαwα = (zw)α hold for the principal value of a complex
power?

Computer Lab Assignments

Most CASs have a built in function to find the principal value of a complex power.

In Mathematica, the syntax (a + b I)̂ (c + d I) is used to accomplish this.
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To find a numerical approximation of this value in Mathematica you enter the

expression N[(a + b I)̂ (c + d I)]. For example, Mathematica indicates that

N[(1 + 2 I)̂ (3 + 2 I)] is approximately 0.2647 − 1.1922i.

In Problems 25–30, use a CAS to find the principal value of the given complex

power.

25. (1 − 5i)i 26. 55−2i

27. (2 − i)3+2i 28. (1 − 4i)1+3i

29. (1 + i)(1+i)1+i

30. (1 − 3i)1/4

4.3 Trigonometric and Hyperbolic Functions

4.3In this section we define the complex trigonometric and hyperbolic functions. Analogous
to the complex functions ez and Ln z defined in a previous section, these functions will
agree with their real counterparts for real input. In addition, we will show that the complex
trigonometric and hyperbolic functions have the same derivatives and satisfy many of the
same identities as the real trigonometric and hyperbolic functions.

4.3.1 Complex Trigonometric Functions

If x is a real variable, then it follows from Definition 4.1 that:

eix = cosx + i sinx and e−ix = cosx− i sinx. (1)

By adding these equations and simplifying, we obtain an equation that relates
the real cosine function with the complex exponential function:

cosx =
eix + e−ix

2
. (2)

In a similar manner, if we subtract the two equations in (1), then we obtain
an expression for the real sine function:

sinx =
eix − e−ix

2i
. (3)

The formulas for the real cosine and sine functions given in (2) and (3) can
be used to define the complex sine and cosine functions. Namely, we define
these complex trigonometric functions by replacing the real variable x with
the complex variable z in (2) and (3). This discussion is summarized in the
following definition.

Definition 4.6 Complex Sine and Cosine Functions

The complex sine and cosine functions are defined by:

sin z =
eiz − e−iz

2i
and cos z =

eiz + e−iz

2
. (4)
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It follows from (2) and (3) that the complex sine and cosine functions defined
by (4) agree with the real sine and cosine functions for real input. Analogous to
real trigonometric functions, we next define the complex tangent, cotangent,
secant, and cosecant functions using the complex sine and cosine:

tan z =
sin z
cos z

, cot z =
cos z
sin z

, sec z =
1

cos z
, and csc z =

1
sin z

. (5)

These functions also agree with their real counterparts for real input.

EXAMPLE 1 Values of Complex Trigonometric Functions

In each part, express the value of the given trigonometric function in the form
a + ib.

(a) cos i (b) sin (2 + i) (c) tan (π − 2i)

Solution For each expression we apply the appropriate formula from (4) or
(5) and simplify.

(a) By (4),

cos i =
ei·i + e−i·i

2
=

e−1 + e

2
≈ 1.5431.

(b) By (4),

sin (2 + i) =
ei(2+i) − e−i(2+i)

2i

=
e−1+2i − e1−2i

2i

=
e−1(cos 2 + i sin 2)− e(cos(−2) + i sin(−2))

2i

≈ 0.9781 + 2.8062i
2i

≈ 1.4031− 0.4891i.

(c) By the first entry in (5) together with (4) we have:

tan (π − 2i) =

(
ei(π−2i) − e−i(π−2i)

)/
2i(

ei(π−2i) + e−i(π−2i)
)/

2
=

ei(π−2i) − e−i(π−2i)(
ei(π−2i) + e−i(π−2i)

)
i

= −e
2 − e−2

e2 + e−2
i ≈ −0.9640i.

Identities Most of the familiar identities for real trigonometric functions
hold for the complex trigonometric functions. This follows from Definition 4.6
and properties of the complex exponential function. We now list some of the
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more useful of the trigonometric identities. Each of the results in (6)–(10) is
identical to its real analogue.

sin (−z) = − sin z cos (−z) = cos z (6)

cos2 z + sin2 z = 1 (7)
sin (z1 ± z2) = sin z1 cos z2 ± cos z1 sin z2 (8)
cos (z1 ± z2) = cos z1 cos z2 ∓ sin z1 sin z2 (9)

Observe that the double-angle formulas:

sin 2z = 2 sin z cos z cos 2z = cos2 z − sin2 z (10)

follow directly from (8) and (9).
We will verify only identity (7). The other identities follow in a similar

manner. See Problems 13 and 14 in Exercises 4.3. In order to verify (7),
we note that by (4) and properties of the complex exponential function from
Theorem 4.2, we have

cos2 z =
(
eiz + e−iz

2

)2

=
e2iz + 2 + e−2iz

4
,

sin2 z =
(
eiz − e−iz

2i

)2

= −e
2iz − 2 + e−2iz

4
.and

Therefore,

cos2 z + sin2 z =
e2iz + 2 + e−2iz − e2iz + 2− e−2iz

4
= 1.

�Note It is important to recognize that some properties of the real trigonomet-
ric functions are not satisfied by their complex counterparts. For example,
|sinx| ≤ 1 and |cosx| ≤ 1 for all real x, but, from Example 1 we have |cos i| > 1
and |sin(2 + i)| > 1 since |cos i| ≈ 1.5431 and |sin (2 + i)| ≈ 1.4859, so these
inequalities, in general, are not satisfied for complex input.

Periodicity In Section 4.1 we proved that the complex exponential
function is periodic with a pure imaginary period of 2πi. That is, we showed
that ez+2πi = ez for all complex z. Replacing z with iz in this equation we
obtain eiz+2πi = ei(z+2π) = eiz. Thus, eiz is a periodic function with real
period 2π. Similarly, we can show that e−i(z+2π) = e−iz and so e−iz is also a
periodic function with a real period of 2π. Now from Definition 4.6 it follows
that:

sin(z + 2π) =
ei(z+2π) − e−i(z+2π)

2i
=

eiz − e−iz

2i
= sin z.

A similar statement also holds for the complex cosine function. In summary,
we have:

sin (z + 2π) = sin z and cos (z + 2π) = cos z (11)
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for all z. Put another way, (11) shows that the complex sine and cosine are
periodic functions with a real period of 2π. The periodicity of the secant
and cosecant functions follows immediately from (11) and (5). The identities
sin (z + π) = − sin z and cos (z + π) = − cos z can be used to show that the
complex tangent and cotangent are periodic with a real period of π. See
Problems 51 and 52 in Exercises 4.3.

Trigonometric Equations We now turn our attention to solving
simple trigonometric equations. Because the complex sine and cosine func-
tions are periodic, there are always infinitely many solutions to equations of
the form sin z = w or cos z = w. One approach to solving such equations is to
use Definition 4.6 in conjunction with the quadratic formula. We demonstrate
this method in the following example.

EXAMPLE 2 Solving Trigonometric Equations

Find all solutions to the equation sin z = 5.

Solution By Definition 4.6, the equation sin z = 5 is equivalent to the
equation

eiz − e−iz

2i
= 5.

By multiplying this equation by eiz and simplifying we obtain

e2iz − 10ieiz − 1 = 0.

This equation is quadratic in eiz. That is,

e2iz − 10ieiz − 1 =
(
eiz

)2 − 10i
(
eiz

)
− 1 = 0.

Thus, it follows from the quadratic formula (3) of Section 1.6 that the solutions
of e2iz − 10ieiz − 1 = 0 are given by

eiz =
10i + ( −96)1/2

2
= 5i± 2

√
6i =

(
5± 2

√
6
)
i. (12)

In order to find the values of z satisfying (12), we solve the two exponential
equations in (12) using the complex logarithm. If eiz =

(
5 + 2

√
6
)
i, then

iz = ln
(
5i + 2

√
6i

)
or z = −i ln

[(
5 + 2

√
6
)
i
]
. Because

(
5 + 2

√
6
)
i is a pure

imaginary number and 5 + 2
√

6 > 0, we have arg
[(

5 + 2
√

6
)
i
]

= 1
2π + 2nπ.

Thus,

z = −i log
[(

5 + 2
√

6
)
i
]

= −i
[
loge

(
5 + 2

√
6
)

+ i
(π

2
+ 2nπ

)]
z =

(4n + 1)π
2

− i loge

(
5 + 2

√
6
)

(13)or

for n = 0, ±1, ±2, . . . . In a similar manner, we find that if eiz =
(
5− 2

√
6
)
i,

then z = −i ln
[(

5− 2
√

6
)
i
]
. Since

(
5− 2

√
6
)
i is a pure imaginary number
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and 5− 2
√

6 > 0, it has an argument of π/2, and so:

z = −i log
[(

5− 2
√

6
)
i
]

= −i
[
loge

(
5− 2

√
6
)

+ i
(π

2
+ 2nπ

)]

z =
(4n + 1)π

2
− i loge

(
5− 2

√
6
)

(14)or

for n = 0, ±1, ±2, . . . . Therefore, we have shown that if sin z = 5, then z
is one of the values given in (13) or (14).

Modulus The modulus of a complex trigonometric function can also be
helpful in solving trigonometric equations. To find a formula in terms of x
and y for the modulus of the sine and cosine functions, we first express these
functions in terms of their real and imaginary parts. If we replace the symbol
z with the symbol x + iy in the expression for sin z in (4), then we obtain:

sin z =
e−y+ix − ey−ix

2i
=

e−y (cosx + i sinx)− ey (cosx− i sinx)
2i

= sinx
(
ey + e−y

2

)
+ i cosx

(
ey − e−y

2

)
. (15)

Since the real hyperbolic sine and cosine functions are defined by sinh y =
ey − e−y

2
and cosh y =

ey + e−y

2
we can rewrite (15) as

sin z = sinx cosh y + i cosx sinh y. (16)

A similar computation enables us to express the complex cosine function in
terms of its real and imaginary parts as:

cos z = cosx cosh y − i sinx sinh y. (17)

We now use (16) and (17) to derive formulas for the modulus of the complex
sine and cosine functions. From (16) we have:

|sin z| =
√

sin2 x cosh2 y + cos2 x sinh2 y.

This formula can be simplified using the identities cos2 x + sin2 x = 1 and
cosh2 y = 1 + sinh2 y for the real trigonometric and hyperbolic functions:

or

|sin z| =
√

sin2 x
(
1 + sinh2 y

)
+ cos2 x sinh2 y

=
√

sin2 x +
(
cos2 x + sin2 x

)
sinh2 y,

|sin z| =
√

sin2 x + sinh2 y. (18)

After a similar computation we obtain the following expression for the mod-
ulus of the complex cosine function:

|cos z| =
√

cos2 x + sinh2 y. (19)
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You may recall from calculus that the real hyperbolic function sinhx is
unbounded on the real line. See Figure 4.11(a). As a result of this fact, the
expressions in (18) and (19) can be made arbitrarily large by choosing y to
be arbitrarily large. Thus, we have shown that the complex sine and cosine
functions are not bounded on the complex plane. That is, there does not exist
a real constant M so that |sin z| < M for all z in C, nor does there exist a
real constant M so that |cos z| < M for all z in C. This, of course, is quite
different from the situation for the real sine and cosine functions for which
|sinx| ≤ 1 and |cosx| ≤ 1 for all real x.

y

x
y = ex/2

y = sinh x

y = –e–x/2

(a) y = sinh x

y

x
y = ex/2

y = cosh x

y = e–x/2

(b) y = cosh x

Figure 4.11 The real hyperbolic functions

Zeros The formulas derived for the modulus of the complex sine and
cosine are helpful in determining the zeros of these functions. Recall that the
zeros of the real sine function occur at integer multiples of π, and that the
zeros of the real cosine function occur at odd integer multiples of π/2. Since
the complex sine and cosine functions agree with their real counterparts for
real input, it follows that these zeros of the real sine and cosine functions are
also zeros of the complex sine and cosine functions. It is a natural question to
ask whether the complex sine and cosine functions have any additional zeros
in the complex plane. One way of answering this question is by solving the
equations sin z = 0 and cos z = 0 in the manner presented in Example 2. A
different method involves recognizing that a complex number is equal to 0 if
and only if its modulus is 0. Thus, solving the equation sin z = 0 is equivalent
to solving the equation |sin z| = 0. Using (18) we see that if |sin z| = 0, then√

sin2 x + sinh2 y = 0, which is equivalent to:

sin2 x + sinh2 y = 0.

Since sin2 x and sinh2 y are both nonnegative real numbers, this last equation
is satisfied if and only if sinx = 0 and sinh y = 0. As just noted, sinx = 0 when
x = nπ, n = 0, ±1, ±2, . . . , and inspection of Figure 4.11(a) indicates that
sinh y = 0 only when y = 0. Therefore, the only solutions of the equation
sin z = 0 in the complex plane are the real numbers z = nπ, n = 0, ±1,
±2, . . . . That is, the zeros of the complex sine function are the same as the
zeros of the real sine functions; there are no additional zeros of sine in the
complex plane. This is not the same as the situation for polynomial functions
where there are often additional zeros in the complex plane.

�All of the zeros of sin z and cos z are
real.

In essentially the same manner we can show that the only zeros of the
complex cosine function are the real numbers z = (2n + 1)π/2, n = 0, ±1,
±2 . . . . See Problem 41 in Exercises 4.3. In summary we have:

sin z = 0 if and only if z = nπ, (20)

cos z = 0 if and only if z =
(2n + 1)π

2
(21)and

for n = 0, ±1, ±2, . . . .

Analyticity The derivatives of the complex sine and cosine functions
are found using the chain rule (6) in Section 3.1. Analogous to the real sine
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function, the derivative of the complex sine function is the complex cosine
function:

d

dz
sin z =

d

dz

(
eiz − e−iz

2i

)
=

ieiz + ie−iz

2i
=

eiz + e−iz

2
,

d

dz
sin z = cos z.or

Since this derivative is defined for all complex z, sin z is an entire function.
In a similar manner, we find

d

dz
cos z = − sin z.

The derivatives of sin z and cos z can then be used to show that derivatives of
all of the complex trigonometric functions are the same as derivatives of the
real trigonometric functions. The derivatives of the six complex trigonometric
functions are summarized in the following.

Derivatives of Complex Trigonometric Functions

d

dz
sin z = cos z

d

dz
cos z = − sin z

d

dz
tan z = sec2 z

d

dz
cot z = − csc2 z

d

dz
sec z = sec z tan z

d

dz
csc z = − csc z cot z

The sine and cosine functions are entire, but the tangent, cotangent,
secant, and cosecant functions are only analytic at those points where the
denominator is nonzero. From (20) and (21), it then follows that the tangent
and secant functions have singularities at z = (2n + 1)π/2 for n = 0, ±1,
±2 . . . , whereas the cotangent and cosecant functions have singularities at
z = nπ for n = 0, ±1, ±2 . . . .

Trigonometric Mapping We will now discuss the complex mapping
w = sin z of the z-plane onto the w-plane. Because sin z is periodic with a
real period of 2π, this function takes on all values in any infinite vertical strip
x0 < x ≤ x0 + 2π, −∞ < y < ∞. In a manner similar to that used to
study the exponential mapping w = ez, this allows us to study the mapping
w = sin z on the entire complex plane by analyzing it on any one of these
strips. Consider, say, the strip −π < x ≤ π, −∞ < y < ∞. Before we
examine the complex mapping w = sin z on this strip, observe that sin z is
not one-to-one on this region. For example, z1 = 0 and z2 = π are in this
region and sin 0 = sinπ = 0. From the identity sin(−z + π) = sin z it follows
that the image of the strip −π < x ≤ −π/2, −∞ < y <∞, is the same as the
image of the strip π/2 < x ≤ π, −∞ < y < ∞, under w = sin z. Therefore,
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we need only consider the mapping w = sin z on the region −π/2 ≤ x ≤ π/2,
−∞ < y <∞, to gain an understanding of this mapping on the entire z-plane.
In Problem 45 of Exercises 4.3 you will be asked to show that the complex
sine function is one-to-one on the domain −π/2 < x < π/2, −∞ < y <∞.

EXAMPLE 3 The Mapping w = sin z

Describe the image of the region −π/2 ≤ x ≤ π/2, −∞ < y < ∞, under the
complex mapping w = sin z.

Solution Similar to the discussion on page 180 of Section 4.1, one ap-
proach to this problem is to determine the image of vertical lines x = a with
−π/2 ≤ a ≤ π/2 under w = sin z. Assume for the moment that a �= −π/2,
0, or π/2. From (16) the image of the vertical line x = a under w = sin z is
given by:

u = sin a cosh y, v = cos a sinh y, −∞ < y <∞. (22)

We will eliminate the variable y in (22) to obtain a single Cartesian equation
relating u and v. Since −π/2 < a < π/2 and a �= 0, it follows that sin a �= 0
and cos a �= 0, and so from (22) we obtain cosh y =

u

sin a
and sinh y =

v

cos a
.

The identity cosh2 y− sinh2 y = 1 for real hyperbolic functions then gives the
following equation: ( u

sin a

)2

−
( v

cos a

)2

= 1. (23)

The Cartesian equation in (23) is a hyperbola with vertices at (± sin a, 0)
and slant asymptotes v = ±

(cos a
sin a

)
u. Because the point (a, 0) is on the

line x = a, the point (sin a, 0) must be on the image of the line. Therefore,
the image of the vertical line x = a with −π/2 < a < π/2 and a �= 0 under
w = sin z is the branch† of the hyperbola (23) that contains the point (sin a, 0).
Because sin(−z) = − sin z for all z, it also follows that the image of the line
x = −a is branch of the hyperbola (23) containing the point (− sin a, 0).

Therefore, the pair of vertical lines x = a and x = −a, with−π/2 < a < π/2
and a �= 0, are mapped onto the hyperbola given by (23). We illustrate this
mapping property of w = sin z in Figure 4.12, where the vertical lines shown
in color in Figure 4.12(a) are mapped onto the hyperbolas shown in black in
Figure 4.12(b). The line x = π/3 is mapped onto the branch of the hyperbola
containing the point

(
1
2

√
3, 0

)
and the line x = π/6 is mapped onto the branch

containing the point
(

1
2 , 0

)
. Similarly, the line x = −π/3 is mapped onto the

branch containing the point
(
− 1

2

√
3, 0

)
and the line x = −π/6 is mapped

onto the branch containing the point
(
−1

2 , 0
)
.

The images of the lines x = −π/2, x = π/2 and x = 0 cannot be found
from (23). However, from (22) we see that the image of the line x = −π/2 is
the set of points u ≤ −1 on the negative real axis, that the image of the line
x = π/2 is the set of points u ≥ 1 on the positive real axis, and that the image

†Do not confuse this term with “branch of a multiple-valued function.”
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w = sin z

y

x

2

1.5

1

0.5

–0.5

–1.5

–1

–

–2

π
6

π
6

– π
3

– π
2

π
3

π
2

v

u

2

1

–1

–1–2–3

–2

1 2 3

(a) The region –    /2 ≤ x ≤    /2ππ (b) Image of the region in (a)

Figure 4.12 The mapping w = sin z

of the line x = 0 is the imaginary axis u = 0. See Figure 4.12. In summary,
we have shown that the image of the infinite vertical strip −π/2 ≤ x ≤ π/2,
−∞ < y <∞, under w = sin z, is the entire w-plane.

In Example 3 the image could also be found using horizontal line segments
y = b, −π/2 ≤ x ≤ π/2, instead of vertical lines. In this case, the images are
given by:

u = sinx cosh b, v = cosx sinh b, −π
2
< x <

π

2
.

When b �= 0, this set is also given by the Cartesian equation:

( u

cosh b

)2

+
( v

sinh b

)2

= 1, (24)

which is an ellipse with u-intercepts at (± cosh b, 0) and v-intercepts at
(0,± sinh b). If b > 0, then the image of the line segment y = b is the
upper-half of the ellipse defined by (24) and the image of the line segment
y = −b is the bottom-half of the ellipse. Thus, the horizontal line segments
shown in color in Figure 4.12(a) are mapped onto the ellipses shown in black
in Figure 4.12(b). The innermost pair of horizontal line segments are mapped
onto the innermost ellipse, the middle pair of line segments are mapped onto
the middle ellipse, and the outermost pair of line segments are mapped onto
the outermost ellipse. As a final point, observe that if b = 0, then the image
of the line segment y = 0, −π/2 < x < π/2, is the line segment −1 ≤ u ≤ 1,
v = 0 on the real axis.

The mapping w = cos z can be analyzed in a similar manner, or, since
cos z = sin (z + π/2) from (9), we can view the mapping w = cos z as a
composition of the translation w = z + π/2 and the mapping w = sin z. See
Problem 46 in Exercises 4.3.
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4.3.2 Complex Hyperbolic Functions

The real hyperbolic sine and hyperbolic cosine functions are defined using the
real exponential function as follows:

sinhx =
ex − e−x

2
and coshx =

ex + e−x

2
.

The complex hyperbolic sine and cosine functions are defined in an analogous
manner using the complex exponential function.

Definition 4.7 Complex Hyperbolic Sine and Cosine

The complex hyperbolic sine and hyperbolic cosine functions are
defined by:

sinh z =
ez − e−z

2
and cosh z =

ez + e−z

2
. (25)

�All zeros of sinh z and cosh z are pure
imaginary.

Since the complex exponential function agrees with the real exponen-
tial function for real input, it follows from (25) that the complex hyperbolic
functions agree with the real hyperbolic functions for real input. However,
unlike the real hyperbolic functions whose graphs are shown in Figure 4.11,
the complex hyperbolic functions are periodic and have infinitely many zeros.
See Problem 50 in Exercises 4.3.

The complex hyperbolic tangent, cotangent, secant, and cosecant are de-
fined in terms of sinh z and cosh z:

tanh z =
sinh z
cosh z

, coth z =
cosh z
sinh z

, sech z =
1

cosh z
, and csch z =

1
sinh z

. (26)

Observe that the hyperbolic sine and cosine functions are entire because
the functions ez and e−z are entire. Moreover, from the chain rule (6) in
Section 3.1, we have:

d

dz
sinh z =

d

dz

(
ez − e−z

2

)
=

ez + e−z

2

d

dz
sinh z = cosh z.or

A similar computation for cosh z yields

d

dz
cosh z = sinh z.

Derivatives of the remaining four remaining hyperbolic functions can then be
found using (26) and the quotient rule (5) in Section 3.1.
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Derivatives of Complex Hyperbolic Functions

d

dz
sinh z = cosh z

d

dz
cosh z = sinh z

d

dz
tanh z = sech2z

d

dz
coth z = −csch2z

d

dz
sech z = −sech z tanh z

d

dz
cschz = −cschz coth z

Relation To Sine and Cosine The real trigonometric and the real
hyperbolic functions share many similar properties. For example,

d

dx
sinx = cosx and

d

dx
sinhx = coshx.

Aside from the similar notational appearance and the similarities of their re-
spective Taylor series, there is no simple way to relate the real trigonometric
and the real hyperbolic functions. When dealing with the complex trigono-
metric and hyperbolic functions, however, there is a simple and beautiful
connection between the two. We derive this relationship by replacing z with
iz in the definition of sinh z and then comparing the result with (4):

sinh (iz) =
eiz − e−iz

2
= i

(
eiz − e−iz

2i

)
= i sin z,

−i sinh (iz) = sin z.or

In a similar manner, if we substitute iz for z in the expression for sin z and
compare with (25), then we find that sinh z = −i sin (iz). After repeating this
process for cos z and cosh z we obtain the following important relationships
between the complex trigonometric and hyperbolic functions:

sin z = −i sinh (iz) and cos z = cosh (iz) (27)
sinh z = −i sin (iz) and cosh z = cos (iz) . (28)

Relations between the other trigonometric and hyperbolic functions can now
be derived from (27) and (28). For example,

tan (iz) =
sin (iz)
cos (iz)

=
i sinh z
cosh z

= i tanh z.

We can also use (27) and (28) to derive hyperbolic identities from trigono-
metric identities. We next list some of the more commonly used hyperbolic
identities. Each of the results in (29)–(32) is identical to its real analogue.

sinh(−z) = − sinh z cosh(−z) = cosh z (29)

cosh2 z − sinh2 z = 1 (30)
sinh (z1 ± z2) = sinh z1 cosh z2 ± cosh z1 sinh z2 (31)
cosh (z1 ± z2) = cosh z1 cosh z2 ± sinh z1 sinh z2 (32)
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In the following example we verify the addition formula given in (32). The
other identities can be verified in a similar manner. See Problems 29 and 30
in Exercises 4.3.

EXAMPLE 4 A Hyperbolic Identity

Verify that cosh (z1 + z1) = cosh z1 cosh z2 + sinh z1 sinh z2 for all complex z1
and z2.

Solution By (28), cosh (z1 + z2) = cos (iz1 + iz2), and so by the trigonomet-
ric identity (9) and additional applications of (27) and (28), we obtain:

cosh(z1 + z2) = cos (iz1 + iz2)
= cos iz1 cos iz2 − sin iz1 sin iz2
= cos iz1 cos iz2 + (−i sin iz1) (−i sin iz2)
= cosh z1 cosh z2 + sinh z1 sinh z2.

The relations between the complex trigonometric and hyperbolic functions
given in (27) and (28) also allow us determine the action of the hyperbolic
functions as complex mappings. For example, because sinh z = −i sin (iz),
the complex mapping w = sinh z can be considered as the composition of the
three complex mappings w = iz, w = sin z, and w = −iz. See Problem 47 in
Exercises 4.3.

Remarks Comparison with Real Analysis

(i) In real analysis, the exponential function was just one of a number
of apparently equally important elementary functions. In complex
analysis, however, the complex exponential function assumes a much
greater role. All of the complex elementary functions can be defined
solely in terms of the complex exponential and logarithmic func-
tions. A recurring theme throughout the study of complex analysis
involves using the exponential and logarithmic functions to evaluate,
differentiate, integrate, and map with elementary functions.

(ii) As functions of a real variable x, sinh x and cosh x are not periodic.
In contrast, the complex functions sinh z and cosh z are periodic.
See Problem 49 in Exercises 4.3. Moreover, coshx has no zeros and
sinhx has a single zero at x = 0. See Figure 4.11. The complex
functions sinh z and cosh z, on the other hand, both have infinitely
many zeros. See Problem 50 in Exercises 4.3.
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(iii) Since the complex sine function is periodic, the mapping w = sin z
is not one-to-one on the complex plane. Constructing a Riemann
surface, for this function, as described in the Remarks at the end
of Section 2.4 and Section 4.1, will help us visualize the complex
mapping w = sin z. In order to construct a Riemann surface con-
sider the mapping on the square S0 defined by −π/2 ≤ x ≤ π/2,
−π/2 ≤ y ≤ π/2. From Example 3, we find that the square S0

shown in color in Figure 4.13(a) maps onto the elliptical region E
shown in gray in Figure 4.13(b). Similarly, the adjacent square S1

defined by π/2 ≤ x ≤ 3π/2, −π/2 ≤ y ≤ π/2, also maps onto E. A
Riemann surface is constructed by starting with two copies of E, E0

and E1, representing the images of S0 and S1, respectively. We then
cut E0 and E1 open along the line segments in the real axis from
1 to cosh (π/2) and from −1 to − cosh (π/2). As shown in Figure
4.14, the segment shown in color in the boundary of S0 is mapped
onto the segment shown in black in the boundary of E0, while the
dashed segment shown in color in the boundary of S0 is mapped
onto the dashed segment shown in black in the boundary of E0. In
a similar manner, the segments shown in color in the boundary of
S1 are mapped onto the segments shown in black in the boundary of
E1. Part of the Riemann surface consists of the two elliptical regions
E0 and E1 with the segments shown in black glued together and the
dashed segments glued together. To complete the Riemann surface,
we take for every integer n an elliptical region En representing the
image of the square Sn defined by (2n− 1)π/2 ≤ x ≤ (2n + 1)π/2,
−π/2 ≤ y ≤ π/2. Each region En is cut open, as E0 and E1 were,
and En is glued to En+1 along their boundaries in a manner analo-
gous to that used for E0 and E1. This Reimann surface, placed in
xyz -space, is illustrated in Figure 4.15.
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Figure 4.15 A Riemann surface for

w = sin z

EXERCISES 4.3 Answers to selected odd-numbered problems begin on page ANS-14.

4.3.1 Complex Trigonometric Functions

In Problems 1–8, express the value of the given trigonometric function in the form

a+ ib.

1. sin (4i) 2. cos (−3i)

3. cos (2 − 4i) 4. sin
(π

4
+ i

)
5. tan (2i) 6. cot (π + 2i)

7. sec
(π

2
− i

)
8. csc (1 + i)

In Problems 9–12, find all complex values z satisfying the given equation.

9. sin z = i 10. cos z = 4

11. sin z = cos z 12. cos z = i sin z
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In Problems 13–16, verify the given trigonometric identity.

13. sin (−z) = − sin z 14. cos (z1 + z2) = cos z1 cos z2 − sin z1 sin z2

15. cos z = cos z̄ 16. sin
(
z − π

2

)
= − cos z

In Problems 17–20, find the derivative of the given function.

17. sin
(
z2

)
18. cos (iez)

19. z tan
1

z
20. sec

(
z2 + (1 − i)z + i

)

4.3.2 Complex Hyperbolic Functions

In Problems 21–24, express the value of the given hyperbolic function in the form

a+ ib.

21. cosh (πi) 22. sinh
(π

2
i
)

23. cosh
(
1 +

π

6
i
)

24. tanh (2 + 3i)

In Problems 25–28, find all complex values z satisfying the given equation.

25. cosh z = i 26. sinh z = −1

27. sinh z = cosh z 28. sinh z = ez

In Problems 29–32, verify the given hyperbolic identity.

29. cosh2 z − sinh2 z = 1

30. sinh (z1 + z2) = sinh z1 cosh z2 + cosh z1 sinh z2

31. |sinh z|2 = sinh2 x+ sin2 y

32. Im (cosh z) = sinhx sin y

In Problems 33–36, find the derivative of the given function.

33. sin z sinh z 34. tanh z

35. tanh (iz − 2) 36. cosh
(
iz + eiz

)
Focus on Concepts

37. Recall that Euler’s formula states that eiθ = cos θ+ i sin θ for any real number
θ. Prove that, in fact, eiz = cos z + i sin z for any complex number z.

38. Solve the equation sin z = cosh 2 by equating real and imaginary parts.

39. If sin z = a with −1 ≤ a ≤ 1, then what can you say about z? Justify your
answer.

40. If |sin z| ≤ 1, then what can you say about z? Justify your answer.

41. Show that all the zeros of cos z are z = (2n+ 1)π/2 for n = 0, ±1, ±2, . . . .

42. Find all z such that |tan z| = 1.

43. Find the real and imaginary parts of the function sin z̄ and use them to show
that this function is nowhere analytic.

44. Without calculating the partial derivatives, explain why sin x cosh y and
cosx sinh y are harmonic functions in C.
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45. Prove that sin z is a one-to-one function on the domain −π/2 < x < π/2,
−∞ < y <∞.

46. Use the identity cos z = sin
(
z + 1

2
π
)

to find the image of the region −π ≤ x ≤ 0
under the mapping w = cos z. Describe the images of vertical and horizontal
lines in the region.

47. Use the identity sinh z = −i sin (iz) to find the image of the region
−π/2 ≤ y ≤ π/2, −∞ < x < ∞, under the mapping w = sinh z. Describe
the images of vertical and horizontal lines in the region. [Hint : The identity
implies that w = sinh z is a composition of linear mappings and the complex
mapping w = sin z.]

48. Find the image of the region defined by −π/2 ≤ x ≤ π/2, y ≥ 0, under

the mapping w = (sin z)1/4, where z1/4 represents the principal fourth root
function.

49. Find the period of each of the following complex functions.

(a) cosh z (b) sinh z (c) tanh z

50. Find all zeros of each of the following functions.

(a) cosh z (b) sinh z

51. Verify the following identities.

(a) sin (z + π) = − sin z (b) cos (z + π) = − cos z

52. Use the identities in Problem 51 to show that tan z is a periodic function with
a real period of π.

4.4 Inverse Trigonometric and Hyperbolic Functions

4.4The complex logarithmic function ln z was defined in Section 4.1 to solve equations of the
form ew = z. Because the complex exponential function is periodic, there are infinitely many
solutions to such equations, and, consequently, ln z is necessarily a multiple-valued function.
In this section we repeat this process for equations involving the complex trigonometric
and hyperbolic functions. Because the complex trigonometric and hyperbolic functions
are periodic, their inverse functions are multiple-valued. Furthermore, since the complex
trigonometric and hyperbolic functions are defined in terms of the complex exponential
function, their inverses will involve the complex logarithm.

Inverse Sine In (11) in Section 4.3 we found that the complex sine func-
tion is periodic with a real period of 2π. We also found that the sine function
maps the complex plane onto the complex plane, that is, Range(sin z) = C.
See Figure 4.12. These two properties imply that for any complex number
z there exists infinitely many solutions w to the equation sinw = z. An ex-
plicit formula for w is found by following the procedure used in Example 2 of
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Section 4.3. We begin by using Definition 4.6 to rewrite the equation sinw = z
as:

eiw − e−iw

2i
= z or e2iw − 2izeiw − 1 = 0.

Because e2iw − 2izeiw − 1 = 0 is a quadratic equation in eiw we can then use
the quadratic formula (3) in Section 1.6 to solve for eiw:

eiw = iz +
(
1− z2

)1/2
. (1)

Since we are using the quadratic formula, we should keep in mind that the
expression

(
1− z2

)1/2 in (1) represents the two square roots of 1−z2. Finally,
we solve for w using the complex logarithm:

iw = ln
[
iz +

(
1− z2

)1/2
]

or w = −i ln
[
iz +

(
1− z2

)1/2
]
. (2)

Each value of w obtained from the second equation in (2) satisfies the equation
sinw = z. Therefore, we call the multiple-valued function defined by the
second equation in (2) the inverse sine. We summarize this discussion in
the following definition.

Definition 4.8 Inverse Sine

The multiple-valued function sin−1 z defined by:

sin−1 z = −i ln
[
iz +

(
1− z2

)1/2
]

(3)

is called the inverse sine.

At times, we will also call the inverse sine the arcsine and we will denote
it by arcsin z. It is clear from (3) that the inverse sine is multiple-valued since
it is defined in terms of the complex logarithm ln z. It is also worth repeating
that the expression

(
1− z2

)1/2 in (3) represents the two square roots of 1−z2.

EXAMPLE 1 Values of Inverse Sine

Find all values of sin−1
√

5.

Solution By setting z =
√

5 in (3) we obtain:

sin−1
√

5 = −i ln
[
i
√

5 +
(

1−
(√

5
)2

)1/2
]

= −i ln
[
i
√

5 + (−4)1/2
]
.
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The two square roots (−4)1/2 of –4 are found to be ±2i using (4) in Section
1.4, and so:

sin−1
√

5 = −i ln
[
i
√

5± 2i
]

= −i ln
[(√

5± 2
)
i
]
.

Because
(√

5± 2
)
i is a pure imaginary number with positive imaginary part

(both
√

5 + 2 and
√

5 − 2 are positive), we have
∣∣(√5± 2

)
i
∣∣ =
√

5 ± 2 and
arg

[(√
5± 2

)
i
]

= π/2. Thus, from (11) in Section 4.1 we have

ln
[(√

5± 2
)
i
]

= loge

(√
5± 2

)
+ i

(π
2

+ 2nπ
)

for n = 0, ±1, ±2, . . . . This expression can be simplified by observing that

loge

(√
5− 2

)
= loge

1√
5 + 2

= loge 1− loge

(√
5 + 2

)
= 0− loge

(√
5 + 2

)
,

and so loge

(√
5± 2

)
= ± loge

(√
5 + 2

)
. Therefore,

−i ln
[(√

5± 2
)
i
]

= −i
[
loge

(√
5± 2

)
+ i

(π
2

+ 2nπ
)]

= −i
[
± loge

(√
5 + 2

)
+ i

(4n + 1)π
2

]
,

and so

sin−1
√

5 =
(4n + 1)π

2
± i loge

(√
5 + 2

)
for n = 0, ±1, ±2, . . . .

Inverse Cosine and Tangent We can easily modify the procedure
used on page 215 to solve the equations cosw = z and tanw = z. This leads
to definitions of the inverse cosine and the inverse tangent, which we now
state.

Definition 4.9 Inverse Cosine and Inverse Tangent

The multiple-valued function cos−1 z defined by:

cos−1 z = −i ln
[
z + i

(
1− z2

)1/2
]

(4)

is called the inverse cosine. The multiple-valued function tan−1 z de-
fined by:

tan−1 z =
i

2
ln

(
i + z

i− z

)
(5)

is called the inverse tangent.
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Both the inverse cosine and inverse tangent are multiple-valued functions
since they are defined in terms of the complex logarithm ln z. As with the
inverse sine, the expression

(
1− z2

)1/2 in (4) represents the two square roots
of the complex number 1−z2. Every value of w = cos−1 z satisfies the equation
cosw = z, and, similarly, every value of w = tan−1 z satisfies the equation
tanw = z.

Branches and Analyticity The inverse sine and inverse cosine are
multiple-valued functions that can be made single-valued by specifying a single
value of the square root to use for the expression

(
1− z2

)1/2 and a single value
of the complex logarithm to use in (3) or (4). The inverse tangent, on the
other hand, can be made single-valued by just specifying a single value of ln z
to use. For example, we can define a function f that gives a value of the
inverse sine by using the principal square root and the principal value of the
complex logarithm in (3). If, say, z =

√
5, then the principal square root of

1−
(√

5
)2

= −4 is 2i, and

Ln
(
i
√

5 + 2i
)

= loge

(√
5 + 2

)
+ πi/2.

Identifying these values in (3) gives:

f
(√

5
)

=
π

2
− i loge

(√
5 + 2

)
≈ 1.5708− 1.4436i.

Thus, we see that the value of the function f at z =
√

5 is the value of sin−1
√

5
associated to n = 0 and the square root 2i in Example 1.

A branch of a multiple-valued inverse trigonometric function may be ob-
tained by choosing a branch of the square root function and a branch of the
complex logarithm. Determining the domain of a branch defined in this man-
ner can be quite involved. Because this is an elementary text, we will not
discuss this topic further. On the other hand, the derivatives of branches
of the multiple-valued inverse trigonometric functions are easily found using
implicit differentiation. To see that this is so, suppose that f1 is a branch of
the multiple-valued function F (z) = sin−1 z. If w = f1(z), then we know that
z = sinw. By differentiating both sides of this last equation with respect to
z and applying the chain rule (6) in Section 3.1, we obtain:

1 = cosw · dw
dz

or
dw

dz
=

1
cosw

. (6)

Now, from the trigonometric identity cos2 w + sin2 w = 1, we have cosw =(
1− sin2 w

)1/2
, and since z = sinw, this may be written as cosw =

(
1− z2

)1/2.
Therefore, after substituting this expression for cosw in (6) we obtain the fol-
lowing result:

f ′
1(z) =

dw

dz
=

1

(1− z2)1/2
.

If we let sin−1 z denote the branch f1, then this formula may be restated in a
less cumbersome manner as:

d

dz
sin−1 z =

1

(1− z2)1/2
.
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We must be careful, however, to use the same branch of the square root
function that defined sin−1 z when finding values of its derivative.

In a similar manner, derivatives of branches of the inverse cosine and the
inverse tangent can be found. In the following formulas, the symbols sin−1 z,
cos−1 z, and tan−1 z represent branches of the corresponding multiple-valued
functions. These formulas for the derivatives hold only on the domains of
these branches.

Derivatives of Branches sin−1 z, cos−1 z, and tan−1 z

d

dz
sin−1 z =

1

(1− z2)1/2
(7)

d

dz
cos−1 z =

−1

(1− z2)1/2
(8)

d

dz
tan−1 z =

1
1 + z2

(9)

When finding the value of a derivative with (7) or (8), we must use the
same square root as is used to define the branch. These formulas are similar
to those for the derivatives of the real inverse trigonometric functions. The
difference between the real and complex formulas is the specific choice of a
branch of the square root function needed for (7) and (8).

EXAMPLE 2 Derivative of a Branch of Inverse Sine

Let sin−1 z represent a branch of the inverse sine obtained by using the prin-
cipal branches of the square root and the logarithm defined by (7) of Section
4.2 and (19) of Section 4.1, respectively. Find the derivative of this branch at
z = i.

Solution We note in passing that this branch is differentiable at z = i
because 1 − i2 = 2 is not on the branch cut of the principal branch of the
square root function, and because i (i) +

(
1− i2

)1/2 = −1 +
√

2 is not on the
branch cut of the principal branch of the complex logarithm. Thus, by (7) we
have:

d

dz
sin−1 z

∣∣∣
z=i

=
1

(1− z2)1/2

∣∣∣∣∣
z=i

=
1

(1− i2)1/2
=

1
21/2

.

Using the principal branch of the square root, we obtain 21/2 =
√

2. Therefore,
the derivative is 1/

√
2 or 1

2

√
2.
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Observe that the branch of the inverse sine used in Example 2 is not
defined at, say, z =

√
5 because the point 1 −

(√
5
)2

= −4 is on the branch
cut of the principal branch of the square root. We can define a different
branch of the inverse sine that is defined at this point. For example, consider
the branch f2(z) =

√
reiθ/2, 0 < θ < 2π, of the square root function. Because

−4 = 4eiπ, we have that f2 (−4) = 2i. You should verify that if we define
sin−1 z to be the branch of inverse sine obtained using the branch f2 of the
square root and the principal branch of the logarithm, then:

sin−1
√

5 =
1
2
π − i loge

(√
5 + 2

)
and

d

dz
sin−1 z

∣∣∣∣
z=

√
5

= − i

2
.

Inverse Hyperbolic Functions The foregoing discussion of inverse
trigonometric functions can be repeated for hyperbolic functions. This leads
to the definition of the inverse hyperbolic functions stated below. Once again
these inverses are defined in terms of the complex logarithm because the
hyperbolic functions are defined in terms of the complex exponential.

Definition 4.10 Inverse Hyperbolic Sine, Cosine, and Tangent

The multiple-valued functions sinh−1 z, cosh−1 z, and tanh−1 z, defined
by:

sinh−1 z = ln
[
z +

(
z2 + 1

)1/2
]
, (10)

cosh−1 z = ln
[
z +

(
z2 − 1

)1/2
]
, (11)

tanh−1 z =
1
2

ln
(

1 + z

1− z

)
(12)and

are called the inverse hyperbolic sine, the inverse hyperbolic
cosine, and the inverse hyperbolic tangent, respectively.

The expressions (10)–(12) in Definition 4.10 allow us to solve equations
involving the complex hyperbolic functions. In particular, if w = sinh−1 z,
then sinhw = z; if w = cosh−1 z, then coshw = z; and if w = tanh−1 z, then
tanhw = z.

Branches of the inverse hyperbolic functions are defined by choosing
branches of the square root and complex logarithm, or, in the case of the
inverse hyperbolic tangent, just choosing a branch of the complex logarithm.
The derivative of a branch can be found using implicit differentiation. The
following result gives formulas for the derivatives of branches of the inverse
hyperbolic functions. In these formulas, the symbols sinh−1 z, cosh−1 z, and
tanh−1 z represent branches of the corresponding inverse hyperbolic multiple-
valued functions.



220 Chapter 4 Elementary Functions

Derivatives of Branches sinh−1 z, cosh−1 z, and tanh−1 z

d

dz
sinh−1 z =

1

(z2 + 1)1/2
(13)

d

dz
cosh−1 z =

1

(z2 − 1)1/2
(14)

d

dz
tanh−1 z =

1
1− z2

(15)

As with the inverse trigonometric functions, we should take care to be
consistent in our use of branches when evaluating derivatives. Formulas (13)–
(15) for the derivatives of branches of the complex inverse hyperbolic functions
are the same as the analogous formulas for the derivatives of the real inverse
hyperbolic functions except for the choice of branch required in (13) and (14).

EXAMPLE 3 Inverse Hyperbolic Cosine

Let cosh−1 z represent the branch of the inverse hyperbolic cosine obtained
by using the branch f2(z) =

√
reiθ/2, 0 < θ < 2π, of the square root and the

principal branch of the complex logarithm. Find the following values.

(a) cosh−1

√
2

2
(b)

d

dz
cosh−1 z

∣∣∣∣
z=

√
2/2

Solution (a) In order to find cosh−1
(

1
2

√
2
)
, we use (11) with z = 1

2

√
2 and

the stated branches of the square root and logarithm. When z = 1
2

√
2, we

have that z2 − 1 = − 1
2 . Since − 1

2 has exponential form 1
2e

iπ, the square root
given by the branch f2 is:

f2

(
1
2
eiπ

)
=

√
1
2
eiπ/2 =

1√
2
i =
√

2
2
i.

The value of our branch of the inverse cosine is then given by:

cosh−1

√
2

2
= ln

[
z +

(
z2 − 1

)1/2
]

= ln

[√
2

2
+
√

2
2
i

]
,

where we take the value of the principal branch of the logarithm. Because∣∣ 1
2

√
2 + 1

2

√
2i

∣∣ = 1 and Arg
(

1
2

√
2 + 1

2

√
2i

)
= 1

4π, the principal branch of the
logarithm is loge 1 + i

(
1
4π

)
= 1

4πi. Therefore,

cosh−1

√
2

2
=

π

4
i.
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(b) From (14) we have:

d

dz
cosh−1 z

∣∣∣∣
z=

√
2/2

=
1[(√

2/2
)2 − 1

]1/2
=

1

(−1/2)1/2
.

After using f2 to find the square root in this expression we obtain:

d

dz
cosh−1 z

∣∣∣∣
z=

√
2/2

=
1√
2i/2

= −
√

2i.

Remarks

The multiple-valued function F (z) = sin−1 z can be visualized using the
Riemann surface constructed for sin z in the Remarks in Section 4.3 and
shown in Figure 4.16. In order to see the image of a point z0 under
the multiple-valued mapping w = sin−1 z, we imagine that z0 is lying
in the xy-plane in Figure 4.16. We then consider all points on the Rie-
mann surface lying directly over z0. Each of these points on the surface
corresponds to a unique point in one of the squares Sn described in the
Remarks in Section 4.3. Thus, this infinite set of points in the Riemann
surface represents the infinitely many images of z0 under w = sin−1 z.

–2

–5
–2

20

5

0

0
2

Figure 4.16 A Riemann surface for

w = sin−1 z

EXERCISES 4.4 Answers to selected odd-numbered problems begin on page ANS-15.

In Problems 1–10, find all values of the given quantity.

1. cos−1 i 2. sin−1 1

3. sin−1
√

2 4. cos−1 5

3

5. tan−1 1 6. tan−1 2i

7. sinh−1 i 8. cosh−1 1

2

9. tanh−1 (1 + 2i) 10. tanh−1
(√

2i
)

In Problems 11–16, use the stated branch of the multiple-valued function z1/2 and

principal branch of ln z to (a) find the value of the inverse trigonometric or hyperbolic

function at the given point and (b) compute the value of the derivative of the

function at the given point.

11. sin−1 z, z = 1
2
i; use the principal branch of z1/2

12. cos−1 z, z = 5
3
; use the branch

√
reiθ/2, 0 < θ < 2π, of z1/2

13. tan−1 z, z = 1 + i

14. sinh−1 z, z = 0; use the principal branch of z1/2

15. cosh−1 z, z = −i; use the branch
√
reiθ/2, −2π < θ < 0, of z1/2

16. tanh−1 z, z = 3i
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Focus on Concepts

17. Derive formula (4) for cos−1 z by modifying the procedure used to derive the
formula for arcsine on page 215.

18. Derive formula (10) for sinh−1 z by modifying the procedure used to derive the
formula for arcsine on page 215.

19. Use implicit differentiation to derive formula (8) for the derivative of a branch
of the inverse cosine.

20. Use implicit differentiation to derive formula (12) for the derivative of a branch
of the inverse hyperbolic tangent.

21. (a) Prove that sin z is one-to-one on the domain −π/2 < x < π/2,
−∞ < y <∞.

(b) Which square root and which branch of the logarithm should be used so
that the mapping w = sin−1 z takes the half-plane Im(z) > 0 onto the
region −π/2 < u < π/2, v > 0, that is, so that w = sin−1 z is the inverse
mapping of the mapping in part (a)?

22. Prove the following identities.

(a) sin−1
[(

1 − z2
)1/2

]
= cos−1 (±z)

(b) sin−1 z + cos−1 z = 1
2
(4n+ 1)π, n = 0, ±1, ±2, . . .

4.5 Applications

4.5In Section 3.4 we saw the important role that harmonic functions play in the fields of
electrostatics, fluid flow, gravitation, and heat flow. It is often the case that in order to
solve an applied problem in one of these fields we need to find a function φ(x, y), which is
harmonic in a domain D and which takes on specified values on the boundary of D. In this
section we will see that mapping by analytic functions can often help solve these types of
problems.

Dirichlet Problems Suppose that D is a domain in the complex
plane. Recall from Section 3.3 that a real-valued function φ of two real vari-
ables x and y is called harmonic in D if φ has continuous first and second-order
partial derivatives and if φ satisfies Laplace’s equation ∇2φ = 0,

∂2φ

∂x2
+

∂2φ

∂y2
= 0. (1)or

y

x

D

φ

φ
Find     so that
∇2    = 0 in D

and     takes on the
specified values
on the boundary

= k2

φ

φ

= k0

φ

φ

= k1

Figure 4.17 Dirichlet problem

In Section 3.4 we defined a Dirichlet problem to be the problem of finding
a function φ(x, y) that is harmonic in D and that takes on specified values
on the boundary of D. See Figure 4.17. The specifications of the values of
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the function φ on the boundary of D are called boundary conditions. For
example, consider the problem:

Solve:
∂2φ

∂x2
+

∂2φ

∂y2
= 0, −1 < x < 1, −∞ < y <∞

Subject to: φ(−1, y) = k0, φ(1, y) = k1, −∞ < y <∞,
x

y

D

φ∇2    = 0

φ = k0 φ = k1

1–1

Figure 4.18 Dirichlet problem from

Example 2 of Section 3.4

where k0 and k1 are real constants. This is a Dirichlet problem in the domain
D bounded by the vertical lines x = −1 and x = 1. See Figure 4.18. In
Example 2 in Section 3.4 we used elementary techniques from differential
equations to find the solution

φ(x, y) =
k1 − k0

2
x +

k1 + k0

2
(2)

of this particular Dirichlet problem. You should reread this example in Section
3.4 to remind yourself of how this solution was found.

Harmonic Functions and Analytic Mappings In part, the
Dirichlet problem represented in Figure 4.18 was relatively easy to solve be-
cause of the simple shape of the domain D. The techniques used to solve this
type of Dirichlet problem do not, in general, apply to Dirichlet problems in
a more complicated domain. A function f that is analytic in a domain D
and that maps D onto a domain D′ is called an analytic mapping of D
onto D′. It is often the case that a Dirichlet problem in a complicated do-
main D can be solved by finding an analytic mapping of D onto a domain D′

in which the associated, or transformed, Dirichlet problem is easier to solve.
This technique will be presented briefly here and discussed in greater detail
in Chapter 7. The key to this method for solving Dirichlet problems is the
following theorem, which shows that Laplace’s equation is invariant under an
analytic mapping.

Theorem 4.5 Harmonic Function under an Analytic Mapping

Let w = f(z) be an analytic mapping of a domain D in the z-plane onto
a domain D′ in the w-plane. If the function Φ(u, v) is harmonic in D′,
then the function φ(x, y) = Φ(u(x, y), v(x, y)) is harmonic in D.

Proof In order to prove that the function φ(x, y) is harmonic in D, we must
show that φ(x, y) satisfies Laplace’s equation (1) in D. We begin by finding
the partial derivatives of φ(x, y) with respect to x. Since

φ(x, y) = Φ(u(x, y), v(x, y)),

the chain rule of partial differentiation gives:

∂φ

∂x
=

∂Φ
∂u

∂u

∂x
+

∂Φ
∂v

∂v

∂x
.
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A second application of the chain rule combined with the product rule gives
the second partial derivative with respect to x:

∂2φ

∂x2
=

(
∂2Φ
∂u2

∂u

∂x
+

∂2Φ
∂v∂u

∂v

∂x

)
∂u

∂x
+

∂Φ
∂u

∂2u

∂x2

+
(

∂2Φ
∂u∂v

∂u

∂x
+

∂2Φ
∂v2

∂v

∂x

)
∂v

∂x
+

∂Φ
∂v

∂2v

∂x2
.

(3)

In a similar manner we find the second partial derivative with respect to y:

∂2φ

∂y2
=

(
∂2Φ
∂u2

∂u

∂y
+

∂2Φ
∂v∂u

∂v

∂y

)
∂u

∂y
+

∂Φ
∂u

∂2u

∂y2

+
(

∂2Φ
∂u∂v

∂u

∂y
+

∂2Φ
∂v2

∂v

∂y

)
∂v

∂y
+

∂Φ
∂v

∂2v

∂y2
.

(4)

By adding equations (3) and (4) we obtain:

∇2φ =
∂2Φ
∂u2

((
∂u

∂x

)2

+
(
∂u

∂y

)2
)

+
∂2Φ
∂v2

((
∂v

∂x

)2

+
(
∂v

∂y

)2
)

+
∂Φ
∂u

(
∂2u

∂x2
+

∂2u

∂y2

)
+

∂Φ
∂v

(
∂2v

∂x2
+

∂2v

∂y2

)

+
(

∂2Φ
∂v∂u

+
∂2Φ
∂u∂v

) (
∂u

∂x

∂v

∂x
+

∂u

∂y

∂v

∂y

)
.

(5)

Because f is an analytic function in D, we know from Theorem 3.4 that

the Cauchy-Riemann equations are satisfied by
∂u

∂x
=

∂v

∂y
and

∂u

∂y
= −∂v

∂x
.

Moreover, from Theorem 3.7 we have that u and v are harmonic conjugates

in D, and so
∂2u

∂x2
+

∂2u

∂y2
= 0 and

∂2v

∂x2
+

∂2v

∂y2
= 0. Thus, (5) becomes:

∇2φ =
∂2Φ
∂u2

((
∂u

∂x

)2

+
(
∂v

∂x

)2
)

+
∂2Φ
∂v2

((
∂v

∂x

)2

+
(
∂u

∂x

)2
)

= ∇2Φ

((
∂u

∂x

)2

+
(
∂v

∂x

)2
)
.

Using (9) in Section 3.2, we see that
(
∂u

∂x

)2

+
(
∂v

∂x

)2

= |f ′(z)|2, and so this

equation for ∇2φ simplifies to the following:

∇2φ = ∇2Φ · |f ′(z)|2 (6)

Since Φ(u, v) is harmonic in D′, ∇2Φ = 0, and so (6) becomes

∇2φ = 0 · |f ′(z)|2 = 0. (7)

Finally, from (7) we conclude that φ(x, y) satisfies Laplace’s equation in D.
Therefore, the function φ(x, y) is harmonic in D. ✎
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A Method to Solve Dirichlet Problems We now present a
method for solving Dirichlet problems using Theorem 4.5. Let D be a domain
whose boundary consists of the curves C1, C2, . . . Cn. Suppose that we wish
to find a function φ(x, y) that is harmonic in D and that takes on the values
k1, k2, . . . kn on the boundary curves C1, C2, . . . Cn, respectively. Our
method for solving such a problem consists of the following four steps.

Steps for Solving a Dirichlet Problem

1. Find an analytic function f(z) = u(x, y) + iv(x, y) that maps the
domain D in the z-plane onto a simpler domain D′ in the w-plane
and that maps the boundary curves C1, C2, . . . , Cn onto the curves
C ′

1, C
′
2, . . . , C ′

n, respectively.

2. Transform the boundary conditions on C1, C2, . . . Cn to boundary
conditions on C ′

1, C
′
2, . . . , C ′

n.

3. Solve this new (and easier) Dirichlet problem in D′ to obtain a har-
monic function Φ(u, v).

4. Substitute the real and imaginary parts u(x, y) and v(x, y) of f for the
variables u and v in Φ(u, v). By Theorem 4.5, the function φ(x, y) =
Φ(u(x, y), v(x, y)) is a solution to the Dirichlet problem in D.

We illustrate the general idea of these steps in Figure 4.19.

x u

y v

D

φ∇2    = 0 ∇2     = 0

φ = k1

φ = k3

φ = k2 = k2
= k1

= k3

C2
C1

C3

C′3

C′2

D′

C′1

w = f(z)

Φ
Φ

Φ

Φ

Figure 4.19 Transforming a Dirichlet problem

x

y

D

φ∇2    = 0 φ = 3

φ = –2

Figure 4.20 Figure for Example 1

EXAMPLE 1 Using Mappings to Solve a Dirichlet Problem

Let D be the domain in the z-plane bounded by the lines y = x and y = x+2
shown in color in Figure 4.20. Find a function φ(x, y) that is harmonic in D
and satisfies the boundary conditions φ(x, x + 2) = −2 and φ(x, x) = 3.

Solution We will solve this problem using the four steps given above.
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Step 1 Inspection of the domain D in Figure 4.20 suggests that we take D′

to be a domain bounded by the lines u = −1 and u = 1 in which a solution
of the associated Dirichlet problem is given by (2).

Our first step is to find an analytic mapping from D onto D′. In order
to do so, we first rotate the region D through π/4 radians counterclockwise
about the origin. Under this rotation, the boundary lines y = x+2 and y = x
are mapped onto the vertical lines u = −

√
2 and u = 0, respectively. If we

next magnify this domain by a factor of
√

2, we obtain a domain bounded by
the lines u = −2 and u = 0. Finally, we translate this image by 1 in order to
obtain a domain bounded by the lines u = 1 and u = −1 as desired. Recall
from Section 2.3 that rotation through π/4 radians about the origin is given
by the mapping R(z) = eiπ/4, magnification by

√
2 is given by M(z) =

√
2z,

and translation by 1 is given by mapping T (z) = z+1. Therefore, the domain
D is mapped onto the domain D′ by the composition

f(z) = T (M(R(z))) =
√

2eiπ/4z + 1 = (1 + i)z + 1.

Since the function f is a linear function, it is entire, and so we have completed
Step 1.

Step 2 We now transform the boundary conditions on D to boundary con-
ditions on D′. In order to do so, we must find the images under w = f(z) of
the boundary lines y = x and y = x+2 of D. By replacing the symbol z with
x + iy, we can express the mapping w = (1 + i)z + 1 as:

w = (1 + i)(x + iy) + 1 = x− y + 1 + (x + y)i. (8)

From (8) we find that the image of the boundary line y = x + 2 is the set of
points:

w = u + iv = x− (x + 2) + 1 + (x + (x + 2)) i = −1 + 2(x + 1)i

which is the line u = −1. In a similar manner, we also find that the image of
the boundary line y = x is the set of points:

w = u + iv = x− (x) + 1 + (x + (x)) i = 1 + 2xi

which is the line u = 1. Therefore, the boundary condition φ(x, x+ 2) = −2
is transformed to the boundary condition Φ(−1, v) = −2, and the boundary
condition φ(x, x) = 3 is transformed to the boundary condition Φ(1, v) = 3.
See Figure 4.21.

u

v

D′

∇2     = 0

= –2 = 3

1–1

Φ Φ

Φ

Figure 4.21 The transformed Dirichlet

problem for Example 1

Step 3 A solution of the Dirichlet problem in D′ is given by (2) with x and
y replaced by u and v, and with k0 = −2 and k1 = 3:

Φ(u, v) =
3− (−2)

2
u +

−2 + 3
2

=
5
2
u +

1
2
.

Step 4 The final step in our solution is to substitute the real and imaginary
parts of f into Φ for the variables u and v to obtain the desired solution φ.
From (8) we see that the real and imaginary parts of f are:

u(x, y) = x− y + 1 and v(x, y) = x + y,
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respectively, and so the function:

φ(x, y) = Φ(u(x, y), v(x, y)) =
5
2

(x− y + 1) +
1
2

=
5
2
x− 5

2
y + 3 (9)

is a solution of the Dirichlet problem in D. You are encouraged to verify by
direct calculation that the function φ given in (9) satisfies Laplace’s equation
and the boundary conditions φ(x, x) = 3 and φ(x, x + 2) = −2.

In Section 3.4, we saw that if φ is harmonic in a domain D and if ψ is a
harmonic conjugate of φ in D, then the complex potential function Ω(z)
given by:

Ω(z) = φ(x, y) + iψ(x, y)

is an analytic function in D. Thus, the level curves of φ and ψ are orthogonal
families of curves as defined in Section 3.4. The physical meaning of the level
curves of φ and ψ for applications to electrostatics, fluid flow, gravitation,
and heat flow are summarized in Table 3.1 in Section 3.4. For example, if the
function φ in Example 1 represents the electrostatic potential between two
infinitely long conducting plates, then the level curves φ(x, y) = C1 represent
equipotential curves. Since φ(x, y) = 5

2x −
5
2y + 3, the equipotential curves

are given by y = x + c1, where c1 = 2
5 (3− C1). These equipotential curves,

which are lines with slope 1, are shown in color in Figure 4.22. In order
to find a harmonic conjugate ψ of φ, we proceed as in part (b) of Example
2 in Section 3.3. Since the conjugate ψ must satisfy the Cauchy-Riemann
equations ∂ψ/∂y = ∂φ/∂x and ∂ψ/∂x = −∂φ/∂y, we must have:

∂ψ

∂y
=

5
2

and
∂ψ

∂x
=

5
2
.

Partial integration of the first of these equations with respect to y gives
ψ(x, y) = 5

2y+h(x). The partial derivative with respect to x of this equation
is ∂ψ/∂x = h′(x). Substituting this into the second of the Cauchy-Riemann
equations implies that h′(x) = 5

2 , and so h(x) = 5
2x + c, where c is any real

constant. Setting c = 0, we obtain the harmonic conjugate ψ(x, y) = 5
2x+ 5

2y
of φ(x, y). Therefore, a complex potential function for φ is

Ω(z) = φ(x, y) + iψ(x, y) =
5
2
x− 5

2
y + 3 + i

(
5
2
x +

5
2
y

)
.

If φ represents electrostatic potential, then the level curves ψ(x, y) = C2

represent lines of force. Since ψ(x, y) = 5
2x + 5

2y, the lines of force are given
by y = −x + c2 where c2 = 2

5C2. The lines of force are shown in black in
Figure 4.22.x

y

D

φ = 3

φ = –2

Figure 4.22 Equipotential curves and

lines of force for Example 1

The method used in Example 1 can be generalized to solve a Dirichlet
problem in any domain D bounded by two parallel lines. The key to solv-
ing such a problem is finding an appropriate linear function that maps the
boundary lines of D onto the boundary lines of the domain shown in Figure
4.18. See Problems 1–4 in Exercises 4.5.
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Dirichlet Problem in a Half-Plane Let D be the upper half-
plane y > 0, and let x1 < x2 < ... < xn be n distinct points on the real axis
(which is the boundary of D). For many applications, it is useful to know
a solution φ of the Dirichlet problem in the D that satisfies the boundary
conditions φ(x, 0) = k0 for x < x1, φ(x, 0) = k1 for x1 < x < x2, φ(x, 0) = k2

for x2 < x < x3 . . . φ(x, 0) = kn for xn < x. See Figure 4.23. If z = x + iy,
then a solution of this Dirichlet problem given by:

φ(x, y) = kn +
1
π

n∑
i=1

(ki−1 − ki) Arg (z − xi). (10)

x

y

φ∇2    = 0

x1 x2 φ = k2φ = k1φ = k0

Figure 4.23 A Dirichlet problem in the

half-plane y > 0

The derivation of this solution will be discussed in Section 7.4. As an appli-
cation of (10), consider the Dirichlet problem:

Solve:
∂2φ

∂x2
+

∂2φ

∂y2
= 0, −∞ < x <∞, y > 0.

Subject to: φ(x, 0) =



−1, −∞ < x < 0

1, 0 < x < 2

4, 2 < x <∞ .

See Figure 4.24. A solution of this problem is given by (10) with x1 = 0,
x2 = 2, k0 = −1, k1 = 1, and k2 = 4:

φ(x, y) = 4− 2
π

Arg (z)− 3
π

Arg (z − 2) . (11)

x

y

φ∇2    = 0

0 2

φ = 4 φ = 1 φ = –1

Figure 4.24 A Dirichlet problem in the

half-plane y > 0

We will now directly verify that the function φ(x, y) in (11) is a solution of
this Dirichlet problem. To see that φ is harmonic in the domain y > 0, we
note that φ is the imaginary part of the function

Ω(z) = 4i− (2/π) Ln (z)− (3/π) Ln (z − 2) .

Since Ω is analytic in the domain y > 0, it follows that φ is harmonic in the
domain y > 0. We next verify that φ satisfies the boundary conditions shown
in Figure 4.24. If −∞ < x < 0 and y = 0, then z = x + iy is on the negative
real axis and so Arg(z) = π. In this case, we also have that z − 2 is on the
negative real axis and so Arg(z − 2) = π as well. Substituting these values in
(11) yields:

φ(x, 0) = 4− 2
π
π − 3

π
π = −1.

On the other hand, if 0 < x < 2 and y = 0, then z is on the positive real axis,
while z−2 is on the negative real axis. Thus, Arg(z) = 0 and Arg(z−2) = π.
After substituting these values in (11) we see that:

φ(x, 0) = 4− 2
π

0− 3
π
π = 1.

Finally, if 2 < x < ∞ and y = 0, then z and z − 2 are on the positive real
axis, and so Arg(z) = Arg(z − 2) = 0. Therefore,

φ(x, 0) = 4− 2
π

0− 3
π

0 = 4.



4.5 Applications 229

Therefore, we have shown that the function φ in (11) is a solution of the
Dirichlet problem shown Figure 4.24 as claimed.

EXAMPLE 2 A Heat Flow Application

Find the steady-state temperature φ(x, y) in the vertical semi-infinite strip
shown in color in Figure 4.25. That is, solve the Dirichlet problem in the
domain D defined by −π/2 < x < π/2, y > 0, where the boundary conditions
are:

φ (−π/2, y) = 40, φ (π/2, y) = 10, y > 0

φ(x, 0) =


 20, −π/2 < x < 0

50, 0 < x < π/2 .

x

y

φ∇2    = 0

φ = 40 φ = 10 

φ = 50φ = 20π
2

π
2

–

Figure 4.25 Figure for Example 2

Solution From Section 3.4, the steady-state temperature φ must satisfy
Laplace’s equation (1) in D. We proceed as in Example 1.

Step 1 In Section 4.3, we saw that the mapping w = sin z takes the domain
D onto the upper-half plane D′ given by v > 0. See Example 3 in Section
4.3. Because sin z is an entire function, w = sin z is an analytic mapping of D
onto D′.

Step 2 From Example 3 in Section 4.3 we have that w = sin z maps:

(i) the half-line x = −π/2, y > 0, onto the half-line v = 0, u < −1,

(ii) the segment y = 0, −π/2 < x < 0 onto the segment v = 0, −1 < u < 0,

(iii) the segment y = 0, 0 < x < π/2 onto the segment v = 0, 0 < u < 1, and

(iv) the half-line x = π/2, y > 0, onto the half-line v = 0, u > 1.

This transforms the Dirichlet problem in the domain D shown color in Figure
4.25 onto the Dirichlet problem in the half-plane v > 0 shown in gray in Figure
4.26. That is, the transformed Dirichlet problem is:

Solve:
∂2Φ
∂u2

+
∂2Φ
∂v2

= 0

Subject to: φ(u, 0) =




40, −∞ < u < −1

20, −1 < u < 0

50, 0 < u < 1

10, 1 < u <∞ .

u

v

∇2      = 0

= 50 = 10= 40

–1 1

= 20

Φ

Φ Φ Φ Φ

Figure 4.26 Transformed Dirichlet

problem for Example 2 Step 3 A solution of the transformed Dirichlet problem in Step 2 is given
by (10) with the symbols x, y, and z replaced by u, v, and w, respectively.
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Setting k0 = 40, k1 = 20, k2 = 50, k3 = 10, u1 = −1, u2 = 0, and u3 = 1, we
obtain:

Φ(u, v) = 10 +
20
π

Arg (w + 1)− 30
π

Arg (w) +
40
π

Arg (w − 1) . (12)

Step 4 A solution φ of the Dirichlet problem in the domain D is found by
replacing the variables u and v in (12) with the real and imaginary parts of
the analytic function f(z) = sin z. Since

sin z = sinx cosh y + i cosx sinh y and w = u + iv,

this is equivalent to replacing w with sin z in (12). Therefore,

φ(x, y) = 10 +
20
π

Arg (sin(z) + 1)− 30
π

Arg (sin z) +
40
π

Arg (sin(z)− 1) (13)

is a solution of the Dirichlet problem in D. If desired, the function φ can
be written in terms of x and y, provided that we are careful with our use of
the real arctangent function. In particular, if the values of the arctangent are
chosen to lie between 0 and π, then the function φ in (13) can be written as:

φ(x, y) = 10 +
20
π

arctan
(

cosx sinh y
sinx cosh y + 1

)
− 30

π
arctan

(
cosx sinh y
sinx cosh y

)

+
40
π

arctan
(

cosx sin y
sinx cosh y − 1

)
.

Observe that the function

Ω(z) = 10i +
20
π

Ln (sin(z) + 1)− 30
π

Ln (sin z) +
40
π

Ln (sin(z)− 1)

is analytic in the domain D given by −π/2 < x < π/2, y > 0, and shown in
color in Figure 4.25. Since the imaginary part of Ω(z) is the function φ given
by (13), the real part ψ of Ω(z) is a harmonic conjugate of φ . Therefore,
Ω(z) is a complex potential function of the function φ in Example 2. In heat
flow problems, the level curves of the steady-state temperature φ are called
isotherms, whereas the level curves of its harmonic conjugate ψ are called
lines of heat flux. In Figure 4.27 we have sketched the level curves for the
heat flow problem in Example 2. The isotherms are the curves shown in color
and lines of heat flux are the curves shown in black.

x

y

φ = 20 φ = 50

φ = 40 φ = 10

π
2

π
2

–

Figure 4.27 The isotherms and lines of

heat flux for Example 2

EXERCISES 4.5 Answers to selected odd-numbered problems begin on page ANS-15.

In Problems 1–4, (a) use a linear mapping and (2) to find the electrostatic potential

φ(x, y) in the domain D that satisfies the given boundary conditions, (b) find a

complex potential function Ω(z) for φ(x, y), and (c) sketch the equipotential curves

and the lines of force.
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1. The domain D is bounded by the lines x = 2 and x = 7, and the boundary
conditions are φ(2, y) = 3 and φ(7, y) = −2.

2. The domain D is bounded by the lines y = 0 and y = 3, and the boundary
conditions are φ(x, 0) = 1 and φ(x, 3) = 2.

3. The domain D is bounded by the lines y =
√

3x and y =
√

3x + 4, and the
boundary conditions are φ

(
x,

√
3x

)
= 10 and φ

(
x,

√
3x+ 4

)
= 5.

4. The domain D is bounded by the lines y = x + 2 and y = x + 4, and the
boundary conditions are φ (x, x+ 2) = −4 and φ (x, x+ 4) = 5.

In Problems 5–8, (a) use the analytic mapping w = sin z and, if necessary, linear

mappings together with (10) to find the steady-state temperature φ(x, y) in the

domain D that satisfies the given boundary conditions, and (b) find a complex

potential function Ω(z) for φ(x, y).

5. The domain D is given by π/2 < x < 3π/2, y > 0, and the boundary conditions
are φ (π/2, y) = 20, φ (x, 0) = −13, and φ (3π/2, y) = 12.

6. The domain D is bounded by −3 < x < 3, y > 1, and the boundary conditions
are φ (−3, y) = 1, φ (x, 1) = 3, and φ (3, y) = 5.

7. The domain D is bounded by −π/2 < y < π/2, x > 0, and the boundary
conditions are φ (x,−π/2) = 15, φ(0, y) = 32, and φ (x, π/2) = 23.

8. The domain D is bounded by the lines y = x + 2, y = x − 2, and y = −x.
In D the points z = x + iy satisfy y ≥ −x. The boundary conditions are
φ (x, x+ 2) = 10, φ (x, −x) = 7, and φ (x, x− 2) = 5.

Focus on Concepts

9. Use the analytic mapping w = z1/4 and (10) to solve the Dirichlet problem
shown in Figure 4.28. Find a complex potential function Ω(z) for φ(x, y).

10. Use the analytic mapping w = sin−1 z and (2) to solve the Dirichlet problem
shown in Figure 4.29. Find the complex potential function Ω(z) for φ(x, y).

x

e iπ/4

y

φ = 7 φ = 4

φ = 2

φ = –3

1

Figure 4.28 Figure for Problem 9

x

y

φ = –4

φ = 101

Figure 4.29 Figure for Problem 10

Computer Lab Assignments

In Problems 11–14, use a CAS to plot the isotherms and lines of heat flux for the

given heat flow.

11. The heat flow in Problem 5.

12. The heat flow in Problem 6.

13. The heat flow in Problem 7.

14. The heat flow in Problem 8.

In Problems 15 and 16, use a CAS to plot the level curves φ = c1 and ψ = c2 of the

given complex potential function Ω(z).

15. Ω(z) is the complex potential function in Problem 9.

16. Ω(z) is the complex potential function in Problem 10.
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CHAPTER 4 REVIEW QUIZ
Answers to selected odd-numbered problems begin
on page ANS-15.

In Problems 1–20, answer true or false. If the statement is false, justify your answer

by either explaining why it is false or giving a counterexample; if the statement is

true, justify your answer by either proving the statement or citing an appropriate

result in this chapter.

1. If |ez| = 1, then z is a pure imaginary number.

2. Re (ez) = cos y.

3. The mapping w = ez takes vertical lines in the z-plane onto horizontal lines in
the w-plane.

4. There are infinitely many solutions z to the equation ez = w.

5. ln i = 1
2
πi.

6. Im (ln z) = arg(z).

7. For all nonzero complex z, eLnz = z.

8. If w1 and w2 are two values of ln z, then Re (w1) = Re (w2).

9. Ln
1

z
= −Ln z for all nonzero z.

10. For all nonzero complex numbers, Ln (z1z2) =Ln z1+Ln z2.

11. Ln z is an entire function.

12. The principal value of ii+1 is e−π/2+i.

13. The complex power zα is always multiple-valued.

14. cos z is a periodic function with a period of 2π.

15. There are complex z such that |sin z| > 1.

16. tan z has singularities at z = (2n+ 1)π/2, for n = 0, ±1, ±2, . . . .

17. cosh z = cos(iz).

18. z = 1
2
πi is a zero of cosh z.

19. The function sin z̄ is nowhere analytic.

20. Every branch of tan−1 z is entire.

In Problems 21–40, try to fill in the blanks without referring back to the text.

21. The real and imaginary parts of ez are u(x, y) = and
v(x, y) = .

22. The domain of Ln z is , and its range is .

23. Ln
(√

3 + i
)

= .

24. The complex exponential function ez is periodic with a period of .

25. If eiz = 2, then z = .

26. Ln
(
e1−πi

)
= .

27. Ln z is discontinuous on .
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28. The line segment x = a, −π < y ≤ π , is mapped onto by the
mapping w = ez.

29. ln (1 + i) = .

30. If ln z is pure imaginary, then |z| = .

31. z1 = 1 and z2 = are two real numbers for which the principal value
zi = 1.

32. The principal value of ii is .

33. On the domain |z| > 0, −π < arg(z) < π, the derivative of the principal value
of zα is .

34. The complex sine function is defined by sin z = .

35. cos (4i) = .

36. The semi-infinite vertical strip −π/2 ≤ x ≤ π/2, y ≥ 0, is mapped onto
by w = sin z.

37. The real and imaginary parts of sin z are and , respectively.

38. The complex sine and hyperbolic sine functions are related by the formulas
sin(iz) = and sinh(iz) = .

39. tanh−1 z is not defined for z = .

40. In order to compute a specific value of sin−1 z you need to choose a branch of
and a branch of .





Integration 
in the
Complex Plane

5

Normalized velocity vector field for 
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Introduction To define an integral of a complex
function f , we start with a complex function f
defined along some curve C or coutour in the
complex plane. We shall see in this section that
the definition of a complex integral, its proper-
ties, and method of evaluation are quite similar
to those of a real line integral in the Cartesian
plane.
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5.1 Real Integrals

5.1To the Instructor : We present this section as a review of the definitions and methods
of evaluation of the definite integral and line integrals in the plane. In our experience we
have found that a re-examination of this material contributes to a smoother introduction to
complex integration. You can, of course, skip this section and move directly into complex
contour integrals if you think your students have adequate familiarity with these concepts.
However, the terminology about curves in the plane introduced in this section will be used
in the succeeding section.

Definite Integral It is likely that you have retained at least two as-
sociations from your study of elementary calculus: the derivative with slope,
and the definite integral with area. But as the derivative f ′(x) of a real func-
tion y = f(x) has other uses besides finding slopes of tangent lines, so too
the value of a definite integral

∫ b

a
f(x) dx need not be area “under a curve.”

Recall, if F (x) is an antiderivative of a continuous function f , that is, F is a
function for which F ′(x) = f(x), then the definite integral of f on the interval
[a, b] is the number

∫ b

a

f(x) dx = F (x)| ba = F (b)− F (a). (1)

For example,
∫ 2

−1
x2dx = 1

3x
3
∣∣2
−1

= 8
3−

(
−1

3

)
= 3. Bear in mind that the fun-

damental theorem of calculus, just given in (1), is a method of evaluating∫ b

a
f(x) dx; it is not the definition of

∫ b

a
f(x) dx.

In the discussion that follows we present the definitions of two types of
real integrals. We begin with the five steps leading to the definition of the
definite (or Riemann) integral of a function f ; we follow it with the definition
of line integrals in the Cartesian plane. Both definitions rest on the limit
concept.

x1*

x1 xk–1 xn= ba =x0

xk*

xk

Figure 5.1 Partition of [a, b] with x∗k
in each subinterval [xk−1, xk]

Steps Leading to the Definition of the
Definite Integral

1. Let f be a function of a single variable x defined at all points in a
closed interval [a, b].

2. Let P be a partition:

a = x0 < x1 < x2 < · · · < xn−1 < xn = b

of [a, b] into n subintervals [xk−1, xk] of length ∆xk = xk − xk−1.
See Figure 5.1.
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3. Let ‖P‖ be the norm of the partition P of [a, b], that is, the length
of the longest subinterval.

4. Choose a number x∗k in each subinterval [xk−1, xk] of [a, b]. See
Figure 5.1.

5. Form n products f(x∗k)∆xk, k = 1, 2, . . . , n, and then sum these
products:

n∑
k=1

f(x∗k) ∆xk.

Definition 5.1 Definite Integral

The definite integral of f on [a, b] is

∫ b

a

f(x) dx = lim
‖P‖→0

n∑
k=1

f(x∗k) ∆xk. (2)

Whenever the limit in (2) exists we say that f is integrable on the
interval [a, b] or that the definite integral of f exists. It can be proved that
if f is continuous on [a, b], then the integral defined in (2) exists.

The notion of the definite integral
∫ b

a
f(x) dx, that is, integration of a real

function f(x) over an interval on the x-axis from x = a to x = b can be
generalized to integration of a real multivariable function G(x, y) on a curve
C from point A to point B in the Cartesian plane. To this end we need to
introduce some terminology about curves.

Terminology Suppose a curve C in the plane is parametrized by a set
of equations x = x(t), y = y(t), a ≤ t ≤ b, where x(t) and y(t) are continuous
real functions. Let the initial and terminal points of C, that is, (x(a), y(a))
and (x(b), y(b)), be denoted by the symbols A and B, respectively. We say
that:

(i) C is a smooth curve if x′ and y′ are continuous on the closed interval
[a, b] and not simultaneously zero on the open interval (a, b).

(ii) C is a piecewise smooth curve if it consists of a finite number of
smooth curves C1, C2, . . . , Cn joined end to end, that is, the terminal
point of one curve Ck coinciding with the initial point of the next curve
Ck+1.

(iii) C is a simple curve if the curve C does not cross itself except possibly
at t = a and t = b.

(iv) C is a closed curve if A = B.

(v) C is a simple closed curve if the curve C does not cross itself and
A = B; that is, C is simple and closed.
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Figure 5.2 illustrates each type of curve defined in (i)–(v).

A A

A =B

A =B

B

B

C1

C2
C3

(a) Smooth
      curve and
      simple

(b) Piecewise smooth
       curve and simple

(c) Closed but
      not simple

(d) Simple closed
       curve

Figure 5.2 Types of curves in the plane

Line Integrals in the Plane The following five steps lead to the
definition of three line integrals∗ in the plane and are analogous to the five
steps given prior to the definition of the definite integral.

Steps Leading to the Definition of Line Integrals

1. Let G be a function of two real variables x and y defined at all points
on a smooth curve C that lies in some region of the xy-plane. Let C
be defined by the parametrization x = x(t), y = y(t), a ≤ t ≤ b.

2. Let P be a partition of the parameter interval [a, b] into
n subintervals [tk−1, tk] of length ∆tk = tk − tk−1:

a = t0 < t1 < t2 < · · · < tn−1 < tn = b.

The partition P induces a partition of the curve C into n subarcs of
length ∆sk. Let the projection of each subarc onto the x- and y-axes
have lengths ∆xk and ∆yk, respectively. See Figure 5.3.

3. Let ‖P‖ be the norm of the partition P of [a, b], that is, the length of
the longest subinterval.

4. Choose a point (x∗k, y
∗
k) on each subarc of C. See Figure 5.3.

5. Form n products G(x∗k, y
∗
k)∆xk, G(x∗k, y

∗
k)∆yk, G(x∗k, y

∗
k)∆sk,

k = 1, 2, . . . , n, and then sum these products

n∑
k=1

G(x∗k, y
∗
k)∆xk,

n∑
k=1

G(x∗k, y
∗
k)∆yk, and

n∑
k=1

G(x∗k, y
∗
k)∆sk.

y

B

C

A
x

∆xk

(xk*, yk*)∆yk

∆sk

Figure 5.3 Partition of curve C into n

subarcs induced by a partition P of the

parameter interval [a, b]
Definition 5.2 Line Integrals in the Plane

(i) The line integral of G along C with respect to x is

∫
C

G(x, y) dx = lim
‖P‖→0

n∑
k=1

G(x∗k, y
∗
k) ∆xk. (3)

(ii) The line integral of G along C with respect to y is

∫
C

G(x, y) dy = lim
‖P‖→0

n∑
k=1

G(x∗k, y
∗
k) ∆yk. (4)

(Definition continues on page 239)

∗An unfortunate choice of names. Curve integrals would be more appropriate.
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(iii) The line integral of G along C with respect to arc length s
is ∫

C

G(x, y) ds = lim
‖P‖→0

n∑
k=1

G(x∗k, y
∗
k) ∆sk. (5)

It can be proved that if G is continuous on C, then the three types of line
integrals defined in (3), (4), and (5) exist. We shall assume continuity of G
as matter of course. The curve C is referred to as the path of integration.

Method of Evaluation–C Defined Parametrically The
line integrals in Definition 5.2 can be evaluated in two ways, depending on
whether the curve C is defined by a pair of parametric equations or by an
explicit function. Either way, the basic idea is to convert a line integral to a
definite integral in a single variable. If C is smooth curve parametrized by
x = x(t), y = y(t), a ≤ t ≤ b, then replace x and y in the integral by the
functions x(t) and y(t), and the appropriate differential dx, dy, or ds by

x′(t) dt, y′(t) dt, or
√

[x′(t)]2 + [y′(t)]2 dt.

The term ds =
√

[x′(t)]2 + [y′(t)]2 dt is called the differential of the arc length.
In this manner each of the line integrals in Definition 5.2 becomes a definite
integral in which the variable of integration is the parameter t. That is,∫

C

G(x, y) dx =
∫ b

a

G (x(t), y(t))x′(t) dt, (6)

∫
C

G(x, y) dy =
∫ b

a

G (x(t), y(t)) y′(t) dt, (7)

∫
C

G(x, y) ds =
∫ b

a

G (x(t), y(t))
√

[x′(t)]2 + [y′(t)]2 dt. (8)

EXAMPLE 1 C Defined Parametrically

Evaluate (a)
∫

C
xy2dx, (b)

∫
C
xy2dy, and (c)

∫
C
xy2ds, where the path of inte-

gration C is the quarter circle defined by x = 4 cos t, y = 4 sin t,
0 ≤ t ≤ π/2.

Solution The path C of integration is shown in color in Figure 5.4. In each
of the three given line integrals, x is replaced by 4 cos t and y is replaced by
4 sin t.

y

C

x
t = 0 gives (4, 0)

t =      gives

(0,4)

π
2

Figure 5.4 Path C of integration

(a) Since dx = −4 sin t dt, we have from (6):∫
C

xy2dx =
∫ π/2

0

(4 cos t) (4 sin t)2 (−4 sin t dt)

= −256
∫ π/2

0

sin3 t cos t dt = −256
[
1
4

sin4 t

]π/2

0

= −64.
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(b) Since dy = 4 cos t dt, we have from (7):

∫
C

xy2dy =
∫ π/2

0

(4 cos t) (4 sin t)2 (4 cos t dt)

= 256
∫ π/2

0

sin2 t cos2 t dt

= 256
∫ π/2

0

1
4

sin2 2t dt

= 64
∫ π/2

0

1
2
(1− cos 4t) dt = 32

[
t− 1

4
sin 4t

]π/2

0

= 16π.

Note in this integration we have used two trigonometric identities: sin 2θ =
2 sin θ cos θ and sin2 θ = 1

2 (1− cos 2θ).

(c) Since ds =
√

16
(
sin2 t+ cos2 t

)
dt = 4 dt, it follows from (8):

∫
C

xy2ds =
∫ π/2

0

(4 cos t) (4 sin t)2 (4 dt)

= 256
∫ π/2

0

sin2 t cos t dt = 256
[
1
3

sin3 t

]π/2

0

=
256
3
.

Method of Evaluation–C Defined by a Function If the
path of integration C is the graph of an explicit function y = f(x), a ≤ x ≤ b,
then we can use x as a parameter. In this situation, the differential of y is

dy = f ′(x) dx, and the differential of arc length is ds =
√

1 + [f ′(x)]2 dx.
After substituting, the three line integrals of Definition 5.2 become, in turn,
the definite integrals:

∫
C

G(x, y) dx =
∫ b

a

G (x, f(x)) dx, (9)

∫
C

G(x, y) dy =
∫ b

a

G (x, f(x)) f ′(x) dx, (10)

∫
C

G(x, y) ds =
∫ b

a

G (x, f(x))
√

1 + [f ′(x)]2 dx. (11)

A line integral along a piecewise smooth curve C is defined as the sum of
the integrals over the various smooth curves whose union comprises C. For
example, to evaluate

∫
C
G(x, y) ds when C is composed of two smooth curves

C1 and C2, we begin by writing∫
C

G(x, y) ds =
∫

C1

G(x, y) ds+
∫

C2

G(x, y) ds. (12)
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The integrals
∫

C1
G(x, y) ds and

∫
C2
G(x, y) ds are then evaluated in the

manner given in (8) or (11).

Notation In many applications, line integrals appear as a sum∫
C
P (x, y) dx+

∫
C
Q(x, y) dy. It is common practice to write this sum as one

integral without parentheses as∫
C

P (x, y) dx+Q(x, y) dy or simply
∫

C

P dx+Qdy. (13)

A line integral along a closed curve C is usually denoted by∮
C

P dx+Qdy.

EXAMPLE 2 C Defined by an Explicit Function

Evaluate
∫

C
xy dx+ x2dy, where C is the graph of y = x3, −1 ≤ x ≤ 2.

Solution The curve C is illustrated in Figure 5.5 and is defined by the
explicit function y = x3. Hence we can use x as the parameter. Using the
differential dy = 3x2dx, we apply (9) and (10):

y

C

x

(–1, –1)

(2, 8)

Figure 5.5 Graph of y = x3 on the

interval −1 ≤ x ≤ 2

∫
C

xy dx+ x2dy =
∫ 2

−1

x
(
x3

)
dx+ x2

(
3x2dx

)

=
∫ 2

−1

4x4dx =
4
5
x5

∣∣∣∣
2

−1

=
132
5
.

EXAMPLE 3 C is a Closed Curve

Evaluate
∮

C
x dx, where C is the circle defined by x = cos t, y = sin t,

0 ≤ t ≤ 2π.

Solution The differential of x = cos t is dx = − sin t dt, and so from (6),

∮
C

x dx =
∫ 2π

0

cos t (− sin t dt) =
1
2

cos2 t
∣∣∣∣
2π

0

=
1
2
[1− 1] = 0.

y

y = x2

x

Figure 5.6 Piecewise smooth path

of integration

EXAMPLE 4 C is a Closed Curve

Evaluate
∮

C
y2 dx− x2dy , where C is the closed curve shown in Figure 5.6.
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Solution Since C is piecewise smooth, we proceed as illustrated in (12);
namely, the given integral is expressed as a sum of integrals. Symbolically, we
write

∮
C

=
∫

C1
+

∫
C2

+
∫

C3
, where the C1, C2, and C3 are the curves labeled in

Figure 5.7. On C1, we use x as a parameter. Since y = 0, dy = 0; therefore

∫
C1

y2 dx− x2dy =
∫ 2

0

0 dx− x2(0) = 0.

y

 C3  C2

 C1 x
(0, 0) (2, 0)

(2, 4)

Figure 5.7 C consists of the union

of C1, C2, and C3.

On C2, we use y as a parameter. From x = 2, dx = 0, we have

∫
C2

y2 dx− x2dy =
∫ 4

0

y2(0)− 4 dy = −
∫ 4

0

4 dy = −16.

On C3, we again use x as a parameter. From y = x2, we get dy = 2x dx and
so ∫

C3

y2 dx− x2dy =
∫ 0

2

(
x2

)2
dx− x2 (2x dx)

=
∫ 0

2

(
x4 − 2x3

)
dx =

(
1
5
x5 − 1

2
x4

)∣∣∣∣
0

2

=
8
5
.

Hence,
∮

C

y2dx− x2dy =
∫

C1

+
∫

C2

+
∫

C3

= 0 + (−16) +
8
5

= −72
5
.

 C  –C

A A

B B

Figure 5.8 Curve C and its opposite −C

Orientation of a Curve In definite integration we normally assume
that the interval of integration is a ≤ x ≤ b and the symbol

∫ b

a
f(x) dx indi-

cates that we are integrating in the positive direction on the x-axis. Integra-
tion in the opposite direction, from x = b to x = a, results in the negative of
the original integral:

∫ a

b

f(x) dx = −
∫ b

a

f(x) dx. (14)

Line integrals possess a property similar to (14), but first we have to introduce
the notion of orientation of the path C. If C is not a closed curve, then we
say the positive direction on C, or that C has positive orientation, if we
traverse C from its initial point A to its terminal point B. In other words,
if x = x(t), y = y(t), a ≤ t ≤ b are parametric equations for C, then the
positive direction on C corresponds to increasing values of the parameter t.
If C is traversed in the sense opposite to that of the positive orientation, then
C is said to have negative orientation. If C has an orientation (positive or
negative), then the opposite curve, the curve with the opposite orientation,
will be denoted by the symbol −C. In Figure 5.8 if we assume that A and
B are the initial and terminal points of the curve C, respectively, then the
arrows on curve C indicate that we are traversing the curve from its initial
point to its terminal point, and so C has positive orientation. The curve to
the right of C that is labeled −C then has negative orientation. Finally, if −C
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denotes the curve having the opposite orientation of C, then the analogue of
(14) for line integrals is

∫
−C

P dx+Qdy = −
∫

C

P dx+Qdy, (15)

or, equivalently

∫
−C

P dx+Qdy +
∫

C

P dx+Qdy = 0. (16)

For example, in part (a) of Example 1 we saw that
∫

C
xy2 dx = −64; we

conclude from (15) that
∫
−C

xy2 dx = 64.
�Note It is important to be aware that a line integral is independent of the

parametrization of the curve C, provided C is given the same orientation
by all sets of parametric equations defining the curve. See Problem 33 in
Exercises 5.1.

EXERCISES 5.1 Answers to selected odd-numbered problems begin on page ANS-15.

In Problems 1–10, evaluate the definite integral. If necessary, review the techniques

of integration in your calculus text.

1.

∫ 3

−1

x(x− 1)(x + 2) dx 2.

∫ 0

−1

t2 dt +

∫ 2

0

x2 dx +

∫ 3

2

u2 du

3.

∫ 1

1/2

sin 2πx dx 4.

∫ π/8

0

sec2 2x dx

5.

∫ 4

0

dx

2x + 1
6.

∫ ln 3

ln 2

e−x dx

7.

∫ 4

2

xe−x/2 dx 8.

∫ e

1

lnx dx

9.

∫ 4

2

dx

x2 − 6x + 5
10.

∫ 4

2

2x− 1

(x + 3)2
dx

In Problems 11–14, evaluate the line integrals
∫

C
G(x, y) dx,

∫
C
G(x, y) dy, and∫

C
G(x, y) ds on the indicated curve C.

11. G(x, y) = 2xy; x = 5 cos t, y = 5 sin t, 0 ≤ t ≤ π/4

12. G(x, y) = x3 + 2xy2 + 2x; x = 2t, y = t2, 0 ≤ t ≤ 1

13. G(x, y) = 3x2 + 6y2; y = 2x + 1, −1 ≤ x ≤ 0

14. G(x, y) = x2/y
3
; 2y = 3x3/2, 1 ≤ t ≤ 8
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In Problems 15–18, evaluate
∫

C
(2x + y) dx+ xy dy on the given curve from (−1, 2)

to (2, 5).

15. y = x + 3 16. y = x2 + 1

17. 18.
y

x

(2, 2)

(2, 5)

(–1, 2)

Figure 5.9 Figure for Problem 17

y

x
(2, 0)(–1, 0)

(2, 5)

(–1, 2)

Figure 5.10 Figure for Problem 18

In Problems 19–22, evaluate

∫
C

y dx+x dy on the given curve from (0, 0) to (1, 1).

19. y = x2 20. y = x

21. C consists of the line segments from (0, 0) to (0, 1) and from (0, 1) to (1, 1).

22. C consists of the line segments from (0, 0) to (1, 0) and from (1, 0) to (1, 1).

23. Evaluate

∫
C

(
6x2 + 2y2) dx + 4xy dy, where C is given by x =

√
t, y = t,

4 ≤ t ≤ 9.

24. Evaluate

∫
C

−y2 dx + xy dy, where C is given by x = 2t, y = t3, 0 ≤ t ≤ 2.

25. Evaluate

∫
C

2x3y dx + (3x + y) dy, where C is given by x = y2 from (1, −1)

to (1, 1).

26. Evaluate

∫
C

4x dx + 2y dy, where C is given by x = y3 + 1 from (0, −1)

to (9, 2).

In Problems 27 and 28, evaluate

∮
C

(
x2 + y2) dx−2xy dy on the given closed curve.

27. 28.
y

x

x2 + y2 = 4

Figure 5.11 Figure for Problem 27

y = x2

y = √x

y

x

(1, 1)

Figure 5.12 Figure for Problem 28
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In Problems 29 and 30, evaluate
∮

C
x2y3 dx− xy2 dy on the given closed curve.

29. 30.
y

x

(1, 1)(–1, 1)

(1, –1)(–1, –1)

Figure 5.13 Figure for Problem 29

y

x

(2, 4)

Figure 5.14 Figure for Problem 30

31. Evaluate
∮

C

(
x2 − y2

)
ds, where C is given by x = 5 cos t, y = 5 sin t, 0 ≤ t ≤ 2π.

32. Evaluate
∫
−C

y dx−x dy, where C is given by x = 2 cos t, y = 3 sin t, 0 ≤ t ≤ π.

33. Verify that the line integral
∫

C
y2 dx + xy dy has the same value on C for each

of the following parametrizations:

C : x = 2t + 1, y = 4t + 2, 0 ≤ t ≤ 1

C : x = t2, y = 2t2, 1 ≤ t ≤
√

3

C : x = ln t, y = 2 ln t, e ≤ t ≤ e3.

34. Consider the three curves between (0, 0) and (2, 4):

C : x = t, y = 2t, 0 ≤ t ≤ 2

C : x = t, y = t2, 0 ≤ t ≤ 2

C : x = 2t− 4, y = 4t− 8, 2 ≤ t ≤ 3.

Show that
∫

C1
xy ds =

∫
C3

xy ds, but
∫

C1
xy ds �=

∫
C2

xy ds. Explain.

35. If ρ(x, y) is the density of a wire (mass per unit length), then the mass of
the wire is m =

∫
C
ρ(x, y) ds. Find the mass of a wire having the shape of

a semicircle x = 1 + cos t, y = sin t, 0 ≤ t ≤ π, if the density at a point P is
directly proportional to the distance from the y-axis.

36. The coordinates of the center of mass of a wire with variable density are given
by x̄ = My/m, ȳ = Mx/m where

m =

∫
C

ρ(x, y) ds, Mx =

∫
C

yρ(x, y) ds, My =

∫
C

xρ(x, y) ds.

Find the center of mass of the wire in Problem 35.

5.2 Complex Integrals

5.2In the preceding section we reviewed two types of real integrals. We saw that the definition
of the definite integral starts with a real function y = f(x) that is defined on an interval on
the x-axis. Because a planar curve is the two-dimensional analogue of an interval, we then
generalized the definition of

∫ b

a
f(x) dx to integrals of real functions of two variables defined

on a curve C in the Cartesian plane. We shall see in this section that a complex integral is
defined in a manner that is quite similar to that of a line integral in the Cartesian plane.

Since curves play a big part in the definition of a complex integral, we begin with a
brief review of how curves are represented in the complex plane.
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Curves Revisited Suppose the continuous real-valued functions
x = x(t), y = y(t), a ≤ t ≤ b, are parametric equations of a curve C in
the complex plane. If we use these equations as the real and imaginary parts
in z = x+ iy, we saw in Section 2.2 that we can describe the points z on C by
means of a complex-valued function of a real variable t called a parametriza-
tion of C:

z(t) = x(t) + iy(t), a ≤ t ≤ b. (1)

For example, the parametric equations x = cos t, y = sin t, 0 ≤ t ≤ 2π,
describe a unit circle centered at the origin. A parametrization of this circle
is z(t) = cos t+ i sin t, or z(t) = eit, 0 ≤ t ≤ 2π. See (6)–(10) in Section 2.2.

The point z(a) = x(a) + iy(a) or A = (x(a), y(a)) is called the initial
point of C and z(b) = x(b)+ iy(b) or B = (x(b), y(b)) is its terminal point.
We also saw in Section 2.7 that z(t) = x(t) + iy(t) could also be interpreted
as a two-dimensional vector function. Consequently, z(a) and z(b) can be
interpreted as position vectors. As t varies from t = a to t = b we can
envision the curve C being traced out by the moving arrowhead of z(t). See
Figure 5.15.

y

z(a)

z(t)

z(b)

C

A

B

x

Figure 5.15 z(t) = x(t) + iy(t) as a

position vector

Contours The notions of curves in the complex plane that are smooth,
piecewise smooth, simple, closed, and simple closed are easily formulated in
terms of the vector function (1). Suppose the derivative of (1) is z′(t) =
x′(t) + iy′(t). We say a curve C in the complex plane is smooth if z′(t)
is continuous and never zero in the interval a ≤ t ≤ b. As shown Figure
5.16, since the vector z′(t) is not zero at any point P on C, the vector z′(t) is
tangent to C at P . In other words, a smooth curve has a continuously turning
tangent; put yet another way, a smooth curve can have no sharp corners or
cusps. See Figure 5.17. A piecewise smooth curve C has a continuously
turning tangent, except possibly at the points where the component smooth
curves C1, C2, . . . , Cn are joined together. A curve C in the complex plane
is said to be a simple if z(t1) �= z(t2) for t1 �= t2, except possibly for t = a
and t = b. C is a closed curve if z(a) = z(b). C is a simple closed curve
if z(t1) �= z(t2) for t1 �= t2 and z(a) = z(b). In complex analysis, a piecewise
smooth curve C is called a contour or path.

y

z′(t)

z(t) C

P
Tangent

x

Figure 5.16 z′(t) = x′(t) + iy′(t) as a

tangent vector

z(b)
z(a)

C

Figure 5.17 Curve C is not smooth

since it has a cusp.

C

C

(a) Positive direction

(b) Positive direction

Figure 5.18 Interior of each curve is to

the left.

Just as we did in the preceding section, we define the positive direction
on a contour C to be the direction on the curve corresponding to increasing
values of the parameter t. It is also said that the curve C has positive
orientation. In the case of a simple closed curve C, the positive direction
roughly corresponds to the counterclockwise direction or the direction that
a person must walk on C in order to keep the interior of C to the left. For
example, the circle z(t) = eit, 0 ≤ t ≤ 2π, has positive orientation. See Figure
5.18. The negative direction on a contour C is the direction opposite the
positive direction. If C has an orientation, the opposite curve, that is, a
curve with opposite orientation, is denoted by −C. On a simple closed curve,
the negative direction corresponds to the clockwise direction.

Complex Integral An integral of a function f of a complex variable z
that is defined on a contour C is denoted by

∫
C
f(z) dz and is called a complex
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integral. The following list of assumptions is a prelude to the definition of a
complex integral. For the sake of comparison, you are encouraged to review
the lists given prior to Definitions 5.1 and 5.2. Also, look over Figure 5.19 as
you read this new list.

C

zk*

zk

zn

zk–1

z1* z2* z2

z1

z0

Figure 5.19 Partition of curve C into

n subarcs is induced by a partition P

of the parameter interval [a, b].

Steps Leading to the Definition of the
Complex Integral

1. Let f be a function of a complex variable z defined at all points on a
smooth curve C that lies in some region of the complex plane. Let C
be defined by the parametrization z(t) = x(t) + iy(t), a ≤ t ≤ b.

2. Let P be a partition of the parameter interval [a, b] into n subintervals
[tk−1, tk] of length ∆tk = tk − tk−1:

a = t0 < t1 < t2 < · · · < tn−1 < tn = b.

The partition P induces a partition of the curve C into n subarcs
whose initial and terminal points are the pairs of numbers

z0 = x(t0) + iy(t0), z1 = x(t1) + iy(t1),
z1 = x(t1) + iy(t1), z2 = x(t2) + iy(t2),

...
...

zn−1 = x(tn−1) + iy(tn−1), zn = x(tn) + iy(tn).

Let ∆zk = zk − zk−1, k = 1, 2, . . . , n. See Figure 5.19.

3. Let ‖P‖ be the norm of the partition P of [a, b], that is, the length of
the longest subinterval.

4. Choose a point z∗k = x∗k + iy∗k on each subarc of C. See Figure 5.19.

5. Form n products f(z∗k)∆zk, k = 1, 2, . . . , n, and then sum these
products:

n∑
k=1

f(z∗k)∆zk.

Definition 5.3 Complex Integral

The complex integral of f on C is

∫
C

f(z) dz = lim
‖P‖→0

n∑
k=1

f(z∗k)∆zk. (2)
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If the limit in (2) exists, then f is said to be integrable on C. The
limit exists whenever if f is continuous at all points on C and C is either
smooth or piecewise smooth. Consequently we shall, hereafter, assume these
conditions as a matter of course. Moreover, we will use the notation

∮
C
f(z) dz

to represent a complex integral around a positively oriented closed curve C.
When it is important to distinguish the direction of integration around a
closed curve, we will employ the notations∫

C

f (z) dz and
∫

C

f (z) dz

�General assumptions throughout this
text

to denote integration in the positive and negative directions, respectively.

�Note

The point having been made that the definitions of real integrals discussed
in Section 5.1 and Definition 5.3 are formally the same, we shall from now on
refer to a complex integral

∫
C
f(z) dz by its more common name, contour

integral.

Complex-Valued Function of a Real Variable Before turn-
ing to the properties of contour integrals and the all-important question of
how to evaluate a contour integral, we need to digress briefly to enlarge upon
the concept of a complex-valued function of a real variable introduced
in the Remarks in Section 2.1. As already mentioned, a parametrization of
a curve C of the form given in (1) is a case in point. Let’s consider another
simple example. If t represents a real variable, then the output of the function
f(t) = (2t+ i)2 is a complex number. For t = 2,

f(2) = (4 + i)2 = 16 + 8i+ i2 = 15 + 8i.

In general, if f1 and f2 are real-valued functions of a real variable t (that is,
real functions), then f(t) = f1(t) + if2(t) is a complex-valued function of a
real variable t. What we are really interested in at the moment is the defi-
nite integral

∫ b

a
f(t) dt, in other words, integration of complex-valued function

f(t) = f1(t) + if2(t) of real variable t carried out over a real interval. Con-
tinuing with the specific function f(t) = (2t+ i)2 it seems logical to write on,
say, the interval 0 ≤ t ≤ 1,∫ 1

0

(2t+ i)2dt =
∫ 1

0

(
4t2 − 1 + 4ti

)
dt =

∫ 1

0

(4t2 − 1)dt + i

∫ 1

0

4t dt. (3)

The integrals
∫ 1

0
(4t2 − 1)dt and

∫ 1

0
4t dt in (3) are real, and so one would be

inclined to call them the real and imaginary parts of
∫ 1

0
(2t+ i)2dt. Each

of these real integrals can be evaluated using the fundamental theorem of
calculus ((1) of Section 5.1):

∫ 1

0

(4t2 − 1)dt =
(

4
3
t3 − t

)∣∣∣∣∣
1

0

=
1
3

and
∫ 1

0

4t dt = 2t2
∣∣∣1
0

= 2.

Thus (3) becomes
∫ 1

0
(2t+ i)2dt = 1

3 + 2i.
Since the preceding integration seems very ordinary and routine, we give

the following generalization. If f1 and f2 are real-valued functions of a real
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variable t continuous on a common interval a ≤ t ≤ b, then we define the
integral of the complex-valued function f(t) = f1(t) + if2(t) on a ≤ t ≤ b in
terms of the definite integrals of the real and imaginary parts of f :

∫ b

a

f(t) dt =
∫ b

a

f1(t) dt + i

∫ b

a

f2(t) dt. (4)

The continuity of f1 and f2 on [a, b] guarantees that both
∫ b

a
f1(t) dt and∫ b

a
f2(t) dt exist.

�These properties are important in
the evaluation of contour integrals.
They will often be used without men-
tion.

All of the following familiar properties of integrals can be proved directly
from the definition given in (4). If f(t) = f1(t)+if2(t) and g(t) = g1(t)+ig2(t)
are complex-valued functions of a real variable t continuous on an interval
a ≤ t ≤ b, then

∫ b

a

k f(t) dt = k

∫ b

a

f(t) dt, k a complex constant, (5)

∫ b

a

(f(t) + g(t)) dt =
∫ b

a

f(t) dt+
∫ b

a

g(t) dt, (6)

∫ b

a

f(t) dt =
∫ c

a

f(t) dt+
∫ b

c

f(t) dt, (7)

∫ a

b

f(t) dt = −
∫ b

a

f(t) dt. (8)

In (7) we choose to assume that the real number c is in the interval [a, b].
We now resume our discussion of contour integrals.

Evaluation of Contour Integrals To facilitate the discussion on
how to evaluate a contour integral

∫
C
f(z) dz, let us write (2) in an abbreviated

form. If we use u+ iv for f , ∆x+ i∆y for ∆z, lim for lim
||P ||→0

,
∑

for
∑n

k=1 and

then suppress all subscripts, (2) becomes

∫
C

f(z)dz = lim
∑

(u+ iv)(∆x+ i∆y)

= lim
[∑

(u∆x− v∆y) + i
∑

(v∆x+ u∆y)
]
.

The interpretation of the last line is

∫
C

f(z) dz =
∫

C

u dx− v dy + i

∫
C

v dx+ u dy. (9)

See Definition 5.2. In other words, the real and imaginary parts of a con-
tour integral

∫
C
f(z) dz are a pair of real line integrals

∫
C
u dx− v dy and∫

C
v dx+ u dy. Now if x = x(t), y = y(t), a ≤ t ≤ b are parametric equations

of C, then dx = x′(t) dt, dy = y′(t) dt. By replacing the symbols x, y, dx,
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and dy by x(t), y(t), x′(t) dt, and y′(t) dt, respectively, the right side of (9)
becomes

∫
C

udx−vdy︷ ︸︸ ︷∫ b

a

[u(x(t), y(t)) x′(t)− v(x(t), y(t)) y′(t)] dt

+ i

∫
C

vdx+udy︷ ︸︸ ︷∫ b

a

[v(x(t), y(t)) x′(t) + u(x(t), y(t)) y′(t)] dt.

(10)

If we use the complex-valued function (1) to describe the contour C, then
(10) is the same as

∫ b

a
f(z(t)) z′(t) dt when the integrand

f(z(t)) z′(t) = [u(x(t), y(t)) + iv(x(t), y(t))] [x′(t) + iy′(t)]

is multiplied out and
∫ b

a
f (z(t)) z′(t) dt is expressed in terms of its real and

imaginary parts. Thus we arrive at a practical means of evaluating a contour
integral.

Theorem 5.1 Evaluation of a Contour Integral

If f is continuous on a smooth curve C given by the parametrization
z(t) = x(t) + iy(t), a ≤ t ≤ b, then

∫
C

f(z) dz =
∫ b

a

f(z(t)) z′(t) dt. (11)

The foregoing results in (10) and (11) bear repeating—this time in some-
what different words. Suppose z(t) = x(t) + iy(t) and z′(t) = x′(t) + iy′(t).
Then the integrand f (z(t)) z′(t) is a complex-valued function of a real vari-
able t. Hence the integral

∫ b

a
f(z(t)) z′(t) dt is evaluated in the manner defined

in (4).
The next example illustrates the method.

EXAMPLE 1 Evaluating a Contour Integral

Evaluate
∫

C
z̄ dz, where C is given by x = 3t, y = t2, −1 ≤ t ≤ 4.

Solution From (1) a parametrization of the contour C is z(t) = 3t + it2.
Therefore, with the identification f(z) = z̄ we have f(z(t)) = 3t+ it2 =
3t− it2. Also, z′(t) = 3 + 2it, and so by (11) the integral is

∫
C

z̄ dz =
∫ 4

−1

(3t− it2)(3 + 2it) dt =
∫ 4

−1

[
2t3 + 9t+ 3t2i

]
dt.
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Now in view of (4), the last integral is the same as∫
C

z̄ dz =
∫ 4

−1

(2t3 + 9t) dt+ i

∫ 4

−1

3t2 dt

=
(

1
2
t4 +

9
2
t2

) ∣∣∣∣∣
4

−1

+ it3

∣∣∣∣∣
4

−1

= 195 + 65i.

EXAMPLE 2 Evaluating a Contour Integral

Evaluate
∮

C

1
z
dz, where C is the circle x = cos t, y = sin t, 0 ≤ t ≤ 2π.

Solution In this case z(t) = cos t + i sin t = eit, z′(t) = ieit, and f(z(t)) =
1
z(t)

= e−it. Hence,

∮
C

1
z
dz =

∫ 2π

0

(e−it) ieit dt = i

∫ 2π

0

dt = 2πi.

As discussed in Section 5.1, for some curves the real variable x itself
can be used as the parameter. For example, to evaluate

∫
C

(8x2 − iy) dz
on the line segment y = 5x, 0 ≤ x ≤ 2, we write z = x + 5xi, dz =
(1 + 5i)dx,

∫
C

(8x2 − iy) dz =
∫ 2

0
(8x2 − 5ix)(1 + 5i) dx, and then integrate

in the usual manner:∫
C

(8x2 − iy) dz = (1 + 5i)
∫ 2

0

(8x2 − 5ix) dx

= (1 + 5i)
[
8
3
x3

]2

0

− (1 + 5i)i
[
5
2
x2

]2

0

=
214
3

+
290
3
i.

In general, if x and y are related by means of a continuous real func-
tion y = f(x), then the corresponding curve C in the complex plane can be
parametrized by z(x) = x+ if(x). Equivalently, we can let x = t so that
a set of parametric equations for C is x = t, y = f(t).

Properties The following properties of contour integrals are analogous
to the properties of real line integrals as well as the properties listed in (5)–(8).

Theorem 5.2 Properties of Contour Integrals

Suppose the functions f and g are continuous in a domain D, and C is a
smooth curve lying entirely in D. Then

(i)
∫

C
kf(z) dz = k

∫
C
f(z) dz, k a complex constant.

(Theorem continues on page 252 )
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(ii)
∫

C
[f(z) + g(z)] dz =

∫
C
f(z) dz +

∫
C
g(z) dz.

(iii)
∫

C
f(z) dz =

∫
C1
f(z) dz +

∫
C2
f(z) dz, where C consists of the

smooth curves C1 and C2 joined end to end.

(iv)
∫
−C

f(z) dz = −
∫

C
f(z) dz, where –C denotes the curve having the

opposite orientation of C.

The four parts of Theorem 5.2 also hold if C is a piecewise smooth curve
in D.

EXAMPLE 3 C Is a Piecewise Smooth Curve

Evaluate
∫

C
(x2 + iy2) dz, where C is the contour shown in Figure 5.20.

y

x

1 + 2i

1 + i

C2

C1

Figure 5.20 Contour C is piecewise

smooth.

Solution In view of Theorem 5.2(iii) we write∫
C

(x2 + iy2) dz =
∫

C1

(x2 + iy2) dz +
∫

C2

(x2 + iy2) dz.

Since the curve C1 is defined by y = x, it makes sense to use x as a parameter.
Therefore, z(x) = x+ ix, z′(x) = 1+ i, f(z) = x2 + iy2, f(z(x)) = x2 + ix2,
and

∫
C1

(x2 + iy2) dz =
∫ 1

0

(1+i)x2︷ ︸︸ ︷
(x2 + ix2)(1 + i) dx

= (1 + i)2
∫ 1

0

x2dx =
(1 + i)2

3
=

2
3
i. (12)

The curve C2 is defined by x = 1, 1 ≤ y ≤ 2. If we use y as a parameter, then
z(y) = 1 + iy, z′(y) = i, f(z(y)) = 1 + iy2, and∫

C2

(x2 + iy2) dz =
∫ 2

1

(1 + iy2)i dy = −
∫ 2

1

y2 dy + i

∫ 2

1

dy =− 7
3

+ i. (13)

Combining (10) and (13) gives
∫

C
(x2 + iy2) dz = 2

3 i+ (−7
3 + i) = − 7

3 + 5
3 i.

There are times in the application of complex integration that it is use-
ful to find an upper bound for the modulus or absolute value of a contour
integral. In the next theorem we use the fact that the length of a plane
curve is L =

∫ b

a

√
[x′(t)]2 + [y′(t)]2 dt. But if z′(t) = x′(t) + iy′(t), then

|z′(t)| =
√

[x′(t)]2 + [y′(t)]2 and, consequently, L =
∫ b

a
| z′(t) | dt.

Theorem 5.3 A Bounding Theorem

If f is continuous on a smooth curve C and if |f(z)| ≤M for all z on C,
then

∣∣∫
C
f(z) dz

∣∣ ≤ML, where L is the length of C.
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Proof It follows from the form of the triangle inequality given in (11) of
Section 1.2 that

∣∣∣∣∣
n∑

k=1

f(z∗k)∆zk

∣∣∣∣∣ ≤
n∑

k=1

|f(z∗k)| |∆zk| ≤M
n∑

k=1

|∆zk|. (14)

Because |∆zk| =
√

(∆xk)2 + (∆yk)2, we can interpret |∆zk| as the length
of the chord joining the points zk and zk−1 on C. Moreover, since the sum
of the lengths of the chords cannot be greater than the length L of C, the
inequality (14) continues as |

∑n
k=1 f(z∗k)∆zk| ≤ ML. Finally, the continuity

of f guarantees that
∫

C
f(z) dz exists, and so if we let ‖P‖ → 0, the last

inequality yields
∣∣ ∫

C
f(z) dz

∣∣ ≤ML. ✎

Theorem 5.3 is used often in the theory of complex integration and is
sometimes referred to as the ML-inequality. It follows from the discussion
on page 124 of Section 2.6 that since f is continuous on the contour C, the
bound M for the values f(z) in Theorem 5.3 will always exist.

EXAMPLE 4 A Bound for a Contour Integral

Find an upper bound for the absolute value of
∮

C

ez

z + 1
dz where C is the

circle |z| = 4.

Solution First, the length L (circumference) of the circle of radius 4 is 8π.
Next, from the inequality (7) of Section 1.2, it follows for all points z on the
circle that |z + 1| ≥ |z| − 1 = 4− 1 = 3. Thus

∣∣∣∣ ez

z + 1

∣∣∣∣ ≤ |ez|
|z| − 1

=
|ez|
3
. (15)

In addition, |ez| = |ex(cos y + i sin y)| = ex. For points on the circle |z| = 4,
the maximum that x = Re(z) can be is 4, and so (15) yields

∣∣∣∣ ez

z + 1

∣∣∣∣ ≤ e4

3
.

From the ML-inequality (Theorem 5.3) we have

∣∣∣∣
∮

C

ez

z + 1
dz

∣∣∣∣ ≤ 8πe4

3
.
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Remarks

There is no unique parametrization for a contour C. You should verify
that

z(t) = eit = cos t+ i sin t, 0 ≤ t ≤ 2π

z(t) = e2πit = cos 2πt+ i sin 2πt, 0 ≤ t ≤ 1

z(t) = eπit/2 = cos
πt

2
+ i sin

πt

2
, 0 ≤ t ≤ 4

are all parametrizations, oriented in the positive direction, for the unit
circle |z| = 1.

EXERCISES 5.2 Answers to selected odd-numbered problems begin on page ANS-16.

In Problems 1-16, evaluate the given integral along the indicated contour.

1.

∫
C

(z + 3) dz, where C is x = 2t, y = 4t− 1, 1 ≤ t ≤ 3

2.

∫
C

(2z̄ − z) dz, where C is x = −t, y = t2 + 2, 0 ≤ t ≤ 2

3.

∫
C

z2 dz, where C is z(t) = 3t + 2it, −2 ≤ t ≤ 2

4.

∫
C

(3z2 − 2z) dz, where C is z(t) = t + it2, 0 ≤ t ≤ 1

5.

∫
C

z + 1

z
dz, where C is the right half of the circle |z| = 1 from z = −i to z = i

6.

∫
C

|z|2 dz, where C is x = t2, y = 1/t, 1 ≤ t < 2

7.

∮
C

Re(z) dz, where C is the circle |z| = 1

8.

∮
C

(
1

(z + i)3
− 5

z + i
+ 8

)
dz, where C is the circle |z + i| = 1, 0 ≤ t ≤ 2π

9.

∫
C

(x2 + iy3) dz, where C is the straight line from z = 1 to z = i

10.

∫
C

(x2 − iy3) dz, where C is the lower half of the circle |z| = 1 from z = −1

to z = 1

11.

∫
C

ez dz, where C is the polygonal path consisting of the line segments from

z = 0 to z = 2 and from z = 2 to z = 1 + πi

12.

∫
C

sin z dz, where C is the polygonal path consisting of the line segments from

z = 0 to z = 1 and from z = 1 to z = 1 + i

13.

∫
C

Im (z − i) dz, where C is the polygonal path consisting of the circular arc

along |z| = 1 from z = 1 to z = i and the line segment from z = i to z = −1



5.2 Complex Integrals 255

14.

∫
C

dz, where C is the left half of the ellipse 1
36
x2 + 1

4
y2 = 1 from z = 2i

to z = −2i

15.

∮
C

zez dz, where C is the square with vertices z = 0, z = 1, z = 1+ i, and z = i

16.

∫
C

f(z) dz, where f(z) =


 2, x < 0

6x, x > 0
and C is the parabola y = x2 from

z = −1 + i to z = 1 + i

In Problems 17–20, evaluate the given integral along the contour C given in

Figure 5.21.

17.

∮
C

x dz 18.

∮
C

(2z − 1) dz

19.

∮
C

z2 dz 20.

∮
C

z̄2 dz

y

x
1

1 + i

Figure 5.21 Figure for Problems 17–20

In Problems 21–24, evaluate
∫

C
(z2 − z + 2) dz from i to 1 along the contour C given

in the figures.

21. 22.y

x
1

i

Figure 5.22 Figure for Problem 21

y

x
1

1 + ii

Figure 5.23 Figure for Problem 22

23. 24.
y

x
1

y = 1 – x2
i

Figure 5.24 Figure for Problem 23

y

x
1

x2 + y2 = 1i

Figure 5.25 Figure for Problem 24

In Problems 25–28, find an upper bound for the absolute value of the given integral

along the indicated contour.

25.

∮
C

ez

z2 + 1
dz, where C is the circle |z| = 5

26.

∫
C

1

z2 − 2i
dz, where C is the right half of the circle |z| = 6 from z = −6i

to z = 6i
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27.

∫
C

(z2 + 4) dz, where C is the line segment from z = 0 to z = 1 + i

28.

∫
C

1

z3
dz, where C is one-quarter of the circle |z| = 4 from z = 4i to z = 4

Focus on Concepts

29. (a) Use Definition 5.3 to show for any smooth curve C between z0 and zn that∫
C

dz = zn − z0.

(b) Use the result in part (a) to verify your answer to Problem 14.

(c) What is
∮

C
dz when C is a simple closed curve?

30. Use Definition 5.3 to show for any smooth curve C between z0 and zn that∫
C
z dz = 1

2
(z2

n − z2
0). [Hint : The integral exists. So choose z∗k = zk and

z∗k = zk–1.]

31. Use the results of Problems 29 and 30 to evaluate
∫

C
(6z + 4) dz where C is:

(a) The straight line from 1 + i to 2 + 3i.

(b) The closed contour x4 + y4 = 4.

32. Find an upper bound for the absolute value of the integral

∫
C

1

z2 + 1
dz, where

the contour C is the line segment from z = 3 to z = 3 + i. Use the fact that∣∣z2 + 1
∣∣ = |z − i| |z + i| where |z − i| and |z + i| represent, respectively, the

distances from i and −i to points z on C.

33. Find an upper bound for the absolute value of the integral
∫

C
Ln(z + 3) dz,

where the contour C is the line segment from z = 3i to z = 4 + 3i.

5.3 Cauchy-Goursat Theorem

5.3In this section we shall concentrate on contour integrals, where the contour C is a simple
closed curve with a positive (counterclockwise) orientation. Specifically, we shall see that
when f is analytic in a special kind of domain D, the value of the contour integral

∮
C
f(z) dz

is the same for any simple closed curve C that lies entirely within D. This theorem, called
the Cauchy-Goursat theorem, is one of the fundamental results in complex analysis.

Preliminary to discussing the Cauchy-Goursat theorem and some of its ramifications,
we need to distinguish two kinds of domains in the complex plain: simply connected and
multiply connected.

Simply and Multiply Connected Domains Recall from Sec-
tion 1.5 that a domain is an open connected set in the complex plane. We say
that a domain D is simply connected if every simple closed contour C lying
entirely in D can be shrunk to a point without leaving D. See Figure 5.26.
In other words, if we draw any simple closed contour C so that it lies entirely
within a simply connected domain, then C encloses only points of the domain
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D. Expressed yet another way, a simply connected domain has no “holes” in
it. The entire complex plane is an example of a simply connected domain;
the annulus defined by 1 < |z| < 2 is not simply connected. (Why?) A do-
main that is not simply connected is called a multiply connected domain;
that is, a multiply connected domain has “holes” in it. Note in Figure 5.27
that if the curve C2 enclosing the “hole” were shrunk to a point, the curve
would have to leave D eventually. We call a domain with one “hole” doubly
connected, a domain with two “holes” triply connected, and so on. The
open disk defined by |z| < 2 is a simply connected domain; the open circular
annulus defined by 1 < |z| < 2 is a doubly connected domain.

D C

Figure 5.26 Simply connected

domain D

D
C2

C1

Figure 5.27 Multiply connected

domain D

Cauchy’s Theorem In 1825 the French mathematician Louis-Augustin
Cauchy proved one the most important theorems in complex analysis.

Cauchy’s Theorem

Suppose that a function f is analytic in a simply connected domain
D and that f ′ is continuous in D. Then for every simple closed (1)
contour C in D,

∮
C
f(z) dz = 0.

Cauchy’s Proof of (1) The proof of this theorem is an immediate conse-
quence of Green’s theorem in the plane and the Cauchy-Riemann equations.
Recall from calculus that if C is a positively oriented, piecewise smooth, sim-
ple closed curve forming the boundary of a region R within D, and if the
real-valued functions P (x, y) and Q(x, y) along with their first-order partial
derivatives are continuous on a domain that contains C and R, then

∮
C

P dx+Qdy =
∫∫

R

(
∂Q

∂x
− ∂P

∂y

)
dA. (2)�Green’s theorem expresses a real

line integral as a double integral

Now in the statement (1) we have assumed that f ′ is continuous throughout
the domainD. As a consequence, the real and imaginary parts of f(z) = u+iv
and their first partial derivatives are continuous throughout D. By (9) of
Section 5.2 we write

∮
C
f(z) dz in terms of real line integrals and apply Green’s

theorem (2) to each line integral:

∮
C

f(z) dz =
∮

C

u(x, y) dx− v(x, y) dy + i

∮
C

v(x, y) dx+ u(x, y) dy

=
∫∫

R

(
−∂v
∂x
− ∂u

∂y

)
dA+ i

∫∫
R

(
∂u

∂x
− ∂v

∂y

)
dA. (3)

Because f is analytic in D, the real functions u and v satisfy the Cauchy-
Riemann equations, ∂u/∂x = ∂v/∂y and ∂u/∂y = −∂v/∂x, at every point in



258 Chapter 5 Integration in the Complex Plane

D. Using the Cauchy-Riemann equations to replace ∂u/∂y and ∂u/∂x in (3)
shows that∮

C

f(z) dz =
∫∫

R

(
−∂v
∂x

+
∂v

∂x

)
dA+ i

∫∫
R

(
∂v

∂y
− ∂v

∂y

)
dA

=
∫∫

R

(0) dA+ i

∫∫
R

(0) dA = 0.

This completes the proof. ✎

In 1883 the French mathematician Edouard Goursat proved that the
assumption of continuity of f ′ is not necessary to reach the conclusion of
Cauchy’s theorem. The resulting modified version of Cauchy’s theorem is
known today as the Cauchy-Goursat theorem. As one might expect, with
fewer hypotheses, the proof of this version of Cauchy’s theorem is more com-
plicated than the one just presented. A form of the proof devised by Goursat
is outlined in Appendix II.

Theorem 5.4 Cauchy-Goursat Theorem

Suppose that a function f is analytic in a simply connected domain D.
Then for every simple closed contour C in D,

∮
C
f(z) dz = 0.

Since the interior of a simple closed contour is a simply connected domain,
the Cauchy-Goursat theorem can be stated in the slightly more practical man-
ner:

If f is analytic at all points within and on a simple closed contour C,
then

∮
C
f(z) dz = 0. (4)

EXAMPLE 1 Applying the Cauchy-Goursat Theorem

Evaluate
∮

C
ez dz, where the contour C is shown in Figure 5.28.

Solution The function f(z) = ez is entire and consequently is analytic at all
points within and on the simple closed contour C. It follows from the form of
the Cauchy-Goursat theorem given in (4) that

∮
C
ez dz = 0.

y

x

C

Figure 5.28 Contour for Example 1

The point of Example 1 is that
∮

C
ez dz = 0 for any simple closed contour

in the complex plane. Indeed, it follows that for any simple closed contour
C and any entire function f , such as f(z) = sin z, f(z) = cos z, and p(z) =
anz

n + an−1z
n + · · ·+ a1z + a0, n = 0, 1, 2, . . . ,that∮
C

sin z dz = 0,
∮

C

cos z dz = 0,
∮

C

p(z) dz = 0,

and so on.
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EXAMPLE 2 Applying the Cauchy-Goursat Theorem

Evaluate
∮

C

dz

z2
, where the contour C is the ellipse (x− 2)2 + 1

4 (y − 5)2 = 1.

Solution The rational function f(z) = 1/z2 is analytic everywhere except
at z = 0. But z = 0 is not a point interior to or on the simple closed elliptical

contour C. Thus, from (4) we have that
∮

C

dz

z2
= 0.

Cauchy-Goursat Theorem for Multiply Connected
Domains If f is analytic in a multiply connected domain D then we

cannot conclude that
∮

C
f(z) dz = 0 for every simple closed contour C in D.

To begin, suppose that D is a doubly connected domain and C and C1 are
simple closed contours such that C1 surrounds the “hole” in the domain and
is interior to C. See Figure 5.29(a). Suppose, also, that f is analytic on each
contour and at each point interior to C but exterior to C1. By introducing
the crosscut AB shown in Figure 5.29(b), the region bounded between the
curves is now simply connected. From (iv) of Theorem 5.2, the integral from
A to B has the opposite value of the integral from B to A, and so from (4)
we have ∫

C

f (z) dz +
∫

AB

f (z) dz +
∫

−AB

f (z) dz +
∫
C1

f (z) dz = 0

or ∫
C

f (z) dz =
∫
C1

f (z) dz. (5)

D

C

C

A

B

D

C1

C1

(a)

(b)

Figure 5.29 Doubly connected

domain D

The last result is sometimes called the principle of deformation of con-
tours since we can think of the contour C1 as a continuous deformation of
the contour C. Under this deformation of contours, the value of the integral
does not change. In other words, (5) allows us to evaluate an integral over a
complicated simple closed contour C by replacing C with a contour C1 that
is more convenient.

EXAMPLE 3 Applying Deformation of Contours

Evaluate
∮

C

dz

z − i , where C is the contour shown in black in Figure 5.30.

y

C C1

i

x
–2

–2i

4i

2 – 2i

2 + 3i

–2 + 4i

Figure 5.30 We use the simpler

contour C1 in Example 3.

Solution In view of (5), we choose the more convenient circular contour C1

drawn in color in the figure. By taking the radius of the circle to be r = 1,
we are guaranteed that C1 lies within C. In other words, C1 is the circle
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|z − i| = 1, which from (10) of Section 2.2 can be parametrized by z = i+ eit,
0 ≤ t ≤ 2π. From z − i = eit and dz = ieitdt we obtain∮

C

dz

z − i =
∮

C1

dz

z − i =
∫ 2π

0

ieit

eit
dt = i

∫ 2π

0

dt = 2πi.

The result obtained in Example 3 can be generalized. Using the principle
of deformation of contours (5) and proceeding as in the example, it can be
shown that if z0 is any constant complex number interior to any simple closed
contour C, then for n an integer we have

∮
C

dz

(z − z0)n
=


 2πi n = 1

0, n �= 1.
(6)

�For example, 1/ (z − z0)−3 =
(z − z0)3 is a polynomial.

The fact that the integral in (6) is zero when n �= 1 follows only partially
from the Cauchy-Goursat theorem. When n is zero or a negative integer,
1/ (z − z0)n is a polynomial and therefore entire. Theorem 5.4 and the dis-
cussion following Example 1 then indicates that

∮
C
dz/ (z − z0)n = 0. It is

left as an exercise to show that the integral is still zero when n is a positive
integer different from 1. See Problem 24 in Exercises 5.3.

Analyticity of the function f at all points within and on a simple closed
contour C is sufficient to guarantee that

∮
C
f(z) dz = 0. However, the result

in (6) emphasizes that analyticity is not necessary ; in other words, it can
happen that

∮
C
f(z) dz = 0 without f being analytic within C. For instance,

if C in Example 2 is the circle |z| = 1, then (6), with the identifications n = 2

and z0 = 0, immediately gives
∮

C

dz

z2
= 0. Note that f(z) = 1/z2 is not

analytic at z = 0 within C.

EXAMPLE 4 Applying Formula (6)

Evaluate
∮

C

5z + 7
z2 + 2z − 3

dz, where C is circle |z − 2| = 2.

Solution Since the denominator factors as z2 + 2z − 3 = (z − 1)(z + 3) the
integrand fails to be analytic at z = 1 and z = −3. Of these two points, only
z = 1 lies within the contour C, which is a circle centered at z = 2 of radius
r = 2. Now by partial fractions

5z + 7
z2 + 2z − 3

=
3

z − 1
+

2
z + 3

and so
∮

C

5z + 7
z2 + 2z − 3

dz = 3
∮

C

1
z − 1

dz + 2
∮

C

1
z + 3

dz. (7)

In view of the result given in (6), the first integral in (7) has the value 2πi,
whereas the value of the second integral is 0 by the Cauchy-Goursat theorem.
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Hence, (7) becomes∮
C

5z + 7
z2 + 2z − 3

dz = 3(2πi) + 2(0) = 6πi.

If C, C1, and C2 are simple closed contours as shown in Figure 5.31(a)
and if f is analytic on each of the three contours as well as at each point
interior to C but exterior to both C1 and C2, then by introducing crosscuts
between C1 and C and between C2 and C, as illustrated in Figure 5.31(b), it
follows from Theorem 5.4 that∫

C

f(z) dz +
∫
C1

f(z) dz +
∫
C2

f(z) dz = 0

∫
C

f(z) dz =
∫
C1

f(z) dz +
∫
C2

f(z) dz. (7)and so

C1

C

D

C2

C1

C

D

C2

(a)

(b)

Figure 5.31 Triply connected domain D
The next theorem summarizes the general result for a multiply connected
domain with n “holes.”

Theorem 5.5 Cauchy-Goursat Theorem for Multiply
Connnected Domains

Suppose C, C1, . . . , Cn are simple closed curves with a positive orientation
such that C1, C2, . . . , Cn are interior to C but the regions interior to each
Ck, k = 1, 2, . . . , n, have no points in common. If f is analytic on each
contour and at each point interior to C but exterior to all the Ck, k = 1, 2,
. . . , n, then

∮
C

f(z) dz =
n∑

k=1

∮
Ck

f(z) dz. (8)

EXAMPLE 5 Applying Theorem 5.5

Evaluate
∮

C

dz

z2 + 1
, where C is the circle |z| = 4.

Solution In this case the denominator of the integrand factors as z2 + 1 =
(z − i)(z + i). Consequently, the integrand 1/(z2 + 1) is not analytic at z = i
and at z = −i. Both of these points lie within the contour C. Using partial
fraction decomposition once more, we have

1
z2 + 1

=
1
2i

1
z − i −

1
2i

1
z + i
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∮
C

dz

z2 + 1
=

1
2i

∮
C

[
1

z − i −
1

z + i

]
dz.and

We now surround the points z = i and z = −i by circular contours C1 and
C2, respectively, that lie entirely within C. Specifically, the choice |z − i| = 1

2
for C1 and |z + i| = 1

2 for C2 will suffice. See Figure 5.32. From Theorem 5.5
we can write∮

C

dz

z2 + 1
=

1
2i

∮
C1

[
1

z − i −
1

z + i

]
dz +

1
2i

∮
C2

[
1

z − i −
1

z + i

]
dz

=
1
2i

∮
C1

1
z − idz −

1
2i

∮
C1

1
z + i

dz +
1
2i

∮
C2

1
z − idz −

1
2i

∮
C2

1
z + i

dz. (9)

C1

C2

C

y

i

–i

x

Figure 5.32 Contour for Example 5 Because 1/(z+i) is analytic on C1 and at each point in its interior and because
1/(z− i) is analytic on C2 and at each point in its interior, it follows from (4)
that the second and third integrals in (9) are zero. Moreover, it follows from
(6), with n = 1, that∮

C1

dz

z − i = 2πi and
∮

C2

dz

z + i
= 2πi.

Thus (9) becomes ∮
C

dz

z2 + 1
= π − π = 0.

C

D

Figure 5.33 Contour C is closed but

not simple.

Remarks

Throughout the foregoing discussion we assumed that C was a simple
closed contour, in other words, C did not intersect itself. Although we
shall not give the proof, it can be shown that the Cauchy-Goursat theorem
is valid for any closed contour C in a simply connected domain D. As
shown in Figure 5.33, the contour C is closed but not simple. Nevertheless,
if f is analytic in D, then

∮
C
f(z) dz = 0. See Problem 23 in Exercises

5.3.

EXERCISES 5.3 Answers to selected odd-numbered problems begin on page ANS-16.

In Problems 1–8, show that
∮

C
f(z) dz = 0, where f is the given function and C is

the unit circle |z| = 1.

1. f(z) = z3 − 1 + 3i 2. f(z) = z2 +
1

z − 4

3. f(z) =
z

2z + 3
4. f(z) =

z − 3

z2 + 2z + 2
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5. f(z) =
sin z

(z2 − 25)(z2 + 9)
6. f(z) =

ez

2z2 + 11z + 15

7. f(z) = tan z 8. f(z) =
z2 − 9

cosh z

9. Evaluate

∮
C

1

z
dz, where C is the contour shown in Figure 5.34.

10. Evaluate

∮
C

5

z + 1 + i
dz, where C is the contour shown in Figure 5.35.

C

x

y

2

Figure 5.34 Figure for Problem 9

C

x

y

x4 + y4 = 16

Figure 5.35 Figure for Problem 10

In Problems 11–22, use any of the results in this section to evaluate the given integral

along the indicated closed contour(s).

11.

∮
C

(
z +

1

z

)
dz; |z| = 2 12.

∮
C

(
z +

1

z2

)
dz; |z| = 2

13.

∮
C

z

z2 − π2
dz; |z| = 3

14.

∮
C

10

(z + i)4
dz; |z + i| = 1

15.

∮
C

2z + 1

z2 + z
dz; (a) |z| = 1

2
, (b) |z| = 2, (c) |z − 3i| = 1

16.

∮
C

2z

z2 + 3
dz; (a) |z| = 1, (b) |z − 2i| = 1, (c) |z| = 4

17.

∮
C

−3z + 2

z2 − 8z + 12
dz; (a) |z − 5| = 2, (b) |z| = 9

18.

∮
C

(
3

z + 2
− 1

z − 2i

)
dz; (a) |z| = 5, (b) |z − 2i| = 1

2

19.

∮
C

z − 1

z(z − i)(z − 3i)
dz; |z − i| = 1

2

20.

∮
C

1

z3 + 2iz2
dz; |z| = 1

21.

∮
C

Ln(z + 10) dz; |z| = 2

22.

∮
C

[
5

(z − 2)3
+

3

(z − 2)2
− 10

z − 2
+ 7 csc z

]
dz; |z − 2| = 1

2

23. Evaluate

∮
C

8z − 3

z2 − z
dz, where C is the “figure-eight” contour shown in Figure

5.36. [Hint : Express C as the union of two closed curves C1 and C2.]

C

1
x

y

Figure 5.36 Figure for Problem 23

24. Suppose z0 is any constant complex number interior to any simple closed curve
contour C. Show that for a positive integer n,

∮
C

dz

(z − z0)n
=


 2πi, n = 1

0, n > 1.

In Problems 25 and 26, evaluate the given contour integral by any means.

25.

∮
C

(
ez

z + 3
− 3z̄

)
dz, where C is the unit circle |z| = 1
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26.

∮
C

(
z3 + z2 + Re(z)

)
dz, where C is the triangle with vertices z = 0, z = 1+2i,

and z = 1

Focus on Concepts

27. Explain why

∮
C

f(z) dz = 0 for each of the following functions and C is any

simple closed contour in the complex plane.

(a) f(z) = (5iz4 − 4z2 + 2 − 6i)9 (b) f(z) = (z2 − 3iz)e5z

(c) f(z) =
sin z

ez2 (d) f(z) = z cos2 z

28. Describe contours C for which we are guaranteed that

∮
C

f(z) dz = 0 for each

of the following functions.

(a) f(z) =
1

z3 + z
(b) f(z) = csc z

(c) f(z) =
1

1 − ez
(d) f(z) = Ln z

29. Explain why the integral in Problem 25 is the same as

∮
C

(
ez

z + 3
− 3

z

)
dz

and why, in view of (6), this form makes the integral slightly easier to evaluate.

30. Evaluate
∫

C
ez dz from z = 0 to z = 2 + 2i on the contour C shown in Figure

5.37 that consists of the line y = x and a circle tangent to the line at (1, 1).

31. From Example 1 we know the value of
∮

C
ezdz for any simple closed contour C

in the complex plane. In particular, use |z| = 1 as C and the parametrization
z = eiθ, 0 ≤ θ ≤ 2π, to discover the values of the real integrals

∫ 2π

0

ecos θsin(θ + sin θ)dθ and

∫ 2π

0

ecos θcos(θ + sin θ)dθ.

C3

C1

C2 (2, 2)

(1, 1)

x

y

Figure 5.37 Figure for Problem 30

5.4 Independence of Path

5.4In Section 5.1 we saw that when a real function f possesses an elementary antiderivative,
that is, a function F for which F ′(x) = f(x), a definite integral can be evaluated by the
fundamental theorem of calculus:∫ b

a

f(x) dx = F (b)− F (a). (1)
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Note that
∫ b

a
f(x) dx depends only on the numbers a and b at the initial and terminal points

of the interval of integration. In contrast, the value of a real line integral
∫

C
P dx+Qdy

generally depends on the curve C. However, there exist integrals
∫

C
P dx+Qdy whose

value depends only on the initial point A and terminal point B of the curve C, and not
on C itself. In this case we say that the line integral is independent of the path. For
example,

∫
C
y dx+ x dy is independent of the path. See Problems 19–22 in Exercises 5.1.

A line integral that is independent of the path can be evaluated in a manner similar to (1).
It seems natural then to ask:

Is there a complex version of the fundamental theorem of calculus?
Can a contour integral

∫
C
f(z) dz be independent of the path?

In this section we will see that the answer to both of these questions is yes.

Path Independence The definition of path independence for a
contour integral

∫
C
f(z) dz is essentially the same as for a real line integral∫

C
P dx+Qdy.

Definition 5.4 Independence of the Path

Let z0 and z1 be points in a domain D. A contour integral
∫

C
f(z) dz

is said to be independent of the path if its value is the same for all
contours C in D with initial point z0 and terminal point z1.

At the end of the preceding section we noted that the Cauchy-Goursat
theorem also holds for closed contours, not just simple closed contours, in a
simply connected domain D. Now suppose, as shown in Figure 5.38, that C
and C1 are two contours lying entirely in a simply connected domain D and
both with initial point z0 and terminal point z1. Note that C joined with the
opposite curve −C1 forms a closed contour. Thus, if f is analytic in D, it
follows from the Cauchy-Goursat theorem that∫

C

f(z) dz +
∫
−C1

f(z) dz = 0. (2)

z 0

z 1

C1 C

D

Figure 5.38 If f is analytic in D,

integrals on C and C1 are equal. But (2) is equivalent to ∫
C

f(z) dz =
∫

C1

f(z) dz. (3)

The result in (3) is also an example of the principle of deformation of contours
introduced in (5) of Section 5.3. We summarize the last result as a theorem.

Theorem 5.6 Analyticity Implies Path Independence

Suppose that a function f is analytic in a simply connected domain
D and C is any contour in D. Then

∫
C
f(z) dz is independent of the

path C.
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EXAMPLE 1 Choosing a Different Path

Evaluate
∫

C
2z dz, where C is the contour shown in color in Figure 5.39.

C1

C

–1

–1 + i

x

y

Figure 5.39 Contour for Example 1

Solution Since the function f(z) = 2z is entire, we can, in view of Theorem
5.6, replace the piecewise smooth path C by any convenient contour C1 joining
z0 = −1 and z1 = −1 + i. Specifically, if we choose the contour C1 to be the
vertical line segment x = −1, 0 ≤ y ≤ 1, shown in black in Figure 5.39, then
z = −1 + iy, dz = idy. Therefore,∫

C

2z dz =
∫

C1

2z dz = −2
∫ 1

0

y dy − 2i
∫ 1

0

dy = −1− 2i.

A contour integral
∫

C
f(z) dz that is independent of the path C is usually

written
∫ z1

z0
f(z) dz, where z0 and z1 are the initial and terminal points of C.

Hence, in Example 1 we can write
∫ −1+i

−1
2z dz.

There is an easier way to evaluate the contour integral in Example 1, but
before proceeding we need another definition.

Definition 5.5 Antiderivative

Suppose that a function f is continuous on a domain D. If there exists
a function F such that F ′(z) = f(z) for each z in D, then F is called an
antiderivative of f .

For example, the function F (z) = − cos z is an antiderivative of f(z) =
sin z since F ′(z) = sin z. As in calculus of a real variable, the most gen-
eral antiderivative, or indefinite integral, of a function f(z) is written∫
f(z) dz = F (z) + C, where F ′(z) = f(z) and C is some complex constant.

For example,
∫

sin z dz = − cos z + C.

�Recall, differentiability implies
continuity.

Since an antiderivative F of a function f has a derivative at each point
in a domain D, it is necessarily analytic and hence continuous at each point
in D.

We are now in a position to prove the complex analogue of (1).

Theorem 5.7 Fundamental Theorem for Contour Integrals

Suppose that a function f is continuous on a domain D and F is an
antiderivative of f in D. Then for any contour C in D with initial point
z0 and terminal point z1,∫

C

f(z) dz = F (z1)− F (z0). (4)

Proof We will prove (4) in the case when C is a smooth curve parametrized
by z = z(t), a ≤ t ≤ b. The initial and terminal points on C are then z(a) = z0
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and z(b) = z1. Using (11) of Section 5.2 and the fact that F ′(z) = f(z) for
each z in D, we then have∫

C

f(z) dz =
∫ b

a

f(z(t))z′(t) dt =
∫ b

a

F ′(z(t))z′(t) dt

=
∫ b

a

d

dt
F (z(t)) dt ← chain rule

= F (z(t)) |ba
= F (z(b))− F (z(a)) = F (z1)− F (z0). ✎

EXAMPLE 2 Applying Theorem 5.7

In Example 1 we saw that the integral
∫

C
2z dz, where C is shown in Figure

5.39, is independent of the path. Now since the f(z) = 2z is an entire function,
it is continuous. Moreover, F (z) = z2 is an antiderivative of f since F ′(z) =
2z = f(z). Hence, by (4) of Theorem 5.7 we have∫ −1+i

−1

2z dz = z2
∣∣−1+i

−1
= (−1 + i)2 − (−1)2 = −1− 2i.

EXAMPLE 3 Applying Theorem 5.7

Evaluate
∫

C
cos z dz, where C is any contour with initial point z0 = 0 and

terminal point z1 = 2 + i.

Solution F (z) = sin z is an antiderivative of f(z) = cos z since F ′(z) =
cos z = f(z). Therefore, from (4) we have∫

C

cos z dz =
∫ 2+i

0

cos z dz = sin z |2+i
0 = sin(2 + i)− sin 0 = sin(2 + i).

If we desire a complex number of the form a + ib for an answer, we can use
sin(2+i) ≈ 1.4031−0.4891i (see part (b) of Example 1 in Section 4.3). Hence,∫

C

cos z dz =
∫ 2+i

0

cos z dz ≈ 1.4031 – 0.4891i.

Some Conclusions We can draw several immediate conclusions from
Theorem 5.7. First, observe that if the contour C is closed, then z0 = z1 and,
consequently, ∮

C

f(z) dz = 0. (5)



268 Chapter 5 Integration in the Complex Plane

Next, since the value of
∫

C
f(z) dz depends only on the points z0 and z1, this

value is the same for any contour C in D connecting these points. In other
words:

If a continuous function f has an antiderivative F in D, then (6)∫
C
f(z) dz is independent of the path.

In addition, we have the following sufficient condition for the existence of an
antiderivative.

If f is continuous and
∫

C
f(z) dz is independent of the path C in a (7)

domain D, then f has an antiderivative everywhere in D.

The last statement is important and deserves a proof.

Proof of (7) Assume f is continuous and
∫

C
f(z) dz is independent of the

path in a domain D and that F is a function defined by F (z) =
∫ z

z0
f(s) ds,

where s denotes a complex variable, z0 is a fixed point in D, and z represents
any point in D. We wish to show that F ′(z) = f(z), that is,

�Important F (z) =
∫ z

z0

f(s) ds (8)

is an antiderivative of f in D. Now,

F (z + ∆z)− F (z) =
∫ z+∆z

z0

f(s) ds−
∫ z

z0

f(s) ds =
∫ z+∆z

z

f(s) ds. (9)

Because D is a domain, we can choose ∆z so that z + ∆z is in D. Moreover,
z and z + ∆z can be joined by a straight segment as shown in Figure 5.40.
This is the contour we use in the last integral in (9). With z fixed, we can
write

f(z)∆z = f(z)
∫ z+∆z

z

ds =
∫ z+∆z

z

f(z) ds or f(z) =
1

∆z

∫ z+∆z

z

f(z) ds. (10)

D

z

z + ∆z

s

z 0

Figure 5.40 Contour used in proof

of (7)

From (9) and the last result in (10) we have

F (z + ∆z)− F (z)
∆z

− f(z) =
1

∆z

∫ z+∆z

z

[f(s)− f(z)] ds.

Now f is continuous at the point z. This means for any ε > 0 there exists
a δ > 0 so that |f(s)− f(z)| < ε whenever |s− z| < δ. Consequently, if we
choose ∆z so that |∆z | < δ, it follows from the ML-inequality of Section 5.2
that∣∣∣∣F (z + ∆z)− F (z)

∆z
− f(z)

∣∣∣∣ =

∣∣∣∣∣ 1
∆z

∫ z+∆z

z

[f(s)− f(z)] ds

∣∣∣∣∣
=

∣∣∣∣ 1
∆z

∣∣∣∣
∣∣∣∣∣
∫ z+∆z

z

[f(s)− f(z)] ds

∣∣∣∣∣ ≤
∣∣∣∣ 1
∆z

∣∣∣∣ ε |∆z| = ε.
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Hence, we have shown that

lim
∆z→0

F (z + ∆z)− F (z)
∆z

= f(z) or F ′(z) = f(z). ✎

If f is an analytic function in a simply connected domain D, it is necessar-
ily continuous throughout D. This fact, when put together with the results
in Theorem 5.6 and (7), leads to a theorem which states that an analytic
function possesses an analytic antiderivative.

Theorem 5.8 Existence of an Antiderivative

Suppose that a function f is analytic in a simply connected domain D.
Then f has an antiderivative in D; that is, there exists a function F such
that F ′(z) = f(z) for all z in D.

�Be careful when using Ln z as an
antiderivative of 1/z.

In (21) of Section 4.1 we saw for |z| > 0, −π < arg(z) < π, that 1/z
is the derivative of Ln z. This means that under some circumstances Ln z
is an antiderivative of 1/z. But care must be exercised in using this result.
For example, suppose D is the entire complex plane without the origin. The
function 1/z is analytic in this multiply connected domain. If C is any simple
closed contour containing the origin, it does not follow from (5) that

∮
C
dz/z =

0. In fact, from (6) of Section 5.3 with n = 1 and the identification of z0 = 0,
we see that ∮

C

1
z
dz = 2πi.

In this case, Ln z is not an antiderivative of 1/z in D since Ln z is not
analytic in D. Recall, Ln z fails to be analytic on the nonpositive real axis
which, recall, is the branch cut of the principal branch f1(z) of the logarithm.
See page 187 in Section 4.1.

EXAMPLE 4 Using the Logarithmic Function

Evaluate
∫

C

1
z
dz, where C is the contour shown in Figure 5.41.

C

3

2i

x

y

Figure 5.41 Contour for Example 4

Solution Suppose that D is the simply connected domain defined by
x > 0, y > 0, in other words, D is the first quadrant in the z-plane. In this
case, Ln z is an antiderivative of 1/z since both these functions are analytic
in D. Hence by (4), ∫ 2i

3

1
z
dz = Ln z|2i

3 = Ln 2i− Ln 3.

From (14) of Section 4.1,

Ln 2i = loge 2 +
π

2
i and Ln 3 = loge 3
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and so,
∫ 2i

3

1
z
dz = loge

2
3

+
π

2
i ≈ −0.4055 + 1.5708i.�loge 2−loge 3 = loge

2
3

EXAMPLE 5 Using an Antiderivative of z−1/2

Evaluate
∫

C

1
z1/2

dz, where C is the line segment between z0 = i and z1 = 9.

Solution Throughout we take f1(z) = z1/2 to be the principal branch of
the square root function. In the domain |z| > 0, −π < arg(z) < π, the
function f1(z) = 1/z1/2 = z−1/2 is analytic and possesses the antiderivative
F (z) = 2z1/2 (see (9) in Section 4.2). Hence,

∫ 9

i

1
z1/2

dz = 2z1/2

∣∣∣∣
9

i

= 2

[
3−

See Problem 5 in Exercise 1.4︷ ︸︸ ︷(√
2

2
+ i

√
2

2

) ]

= (6−
√

2)− i
√

2.

Remarks Comparison with Real Analysis

(i) In the study of techniques of integration in calculus you learned that
indefinite integrals of certain kinds of products could be evaluated
by integration by parts:∫

f(x)g′(x)dx = f(x)g(x)−
∫
g(x)f ′(x)dx. (11)

You undoubtedly have used (11) in the more compact form∫
udv = uv −

∫
vdu. Formula (11) carries over to complex analysis.

Suppose f and g are analytic in a simply connected domain D. Then∫
f(z)g′(z)dz = f(z)g(z)−

∫
g(z)f ′(z)dz. (12)

In addition, if z0 and z1 are the initial and terminal points of a
contour C lying entirely in D, then

∫ z1

z0

f(z)g′(z) dz = f(z)g(z)

∣∣∣∣∣
z1

z0

−
∫ z1

z0

g(z)f ′(z) dz. (13)

These results can be proved in a straightforward manner using The-

orem 5.7 on the function
d

dz
fg. See Problems 21–24 in Exercises

5.4.
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(ii) If f is a real function continuous on the closed interval [a, b], then
there exists a number c in the open interval (a, b) such that

∫ b

a

f(x) dx = f(c)(b− a). (14)

The result in (14) is known as the mean-value theorem for definite
integrals. If f is a complex function analytic in a simply connected
domain D, it is continuous at every point on a contour C in D with
initial point z0 and terminal point z1. One might expect a result
parallel to (14) for an integral

∫ z1

z0
f(z) dz. However, there is no such

complex counterpart.

EXERCISES 5.4 Answers to selected odd-numbered problems begin on page ANS-16.

In Problems 1 and 2, evaluate the given integral, where the contour C is given in

the figure, (a) by using an alternative path of integration and (b) by using Theorem

5.7.

1.

∫
C

(4z − 1) dz 2.

∫
C

ez dz

|z| =1

i

–i

x

y

Figure 5.42 Figure for Problem 1

3 + i

3 + 3i

x

y

0

Figure 5.43 Figure for Problem 2

In Problems 3 and 4, evaluate the given integral along the indicated contour C.

3.

∫
C

2z dz, where C is z(t) = 2t3 + i(t4 − 4t3 + 2), −1 ≤ t ≤ 1

4.

∫
C

2z dz, where C is z(t) = 2 cos3 πt− i sin2 π

4
t, 0 ≤ t ≤ 2

In Problems 5-20, use Theorem 5.7 to evaluate the given integral. Write each answer

in the form a + ib.

5.

∫ 3+i

0

z2 dz 6.

∫ 1

−2i

(3z2 − 4z + 5i) dz

7.

∫ 1+i

1−i

z3 dz 8.

∫ 2i

−3i

(z3 − z) dz

9.

∫ 1−i

−i/2

(2z + 1)2 dz 10.

∫ i

1

(iz + 1)3 dz

11.

∫ i

i/2

eπz dz 12.

∫ 1+2i

1−i

zez2
dz

13.

∫ π+2i

π

sin
z

2
dz 14.

∫ πi

1−2i

cos z dz
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15.

∫ 2πi

πi

cosh z dz 16.

∫ 1+(π/2)i

i

sinh 3z dz

17.

∫
C

1

z
dz, C is the arc of the circle z = 4eit, −π/2 ≤ t ≤ π/2

18.

∫
C

1

z
dz, C is the line segment between 1 + i and 4 + 4i

19.

∫ 4i

−4i

1

z2
dz, C is any contour not passing through the origin

20.

∫ 1+
√

3i

1−i

(
1

z
+

1

z2

)
dz, C is any contour in the right half-plane Re(z) > 0

In Problems 21–24, use integration by parts (13) to evaluate the given integral.

Write each answer in the form a + ib.

21.

∫ i

π

ez cos z dz 22.

∫ i

0

z sin z dz

23.

∫ 1+i

i

zez dz 24.

∫ πi

0

z2ez dz

In Problems 25 and 26, use Theorem 5.7 to evaluate the given integral. In each

integral z1/2 is the principal branch of the square root function. Write each answer

in the form a + ib.

25.

∫
C

1

4z1/2
dz, C is the arc of the circle z = 4eit, −π/2 ≤ t ≤ π/2

26.

∫
C

3z1/2 dz, C is the line segment between z0 = 1 and z1 = 9i

Focus on Concepts

27. Find an antiderivative of f(z) = sin z2. Do not think profound thoughts.

28. Give a domain D over which f(z) = z(z + 1)1/2 is analytic. Then find an
antiderivative of f in D.

5.5 Cauchy’s Integral Formulas and
Their Consequences

5.5In the last two sections we saw the importance of the Cauchy-Goursat theorem in the
evaluation of contour integrals. In this section we are going to examine several more con-
sequences of the Cauchy-Goursat theorem. Unquestionably, the most significant of these is
the following result:

The value of a analytic function f at any point z0 in a simply connected domain
can be represented by a contour integral.
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After establishing this proposition we shall use it to further show that:

An analytic function f in a simply connected domain possesses derivatives of all
orders.

The ramifications of these two results alone will keep us busy not only for the remainder of
this section but in the next chapter as well.

5.5.1 Cauchy’s Two Integral Formulas

First Formula If f is analytic in a simply connected domain D and
z0 is any point in D, the quotient f(z)/(z − z0) is not defined at z0 and
hence is not analytic in D. Therefore, we cannot conclude that the integral
of f(z)/(z − z0) around a simple closed contour C that contains z0 is zero
by the Cauchy-Goursat theorem. Indeed, as we shall now see, the integral of
f(z)/(z − z0) around C has the value 2πif(z0). The first of two remarkable
formulas is known simply as the Cauchy integral formula.

Theorem 5.9 Cauchy’s Integral Formula

Suppose that f is analytic in a simply connected domain D and C is
any simple closed contour lying entirely within D. Then for any point z0
within C,

f(z0) =
1

2πi

∮
C

f(z)
z − z0

dz. (1)

Proof Let D be a simply connected domain, C a simple closed contour in
D, and z0 an interior point of C. In addition, let C1 be a circle centered at
z0 with radius small enough so that C1 lies within the interior of C. By the
principle of deformation of contours, (5) of Section 5.3, we can write∮

C

f(z)
z − z0

dz =
∮

C1

f(z)
z − z0

dz. (2)

We wish to show that the value of the integral on the right is 2πif(z0). To this
end we add and subtract the constant f(z0) in the numerator of the integrand,∮

C1

f(z)
z − z0

dz =
∮

C1

f(z0)− f(z0) + f(z)
z − z0

dz.

= f(z0)
∮

C1

1
z − z0

dz +
∮

C1

f(z)− f(z0)
z − z0

dz. (3)

From (6) of Section 5.3 we know that∮
C1

1
z − z0

dz = 2πi (4)
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and so (3) becomes∮
C1

f(z)
z − z0

dz = 2πi f(z0) +
∮

C1

f(z)− f(z0)
z − z0

dz. (5)

Since f is continuous at z0, we know that for any arbitrarily small ε > 0
there exists a δ > 0 such that |f(z) − f(z0)| < ε whenever |z − z0| < δ. In
particular, if we choose the circle C1 to be |z − z0| = 1

2δ < δ, then by the
ML-inequality (Theorem 5.3) the absolute value of the integral on the right
side of the equality in (5) satisfies∣∣∣∣

∮
C1

f(z)− f(z0)
z − z0

dz

∣∣∣∣ ≤ ε

δ/2
2π

(
δ

2

)
= 2πε.

In other words, the absolute value of the integral can be made arbitrarily
small by taking the radius of the circle C1 to be sufficiently small. This can

happen only if the integral is 0. Thus (5) is
∮

C1

f(z)
z − z0

dz = 2πi f(z0). The

theorem is proved by dividing both sides of the last result by 2πi. ✎

�Note Because the symbol z represents a point on the contour C, (1) indicates
that the values of an analytic function f at points z0 inside a simple closed
contour C are determined by the values of f on the contour C.

Cauchy’s integral formula (1) can be used to evaluate contour integrals.
Since we often work problems without a simply connected domain explicitly
defined, a more practical restatement of Theorem 5.9 is:

If f is analytic at all points within and on a simple closed contour C, and

z0 is any point interior to C, then f(z0) =
1

2πi

∮
C

f(z)
z − z0

dz.

EXAMPLE 1 Using Cauchy’s Integral Formula

Evaluate
∮

C

z2 − 4z + 4
z + i

dz, where C is the circle |z| = 2.

Solution First, we identify f(z) = z2− 4z+4 and z0 = −i as a point within
the circle C. Next, we observe that f is analytic at all points within and on
the contour C. Thus, by the Cauchy integral formula (1) we obtain∮

C

z2 − 4z + 4
z + i

dz = 2πif(−i) = 2πi(3 + 4i) = π(−8 + 6i).

EXAMPLE 2 Using Cauchy’s Integral Formula

Evaluate
∮

C

z

z2 + 9
dz, where C is the circle |z − 2i| = 4.
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Solution By factoring the denominator as z2 + 9 = (z − 3i)(z + 3i) we see
that 3i is the only point within the closed contour C at which the integrand
fails to be analytic. See Figure 5.44. Then by rewriting the integrand as

z

z2 + 9
=

z

z + 3i

}
f(z)

z − 3i
,

3i

–3i

x

y

C

Figure 5.44 Contour for Example 2

we can identify f(z) = z/(z + 3i). The function f is analytic at all points
within and on the contour C. Hence, from Cauchy’s integral formula (1) we
have

∮
C

z

z2 + 9
dz =

∫
C

z

z + 3i
z − 3i

dz = 2πi f(3i) = 2πi
3i
6i

= πi.

Second Formula We shall now build on Theorem 5.9 by using it to
prove that the values of the derivatives f (n)(z0), n = 1, 2, 3, ... of an analytic
function are also given by a integral formula. This second integral formula is
similar to (1) and is known by the name Cauchy’s integral formula for
derivatives.

Theorem 5.10 Cauchy’s Integral Formula for Derivatives

Suppose that f is analytic in a simply connected domain D and C is
any simple closed contour lying entirely within D. Then for any point z0
within C,

f (n)(z0) =
n!
2πi

∮
C

f(z)
(z − z0)n+1

dz. (6)

Partial Proof We will prove (6) only for the case n = 1. The remainder
of the proof can be completed using the principle of mathematical induction.
We begin with the definition of the derivative and (1):

f ′(z0) = lim
∆z→0

f(z0 + ∆z)− f(z0)
∆z

= lim
∆z→0

1
2πi∆z

[∮
C

f(z)
z − (z0 + ∆z)

dz −
∮

C

f(z)
z − z0

dz

]

= lim
∆z→0

1
2πi

∮
C

f(z)
(z − z0 −∆z)(z − z0)

dz.

Before continuing, let us set out some preliminaries. Continuity of f on the
contour C guarantees that f is bounded (see page 124 of Section 2.6), that
is, there exists a real number M such that |f(z)| ≤ M for all points z on C.
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In addition, let L be the length of C and let δ denote the shortest distance
between points on C and the point z0. Thus for all points z on C we have

|z − z0| ≥ δ or
1

|z − z0|2
≤ 1
δ2
.

Furthermore, if we choose |∆z| ≤ 1
2δ, then by (10) of Section 1.2,

|z − z0 −∆z| ≥ | |z − z0| − |∆z| | ≥ δ − |∆z| ≥ 1
2δ

1
|z − z0 −∆z| ≤

2
δ
.and so,

Now,

∣∣∣∣
∮

C

f(z)
(z − z0)2

dz −
∮

C

f(z)
(z − z0 −∆z)(z − z0)

dz

∣∣∣∣
=

∣∣∣∣
∮

C

−∆z f(z)
(z − z0 −∆z)(z − z0)2

dz

∣∣∣∣ ≤ 2ML |∆z|
δ3 .

Because the last expression approaches zero as ∆z → 0, we have shown that

f ′(z0) = lim
∆z→0

f(z0 + ∆z)− f(z0)
∆z

=
1

2πi

∮
C

f(z)
(z − z0)2

dz,

which is (6) for n = 1. ✎

Like (1), formula (6) can be used to evaluate integrals.

EXAMPLE 3 Using Cauchy’s Integral Formula for Derivatives

Evaluate
∮

C

z + 1
z4 + 2iz3

dz, where C is the circle |z| = 1.

Solution Inspection of the integrand shows that it is not analytic at z = 0
and z = −2i, but only z = 0 lies within the closed contour. By writing the
integrand as

z + 1
z4 + 2iz3

=

z + 1
z + 2i
z3

we can identify, z0 = 0, n = 2, and f(z) = (z + 1)/ (z + 2i). The quotient
rule gives f ′′(z) = (2− 4i)/(z + 2i)3and so f ′′(0) = (2i− 1)/4i. Hence from
(6) we find ∮

C

z + 1
z4 + 4z3

dz =
2πi
2!
f ′′(0) = −π

4
+
π

2
i.
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EXAMPLE 4 Using Cauchy’s Integral Formula for Derivatives

Evaluate
∫

C

z3 + 3
z(z − i)2 dz, where C is the figure-eight contour shown in Figure

5.45.

C2

C1

0

i

x

y

Figure 5.45 Contour for Example 4

Solution Although C is not a simple closed contour, we can think of it as
the union of two simple closed contours C1 and C2 as indicated in Figure
5.45. Since the arrows on C1 flow clockwise or in the negative direction, the
opposite curve –C1 has positive orientation. Hence, we write∫

C

z3 + 3
z(z − i)2 dz =

∫
C1

z3 + 3
z(z − i)2 dz +

∫
C2

z3 + 3
z(z − i)2 dz

= −
∮
−C1

z3 + 3
(z − i)2

z
dz +

∮
C2

z3 + 3
z

(z − i)2 dz = −I1 + I2,

and we are in a position to use both formulas (1) and (6).
To evaluate I1 we identify z0 = 0, f(z) = (z3+3)/(z−i)2, and f(0) = −3.

By (1) it follows that

I1 =
∮
−C1

z3 + 3
(z − i)2

z
dz = 2πi f(0) = 2πi(−3) = −6πi.

To evaluate I2 we now identify z0 = i, n = 1, f(z) = (z3 + 3)/z, f ′(z) =
(2z3 − 3)/z2, and f ′(i) = 3 + 2i. From (6) we obtain

I2 =
∮

C2

z3 + 3
z

(z − i)2 dz =
2πi
1!

f ′(i) = 2πi(3 + 2i) = −4π + 6πi.

Finally, we get∫
C

z3 + 3
z(z − i)2 dz = −I1 + I2 = 6πi+ (−4π + 6πi) = −4π + 12πi.

5.5.2 Some Consequences of the Integral Formulas

An immediate and important corollary to Theorem 5.10 is summarized next.

Theorem 5.11 Derivative of an Analytic Function Is Analytic

Suppose that f is analytic in a simply connected domain D. Then f
possesses derivatives of all orders at every point z in D. The derivatives
f ′, f ′′, f ′′′, . . . are analytic functions in D.
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If a function f(z) = u(x, y) + iv(x, y) is analytic in a simply connected
domain D, we have just seen its derivatives of all orders exist at any point z
in D and so f ′, f ′′, f ′′′, . . . are continuous. From

f ′(z) =
∂u

∂x
+ i

∂v

∂x
=
∂v

∂y
− i

∂u

∂y

f ′′(z) =
∂2u

∂x2
+ i

∂2v

∂x2
=

∂2v

∂y∂x
− i ∂

2u

∂y∂x
...

we can also conclude that the real functions u and v have continuous partial
derivatives of all orders at a point of analyticity.

Cauchy’s Inequality We begin with an inequality derived from the
Cauchy integral formula for derivatives.

Theorem 5.12 Cauchy’s Inequality

Suppose that f is analytic in a simply connected domain D and C is a
circle defined by |z − z0| = r that lies entirely in D. If |f(z)| ≤M for all
points z on C, then

∣∣∣f (n)(z0)
∣∣∣ ≤ n!M

rn
. (7)

Proof From the hypothesis,∣∣∣∣ f(z)
(z − z0)n+1

∣∣∣∣ =
|f(z)|
rn+1

≤ M

rn+1
.

Thus from (6) and the ML-inequality (Theorem 5.3), we have

∣∣∣ f (n)(z0)
∣∣∣ =

n!
2π

∣∣∣∣
∮

C

f(z)
(z − z0)n+1

dz

∣∣∣∣ ≤ n!
2π

M

rn+1
2πr =

n!M
rn

.
✎

The number M in Theorem 5.12 depends on the circle |z − z0| = r. But
notice in (7) that if n = 0, then M ≥ | f(z0) | for any circle C centered at z0
as long as C lies within D. In other words, an upper bound M of |f(z)| on C
cannot be smaller than | f(z0) |.

Liouville’s Theorem Theorem 5.12 is then used to prove the next
result. Although it bears the name “Liouville’s theorem,” it probably was
first proved by Cauchy. The gist of the theorem is that an entire function f ,
one that is analytic for all z, cannot be bounded unless f itself is a constant.
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Theorem 5.13 Liouville’s Theorem

The only bounded entire functions are constants.

Proof Suppose f is an entire function and is bounded, that is, |f(z)| ≤ M
for all z. Then for any point z0, (7) gives | f ′(z0) | ≤ M/r. By making
r arbitrarily large we can make | f ′(z0) | as small as we wish. This means
f ′(z0) = 0 for all points z0 in the complex plane. Hence, by Theorem 3.6(ii),
f must be a constant. ✎

Fundamental Theorem of Algebra Theorem 5.13 enables us to
establish a result usually learned—but never proved—in elementary algebra.

Theorem 5.14 Fundamental Theorem of Algebra

If p(z) is a nonconstant polynomial, then the equation p(z) = 0 has at
least one root.

Proof Let us suppose that the polynomial p(z) = anz
n + an−1z

n−1 + · · ·+
a1z + a0, n > 0, is not 0 for any complex number z. This implies that the
reciprocal of p, f(z) = 1/p(z), is an entire function. Now

| f(z) | = 1
|anzn + an−1zn−1 + · · ·+ a1z + a0|

=
1

|z|n
∣∣an + an−1/z + · · ·+ a1

/
zn−1 + a0/zn

∣∣ .
Thus, we see that | f(z) | → 0 as |z| → ∞, and conclude that the function f
must be bounded for finite z. It then follows from Liouville’s theorem that f
is a constant, and therefore p is a constant. But this is a contradiction to our
underlying assumption that p was not a constant polynomial. We conclude
that there must exist at least one number z for which p(z) = 0. ✎

It is left as an exercise to show, using Theorem 5.14, that if p(z) is a non-
constant polynomial of degree n, then p(z) = 0 has exactly n roots (counting
multiple roots). See Problem 29 in Exercises 5.5.

Morera’s Theorem The proof of the next theorem enshrined the
name of the Italian mathematician Giacinto Morera forever in texts on com-
plex analysis. Morera’s theorem, which gives a sufficient condition for analyt-
icity, is often taken to be the converse of the Cauchy-Goursat theorem. For
its proof we return to Theorem 5.11.
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Theorem 5.15 Morera’s Theorem

If f is continuous in a simply connected domain D and if
∮

C
f(z) dz = 0

for every closed contour C in D, then f is analytic in D.

Proof By the hypotheses of continuity of f and
∮

C
f(z) dz = 0 for every

closed contour C in D, we conclude that
∫

C
f(z) dz is independent of the

path. In the proof of (7) of Section 5.4 we then saw that the function F
defined by F (z) =

∫ z

z0
f(s) ds (where s denotes a complex variable, z0 is a

fixed point in D, and z represents any point in D) is an antiderivative of
f ; that is, F ′(z) = f(z). Hence, F is analytic in D. In addition, F ′(z)
is analytic in view of Theorem 5.11. Since f(z) = F ′(z), we see that f is
analytic in D. ✎

An alternative proof of this last result is outlined in Problem 31 in Exer-
cises 5.5.

We could go on at length stating more and more results whose proofs rest
on a foundation of theory that includes the Cauchy-Goursat theorem and the
Cauchy integral formulas. But we shall stop after one more theorem.

In Section 2.6 we saw that if a function f is continuous on a closed and
bounded region R, then f is bounded; that is, there is some constant M such
that |f(z)| ≤M for z in R. If the boundary of R is a simple closed curve C,
then the next theorem, which we present without proof, tells us that |f(z)|
assumes its maximum value at some point z on the boundary C.

Theorem 5.16 Maximum Modulus Theorem

Suppose that f is analytic and nonconstant on a closed region R bounded
by a simple closed curve C. Then the modulus |f(z)| attains its maximum
on C.

If the stipulation that f(z) �= 0 for all z in R is added to the hypotheses
of Theorem 5.16, then the modulus |f(z)| also attains its minimum on C. See
Problems 27 and 33 in Exercises 5.5.

EXAMPLE 5 Maximum Modulus

Find the maximum modulus of f(z) = 2z + 5i on the closed circular region
defined by |z| ≤ 2.

Solution From (2) of Section 1.2 we know that |z|2 = zz̄. By replacing the
symbol z by 2z + 5i we have

|2z + 5i|2 = (2z + 5i)(2z + 5i) = (2z + 5i)(2z̄ − 5i) = 4zz̄ − 10i(z − z̄) + 25. (8)

But from (6) of Section 1.1, z̄ − z = 2i Im(z), and so (8) is

|2z + 5i|2 = 4|z|2 + 20 Im(z) + 25. (9)
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Because f is a polynomial, it is analytic on the region defined by |z| ≤ 2. By
Theorem 5.16, max|z|≤2 | 2z + 5i | occurs on the boundary |z| = 2. Therefore,
on |z| = 2, (9) yields

| 2z + 5i | =
√

41 + 20 Im(z). (10)

The last expression attains its maximum when Im(z) attains its maximum on
|z| = 2, namely, at the point z = 2i. Thus, max|z|≤2 | 2z + 5i | =

√
81 = 9.

Note in Example 5 that f(z) = 0 only at z = − 5
2 i and that this point is

outside the region defined by |z| ≤ 2. Hence we can conclude that (10) attains
its minimum when Im(z) attains its minimum on |z| = 2 at z = −2i. As a
result, min|z|≤2 | 2z + 5i | =

√
1 = 1.

Remarks Comparison with Real Analysis

In real analysis many functions are bounded, that is, |f(x)| ≤M for all x.
For example, sin x and cos x are bounded since |sin x| ≤ 1 and |cosx| ≤ 1
for all x, but we have seen in Section 4.3 that neither sin z nor cos z are
bounded in absolute value.

EXERCISES 5.5 Answers to selected odd-numbered problems begin on page ANS-17.

5.5.1 Cauchy’s Integral Formulas

In Problems 1–22, use Theorems 5.9 and 5.10, when appropriate, to evaluate the

given integral along the indicated closed contour(s).

1.

∮
C

4

z − 3i
dz; |z| = 5 2.

∮
C

z2

(z − 3i)2
dz; |z| = 5

3.

∮
C

ez

z − πi
dz; |z| = 4 4.

∮
C

1 + ez

z
dz; |z| = 1

5.

∮
C

z2 − 3z + 4i

z + 2i
dz; |z| = 3 6.

∮
C

cos z

3z − π
dz; |z| = 1.1

7.

∮
C

z2

z2 + 4
dz; (a) |z − i| = 2, (b) |z + 2i| = 1

8.

∮
C

z2 + 3z + 2i

z2 + 3z − 4
dz; (a) |z| = 2, (b) |z + 5| = 3

2

9.

∮
C

z2 + 4

z2 − 5iz − 4
dz; |z − 3i| = 1.3 10.

∮
C

sin z

z2 + π2
dz; |z − 2i| = 2

11.

∮
C

ez2

(z − i)3
dz; |z − i| = 1 12.

∮
C

z

(z + i)4
dz; |z| = 2

13.

∮
C

cos 2z

z5
dz; |z| = 1 14.

∮
C

e−z sin z

z3
dz; |z − 1| = 3
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15.

∮
C

2z + 5

z2 − 2z
dz; (a) |z| = 1

2
, (b) |z + 1| = 2 (c) |z − 3| = 2, (d) |z + 2i| = 1

16.

∮
C

z

(z − 1)(z − 2)
dz; (a) |z| = 1

2
, (b) |z + 1| = 1 (c) |z − 1| = 1

2
, (d) |z| = 4

17.

∮
C

z + 2

z2(z − 1 − i)
dz; (a) |z| = 1, (b) |z − 1 − i | = 1

18.

∮
C

1

z3(z − 4)
dz; (a) |z| = 1, (b) |z − 2 | = 1

19.

∮
C

(
e2iz

z4
− z4

(z − i)3

)
dz; |z| = 6

20.

∮
C

(
cosh z

(z − π)3
− sin2 z

(2z − π)3

)
dz; |z| = 3

21.

∮
C

1

z3(z − 1)2
dz; |z − 2| = 5

22.

∮
C

1

z2(z2 + 1)
dz; |z − i| = 3

2

In Problems 23 and 24, evaluate the given integral, where C is the figure-eight

contour in the figure.

23.

∮
C

3z + 1

z(z − 2)2
dz 24.

∮
C

eiz

(z2 + 1)2
dz

C

0 2
x

y

Figure 5.46 Figure for Problem 23

C

i

–i

x

y

Figure 5.47 Figure for Problem 24

5.5.2 Some Consequences of the Integral Formulas

In Problems 25 and 26, proceed as in Example 5 to find the maximum modulus of

the given function on indicated closed circular region.

25. f(z) = −iz + i; |z| ≤ 5 26. f(z) = z2 + 4z; |z| ≤ 1

27. Suppose the boundary C of the closed circular region R defined by |z| ≤ 1 is
parametrized by x = cos t, y = sin t, 0 ≤ t ≤ 2π. By considering | f(z(t)) |,
find the maximum modulus and the minimum modulus of the given analytic
function f and the points z on C that give these values.

(a) f(z) = (iz + 3)2
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(b) f(z) = (z − 2 − 2
√

3 i)2

(c) f(z) = −2iz2 + 5

[Hint : In parts (b) and (c), it may help to recall from calculus how to find the
relative extrema of a real-valued function of real variable t.]

Focus on Concepts

28. (Cauchy’s Integral Formula) Suppose f is analytic within and on a circle C
of radius r with center at z0. Use (1) to obtain

f(z0) =
1

2π

∫ 2π

0

f(z0 + reiθ) dθ.

This result is known as Gauss’ mean-value theorem and shows that the
value of f at the center z0 of the circle is the average of all the values of f on
the circumference of C.

29. (Fundamental Theorem of Algebra) Suppose

p(z) = anz
n + an−1z

n−1 + · · · + a1z + a0

is a polynomial of degree n > 1 and that z1 is number such that p(z1) = 0.
Then

(a) Show that p(z) = p(z)− p(z1) = an(zn − zn
1 ) + an−1(z

n−1 − zn−1
1 ) + · · · +

a1(z − z1).

(b) Use the result in part (a) to show that p(z) = (z − z1)q(z), where q is a
polynomial of degree n− 1.

(c) Use the result in part (b) to give a sound explanation why the equation
p(z) = 0 has n roots.

30. Use Problem 29 to factor the polynomial

p(z) = z3 + (3 − 4i)z2 − (15 + 4i)z − 1 + 12i.

Do not use technology.

31. (Morera’s Theorem) Sometimes in the proof of Theorem 5.15 continuity of
f ′ in D is also assumed. If this is the case, then (3) of Section 5.1 and Green’s
theorem can be used to write

∮
C
f(z) dz as∮

C

f(z) dz =

∮
C

u dx− v dy + i

∮
C

v dx + u dy

=

∫∫
R

(
−∂v

∂x
− ∂u

∂y

)
dA + i

∫∫
R

(
∂u

∂x
− ∂v

∂y

)
dA,

where R denotes the region bounded by C. Supply the next step(s) in the proof
and state the conclusion.

32. (Maximum Modulus Theorem) Critique the following reasoning:

Consider the function f(z) = z2 + 5z − 1 defined the closed circular region
region defined by |z| ≤ 1. It follows from the triangle inequality, (10) of Section
1.2, that ∣∣z2 + 5z − 1

∣∣ ≤ |z|2 + 5|z| + | −1|.
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Since the maximum modulus of f occurs on |z| = 1, the inequality shows that
the maximum modulus of f(z) = z2 + 5z − 1 over the region is 7.

33. In this problem we will start you out in the proof of the minimum modulus
theorem.

If f is analytic on a closed region R bounded by a simple closed curve
C and f(z) �= 0 for all z in R, then the modulus |f(z)| attains its
minimum on C.

Define the function g(z) = 1/f(z), reread Theorem 5.16, and then complete
the proof of the theorem.

34. Suppose f(z) = z+1−i is defined over the triangular region R that has vertices
i, 1, and 1 + i. Discuss how the concept of distance from the point −1 + i can
be used to find the points on the boundary of R for which |f(z)| attains its
maximum value and its minimum value.

5.6 Applications

5.6In Section 1.2 we introduced the notion that a complex number could be interpreted as a
two-dimensional vector. Because of this, we saw in Section 2.7 that a two-dimensional vector
field F(x, y) = P (x, y)i + Q(x, y)j could be represented by means of a complex-valued
function f by taking the components P and Q of F to be the real and imaginary parts of
f ; that is, f(z) = P (x, y) + iQ(x, y) is a vector whose initial point is z. In this section
we will explore the use of this complex representation of the vector function F(x, y) in the
context of analyzing certain aspects of fluid flow. Because the vector field consists of vectors
representing velocities at various points in the flow, F(x, y) or f(z) is called a velocity
field. The magnitude ‖F‖ of F , or the modulus |f(z)| of the complex representation f , is
called speed.

It will assumed throughout this section that every domain D is simply connected.

Irrotational Vector Field Throughout this section we consider
only a two-dimensional or planar flow of a fluid (see Sections 2.7 and 3.4).
This assumption permits us to analyze a single sheet of fluid flowing across
a domain D in the plane. Suppose that F(x, y) = P (x, y)i + Q(x, y)j
represents a steady-state velocity field of this fluid flow in D. In other words,
the velocity of the fluid at a point in the sheet depends only on its position
(x, y) and not on time t. In the study of fluids, if curl F = 0, then the fluid flow
is said to be irrotational. If a paddle device, such as shown in Figure 5.48,
is inserted in a flowing fluid, then the curl of its velocity field F is a measure
of the tendency of the fluid to turn the device about its vertical axis (imagine
this vertical axis pointing straight out of the page). The flows illustrated in
Figures 5.48(a) and 5.48(b) are irrotational because the paddle device is not
turning. The word “irrotational” is somewhat misleading because, as is seen
in Figure 5.48(b), it does not mean that the fluid does not rotate. Rather,
if curl F = 0, then the flow of the fluid is free of turbulence in the form of
vortices or whirlpools that would cause the paddle to turn. In the case of
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A
B

A
B

A
B

(a) (b) (c)

A

A AB B

B

A
B

A

A

B

B

Figure 5.48 Three fluid flows

Figure 5.48(c), the flow is rotational; notice the vortices and that the paddle
device is depicted as turning.

The divergence of the vector field F(x, y) = P (x, y)i + Q(x, y)j is a
measure of the rate of change of the density of the fluid at a point. If div
F = 0, the fluid is said to be incompressible; that is, an incompressible
fluid is homogeneous (constant density) throughout the domainD. In a simply
connected domain D, an incompressible flow has the special property that the
amount of fluid in the interior of any simple closed contour C is independent
of time. The rate at which fluid enters the interior of C matches the rate
at which it leaves, and consequently there can be no fluid sources or sinks at
points in D. In electromagnetic theory, if F represents a vector field for which
div F = 0, then F is said to be solenoidal. Let us assume that P and Q are
continuous and have continuous partial derivatives in D. Then from vector
calculus div F (or ∇·F) is a scalar function and curl F (or ∇×F) is a vector:

div F =
∂P

∂x
+
∂Q

∂y
and curl F =

(
∂Q

∂x
− ∂P

∂y

)
k. (1)

In the case of an ideal fluid, that is, an incompressible nonviscous fluid
whose planar flow is irrotational, we see from (1) that div F = 0 and curl F
= 0 yield the simultaneous equations

∂P

∂x
= −∂Q

∂y
and

∂P

∂y
=
∂Q

∂x
. (2)

The system of partial differential equations in (2) is reminiscent of the Cauchy-
Riemann equations—a criterion for analyticity presented in Theorem 3.5 of
Section 3.2. If the vector field F(x, y) = P (x, y)i + Q(x, y)j is represented
by the complex function f(z) = P (x, y)+ iQ(x, y), then it turns out that (2)
implies that the conjugate of f , that is, g(z) = f(z) = P (x, y)− iQ(x, y), is
an analytic function in D.

Theorem 5.17 Vector Fields and Analyticity

Suppose the functions u, v, P , and Q are continuous and have continuous
first partial derivatives in a domain D.

(Theorem continues on page 286)
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(i) If F(x, y) = P (x, y)i + Q(x, y)j is a vector field for which
div F = 0 and curl F = 0 in D, and if f(z) = P (x, y) + iQ(x, y)
is the complex representation of F, then the function g(z) = f(z) =
P (x, y)− iQ(x, y) is analytic in D.

(ii) Conversely, if g(z) = u(x, y)+iv(x, y) is analytic in D, then the func-
tion f(z) = g(z) = u(x, y)− iv(x, y) is the complex representation
of a vector field F(x, y) = P (x, y)i + Q(x, y)j for which div F = 0
and curl F = 0 in D.

Proof (i) If we let u(x, y) and v(x, y) denote the real and imaginary parts
of g(z) = f(z) = P (x, y)− iQ(x, y), then P = u and Q = −v. Because div F
= 0 and curl F = 0, the equations in (2) become, respectively,

∂u

∂x
= −∂(−v)

∂y
and

∂u

∂y
=
∂(−v)
∂x

.

∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x
. (3)That is,

The equations in (3) are the usual Cauchy-Riemann equations, and so by
Theorem 3.5 we conclude that g(z) = f(z) = P (x, y) − iQ(x, y) is analytic
in D.

(ii) We now let P (x, y) and Q(x, y) denote the real and imaginary parts
of f(z) = g(z) = u(x, y) − iv(x, y). Since u = P and v = −Q, the Cauchy-
Riemann equations become

∂P

∂x
=
∂(−Q)
∂y

= −∂Q
∂y

and
∂P

∂y
= −∂(−Q)

∂x
=
∂Q

∂x
. (4)

These are the equations in (2) and so div F = 0 and curl F = 0. ✎

EXAMPLE 1 Vector Field Gives an Analytic Function

The two-dimensional vector field

F(x, y) =
K

2π

[
y − y0

(x− x0)
2 + (y − y0)2

i− x− x0

(x− x0)
2 + (y − y0)2

j

]
,K > 0,

can be interpreted as the velocity field of the flow of an ideal fluid in a domain
D of the xy-plane not containing (x0, y0). It is easily verified that the fluid is
incompressible (div F = 0) and irrotational (curl F = 0) in D. The complex
representation of F is

f(z) =
K

2π

[
y − y0

(x− x0)
2 + (y − y0)2

− i x− x0

(x− x0)
2 + (y − y0)2

]
.
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Indeed, by rewriting f as

f(z) =
K

2πi

[
x− x0

(x− x0)
2 + (y − y0)2

+ i
y − y0

(x− x0)
2 + (y − y0)2

]

and using z0 = x0 + iy0 and z = x + iy, you should be able to recognize f(z)
is the same as

f(z) =
K

2πi
z − z0
|z − z0|2

or f(z) =
K

2πi
1

z̄ − z̄0
.

Hence from Theorem 5.17(i), the complex function g(z) defined as the conju-
gate of f(z) is a rational function,

g(z) = f(z) = − K

2πi
1

z − z0
, K > 0,

and is analytic in a domain D of the z-plane not containing z0.

Any analytic function g(z) can be interpreted as a complex representation
of the velocity field F of a planar fluid flow. But in view of Theorem 5.17(ii), it
is the function f defined as the conjugate of g, f(z) = g(z), that is a complex
representation of a velocity field F(x, y) = P (x, y)i +Q(x, y)j of the planar
flow of an ideal fluid in some domain D of the plane.

EXAMPLE 2 Analytic Function Gives a Vector Field

The polynomial function g(z) = kz = k(x + iy), k > 0, is analytic in any
domain D of the complex plane. From Theorem 5.17(ii), f(z) = g(z) = kz̄ =
kx − iky is the complex representation of a velocity field F of an ideal fluid
in D. With the identifications P (x, y) = kx and Q(x, y) = −ky, we have
F(x, y) = k(xi − yj). A quick inspection of (2) verifies that div F = 0 and
curl F = 0.

Streamlines Revisited We can now tie up a few loose ends be-
tween Section 2.7 and Section 3.4. In Section 2.7, we saw that if F(x, y) =
P (x, y)i + Q(x, y)j or f(z) = P (x, y) + iQ(x, y) represented the velocity
field of any planar fluid flow, then the actual path z(t) = x(t) + iy(t) of a
particle (such as a small cork) placed in the flow must satisfy the system of
first-order differential equations:

dx

dt
= P (x, y)

dy

dt
= Q(x, y).

(5)

The family of all solutions of (5) were called streamlines of the flow.
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In Section 3.4 we saw that in the case of a planar flow of an ideal fluid,
the velocity vector F could be represented by the gradient of a real-valued
function φ called a velocity potential. The level curves φ(x, y) = c1 were
called equipotential curves. Most importantly, the function φ is a solution
of Laplace’s equation in some domain D and so is harmonic in D. After
finding the harmonic conjugate ψ(x, y) of φ, we formed a function

Ω(z) = φ(x, y) + iψ(x, y), (6)

called the complex velocity potential, which is analytic in D. In that con-
text, we called ψ(x, y) a stream function and its level curves ψ(x, y) = c2
streamlines.

We shall now demonstrate that we are talking about the same thing in
(5) and (6). Let us assume that F(x, y) = P (x, y)i+Q(x, y)j is the velocity
field of the flow of an ideal fluid in some domain D. Let’s start by reviewing
the content of the paragraph containing (6). Because F(x, y) = P (x, y)i +
Q(x, y)j is a gradient field, there exists a scalar function φ such that

F(x, y) = ∇φ =
∂φ

∂x
i +

∂φ

∂y
j, (7)

∂φ

∂x
= P (x, y) and

∂φ

∂y
= Q(x, y). (8)and so

Because φ is harmonic in D, we call it a potential function for F. We then find
its harmonic conjugate ψ and use it to form the complex velocity potential
Ω(z) = φ+ iψ. Since Ω(z) is analytic in D, we can use the Cauchy-Riemann
equations

∂φ

∂x
=
∂ψ

∂y
and

∂φ

∂y
= −∂ψ

∂x
(9)

to rewrite (8) as

∂ψ

∂y
= P (x, y) and

∂ψ

∂x
= −Q(x, y). (10)

Now let us re-examine the system of differential equations in (5). If we
divide the second equation in the system by the first, we obtain a single first-
order differential equation dy/dx = Q(x, y)/P (x, y) or

−Q(x, y)dx+ P (x, y)dy = 0. (11)

Then by (2), we see that P and Q are related by ∂P/∂x = ∂(−Q)/∂y =
−∂Q/∂y. This last condition proves that (11) is an exact first-order differ-
ential equation. More to the point, the equations in (10) show us that (11) is
the same as

∂ψ

∂x
dx+

∂ψ

∂y
dy = 0. (12)
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If you have not had a course in differential equations, then the foregoing
manipulations may not impress you. But those readers with some knowledge
of that subject should recognize the result in (12) establishes that (11) is
equivalent to the exact differential d(ψ(x, y)) = 0. Integrating this last
equation shows that all solutions of (5) satisfy ψ(x, y) = c2. In other words,
the streamlines of the velocity field F(x, y) = P (x, y)i +Q(x, y)j obtained
from (5) are the same as the level curves of the harmonic conjugate ψ of φ
in (6).

�Note

Complex Potential Revisited Assume that F(x, y) = P (x, y)i
+ Q(x, y)j is the velocity field of the flow of an ideal fluid in some domain
D of the plane and that Ω(z) = φ(x, y) + iψ(x, y) is the complex velocity
potential of the flow. We know from Theorem 5.17(i) that from the complex
representation f(z) = P (x, y) + iQ(x, y) of F we can construct an analytic
function g(z) = f(z) = P (x, y)− iQ(x, y). The two analytic functions g and
Ω are related. To see why this is so, we first write the gradient vector F in
(7) in equivalent complex notation as

f(z) =
∂φ

∂x
+ i

∂φ

∂y
. (13)

Now by (9) of Section 3.2, the derivative of the analytic function Ω(z) =
φ(x, y) + iψ(x, y) is the analytic function

Ω′(z) =
∂φ

∂x
+ i

∂ψ

∂x
. (14)

We now replace ∂ψ/∂x in (14) using the second of the Cauchy-Riemann equa-
tions in (9):

Ω′(z) =
∂φ

∂x
− i∂φ

∂y
. (15)

By comparing (13) and (15) we see immediately that f(z) = Ω′(z) and,
consequently,

g(z) = Ω′(z). (16)

The conjugate of this analytic function, g(z) = f(z) = f(z), is the complex
representation of the vector field F whose complex potential is Ω(z). In
symbols,

f(z) = Ω′(z). (17)

Because f(z) is a complex representation of velocity vector field, the quantity
Ω′(z) in (17) is sometimes referred to as the complex velocity.

You may legitimately ask: Is (17) merely interesting or is it useful? An-
swer: Useful. Here is one practical observation: Any function analytic in some
domain D can be regarded as a complex potential for the planar flow of an
ideal fluid.
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EXAMPLE 3 Complex Potentials

(a) The analytic function Ω(z) = 1
2kz

2, k > 0, is a complex potential for
the flow in Example 2. By (16), the derivative g(z) = Ω′(z) = kz is an
analytic function. By (17), the conjugate f(z) = Ω′(z) or f(z) = kz̄ =
kx − iky is the complex representation of the velocity vector field F of
the flow of an ideal fluid in some domain D of the plane. The complex
potential of F is Ω(z). Since Ω(z) = 1

2k(x
2 − y2 + 2xyi), we see that the

streamlines of the flow are xy = c2.

(b) The complex function Ω(z) = Az, A > 0, is a complex potential for a
very simple but important type of flow. From

Ω′(z) = A and Ω′(z) = A,

we see that Ω(z) is the complex potential of vector field F whose complex
representation is f(z) = A. Because the speed |f | = A is constant at every
point, we say that the velocity field F(x, y) = Ai is a uniform flow. In
other words, in a domain D such as the upper half-plane, a particle in the
fluid moves with a constant speed. From Ω(z) = Az = Ax+ iAy, we see
that a path of a moving particle, a streamline for the flow, is a horizontal
line from the family defined by y = c2. Notice that the boundary of the
domain D, y = 0, is itself a streamline. See Figure 5.49.
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x

F F

Figure 5.49 Uniform flow
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Figure 5.50 Positive circulation and

zero net flux

Circulation and Net Flux Given a simple closed curve C oriented
counterclockwise in the plane and a complex function f that represents the
velocity field of a planar fluid flow, we can ask the following two questions:

(i) To what degree does the fluid tend to flow around the curve C?

(ii) What is the net difference between the rates at which fluid enters and
leaves the region bounded by the curve C?

The quantities considered in questions (i) and (ii) are called the circulation
around C and the net flux across C, respectively. A precise definition of
circulation and flux depends on the use of a contour integral involving the
complex representation f and will be given shortly. In the meantime, we
can decide whether the circulation or net flux is positive, negative, or 0 by
graphing the velocity vector field f of the flow. As with arguments of complex
numbers, we consider the counterclockwise direction of a flow as the “positive”
direction. Thus, a flow will have a positive circulation around C if the fluid
tends to flow counterclockwise around C. Similarly, a negative circulation
means the fluid tends to flow clockwise around C, and a 0 circulation means
that the flow is perpendicular to C. For example, in Figure 5.50, the circulation
is positive since the fluid tends to flow counterclockwise around C, whereas
the circulation in Figure 5.51 is 0 since the flow is perpendicular to the curve
C. In a similar manner, we consider a positive net flux to mean that fluid
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leaves the region bounded by the curve C at a greater rate than it enters.
This indicates the presence of a source within C, that is, a point at which
fluid is produced. Conversely, a negative net flux indicates that fluid enters
the region bounded by C at a greater rate than it leaves, and this indicates
the presence of a sink inside C, that is, a point at which fluid disappears.
If the net flux is 0, then the fluid enters and leaves C at the same rate. In
Figure 5.50, the flow is tangent to the circle C. Thus, no fluid crosses C, and
this implies that the net flux across C is 0. On the other hand, in Figure 5.51,
the net flux across C is positive because the flow appears to be only leaving
the region bounded by C.
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1 x

y

–1–2

C

Figure 5.51 Zero circulation and posi-

tive net flux
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Figure 5.52 Velocity field for part (a)

of Example 4
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Figure 5.53 Velocity field for part (b)

of Example 4

EXAMPLE 4 Circulation and Net Flux of a Flow

Let C be the unit circle |z| = 1 in the complex plane. For each flow f
determine graphically whether the circulation around C is positive, negative,
or 0. Also, determine whether the net flux across C is positive, negative,
or 0: (a) f(z) = (z − i)2 (b) f(z) = 1/z.

Solution In each part, we have used a computer algebra system to plot the
velocity vector field f and the curve C.

(a) The velocity field f(z) = (z − i)2 is given in Figure 5.52. Because the
vector field f shows that the fluid flows clockwise about C, we conclude
that the circulation is negative. Moreover, since it appears that no fluid
crosses the curve C, the net flux is 0.

(b) The velocity field f(z) = 1/z given in Figure 5.53 indicates that the fluid
flows an equal amount counterclockwise as it does clockwise about C.
This suggests that the circulation is 0. In addition, because the same
amount of fluid appears to enter the region bounded by C as exits the
region bounded by C, we also have that the net flux is 0.

Circulation and Net Flux Revisited Let T denote the unit
tangent vector to a positively oriented, simple closed contour C. If F(x, y) =
P (x, y)i+Q(x, y)j represents a velocity vector field of a two-dimensional fluid
flow, we define the circulation of F along C as the real line integral

∮
C

F · dr,
where dr = dxi+dyj. Since dr/dt = (dr/ds)(ds/dt), where dr/ds = (dx/ds) i+
(dy/ds) j = T is a unit tangent to C, the line integral can be written in term
of the tangential component of the velocity vector F; that is,

circulation =
∮

C

F ·T ds. (18)

As we have already discussed, the circulation of F is a measure of the amount
by which the fluid tends to turn the curve C by rotating, or circulating, around
it. If F is perpendicular to T for every (x, y) on C, then

∮
C

F ·T ds = 0 and
the curve does not move at all. On the other hand,

∮
C

F ·T ds > 0 and
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∮
C

F ·T ds < 0 mean that the fluid tends to rotate C in the counterclockwise
and clockwise directions, respectively. See Figure 5.54.

T

F

C

Figure 5.54 Flow of fluid tends to

turn C.

Now if N = (dy/ds) i − (dx/ds) j denotes the normal unit vector to a
positively oriented, simple closed contour C, and if F(x, y) = P (x, y)i +
Q(x, y)j again represents a velocity field of a two-dimensional fluid flow, we
define the net flux of F as the real line integral of the normal component of
the velocity vector F:

net flux =
∮

C

F ·N ds. (19)

Specifically, (19) defines a net rate at which the fluid is crossing the curve C
in the direction of the normal N and is measured in units of area per unit
time. In other words, the net flux across C is the difference between the rate
at which fluid enters and the rate at which fluid leaves the region bounded by
C. A nonzero value of

∮
C

F ·N ds indicates the presence of sources or sinks
for the fluid inside the curve C.

Now if f(z) = P (x, y) + iQ(x, y) is the complex representation of the
velocity field F of a fluid, the line integrals (18) and (19) can be computed
simultaneously by evaluating the single contour integral

∮
C
f(z) dz. To see

how this is done, first observe:∮
C

F ·T ds =
∮

C

(P i +Q j) ·
(
dx

ds
i +

dy

ds
j
)
ds =

∮
C

P dx+Qdy∮
C

F ·N ds =
∮

C

(P i +Q j) ·
(
dy

ds
i− dx

ds
j
)
ds =

∮
C

P dy −Qdx,

and then: ∮
C

f(z) dz =
∮

C

(P − iQ) (dx+ idy)

=
(∮

C

P dx+Qdy

)
+ i

(∮
C

P dy −Qdx
)

=
(∮

C

F ·T ds

)
+ i

(∮
C

F ·N ds

)
. (20)

Equation (20) shows that (18) and (19) can be found by computing
∮

C
f(z) dz

and identifying the real and imaginary parts of the result. That is,

circulation = Re
(∮

C

f(z) dz
)

and net flux = Im
(∮

C

f(z) dz
)
. (21)

EXAMPLE 5 Circulation and Net Flux

Use (21) to compute the circulation and the net flux for the flow and curve C
in part (a) of Example 4.

Solution From part (a) of Example 4, the flow is f(z) = (z − i)2 and C is
the circle |z| = 1. Then f(z) =

(
z − i

)2
= (z̄ + i)2 = z̄2 + 2iz̄ − 1, and C is
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parametrized by z(t) = eit, 0 ≤ t ≤ 2π. Using dz = ieitdt and the integration
method in (11) of Section 5.2, we have:

∮
C

f(z) dz =
∫ 2π

0

(
e−2it + 2ie−it − 1

)
ieitdt

= i

∫ 2π

0

(
e−it + 2i− eit

)
dt

=
[
−e−it − 2t− eit

]2π

0
= −4π + 0i.

(22)

In the last computation we used e−2πi = e2πi = e0 = 1. Now, by comparing
the results obtained in (22) to (21), we see that the circulation around C is
−4π and the net flux across C is 0. The negative circulation and zero net
flux are consistent with our geometric analysis in Figure 5.52 for the flow f
in part (a) of Example 4.

The analysis of the flow f in part (b) in Example 4 is left as a exercise.
See Problem 25 in Exercises 5.6.

EXAMPLE 6 Circulation and Net Flux

Suppose the velocity field of a fluid flow is f(z) = (1 + i)z. Compute the
circulation and net flux across C, where C is the unit circle |z| = 1.

Solution Since f(z) = (1 − i)z̄ and z(t) = eit, 0 ≤ t ≤ 2π, we have from
(21)

∮
C

f(z) dz =
∫ 2π

0

(1− i)e−itieitdt = (1 + i)
∫ 2π

0

dt = 2π + 2πi.

Thus the circulation around C is 2π and net flux across C is also 2π.

EXAMPLE 7 Applying the Cauchy-Goursat Theorem

Suppose the velocity field of a fluid flow is f(z) = cos z. Compute the cir-
culation and net flux across C, where C is the square with vertices z = 1,
z = i, z = −1, and z = −i.

Solution We must compute
∮

C
f(z) dz =

∮
C

cos z dz =
∮

C
cos z dz, and then

take the real and imaginary parts of the integral to find the circulation and
net flux, respectively. But since the function cos z is analytic everywhere,
we immediately have

∮
C

cos z dz = 0 by the Cauchy-Goursat theorem. The
circulation and net flux are therefore both 0.

1

–1

0.5

1
x

y

–1 –0.5

–0.5

0.5

Figure 5.55 Velocity field for

Example 7

The velocity field f(z) = cos z and the contour C are shown in Figure
5.55. The results just obtained for the circulation and net flux are consistent
with our earlier discussion in Example 4 about the geometry of flows.
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EXAMPLE 8 Circulation and Net Flux

The complex function f(z) = k/ (z − z0) where k = a+ ib and z0 are complex
constants, gives rise to a flow in the domain defined by z �= z0. If C is a simple
closed contour with z0 in its interior, then the Cauchy integral formula, (1)
of Section 5.5, gives∮

C

f(z) dz =
∮

C

a− ib
z − z0

dz = 2πi(a− ib) = 2πb+ 2πai.

From (21) we see that the circulation around C is Re(2πb+ 2πai) = 2πb and
the net flux across C is Im(2πb+ 2πai) = 2πa.

Note in Example 8, if z0 were an exterior point of the region bounded
by C, then it would follow from the Cauchy-Goursat theorem that both the
circulation and the next flux are zero. Moreover, when the constant k is real
(a �= 0, b = 0), the circulation around C is 0, but the net flux across C is 2πk.
From our earlier discussion in this section, it follows that complex number
z0 is a source for the flow when k > 0 and a sink when k < 0. Velocity
fields corresponding to these two cases are shown in Figure 5.56. The flow
illustrated in Figure 5.51 is of the type shown in Figure 5.56(a).

y

x

z0

(a) Source : k > 0

y

x

z0

(b) Sink : k < 0

Figure 5.56 Two normalized velocity fields

EXERCISES 5.6 Answers to selected odd-numbered problems begin on page ANS-17.

In Problems 1–4, for the given velocity field F(x, y), verify that div F = 0 and
curl F = 0 in an appropriate domain D.

1. F(x, y) = (cos θ0)i + (sin θ0)j, θ0 a constant

2. F(x, y) = −yi − xj

3. F(x, y) = 2xi + (3 − 2y)j

4. F(x, y) =
x

x2 + y2
i +

y

x2 + y2
j
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In Problems 5–8, give the complex representation f(z) of the velocity field F(x, y).

Express the function g(z) = f(z) in terms of the symbol z and verify that g(z) is an

analytic function in an appropriate domain D.

5. F(x, y) in Problem 1 6. F(x, y) in Problem 2

7. F(x, y) in Problem 3 8. F(x, y) in Problem 4

In Problems 9–12, find the velocity field F(x, y) of the flow of an ideal fluid deter-

mined by the given analytic function g(z).

9. g(z) = (1 + i)z2 10. g(z) = sin z

11. g(z) = ex cos y + iex sin y 12. g(z) = x3 − 3xy2 + i
(
3x2y − y3

)
In Problems 13–16, find a complex velocity potential Ω(z) of the complex represen-

tation f(z) of the indicated velocity field F(x, y). Verify your answer using (17).

Describe the equipotential lines and the streamlines.

13. F(x, y) in Problem 1 14. F(x, y) in Problem 2

15. F(x, y) in Problem 3 16. F(x, y) in Problem 4

In Problems 17 and 18, the given analytic function Ω(z) is a complex velocity

potential for the flow of an ideal fluid. Find the velocity field F(x, y) of the flow.

17. Ω(z) = 1
3
iz3 18. Ω(z) = 1

4
z4 + z

19. Show that

F(x, y) = A

[(
1 − x2 − y2

(x2 + y2)2

)
i − 2xy

(x2 + y2)2
j

]
, A > 0,

is a velocity field for an ideal fluid in any domain D not containing the origin.

20. Verify that the analytic function Ω(z) = A

(
z +

1

z

)
is a complex velocity

potential for the flow whose velocity field F(x, y) is in Problem 19.

21. (a) Consider the velocity field in Problem 19. Describe the field F(x, y) at a
point (x, y) far from the origin.

(b) For the complex velocity potential in Problem 20, how does the observation
that Ω(z) → Az as |z| increases verify your answer to part (a)?

22. A stagnation point in a fluid flow is a point at which the velocity field
F(x, y) = 0. Find the stagnation points for:

(a) the flow in Example 3(a).

(b) the flow in Problem 19.

23. For any two real numbers k and x1, the function Ω(z) = kLn(z−x1) is analytic
in the upper half-plane and therefore is complex potential for the flow of an
ideal fluid. The real number x1 is a sink when k < 0 and a source for the flow
when k > 0.

(a) Show that the streamlines are rays emanating from x1.

(b) Show that the complex representation f(z) of the velocity field F(x, y) of
the flow is

f(z) = k
z − x1

|z − x1|2

and conclude that the flow is directed toward x1 precisely when k < 0.
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24. The complex potential Ω(z) = kLn(z − 1) − kLn(z + 1), k > 0, determines
the flow of an ideal fluid on the upper half-plane y > 0 with a single source at
z = 1 and a single sink at z = −1. Show that the streamlines are the family of
circles x2 + (y − c2)

2 = 1 + c22. See Figure 5.57.

x
–1 1

Figure 5.57 Figure for Problem 24

In Problems 25–30, compute the circulation and net flux for the given flow and the

indicated closed contour C.

25. f(z) =
1

z
; where C is the circle |z| = 1

26. f(z) = 2z; where C is the circle |z| = 1

27. f(z) =
1

z − 1
; where C is the circle |z − 1| = 2

28. f(z) = z̄; where C is the square with vertices z = 0, z = 1, z = 1 + i, z = i

29. F(x, y) = (4x + 3y)i + (2x− y)j, where C is the circle x2 + y2 = 4

30. F(x, y) = (x + 2y)i + (x − y)j, where C is the square with vertices z = 0,
z = 1 + i, z = 2i, z = −1 + i

Focus on Concepts

31. Suppose f(z) = P (x, y)+iQ(x, y) is a complex representation of a velocity field
F of the flow of an ideal fluid on a simply connected domain D of the complex
plane. Assume P and Q have continuous partial derivatives throughout D. If C
is any simple closed curve C lying within D, show that the circulation around
C and the net flux across C are zero.

32. The flow described by the velocity field f(z) = (a + ib)/z is said to have a
vortex at z = 0. The geometric nature of the streamlines depends on the
choice of a and b.

(a) Show that if z(t) = x(t) + iy(t) is the path of a particle in the flow, then

dx

dt
=

ax− by

x2 + y2

dy

dt
=

bx + ay

x2 + y2
.

(b) Rectangular and polar coordinates are related by r2 = x2+y2, tan θ = y/x.

Use these equations to show that

dr

dt
=

1

r

(
x
dx

dt
+ y

dy

dt

)
,
dθ

dt
=

1

r2

(
−y

dx

dt
+ x

dy

dt

)
.

(c) Use the equations in parts (a) and (b) to establish that

dr

dt
=

a

r
,
dθ

dt
=

b

r2
.

(d) Use the equations in part (c) to conclude that the streamlines of the flow
are logarithmic spirals r = ceaθ/b, b �= 0. Use a graphing utility to verify
that a particle traverses a path in a counterclockwise direction if and only
if a < 0, and in a clockwise direction if and only if b < 0. Which of these
directions corresponds to motion spiraling into the vortex?
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CHAPTER 5 REVIEW QUIZ
Answers to selected odd-numbered problems begin
on page ANS-17.

In Problems 1–20, answer true or false. If the statement is false, justify your answer

by either explaining why it is false or giving a counterexample; if the statement is

true, justify your answer by either proving the statement or citing an appropriate

result in this chapter.

1. If z(t), a ≤ t ≤ b, is a parametrization of a contour C and z(a) = z(b), then C
is a simple closed contour.

2. The real line integral
∫

C
(x2 + y2) dx + 2xy dy, where C is given by y = x3 from

(0, 0) to (1,1), has the same value on the curve y = x6 from (0, 0) to (1,1).

3. The sector defined by −π/6 < arg(z) < π/6 is a simply connected domain.

4. If f is analytic at z0, then f ′′′ necessarily exists at z0.

5. If f is analytic within and on a simple closed contour C and z0 is any point
within C, then the value of f(z0) is determined by the values of f(z) on C.

6. If f is analytic on a simple closed contour C, then
∮

C
f(z) dz = 0.

7. If f is continuous in a domain D and has an antiderivative F in D, then an
integral

∫
C
f(z) dz has the same value on all contours C in D between the initial

point z0 and terminal point z1.

8. If
∮

C
f(z) dz = 0 for every simple closed contour C, then f is analytic within

and on C.

9. The value of

∫
C

z − 2

z
dz is the same for any path C in the right half-plane

Re(z) > 0 between z = 1 + i and z = 10 + 8i.

10. If g is entire, then

∮
C

g(z)

z − i
dz =

∮
C1

g(z)

z − i
dz, where C is the circle |z| = 3 and

C1 is the ellipse x2 + 1
9
y2 = 1.

11.

∮
C

1

(z − z0)(z − z1)
dz = 0 for every simple closed contour C that encloses the

points z0 and z1.

12. If f is analytic within and on the simple closed contour C and z0 is a point

within C, then

∮
C

f ′(z)

z − z0
dz =

∮
C

f(z)

(z − z0)2
dz.

13.
∮

C
Re (z) dz is independent of the path C between z0 = 0 and z1 = 1 + i.

14.
∫

C

(
4z3 − 2z + 1

)
dz =

∫ 2

−2

(
4x3 − 2x + 1

)
dx, where the contour C is com-

prised of segments C1 and C2 shown in Figure 5.58.

y

x

C1

2i

–2 2

C2

Figure 5.58 Figure for Problem 14

15.
∫

C1
zn dz =

∫
C2

zn dz for all integers n, where C1 is z(t) = eit, 0 ≤ t ≤ 2π and

C2 is z(t) = Reit, R > 1, 0 ≤ t ≤ 2π.

16. If f is continuous on the contour C, then
∫

C
f(z) dz+

∫
−C

f(z) dz = 0.

17. On any contour C with initial point z0 = −i and terminal point z1 = i that
lies in a simply connected domain D not containing the origin or the negative

real axis,

∫ i

−i

1

z
dz = Ln(i)− Ln(−i) = πi.

18.

∮
C

1

z2 + 1
dz = 0, where C is the ellipse x2 + 1

4
y2 = 1.
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19. If p(z) is a polynomial in z then the function f(z) = 1/p(z) can be never be an
entire function.

20. The function f(z) = cos z is entire and not a constant and so must be un-
bounded.

In Problems 21–40, try to fill in the blanks without referring back to the text.

21. z(t) = eit2 , 0 ≤ t ≤
√

2π, is a parametrization for a .

22. z(t) = z0 + eit, 0 ≤ t ≤ 2π, is a parametrization for a .

23. The difference between z1(t) = eit, 0 ≤ t ≤ 2π and z2(t) = ei(2π−t), 0 ≤ t ≤ 2π
is .

24.

∮
C

(2y + x− 6ix2) dz = , where C is the triangle with vertices 0, i,

1 + i, traversed counterclockwise.

25. If f is a polynomial function and C is a simple closed contour, then∮
C

f(z) dz = .

26.

∫
C

z Im(z) dz = , where C is given by z(t) = 2t + t2i, 0 ≤ t ≤ 1.

27.

∫
C

|z|2 dz = , where C is the line segment for 1 − i to 1 + i.

28.

∮
C

(z̄)n dz = , where n is an integer and C is z(t) = eit, 0 ≤ t ≤ 2π.

29.

∫
C

sin
z

2
dz = , where C is given by z(t) = 2i + 4eit, 0 ≤ t ≤ π/2.

30.

∮
C

sec z dz = , where C is |z| = 1.

31.

∮
C

1

z(z − 1)
dz = , where C is |z − 1| = 1

2
.

32. If f(z) =

∮
C

ξ2 + 6ξ − 2

ξ − z
dξ, where C is |z| = 3, then f(1 + i) = .

33. If f(z) = z3 + ez and C is a contour z = 8eit, 0 ≤ t ≤ 2π, then∮
C

f(z)

(z + πi)3
dz = .

34. If | f(z) | ≤ 2 on the circle |z| = 3, then

∣∣∣∣
∮

C

f(z) dz

∣∣∣∣ ≤ .

35. If n is a positive integer and C is the contour |z| = 2, then∮
C

z−nez dz = .

36. On |z| = 1, the contour integral

∮
C

cos z

zn
dz equals for n = 1, equals

for n = 2, and equals for n = 3.

37.

∮
C

zndz =


 0, if n

2πi, if n
, where n is an integer and C is the circle

|z| = 1.
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38. The value of the integral

∮
C

z

z + i
dz on the contour C shown in Figure 5.59 is

.

39. The value of the integral

∫
C

(2z + 1) dz on the contour C, comprised of line

segments C1, C2, . . . , C11 shown in Figure 5.60 is .

40. The value of the integral

∮
C

ez

z2(z − πi)
dz on the closed contour C shown in

Figure 5.61 is .

y

x

C

3–2

Figure 5.59 Figure for Problem 38
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Figure 5.60 Figure for Problem 39
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Figure 5.61 Figure for Problem 40
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Chapter 6 Review Quiz

Introduction Cauchy’s integral formula for
derivatives indicates that if a function f is ana-
lytic at a point z0, then it possesses derivatives
of all orders at that point. As a consequence
of this result we shall see that f can always
be expanded in a power series centered at
that point. On the other hand, if f fails to be
analytic at z0, we may still be able to expand it
in a different kind of series known as a Laurent
series. The notion of Laurent series leads to
the concept of a residue, and this, in turn, leads
to yet another way of evaluating complex and,
in some instances, real integrals.

301
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6.1 Sequences and Series

6.1Much of the theory of complex sequences and series is analogous to that encountered in real
calculus.

In this section we explore the definitions of convergence and divergence for complex
sequences and complex infinite series. In addition, we give some tests for convergence of
infinite series. You are urged to pay particular attention to what is said about geometric
series since this type of series will be important in the later sections of this chapter.

Sequences A sequence {zn} is a function whose domain is the set of
positive integers and whose range is a subset of the complex numbers C. In
other words, to each integer n = 1, 2, 3, ... we assign a single complex number
zn. For example, the sequence {1 + in} is

1 + i, 0, 1− i, 2, 1 + i, . . . .

↑ ↑ ↑ ↑ ↑

n = 1, n = 2, n = 3, n = 4, n = 5, . . .

(1)

If lim
n→∞

zn = L, we say the sequence {zn} is convergent. In other words,

{zn} converges to the number L if for each positive real number ε an N can
be found such that |zn − L| < ε whenever n > N . Since |zn − L | is distance,
the terms zn of a sequence that converges to L can be made arbitrarily close
to L. Put another way, when a sequence {zn} converges to L, then all but a
finite number of the terms of the sequence are within every ε-neighborhood of
L. See Figure 6.1. A sequence that is not convergent is said to be divergent.

y

L

x

ε

Figure 6.1 If {zn} converges to L, all

but a finite number of terms are in

every ε-neighborhood of L.

The sequence {1+in} illustrated in (1) is divergent since the general term
zn = 1 + in does not approach a fixed complex number as n → ∞. Indeed,
you should verify that the first four terms of this sequence repeat endlessly as
n increases.

EXAMPLE 1 A Convergent Sequence

The sequence
{
in+1

n

}
converges since lim

n→∞

in+1

n
= 0. As we see from

−1,− i

2
,
1
3
,
i

4
,−1

5
, · · · ,

and Figure 6.2, the terms of the sequence, marked by colored dots in the
figure, spiral in toward the point z = 0 as n increases.

y

1
5

1
3

–

i
2

i
4

–

–1
x

Figure 6.2 The terms of the sequence{
in+1/n

}
spiral in toward 0.

The following theorem for sequences is the analogue of Theorem 2.1 in
Section 2.6.
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Theorem 6.1 Criterion for Convergence

A sequence {zn} converges to a complex number L = a+ ib if and only if
Re(zn) converges to Re(L) = a and Im(zn) converges to Im(L) = b.

EXAMPLE 2 Illustrating Theorem 6.1

Consider the sequence
{

3 + ni

n + 2ni

}
. From

zn =
3 + ni

n + 2ni
=

(3 + ni)(n− 2ni)
n2 + 4n2

=
2n2 + 3n

5n2
+ i

n2 − 6n
5n2

,

we see that

Re(zn) =
2n2 + 3n

5n2
=

2
5

+
3
5n
→ 2

5

Im(zn) =
n2 − 6n

5n2
=

1
5
− 6

5n
→ 1

5
and

as n→∞. From Theorem 6.1, the last results are sufficient for us to conclude
that the given sequence converges to a + ib = 2

5 + 1
5 i.

Series An infinite series or series of complex numbers

∞∑
k=1

zk = z1+ z2 + z3 + · · ·+ zn + · · ·

is convergent if the sequence of partial sums {Sn}, where

Sn = z1 + z2 + z3 + · · ·+ zn

converges. If Sn → L as n→∞, we say that the series converges to L or that
the sum of the series is L.

Geometric Series A geometric series is any series of the form

∞∑
k=1

azk−1 = a + az + az2 + · · ·+ azn−1 + · · ·. (2)

For (2), the nth term of the sequence of partial sums is

Sn = a + az + az2 + · · ·+ azn−1. (3)
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When an infinite series is a geometric series, it is always possible to find a
formula for Sn. To demonstrate why this is so, we multiply Sn in (3) by z,

zSn = az + az2 + az3 + · · ·+ azn,

and subtract this result from Sn. All terms cancel except the first term in Sn

and the last term in zSn:

Sn − zSn =
(
a + az + az2 + · · ·+ azn−1

)
−

(
az + az2 + az3 + · · ·+ azn−1 + azn

)
= a− azn

or (1− z)Sn = a(1− zn). Solving the last equation for Sn gives us

Sn =
a(1− zn)

1− z
. (4)

Now zn → 0 as n → ∞ whenever |z| < 1, and so Sn → a/(1− z). In other
words, for |z| < 1 the sum of a geometric series (2) is a/(1− z) :

a

1− z
= a + az + az2 + · · ·+ azn−1 + · · ·. (5)

A geometric series (2) diverges when |z| ≥ 1.

Special Geometric Series We next present several immediate de-
ductions from (4) and (5) that will be particularly helpful in the two sections
that follow. If we set a = 1, the equality in (5) is

1
1− z

= 1 + z + z2 + z3 + · · ·. (6)�You should remember (6) and (7).

If we then replace the symbol z by −z in (6), we get a similar result

1
1 + z

= 1− z + z2 − z3 + · · ·. (7)

Like (5), the equality in (7) is valid for |z| < 1 since |−z| = |z|. Now with
a = 1, (4) gives us the sum of the first n terms of the series in (6):

1− zn

1− z
= 1 + z + z2 + z3 + · · ·+ zn−1.

If we rewrite the left side of the above equation as
1− zn

1− z
=

1
1− z

+
−zn

1− z
,

we obtain an alternative form

1
1− z

= 1 + z + z2 + z3 + · · ·+ zn−1 +
zn

1− z
(8)

that will be put to use in proving the two principal theorems of this chapter.
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EXAMPLE 3 Convergent Geometric Series

The infinite series

∞∑
k=1

(1 + 2i)k

5k
=

1 + 2i
5

+
(1 + 2i)2

52
+

(1 + 2i)3

53
+ · · ·

is a geometric series. It has the form given in (2) with a = 1
5 (1 + 2i) and

z = 1
5 (1 + 2i). Since |z| =

√
5
/
5 < 1, the series is convergent and its sum is

given by (5):

∞∑
k=1

(1 + 2i)k

5k
=

1 + 2i
5

1− 1 + 2i
5

=
1 + 2i
4− 2i

=
1
2
i.

We turn now to some important theorems about convergence and di-
vergence of an infinite series. You should have seen the analogues of these
theorems in a course in elementary calculus.

Theorem 6.2 A Necessary Condition for Convergence

If
∑∞

k=1 zk converges, then lim
n→∞

zn = 0.

Proof Let L denote the sum of the series. Then Sn → L and Sn−1 → L as
n → ∞. By taking the limit of both sides of Sn − Sn−1 = zn as n → ∞ we
obtain the desired conclusion. ✎

A Test for Divergence The contrapositive∗ of the proposition in
Theorem 6.2 is the familiar nth term test for divergence of an infinite series.

Theorem 6.3 The nth Term Test for Divergence

If lim
n→∞

zn �= 0, then
∑∞

k=1 zk diverges.

For example, the series
∑∞

k=1 (ik + 5)/k diverges since zn =
(in + 5)/n → i �= 0 as n → ∞. The geometric series (2) diverges if |z| ≥ 1
because even in the case when limn→∞ |zn| exists, the limit is not zero.

∗See the footnote on page 154.
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Definition 6.1 Absolute and Conditional Convergence

An infinite series
∑∞

k=1 zk is said to be absolutely convergent if∑∞
k=1 |zk| converges. An infinite series

∑∞
k=1 zk is said to be condi-

tionally convergent if it converges but
∑∞

k=1 |zk| diverges.

In elementary calculus a real series of the form
∞∑

k=1

1
kp

is called a p-series

and converges for p > 1 and diverges for p ≤ 1. We use this well-known result
in the next example.

EXAMPLE 4 Absolute Convergence

The series
∞∑

k=1

ik

k2
is absolutely convergent since the series

∞∑
k=1

∣∣∣∣ ikk2

∣∣∣∣ is the same

as the real convergent p-series
∞∑

k=1

1
k2

. Here we identify p = 2 > 1.

As in real calculus:

Absolute convergence implies convergence.

See Problem 47 in Exercises 6.1. We are able to conclude that the series in
Example 4,

∞∑
k=1

ik

k2
= i− 1

22
− i

32
+ · · ·

converges because it is was shown to be absolutely convergent.

Tests for Convergence Two of the most frequently used tests for
convergence of infinite series are given in the next theorems.

Theorem 6.4 Ratio Test

Suppose
∑∞

k=1 zk is a series of nonzero complex terms such that

lim
n→∞

∣∣∣∣zn+1

zn

∣∣∣∣ = L. (9)

(i) If L < 1, then the series converges absolutely.

(ii) If L > 1 or L =∞, then the series diverges.

(iii) If L = 1, the test is inconclusive.
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Theorem 6.5 Root Test

Suppose
∑∞

k=1 zk is a series of complex terms such that

lim
n→∞

n
√
|zn| = L. (10)

(i) If L < 1, then the series converges absolutely.

(ii) If L > 1 or L =∞, then the series diverges.

(iii) If L = 1, the test is inconclusive.

We are interested primarily in applying the tests in Theorems 6.4 and 6.5
to power series.

Power Series The notion of a power series is important in the study
of analytic functions. An infinite series of the form

∞∑
k=0

ak(z − z0)k = a0 + a1(z − z0) + a2(z − z0)2+ · · ·, (11)

where the coefficients ak are complex constants, is called a power series in
z−z0. The power series (11) is said to be centered at z0; the complex point
z0 is referred to as the center of the series. In (11) it is also convenient to
define (z − z0)0 = 1 even when z = z0.

Circle of Convergence Every complex power series (11) has a ra-
dius of convergence. Analogous to the concept of an interval of convergence
for real power series, a complex power series (11) has a circle of conver-
gence, which is the circle centered at z0 of largest radius R > 0 for which
(11) converges at every point within the circle |z − z0| = R. A power series
converges absolutely at all points z within its circle of convergence, that is,
for all z satisfying |z − z0| < R, and diverges at all points z exterior to the
circle, that is, for all z satisfying |z − z0| > R. The radius of convergence can
be:

(i) R = 0 (in which case (11) converges only at its center z = z0),

(ii) R a finite positive number (in which case (11) converges at all interior
points of the circle |z − z0| = R), or

(iii) R =∞ (in which case (11) converges for all z).

y

|z–z0| = R

R

z0

x
divergence

convergence

Figure 6.3 No general statement con-

cerning convergence at points on the

circle |z − z0| = R can be made. A power series may converge at some, all, or at none of the points on the
actual circle of convergence. See Figure 6.3 and the next example.
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EXAMPLE 5 Circle of Convergence

Consider the power series
∞∑

k=1

zk+1

k
. By the ratio test (9),

lim
n→∞

∣∣∣∣∣∣∣∣
zn+2

n + 1
zn+1

n

∣∣∣∣∣∣∣∣
= lim

n→∞

n

n + 1
|z| = |z|.

Thus the series converges absolutely for |z| < 1. The circle of convergence
is |z| = 1 and the radius of convergence is R = 1. Note that on the circle

of convergence |z| = 1, the series does not converge absolutely since
∑∞

k=1

1
k

is the well-known divergent harmonic series. Bear in mind this does not say
that the series diverges on the circle of convergence. In fact, at z = −1,∑∞

k=1

(−1)k+1

k
is the convergent alternating harmonic series. Indeed, it can

be shown that the series converges at all points on the circle |z| = 1 except at
z = 1.

It should be clear from Theorem 6.4 and Example 5 that for a power series∑∞
k=0 ak(z − z0)k, the limit (9) depends only on the coefficients ak. Thus, if

(i) lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L �= 0, the radius of convergence is R =
1
L

; (12)

(ii) lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 0, the radius of convergence is R =∞; (13)

(iii) lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ =∞, the radius of convergence is R = 0. (14)

Similar conclusions can be made for the root test (10) by utilizing

lim
n→∞

n
√
|an|. (15)

For example, if limn→∞
n
√
|an| = L �= 0, then R = 1/L.

EXAMPLE 6 Radius of Convergence

Consider the power series
∞∑

k=1

(−1)k+1

k!
(z − 1 − i)k. With the identification

an = (−1)n+1
/
n! we have

lim
n→∞

∣∣∣∣∣∣∣∣
(−1)n+2

(n + 1)!
(−1)n+1

n!

∣∣∣∣∣∣∣∣
= lim

n→∞

1
n + 1

= 0.
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Hence by (13) the radius of convergence is ∞; the power series with center
z0 = 1 + i converges absolutely for all z, that is, for |z − 1− i| <∞.

EXAMPLE 7 Radius of Convergence

Consider the power series
∞∑

k=1

(
6k + 1
2k + 5

)k

(z−2i)k. With an =
(

6n + 1
2n + 5

)n

, the

root test in the form (15) gives

lim
n→∞

n
√
|an| = lim

n→∞

6n + 1
2n + 5

= 3.

By reasoning similar to that leading to (12), we conclude that the radius of
convergence of the series is R = 1

3 . The circle of convergence is |z − 2i| = 1
3 ;

the power series converges absolutely for |z − 2i| < 1
3 .

The Arithmetic of Power Series On occasion it may be to our
advantage to perform certain arithmetic operations on one or more power
series. Although it would take us too far afield to delve into properties of
power series in a formal manner (stating and proving theorems), it will be
helpful at points in this chapter to know what we can (or cannot) do to power
series. So here are some facts.

• A power series
∑∞

k=0 ak(z − z0)k can be multiplied by a nonzero complex
constant c without affecting its convergence or divergence.

• A power series
∑∞

k=0 ak(z − z0)k converges absolutely within its circle
of convergence. As a consequence, within the circle of convergence the
terms of the series can be rearranged and the rearranged series has the
same sum L as the original series.

• Two power series
∑∞

k=0 ak(z − z0)k and
∑∞

k=0 bk(z − z0)k can be added
and subtracted by adding or subtracting like terms. In symbols:

∑∞

k=0
ak(z − z0)k ±

∑∞

k=0
bk(z − z0)k =

∑∞

k=0
(ak ± bk)(z − z0)k.

If both series have the same nonzero radius R of convergence, the radius
of convergence of

∑∞
k=0 (ak ± bk)(z − z0)k is R. It should make intuitive

sense that if one series has radius of convergence r > 0 and the other
has radius of convergence R > 0, where r �= R, then the radius of con-
vergence of

∑∞
k=0 (ak ± bk)(z − z0)k is the smaller of the two numbers

r and R.

• Two power series can (with care) be multiplied and divided.
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Remarks

(i) If zn = an + ibn then the nth term of the sequence of par-
tial sums for

∑∞
k=1 zk can be written Sn =

∑n
k=1 (ak + ibk) =∑n

k=1 ak + i
∑n

k=1 bk. Analogous to Theorem 6.2,
∑∞

k=1 zk converges
to a number L = a+ib if and only if Re(Sn) =

∑n
k=1 ak converges to

a and Im(Sn) =
∑n

k=1 bk converges to b. See Problem 35 in Exercise
6.1.

(ii) When written in terms of summation notation, a geometric series
may not be immediately recognizable as equivalent to (2). In sum-
mation notation a geometric series need not start at k = 1 nor
does the general term have to appear precisely as azk−1. At first

glance
∑∞

k=3 40
ik+2

2k−1
does not appear to match the general form∑∞

k=1 az
k−1of a geometric series. However by writing out three

terms,

∞∑
k=3

40
ik+2

2k−1
=

a︷ ︸︸ ︷
40

i5

22
+

az︷ ︸︸ ︷
40

i6

23
+

az2︷ ︸︸ ︷
40

i7

24
+ · · ·

we are able make the identifications a = 40
(
i5

/
22

)
and z = i/2 on

the right-hand side of the equality. Since |z| = 1
2 < 1 the sum of the

series is given by (5):

∞∑
k=3

40
ik+2

2k−1
=

40
i5

22

1− i

2

= −4 + 8i.

(iii) Although we have not proved it, it bears repeating: A power series∑∞
k=0 ak(z − z0)k, z �= z0, always possesses a radius of convergence

R that is either positive or ∞. We have seen in the discussion prior
to Example 6 that the ratio and root tests lead to

1
R

= lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ and
1
R

= lim
n→∞

n
√
|an|

assuming the appropriate limit exists. Since these formulas depend
only on the coefficients, it is easy to make up examples where neither
limn→∞|an+1/an| nor limn→∞ |an|1/n exist. What is R if neither of
these limits exist? See Problems 45 and 46 in Exercises 6.1.

EXERCISES 6.1 Answers to selected odd-numbered problems begin on page ANS-18.

In Problems 1–4, write out the first five terms of the given sequence.

1. {5in} 2. {2 + (−i)n}

3.
{
1 + enπi

}
4. {(1 + i)n} [Hint: Write in polar form.]
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In Problems 5–10, determine whether the given sequence converges or diverges.

5.

{
3ni + 2

n + ni

}
6.

{
ni + 2n

3ni + 5n

}

7.

{
(ni + 2)2

n2i

}
8.

{
n(1 + in)

n + 1

}

9.

{
n + in√

n

}
10.

{
e1/n + 2 (tan−1 n)i

}

In Problems 11 and 12, show that the given sequence {zn} converges to a complex

number L by computing limn→∞ Re(zn) and limn→∞ Im(zn).

11.

{
4n + 3ni

2n + i

}
12.

{(
1 + i

4

)n}

In Problems 13 and 14, use the sequence of partial sums to show that the given

series is convergent.

13.
∞∑

k=1

[
1

k + 2i
− 1

k + 1 + 2i

]
14.

∞∑
k=1

i

k(k + 1)

In Problems 15–20, determine whether the given geometric series is convergent or

divergent. If convergent, find its sum.

15.
∞∑

k=0

(1 − i)k 16.
∞∑

k=1

4i
(

1
3

)k−1

17.
∞∑

k=1

(
i

2

)k

18.
∞∑

k=0

1
2
ik

19.
∞∑

k=0

3

(
2

1 + 2i

)k

20.
∞∑

k=2

ik

(1 + i)k−1

In Problems 21–30, find the circle and radius of convergence of the given power

series.

21.
∞∑

k=0

1

(1 − 2i)k+1
(z − 2i)k 22.

∞∑
k=1

1

k

(
i

1 + i

)
zk

23.
∞∑

k=1

(−1)k

k2k
(z − 1 − i)k 24.

∞∑
k=1

1

k2(3 + 4i)k
(z + 3i)k

25.
∞∑

k=0

(1 + 3i)k(z − i)k 26.
∞∑

k=1

zk

kk

27.
∞∑

k=0

(z − 4 − 3i)k

52k
28.

∞∑
k=0

(−1)k

(
1 + 2i

2

)k

(z + 2i)k

29.
∞∑

k=0

(2k)!

(k + 2) (k!)2
(z − i)2k 30.

∞∑
k=0

k!

(2k)k
z3k

31. Show that the power series
∞∑

k=1

(z − i)k

k2k
is not absolutely convergent on its circle

of convergence. Determine at least one point on the circle of convergence at
which the power series is convergent.

32. Show that the power series
∞∑

k=1

zk

k2
converges at every point on its circle of

convergence.

33. Reread Theorem 6.3. What conclusion can be drawn, if any, when
limn→∞ |zn| �= 0?
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34. Show that the power series
∑∞

k=1 kz
k diverges at every point on its circle of

convergence.

35. By considering the series
∑∞

k=0 r
keikθ, 0 < r < 1, show that

∞∑
k=0

rk cos kθ =
1 − r cos θ

1 − 2r cos θ + r2
and

∞∑
k=0

rk sin kθ =
r sin θ

1 − 2r cos θ + r2
.

Focus on Concepts

36. Suppose {zn + wn} converges. Discuss: Does it follow that at least one of the
sequences {zn} or {wn} converges?

37. A sequence {zn} is said to be bounded if the set S consisting of its terms is a
bounded set (see Section 1.5). The sequence in Example 1 is bounded.

(a) Prove that the sequence in Example 2 is bounded.

(b) Give another example of a sequence consisting of complex terms that is
bounded.

(c) Give an example of a sequence consisting of complex terms that is un-
bounded.

38. Discuss: Is every convergent sequence {zn} bounded? (See Problem 37.)

Is every bounded sequence convergent? Defend your answers with sound math-
ematics.

39. Does the sequence
{
i1/n

}
, where i1/n denotes the principal nth root of i, con-

verge?

40. We saw that the equality in (6) was valid for |z| < 1. Show that

1

1 − z
= −z−1 − z−2 − z−3 − · · ·

and give the values of z for which the equality is valid.

41. Consider (6) with the symbol z replaced by eiz:

1

1 − eiz
= eiz + e2iz + e3iz + · · · .

Give the region in the complex plane for which the foregoing series converges.

42. Sketch the region in the complex plane for which
∞∑

k=0

(
z − 1

z + 2

)k

converges.

43. Consider the power series
∑∞

k=0 ak(z − 1 + 2i)k. Discuss: Can the series con-
verge at −3 + i and diverge at 5 − 3i?

44. Use a sketch in the complex plane that illustrates the validity of each of the
following theorems:

(i) If a power series centered at z0 converges at z1 �= z0, then the series
converges for every z for which |z − z0| < |z1 − z0|.

(ii) If a power series centered at z0 diverges at z2, then the series diverges for
every z for which |z − z0| > |z2 − z0|.
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45. Consider the power series f(z) =
∑∞

k=0 akz
k where

ak =




2k, k = 0, 2, 4, . . .
1

7k
k = 1, 3, 5, . . . .

(a) Show that neither lim
n→∞

|an+1/an| nor limn→∞ |an|1/n exist.

(b) Find the radius of convergence of each power series:

f1(z) =

∞∑
k=0

22kz2k and f2(z) =

∞∑
k=0

1

72k+1
z2k+1.

(c) Verify that f(z) = f1(z) + f2(z). Discuss: How can the radius of conver-
gence R for the original power series be found from the foregoing observa-
tion? What is R?

46. Proceed as in Problem 45 to find the radius of convergence R for the power
series

1 + 3z + z2 + 27z3 + z4 + 243z5 + z6 + · · · .

47. In this problem you are guided through the proof of the proposition:

If the series
∑∞

k=1 zk converges absolutely, then the series converges.

Proof We begin with the hypothesis that
∑∞

k=1 |zk| converges. If zk = ak+ibk,

then
∑∞

k=1 | ak| ≤
∑∞

k=1

√
a2

k + b2k =
∑∞

k=1 |zk|.
(a) First, explain why the foregoing inequality is true. Second, explain why

this inequality shows that the series
∑∞

k=1 | ak| converges.

(b) Explain how your reasoning in part (a) also shows that
∑∞

k=1 | bk|
converges.

(c) Explain how parts (a) and (b) show that
∑∞

k=1 zk converges.

6.2 Taylor Series

6.2The correspondence between a complex number z within the circle of convergence and
the number to which the series

∑∞
k=0 ak(z − z0)k converges is single-valued. In this sense,

a power series defines or represents a function f ; for a specified z within the circle of
convergence, the number L to which the power series converges is defined to be the value of
f at z, that is, f(z) = L. In this section we present some important facts about the nature
of this function f .

In the preceding section we saw that every power series has a radius of conver-
gence R. Throughout the discussion in this section we will assume that a power series∑∞

k=0 ak(z − z0)k has either a positive or an infinite radius R of convergence.

Differentiation and Integration of Power Series The three
theorems that follow indicate a function f that is defined by a power series is
continuous, differentiable, and integrable within its circle of convergence.
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Theorem 6.6 Continuity

A power series
∑∞

k=0 ak(z − z0)k represents a continuous function f
within its circle of convergence | z − z0| = R.

Theorem 6.7 Term-by-Term Differentiation

A power series
∑∞

k=0 ak(z − z0)k can be differentiated term by term
within its circle of convergence |z − z0| = R.

Differentiating a power series term-by-term gives,

d

dz

∞∑
k=0

ak(z − z0)k =
∞∑

k=0

ak
d

dz
(z − z0)k =

∞∑
k=1

akk(z − z0)k−1.

Note that the summation index in the last series starts with k = 1 because
the term corresponding to k = 0 is zero. It is readily proved by the ratio test
that the original series and the differentiated series,

∞∑
k=0

ak(z − z0)k and
∞∑

k=1

akk(z − z0)k−1

�Important

have the same circle of convergence | z − z0| = R. Since the derivative of
a power series is another power series, the first series

∑∞
k=1 ak(z − z0)k can

be differentiated as many times as we wish. In other words, it follows as a
corollary to Theorem 6.7 that a power series defines an infinitely differentiable
function within its circle of convergence and each differentiated series has the
same radius of convergence R as the original power series.

Theorem 6.8 Term-by-Term Integration

A power series
∑∞

k=0 ak(z − z0)k can be integrated term-by-term within
its circle of convergence | z − z0| = R, for every contour C lying entirely
within the circle of convergence.

The theorem states that

∫
C

∞∑
k=0

ak(z − z0)k dz =
∞∑

k=0

ak

∫
C

(z − z0)k dz

whenever C lies in the interior of | z − z0| = R. Indefinite integration can also
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be carried out term by term:∫ ∞∑
k=0

ak(z − z0)kdz =
∞∑

k=0

ak

∫
(z − z0)kdz

=
∞∑

k=0

ak

k + 1
(z − z0)k+1 + constant.

The ratio test given in Theorem 6.4 can be used to be prove that both
∞∑

k=0

ak(z − z0)k and
∞∑

k=0

ak

k + 1
(z − z0)k+1

have the same circle of convergence | z − z0| = R.

Taylor Series Suppose a power series represents a function f within
| z − z0| = R, that is,

f(z) =
∞∑

k=0

ak(z − z0)k = a0 + a1(z − z0) + a2(z − z0)2 + a3(z − z0)3 + · · · . (1)

It follows from Theorem 6.7 that the derivatives of f are the series

f ′(z) =
∞∑

k=1

akk(z − z0)k−1 = a1 + 2a2(z − z0) + 3a3(z − z0)2 + · · · , (2)

f ′′(z) =
∞∑

k=2

akk(k − 1)(z − z0)k−2 = 2 · 1a2 + 3 · 2a3(z − z0) + · · · , (3)

f ′′′(z) =
∞∑

k=3

akk(k − 1) (k − 2) (z − z0)k−3 = 3 · 2 · 1a3 + · · · , (4)

�Important

and so on. Since the power series (1) represents a differentiable function f
within its circle of convergence | z − z0| = R, where R is either a positive
number or infinity, we conclude that a power series represents an analytic
function within its circle of convergence.

There is a relationship between the coefficients ak in (1) and the deriva-
tives of f . Evaluating (1), (2), (3), and (4) at z = z0 gives

f(z0) = a0, f ′(z0) = 1!a1, f ′′(z0) = 2!a2, and f ′′′(z0) = 3!a3,

respectively. In general, f (n)(z0) = n! an, or

an =
f (n)(z0)

n!
, n ≥ 0. (5)

When n = 0 in (5), we interpret the zero-order derivative as f(z0) and 0! = 1
so that the formula gives a0 = f(z0). Substituting (5) into (1) yields

f(z) =
∞∑

k=0

f (k)(z0)
k!

(z − z0)k. (6)
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This series is called the Taylor series for f centered at z0. A Taylor series
with center z0 = 0,

f(z) =
∞∑

k=0

f (k)(0)
k!

zk, (7)

is referred to as a Maclaurin series.
We have just seen that a power series with a nonzero radius R of conver-

gence represents an analytic function. On the other hand we ask:

Question

If we are given a function f that is analytic in some domain D, can we
represent it by a power series of the form (6) or (7)?

Since a power series converges in a circular domain, and a domain D is gen-
erally not circular, the question comes down to: Can we expand f in one or
more power series that are valid—that is, a power series that converges at
z and the number to which the series converges is f(z)—in circular domains
that are all contained in D? The question is answered in the affirmative by
the next theorem.

Theorem 6.9 Taylor’s Theorem

Let f be analytic within a domain D and let z0 be a point in D. Then f
has the series representation

f(z) =
∞∑

k=0

f (k)(z0)
k!

(z − z0)k (8)

valid for the largest circle C with center at z0 and radius R that lies
entirely within D.

C
R

D

z

s

z0

Figure 6.4 Contour for the proof of

Theorem 6.9

Proof Let z be a fixed point within the circle C and let s denote the variable
of integration. The circle C is then described by |s− z0| = R. See Figure 6.4.
To begin, we use the Cauchy integral formula to obtain the value of f at z:

f(z) =
1

2πi

∮
C

f(s)
s− z

ds =
1

2πi

∮
C

f(s)
(s− z0)− (z − z0)

ds

=
1

2πi

∮
C

f(s)
(s− z0)




1

1− z − z0

s− z0


 ds. (9)
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By replacing z by (z − z0)/(s− z0) in (8) of Section 6.1, we have

1

1− z − z0

s− z0

= 1 +
z − z0

s− z0
+

(
z − z0

s− z0

)2

+ · · ·+
(
z − z0

s− z0

)n−1

+
(z − z0)n

(s− z)(s− z0)n−1
,

and so (9) becomes

f(z) =
1

2πi

∮
C

f(s)
s− z0

ds +
z − z0

2πi

∮
C

f(s)
(s− z0)2

ds

+
(z − z0)2

2πi

∮
C

f(s)
(s− z0)3

ds + · · ·+ (z − z0)n−1

2πi

∮
C

f(s)
(s− z0)n

ds

+
(z − z0)n

2πi

∮
C

f(s)
(s− z)(s− z0)n

ds.

(10)

Utilizing Cauchy’s integral formula for derivatives, (6) of Section 5.5, we can
rewrite (10) as

f(z) = f(z0) +
f ′(z0)

1!
(z − z0) +

f ′′(z0)
2!

(z − z0)2 + · · ·+ f (n−1)(z0)
(n− 1)!

(z − z0)n−1 + Rn(z), (11)

where Rn(z) =
(z − z0)n

2πi

∮
C

f(s)
(s− z)(s− z0)n

ds.

Equation (11) is called Taylor’s formula with remainder Rn. We now wish to
show that the Rn(z) → 0 as n → ∞. This can be accomplished by showing
that |Rn(z) | → 0 as n → ∞. Since f is analytic in D, by Theorem 5.16 we
know that |f(z)| has a maximum value M on the contour C. In addition,
since z is inside C, |z − z0| < R and, consequently,

|s− z| = |s− z0 − (z − z0)| ≥ |s− z0| − |z − z0| = R− d,

where d = |z − z0| is the distance from z to z0. The ML-inequality then gives

|Rn(z) | =
∣∣∣∣ (z − z0)n

2πi

∮
C

f(s)
(s− z)(s− z0)n

ds

∣∣∣∣ ≤ dn

2π
· M

(R− d)Rn
· 2πR =

MR

R− d

(
d

R

)n

.

Because d < R, (d/R)n → 0 as n → ∞ we conclude that |Rn(z) | → 0 as
n→∞. It follows that the infinite series

f(z0) +
f ′(z0)

1!
(z − z0) +

f ′′(z0)
2!

(z − z0)2 + · · ·
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converges to f(z). In other words, the result in (8) is valid for any point z
interior to C. ✎

We can find the radius of convergence of a Taylor series in exactly the same
manner illustrated in Examples 5–7 of the preceding section. However, we can
simplify matters even further by noting that the radius of convergence R is the
distance from the center z0 of the series to the nearest isolated singularity
of f . We shall elaborate more on this concept in the next section, but an
isolated singularity is a point at which f fails to be analytic but is, nonetheless,
analytic at all other points throughout some neighborhood of the point. For
example, z = 5i is an isolated singularity of f(z) = 1/(z− 5i). If the function
f is entire, then the radius of convergence of a Taylor series centered at any
point z0 is necessarily R = ∞. Using (8) and the last fact, we can say that
the following Maclaurin series representations are valid for all z, that is, for
|z| <∞.

�Note

Some Important Maclaurin Series

ez = 1 +
z

1!
+

z2

2!
+ · · · =

∞∑
k=0

zk

k!
(12)

sin z = z − z3

3!
+

z5

5!
− · · · =

∞∑
k=0

(−1)k z2k+1

(2k + 1)!
(13)

cos z = 1− z2

2!
+

z4

4!
− · · · =

∞∑
k=0

(−1)k z2k

(2k)!
(14)

EXAMPLE 1 Radius of Convergence

Suppose the function f(z) =
3− i

1− i + z
is expanded in a Taylor series with

center z0 = 4− 2i. What is its radius of convergence R?

Solution Observe that the function is analytic at every point except at
z = −1+ i, which is an isolated singularity of f . The distance from z = −1+ i
to z0 = 4− 2i is

|z − z0| =
√

(−1− 4)2 + (1− (−2))2 =
√

34.

This last number is the radius of convergence R for the Taylor series centered
at 4− 2i.
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If two power series with center z0,

∞∑
k=0

ak(z − z0)k and
∞∑

k=0

bk(z − z0)k

represent the same function f and have the same nonzero radius R of conver-
gence, then

ak = bk =
f (k)(z0)

k!
, k = 0, 1, 2, . . . .

�Note: Generally, the formula in (8)
is used as a last resort.

Stated in another way, the power series expansion of a function, with center
z0, is unique. On a practical level this means that a power series expansion
of an analytic function f centered at z0, irrespective of the method used to
obtain it, is the Taylor series expansion of the function. For example, we can
obtain (14) by simply differentiating (13) term by term. The Maclaurin series
for ez2

can be obtained by replacing the symbol z in (12) by z2.

EXAMPLE 2 Maclaurin Series

Find the Maclaurin expansion of f(z) =
1

(1− z)2
.

Solution We could, of course, begin by computing the coefficients using (8).
However, recall from (6) of Section 6.1 that for |z| < 1,

1
1− z

= 1 + z + z2 + z3 + · · · . (15)

If we differentiate both sides of the last result with respect to z, then

d

dz

1
1− z

=
d

dz
1 +

d

dz
z +

d

dz
z2 +

d

dz
z3 + · · ·

or
1

(1− z)2
= 0 + 1 + 2z + 3z2 + · · · =

∞∑
k=1

k zk−1. (16)

Since we are using Theorem 6.7, the radius of convergence of the last power
series is the same as the original series, R = 1.

We can often build on results such as (16). For example, if we want the

Maclaurin expansion of f(z) =
z3

(1− z)2
, we simply multiply (16) by z3:

z3

(1− z)2
= z3 + 2z4 + 3z5 + · · · =

∞∑
k=1

k zk+2.

The radius of convergence of the last series is still R = 1.
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EXAMPLE 3 Taylor Series

Expand f(z) =
1

1− z
in a Taylor series with center z0 = 2i.

Solution In this solution we again use the geometric series (15). By adding
and subtracting 2i in the denominator of 1/(1− z), we can write

1
1− z

=
1

1− z + 2i− 2i
=

1
1− 2i− (z − 2i)

=
1

1− 2i
1

1− z − 2i
1− 2i

We now write
1

1− z − 2i
1− 2i

as a power series by using (15) with the symbol z

replaced by the expression
z − 2i
1− 2i

:

1
1− z

=
1

1− 2i

[
1 +

z − 2i
1− 2i

+
(
z − 2i
1− 2i

)2

+
(
z − 2i
1− 2i

)3

+ · · ·
]

or

1
1− z

=
1

1− 2i
+

1
(1− 2i)2

(z − 2i) +
1

(1− 2i)3
(z − 2i)2 +

1
(1− 2i)4

(z − 2i)3 + · · · . (17)

Because the distance from the center z0 = 2i to the nearest singularity z = 1
is
√

5, we conclude that the circle of convergence for (17) is |z − 2i| =
√

5.
This can be verified by the ratio test of the preceding section.

In (15) and (17) we represented the same function f(z) = 1/(1 − z) by
two different power series. The first series (15) has center z0 = 0 and radius
of convergence R = 1. The second series (17) has center z0 = 2i and radius of
convergence R =

√
5. The two different circles of convergence are illustrated

in Figure 6.5. The interior of the intersection of the two circles, shown in
color, is the region where both series converge; in other words, at a specified
point z* in this region, both series converge to same value f(z∗) = 1/(1−z∗).
Outside the colored region at least one of the two series must diverge.

y

x

z*

|z – 2i| = √5 

|z| = 1

Figure 6.5 Series (15) and (17) both

converge in the shaded region. Remarks Comparison with Real Analysis

(i) As a consequence of Theorem 5.11, we know that an analytic function
f is infinitely differentiable. As a consequence of Theorem 6.9, we
know that an analytic function f can always be expanded in a power
series with a nonzero radius R of convergence. In real analysis, a
function f can be infinitely differentiable, but it may be impossible
to represent it by a power series. See Problem 51 in Exercises 6.2.
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(ii) If you haven’t already noticed, the results in (6), (7), (12), (13),
and (14) are identical in form with their analogues in elementary
calculus.

EXERCISES 6.2 Answers to selected odd-numbered problems begin on page ANS-18.

In Problems 1–12, use known results to expand the given function in a Maclaurin

series. Give the radius of convergence R of each series.

1. f(z) =
z

1 + z
2. f(z) =

1

4 − 2z

3. f(z) =
1

(1 + 2z)2
4. f(z) =

z

(1 − z)3

5. f(z) = e−2z 6. f(z) = ze−z2

7. f(z) = sinh z 8. f(z) = cosh z

9. f(z) = cos
z

2
10. f(z) = sin 3z

11. f(z) = sin z2 12. f(z) = cos2 z [Hint : Use a trigono-
metric identity.]

In Problems 13 and 14, use the Maclaurin series for ez to expand the given function

in a Taylor series centered at the indicated point z0. [Hint : z = z – z0 + z0.]

13. f(z) = ez, z0 = 3i 14. f(z) = (z − 1)e−3z, z0 = 1

In Problems 15-22, expand the given function in a Taylor series centered at the

indicated point z0. Give the radius of convergence R of each series.

15. f(z) =
1

z
, z0 = 1 16. f(z) =

1

z
, z0 = 1 + i,

17. f(z) =
1

3 − z
, z0 = 2i 18. f(z) =

1

1 + z
, z0 = −i,

19. f(z) =
z − 1

3 − z
, z0 = 1 20. f(z) =

1 + z

1 − z
, z0 = i

21. f(z) = cos z, z0 = π/4 22. f(z) = sin z, z0 = π/2

In Problems 23 and 24, use (7) find the first three nonzero terms of the Maclaurin

series of the given function.

23. f(z) = tan z 24. f(z) = e1/(1+z)

In Problems 25 and 26, use partial fractions as an aid in obtaining the Maclaurin

series for the given function. Give the radius of convergence R of the series.

25. f(z) =
i

(z − i)(z − 2i)
26. f(z) =

z − 7

z2 − 2z − 3

In Problems 27 and 28, without actually expanding, determine the radius of conver-

gence R of the Taylor series of the given function centered at the indicated point.

27. f(z) =
4 + 5z

1 + z2
, z0 = 2 + 5i 28. f(z) = cot z, z0 = πi
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29. What is the radius of convergence R of the Maclaurin series in Problem 23?

30. What is the radius of convergence R of the Maclaurin series in Problem 24?

In Problems 31 and 32, expand the given function in Taylor series centered at each

of the indicated points. Give the radius of convergence R of each series. Sketch the

region within which both series converge.

31. f(z) =
1

2 + z
, z0 = −1, z0 = i 32. f(z) =

1

z
, z0 = 1 + i, z0 = 3

In Problems 33 and 34, use results obtained in this section to find the sum of the

given power series.

33.
∞∑

k=0

3kzk 34.
∞∑

k=0

z2

k!

35. Find the Maclaurin series (14) by differentiating the Maclaurin series (13).

36. The error function erf(z) is defined by the integral erf(z) =
2√
π

∫ z

0

e−t2dt .

Find a Maclaurin series for erf(z) by integrating the Maclaurin series for e−t2 .

In Problems 37 and 38, approximate the value of the given expression using the

indicated number of terms of a Maclaurin series.

37. e(1+i)/10, three terms 38. sin

(
1 + i

10

)
, two terms

Focus on Concepts

39. Every function f has a domain of definition. Describe in words the domain of
the function f defined by a power series center at z0.

40. If f(z) =
∑∞

k=0 akz
k and g(z) =

∑∞
k=0 bkz

k then the Cauchy product of f
and g is given by

f(z)g(z) =
∞∑

k=0

ckz
k where ck =

k∑
n=0

anbk−n.

Write out the first five terms of the power series of f(z)g(z).

41. Use Problem 40, (12) of this section, and (6) from Section 6.1 to find the first
four nonzero terms of the Maclaurin series of ez/(1− z). What is the radius of
convergence R of the series?

42. Use Problem 40, and (13) and (14) of this section to find the first four nonzero
terms of the Maclaurin series of sin z cos z. Can you think of another way to
obtain this series?

43. The function f(z) = sec z is analytic at z = 0 and hence possesses a Maclau-
rin series representation. We could, of course, use (7), but there are several
alternative ways of obtain the coefficients of the series

sec z = a0 + a1z + a2z
2 + a3z

3 + · · · .
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One way is to equate coefficients on both sides of the identity 1 = (sec z) cos z
or

1 =
(
a0 + a1z + a2z

2 + a3z
3 + · · ·

) (
1 − z2

2!
+

z4

4!
− z6

6!
+ · · ·

)
.

Find the first three nonzero terms of the Maclaurin series of f . What is the
radius of convergence R of the series?

44. (a) Use the definition f(z) = sec z = 1/ cos z and long division to obtain the
first three nonzero terms of the Maclaurin series in Problem 43.

(b) Use f(z) = csc z = 1/ sin z and long division to obtain the first three
nonzero terms of an infinite series. Is this series a Maclaurin series?

45. Suppose that a complex function f is analytic in a domain D that contains
z0 = 0 and f satisfies f ′(z) = 4z + f2(z). Suppose further that f(0) = 1.

(a) Compute f ′(0), f ′′(0), f ′′′(0), f (4)(0), and f (5)(0).

(b) Find the first six terms of the Maclaurin expansion of f .

46. Find an alternative way of finding the first three nonzero terms of the Maclaurin
series for f(z) = tan z (see Problem 23):

(a) based on the identity tan z = sin z sec z and Problems 42 and 43

(b) based on Problem 44(a)

(c) based on Problem 45. [Hint : f ′(z) = sec2 z = 1 + tan2 z.]

47. We saw in Problem 34 in Exercises 1.3 that de Moivre’s formula can be used
to obtain trigonometric identities for cos 3θ and sin 3θ. Discuss how these
identities can be used to obtain Maclaurin series for sin3 z and cos3z. [Hint : You
might want to simplify your answers to Problem 34. For example, cos2 θ sin θ =
(1 − sin2 θ) sin θ.]

48. (a) Suppose that the principal value of the logarithm Ln z = loge |z|+ iArg(z)
is expanded in a Taylor series with center z0 = −1+ i. Explain why R = 1
is the radius of the largest circle centered at z0 = −1 + i within which f is
analytic.

(b) Show that within the circle |z − (−1 + i)| = 1 the Taylor series for f is

Ln z =
1

2
loge 2 +

3π

4
i−

∞∑
k=1

1

k

(
1 + i

2

)k

(z + 1 − i)k.

(c) Show that the radius of convergence for the power series in part (b) is
R =

√
2. Explain why this does not contradict the result in part (a).

49. (a) Consider the function Ln(1 + z). What is the radius of the largest circle
centered at the origin within which f is analytic.

(b) Expand f in a Maclaurin series. What is the radius of convergence of this
series?

(c) Use the result in part (b) to find a Maclaurin series for Ln(1 − z).

(d) Find a Maclaurin series for Ln

(
1 + z

1 − z

)
.

50. In Theorem 3.3 we saw that L’Hôpital’s rule carries over to complex analysis.
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In Problem 33 in Exercises 3.1 you were guided through a proof of the follwoing
proposition by using the definition of the derivative:

If functions f and g are analytic at a point z0 and f(z0) = 0,

g(z0) = 0, but g′(z0) �= 0, then lim
z→z0

f(z)

g(z)
=

f ′(z0)

g′(z0)
.

This time, prove the proposition by replacing f(z) and g(z) by their Taylor
series centered at z0.

Projects

51. (a) You will find the following real function in most older calculus texts:

f(x) =


 e−1/x2

, x �= 0

0, x = 0.

Do some reading in these calculus texts as an aid in showing that f is
infinitely differentiable at every value of x. Show that f is not represented
by its Maclaurin expansion at any value of x �= 0.

(b) Investigate whether the complex analogue of the real function in part (a),

f(z) =


 e−1/z2

, z �= 0

0, z = 0.

is infinitely differentiable at z = 0.

6.3 Laurent Series
6.3If a complex function f fails to be analytic at a point z = z0, then this point is said to be a

singularity or singular point of the function. For example, the complex numbers z = 2i
and z = −2i are singularities of the function f(z) = z/(z2 +4) because f is discontinuous at
each of these points. Recall from Section 4.1 that the principal value of the logarithm, Ln z,
is analytic at all points except those points on the branch cut consisting of the nonpositive
x-axis; that is, the branch point z = 0 as well as all negative real numbers are singular
points of Ln z.

In this section we will be concerned with a new kind of “power series” expansion of
f about an isolated singularity z0. This new series will involve negative as well as
nonnegative integer powers of z − z0.

Isolated Singularities Suppose that z = z0 is a singularity of a
complex function f . The point z = z0 is said to be an isolated singularity
of the function f if there exists some deleted neighborhood, or punctured open
disk, 0 < |z − z0| < R of z0 throughout which f is analytic. For example, we
have just seen that z = 2i and z = −2i are singularities of f(z) = z/(z2 + 4).
Both 2i and −2i are isolated singularities since f is analytic at every point
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in the neighborhood defined by |z − 2i| < 1, except at z = 2i, and at every
point in the neighborhood defined by |z − (−2i)| < 1, except at z = −2i. In
other words, f is analytic in the deleted neighborhoods 0 < |z − 2i| < 1 and
0 < |z + 2i| < 1. On the other hand, the branch point z = 0 is not an isolated
singularity of Ln z since every neighborhood of z = 0 must contain points
on the negative x-axis. We say that a singular point z = z0 of a function f
is nonisolated if every neighborhood of z0 contains at least one singularity
of f other than z0. For example, the branch point z = 0 is a nonisolated
singularity of Ln z since every neighborhood of z = 0 contains points on the
negative real axis.

A New Kind of Series If z = z0 is a singularity of a function f ,
then certainly f cannot be expanded in a power series with z0 as its center.
However, about an isolated singularity z = z0, it is possible to represent f
by a series involving both negative and nonnegative integer powers of z − z0;
that is,

f(z) = · · ·+ a−2

(z − z0)2
+

a−1

z − z0
+ a0 + a1(z − z0) + a2(z − z0)2 + · · ·. (1)

As a very simple example of (1) let us consider the function f(z) = 1/(z − 1).
As can be seen, the point z = 1 is an isolated singularity of f and consequently
the function cannot be expanded in a Taylor series centered at that point.
Nevertheless, f can expanded in a series of the form given in (1) that is valid
for all z near 1:

f(z) = · · ·+ 0
(z − 1)2

+
1

z − 1
+ 0 + 0 · (z − 1) + 0 · (z − 1)2 + · · · . (2)

The series representation in (2) is valid for 0 < |z − 1| <∞.
Using summation notation, we can write (1) as the sum of two series

f(z) =
∞∑

k=1

a−k(z − z0)−k +
∞∑

k=0

ak(z − z0)k. (3)

The two series on the right-hand side in (3) are given special names. The part
with negative powers of z − z0, that is,

∞∑
k=1

a−k(z − z0)−k =
∞∑

k=1

a−k

(z − z0)k
(4)

is called the principal part of the series (1) and will converge for
|1/(z − z0)| < r∗ or equivalently for |z − z0| > 1/r∗ = r. The part consisting
of the nonnegative powers of z − z0,

∞∑
k=0

ak(z − z0)k, (5)

is called the analytic part of the series (1) and will converge for |z − z0| < R.
Hence, the sum of (4) and (5) converges when z satisfies both |z − z0| > r
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and |z − z0| < R , that is, when z is a point in an annular domain defined by
r < |z − z0| < R.

By summing over negative and nonnegative integers, (1) can be written
compactly as

f(z) =
∞∑

k=−∞
ak(z − z0)k.

The principal part of the series (2) consists of exactly one nonzero term,
whereas its analytic part consists of all zero terms. Our next example illus-
trates a series of the form (1) in which the principal part of the series also
consists of a finite number of nonzero terms, but this time the analytic part
consists of an infinite number of nonzero terms.

EXAMPLE 1 Series of the Form Given in (1)

The function f(z) =
sin z

z4
is not analytic at the isolated singularity z = 0 and

hence cannot be expanded in a Maclaurin series. However, sin z is an entire
function, and from (13) of Section 6.2 we know that its Maclaurin series,

sin z = z − z3

3!
+

z5

5!
− z7

7!
+

z9

9!
− · · · ,

converges for |z| <∞. By dividing this power series by z4 we obtain a series
for f with negative and positive integer powers of z:

f(z) =
sin z

z4
=

principal
part︷ ︸︸ ︷

1
z3
− 1

3! z

analytic
part︷ ︸︸ ︷

+
z

5!
− z3

7!
+

z5

9!
− · · · . (6)

The analytic part of the series in (6) converges for |z| < ∞. (Verify.) The
principal part is valid for |z| > 0. Thus (6) converges for all z except at z = 0;
that is, the series representation is valid for 0 < |z| <∞.

A series representation of a function f that has the form given in (1),
and (2) and (6) are such examples, is called a Laurent series or a Laurent
expansion of f about z0 on the annulus r < |z − z0| < R.
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Theorem 6.10 Laurent’s Theorem

Let f be analytic within the annular domain D defined by
r < |z − z0| < R. Then f has the series representation

f(z) =
∞∑

k=−∞
ak(z − z0)k (7)

valid for r < |z − z0| < R. The coefficients ak are given by

ak =
1

2πi

∮
C

f(s)
(s− z0)k+1

ds, k = 0, ±1, ± 2, . . . , (8)

where C is a simple closed curve that lies entirely within D and has z0 in
its interior. See Figure 6.6.

C

R

r

D

z0

Figure 6.6 Contour for Theorem 6.10

Proof Let C1 and C2 be concentric circles with center z0 and radii r1 and
R2, where r < r1 < R2 < R. Let z be a fixed point in D that also satisfies
the inequality r1 < |z − z0| < R2. See Figure 6.7. By introducing a crosscut
between C2 and C1 it follows from Cauchy’s integral formula that

f(z) =
1

2πi

∮
C2

f(s)
s− z

ds− 1
2πi

∮
C1

f(s)
s− z

ds. (9)
C1

C2

z0

z

Figure 6.7 C1 and C2 are concentric

circles.

As in the proof of Theorem 6.9, we can write

1
2πi

∮
C2

f(s)
s− z

ds =
∞∑

k=0

ak(z − z0)k, (10)

where ak =
1

2πi

∮
C2

f(s)
(s− z0)k+1

ds, k = 0, 1, 2, . . . . (11)

We then proceed in a manner similar to (9) of Section 6.2:

− 1
2πi

∮
C1

f(s)
s− z

ds =
1

2πi

∮
C1

f(s)
(z − z0)− (s− z0)

ds

=
1

2πi

∮
C1

f(s)
z − z0




1

1− s− z0

z − z0


 ds

=
1

2πi

∮
C1

f(s)
z − z0

{
1 +

s− z0

z − z0
+

(
s− z0

z − z0

)2

+ · · ·+
(
s− z0

z − z0

)n−1

+
(s− z0)n

(z − s)(z − z0)n−1

}
ds (12)

=
n∑

k=1

a−k

(z − z0)k
+ Rn(z),

where a−k =
1

2πi

∮
C1

f(s)
(s− z0)−k+1

ds, k = 1, 2, 3, . . . , (13)

and Rn(z) =
1

2πi(z − z0)n

∮
C1

f(s)(s− z0)n

z − s
ds.
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Now let d denote the distance from z to z0, that is, |z − z0| = d, and let
M denote the maximum value of |f(z)| on the contour C1. Using |s− z0| = r1
and the inequality (10) of Section 1.2,

|z − s| = |z − z0 − (s− z0)| ≥ |z − z0| − |s− z0| = d− r1.

The ML-inequality then gives

|Rn(z)| =
∣∣∣∣ 1
2πi(z − z0)n

∮
C

f(s)(s− z0)n

z − s
ds

∣∣∣∣ ≤ 1
2πdn

· Mrn
1

d− r1
· 2πr1

=
Mr1
d− r1

(r1
d

)n

.

Because r1 < d, (r1/d)n → 0 as n→∞, and so |Rn(z)| → 0 as n→∞. Thus
we have shown that

− 1
2πi

∮
C1

f(s)
s− z

ds =
∞∑

k=1

a−k

(z − z0)k
, (14)

where the coefficients a–k are given in (13). Combining (14) and (10), we see
that (9) yields

f(z) =
∞∑

k=1

a−k

(z − z0)k
+

∞∑
k=0

ak(z − z0)k. (15)

Finally, by summing over nonnegative and negative integers, (15) can be writ-
ten as f(z) =

∑∞
k=−∞ ak(z − z0)k. Moreover, (11) and (13) can be written as

a single integral:

ak =
∮

C

f(z)
(z − z0)k+1

dz, k = 0,±1,±2, . . . ,

where, in view of (5) of Section 5.3, we have replaced the contours C1 and C2

by any simple closed contour C in D with z0 in its interior. ✎

In the case when a−k = 0 for k = 1, 2, 3, ..., the principal part (4) is
zero and the Laurent series (7) reduces to a Taylor series. Thus, a Laurent
expansion can be considered as a generalization of a Taylor series.

The annular domain in Theorem 6.10 defined by r < |z − z0| < R need
not have the “ring” shape illustrated in Figure 6.7. Here are some other
possible annular domains:

(i) r = 0, R finite, (ii) r �= 0, R =∞, and (iii) r = 0, R =∞.

In the first case, the series converges in annular domain defined by an
0 < |z − z0| < R. This is the interior of the circle |z − z0| = R except the
point z0; in other words, the domain is a punctured open disk. In the second
case, the annular domain is defined by r < |z − z0| and consists of all points
exterior to the circle |z − z0| = r. In the third case, the domain is defined by
0 < |z − z0|. This represents the entire complex plane except the point z0.
The Laurent series in (2) and (6) are valid on this last type of domain.
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The integral formula in (8) for the coefficients of a Laurent series are
rarely used in actual practice. As a consequence, finding the Laurent series of
a function in a specified annular domain is generally not an easy task. But this
is not as disheartening as it might seem. In many instances we can obtain a
desired Laurent series either by employing a known power series expansion of
a function (as we did in Example 1) or by creative manipulation of geometric
series (as we did in Example 2 of Section 6.2). The next example once again
illustrates the use of geometric series.

�The coefficients defined by (8) are
seldom used. See (ii) in the
Remarks at the end of this section.

EXAMPLE 2 Four Laurent Expansions

Expand f(z) =
1

z(z − 1)
in a Laurent series valid for the following annular

domains.

(a) 0 < |z| < 1 (b) 1 < |z| (c) 0 < |z − 1| < 1 (d) 1 < |z − 1|

Solution The four specified annular domains are shown in Figure 6.8. The
black dots in each figure represent the two isolated singularities, z = 0 and
z = 1, of f . In parts (a) and (b) we want to represent f in a series involving
only negative and nonnegative integer powers of z, whereas in parts (c) and
(d) we want to represent f in a series involving negative and nonnegative
integer powers of z − 1.

y

x
0 1

(a)

y

x
0 1

(b)

x
0 1

y

(c)

y

x
10

(d)

Figure 6.8 Annular domains for

Example 2

(a) By writing

f(z) = −1
z

1
1− z

,

we can use (6) of Section 6.1 to write 1/(1− z) as a series:

f(z) = −1
z

[
1 + z + z2 + z3 + · · ·

]
.

The infinite series in the brackets converges for |z| < 1, but after we
multiply this expression by 1/z, the resulting series

f(z) = −1
z
− 1− z − z2 − z3 − · · ·

converges for 0 < |z| < 1.

(b) To obtain a series that converges for 1 < |z|, we start by constructing a
series that converges for |1/z| < 1. To this end we write the given function
f as

f(z) =
1
z2

1

1− 1
z

and again use (6) of Section 6.1 with z replaced by 1/z:

f(z) =
1
z2

[
1 +

1
z

+
1
z2

+
1
z3

+ ...
]
.
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The series in the brackets converges for |1/z| < 1 or equivalently for
1 < |z|. Thus the required Laurent series is

f(z) =
1
z2

+
1
z3

+
1
z4

+
1
z5

+ . . . .

(c) This is basically the same problem as in part (a), except that we want all
powers of z − 1. To that end, we add and subtract 1 in the denominator
and use (7) of Section 6.1 with z replaced by z − 1:

f(z) =
1

(1− 1 + z)(z − 1)

=
1

z − 1
1

1 + (z − 1)

=
1

z − 1
[
1− (z − 1) + (z − 1)2 − (z − 1)3 + · · ·

]

=
1

z − 1
− 1 + (z − 1)− (z − 1)2 + · · · .

The requirement that z �= 1 is equivalent to 0 < |z − 1|, and the geometric
series in brackets converges for |z − 1| < 1. Thus the last series converges
for z satisfying 0 < |z − 1| and |z − 1| < 1, that is, for 0 < |z − 1| < 1.

(d) Proceeding as in part (b), we write

f(z) =
1

z − 1
1

1 + (z − 1)
=

1
(z − 1)2

1

1 +
1

z − 1

=
1

(z − 1)2

[
1− 1

z − 1
+

1
(z − 1)2

− 1
(z − 1)3

+ · · ·
]

=
1

(z − 1)2
− 1

(z − 1)3
+

1
(z − 1)4

− 1
(z − 1)5

+ · · · .

Because the series within the brackets converges for | 1/(z − 1) | < 1, the
final series converges for 1 < | z − 1 |.

EXAMPLE 3 Laurent Expansions

Expand f(z) =
1

(z − 1)2(z − 3)
in a Laurent series valid for (a) 0 < | z − 1 | < 2

and (b) 0 < | z − 3 | < 2.
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Solution

(a) As in parts (c) and (d) of Example 2, we want only powers of z − 1 and
so we need to express z−3 in terms of z−1. This can be done by writing

f(z) =
1

(z − 1)2(z − 3)
=

1
(z − 1)2

1
−2 + (z − 1)

=
−1

2(z − 1)2
1

1− z − 1
2

and then using (6) of Section 6.1 with the symbol z replaced by (z−1)/2,

f(z) =
−1

2(z − 1)2

[
1 +

z − 1
2

+
(z − 1)2

22
+

(z − 1)3

23
+ · · ·

]

= − 1
2(z − 1)2

− 1
4(z − 1)

− 1
8
− 1

16
(z − 1)− · · · . (16)

(b) To obtain powers of z − 3, we write z − 1 = 2 + (z − 3) and

f(z) =
1

(z − 1)2(z − 3)
=

1
z − 3

We now factor 2

from this expression︷ ︸︸ ︷
[2 + (z − 3)]−2

=
1

4(z − 3)

[
1 +

z − 3
2

]−2

At this point we can obtain a power series for
[
1 +

z − 3
2

]−2

by using the

binomial expansion,†

f(z) =
1

4(z − 3)

[
1 +

(−2)
1!

(
z − 3

2

)
+

(−2)(−3)
2!

(
z − 3

2

)2

+
(−2)(−3)(−4)

3!

(
z − 3

2

)3

+ · · ·
]
.

The binomial series in the brackets is valid for |(z − 3)/2| < 1 or

|z − 3| < 2. Multiplying this series by
1

4(z − 3)
gives a Laurent series

that is valid for 0 < |z − 3| < 2:

f(z) =
1

4(z − 3)
− 1

4
+

3
16

(z − 3)− 1
8

(z − 3)2 + · · · .

†For α real, the binomial series (1+z)α = 1+α z+
α(α− 1)

2!
z2+

α(α− 1)(α− 2)

3!
z3+· · ·

is valid for |z| < 1.



332 Chapter 6 Series and Residues

EXAMPLE 4 A Laurent Expansion

Expand f(z) =
8z + 1
z(1− z)

in a Laurent series valid for 0 < |z| < 1.

Solution By partial fractions we can rewrite f as

f(z) =
8z + 1
z(1− z)

=
1
z

+
9

1− z
.

Then by (6) of Section 6.1,

9
1− z

= 9 + 9z + 9z2 + · · · .

The foregoing geometric series converges for |z| < 1, but after we add the
term 1/z to it, the resulting Laurent series

f(z) =
1
z

+ 9 + 9z + 9z2 + · · ·

is valid for 0 < |z| < 1.

In the preceding examples the point at the center of the annular domain
of validity for each Laurent series was an isolated singularity of the function
f . A re-examination of Theorem 6.10 shows that this need not be the case.

EXAMPLE 5 A Laurent Expansion

Expand f(z) =
1

z(z − 1)
in a Laurent series valid for 1 < |z − 2| < 2.

x
0 1 2

y

Figure 6.9 Annular domain for

Example 5

Solution The specified annular domain is shown in Figure 6.9. The center
of this domain, z = 2, is the point of analyticity of the function f . Our goal
now is to find two series involving integer powers of z – 2, one converging for
1 < |z − 2| and the other converging for |z − 2| < 2. To accomplish this, we
proceed as in the last example by decomposing f into partial fractions:

f(z) = −1
z

+
1

z − 1
= f1(z) + f2(z). (17)
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Now, f1(z) = −1
z

= − 1
2 + z − 2

= −1
2

1

1 +
z − 2

2

= −1
2

[
1− z − 2

2
+

(z − 2)2

22
− (z − 2)3

23
+ · · ·

]

= −1
2

+
z − 2
22
− (z − 2)2

23
+

(z − 2)3

24
− · · ·

This series converges for |(z − 2)/2| < 1 or |z − 2| < 2. Furthermore,

f2(z) =
1

z − 1
=

1
1 + z − 2

=
1

z − 2
1

1 +
1

z − 2

=
1

z − 2

[
1− 1

z − 2
+

1
(z − 2)2

− 1
(z − 2)3

+ · · ·
]

=
1

z − 2
− 1

(z − 2)2
+

1
(z − 2)3

− 1
(z − 2)4

+ · · ·

converges for |1/(z − 2)| < 1 or 1 < |z − 2|. Substituting these two results in
(17) then gives

f(z) = · · · − 1
(z − 2)4

+
1

(z − 2)3
− 1

(z − 2)2
+

1
z − 2

− 1
2

+
z − 2
22
− (z − 2)2

23
+

(z − 2)3

24
− · · ·

This representation is valid for z satisfying |z − 2| < 2 and 1 < |z − 2|; in
other words, for 1 < |z − 2| < 2.

EXAMPLE 6 A Laurent Expansion

Expand f(z) = e3/z in a Laurent series valid for 0 < |z | <∞.

Solution From (12) of Section 6.2 we know that for all finite z, that is,
|z | <∞,

ez = 1 + z +
z2

2!
+

z3

3!
+ · · · . (18)

We obtain the Laurent series for f by simply replacing z in (18) by 3/z,
z �= 0,

e3/z = 1 +
3
z

+
32

2!z2
+

33

3!z3
+ · · · . (19)

This series (19) is valid for z �= 0, that is, for 0 < |z| <∞.
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Remarks

(i) In conclusion, we point out a result that will be of special interest to
us in Sections 6.5 and 6.6. Replacing the complex variable s with the
usual symbol z, we see that when k− 1, formula (8) for the Laurent

series coefficients yields a−1 =
1

2πi

∮
C

f(z) dz, or more important,

∮
C

f(z) dz = 2πi a−1. (20)

(ii) Regardless how a Laurent expansion of a function f is obtained in a
specified annular domain it is the Laurent series; that is, the series
we obtain is unique.

EXERCISES 6.3 Answers to selected odd-numbered problems begin on page ANS-19.

In Problems 1–6, expand the given function in a Laurent series valid for the given

annular domain.

1. f(z) =
cos z

z
, 0 < |z| 2. f(z) =

z − sin z

z5
, 0 < |z|

3. f(z) = e−1/z2
, 0 < |z| 4. f(z) =

1 − ez

z2
, 0 < |z|

5. f(z) =
ez

z − 1
, 0 < |z − 1| 6. f(z) = z cos

1

z
, 0 < |z|

In Problems 7–12, expand f(z) =
1

z(z − 3)
in a Laurent series valid for the indicated

annular domain.

7. 0 < |z| < 3 8. |z| > 3

9. 0 < |z − 3| < 3 10. |z − 3| > 3

11. 1 < |z − 4| < 4 12. 1 < |z + 1| < 4

In Problems 13–16, expand f(z) =
1

(z − 1)(z − 2)
in a Laurent series valid for the

given annular domain.

13. 1 < |z| < 2 14. |z| > 2

15. 0 < |z − 1| < 1 16. 0 < |z − 2| < 1

In Problems 17–20, expand f(z) =
z

(z + 1)(z − 2)
in a Laurent series valid for the

given annular domain.

17. 0 < |z + 1| < 3 18. |z + 1| > 2

19. 1 < |z| < 2 20. 0 < |z − 2| < 3

In Problems 21 and 22, expand f(z) =
1

z(1 − z)2
in a Laurent series valid for the

given annular domain.

21. 0 < |z| < 1 22. |z| > 1
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In Problems 23 and 24, expand f(z) =
1

(z − 2)(z − 1)3
in a Laurent series valid for

the given annular domain.

23. 0 < |z − 2| < 1 24. 0 < |z − 1| < 1

In Problems 25 and 26, expand f(z) =
7z − 3

z(z − 1)
in a Laurent series valid for the

given annular domain.

25. 0 < |z| < 1 26. 0 < |z − 1| < 1 [Hint :
7z − 3

z
=

7(z − 1) + 4

1 + (z − 1)
.]

In Problems 27 and 28, expand f(z) =
z2 − 2z + 2

z − 2
in a Laurent series valid for the

given annular domain.

27. 1 < |z − 1| 28. 0 < |z − 2|

In Problems 29 and 30, use cos z = 1− z2

2!
+

z4

4!
−· · · , sin z = z− z3

3!
+

z5

5!
−· · · , and

long division to find the first three nonzero terms of a Laurent series of the given

function f valid for 0 < |z| < π.

29. f(z) = csc z 30. f(z) = cot z

Focus on Concepts

31. The function f(z) =
1

(z + 2)(z − 4i)
possesses a Laurent series f(z) =

∞∑
k=−∞

ak(z + 2)k valid in the annulus r < | z + 2 | < R. What are r and R?

32. Consider the function f(z) =
e−2z

(z + 1)2
. Use (7) to find the principal part of

the Laurent series expansion of f about z0 = −1 that is valid on the annulus
0 < | z + 1 | < ∞.

33. Consider the function f(z) =
1

(z − 5)3
. What is the Laurent series expansion

of f about z0 = 5 that is valid on the annulus 0 < | z − 5 | < ∞?

6.4 Zeros and Poles
6.4Suppose z = z0 is an isolated singularity of a complex function f , and that

f(z) =
∞∑

k=−∞
ak(z − z0)k =

∞∑
k=1

a−k(z − z0)−k +
∞∑

k=0

ak(z − z0)k (1)

is the Laurent series representation of f valid for the punctured open disk 0 < | z − z0| < R.
We saw in the preceding section that a Laurent series (1) consists of two parts. That part
of the series in (1) with negative powers of z − z0, namely,

∞∑
k=1

a−k(z − z0)−k =
∞∑

k=1

a−k

(z − z0)k
(2)
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is the principal part of the series. In the discussion that follows we will assign different
names to the isolated singularity z = z0 according to the number of terms in the principal
part.

Classification of Isolated Singular Points An isolated singu-
lar point z = z0 of a complex function f is given a classification depending
on whether the principal part (2) of its Laurent expansion (1) contains zero,
a finite number, or an infinite number of terms.

(i) If the principal part is zero, that is, all the coefficients a−k in (2) are
zero, then z = z0 is called a removable singularity.

(ii) If the principal part contains a finite number of nonzero terms, then
z = z0 is called a pole. If, in this case, the last nonzero coefficient in
(2) is a−n, n ≥ 1, then we say that z = z0 is a pole of order n . If
z = z0 is pole of order 1, then the principal part (2) contains exactly
one term with coefficient a−1. A pole of order 1 is commonly called a
simple pole.

(iii) If the principal part (2) contains an infinitely many nonzero terms, then
z = z0 is called an essential singularity.

Table 6.1 summarizes the form of a Laurent series for a function f when
z = z0 is one of the above types of isolated singularities. Of course, R in the
table could be ∞.

z = z0 Laurent Series for 0 < |z − z0| < R

Removable singularity a0 + a1(z − z0) + a2(z − z0)2 + · · ·

Pole of order n
a−n

(z − z0)n
+

a−(n−1)

(z − z0)n−1
+ · · ·+ a−1

z − z0
+ a0 + a1(z − z0) + · · ·

Simple pole
a−1

z − z0
+ a0 + a1(z − z0) + a2(z − z0)2 + · · ·

Essential singularity · · ·+ a−2

(z − z0)2
+

a−1

z − z0
+ a0 + a1(z − z0) + a2(z − z0)2 + · · ·

Table 6.1 Forms of Laurent series

EXAMPLE 1 Removable Singularity

Proceeding as we did in Example 1 of Section 6.3 by dividing the Maclaurin
series for sin z by z, we see from

sin z

z
= 1− z2

3!
+

z4

5!
− · · · (3)

that all the coefficients in the principal part of the Laurent series are zero.
Hence z = 0 is a removable singularity of the function f(z) = (sin z)/z.
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�Important paragraph. Reread it
several times.

If a function f has a removable singularity at the point z = z0, then we
can always supply an appropriate definition for the value of f(z0) so that
f becomes analytic at z = z0. For instance, since the right-hand side of
(3) is 1 when we set z = 0, it makes sense to define f(0) = 1. Hence the
function f(z) = (sin z)/z, as given in (3), is now defined and continuous at
every complex number z. Indeed, f is also analytic at z = 0 because it is
represented by the Taylor series 1 − z2/3! + z4/5! − · · · centered at 0 (a
Maclaurin series).

EXAMPLE 2 Poles and Essential Singularity

(a) Dividing the terms of sin z = z − z3

3!
+

z5

5!
− · · · by z2 shows that

sin z

z2
=

principal

part︷︸︸︷
1
z

− z

3!
+

z3

5!
− · · ·

for 0 < |z| < ∞. From this series we see that a−1 �= 0 and so z = 0 is a
simple pole of the function f(z) = (sin z)/z2. In like manner, we see that
z = 0 is a pole of order 3 of the function f(z) = (sin z)/z4 considered in
Example 1 of Section 6.3.

(b) In Example 3 of Section 6.3 we showed that the Laurent expansion of
f(z) = 1/(z − 1)2(z − 3) valid for 0 < |z − 1| < 2 was

f(z) =

principal part︷ ︸︸ ︷
− 1

2(z − 1)2
− 1

4(z − 1)
− 1

8
− z − 1

16
− · · · .

Since a−2 = −1
2 �= 0, we conclude that z = 1 is a pole of order 2.

(c) In Example 6 of Section 6.3 we see from (19) that the principal part of
the Laurent expansion of the function f(z) = e3/z valid for 0 < |z| < ∞
contains an infinite number of nonzero terms. This shows that z = 0 is
an essential singularity of f.

Zeros Recall, a number z0 is zero of a function f if f(z0) = 0. We say
that an analytic function f has a zero of order n at z = z0 if

z0 is a zero of f and of its first n−1 derivatives︷ ︸︸ ︷
f(z0) = 0, f ′(z0) = 0, f ′′(z0) = 0, . . . , f (n−1)(z0) = 0, but f (n)(z0) �= 0. (4)
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A zero of order n is also referred to as a zero of multiplicity n . For
example, for f(z) = (z − 5)3 we see that f(5) = 0, f ′(5) = 0, f ′′(5) = 0, but
f ′′′(5) = 6 �= 0. Thus f has a zero of order (or multiplicity) 3 at z0 = 5. A
zero of order 1 is called a simple zero.

The next theorem is a consequence of (4).

Theorem 6.11 Zero of Order n

A function f that is analytic in some disk |z − z0| < R has a zero of order
n at z = z0 if and only if f can be written

f(z) = (z − z0)nφ(z), (5)

where φ is analytic at z = z0 and φ(z0) �= 0.

Partial Proof We will establish the “only if” part of the theorem. Given
that f is analytic at z0, it can be expanded in a Taylor series that is centered
at z0 and is convergent for |z − z0| < R. Since the coefficients in a Taylor
series f(z) =

∑∞
k=0 ak(z − z0)k are ak = f (k)(z0)/k!, k = 0, 1, 2, . . . , it

follows from (4) that the first n terms series are zero, and so the expansion
must have the form

f(z) = an(z − z0)n + an+1(z − z0)n+1 + an+2(z − z0)n+2 + · · ·
= (z − z0)n

[
an + an+1(z − z0) + an+2(z − z0)2 + · · ·

]
.

With the power-series identification

φ(z) = an + an+1(z − z0) + an+2(z − z0)2 + · · ·

we conclude that φ is an analytic function and that φ(z0) = an �= 0 because
an = f (n)(z0)/n! �= 0 from (4). ✎

EXAMPLE 3 Order of a Zero

The analytic function f(z) = z sin z2 has a zero at z = 0. If we replace z by
z2 in (13) of Section 6.2, we obtain the Maclaurin expansion

sin z2 = z2 − z6

3!
+

z10

5!
− · · · .

Then by factoring z2 out of the foregoing series we can rewrite f as

f(z) = z sin z2 = z3φ(z) where φ(z) = 1− z4

3!
+

z8

5!
− · · · (6)

and φ(0) = 1. When compared to (5), the result in (6) shows that z = 0 is a
zero of order 3 of f .
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Poles We can characterize a pole of order n in a manner analogous to (5).

Theorem 6.12 Pole of Order n

A function f analytic in a punctured disk 0 < | z − z0| < R has a pole of
order n at z = z0 if and only if f can be written

f(z) =
φ(z)

(z − z0)n
, (7)

where φ is analytic at z = z0 and φ(z0) �= 0.

Partial Proof As in the proof of (5), we will establish the “only if ” part of
the preceding sentence. Since f is assumed to have a pole of order n at z0 it
can be expanded in a Laurent series

f(z) =
a−n

(z − z0)n
+ · · ·+ a−2

(z − z0)2
+

a−1

z − z0
+ a0 + a1(z − z0) + · · · , (8)

valid in some punctured disk 0 < | z − z0| < R. By factoring out 1/(z − z0)n,
(8) confirms that f can be written in the form φ(z)/(z − z0)n. Here we identify

φ(z) = a−n + · · ·+ a−2(z − z0)n−2 + a−1(z − z0)n−1 + a0(z − z0)n + a1(z − z0)n+1 + · · · , (9)

as a power series valid for the open disk | z − z0| < R. By assumption, z = z0

is a pole of order n of f , and so we must have a−n �= 0. If we define
φ(z0) = a−n, then it follows from (9) that φ is analytic throughout the disk
| z − z0| < R. ✎

Zeros Again A zero z = z0 of an analytic function f is isolated in the
sense that there exists some neighborhood of z0 for which f(z) �= 0 at every
point z in that neighborhood except at z = z0. As a consequence, if z0 is
a zero of a nontrivial analytic function f , then the function 1/f(z) has an
isolated singularity at the point z = z0.

The following result enables us, in some circumstances, to determine the
poles of a function by inspection.

Theorem 6.13 Pole of Order n

If the functions g and h are analytic at z = z0 and h has a zero of order
n at z = z0 and g(z0) �= 0, then the function f(z) = g(z)/h(z) has a pole
of order n at z = z0.

Proof Because the function h has zero of order n, (5) gives h(z) =
(z − z0)nφ(z), where φ is analytic at z = z0 and φ(z0) �= 0. Thus f can
be written

f(z) =
g(z)/φ(z)
(z − z0)n

. (10)
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Since g and φ are analytic at z = z0 and φ(z0) �= 0, it follows that the
function g/φ is analytic at z0. Moreover, g(z0) �= 0 implies g(z0)/φ(z0) �= 0.
We conclude from Theorem 6.12 that the function f has a pole of order n
at z0. ✎

When n = 1 in (10), we see that a zero of order 1, or a simple zero, in
the denominator h of f(z) = g(z)/h(z) corresponds to a simple pole of f .

EXAMPLE 4 Order of Poles

(a) Inspection of the rational function

f(z) =
2z + 5

(z − 1)(z + 5)(z − 2)4

shows that the denominator has zeros of order 1 at z = 1 and z = −5,
and a zero of order 4 at z = 2. Since the numerator is not zero at any
of these points, it follows from Theorem 6.13 and (10) that f has simple
poles at z = 1 and z = −5, and a pole of order 4 at z = 2.

(b) In Example 3 we saw that z = 0 is a zero of order 3 of z sin z2. From
Theorem 6.13 and (10) we conclude that the reciprocal function f(z) =
1
/
(z sin z2) has a pole of order 3 at z = 0.

Remarks

(i) From the preceding discussion, it should be intuitively clear that if
a function f has a pole at z = z0, then |f(z)| → ∞ as z → z0 from
any direction. From (i) of the Remarks following Section 2.6 we can
write lim

z→z0
f(z) =∞.

(ii) If you peruse other texts on complex variables, and you are encour-
aged to do this, you may encounter the term meromorphic. A func-
tion f is meromorphic if it is analytic throughout a domain D,
except possibly for poles in D. It can be proved that a meromorphic
function can have at most a finite number of poles in D. For exam-
ple, the rational function f(z) = 1/(z2 + 1) is meromorphic in the
complex plane.

EXERCISES 6.4 Answers to selected odd-numbered problems begin on page ANS-19.

In Problems 1–4, show that z = 0 is a removable singularity of the given function.

Supply a definition of f(0) so that f is analytic at z = 0.

1. f(z) =
e2z − 1

z
2. f(z) =

z3 − 4z2

1 − ez2/2

3. f(z) =
sin 4z − 4z

z2
4. f(z) =

1 − 1
2
z10 − cos z5

sin z2
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In Problems 5–10, determine the zeros and their order for the given function.

5. f(z) = (z + 2 − i)2 6. f(z) = z4 − 16

7. f(z) = z4 + z2 8. f(z) = sin2 z

9. f(z) = e2z − ez 10. f(z) = zez − z

In Problems 11–14, the indicated number is a zero of the given function. Use a

Maclaurin or Taylor series to determine the order of the zero.

11. f(z) = z(1 − cos2 z); z = 0 12. f(z) = z − sin z; z = 0

13. f(z) = 1 − ez−1; z = 1 14. f(z) = 1 − πi + z + ez; z = πi

In Problems 15–26, determine the order of the poles for the given function.

15. f(z) =
3z − 1

z2 + 2z + 5
16. f(z) = 5 − 6

z2

17. f(z) =
1 + 4i

(z + 2)(z + i)4
18. f(z) =

z − 1

(z + 1)(z3 + 1)

19. f(z) = tan z 20. f(z) =
cotπz

z2

21. f(z) =
1 − cosh z

z4
22. f(z) =

ez

z2

23. f(z) =
1

1 + ez
24. f(z) =

ez − 1

z2

25. f(z) =
sin z

z2 − z
26. f(z) =

cos z − cos 2z

z6

In Problems 27 and 28, show that the indicated number is an essential singularity

of the given function.

27. f(z) = z3 sin

(
1

z

)
; z = 0 28. f(z) = (z − 1) cos

(
1

z + 2

)
; z = −2

29. Determine whether z = 0 is an essential singularity of f(z) = ez+1/z.

30. Determine whether z = 0 is an isolated or non-isolated singularity of f(z) =
tan(1/z).

Focus on Concepts

31. In part (b) of Example 2 in Section 6.3, we showed that the Laurent series

representation of f(z) =
1

z(z − 1)
valid for |z| > 1 is

f(z) =
1

z2
+

1

z3
+

1

z4
+

1

z5
+ · · · .

The point z = 0 is an isolated singularity of f , and the Laurent series contains
an infinite number of terms involving negative integer powers of z. Discuss:
Does this mean that z = 0 is an essential singularity of f? Defend your answer
with sound mathematics.

32. Suppose f and g are analytic functions and f has a zero of order m and g has
zero of order n at z = z0. Discuss: What is the order of the zero of fg at z0?
of f + g at z0?
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33. An interesting theorem, known as Picard’s theorem, states that in any ar-
bitrarily small neighborhood of an isolated essential singularity z0, an analytic
function f assumes every finite complex value, with one exception, an infinite
number of times. Since z = 0 is an isolated essential singularity of f(z) = e1/z,
find an infinite number of z in any neighborhood of z = 0 for which f(z) = i.
What is the one exception? That is, what is the one value that f(z) = e1/z

does not take on?

34. Suppose |f(z)| is bounded in a deleted neighborhood of an isolated singularity
z0. Classify z0 as one of the three kinds of isolated singularities listed on page
336. Justify your answer with sound mathematics.

35. Suppose the analytic function f(z) has a zero of order n at z = z0. Prove that
the function [f(z)]m, m a positive integer, has a zero of order mn at z = z0.

36. In this problem you are guided through the start of the proof of the proposition:

The only isolated singularities of a rational function f are poles or
removable singularities.

Proof We begin with the hypothesis that f is a rational function, that is,
f(z) = p(z)/q(z), where p and q are polynomials. We know that f is analytic
for all z except at the zeros of q. Suppose z0 is a zero of q but not of p.
Then Theorem 6.11 tell us that there exists a positive integer n such that
q(z) = (z − z0)

nQ(z), where Q is a polynomial and Q(z0) �= 0. Now invoke
Theorem 6.12. Consider one more case to finish the proof.

6.5 Residues and Residue Theorem
6.5We saw in the last section that if a complex function f has an isolated singularity at a point

z0, then f has a Laurent series representation

f(z) =
∞∑

k=−∞
ak(z − z0)k = · · ·+ a−2

(z − z0)2
+

a−1

z − z0
+ a0 + a1(z − z0) + · · · ,

which converges for all z near z0. More precisely, the representation is valid in some deleted
neighborhood of z0 or punctured open disk 0 < |z − z0| < R. In this section our entire focus
will be on the coefficient a−1 and its importance in the evaluation of contour integrals.

Residue The coefficient a−1 of 1/(z − z0) in the Laurent series given
above is called the residue of the function f at the isolated singularity z0.
We shall use the notation

a−1 = Res(f(z), z0)

to denote the residue of f at z0. Recall, if the principal part of the Laurent
series valid for 0 < |z − z0| < R contains a finite number of terms with a−n

the last nonzero coefficient, then z0 is a pole of order n; if the principal part
of the series contains an infinite number of terms with nonzero coefficients,
then z0 is an essential singularity.
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EXAMPLE 1 Residues

(a) In part (b) of Example 2 in Section 6.4 we saw that z = 1 is a pole

of order two of the function f(z) =
1

(z − 1)2(z − 3)
. From the Laurent

series obtained in that example valid for the deleted neighborhood of z = 1
defined by 0 < |z − 1| < 2,

f(z) =
−1/2

(z − 1)2
+

a−1︷ ︸︸ ︷
−1/4
z − 1

− 1
8
− z − 1

16
− · · ·

we see that the coefficient of 1/(z − 1) is a−1 = Res(f(z), 1) = − 1
4 .

(b) In Example 6 of Section 6.3 we saw that z = 0 is an essential singularity
of f(z) = e3/z. Inspection of the Laurent series obtained in that example,

e3/z = 1 +

a−1︷︸︸︷
3
z

+
32

2!z2
+

33

3!z3
+ · · · ,

0 < |z| <∞, shows that the coefficient of 1/z is a−1 = Res(f(z), 0) = 3.

We will see why the coefficient a−1 is so important later on in this section.
In the meantime we are going to examine ways of obtaining this complex
number when z0 is a pole of a function f without the necessity of expanding
f in a Laurent series at z0. We begin with the residue at a simple pole.

Theorem 6.14 Residue at a Simple Pole

If f has a simple pole at z = z0, then

Res(f(z), z0) = lim
z→z0

(z − z0)f(z). (1)

Proof Since f has a simple pole at z = z0, its Laurent expansion convergent
on a punctured disk 0 < |z − z0| < R has the form

f(z) =
a−1

z − z0
+ a0 + a1(z − z0) + a2(z − z0) + · · · ,

where a−1 �= 0. By multiplying both sides of this series by z − z0 and then
taking the limit as z → z0 we obtain

lim
z→z0

(z − z0)f(z) = lim
z→z0

[a−1 + a0(z − z0) + a1(z − z0)2 + · · · ]

= a−1 = Res(f(z), z0). ✎
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Theorem 6.15 Residue at a Pole of Order n

If f has a pole of order n at z = z0, then

Res(f(z), z0) =
1

(n− 1)!
lim

z→z0

dn−1

dzn−1
(z − z0)nf(z). (2)

Proof Because f is assumed to have pole of order n at z = z0, its Laurent
expansion convergent on a punctured disk 0 < |z − z0| < R must have the
form

f(z) =
a−n

(z − z0)n
+ · · ·+ a−2

(z − z0)2
+

a−1

z − z0
+ a0 + a1(z − z0) + · · · ,

where a−n �= 0. We multiply the last expression by (z − z0)n,

(z − z0)nf(z) = a−n + · · ·+ a−2(z − z0)n−2 + a−1(z − z0)n−1 + a0(z − z0)n + a1(z − z0)n+1 + · · ·

and then differentiate both sides of the equality n− 1 times:

dn−1

dzn−1
(z − z0)nf(z) = (n− 1)!a−1 + n!a0(z − z0) + · · · . (3)

Since all the terms on the right-hand side after the first involve positive integer
powers of z − z0, the limit of (3) as z → z0 is

lim
z→z0

dn−1

dzn−1
(z − z0)nf(z) = (n− 1)!a−1.

Solving the last equation for a−1 gives (2). ✎

Notice that (2) reduces to (1) when n = 1.

EXAMPLE 2 Residue at a Pole

The function f(z) =
1

(z − 1)2(z − 3)
has a simple pole at z = 3 and a pole of

order 2 at z = 1. Use Theorems 6.14 and 6.15 to find the residues.

Solution Since z = 3 is a simple pole, we use (1):

Res(f(z), 3) = lim
z→3

(z − 3)f(z) = lim
z→3

1
(z − 1)2

=
1
4
.
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Now at the pole of order 2, the result in (2) gives

Res(f(z), 1) =
1
1!

lim
z→1

d

dz
(z − 1)2f(z)

= lim
z→1

d

dz

1
z − 3

= lim
z→1

−1
(z − 3)2

= −1
4
.

When f is not a rational function, calculating residues by means of (1)
or (2) can sometimes be tedious. It is possible to devise alternative residue
formulas. In particular, suppose a function f can be written as a quotient
f(z) = g(z)/h(z), where g and h are analytic at z = z0. If g(z0) �= 0 and if
the function h has a zero of order 1 at z0, then f has a simple pole at z = z0

and

Res(f(z), z0) =
g(z0)
h′(z0)

. (4)�An alternative method for comput-
ing a residue at a simple pole

To derive this result we shall use the definition of a zero of order 1, the
definition of a derivative, and then (1). First, since the function h has a zero
of order 1 at z0, we must have h(z0) = 0 and h′(z0) �= 0. Second, by definition
of the derivative given in (12) of Section 3.1,

h′(z0) = lim
z→z0

h(z)−
0︷ ︸︸ ︷

h(z0)
z − z0

= lim
z→z0

h(z)
z − z0

.

We then combine the preceding two facts in the following manner in (1):

Res(f(z), z0) = lim
z→z0

(z − z0)
g(z)
h(z)

= lim
z→z0

g(z)
h(z)
z − z0

=
g(z0)
h′(z0)

.

There are several alternative ways of arriving at formula (4). For instance, it
can be obtained by a single application of L’Hôpital’s rule (page 147), but you
are asked in Problem 40 in Exercises 6.5 to derive (4) using (5) of Section 6.4.
Residue formulas for poles of order greater than 1 are far more complicated
than (4) and will not be presented here. Practicality aside, a derivation of
one of these higher-order formulas provides an opportunity to review and use
important concepts. See Problem 41 in Exercises 6.5.

EXAMPLE 3 Using (4) to Compute Residues

The polynomial z4 + 1 can be factored as (z − z1)(z − z2)(z − z3)(z − z4),
where z1, z2, z3, and z4 are the four distinct roots of the equation z4 + 1 = 0



346 Chapter 6 Series and Residues

(or equivalently, the four fourth roots of −1). It follows from Theorem 6.13
that the function

f(z) =
1

z4 + 1

has four simple poles. Now from (4) of Section 1.4 we have z1 = eπi/4,
z2 = e3πi/4, z3 = e5πi/4, and z4 = e7πi/4. To compute the residues, we use
(4) of this section along with Euler’s formula (6) of Section 1.6:

Res(f(z), z1) =
1

4z3
1

=
1
4
e−3πi/4 = − 1

4
√

2
− 1

4
√

2
i

Res(f(z), z2) =
1

4z3
2

=
1
4
e−9πi/4 =

1
4
√

2
− 1

4
√

2
i

Res(f(z), z3) =
1

4z3
3

=
1
4
e−15πi/4 =

1
4
√

2
+

1
4
√

2
i

Res(f(z), z4) =
1

4z3
4

=
1
4
e−21πi/4 = − 1

4
√

2
+

1
4
√

2
i.

Of course, we could have calculated each of the residues in Example 3
using formula (1). But the procedure in this case would have entailed sub-
stantially more algebra. For example, we first use the factorization of z4 + 1
to write f as:

f(z) =
1

(z − z1)(z − z2)(z − z3)(z − z4)
.

By (1) the residue at, say, the pole z1 is

Res(f(z), z1) = lim
z→z1

(z − z1)
1

(z − z1)(z − z2)(z − z3)(z − z4)

=
1

(z1 − z2)(z1 − z3)(z1 − z4)

=
1

(eπi/4 − e3πi/4)(eπi/4 − e5πi/4)(eπi/4 − e7πi/4)
.

Then we face the daunting task of simplifying the denominator of the last
expression. Finally, we must do this process three more times.

Residue Theorem We come now to the reason why the residue con-
cept is important. The next theorem states that under some circumstances
we can evaluate complex integrals

∮
C
f(z) dz by summing the residues at the

isolated singularities of f within the closed contour C.
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Theorem 6.16 Cauchy’s Residue Theorem

Let D be a simply connected domain and C a simple closed contour lying
entirely within D. If a function f is analytic on and within C, except at
a finite number of isolated singular points z1, z2, . . . , zn within C, then

∮
C

f(z) dz = 2πi
n∑

k=1

Res (f(z), zk). (5)

Proof Suppose C1, C2, . . . , Cn are circles centered at z1, z2, . . . , zn,
respectively. Suppose further that each circle Ck has a radius rk small enough
so that C1, C2, . . . , Cn are mutually disjoint and are interior to the simple
closed curve C. See Figure 6.10. Now in (20) of Section 6.3 we saw that∮
Ck

f(z) dz = 2πiRes(f(z), zk), and so by Theorem 5.5 we have

∮
C

f(z) dz =
n∑

k=1

∮
Ck

f(z) dz = 2πi
n∑

k=1

Res (f(z), zk).

C1

C2

CnC

D

zn

z2

z1

Figure 6.10 n singular points within

contour C

✎

EXAMPLE 4 Evaluation by the Residue Theorem

Evaluate
∮

C

1
(z − 1)2(z − 3)

dz, where

(a) the contour C is the rectangle defined by x = 0, x = 4, y = −1, y = 1,

(b) and the contour C is the circle |z| = 2.

Solution

(a) Since both z = 1 and z = 3 are poles within the rectangle we have from
(5) that ∮

C

1
(z − 1)2(z − 3)

dz = 2πi [Res(f(z), 1) + Res(f(z), 3)]

We found these residues in Example 2. Therefore,∮
C

1
(z − 1)2(z − 3)

dz = 2πi
[(
−1

4

)
+

1
4

]
= 0.

(b) Since only the pole z = 1 lies within the circle |z| = 2, we have from (5)∮
C

1
(z − 1)2(z − 3)

dz = 2πiRes(f(z), 1) =2πi
(
−1

4

)
= −π

2
i.
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EXAMPLE 5 Evaluation by the Residue Theorem

Evaluate
∮

C

2z + 6
z2 + 4

dz, where the contour C is the circle |z − i| = 2.

Solution By factoring the denominator as z2 + 4 = (z − 2i)(z + 2i) we see
that the integrand has simple poles at −2i and 2i. Because only 2i lies within
the contour C, it follows from (5) that∮

C

2z + 6
z2 + 4

dz = 2πiRes(f(z), 2i).

But

Hence,

Res(f(z), 2i) = lim
z→2i

(z − 2i)
2z + 6

(z − 2i)(z + 2i)

=
6 + 4i

4i
=

3 + 2i
2i

.

∮
C

2z + 6
z2 + 4

dz = 2πi
(

3 + 2i
2i

)
= π(3 + 2i).

EXAMPLE 6 Evaluation by the Residue Theorem

Evaluate
∮

C

ez

z4 + 5z3
dz, where the contour C is the circle |z| = 2.

Solution Writing the denominator as z4 + 5z3 = z3(z + 5) reveals that the
integrand f(z) has a pole of order 3 at z = 0 and a simple pole at z = −5.
But only the pole z = 0 lies within the given contour and so from (5) and (2)
we have,

∮
C

ez

z4 + 5z3
dz = 2πiRes(f(z), 0) = 2πi

1
2!

lim
z→0

d2

dz2
z3 · ez

z3(z + 5)

= πi lim
z→0

(z2 + 8z + 17)ez

(z + 5)3
=

17π
125

i.

EXAMPLE 7 Evaluation by the Residue Theorem

Evaluate
∮

C

tan z dz, where the contour C is the circle |z| = 2.

Solution The integrand f(z) = tan z = sin z/ cos z has simple poles at the
points where cos z = 0. We saw in (21) of Section 4.3 that the only zeros cos z
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are the real numbers z = (2n + 1)π/2, n = 0, ±1, ±2, ... . Since only −π/2
and π/2 are within the circle |z| = 2, we have∮

C

tan z dz = 2πi
[
Res

(
f(z),−π

2

)
+ Res

(
f(z),

π

2

)]
.

With the identifications g(z) = sin z, h(z) = cos z, and h′(z) = − sin z, we see
from (4) that

Res
(
f(z),− π

2

)
=

sin(−π/2)
− sin(−π/2)

=− 1

Res
(
f(z),

π

2

)
=

sin(π/2)
− sin(π/2)

= − 1.and

Therefore,
∮

C

tan z dz = 2πi[−1− 1] = −4πi.

�Theorem 6.16 is applicable at an
essential singularity.

Although there is no nice formula analogous to (1), (2), or (4), for com-
puting the residue at an essential singularity z0, the next example shows that
Theorem 6.16 is still applicable at z0.

EXAMPLE 8 Evaluation by the Residue Theorem

Evaluate
∮

C

e3/zdz, where the contour C is the circle |z| = 1.

Solution As we have seen, z = 0 is an essential singularity of the integrand
f(z) = e3/z and so neither formulas (1) and (2) are applicable to find the
residue of f at that point. Nevertheless, we saw in Example 1 that the Laurent
series of f at z = 0 gives Res(f(z), 0) = 3. Hence from (5) we have∮

C

e3/z dz = 2πiRes(f(z), 0) = 2πi (3) = 6πi.

EXERCISES 6.5 Answers to selected odd-numbered problems begin on page ANS-20.

In Problems 1–6, use an appropriate Laurent series to find the indicated residue.

1. f(z) =
2

(z − 1)(z + 4)
; Res(f(z), 1)

2. f(z) =
1

z3(1 − z)3
; Res(f(z), 0)

3. f(z) =
4z − 6

z(2 − z)
; Res(f(z), 0)
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4. f(z) = (z + 3)2 sin

(
2

z + 3

)
; Res(f(z),−3)

5. f(z) = e−2/z2
; Res(f(z), 0)

6. f(z) =
e−z

(z − 2)2
; Res(f(z), 2)

In Problems 7–16, use (1), (2), or (4) to find the residue at each pole of the given

function.

7. f(z) =
z

z2 + 16
8. f(z) =

4z + 8

2z − 1

9. f(z) =
1

z4 + z3 − 2z2
10. f(z) =

1

(z2 − 2z + 2)2

11. f(z) =
5z2 − 4z + 3

(z + 1)(z + 2)(z + 3)
12. f(z) =

2z − 1

(z − 1)4(z + 3)

13. f(z) =
cos z

z2(z − π)3
14. f(z) =

ez

ez − 1

15. f(z) = sec z 16. f(z) =
1

z sin z

In Problems 17–20, use Cauchy’s residue theorem, where appropriate, to evaluate

the given integral along the indicated contours.

17.

∮
C

1

(z − 1)(z + 2)2
dz (a) |z| = 1

2
(b) |z| = 3

2
(c) |z| = 3

18.

∮
C

z + 1

z2(z − 2i)
dz (a) |z| = 1 (b) |z − 2i| = 1 (c) |z − 2i| = 4

19.

∮
C

z3e−1/z2
dz (a) |z| = 5 (b) |z + i| = 2 (c) |z − 3| = 1

20.

∮
C

1

z sin z
dz (a) |z − 2i| = 1 (b) |z − 2i| = 3 (c) |z| = 5

In Problems 21–34, use Cauchy’s residue theorem to evaluate the given integral

along the indicated contour.

21.

∮
C

1

z2 + 4z + 13
dz, C: |z − 3i| = 3

22.

∮
C

1

z3(z − 1)4
dz, C: |z − 2| = 3

2

23.

∮
C

z

z4 − 1
dz, C: |z| = 2

24.

∮
C

z

(z + 1)(z2 + 1)
dz, C: 16x2 + y2 = 4

25.

∮
C

zez

z2 − 1
dz, C: |z| = 2

26.

∮
C

ez

z3 + 2z2
dz, C: |z| = 3

27.

∮
C

tan z

z
dz, C: |z − 1| = 2

28.

∮
C

cotπz

z2
dz, C: |z| = 1

2
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29.

∮
C

cotπz dz, C is the rectangle defined by x = 1
2
, x = π, y = −1, y = 1

30.

∮
C

2z − 1

z2(z3 + 1)
dz, C is the rectangle defined by x = −2, x = 1, y = − 1

2
, y = 1

31.

∮
C

(
z2e1/πz +

zez

z4 − π4

)
dz, C: 4x2 + y2 = 16

32.

∮
C

cos z

(z − 1)2(z2 + 9)
dz, C: |z − 1| = 1

33.

∮
C

1

z6 + 1
dz, C is the semicircle defined by y = 0, y =

√
4 − x2

34.

∮
C

e4/(z−2) dz, C: |z − 1| = 3

Focus on Concepts

35. (a) Use series to show that z = 0 is a zero of order 2 of 1 − cos z.

(b) In view of part (a), z = 0 is a pole of order two of the function
f(z) = ez/(1 − cos z) and hence has a Laurent series

f(z) =
ez

1 − cos z
=

a−2

z2
+

a−1

z
+ a0 + a1z + a2z

2 + · · ·

valid for 0 < |z| < 2π. Use series for ez and 1−cos z and equate coefficients
in the product

ez = (1 − cos z)
(a−2

z2
+

a−1

z
+ a0 + · · ·

)
to determine a−2, a−1, and a0.

(c) Evaluate

∮
C

ez

1 − cos z
dz, where C is |z| = 1.

36. Discuss how to evaluate

∮
C

e1/z sin

(
1

z

)
dz, where C is |z| = 1. Carry out your

ideas.

37. Consider the function f(z) = z4
/

(1 − z1/2), where z1/2 denotes the principal

branch of the square root function. Discuss and justify your answer: Does f
have a pole at z = 1? If so, find Res(f(z), 1).

38. Residues can be used to find coefficients in partial fraction decompositions of
rational functions. Suppose that p(z) is a polynomial of degree ≤ 2 and that
z1, z2, and z3 are distinct complex numbers that are not zeros of p(z). Then

f(z) =
p(z)

(z − z1)(z − z2)(z − z3)
=

A

z − z1
+

B

z − z2
+

C

z − z3
.

(a) Use (1) to show

A = Res(f(z), z1) =
p(z1)

(z1 − z2)(z1 − z3)

B = Res(f(z), z2) =
p(z2)

(z2 − z1)(z2 − z3)

C = Res(f(z), z3) =
p(z3)

(z3 − z1)(z3 − z2)
.
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(b) Now use a Laurent series to prove that A = Res(f(z), z1). [Hint : The
second and third terms, B/(z−z2) and C/(z−z3), respectively, are analytic
at z1. Also see (3) and (4) in Section 6.4.]

39. Use Problem 38 to find the partial fraction decomposition of

f(z) =
5z2 − z + 2

z(z + 1)(z − i)
.

40. If h(z) has a zero of order 1, it follows from (5) of Section 6.4 that h(z) =
(z − z0)φ(z), where φ is analytic at z = z0 and φ(z0) �= 0. With f(z) =
g(z)/h(z), use (1) to derive (4):

Res
(
f(z), z0

)
=

g(z0)

φ(z0)
=

g(z0)

h′(z0)
.

41. If h(z) has a zero of order 2, it follows from (5) of Section 6.4 that h(z) =
(z − z0)

2 φ(z), where φ is analytic at z = z0 and φ(z0) �= 0. With f(z) =
g(z)/h(z), use (2) with n = 2 to derive a formula analogous to (4) for
Res(f(z), z0) at a pole of order 2 at z = z0.

6.6 Some Consequences of the Residue Theorem

6.6In this section we shall see how residue theory can be used to evaluate real integrals of the
forms ∫ 2π

0

F (cos θ, sin θ) dθ, (1)

∫ ∞

−∞
f(x) dx, (2)

∫ ∞

−∞
f(x) cosαxdx and

∫ ∞

−∞
f(x) sinαxdx, (3)

where F in (1) and f in (2) and (3) are rational functions. For the rational function
f(x) = p(x)/q(x) in (2) and (3), we will assume that the polynomials p and q have no
common factors.

In addition to evaluating the three integrals just given, we shall demonstrate how to
use residues to evaluate real improper integrals that require integration along a branch cut.

The discussion ends with the relationship between the residue theory and the zeros of
an analytic function and a consideration of how residues can, in certain cases, be used to
find the sum of an infinite series.

6.6.1 Evaluation of Real Trigonometric Integrals

Integrals of the Form
∫ 2π

0
F (cos θ, sin θ)dθ The basic idea

here is to convert a real trigonometric integral of form (1) into a complex
integral, where the contour C is the unit circle |z| = 1 centered at the origin.
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To do this we begin with (10) of Section 2.2 to parametrize this contour by
z = eiθ, 0 ≤ θ ≤ 2π. We can then write

dz = ieiθdθ, cos θ =
eiθ + e−iθ

2
, sin θ =

eiθ − e−iθ

2i
.

The last two expressions follow from (2) and (3) of Section 4.3. Since dz =
ieiθdθ = iz dθ and z−1 = 1

/
z = e−iθ, these three quantities are equivalent to

dθ =
dz

iz
, cos θ =

1
2
(z + z−1), sin θ =

1
2i

(z − z−1). (4)

The conversion of the integral in (1) into a contour integral is accomplished
by replacing, in turn, dθ, cos θ, and sin θ by the expressions in (4):∮

C

F

(
1
2
(z + z−1),

1
2i

(z − z−1)
)

dz

iz
,

where C is the unit circle |z| = 1.

EXAMPLE 1 A Real Trigonometric Integral

Evaluate
∫ 2π

0

1
(2 + cos θ)2

dθ.

Solution When we use the substitutions given in (4), the given trigonometric
integral becomes the contour integral∮

C

1(
2 + 1

2 (z + z−1)
)2

dz

iz
=

∮
C

1(
2 +

z2 + 1
2z

)2

dz

iz
.

Carrying out the algebraic simplification of the integrand then yields

4
i

∮
C

z

(z2 + 4z + 1)2
dz.

From the quadratic formula we can factor the polynomial z2 + 4z + 1 as
z2 +4z +1 = (z− z1)(z− z2), where z1 = −2−

√
3 and z2 = −2+

√
3. Thus,

the integrand can be written
z

(z2 + 4z + 1)2
=

z

(z − z1)2(z − z2)2
.

Because only z2 is inside the unit circle C, we have∮
C

z

(z2 + 4z + 1)2
dz = 2πiRes(f(z), z2).

To calculate the residue, we first note that z2 is a pole of order 2 and so we
use (2) of Section 6.5:

Res(f(z), z2) = lim
z→z2

d

dz
(z − z2)2f(z) = lim

z→z2

d

dz

z

(z − z1)2

= lim
z→z2

−z − z1

(z − z1)3
=

1
6
√

3
.
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Hence,
4
i

∮
C

z

(z2 + 4z + 1)
dz =

4
i
· 2πiRes(f(z), z1) =

4
i
· 2πi · 1

6
√

3

and, finally,
∫ 2π

0

1
(2 + cos θ)2

dθ =
4π

3
√

3
.

6.6.2 Evaluation of Real Improper Integrals

Integrals of the Form
∫ ∞

−∞ f(x) dx Suppose y = f(x) is a real
function that is defined and continuous on the interval [0, ∞). In elementary
calculus the improper integral I1 =

∫ ∞
0

f(x) dx is defined as the limit

I1 =
∫ ∞

0

f(x) dx = lim
R→∞

∫ R

0

f(x) dx. (5)

If the limit exists, the integral I1 is said to be convergent; otherwise, it is
divergent. The improper integral I2 =

∫ 0

−∞ f(x) dx is defined similarly:

I2 =
∫ 0

−∞
f(x) dx = lim

R→∞

∫ 0

−R

f(x) dx. (6)

Finally, if f is continuous on (−∞, ∞), then
∫ ∞
−∞ f(x) dx is defined to be

∫ ∞

−∞
f(x) dx =

∫ 0

−∞
f(x) dx +

∫ ∞

0

f(x) dx = I1 + I2, (7)

provided both integrals I1 and I2 are convergent. If either one, I1 or I2, is
divergent, then

∫ ∞
−∞ f(x) dx is divergent. It is important to remember that

the right-hand side of (7) is not the same as

lim
R→∞

[∫ 0

−R

f(x) dx +
∫ R

0

f(x) dx

]
= lim

R→∞

∫ R

−R

f(x) dx. (8)

For the integral
∫ ∞
−∞ f(x) dx to be convergent, the limits (5) and (6) must

exist independently of one another. But, in the event that we know (a priori)
that an improper integral

∫ ∞
−∞ f(x) dx converges, we can then evaluate it by

means of the single limiting process given in (8):∫ ∞

−∞
f(x) dx = lim

R→∞

∫ R

−R

f(x) dx. (9)

On the other hand, the symmetric limit in (9) may exist even though the im-
proper integral

∫ ∞
−∞ f(x) dx is divergent. For example, the integral

∫ ∞
−∞ x dx

is divergent since limR→∞
∫ R

0
x dx = limR→∞

1
2R

2 =∞. However, (9) gives

lim
R→∞

∫ R

−R

x dx = lim
R→∞

1
2
[R2 − (−R)2] = 0. (10)
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The limit in (9), if it exists, is called the Cauchy principal value (P.V.) of
the integral and is written

P.V.

∫ ∞

−∞
f(x) dx = lim

R→∞

∫ R

−R

f(x) dx. (11)

In (10) we have shown that P.V.
∫ ∞
−∞ x dx = 0. To summarize:

Cauchy Principal Value

When an integral of form (2) converges, its Cauchy principal value is the
same as the value of the integral. If the integral diverges, it may still
possess a Cauchy principal value (11).

�Important observation about even
functions

One final point about the Cauchy principal value: Suppose f(x) is con-
tinuous on (−∞, ∞) and is an even function, that is, f(−x) = f(x). Then
its graph is symmetric with respect to the y-axis and as a consequence

∫ 0

−R

f(x) dx =
∫ R

0

f(x) dx (12)

∫ R

−R

f(x) dx =
∫ 0

−R

f(x) dx +
∫ R

0

f(x) dx = 2
∫ R

0

f(x) dx. (13)and

From (12) and (13) we conclude that if the Cauchy principal value (11) exists,
then both

∫ ∞
0

f(x) dx and
∫ ∞
−∞ f(x) dx converge. The values of the integrals

are∫ ∞

0

f(x) dx =
1
2

P.V.

∫ ∞

−∞
f(x) dx and

∫ ∞

−∞
f(x) dx = P.V.

∫ ∞

−∞
f(x) dx.

z3

y

z2

zn
CR

z1 z4

x
R–R 0

Figure 6.11 Semicircular contour

To evaluate an integral
∫ ∞
−∞ f(x) dx, where the rational function f(x) =

p(x)/q(x) is continuous on (−∞, ∞), by residue theory we replace x by the
complex variable z and integrate the complex function f over a closed contour
C that consists of the interval [−R, R] on the real axis and a semicircle CR of
radius large enough to enclose all the poles of f(z) = p(z)/q(z) in the upper
half-plane Im(z) > 0. See Figure 6.11. By Theorem 6.16 of Section 6.5 we
have ∮

C

f(z) dz =
∫

CR

f(z) dz +
∫ R

−R

f(x) dx = 2πi
n∑

k=1

Res(f(z), zk),

where zk, k = 1, 2, . . . , n denotes poles in the upper half-plane. If we can
show that the integral

∫
CR

f(z) dz → 0 as R→∞, then we have

P.V.

∫ ∞

−∞
f(x) dx = lim

R→∞

∫ R

−R

f(x) dx = 2πi
n∑

k=1

Res(f(z), zk). (14)
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EXAMPLE 2 Cauchy P.V. of an Improper Integral

Evaluate the Cauchy principal value of
∫ ∞

−∞

1
(x2 + 1)(x2 + 9)

dx.

y

CR

i

3i

x
R–R

Figure 6.12 Contour for Example 2

Solution Let f(z) = 1/(z2 + 1)(z2 + 9). Since

(z2 + 1)(z2 + 9) = (z − i)(z + i)(z − 3i)(z + 3i),

we take C be the closed contour consisting of the interval [−R, R] on the
x-axis and the semicircle CR of radius R > 3. As seen from Figure 6.12,∮

C

1
(z2 + 1)(z2 + 9)

dz =
∫ R

−R

1
(x2 + 1)(x2 + 9)

dx +
∫

CR

1
(z2 + 1)(z2 + 9)

dz

= I1 + I2

I1 + I2 = 2πi [Res(f(z), i) + Res(f(z), 3i)].and

At the simple poles z = i and z = 3i we find, respectively,

Res(f(z), i) =
1

16i
and Res(f(z), 3i) = − 1

48i
,

I1 + I2 = 2πi
[

1
16i

+
(
− 1

48i

)]
=

π

12
. (15)so that

We now want to let R → ∞ in (15). Before doing this, we use the
inequality (10) of Section 1.2 to note that on the contour CR,

∣∣ (z2 + 1)(z2 + 9)
∣∣ =

∣∣z2 + 1
∣∣ · ∣∣z2 + 9

∣∣ ≥ ∣∣ ∣∣z2
∣∣ − 1

∣∣ · ∣∣ ∣∣z2
∣∣ − 9

∣∣ = (R2 − 1)(R2 − 1)(R2 − 9).

Since the length L of the semicircle is πR, it follows from the ML-inequality,
Theorem 5.3 of Section 5.2, that

|I2| =
∣∣∣∣
∫

CR

1
(z2 + 1)(z2 + 9)

dz

∣∣∣∣ ≤ πR

(R2 − 1)(R2 − 9)
.

This last result shows that |I2| → 0 as R → ∞, and so we conclude that
limR→∞ I2 = 0. It follows from (15) that limR→∞ I1 = π/12; in other words,

lim
R→∞

∫ R

−R

1
(x2 + 1)(x2 + 9)

dx =
π

12
or P.V.

∫ ∞

−∞

1
(x2 + 1)(x2 + 9)

dx =
π

12
.

Because the integrand in Example 2 is an even function, the existence
of the Cauchy principal value implies that the original integral converges to
π/12.
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It is often tedious to have to show that the contour integral along CR

approaches zero as R → ∞. Sufficient conditions under which this behavior
is always true are summarized in the next theorem.

Theorem 6.17 Behavior of Integral as R → ∞

Suppose f(z) =
p(z)
q(z)

is a rational function, where the degree of p(z) is

n and the degree of q(z) is m ≥ n + 2. If CR is a semicircular contour
z = Reiθ, 0 ≤ θ ≤ π, then

∫
CR

f(z) dz → 0 as R→∞.

In other words, the integral along CR approaches zero as R → ∞ when
the denominator of f is of a power at least 2 more than its numerator. The
proof of this fact follows in the same manner as in Example 2. Notice in that
example, the conditions stipulated in Theorem 6.17 are satisfied, since degree
of p(z) = 1 is 0 and the degree of q(z) = (z2 + 1)(z2 + 9) is 4.

EXAMPLE 3 Cauchy P.V. of an Improper Integral

Evaluate the Cauchy principal value of
∫ ∞

−∞

1
x4 + 1

dx.

Solution By inspection of the integrand we see that the conditions given in
Theorem 6.17 are satisfied. Moreover, we know from Example 3 of Section
6.5 that f(z) = 1/(z4 + 1) has simple poles in the upper half-plane at z1 =
eπi/4 and z2 = e3πi/4. We also saw in that example that the residues at these
poles are

Res(f(z), z1) = − 1
4
√

2
− 1

4
√

2
i and Res(f(z), z2) =

1
4
√

2
− 1

4
√

2
i .

Thus, by (14),

P.V.
∫ ∞

−∞

1
x4 + 1

dx = 2πi [Res(f(z), z1) + Res(f(z), z2)] =
π√
2
.

Since the integrand is an even function, the original integral converges to
π
/√

2.

Integrals of the Form
∫ ∞

−∞ f(x) cos α x dx and∫ ∞
−∞ f(x) sinα x dx Because improper integrals of the form∫ ∞

−∞ f(x) sinαxdx are encountered in applications of Fourier analysis, they
often are referred to as Fourier integrals. Fourier integrals appear as the
real and imaginary parts in the improper integral

∫ ∞
−∞ f(x)eiαx dx.‡ In view

‡See Section 6.7.
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of Euler’s formula eiα x = cosαx+ i sinαx, where α is a positive real number,
we can write∫ ∞

−∞
f(x) eiα xdx =

∫ ∞

−∞
f(x) cosαxdx + i

∫ ∞

−∞
f(x) sinαxdx (16)

whenever both integrals on the right-hand side converge. Suppose f(x) =
p(x)/q(x) is a rational function that is continuous on (−∞, ∞). Then both
Fourier integrals in (10) can be evaluated at the same time by considering
the complex integral

∫
C
f(z)eiα zdz, where α > 0, and the contour C again

consists of the interval [−R, R] on the real axis and a semicircular contour
CR with radius large enough to enclose the poles of f(z) in the upper-half
plane.

Before proceeding, we give, without proof, sufficient conditions under
which the contour integral along CR approaches zero as R→∞.

Theorem 6.18 Behavior of Integral as R → ∞

Suppose f(z) =
p(z)
q(z)

is a rational function, where the degree of p(z) is

n and the degree of q(z) is m ≥ n + 2. If CR is a semicircular contour
z = Reiθ, 0 ≤ θ ≤ π, and α > 0, then

∫
CR

f(z) eiαzdz → 0 as R→∞.

EXAMPLE 4 Using Symmetry

Evaluate the Cauchy principal value of
∫ ∞

0

x sinx

x2 + 9
dx.

Solution First note that the limits of integration in the given integral are not
from –∞ to∞ as required by the method just described. This can be remedied
by observing that since the integrand is an even function of x (verify), we can
write ∫ ∞

0

x sinx

x2 + 9
dx =

1
2

∫ ∞

−∞

x sinx

x2 + 9
dx. (17)

With α = 1 we now form the contour integral∮
C

z

z2 + 9
eizdz,

where C is the same contour shown in Figure 6.12. By Theorem 6.16,∫
CR

z

z2 + 9
eizdz +

∫ R

−R

x

x2 + 9
eix dx = 2πi Res(f(z)eiz, 3i),

where f(z) = z/(z2 + 9), and

Res
(
f(z)eiz, 3i

)
=

zeiz

2z

∣∣∣∣
z=3i

=
e−3

2
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from (4) of Section 6.5. Then, from Theorem 6.18 we conclude∫
CR

f(z)eizdz → 0 as R→∞, and so

P.V.
∫ ∞

−∞

x

x2 + 9
eix dx = 2πi

(
e−3

2

)
=

π

e3
i.

But by (16),

∫ ∞

−∞

x

x2 + 9
eix dx =

∫ ∞

−∞

x cosx
x2 + 9

dx + i

∫ ∞

−∞

x sinx

x2 + 9
dx =

π

e3
i.

Equating real and imaginary parts in the last line gives the bonus result

P.V.
∫ ∞

−∞

x cosx
x2 + 9

dx = 0 along with P.V.
∫ ∞

−∞

x sinx

x2 + 9
dx =

π

e3
. (18)

Finally, in view of the fact that the integrand is an even function, we obtain
the value of the prescribed integral:∫ ∞

0

x sinx

x2 + 9
dx =

1
2

∫ ∞

−∞

x sinx

x2 + 9
dx =

π

2e3
.

Indented Contours The improper integrals of forms (2) and (3) that
we have considered up to this point were continuous on the interval (−∞, ∞).
In other words, the complex function f(z) = p(z)/q(z) did not have poles on
the real axis. In the situation where f has poles on the real axis, we must
modify the procedure illustrated in Examples 2–4. For example, to evaluate∫ ∞
−∞ f(x) dx by residues when f(z) has a pole at z = c, where c is a real

number, we use an indented contour as illustrated in Figure 6.13. The
symbol Cr denotes a semicircular contour centered at z = c and oriented in
the positive direction. The next theorem is important to this discussion.

y

c

CR

–Cr

x
R–R

Figure 6.13 Indented contour

Theorem 6.19 Behavior of Integral as r → 0

Suppose f has a simple pole z = c on the real axis. If Cr is the contour
defined by z = c + reiθ, 0 ≤ θ ≤ π, then

lim
r→0

∫
Cr

f(z) dz = πiRes(f(z), c).

Proof Since f has a simple pole at z = c, its Laurent series is

f(z) =
a−1

z − c
+ g(z),
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where a−1 = Res(f(z), c) and g is analytic at the point c. Using the Laurent
series and the parametrization of Cr we have∫

Cr

f(z) dz = a−1

∫ π

0

ireiθ

reiθ
dθ + ir

∫ π

0

g(c + reiθ) eiθdθ = I1 + I2. (19)

First, we see that

I1 = a−1

∫ π

0

ireiθ

reiθ
dθ = a−1

∫ π

0

i dθ = πia−1 = πiRes(f(z), c).

Next, g is analytic at c, and so it is continuous at this point and bounded
in a neighborhood of the point; that is, there exists an M > 0 for which∣∣g(c + reiθ)

∣∣ ≤M. Hence,

|I2| =
∣∣∣∣ ir

∫ π

0

g(c + reiθ) dθ
∣∣∣∣ ≤ r

∫ π

0

M dθ = πrM.

It follows from this last inequality that limr→0 |I2| = 0 and consequently
limr→0 I2 = 0. By taking the limit of (19) as r → 0, the theorem is
proved. ✎

EXAMPLE 5 Using an Indented Contour

Evaluate the Cauchy principal value of
∫ ∞

−∞

sinx

x(x2 − 2x + 2)
dx.

Solution Since the integral is of the type given in (3), we consider the contour
integral ∮

C

eiz

z(z2 − 2z + 2)
dz.

y

r

1 + i

–r

CR

–Cr

x
R–R

Figure 6.14 Indented contour for

Example 5

The function f(z) = 1/z(z2 − 2z + 2) has a pole at z = 0 and at z = 1 + i
in the upper half-plane. The contour C, shown in Figure 6.14, is indented at
the origin. Adopting an obvious condensed notation, we have∮

C

=
∫

CR

+
∫ −r

−R

+
∫
−Cr

+
∫ R

r

= 2πiRes(f(z)eiz, 1 + i), (20)

where
∫
−Cr

=−
∫
Cr

. If we take the limits of (20) as R→∞ and as r → 0, it
follows from Theorems 6.18 and 6.19 that

P.V.
∫ ∞

−∞

eix

x(x2 − 2x + 2)
dx− πiRes(f(z)eiz, 0) = 2πiRes(f(z)eiz, 1 + i).

Now,

Res(f(z)eiz, 0) =
1
2

and Res(f(z)eiz, 1 + i) = −e−1+i

4
(1 + i).
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Therefore,

P.V.
∫ ∞

−∞

eix

x(x2 − 2x + 2)
dx = πi

(
1
2

)
+ 2πi

(
−e−1+i

4
(1 + i)

)
.

Using e−1+i = e−1(cos 1 + i sin 1), simplifying, and then equating real and
imaginary parts, we get from the last equality

P.V.
∫ ∞

−∞

cosx
x(x2 − 2x + 2)

dx =
π

2
e−1(sin 1 + cos 1)

P.V.
∫ ∞

−∞

sinx

x(x2 − 2x + 2)
dx =

π

2
[1 + e−1(sin 1− cos 1)].and

6.6.3 Integration along a Branch Cut

Branch Point at z = 0 In the next discussion we examine integrals
of the form

∫ ∞
0

f(x) dx, where the integrand f(x) is algebraic. But similar
to Example 5, these integrals require a special type of contour because when
f(x) is converted to a complex function, the resulting integrand f(z) has, in
addition to poles, a nonisolated singularity at z = 0. Before proceeding, the
reader is encouraged to review the discussion on branch cuts in Sections 2.6
and 4.1.

In the example that follows we consider a special case of the real integral∫ ∞

0

xα−1

x + 1
dx, (21)

where α is a real constant restricted to the interval 0 < α < 1. Observe
that when α = 1

2 and x is replaced by z, the integrand of (12) becomes the
multiple-valued function

1
z1/2(z + 1)

. (22)

The origin is a branch point of (22) since z1/2 has two values for any z �= 0.
If you envision traveling in a complete circle around the origin z = 0, starting
from a point z = reiθ, r > 0, you return to the same starting point z,
but θ has increased by 2π. Correspondingly, the value of z1/2 changes from
z1/2 =

√
r eiθ/2 to a different value or different branch:

z1/2 =
√
r ei(θ+2π)/2 =

√
r eiθ/2eiπ = −

√
r eiθ/2.

Recall, we can force z1/2 to be single valued by restricting θ to some interval of
length 2π. For (22), if we choose the positive x-axis as a branch cut, in other
words by restricting θ to 0 < θ < 2π, we then guarantee that z1/2 =

√
r eiθ/2

is single valued. See page 126.
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EXAMPLE 6 Integration along a Branch Cut

Evaluate
∫ ∞

0

1√
x(x + 1)

dx.

Solution First observe that the real integral is improper for two reasons.
Notice an infinite discontinuity at x = 0 and the infinite limit of integration.
Moreover, it can be argued from the facts that the integrand behaves like
x−1/2 near the origin and like x−3/2 as x→∞, that the integral converges.

y

x

CR

Cr
A

D

B

E

z = –1

Figure 6.15 Contour for Example 6

We form the integral
∮

C

1
z1/2(z + 1)

dz, where C is the closed contour

shown in Figure 6.15 consisting of four components: Cr and CR are portions
of circles, and AB and ED are parallel horizontal line segments running along
opposite sides of the branch cut. The integrand f(z) of the contour integral
is single valued and analytic on and within C, except for the simple pole at
z = −1 = eπi. Hence we can write∮

C

1
z1/2(z + 1)

dz = 2πiRes(f(z),−1)

∫
CR

+
∫

ED

+
∫

Cr

+
∫

AB

= 2πiRes(f(z),−1). (23)or

Despite what is shown in Figure 6.15, it is permissible to think that the line
segments AB and ED actually rest on the positive real axis, more precisely,
AB coincides with the upper side of the positive real axis for which θ = 0 and
ED coincides with the lower side of the positive real axis for which θ = 2π.
On AB, z = xe0i, and on ED, z = xe(0+2π)i = xe2πi, so that∫

ED

=
∫ r

R

(xe2πi)−1/2

xe2πi + 1
(e2πidx) = −

∫ r

R

x−1/2

x + 1
dx =

∫ R

r

x−1/2

x + 1
dx (24)

∫
AB

=
∫ R

r

(xe0i)−1/2

xe0i + 1
(e0idx) =

∫ R

r

x−1/2

x + 1
dx. (25)and

Now with z = reiθ and z = Reiθ on Cr and CR, respectively, it can be shown,
by analysis similar to that given in Example 2 and in the proof of Theorem
6.17, that

∫
Cr
→ 0 as r → 0 and

∫
CR
→ 0 as R→∞. Thus from (23), (24),

and (25) we see that

lim
r→0
R→∞

[∫
CR

+
∫

ED

+
∫

Cr

+
∫

AB

= 2πiRes(f(z),−1)
]

is the same as

2
∫ ∞

0

1√
x(x + 1)

dx = 2πiRes(f(z),−1). (26)

Finally, from (4) of Section 6.5,

Res(f(z),−1) = z−1/2
∣∣∣
z=eπi

= e−πi/2 = −i
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and so (26) yields the result
∫ ∞

0

1√
x(x + 1)

dx = π.

6.6.4 The Argument Principle and Rouché’s Theorem

Argument Principle Unlike the foregoing discussion in which the
focus was on the evaluation of real integrals, we next apply residue theory to
the location of zeros of an analytic function. To get to that topic, we must
first consider two theorems that are important in their own right.

In the first theorem we need to count the number of zeros and poles of a
function f that are located within a simple closed contour C; in this counting
we include the order or multiplicity of each zero and pole. For example, if

f(z) =
(z − 1)(z − 9)4(z + i)2

(z2 − 2z + 2)2(z − i)6(z + 6i)7
(27)

and C is taken to be the circle |z| = 2, then inspection of the numerator of f
reveals that the zeros inside C are z = 1 (a simple zero) and z = −i (a zero of
order or multiplicity 2). Therefore, the number N0 of zeros inside C is taken
to be N0 = 1 + 2 = 3. Similarly, inspection of the denominator of f shows,
after factoring z2− 2z+2, that the poles inside C are z = 1− i (pole of order
2), z = 1 + i (pole of order 2), and z = i (pole of order 6). The number Np of
poles inside C is taken to be Np = 2 + 2 + 6 = 10.

Theorem 6.20 Argument Principle

Let C be a simple closed contour lying entirely within a domain D. Sup-
pose f is analytic in D except at a finite number of poles inside C, and
that f(z) �= 0 on C. Then

1
2πi

∮
C

f ′(z)
f(z)

dz = N0 −Np, (28)

where N0 is the total number of zeros of f inside C and Np is the total
number of poles of f inside C. In determining N0 and Np, zeros and poles
are counted according to their order or multiplicities.

Proof We start with a reminder that when we use the symbol
∮
C

for a
contour, this signifies that we are integrating in the positive direction around
the closed curve C.

The integrand f ′(z)/f(z) in (28) is analytic in and on the contour C
except at the points in the interior of C where f has a zero or a pole. If
z0 is a zero of order n of f inside C, then by (5) of Section 6.4 we can write
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f(z) = (z−z0)nφ(z), where φ is analytic at z0 and φ(z0) �= 0. We differentiate
f by the product rule,

f ′(z) = (z − z0)nφ′(z) + n(z − z0)n−1φ(z),

and divide this expression by f . In some punctured disk centered at z0, we
have

f ′(z)
f(z)

=
(z − z0)nφ′(z) + n(z − z0)n−1φ(z)

(z − z0)nφ(z)
=

φ′(z)
φ(z)

+
n

z − z0
. (29)

The result in (29) shows that the integrand f ′(z)/f(z) has a simple pole at
z0 and the residue at that point is

Res
(
f ′(z)
f(z)

, z0

)
= lim

z→z0
(z − z0)

[
φ′(z)
φ(z)

+
n

z − z0

]

= lim
z→z0

[
(z − z0)

φ′(z)
φ(z)

+ n

]
= 0 + n = n,

(30)

which is the order of the zero z0.
Now if zp is a pole of order m of f within C, then by (7) of Section 6.4

we can write f(z) = g(z)/(z − zp)m, where g is analytic at zp and g(zp) �= 0.
By differentiating, in this case f(z) = (z − zp)−mg(z), we have

f ′(z) = (z − zp)−mg′(z)−m(z − zp)−m−1g(z).

Therefore, in some punctured disk centered at zp,

f ′(z)
f(z)

=
(z − zp)−mg′(z)−m(z − zp)−m−1g(z)

(z − zp)−mg(z)
=

g′(z)
g(z)

+
−m

z − zp
. (31)

We see from (31) that the integrand f ′(z)/f(z) has a simple pole at zp. Pro-
ceeding as in (30), we also see that the residue at zp is equal to −m, which is
the negative of the order of the pole of f .

Finally, suppose that z01 , z02 , . . . , z0r
and zp1 , zp2 , . . . , zps

are the
zeros and poles of f within C and suppose further that the order of the
zeros are n1, n2, . . . , nr and that order of the poles are m1, m2, . . . , ms.
Then each of these points is a simple pole of the integrand f ′(z)/f(z) with
corresponding residues n1, n2, . . . , nr and −m1,−m2, . . . , −ms. It follows
from the residue theorem (Theorem 6.16) that

∮
C
f ′(z) dz/f(z) is equal to

2πi times the sum of the residues at the poles:

∮
C

f ′(z)
f(z)

dz = 2πi

[
r∑

k=1

Res
(
f ′(z)
f(z)

, z0k

)
+

s∑
k=1

Res
(
f ′(z)
f(z)

, zpk

)]

= 2πi

[
r∑

k=1

nk +
s∑

k=1

(−mk)

]
= 2πi[N0 −Np].

Dividing by 2πi establishes (28). ✎
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To illustrate Theorem 6.20, suppose the simple closed contour is |z| = 2
and the function f is the one given in (27). The result in (28) indicates that
in the evaluation of

∮
C
f ′(z) dz/f(z), each zero of f within C contributes 2πi

times the order of multiplicity of the zero and each pole contributes 2πi times
the negative of the order of the pole:

∮
C

f ′(z)
f(z)

dz =

contribution

of zeros of f︷ ︸︸ ︷
[2πi(1) + 2πi(2)] + [

contribution

of poles of f︷ ︸︸ ︷
2πi(−2) + 2πi(−2) + 2πi(−6)] = −14πi.

Why the Name? Why is Theorem 6.20 called the argument principle?
This question may have occurred to you since no reference is made in the
proof of the theorem to any arguments of complex quantities. But in point
of fact there is a relation between the number N0 −Np in Theorem 6.20 and
arg (f(z)). More precisely,

N0 −Np =
1
2π

[change in arg (f(z)) as z traverses C once in the positive direction].

This principle can be easily verified using the simple function f(z) = z2 and
the unit circle |z| = 1 as the simple closed contour C in the z-plane. Because
the function f has a zero of multiplicity 2 within C and no poles, we have
N0−Np = 2. Now, if C is parametrized by z = eiθ, 0 ≤ θ ≤ 2π, then its image
C ′ in the w-plane under the mapping w = z2 is w = ei2θ, 0 ≤ θ ≤ 2π, which
is the unit circle |w| = 1. As z traverses C once starting at z = 1 (θ = 0) and
finishing at z = 1 (θ = 2π), we see arg (f(z)) = arg (w) = 2θ increases from 0
to 4π. Put another way, w traverses or winds around the circle |w| = 1 twice.
Thus,

1
2π

[change in arg(f(z)) as z traverses C once in the positive direction] =
1
2π

[4π − 0] = 2.

Rouché’s Theorem The next result follows as a consequence of the
argument principle. The theorem is helpful in determining the number of
zeros of an analytic function.

Theorem 6.21 Rouché’s Theorem

Let C be a simple closed contour lying entirely within a domain D.
Suppose f and g are analytic in D. If the strict inequality
|f(z)− g(z)| < |f(z)| holds for all z on C, then f and g have the
same number of zeros (counted according to their order or multiplicities)
inside C.

Proof We start with the observation that the hypothesis “the inequality
|f(z)− g(z)| < |f(z)| holds for all z on C” indicates that both f and g have
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no zeros on the contour C. From |f(z)− g(z)| = |g(z)− f(z)|, we see that by
dividing the inequality by |f(z)| we have, for all z on C,

|F (z)− 1| < 1, (32)

where F (z) = g(z)/f(z). The inequality in (32) shows that the image C ′ in
the w-plane of the curve C under the mapping w = F (z) is a closed path and
must lie within the unit open disk |w − 1| < 1 centered at w = 1. See Figure
6.16. As a consequence, the curve C ′ does not enclose w = 0, and therefore
1/w is analytic in and on C ′. By the Cauchy-Goursat theorem,∫

C′

1
w

dw = 0 or
∮

C

F ′(z)
F (z)

dz = 0, (33)

since w = F (z) and dw = F ′(z) dz. From the quotient rule,

F ′(z) =
f(z)g′(z)− g(z)f ′(z)

[f(z)]2
,

F ′(z)
F (z)

=
g′(z)
g(z)

− f ′(z)
f(z)

.we get

v

u

C ′

1

|w – 1| = 1

Figure 6.16 Image of C lies within the

disk |w − 1| < 1.

Using the last expression in the second integral in (33) then gives∮
C

[
g′(z)
g(z)

− f ′(z)
f(z)

]
dz = 0 or

∮
C

g′(z)
g(z)

dz =
∮

C

f ′(z)
f(z)

dz.

It follows from (28) of Theorem 6.20, with Np = 0, that the number of zeros
of g inside C is the same as the number of zeros of f inside C. ✎

EXAMPLE 7 Location of Zeros

Locate the zeros of the polynomial function g(z) = z9 − 8z2 + 5.

Solution We begin by choosing f(z) = z9 because it has the same number
of zeros as g. Since f has a zero of order 9 at the origin z = 0, we begin
our search for the zeros of g by examining circles centered at z = 0. In other
words, if we can establish that |f(z)− g(z)| < |f(z)| for all z on some circle
|z| = R, then Theorem 6.21 states that f and g have the same number of
zeros within the disk |z| < R. Now by the triangle inequality (6) of Section
1.2,

|f(z)− g(z)| =
∣∣z9 − (z9 − 8z2 + 5)

∣∣ =
∣∣8z2 − 5

∣∣ ≤ 8|z|2 + 5.

Also, |f(z)| = |z|9. Observe that |f(z)− g(z)| < |f(z)| or 8|z|2 + 5 < |z|9
is not true for all points on the circle |z| = 1, so we can draw no conclusion.
However, by expanding the search to the larger circle |z| = 3

2 we see

|f(z)− g(z)| ≤ 8|z|2 + 5 = 8
(

3
2

)2 + 5 = 23 <
(

3
2

)9 = |f(z)| (34)
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since
(

3
2

)9 ≈ 38.44. We conclude from (34) that because f has a zero of order
9 within the disk |z| < 3

2 , all nine zeros of g lie within the same disk.

By slightly subtler reasoning, we can demonstrate that the function g in
Example 7 has some zeros inside the unit disk |z| < 1. To see this suppose
we choose f(z) = −8z2 + 5. Then for all z on |z| = 1,

|f(z)− g(z)| =
∣∣(−8z2 + 5)− (z9 − 8z2 + 5)

∣∣ =
∣∣−z9

∣∣ = |z|9 = (1)9 = 1. (35)

But from (10) of Section 1.2 we have, for all z on |z| = 1,

|f(z)| = |−f(z)| =
∣∣8z2 − 5

∣∣ ≥ ∣∣∣8|z|2 − |−5|
∣∣∣ = |8− 5| = 3. (36)

The values in (35) and (36) show, for all z on |z| = 1, that
|f(z)− g(z)| < |f(z)|. Because f has two zeros within |z| < 1 (namely,

±
√

5
8 ≈ ±0.79), we can conclude from Theorem 6.21 that two zeros of g also

lie within this disk.
We can continue the reasoning of the previous paragraph. Suppose now

we choose f(z) = 5 and |z| = 1
2 . Then for all z on |z| = 1

2 ,

|f(z)− g(z)| =
∣∣5− (z9 − 8z2 + 5)

∣∣ =
∣∣−z9 + 8z2

∣∣ ≤ |z|9 + 8|z|2 =
(

1
2

)9 + 2 ≈ 2.002.

We now have |f(z)− g(z)| < |f(z)| = 5 for all z on |z| = 1
2 . Since f has

no zeros within the disk |z| < 1
2 , neither does g. At this point we are able

to conclude that all nine zeros of g(z) = z9 − 8z2 + 5 lie within the annular
region 1

2 < |z| < 3
2 ; two of these zeros lie within 1

2 < |z| < 1.

6.6.5 Summing Infinite Series

Using cot πz In some specialized circumstances, the residues at the
simple poles of the trigonometric function cot πz enable us to find the sum of
an infinite series.

n–n

C

1–1

–(n + ��) + ni (n + ��) + ni

–(n + ��) – ni (n + ��) – ni

y

x

Figure 6.17 Rectangular contour C

enclosing poles of (37)

In Section 4.3 we saw that the zeros of sin z were the real numbers z = kπ,
k = 0, ±1, ±2, . . . . Thus the function cot πz has simple poles at the zeros
of sin πz, which are πz = kπ or z = k, k = 0, ±1, ±2, . . . . If a polynomial
function p(z) has (i) real coefficients, (ii) degree n ≥ 2, and (iii) no integer
zeros, then the function

f(z) =
π cotπz
p(z)

(37)

has an infinite number of simple poles z = 0, ±1, ±2, . . . from cot πz
and a finite number of poles zp1 , zp2 , . . . , zpr

from the zeros of p(z). The
closed rectangular contour C shown in Figure 6.17 has vertices

(
n + 1

2

)
+ ni,

−
(
n + 1

2

)
+ ni, −

(
n + 1

2

)
− ni, and

(
n + 1

2

)
− ni, where n is taken large
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enough so that C encloses the simple poles z = 0, ±1, ±2, . . . , ±n and all
of the poles zp1 , zp2 , . . . , zpr

. By the residue theorem,

∮
C

π cotπz
p(z)

dz = 2πi


 n∑

k=−n

Res
(
π cotπz
p(z)

, k

)
+

r∑
j=1

Res
(
π cotπz
p(z)

, zpj

)
 . (38)

In a manner similar to that used several times in the discussion in Subsection
6.6.2, it can be shown that

∮
C
π cotπz dz/p(z) → 0 as n → ∞ and so (38)

becomes 0 =
∑
k

residues +
∑
j

residues. That is,

∞∑
k=−∞

Res
(
π cotπz
p(z)

, k

)
= −

r∑
j=1

Res
(
π cotπz
p(z)

, zpj

)
. (39)

Now from (4) of Section 6.5 (with the identifications g(z) = π cosπz/p(z),
h(z) = sinπz, h′(z) = π cosπz), it is a straightforward task to compute the
residues at the simple poles 0, ±1, ±2, . . . :

Res
(
π cotπz
p(z)

, k

)
=

π cos kπ/p(k)
π cos kπ

=
1

p(k)
. (40)

By combining (40) and (39) we arrive at our desired result

∞∑
k=−∞

1
p(k)

= −
r∑

j=1

Res
(
π cotπz
p(z)

, zpj

)
. (41)

Using csc πz There exist several more summation formulas similar to
(41). If p(z) is a polynomial function satisfying the same assumptions (i)–(iii)
given above, then the function

f(z) =
π cscπz
p(z)

(42)

has an infinite number of simple poles z = 0, ±1, ±2, . . . from cscπz and a
finite number of poles zp1 , zp2 , . . . , zpr from the zeros of p(z). In this case
it can be shown that

∞∑
k=−∞

(−1)k

p(k)
= −

r∑
j=1

Res
(
π cscπz
p(z)

, zpj

)
. (43)

In our last example we show how to use the result in (41) to find the sum
of an infinite series.

EXAMPLE 8 Summing an Infinite Series

Find the sum of the series
∞∑

k=0

1
k2 + 4

.
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Solution Observe that if we identify p(z) = z2+4, then the three assumptions
(i)–(iii) preceding (37) hold true. The zeros of p(z) are ±2i and correspond
to simple poles of f(z) = π cotπz

/
(z2 + 4). According to the formula in (41),

∞∑
k=−∞

1
k2 + 4

= −
[
Res

(
π cotπz
z2 + 4

,−2i
)

+ Res
(
π cotπz
z2 + 4

, 2i
)]

. (44)

Now again by (4) of Section 6.5 we have

Res
(
π cotπz
z2 + 4

,−2i
)

=
π cot 2πi

4i
and Res

(
π cotπz
z2 + 4

, 2i
)

=
π cot 2πi

4i
.

The sum of the residues is (π/2i) cot 2πi. This sum is a real quantity because
from (27) of Section 4.3:

π

2i
cot 2πi =

π

2i
cosh(−2π)

( −i sinh(−2π))
= −π

2
coth 2π.

Hence (44) becomes
∞∑

k=−∞

1
k2 + 4

=
π

2
coth 2π. (45)

This is not quite the desired result. To that end we must manipulate the
summation

∑∞
k=−∞ in order to put it in the form

∑∞
k=0 . Observe

∞∑
k=−∞

1
k2 + 4

=
−1∑

k=−∞

1
k2 + 4

+

k = 0
term︷︸︸︷
1
4

+
∞∑

k=1

1
k2 + 4

=
∞∑

k=1

1
(−k)2 + 4

+
1
4

+
∞∑

k=1

1
k2 + 4

= 2
∞∑

k=1

1
k2 + 4

+
1
4

= 2
∞∑

k=0

1
k2 + 4

− 1
4
. (46)

Finally, we obtain the sum of the original series by combining (45) with (46),
∞∑

k=−∞

1
k2 + 4

= 2
∞∑

k=0

1
k2 + 4

− 1
4

=
π

2
coth 2π,

and solving for
∑∞

k=0 :
∞∑

k=0

1
k2 + 4

=
1
8

+
π

4
coth 2π. (47)

With the help of calculator, we find that the right side of (47) is approximately
0.9104.



370 Chapter 6 Series and Residues

EXERCISES 6.6 Answers to selected odd-numbered problems begin on page ANS-20.

6.6.1 Evaluation of Real Trigonometric Integrals

In Problems 1–12, evaluate the given trigonometric integral.

1.

∫ 2π

0

1

1 + 0.5 sin θ
dθ 2.

∫ 2π

0

1

10 − 6 cos θ
dθ

3.

∫ 2π

0

cos θ

3 + sin θ
dθ 4.

∫ 2π

0

1

1 + 3 cos2 θ
dθ

5.

∫ π

0

1

2 − cos θ
dθ [Hint : Let t = 2π − θ.] 6.

∫ π

0

1

1 + sin2 θ
dθ

7.

∫ 2π

0

sin2 θ

5 + 4 cos θ
dθ 8.

∫ 2π

0

cos2 θ

3 − sin θ
dθ

9.

∫ 2π

0

cos 2θ

5 − 4 cos θ
dθ 10.

∫ 2π

0

1

cos θ + 2 sin θ + 3
dθ

11.

∫ 2π

0

cos2 θ

2 + sin θ
dθ 12.

∫ 2π

0

cos 3θ

5 − 4 cos θ
dθ

In Problems 13 and 14, establish the given general result. Use Problem 13 to verify

the answer in Example 1. Use Problem 14 to verify the answer to Problem 7.

13.

∫ π

0

dθ

(a + cos θ)2
dθ =

aπ

(
√
a2 − 1)3

, a > 1

14.

∫ 2π

0

sin2 θ

a + b cos θ
dθ =

2π

b2
(
a−

√
a2 − b2

)
, a > b > 0

6.6.2 Evaluation of Real Improper Integrals

In Problems 15–26, evaluate the Cauchy principal value of the given improper

integral.

15.

∫ ∞

−∞

1

x2 − 2x + 2
dx 16.

∫ ∞

−∞

1

x2 − 6x + 25
dx

17.

∫ ∞

−∞

1

(x2 + 4)2
dx 18.

∫ ∞

−∞

x2

(x2 + 1)2
dx

19.

∫ ∞

−∞

1

(x2 + 1)3
dx 20.

∫ ∞

−∞

x

(x2 + 4)3
dx

21.

∫ ∞

−∞

2x2 − 1

x4 + 5x2 + 4
dx 22.

∫ ∞

−∞

1

(x2 + 1)2(x2 + 9)
dx

23.

∫ ∞

0

x2 + 1

x4 + 1
dx 24.

∫ ∞

0

1

x6 + 1
dx

25.

∫ ∞

0

x2

x6 + 1
dx 26.

∫ ∞

−∞

x2

(x2 + 2x + 2)(x2 + 1)2
dx

In Problems 27–38, evaluate the Cauchy principal value of the given improper

integral.

27.

∫ ∞

−∞

cosx

x2 + 1
dx 28.

∫ ∞

−∞

cos 2x

x2 + 1
dx

29.

∫ ∞

−∞

x sinx

x2 + 1
dx 30.

∫ ∞

0

cosx

(x2 + 4)2
dx
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31.

∫ ∞

0

cos 3x

(x2 + 1)2
dx 32.

∫ ∞

−∞

sinx

x2 + 4x + 5
dx

33.

∫ ∞

0

cos 2x

x4 + 1
dx 34.

∫ ∞

0

x sinx

x4 + 1
dx

35.

∫ ∞

−∞

cosx

(x2 + 1)(x2 + 9)
dx 36.

∫ ∞

0

x sinx

(x2 + 1)(x2 + 4)
dx

37.

∫ ∞

−∞

sinx

x + i
dx [Hint : First substitute sinx = (eix − e−ix)

/
2i, x real.]

38.

∫ ∞

−∞

cosx + x sinx

x2 + 1
dx [Hint : Consider eiz

/
(z − i).]

In Problems 39–42, use an indented contour and residues to establish the Cauchy

principal value of the given improper integral.

39.

∫ ∞

−∞

sinx

x
dx = π 40.

∫ ∞

−∞

sinx

x(x2 + 1)
dx = π(1 − e−1)

41.

∫ ∞

0

1 − cosx

x2
dx =

π

2
42.

∫ ∞

−∞

x cosx

x2 − 3x + 2
dx = π[sin 1 − 2 sin 2]

6.6.3 Integration along a Branch Cut

In Problems 43–46, proceed as in Example 6 to establish the Cauchy principal value

for the given improper integral.

43.

∫ ∞

0

1√
x(x2 + 1)

dx =
π√
2

44.

∫ ∞

0

1√
x(x + 1)(x + 4)

dx =
π

3

45.

∫ ∞

0

√
x

(x2 + 1)2
dx =

π

4
√

2
46.

∫ ∞

0

x1/3

(x + 1)2
dx =

2π

3
√

3

In Problems 47 and 48, establish the Cauchy principal value for the given improper

integral. Use Problem 47 to verify the answer in Example 6. Use Problem 48 to

verify the answer to Problem 45.

47.

∫ ∞

0

xα−1

x + 1
dx =

π

sinαπ
, 0 < α < 1,

48.

∫ ∞

0

xα

(x2 + 1)2
dx =

π(1 − α)

4 cos(απ/2)
, −1 < α < 3, α �= 1

Miscellaneous Real Integrals

49. Use the contour C shown in Figure 6.18 to show that

P.V.

∫ ∞

−∞

eαx

1 + ex
dx =

π

sinαπ
, 0 < α < 1.

r–r

C

y

x

2   iπ

   iπ

Figure 6.18 Figure for Problem 49
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50. The integral result
∫ ∞
−∞ e−x2

dx =
√
π can be established using elelmentary cal-

culus and polar coordinates. Use this result, the contour integral
∮

C
e−z2

eiαzdz,
and the contour C shown in Figure 6.19, to show that

P.V.

∫ ∞

0

e−x2
cosαxdx =

√
π

2
e−α2/4.

r–r

C

y

x

2
�i

Figure 6.19 Figure for Problem 50

51. Discuss how to evaluate the Cauchy principal value of∫ ∞

0

xα−1

x− 1
dx, 0 < α < 1.

Carry out your ideas.

52. (a) Use a graphics calculator or computer graphing program to plot on the
same coordinates axes the graphs of sin θ and 2θ/π on the interval
0 ≤ θ ≤ π/2. Explain in graphical terms the validity of the inequality
sin θ ≥ 2θ/π on the interval 0 ≤ θ ≤ π/2. Use this inequality to prove that
for R > 0, ∫ π/2

0

e−R sin θdθ <
π

2R
.

(b) Explain how the result in part (a) leads us to conclude that for R > 0,∫ π

0

e−R sin θdθ <
π

R
. (48)

The result in (48) is known as Jordan’s inequality, which is often use-
ful when evaluating integrals of the form

∫ ∞
−∞ f(x) cosαxdx and∫ ∞

−∞ f(x) sinαxdx.

53. Reconsider the integral in Problem 39 along with the indented contour in Figure
6.14. Use Jordan’s inequality in Problem 52 to show that

∫
CR

→ 0 as R → ∞.

54. Investigate the integral

∫ 2π

0

1

a− sin θ
dθ, |a| ≤ 1, in light of the evaluation

procedure outlined in Subsection 6.6.1.

55. Use Euler’s formula as a starting point in the evaluation of the integral∫ 2π

0

ecos θ[cos(sin θ − nθ) + i sin(sin θ − nθ)] dθ, n = 0, 1, 2, ... .

56. From your work in Problem 55, discern the values of the real integrals∫ 2π

0

ecos θ cos(sin θ − nθ) dθ and

∫ 2π

0

ecos θ sin(sin θ − nθ) dθ.



6.6 Some Consequences of the Residue Theorem 373

57. Suppose a real function f is continuous on the interval [a, b] except at a point
c within the interval. Then the principal value of the integral is defined by

P.V.

∫ b

a

f(x) dx = lim
ε→0

[∫ c−ε

a

f(x) dx +

∫ b

c+ε

f(x) dx

]
, ε > 0.

Compute the principal value of

∫ 3

0

1

x− 1
dx.

58. Determine whether the integral in Problem 57 converges.

6.6.4 The Argument Principle and Rouché’s Theorem

In Problems 59 and 60, use the argument principle in (28) of Theorem 6.20 to

evaluate the integral

∮
C

f ′(z)

f(z)
dz for the given function f and closed contour C.

59. f(z) = z6 − 2iz4 + (5 − i)z2 + 10, C encloses all the zeros of f

60. f(z) =
(z − 3iz − 2)2

z(z2 − 2z + 2)5
, C is |z| = 3

2

In Problems 61–64, use the argument principle in (28) of Theorem 6.20 to evaluate

the given integral on the indicated closed contour C. You will have to identify f(z)

and f ′(z).

61.

∮
C

2z + 1

z2 + z
dz, C is |z| = 2 62.

∮
C

z

z2 + 4
dz, C is |z| = 3

63.

∮
C

cot z dz, C is the rectangular contour with vertices 10 + i, −4 + i, −4 − i,

and 10 − i.

64.

∮
C

tanπz dz, C is |z − 1| = 2

65. Use Rouché’s theorem (Theorem 6.21) to show that all seven of the zeros of
g(z) = z7 + 10z3 + 14 lie within the annular region 1 < |z| < 2.

66. (a) Use Rouché’s theorem (Theorem 6.21) to show that all four of the zeros of
g(z) = 4z4 + 2(1 − i)z + 1 lie within the disk |z| < 1.

(b) Show that three of the zeros of the function g in part (a) lie within the
annular region 1

2
< |z| < 1.

67. In the proof of Theorem 6.21, explain how the hypothesis that the strict in-
equality |f(z) − g(z)| < |f(z)| holds for all z on C implies that f and g cannot
have zeros on C.

6.6.5 Summing Infinite Series

68. (a) Use the procedure illustrated in Example 8 to obtain the general result

∞∑
k=0

1

k2 + a2
=

1

2a2
+

π

2a
coth aπ.

(b) Use part (a) to verify (47) when a = 2.

(c) Find the sum of the series

∞∑
k=0

1

k2 + 1
.
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In Problems 69 and 70, use (41) find the sum of the given series.

69.
∞∑

k=1

1

(2k − 1)2
70.

∞∑
k=0

1

16k2 + 16k + 3

In Problems 71 and 72, use (43) find the sum of the given series.

71.
∞∑

k=−∞

(−1)k

(4k + 1)2
72.

∞∑
k=0

(−1)k

(2k + 1)3

73. (a) Use (41) to obtain the general result

∞∑
k=−∞

1

(k − a)2
=

π2

sin2 πa

where a �= 0, ±1, ±2, . . . .

(b) Use part (a) to verify your answer to Problem 69.

74. (a) Use (43) to obtain the general result

∞∑
k=−∞

(−1)k

(k + a)2
=

π2 cosπa

sin2 πa
,

where a �= 0, ±1, ±2, . . . .

(b) Use part (a) to verify your answer to Problem 71

6.7 Applications

6.7In other courses in mathematics or engineering you may have used the Laplace transform
of a real function f defined for t ≥ 0,

� {f(t)} =
∫ ∞

0

e−stf(t) dt. (1)

In the application of (1) we face two problems:

(i) The direct problem: Given a function f(t) satisfying certain conditions, find its Laplace
transform.

When the integral in (1) converges, the result is a function of s. It is common practice
to emphasize the relationship between a function and its transform by using a lowercase
letter to denote the function and the corresponding uppercase letter to denote its Laplace
transform, for example � {f(t)} = F (s), � {y(t)} = Y (s), and so on.

(ii) The inverse problem: Find the function f(t) that has a given transform F (s).

The function F (s) is called the inverse Laplace transform and is denoted by
�−1{F (s)} .

The Laplace transform is an invaluable aid in solving solve certain kinds of applied
problems involving differential equations. In these problems we deal with the transform
Y (s) of an unknown function y(t). The determination of y(t) requires the computation of
�−1{Y (s)} . In the case when Y (s) is a rational function of s, you may recall employing
partial fractions, operational properties, or tables to compute this inverse.
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We will see in this section that the inverse Laplace transform is not merely a symbol but
actually another integral transform. The reason why you did not use this inverse integral
transform in previous courses is that it is a special type of complex contour integral.

We begin with a review of the notion of integral transform pairs. The section concludes
with a brief introduction to the Fourier transform.

Integral Transforms Suppose f(x, y) is a real-valued function of two
real variables. Then a definite integral of f with respect to one of the variables
leads to a function of the other variable. For example, if we hold y constant,
integration with respect to the real variable x gives

∫ 2

1
4xy2dx = 6y2. Thus

a definite integral such as F (α) =
∫ b

a
f(x)K(α, x) dx transforms a function f

of the variable x into a function F of the variable α. We say that

F (α) =
∫ b

a

f(x)K(α, x) dx (2)

is an integral transform of the function f . Integral transforms appear in
transform pairs. This means that the original function f can be recovered
by another integral transform

f(x) =
∫ d

c

F (α)H(α, x) dα, (3)

called the inverse transform. The function K(α, x) in (2) and the function
H(α, x) in (3) are called the kernels of their respective transforms. We
note that if α represents a complex variable, then the definite integral (3) is
replaced by a contour integral.

The Laplace Transform Suppose now in (2) that the symbol α is
replaced by the symbol s, and that f represents a represents a real function§

that is defined on the unbounded interval [0, ∞). Then (2) is an improper
integral and is defined as the limit

∫ ∞

0

K(s, t)f(t) dt = lim
b→∞

∫ b

0

K(s, t)f(t) dt. (4)

If the limit in (4) exists, we say that the integral exists or is convergent; if the
limit does not exist the integral does not exist and is said to be divergent. The
choice K(s, t) = e−st, where s is a complex variable, for the kernel in (4) gives
the Laplace transform � {f(t)} defined previously in (1). The integral that
defines the Laplace transform may not converge for certain kinds of functions
f . For example, neither �

{
et2

}
nor � {1/t} exist. Also, the limit in (4) will

exist for only certain values of the variable s.

§On occasion f(t) could be a complex-valued function of a real variable t.
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EXAMPLE 1 Existence of a Laplace Transform

The Laplace transform of f(t) = 1, t ≥ 0 is

� {1} =
∫ ∞

0

e−st(1) dt = lim
b→∞

∫ b

0

e−st dt

= lim
b→∞

−e−st

s

∣∣∣∣
b

0

= lim
b→∞

1− e−sb

s
. (5)

If s is a complex variable, s = x + iy, then recall

e−sb = e−bx(cos by + i sin by). (6)

From (6) we see in (5) that e−sb → 0 as b→∞ if x > 0. In other words, (5)

gives � {1} =
1
s
, provided Re(s) > 0.

a b

y

t
t1 t2 t3

Figure 6.20 Piecewise continuity on

[0, ∞)

y

t
T

Mect(c > 0)

f(t)

Figure 6.21 Exponential order

cos t

et

y

t

Figure 6.22 f(t) = cos t is of

exponential order c = 0.

Existence of �{f(t)} Conditions that are sufficient to guarantee
the existence of � {f(t)} are that f be piecewise continuous on [0, ∞) and
that f be of exponential order. Recall from elementary calculus, piecewise
continuity on [0, ∞) means that on any interval there are at most a finite
number of points tk, k = 1, 2, . . . , n, tk−1 < tk, at which f has finite
discontinuities and is continuous on each open interval tk−1 < t < tk. See
Figure 6.20. A function f is said to be exponential order c if there exist
constants c, M > 0, and T > 0 so that | f(t) | ≤ Mect, for t > T . The
condition | f(t) | ≤ Mect for t > T states that the graph of f on the interval
(T, ∞) does not grow faster than the graph of the exponential function Mect.
See Figure 6.21. Alternatively, e−ct| f(t) | is bounded; that is, e−ct| f(t) | ≤M
for t > T . As can be seen in Figure 6.22, the function f(t) = cos t, t ≥ 0
is of exponential order c = 0 for t > 0. Indeed, it follows that all bounded
functions are necessarily of exponential order c = 0.

Theorem 6.22 Sufficient Conditions for Existence

Suppose f is piecewise continuous on [0, ∞) and of exponential order c
for t > T . Then � {f(t)} exists for Re(s) > c.

Proof By the additive interval property of definite integrals,

� {f(t)} =
∫ T

0

e−stf(t) dt +
∫ ∞

T

e−stf(t) dt = I1 + I2.

The integral I1 exists since it can be written as a sum of integrals over intervals
on which e−stf(t) is continuous. To prove the existence of I2, we let s be a
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complex variable s = x + iy. Then using |e−st| = |e−xt(cos yt− i sin yt)| =
e−xt and the definition of exponential order that | f(t) | ≤ Mect, t > T , we
get

|I2| ≤
∫ ∞

T

∣∣ estf(t)
∣∣ dt ≤M

∫ ∞

T

e−xtectdt

= M

∫ ∞

T

e−(x−c)tdt = −M
e−(x−c)t

x− c

∣∣∣∣
∞

T

= M
e−(x−c)T

x− c

for x = Re(s) > c. Since
∫ ∞
T

Me−(x−c)tdt converges, the integral∫ ∞
T
| e−stf(t) |dt converges by the comparison test for improper integrals.

This, in turn, implies that I2 exists for Re(s) > c. The existence of I1 and I2
implies that � {f(t)} =

∫ ∞
0

e−stf(t) dt exists for Re(s) > c. ✎

With the foregoing concepts in mind we state the next theorem without
proof.

Theorem 6.23 Analyticity of the Laplace Transform

Suppose f is piecewise continuous on [0, ∞) and of exponential order c
for t ≥ 0. Then the Laplace transform of f ,

F (s) =
∫ ∞

0

e−stf(t) dt

is an analytic function in the right half-plane defined by Re(s) > c.

The Inverse Laplace Transform Although Theorem 6.23 indi-
cates that the complex function F (s) is analytic to the right of the line x = c
in the complex plane, F (s) will, in general, have singularities to the left of
that line. We are now in a position to give the integral form of the inverse
Laplace transform.

Theorem 6.24 Inverse Laplace Transform

If f and f ′ are piecewise continuous on [0, ∞) and f is of exponential
order c for t ≥ 0, and F (s) is a Laplace transform, then the inverse
Laplace transform �−1{F (s)} is

f(t) = �−1{F (s)} =
1

2πi
lim

R→∞

∫ γ+iR

γ−iR

estF (s) ds, (7)

where γ > c.
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The limit in (7), which defines a principal value of the integral, is usually
written as

f(t) = �−1{F (s)} =
1

2πi

∫ γ+i∞

γ−i∞
estF (s) ds, (8)

where the limits of integration indicate that the integration is along the in-
finitely long vertical-line contour Re(s) = x = γ. Here γ is a positive real
constant greater than c and greater than all the real parts of the singularities
in the left half-plane. The integral in (8) is called a Bromwich contour inte-
gral. Relating (8) back to (3), we see that the kernel of the inverse transform
is H(s, t) = est/2πi.

y

xsn

s2

s3

s1

s4

CR

LR

O

+ iRγ

– iRγ

γ

Figure 6.23 Possible contour that

could be used to evaluate (7)

The fact that F (s) has singularities s1, s2, . . . , sn to the left of the line
x = γ makes it possible for us to evaluate (7) by using an appropriate closed
contour encircling the singularities. A closed contour C that is commonly
used consists of a semicircle CR of radius R centered at (γ, 0) and a vertical
line segment LR parallel to the y-axis passing through the point (γ, 0) and
extending from y = γ−iR to y = γ+iR . See Figure 6.23. We take the radius
R of the semicircle to be larger than the largest number in set of moduli of
the singularities { |s1|, |s2|, . . . , |sn| }, that is, large enough so that all the
singularities lie within the semicircular region. With the contour C chosen in
this manner, (7) can often be evaluated using Cauchy’s residue theorem. If
we allow the radius R of the semicircle to approach ∞, the vertical part of
the contour approaches the infinite vertical line that is the contour in (8).

We use the contour just described in the proof of the following theorem.

Theorem 6.25 Inverse Laplace Transform

Suppose F (s) is a Laplace transform that has a finite number of poles
s1, s2, . . . , sn to the left of the vertical line Re(s) = γ and that C is the
contour illustrated in Figure 6.23. If sF (s) is bounded as R→∞, then

�−1 {F (s)} =
n∑

k=1

Res
(
estF (s), sk

)
. (9)

Proof From Figure 6.23 and Cauchy’s residue theorem, we have

∫
CR

estF (s) ds +
∫

LR

estF (s) ds = 2πi
n∑

k=1

Res
(
estF (s), sk

)
1

2πi

∫ γ+iR

γ−iR

estF (s) ds =
n∑

k=1

Res
(
estF (s), sk

)
− 1

2πi

∫
CR

estF (s) ds. (10)or

The theorem is justified by letting R → ∞ in (10) and showing that
lim

R→∞

∫
CR

estF (s) ds = 0. Now if the semicircle CR is parametrized by
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s = γ + Reiθ, π/2 ≤ θ ≤ 3π/2, then ds = Rieiθdθ = (s− γ)idθ, and so,

1
2πi

∫
CR

estF (s) ds =
1

2πi

∫ 3π/2

π/2

eγt+Rteiθ

F (γ + Reiθ)Rieiθdθ

1
2π

∣∣∣∣
∫

CR

estF (s) ds
∣∣∣∣ ≤ 1

2π

∫ 3π/2

π/2

∣∣∣eγt+Rteiθ
∣∣∣ ∣∣F (γ + Reiθ)

∣∣ ∣∣Rieiθ
∣∣dθ. (11)

To find an upper bound for the expression in (11) we examine the three moduli
of the integrand of the right-hand side. First,

↓ since
∣∣eiRt sin θ

∣∣ = 1∣∣∣eγt+Rteiθ
∣∣∣ =

∣∣∣eγteRt(cos θ+i sin θ)
∣∣∣ = eγteRt cos θ.

Next, for |s| sufficiently large, we can write∣∣Rieiθ
∣∣ = |s− γ|

∣∣i∣∣ ≤ |s|+ |γ| < |s|+ |s| = 2|s| and |sF (s)| < M.

The first of these two inequalities follows from the triangle inequality, and
the second from the hypothesis that sF (s) is bounded as R → ∞. Thus the
inequality in (11) continues as

1
2π

∣∣∣∣
∫

CR

estF (s) ds
∣∣∣∣ ≤ M

π
eγt

∫ 3π/2

π/2

eRt cos θdθ. (12)

If we let θ = φ+π/2, then the integral on the right-hand side of (12) becomes∫ π

0
e−Rt sin φdφ. Because the integrand is symmetric about the line θ = π/2,

we have ∫ π

0

e−Rt sin φdφ = 2
∫ π/2

0

e−Rt sin φdφ. (13)

Now since sinφ ≥ 2φ/π,∗ it follows that

2
∫ π/2

0

e−Rt sin φdφ ≤ 2
∫ π/2

0

e−2Rtφ/πdφ = − π

Rt
e−2Rtφ/π

∣∣∣π/2

0
=

π

Rt

[
1− e−Rt

]
. (14)

Thus (11), (12), (13), and (14) together give

1
2π

∣∣∣∣
∫

CR

estF (s) ds
∣∣∣∣ ≤ Meγt

Rt

[
1− e−Rt

]
. (15)

Since the right-hand side of (15) approaches zero as R → ∞ for t > 0 we
conclude that lim

R→∞

∫
CR

estF (s) ds = 0. Finally, as R → ∞ we see from (10)

that

� –1{F (s)} =
1

2πi

∫ γ+i∞

γ−i∞
estF (s) ds =

n∑
k=1

Res
(
estF (s), sk

)
.

✎

∗See Problem 52 in Exercises 6.6.
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EXAMPLE 2 Inverse Laplace Transform

Evaluate �−1

{
1
s3

}
, Re(s) > 0.

Solution Considered as a function of a complex variable s, the function
F (s) = 1

/
s3 has a pole of order 3 at s = 0. Thus by (9) and (2) of Section

6.5:

f(t) = �−1

{
1
s3

}
= Res

(
est 1

s3
, 0

)
=

1
2

lim
s→0

d2

ds2
(s− 0)3

est

s3

=
1
2

lim
s→0

d2

ds2
est

=
1
2

lim
s→0

t2est

=
1
2
t2.

Those readers familiar with the Laplace transform recognize that the an-
swer in Example 1 is consistent (for n = 2) with the result � {tn} = n!/sn+1

found in all tables of Laplace transforms.
The Laplace transform (1) utilizes only the values of a function f(t) for

t > 0, and so f is often taken to be 0 for t < 0. This is no major handicap
because the functions we deal with in applications are for the most part defined
only for t > 0. Although we shall not delve into details, the inversion integral
(7) can be derived from a result known as the Fourier integral formula. In
that analysis it is shown that

1
2πi

∫ γ+i∞

γ−i∞
estF (s)ds =


 f(t), t > 0

0, t < 0.
(16)

y

xsn

s2

s3

s1

s4

CR

LR

O

+ iRγ

– iRγ

γ

Figure 6.24 Contour for inversion

integral (7) for t < 0

This result is hinted at in the proof of Theorem 6.25. Notice from (15) that
the conclusion lim

R→∞

∫
CR

estF (s) ds = 0 is not valid for t < 0. However, if

we close the contour to the right for t < 0, as shown in Figure 6.24, then
1

2πi

∫ γ+i∞

γ−i∞
estF (s) ds = 0, which is consistent with (16). We use these results

in the next example.

EXAMPLE 3 Inverse Laplace Transform

Evaluate �−1

{
e−2s

(s− 1)(s− 3)

}
, Re(s) > 3.

Solution Before we calculate the residues at the simple poles at s = 1 and
s = 3, we note, after combining the two exponential functions and replacing
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the symbol t by t− 2, that (16) gives

1
2πi

∫ γ+i∞

γ−i∞

es(t−2)

(s− 1)(s− 3)
ds =


 f(t), t− 2 > 0

0, t− 2 < 0.
(17)

Thus from (17), (9), and (1) of Section 6.5,

f(t) = �−1

{
e−2s

(s− 1)(s− 3)

}
= Res

(
est e−2s

(s− 1)(s− 3)
, 1

)
+ Res

(
est e−2s

(s− 1)(s− 3)
, 3

)

= lim
s→1

(s− 1)
es(t−2)

(s− 1)(s− 3)
+ lim

s→3
(s− 3)

es(t−2)

(s− 1)(s− 3)

= −1
2
et−2 +

1
2
e3(t−2).

In other words,

f(t) =


−

1
2e

t−2 + 1
2e

3(t−2), t > 2

0, t < 2.
(18)

In the study of the Laplace transform the unit step function,

�(t− a) =


 1, t ≥ a

0, t < a

proves to be extremely useful when working with piecewise continuous func-
tions. The discontinuous function in (18) can be written as

f(t) = − 1
2e

t−2�(t− 2) + 1
2e

3(t−2)�(t− 2).

Fourier Transform Suppose now that f (x) is a real function defined
on the interval (−∞, ∞). Another important transform pair is the Fourier
transform

F{f(x)} =
∫ ∞

−∞
f(x)eiαxdx = F (α) (19)

and the inverse Fourier transform

F
−1{F (α)} =

1
2π

∫ ∞

−∞
F (α)e−iαxdα = f(x). (20)

Matching (19) and (20) with (2) and (3), we see that the kernel of the Fourier
transform is K(α, x) = eiαx, whereas the kernel of the inverse transform is
H(α, x) = e−iαx

/
2π. In (19) and (20) we assume that α is a real variable.

Also, observe that in contrast to (7), the inverse transform (20) is not a
contour integral.
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EXAMPLE 4 Fourier Transform

Find the Fourier transform of f(x) = e−|x|.

y

x

1

Figure 6.25 Graph of f in Example 4

Solution The graph of f ,

f(x) =


 ex, x < 0

e−x, x ≥ 0
, (21)

is given in Figure 6.25. From the expanded definition of f in (21), it follows
from (19) that the Fourier transform of f is

F{f(x)} =
∫ 0

−∞
exeiαxdx +

∫ ∞

0

e−xeiαxdx = I1 + I2. (22)

We shall begin by evaluating the improper integral I2. One of several ways of
proceeding is to write:

I2 = lim
b→∞

∫ b

0

e−x(1−αi)dx = lim
b→∞

e−x(1−αi)

αi− 1

∣∣∣∣
b

0

= lim
b→∞

e−b(1−αi) − 1
αi− 1

=
1

αi− 1
lim

b→∞

[
e−b cos bα + ie−b sin bα− 1

]
=

1
1− αi

.

Here we have used limb→∞ e−b cos bα = 0 and limb→∞ e−b sin bα = 0 for b > 0.
The integral I1 can be evaluate in the same manner to obtain

I1 =
1

1 + αi
.

Adding I1 and I2 gives the value of the Fourier transform (22):

F{f(x)} =
1

1− αi
+

1
1 + αi

or F (α) =
2

1 + α2
.

EXAMPLE 5 Inverse Fourier Transform

Find the inverse Fourier transform of F (α) =
2

1 + α2
.

Solution The idea here is to recover the function f in Example 4 from the
inverse transform (20),

F
−1{F (α)} =

1
2π

∫ ∞

−∞

2
1 + α2

e−iαx dα = f(x). (23)

To evaluate (23), we let z be a complex variable and introduce the contour

integral
∮

C

1
π(1 + z2)

e−izxdz. Note that the integrand has simple poles at
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z = ±i. From here on the procedure used is basically the same as that used
to evaluate trigonometric integrals in the preceding section by the theory of
residues. The contour C shown in Figure 6.26 encloses the simple pole z = i
in the upper plane and consists of the interval [−R, R] on the real axis and
a semicircular contour CR, where R > 1. Formally, we have

∮
C

1
π(1 + z2)

e−izxdz = 2πiRes
(

1
π(1 + z2)

e−izx, i

)
= ex. (24)

CR

i

R–R

y

x

Figure 6.26 First contour used to

evaluate (23)

Obviously the result in (24) is not the function f that we started with in
Example 4. A more detailed analysis in this case would reveal that the contour
integral along CR approaches zero as R → ∞ only if we assume that x < 0.
In other words, the answer in (24) is actually ex, x < 0.

If we consider
∮

C

1
π(1 + z2)

e−izxdz, where C is the contour in Figure 6.27,

it can be shown that the integral along CR now approaches zero as R → ∞
when x is assumed to be positive. Hence,

∮
C

1
π(1 + z2)

e−izxdz = −2πiRes
(

1
π(1 + z2)

e−izx, −i
)

= e−x, x > 0. (25)
CR

– i

R–R

y

x

Figure 6.27 Second contour used to

evaluate (23)

Note the extra minus sign appearing in front of the factor 2πi on the
right side of (25). This sign comes from the fact that on C in Figure 6.27,∮
C

=
∫
CR

+
∫ −R

R
=

∫
CR
−

∫ R

−R
= 2πi Res(z = −i). As R → ∞,

∫
CR
→ 0 for

x > 0, we then have − lim
R→∞

∫ R

−R
= 2πiRes(z = −i) or lim

R→∞

∫ R

−R
=

− 2πi Res(z = −i). By combining (23), (24), and (25), we arrive at

F
−1{F (α)} =

1
2π

∫ ∞

−∞

2
1 + α2

e−iαx dα =


 ex, x < 0

e−x, x > 0

which agrees with (21). Note that when x = 0 in (23) conventional integration
gives the value 1, which is f(0) in (21).

Remarks

(i) The two conditions of piecewise continuity and exponential order are
sufficient but not necessary for the existence of F (s) = � {f(t)}.
For example, the function f(t) = t−1/2 is not piecewise continuous
on [0, ∞) (Why not?); nevertheless �

{
t−1/2

}
exists.
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(ii) We have assumed that F (s) has a finite number of poles in the
complex plane. This is usually the case when F (s) arises from the
solution of an ordinary differential equations. In the solution of
applied problems involving a partial differential equation it is not
uncommon to obtain a function F (s) with an infinite number of
poles. Although the proof of Theorem 6.19 is not valid when F (s)
has an infinite number of poles in the left half-plane Re(s) < c, the
result stated in the theorem is valid. In this case the value of the
integral is an infinite series obtained from the infinite sum of the
residues.

(iii) Although we have illustrated the use of (1) when the singularities of
F (s) are poles, its principal use is to compute inverse transforms of
more complicated functions such as F (s) = (s2 + a2)−1/2.

(iv) We did not mention conditions under which the Fourier transform
(19) of a function f(x) exists. These conditions are considerably
more demanding than those stated for the existence of the Laplace
transform. For example, � {1} = 1/s but F{1} does not exist. For
more information on the theory and applications of the Fourier inte-
gral you are urged to consult texts on Fourier analysis or advanced
engineering mathematics.†

EXERCISES 6.7 Answers to selected odd-numbered problems begin on page ANS-21.

In Problems 1–4, find the Laplace transform of the given function. Determine a

condition on s that is sufficient to guarantee the existence of F (s) = � {f(t)}.

1. f(t) = e5t 2. f(t) = e(−2+3i)t

3. f(t) = sin 3t 4. f(t) = et cos t

5. Generalize the result in Problem 1 and state of condition on s that is sufficient
to guarantee the existence of �

{
ekt

}
when k is a real constant.

6. Generalize the result in Problem 2 and state of condition on s that is sufficient
to guarantee the existence of �

{
ekt

}
when k is a complex constant.

7. The Laplace transform is a linear transformation; that is, for constants α and β,

� {αf(t) + β g(t)} = α� {f(t)} + β� {g(t)}

†See Advanced Engineering Mathematics, 2nd Edition, by Dennis G. Zill and Michael
R. Cullen, Jones and Bartlett Publishers.
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whenever both transforms exist. Use the linearity defined above along with the
definitions

sinh kt =
ekt − e−kt

2
, cosh kt =

ekt − e−kt

2
,

k a real constant, to find � {sinh kt} and � {cosh kt}.

8. State a condition on s that is sufficient to guarantee the existence of the Laplace
transforms in Problem 7.

In Problems 9–18, use the theory of residues to compute the inverse Laplace trans-

form � −1{F (s)} for the given function F (s).

9.
1

s6
10.

1

(s− 5)3

11.
1

s2 + 4
12.

s

(s2 + 1)2

13.
1

s2 − 3
14.

1

(s− a)2 + b2

15.
e−as

s2 − 5s + 6
, a > 0 16.

e−as

(s− a)2
, a > 0

17.
1

s4 − 1
18.

s + 4

s2 + 6s + 11

In Problems 19 and 20, find the Fourier transform (19) of the given function.

19. f(x) =


 0, x ≤ 0

e−x, x > 0
20. f(x) =


 sinx, |x| ≤ π

0, |x| > π

21. Use the inverse Fourier transform (20) and the theory of residues to recover the
function f in Problem 19.

22. The Fourier transform of a function f is F (α) =
1

(1 − iα)2
. Use the inverse

Fourier transform (20) and the theory of residues to find the function f .

Focus on Concepts

23. For the result obtained in Problem 8, find values of γ that can be used in the
inverse transform (7).

24. (a) If F (α) is the Fourier transform of f(x), then the function |F (α)| is called
the amplitude spectrum of f . Find the amplitude spectrum of

f(x) =


 1, |x| ≤ 1

0, |x| > 1
.

Graph |F (α)|.

(b) Do some additional reading and find an application of the concept of the
amplitude spectrum of a function.

25. Find the Fourier transform of f(x) =


 x, 0 < x < 1

0, x < 0 or x > 1
. Discuss how to

find the inverse Fourier transform (20).
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Projects

26. In the application of the Laplace transform to problems involving partial dif-
ferential equations, one often encounters an inverse such as

f(x, t) = � −1

{
sinhxs

(s2 + 1) sinh s

}
.

Investigate how (8) and (9) can be used to determine f (x, t).

CHAPTER 6 REVIEW QUIZ
Answers to selected odd-numbered problems begin
on page ANS-21.

In Problems 1–20, answer true or false. If the statement is false, justify your answer

by either explaining why it is false or giving a counterexample; if the statement is

true, justify your answer by either proving the statement or citing an appropriate

result in this chapter.

1. For the sequence {zn}, where zn = in = xn + iyn, Re(zn) = xn = cos(nπ/2)
and Im(zn) = yn = sin(nπ/2).

2. The sequence { in} converges.

3. limn→∞

(
1 + i√

π

)n

= 0.

4. limn→∞ zn = 0 if and only if limn→∞ |zn| = 0.

5. The power series
∑∞

k=1

zk

k2
converges absolutely at every point on its circle of

convergence.

6. There exists a power series centered at z0 = 1 + i that converges at z = 25− 4i
and diverges at z = 15 + 21i.

7. A function f is analytic at a point z0 if f can be expanded in a convergent
power series centered at z0.

8. Suppose a function f has a Taylor series representation with circle of conver-
gence |z − z0| = R, R > 0. Then f is analytic everywhere on the circle of
convergence.

9. Suppose a function f has a Taylor series representation centered at z0.

Then f is analytic everywhere inside the circle of convergence |z − z0| = R,
R > 0, and is not analytic everywhere outside |z − z0| = R.

10. If the function f is entire, then the radius of convergence of a Taylor series
expansion of f centered at z0 = 1 − i is necessarily R = ∞.

11. Both power series

1

1 + z
= 1 − z + z2 − z3 + · · ·

1

1 + z
=

1

2
− z − 1

22
+

(z − 1)2

23
− (z − 1)3

24
+ · · ·and

converge at z = 0.86 − 0.52i.



Chapter 6 Review Quiz 387

12. If the power series
∑∞

k=0 akz
k has radius of convergence R, then the power

series
∑∞

k=0 akz
2k has radius of convergence

√
R.

13. The power series
∑∞

k=0
akz

k and
∑∞

k=1
kakz

k−1have the same radius of con-

vergence R.

14. The principal branch f1(z) of the complex logarithm does not possess a Maclau-
rin expansion.

15. If f is analytic throughout some deleted neighborhood of z0 and z0 is a pole of
order n, then limz→z0(z − z0)

nf(z) �= 0.

16. A singularity of a rational function is either removable or is a pole.

17. The function f(z) =
1

z2 + 2iaz − 1
, a > 1, has two simple poles within the unit

circle |z| = 1.

18. z = 0 is a simple pole of f(z) = −1

z
+ cot z.

19. If z0 is a simple pole of a function f , then it is possible that Res(f(z), z0) = 0.

20. The principal part of the Laurent series of f(z) =
1

1 − cos z
valid for

0 < |z| < 2π contains precisely two nonzero terms.

In Problems 21–40, try to fill in the blanks without referring back to the text.

21. The sequence

{
2in

n + i
− (9 − 12i)n + 2

3n + 1 + 7i

}
converges to .

22. The series i + 2i + 3i + 4i + · · · diverges because .

23. 5 − i− 1

5
+

i

25
+

1

125
− · · · = .

24. The equality
∑∞

k=0

(
z − 1

z + 1

)k

= 1
2
(z + 1) comes from and is valid

in the region of the complex plane defined by .

25. The power series
∑∞

k=0
(5 + 12i)k(z − 2 − i)k converges absolutely within the

circle .

26. The power series
∑∞

k=0

4k

2k + 5
(z − 2 + 3i)2kdiverges for | z − 2 + 3i | > .

27. If the power series
∑∞

k=0
akz

k, ak �= 0, has radius of convergence R > 0, then

the power series
∑∞

k=0

zk

ak
has radius of convergence .

28. Without finding the actual expansion, the Taylor series of f(z) = csc z centered
at z0 = 3 + 2i has radius of convergence R = .

29. Use the first series in Problem 11 to obtain the first three terms of a Taylor series

of f(z) =
z + 1

6 + z
centered at z0 = −1: . The radius of convergence of

the series is R = .

30. A power series centered at −5i for f(z) = ez is given by ez =
∑∞

k=0
(z + 5i)k.
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31. z = −1 is an isolated singularity of f(z) =
(z + 1)3 − 2(z + 1)2 + 4(z + 1) + 7

(z + 1)2
.

The Laurent series valid for 0 < |z + 1| < ∞ is .

32. The analytic function f(z) = 1
6
z9 − z3 + sin z3 has a zero of order at

z = 0.

33. The zeros of the function f(z) = sinπ

(
1

z
− 1

)
are and are of order

.

34. If f(z) has a zero of order 5 at z0, then the derivative of lowest order that is
not zero is f ( )(z0).

35. The function f(z) = (z − sin z)/z3 has a removable singularity at z = 0. The
value f(0) is defined to be .

36. If f(z) = z3e−1/z2
, then Res (f(z), 0) = .

37. Suppose z = π is a simple pole of f(z) = cot z. From an appropriate residue
formula, Res(f(z), π) = and so the principal part of the Laurent series
about z = π is and the Laurent series is valid for 0 < |z − π| < .

38. On |z| = 1, the contour integral

∮
C

cos z

z2 − (2 + π)z + 2π
dz equals ,

on |z| = 3 the integral equals , and on |z| = 4 the integral equals
.

39. On |z| = 1,

(a)

∮
C

z2 + 2iz + 1 − i

e2z − 1
dz = ,

(b)

∮
C

sin z

zn
dz = , n = 0, 1, 2, . . . .

40.

∫ 2π

0

1

4 cos2 θ + sin2 θ
dθ = .
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The planar flow of an ideal fluid.
See page 440.
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Chapter 7 Review Quiz

Introduction In Section 4.5 we saw that analytic
mappings can be used to solve certain types of
boundary-value problems. In this chapter we
introduce the fundamental notion of a conformal
mapping, and we show that conformal mappings
can be used to solve a larger class of boundary-
value problems. The methods we introduce are
applied to problems in heat flow, electrostatics,
and fluid flow.
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7.1 Conformal Mapping

7.1In Section 2.3 we saw that a nonconstant linear mapping acts by rotating, magnifying, and
translating points in the complex plane. As a result, the angle between any two intersecting
arcs in the z-plane is equal to the angle between the images of the arcs in the w-plane
under a linear mapping. Complex mappings that have this angle-preserving property are
called conformal mappings. In this section we will formally define and discuss conformal
mappings. We show that any analytic complex function is conformal at points where the
derivative is nonzero. Consequently, all of the elementary functions studied in Chapter 4
are conformal in some domain D. Later in this chapter we will see that conformal mappings
have important applications to boundary-value problems involving Laplace’s equation.

Conformal Mapping Suppose that w = f(z) is a complex mapping
defined in a domain D. The mapping is said to be conformal at a point z0
in D if it “preserves the angle” between any two curves intersecting at z0.
To make this concept precise, assume that C1 and C2 are smooth curves in
D that intersect at z0 and have a fixed orientation as described in Section
5.1. Let z1(t) and z2(t) be parametrizations of C1 and C2 such that z1(t0) =
z2(t0) = z0, and such that the orientations on C1 and C2 correspond to the
increasing values of the parameter t. Because C1 and C2 are smooth, the
tangent vectors z′1 = z′1(t0) and z′2 = z′2(t0) are both nonzero. We define the
angle between C1 and C2 to be the angle θ in the interval [0, π] between
the tangent vectors z′1 and z′2. See Figure 7.1. Now suppose that under the
complex mapping w = f(z) the curves C1 and C2 in the z-plane are mapped
onto the curves C ′

1 and C ′
2 in the w-plane, respectively. Because C1 and C2

intersect at z0, we must have that C ′
1 and C ′

2 intersect at f(z0). If C ′
1 and C ′

2

are smooth, then the angle between C ′
1 and C ′

2 at f(z0) is similarly defined to
be the angle φ in the interval [0, π] between similarly defined tangent vectors
w′

1 and w′
2. We say that the angles θ and φ are equal in magnitude if θ = φ.

y

x

C2

C1

z0

z ′2

z ′1

θ

Figure 7.1 The angle θ between C1

and C2

In the z-plane, the vector z′1, whose initial point is z0, can be rotated
through the angle θ onto the vector z′2. This rotation in the z-plane can be
either in the counterclockwise or the clockwise direction. Similarly, in the w-
plane, the vector w′

1, whose initial point is f(z0), can be rotated in either the
counterclockwise or clockwise direction through an angle of φ onto the vector
w′

2. If the rotation in the z-plane is the same direction as the rotation in the
w-plane, we say that the angles θ and φ are equal in sense. The following
example illustrates these concepts.

x

u
v

y

C1

C2

z ′1

C′1

C′2
w′2

w′1

z ′2

π /4

π /4

21.510.5

21.510.5

2.5

2

1.5

1

0.5

–0.5

–1

–1.5

–2

–2.5

z0

w = z
_

(a) Curves C1 and C2 in the z-plane

_
(b) Images of the curves in (a) under w = z

Figure 7.2 Figure for Example 1

EXAMPLE 1 Magnitude and Sense of Angles

The smooth curves C1 and C2 shown in Figure 7.2(a) are given by z1(t) =
t +

(
2t− t2

)
i and z2(t) = t + 1

2

(
t2 + 1

)
i, 0 ≤ t ≤ 2, respectively. These

curves intersect at the point z0 = z1(1) = z2(1) = 1 + i. The tangent vectors
at z0 are z′1 = z′1(1) = 1 and z′2 = z′2(1) = 1 + i. Furthermore, from Figure
7.2(a) we see that the angle between C1 and C2 at z0 is θ = π/4. Under
the complex mapping w = z̄, the images of C1 and C2 are the curves C ′

1 and
C ′

2, respectively, shown in Figure 7.2(b). The image curves are parametrized
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by w1(t) = t −
(
2t− t2

)
i and w2(t) = t − 1

2

(
t2 + 1

)
i, 0 ≤ t ≤ 2, and

intersect at the point w0 = f(z0) = 1 − i. In addition, at w0 we have the
tangent vectors w′

1 = w′
1(1) = 1 and w′

2 = w′
2(1) = 1 − i to C ′

1 and C ′
2,

respectively. Inspection of Figure 7.2(b) indicates that the angle between
C ′

1 and C ′
2 at w0 is φ = π/4. Therefore, the angles θ and φ are equal in

magnitude. However, because the rotation through π/4 of the vector z′1 onto
z′2 must be counterclockwise, whereas the rotation through π/4 of w′

1 onto w′
2

must be clockwise, we conclude that θ and φ are not equal in sense.

With the terminology regarding the magnitude and sense of an angle
established, we are now in a position to give the following precise definition
of a conformal mapping.

Definition 7.1 Conformal Mapping

Let w = f(z) be a complex mapping defined in a domain D and let z0 be
a point in D. Then we say that w = f(z) is conformal at z0 if for every
pair of smooth oriented curves C1 and C2 in D intersecting at z0 the angle
between C1 and C2 at z0 is equal to the angle between the image curves
C ′

1 and C ′
2 at f(z0) in both magnitude and sense.

We will also use the term conformal mapping to refer to a complex
mapping w = f(z) that is conformal at z0. In addition, if w = f(z) maps a
domain D onto a domain D′ and if w = f(z) is conformal at every point in
D, then we call w = f(z) a conformal mapping of D onto D′. From Section
2.3 it should be intuitively clear that if f(z) = az+ b is a linear function with
a �= 0, then w = f(z) is conformal at every point in the complex plane. In
Example 1 we have shown that the w = z̄ is not a conformal mapping at the
point z0 = 1 + i because the angles θ and φ are equal in magnitude but not
in sense.

Angles between Curves Definition 7.1 is seldom used directly to
show that a complex mapping is conformal. Rather, we will prove in The-
orem 7.1 that an analytic function f is a conformal mapping at z whenever
f ′(z) �= 0. In order to prove this result we need a procedure to determine
the angle (in both magnitude and sense) between two smooth curves in the
complex plane. For our purposes, the most efficient way to do this is to use
the argument of a complex number.

Let us again adopt the notation of Figure 7.1, where C1 and C2 are
smooth curves parametrized by z1(t) and z2(t), respectively, which intersect
at z1(t0) = z2(t0) = z0. The requirement that C1 is smooth ensures that
the tangent vector to C1 at z0, given by z′1 = z′1(t0), is nonzero, and so
arg (z′1) is defined and represents an angle between the position vector z′1
and the positive x-axis. Similarly, the tangent vector to C2 at z0, given by
z′2 = z′2(t0), is nonzero, and arg (z′2) represents an angle between the position
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vector z′2 and the positive x-axis. Inspection of Figure 7.3 shows that the
angle θ between C1 and C2 at z0 is the value of

arg (z′2)− arg (z′1) (1)

x

y
C2

C1

z ′2

arg (z ′2) – arg (z′1)

z ′2 z ′1

z ′1

z0

Figure 7.3 The angle between C1

and C2

in the interval [0, π], provided that we can rotate z′1 counterclockwise about
0 through the angle θ onto z′2. In the case that a clockwise rotation is needed,
then −θ is the value of (1) in the interval (−π, 0). In either case, we see that
(1) gives both the magnitude and sense of the angle between C1 and C2 at
z0. As an example of this discussion, consider the curves C1, C2, and their
images under the complex mapping w = z̄ in Example 1. Notice that the
unique value of

arg (z′2)− arg (z′1) = arg (1 + i)− arg (1) =
π

4
+ 2nπ,

n = 0, ±1, ±2, . . . , that lies in the interval [0, π] is π/4. Therefore, the angle
between C1 and C2 is θ = π/4, and the rotation of z′1 onto z′2 is counterclock-
wise. On the other hand,

arg (w′
2)− arg (w′

2) = arg (1− i)− arg (1) = −π
4

+ 2nπ,

n = 0, ±1, ±2, . . . , has no value in [0, π], but has the unique value −π/4 in
the interval (−π, 0). Thus, the angle between C ′

1 and C ′
2 is φ = π/4, and the

rotation of w′
1 onto w′

2 is clockwise.

Analytic Functions We will now use (1) to prove the following
theorem.

Theorem 7.1 Conformal Mapping

If f is an analytic function in a domain D containing z0, and if f ′(z0) �= 0,
then w = f(z) is a conformal mapping at z0.

Proof Suppose that f is analytic in a domain D containing z0, and that
f ′(z0) �= 0. Let C1 and C2 be two smooth curves in D parametrized by z1(t)
and z2(t), respectively, with z1(t0) = z2(t0) = z0. In addition, assume that
w = f(z) maps the curves C1 and C2 onto the curves C ′

1 and C ′
2. We wish

to show that the angle θ between C1 and C2 at z0 is equal to the angle φ
between C ′

1 and C ′
2 at f(z0) in both magnitude and sense. We may assume,

by renumbering C1 and C2 if necessary, that z′1 = z′1(t0) can be rotated
counterclockwise about 0 through the angle θ onto z′2 = z′2(t0). Thus, by (1),
the angle θ is the unique value of arg (z′2) − arg (z′1) in the interval [0, π].
From (11) of Section 2.2, C ′

1 and C ′
2 are parametrized by w1(t) = f(z1(t))

and w2(t) = f(z2(t)). In order to compute the tangent vectors w′
1 and w′

2 to
C ′

1 and C ′
2 at f(z0) = f (z1(t0)) = f (z2(t0)) we use the chain rule

w′
1 = w′

1(t0) = f ′(z1(t0)) · z′1(t0) = f ′(z0) · z′1,

and w′
2 = w′

2(t0) = f ′(z2(t0)) · z′2(t0) = f ′(z0) · z′2.
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Since C1 and C2 are smooth, both z′1 and z′2 are nonzero. Furthermore, by
our hypothesis, we have f ′(z0) �= 0. Therefore, both w′

1 and w′
2 are nonzero,

and the angle φ between C ′
1 and C ′

2 at f(z0) is a value of

arg (w′
2)− arg (w′

1) = arg (f ′(z0) · z′2)− arg (f ′(z0) · z′1) .

Now by two applications of (8) from Section 1.3 we obtain:

arg (f ′(z0) · z′2)− arg (f ′(z0) · z′1) = arg (f ′(z0)) + arg (z′2)− [arg (f ′(z0)) + arg (z′1)]
= arg (z′2)− arg (z′1) .

This expression has a unique value in [0, π], namely θ. Therefore, θ = φ
in both magnitude and sense, and consequently the w = f(z) is a conformal
mapping at z0. ✎

In light of Theorem 7.1 it is relatively easy to determine where an analytic
function is a conformal mapping.

EXAMPLE 2 Conformal Mappings

(a) By Theorem 7.1 the entire function f(z) = ez is conformal at every point
in the complex plane since f ′(z) = ez �= 0 for all z in C.

(b) By Theorem 7.1 the entire function g(z) = z2 is conformal at all points
z, z �= 0, since g′(z) = 2z �= 0.

Critical Points The function g(z) = z2 in part (b) of Example 2 is
not a conformal mapping at z0 = 0. The reason for this is that g′(0) = 0. In
general, if a complex function f is analytic at a point z0 and if f ′(z0) = 0,
then z0 is called a critical point of f . Although it does not follow from
Theorem 7.1, it is true that analytic functions are not conformal at critical
points. More specifically, we can show that the following magnification of
angles occurs at a critical point.

Theorem 7.2 Angle Magnification at a Critical Point

Let f be analytic at the critical point z0. If n > 1 is an integer such that
f ′(z0) = f ′′(z0) = ... = f (n−1)(z0) = 0 and f (n)(z0) �= 0, then the angle
between any two smooth curves intersecting at z0 is increased by a factor
of n by the complex mapping w = f(z). In particular, w = f(z) is not a
conformal mapping at z0.

A proof of Theorem 7.2 is sketched in Problem 22 of Exercises 7.1.
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EXAMPLE 3 Conformal Mappings

Find all points where the mapping f(z) = sin z is conformal.

Solution The function f(z) = sin z is entire, and from Section 4.3 we have
that f ′(z) = cos z. In (21) of Section 4.3 we found that cos z = 0 if and only if
z = (2n+ 1)π/2, n = 0, ±1, ±2, . . . , and so each of these points is a critical
point of f . Therefore, by Theorem 7.1, w = sin z is a conformal mapping at
z for all z �= (2n+ 1)π/2, n = 0, ±1, ±2, . . . . Furthermore, by Theorem
7.2, w = sin z is not a conformal mapping at z if z = (2n+ 1)π/2, n = 0, ±1,
±2, . . . . Because f ′′(z) = − sin z = ±1 at the critical points of f , Theorem
7.2 also indicates that angles at these points are increased by a factor of 2.

The angle magnification at a critical point of the complex mapping w =
sin z in Example 3 can be seen directly. For example, consider the critical
point z = π/2. Under w = sin z, the vertical ray C1 in the z-plane emanating
from z = π/2 and given by z = π/2 + iy, y ≥ 0, is mapped onto the set in
the w-plane given by w = sin (π/2) cosh y + i cos (π/2) sinh y, y ≥ 0. Because
sin (π/2) = 1 and cos (π/2) = 0, the image can be rewritten as w = cosh y,
y ≥ 0. In words, the image C ′

1 is a ray in the w-plane emanating from w = 1
and containing the point w = 2. A similar analysis reveals that the image
C ′

2 of the vertical ray C2 given by z = π/2 + iy, y ≤ 0, is also the ray
emanating from w = 1 and containing the point w = 2. That is, C ′

1 = C ′
2.

The angle between the rays C1 and C2 in the z-plane is π, and so Theorem
7.2 implies that the angle between their images in the w-plane is increased to
2π, or, equivalently, 0. This agrees with the observation that C ′

1 = C ′
2. See

Figure 7.4.
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π
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      the z-plane is 
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C ′1 = C′2

Figure 7.4 The mapping w = sin z

Conformal Mappings Using Tables In Section 4.5 we intro-
duced a method of solving a particular type of boundary-value problem using
complex mappings. Specifically, we saw that a Dirichlet problem in a com-
plicated domain D can be solved by finding an analytic mapping of D onto
a simpler domain D′ in which the associated Dirichlet problem has already
been solved. At the end of this chapter we will see a similar application of
conformal mappings to a generalized type of Dirichlet problem. In these ap-
plications our method for producing a solution in a domain D will first require
that we find a conformal mapping of D onto a simpler domain D′ in which
the associated boundary-value problem has a solution. An important aid in
this task is the table of conformal mappings given in Appendix III.

�Note

The mappings in Appendix III have been categorized as elementary map-
pings (E-1 to E-9), mappings of half-planes (H-1 to H-6), mappings onto
circular regions (C-1 to C-5), and miscellaneous mappings (M-1 to M-10).
Many properties of the mappings appearing in this table have been derived
in Chapter 2 and Chapter 4, whereas other properties will be derived in the
coming sections. When using the table, bear in mind that in some cases the
desired mapping will appear as a single entry in the table, whereas in other
cases one or more successive mappings from the table may be required. You
should also note that the mappings in Appendix III are, in general, only con-
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formal mappings of the interiors of the regions shown. For example, it is clear
that the complex mapping shown in Entry E-4 is not conformal at B = 0. As
a general rule, when we refer to a conformal mapping of a region R onto a
region R′ we are requiring only that the mapping be conformal at the points
in the interior of R.

EXAMPLE 4 Using a Table of Conformal Mappings

Use Appendix III to find a conformal mapping from the infinite horizontal
strip 0 ≤ y ≤ 2, −∞ < x < ∞, onto the upper half-plane v ≥ 0. Under this
mapping, what is the image of the negative x-axis?

Solution Entry H-2 in Appendix III gives a mapping from an infinite hori-
zontal strip onto the upper half-plane. Setting a = 2, we obtain the desired
mapping w = eπz/2. From H-2 we also see that the points labeled D and
E = 0 on the negative x-axis in the z-plane are mapped onto the points D′

and E′ = 1 on the positive u-axis in the w-plane. Noting the relative posi-
tions of these points, we conclude that the negative x-axis is mapped onto the
interval (0, 1] in the u-axis by w = eπz/2. See Figure 7.5. This observation
can also be verified using parametrizations.

(a) The horizontal strip 0 ≤ y ≤ 2

(b) Image of the strip in (a)

w = e

y

x

v

u

AC

FE

B2i

D

D′ E′ F ′C ′B′A′

z/2π

–1 1

Figure 7.5 Figure for Example 4

EXAMPLE 5 Using a Table of Conformal Mappings

Use Appendix III to find a conformal mapping from the infinite horizontal
strip 0 ≤ y ≤ 2, −∞ < x < ∞, onto the unit disk |w| ≤ 1. Under this
mapping, what is the image of the negative x-axis?

Solution Appendix III does not have an entry that maps an infinite horizon-
tal strip onto the unit disk. Therefore, we construct the a conformal mapping
that does this by composing two mappings in the table. In Example 4 we
found that the infinite horizontal strip 0 ≤ y ≤ 2, −∞ < x < ∞, is mapped
onto the upper half-plane by f(z) = eπz/2. In addition, from entry C-4 we

see that the upper half-plane is mapped onto the unit disk by g(z) =
i− z

i+ z
.

The composition of these two functions

w = g(f(z)) =
i− eπz/2

i+ eπz/2

(a) Image of the strip 0 ≤ y ≤ 2 under

(b) Image of the half-plane in (a) under

w = e

w = 

y

v

u

x
C DBA

D′

C ′

B′

A′

z/2π

–1 1

1

i – z
i + z
——

w = i – z
i + z
——

Figure 7.6 Figure for Example 5

therefore maps the strip 0 ≤ y ≤ 2, −∞ < x <∞, onto the unit disk |w| ≤ 1.
Under the first of these successive mappings, the negative real axis is mapped
onto the interval (0, 1] in the real axis as was noted in Example 4. Inspection
of entry C-4 (or Figure 7.6) reveals that the interval from 0 to C = 1 is mapped
onto the circular arc from 1 to C ′ = i on the unit circle |w| = 1. Therefore,
we conclude that the negative real axis is mapped onto the circular arc from

1 to i on the unit circle under w =
i− eπz/2

i+ eπz/2
.
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Remarks

In the foregoing discussion regarding conformal mappings using tables we
alluded to the fact that in many applications one needs to find a conformal
mapping of a domain D onto a simpler domain D′. A natural question to
ask is whether such a mapping always exists. That is, given domains D
and D′, does there exist a conformal mapping of D onto D′? An answer to
this question was given by the mathematician Bernhard Riemann (1826–
1866). Although there was a gap in Riemann’s original proof (which was
subsequently filled), this amazing theorem still bears his name.

The Riemann Mapping Theorem Let D be a simply con-
nected domain in the z-plane such that D is not all of C. Then
there exists a one-to-one conformal mapping w = f(z) from
D onto the open unit disk |w| < 1 in the w-plane.

It is not immediately clear that this theorem answers our question of the
existence of a mapping from D onto D′. To see that it does, we first
use the theorem to find a conformal mapping f from D onto the open
unit disk |w| < 1. We then apply the theorem a second time to obtain a
mapping g from D′ onto the open unit disk |w| < 1. Since the theorem
ensures that g is one-to-one, it has a well defined inverse function g−1

that maps the open unit disk onto D′. The desired mapping from D onto
D′ is then given by the composition w = g−1 ◦ f(z).

Riemann’s theorem is of critical theoretical importance, but its proof
is not constructive. This means that the theorem establishes the existence
of the mapping f but offers no method of actually finding a formula for f .
A proof of the Riemann mapping theorem is well beyond the scope of this
text. The interested reader is encouraged to refer to the text Complex
Analysis by Lars V. Alfors, McGraw-Hill, 1979.

EXERCISES 7.1 Answers to selected odd-numbered problems begin on page ANS-21.

In Problems 1–6, determine where the complex mapping w = f(z) is conformal.

1. f(z) = z3 − 3z + 1 2. f(z) = z2 + 2iz − 3

3. f(z) = z − e−z + 1 − i 4. f(z) = zez2−2

5. f(z) = tan z 6. f(z) = z − Ln(z + i)

In Problems 7–10, proceed as in Example 1 to show that the given function f is not

conformal at the indicated point.

7. f(z) = (z − i)3; z0 = i 8. f(z) = (iz − 3)2; z0 = −3i

9. f(z) = ez2
; z0 = 0 10. the principle square root function

f(z) = z1/2; z0 = 0
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In Problems 11–16, use Appendix III to find a conformal mapping of the region R

shown in color onto the region R′ shown in gray. Then find the image of the curve

from A to B.

11. y v

x u

A

B 2

R R′

Figure 7.7 Figure for Problem 11

12. y v

x

A B

R
R′

u

iπ

1

Figure 7.8 Figure for Problem 12

13. y v

xA

B

R R′

u
/4π

1

Figure 7.9 Figure for Problem 13

14.

R′

v

u

i

y

xA

B

R

1

Figure 7.10 Figure for Problem 14
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15.

R′

v

u

R

y

x

i

A

B

Figure 7.11 Figure for Problem 15

16.

R′

v

u
R

y

x
AB

–1 1

Figure 7.12 Figure for Problem 16

Focus on Concepts

17. Where is the mapping w = z̄ conformal? Justify your answer.

18. Suppose w = f(z) is a conformal mapping at every point in the complex plane.
Where is the mapping w = f(z̄) conformal? Justify your answer.

19. Suppose that w = f(z) is a conformal mapping at every point in the complex
plane. Where is the mapping w = ef(z) conformal?

20. This problem concerns determining the angle between two curves C1 and C2 at
a point where one (or both) of the curves has a zero tangent vector.

(a) Assume that two curves C1 and C2 are parametrized by z1(t) and z2(t),
respectively, and that the curves intersect at z1(t0) = z2(t0) = z0. Assume
further that both z1 and z2 are differentiable functions of t, and let z′1 =
z′1(t0) and z′2 = z′2(t0) . Explain why arg (z′2)− arg (z′1) does not represent
the angle between C1 and C2 if either z′1 or z′2 is zero.

(b) Explain why lim
t→t0

[arg (z2(t) − z0)]− lim
t→t0

[arg (z1(t) − z0)] does represent the

angle between C1 and C2 regardless of whether z′1 or z′2 is zero.

(c) Use part (b) to determine the angle between the curves parametrized by
z1(t) = t + it2 and z2(t) = t2 + it2, −1 ≤ t ≤ 1, at z0 = 0. Does this
computation match your intuition?

21. On page 393 we showed that the function f(z) = z2 was not conformal at
z0 = 0 because the angle between the positive x- and y-axes was doubled. In
this problem you will show that every pair of smooth curves intersecting at
z0 = 0 has the angle between them doubled by f(z) = z2. This is a very
specific case of Theorem 7.2.

(a) Suppose that the smooth curves C1 and C2 are parametrized by z1(t) and
z2(t) with z1(t0) = z2(t0) = 0. If z′1 = z′1(t0) and z′2 = z′2(t0) are both
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nonzero, then the angle θ between C1 and C2 is given by (1). Explain why
φ = arg (f ′(0) · z′2) − arg (f ′(0) · z′1) does not represent the angle between
the images C′

1 and C′
2 of C1 and C2 under the mapping w = f(z) = z2,

respectively.

(b) Use Problem 20 to write down an expression involving arguments that
does represent the angle φ between C′

1 and C′
2. [Hint : C′

1 and C′
2 are

parametrized by w1(t) = f (z1(t)) = [z1(t)]
2 and w2(t) = f (z2(t)) =

[z2(t)]
2.]

(c) Use (8) of Section 1.3 to show that your expression for φ from (b) is equal
to 2θ.

22. In this problem you will prove Theorem 7.2. Let f be an analytic function at
the point z0 such that f ′(z0) = f ′′(z0) = ... = f (n−1)(z0) = 0 and f (n) (z0) �= 0
for some n > 1.

(a) Explain why f can be written as

f(z) = f(z0) +
f (n)(z0)

n!
(z − z0)

n (1 + g(z)) ,

where g is an analytic function at z0 and g(z0) = 0.

(b) Use (a) and Problem 20 to show that the angle between two smooth curves
intersecting at z0 is increased by a factor of n by the mapping w = f(z).

7.2 Linear Fractional Transformations

7.2In many applications that involve boundary-value problems associated with Laplace’s equa-
tion, it is necessary to find a conformal mapping that maps a disk onto the half-plane v ≥ 0.
Such a mapping would have to map the circular boundary of the disk to the boundary line
of the half-plane. An important class of elementary conformal mappings that map circles
to lines (and vice versa) are the linear fractional transformations. In this section we will
define and study this special class of mappings.

Linear Fractional Transformations In Section 2.3 we examined
complex linear mappings w = az+b where a and b are complex constants and
a �= 0. Recall that such mappings act by rotating, magnifying, and translat-
ing points in the complex plane. We then discussed the complex reciprocal
mapping w = 1/z in Section 2.5. An important property of the reciprocal
mapping, when defined on the extended complex plane, is that it maps cer-
tain lines to circles and certain circles to lines. A more general type of mapping
that has similar properties is a linear fractional transformation defined next.
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Definition 7.2 Linear Fractional Transformation

If a, b, c, and d are complex constants with ad− bc �= 0, then the complex
function defined by:

T (z) =
az + b

cz + d
(1)

is called a linear fractional transformation.

Linear fractional transformations are also called Möbius transforma-
tions or bilinear transformations. If c = 0, then the transformation T
given by (1) is a linear mapping, and so a linear mapping is a special case of
a linear fractional transformation. If c �= 0, then we can write

T (z) =
az + b

cz + d
=

bc− ad

c

1
cz + d

+
a

c
. (2)

Setting A =
bc− ad

c
and B =

a

c
, we see that the linear transformation T in

(2) can be written as the composition T (z) = f ◦g◦h(z), where f(z) = Az+B
and h(z) = cz+d are linear functions and g(z) = 1/z is the reciprocal function.

The domain of a linear fractional transformation T given by (1) is the set
of all complex z such that z �= −d/c. Furthermore, since

T ′(z) =
ad− bc

(cz + d)2

it follows from Theorem 7.1 and the requirement that ad− bc �= 0 that linear
fractional transformations are conformal on their domains. The requirement
that ad−bc �= 0 also ensures that the T is a one-to-one function on its domain.
See Problem 27 in Exercises 7.2.

Observe that if c �= 0, then (1) can be written as

T (z) =
az + b

cz + d
=

(a/c) (z + b/a)
z + d/c

=
φ(z)

z − (−d/c) ,

where φ(z) = (a/c) (z + b/a). Because ad−bc �= 0, we have that φ (−d/c) �= 0,
and so from Theorem 6.12 of Section 6.4 it follows that the point z = −d/c is
a simple pole of T .

When c �= 0, that is, when T is not a linear function, it is often helpful to
view T as a mapping of the extended complex plane. Since T is defined for
all points in the extended plane except the pole z = −d/c and the ideal point
∞, we need only extend the definition of T to include these points. We make
this definition by considering the limit of T as z tends to the pole and as z
tends to the ideal point. Because

lim
z→−d/c

cz + d

az + b
=

0
a (−d/c) + b

=
0

−ad+ bc
= 0,

it follows from (25) of Section 2.6 that

lim
z→−d/c

az + b

cz + d
=∞.
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Moreover, from (24) of Section 2.6 we have that

lim
z→∞

az + b

cz + d
= lim

z→0

a/z + b

c/z + d
= lim

z→0

a+ zb

c+ zd
=

a

c
.

The values of these two limits indicate how to extend the definition of T . In
particular, if c �= 0, then we regard T as a one-to-one mapping of the extended
complex plane defined by:

T (z) =




az + b

cz + d
, z �= −d

c
, z �=∞

∞, z = −d
c

a

c
, z =∞ .

(3)

A special case of (3) corresponding to a = 0, b = 1, c = 1, and d = 0
is the reciprocal function defined on the extended complex plane. Refer to
Definition 2.7.

EXAMPLE 1 A Linear Fractional Transformation

Find the images of the points 0, 1 + i, i, and ∞ under the linear fractional
transformation T (z) = (2z + 1)/ (z − i).

Solution For z = 0 and z = 1 + i we have:

T (0) =
2(0) + 1

0− i
=

1
−i = i and T (1 + i) =

2(1 + i) + 1
(1 + i)− i

=
3 + 2i

1
= 3 + 2i.

Identifying a = 2, b = 1, c = 1, and d = −i in (3), we also have:

T (i) = T

(
−d
c

)
=∞ and T (∞) =

a

c
= 2.

Circle-Preserving Property In the discussion preceding Exam-
ple 1 we indicated that the reciprocal function 1/z is a special case of a linear
fractional transformation. We saw two interesting properties of the recipro-
cal mapping in Section 2.7. First, the image of a circle centered at the pole
z = 0 of 1/z is a circle, and second, the image of a circle with center on the
x- or y-axis and containing the pole z = 0 is a vertical or horizontal line.
Linear fractional transformations have a similar mapping property. This is
the content of the following theorem.
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Theorem 7.3 Circle-Preserving Property

If C is a circle in the z-plane and if T is a linear fractional transformation
given by (3), then the image of C under T is either a circle or a line in
the extended w-plane. The image is a line if and only if c �= 0 and the
pole z = −d/c is on the circle C.

Proof When c = 0, T is a linear function, and we saw in Section 2.3 that
linear functions map circles onto circles. It remains to be seen that the the-
orem still holds for c �= 0. Assume then that c �= 0. From (2) we have that
T (z) = f ◦g◦h(z), where f(z) = Az+B and h(z) = cz+d are linear functions
and g(z) = 1/z is the reciprocal function. Observe that since h is a linear
mapping, the image C ′ of the circle C under h is a circle. We now examine
two cases:

Case 1 Assume that the origin w = 0 is on the circle C ′. This occurs if and
only if the pole z = −d/c is on the circle C. From the Remarks in Section
2.5, if w = 0 is on C ′, then the image of C ′ under g(z) = 1/z is either a
horizontal or vertical line L. Furthermore, because f is a linear function, the
image of the line L under f is also a line. Thus, we have shown that if the
pole z = −d/c is on the circle C, then the image of C under T is a line.

Case 2 Assume that the point w = 0 is not on C′. That is, the pole z = −d/c
is not on the circle C. Let C ′ be the circle given by |w − w0| = ρ. If we set
ξ = f(w) = 1/w and ξ0 = f(w0) = 1/w0, then for any point w on C ′ we have

|ξ − ξ0| =
∣∣∣∣ 1
w
− 1
w0

∣∣∣∣ =
|w − w0|
|w| |w0|

= ρ|ξ0||ξ|. (4)

It can be shown that the set of points satisfying the equation

|ξ − a| = λ|ξ − b| (5)

is a line if λ = 1 and is a circle if λ > 0 and λ �= 1. See Problem 28 in
Exercises 7.2. Thus, with the identifications a = ξ0, b = 0, and λ = ρ|ξ0| we
see that (4) can be put into the form (5). Since w = 0 is not on C ′, we have
|w0| �= ρ, or, equivalently, λ = ρ|ξ0| �= 1. This implies that the set of points
given by (4) is a circle. Finally, since f is a linear function, the image of this
circle under f is again a circle, and so we conclude that the image of C under
T is a circle. ✎

The key observation in the foregoing proof was that a linear fractional
transformation (1) can be written as a composition of the reciprocal function
and two linear functions as shown in (2). In Problem 27 of Exercises 2.5 you
were asked to show that the image of any line L under the reciprocal mapping
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w = 1/z is a line or a circle. Therefore, using similar reasoning, we can also
show:

Mapping Lines to Circles with T (z)

If T is a linear fractional transformation given by (3), then the image of
a line L under T is either a line or a circle. The image is a circle if and
only if c �= 0 and the pole z = −d/c is not on the line L.

EXAMPLE 2 Image of a Circle

Find the image of the unit circle |z| = 1 under the linear fractional transfor-
mation T (z) = (z + 2)/ (z − 1). What is the image of the interior |z| < 1 of
this circle?

Solution The pole of T is z = 1 and this point is on the unit circle |z| = 1.
Thus, from Theorem 7.3 we conclude that the image of the unit circle is a
line. Since the image is a line, it is determined by any two points. Because
T (−1) = −1

2 and T (i) = −1
2−

3
2 i, we see that the image is the line u = − 1

2 . To
answer the second question we first note that a linear fractional transformation
is a rational function, and so it is continuous on its domain. As a consequence,
the image of the interior |z| < 1 of the unit circle is either the half-plane
u < −1

2 or the half-plane u > − 1
2 . Using z = 0 as a test point, we find

that T (0) = −2, which is to the left of the line u = −1
2 , and so the image is

the half-plane u < − 1
2 . This mapping is illustrated in Figure 7.13. The circle

|z| = 1 is shown in color in Figure 7.13(a) and its image u = −1
2 is shown in

black in Figure 7.13(b).

C ′

v

u

y

x

C

1

w = z + 2
z – 1
——

(a) The unit circle |z| = 1

(b) The image of the circle in (a)

Figure 7.13 The linear

fractional transformation

T (z) = (z + 2) / (z − 1)

EXAMPLE 3 Image of a Circle

Find the image of the unit circle |z| = 2 under the linear fractional trans-
formation T (z) = (z + 2)/ (z − 1). What is the image of the disk |z| ≤ 2
under T?

Solution In this example the pole z = 1 does not lie on the circle |z| = 2, and
so Theorem 7.3 indicates that the image of |z| = 2 is a circle C ′. To find an
algebraic description of C ′, we first note that the circle |z| = 2 is symmetric
with respect to the x-axis. That is, if z is on the circle |z| = 2, then so is z̄.
Furthermore, we observe that for all z,

T (z̄) =
z̄ + 2
z̄ − 1

=
z + 2
z − 1

=
(
z + 2
z − 1

)
= T (z).

Hence, if z and z̄ are on the circle |z| = 2, then we must have that both
w = T (z) and w̄ = T (z) = T (z̄) are on the circle C ′. It follows that C ′
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is symmetric with respect to the u-axis. Since z = 2 and −2 are on the
circle |z| = 2, the two points T (2) = 4 and T (−2) = 0 are on C ′. The
symmetry of C ′ implies that 0 and 4 are endpoints of a diameter, and so
C ′ is the circle |w − 2| = 2. Using z = 0 as a test point, we find that
w = T (0) = −2, which is outside the circle |w − 2| = 2. Therefore, the image
of the interior of the circle |z| = 2 is the exterior of the circle |w − 2| = 2. In
summary, the disk |z| ≤ 2 shown in color in Figure 7.14(a) is mapped onto
the region |w − 2| ≥ 2 shown in gray in Figure 7.14(b) by the linear fractional
transformation T (z) = (z + 2)/ (z − 1).

C ′

v

u

y

x

C

2

2

w = z + 2
z – 1
——

(a) The circle |z| = 2

(b) The image of the circle in (a)

Figure 7.14 The linear

fractional transformation

T (z) = (z + 2) / (z − 1)

Linear Fractional Transformations as Matrices Matrices
can be used to simplify many of the computations associated with linear
fractional transformations. In order to do so, we associate the matrix

A =


 a b

c d


 (6)

with the linear fractional transformation

T (z) =
az + b

cz + d
(7)

The assignment in (6) is not unique because if e is a nonzero complex number,
then the linear fractional transformation T (z) = (az + b)/ (cz + d) is also
given by T (z) = (eaz + eb)/ (ecz + ed). However, if e �= 1, then the two
matrices

A =


 a b

c d


 and B =


 ea eb

ec ed


 = eA (8)

are not equal even though they represent the same linear fractional transfor-
mation.

It is easy to verify that the composition T2 ◦ T1 of two linear fractional
transformations

T1(z) = (a1z + b1)/ (c1z + d1) and T2(z) = (a2z + b2)/ (c2z + d2)

is represented by the product of matrices
 a2 b2

c2 d2





 a1 b1

c1 d1


 =


 a2a1 + b2c1 a2b1 + b2d1

c2a1 + d2c1 c2b1 + d2d1


 . (9)

In Problem 27 of Exercises 7.2 you are asked to find the formula for T−1(z)
by solving the equation w = T (z) for z. The formula for the inverse function
T−1(z) of a linear fractional transformation T of (7) is represented by the
inverse of the matrix A in (6)
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A−1 =


 a b

c d



−1

=
1

ad− bc


 d −b
−c a


 .

By identifying e =
1

ad− bc
in (8) we can also represent T−1(z) by the

matrix 
 d −b
−c a


 .∗ (10)

EXAMPLE 4 Using Matrices

Suppose S(z) = (z − i)/ (iz − 1) and T (z) = (2z − 1)/ (z + 2). Use matrices
to find S−1(T (z)).

Solution We represent the linear fractional transformations S and T by the
matrices 

 1 −i
i −1


 and


 2 −1

1 2


,

respectively. By (10), the transformation S−1 is given by
 −1 i

−i 1


,

and so, from (9), the composition S−1 ◦ T is given by
 −1 i

−i 1





 2 −1

1 2


 =


 −2 + i 1 + 2i

1− 2i 2 + i




Therefore,

S−1 (T (z)) =
(−2 + i) z + 1 + 2i
(1− 2i) z + 2 + i

.

Cross-Ratio In applications we often need to find a conformal mapping
from a domain D that is bounded by circles onto a domain D′ that is bounded
by lines. Linear fractional transformations are particularly well-suited for such
applications. However, in order to use them, we must determine a general

∗You may recall that this matrix is called the adjoint matrix of A.
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method to construct a linear fractional transformation w = T (z), which maps
three given distinct points z1, z2, and z3 on the boundary of D to three given
distinct points w1, w2, and w3 on the boundary of D′. This is accomplished
using the cross-ratio, which is defined as follows.

�Recall, a circle is uniquely determined
by three noncolinear points.

Definition 7.3 Cross-Ratio

The cross-ratio of the complex numbers z, z1, z2, and z3 is the complex
number

z − z1
z − z3

z2 − z3
z2 − z1

. (11)

When computing a cross-ratio, we must be careful with the order of the
complex numbers. For example, you should verify that the cross-ratio of 0, 1,
i, and 2 is 3

4 + 1
4 i, whereas the cross-ratio of 0, i, 1, and 2 is 1

4 −
1
4 i.

We extend the concept of the cross-ratio to include points in the extended
complex plane by using the limit formula (24) from the Remarks in Section
2.6. For example, the cross-ratio of, say, ∞, z1, z2, and z3 is given by the
limit

lim
z→∞

z − z1
z − z3

z2 − z3
z2 − z1

.

The following theorem illustrates the importance of cross-ratios in the study of
linear fractional transformations. In particular, we prove that the cross-ratio
is invariant under a linear fractional transformation.

Theorem 7.4 Cross-Ratios and Linear
Fractional Transformations

If w = T (z) is a linear fractional transformation that maps the distinct
points z1, z2, and z3 onto the distinct points w1, w2, and w3, respectively,
then

z − z1
z − z3

z2 − z3
z2 − z1

=
w − w1

w − w3

w2 − w3

w2 − w1
(12)

for all z.

Proof Let R be the linear fractional transformation

R(z) =
z − z1
z − z3

z2 − z3
z2 − z1

, (13)

and note that R(z1) = 0, R(z2) = 1, and R(z3) =∞. Consider also the linear
fractional transformation

S(z) =
z − w1

z − w3

w2 − w3

w2 − w1
. (14)
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For the transformation S, we have S(w1) = 0, S(w2) = 1, and S(w3) = ∞.
Therefore, the points z1, z2, and z3 are mapped onto the points w1, w2, and
w3, respectively, by the linear fractional transformation S−1(R(z)). From this
it follows that 0, 1, and ∞ are mapped onto 0, 1, and ∞, respectively, by the
composition T−1(S−1(R(z))). Now it is a straightforward exercise to verify
that the only linear fractional transformation that maps 0, 1, and ∞ onto 0,
1, and∞ is the identity mapping. See Problem 30 in Exercises 7.2. From this
we conclude that T−1(S−1(R(z))) = z, or, equivalently, that R(z) = S(T (z)).
Identifying w = T (z), we have shown that R(z) = S(w). Therefore, from (13)
and (14) we have

z − z1
z − z3

z2 − z3
z2 − z1

=
w − w1

w − w3

w2 − w3

w2 − w1
.

✎

EXAMPLE 5 Constructing a Linear Fractional Transformation

Construct a linear fractional transformation that maps the points 1, i, and −1
on the unit circle |z| = 1 onto the points −1, 0, 1 on the real axis. Determine
the image of the interior |z| < 1 under this transformation.

�Note: A linear fractional transfor-
mation can have many equivalent forms.

Solution Identifying z1 = 1, z2 = i, z3 = −1, w1 = −1, w2 = 0, and w3 = 1,
in (12) we see from Theorem 7.4 that the desired mapping w = T (z) must
satisfy

z − 1
z − (−1)

i− (−1)
i− 1

=
w − (−1)
w − 1

0− 1
0− (−1)

.

After solving for w and simplifying we obtain

w = T (z) =
z − i

iz − 1
.

Using the test point z = 0, we obtain T (0) = i. Therefore, the image of the
interior |z| < 1 is the upper half-plane v > 0.

EXAMPLE 6 Constructing a Linear Fractional Transformation

Construct a linear fractional transformation that maps the points –i, 1, and
∞ on the line y = x−1 onto the points 1, i, and −1 on the unit circle |w| = 1.

Solution We proceed as in Example 5. Using (24) of Section 2.6, we find
that the cross-ratio of z, z1 = −i, z2 = 1, and z3 =∞ is

lim
z3→∞

z + i

z − z3

1− z3
1 + i

= lim
z3→0

z + i

z − 1/z3
1− 1/z3

1 + i
= lim

z3→0

z + i

zz3 − 1
z3 − 1
1 + i

=
z + i

1 + i
.
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Now from (12) of Theorem 7.4 with w1 = 1, w2 = i, and w3 = −1, the desired
mapping w = T (z) must satisfy

z + i

1 + i
=

w − 1
w + 1

i+ 1
i− 1

.

After solving for w and simplifying we obtain

w = T (z) =
z + 1

−z + 1− 2i
.

EXERCISES 7.2 Answers to selected odd-numbered problems begin on page ANS-22.

In Problems 1–4, find the images of the points 0, 1, i, and ∞ under the given linear

fractional transformation T .

1. T (z) =
i

z
2. T (z) =

2

z − i

3. T (z) =
z + i

z − i
4. T (z) =

z − 1

z

In Problems 5–8, find the image of the disks |z| ≤ 1 and |z − i| ≤ 1 under the given

linear fractional transformation T .

5. T is the mapping in Problem 1 6. T is the mapping in Problem 2

7. T is the mapping in Problem 3 8. T is the mapping in Problem 4

In Problems 9–12, find the image of the half-planes x ≥ 0 and y ≤ 1 under the given

linear fractional transformation T .

9. T is the mapping in Problem 1 10. T is the mapping in Problem 2

11. T is the mapping in Problem 3 12. T is the mapping in Problem 4

In Problems 13–16, find the image of the region shown in color under the given

linear fractional transformation.

13. T (z) =
z

z − 2
14. T (z) =

z − i

z + 1

y

x
1

Figure 7.15 Figure for Problem 13

y

x
1

Figure 7.16 Figure for Problem 14
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15. T (z) =
z + 1

z − 2
16. T (z) =

−z − 1 + i

z − 1 + i

y

x
2–3

Figure 7.17 Figure for Problem 15

y

x

1 – i

1 + i

Figure 7.18 Figure for Problem 16

In Problems 17–20, use matrices to find (a) S−1(z) and (b) S−1(T (z)).

17. T (z) =
z

iz − 1
, S(z) =

iz + 1

z − 1
18. T (z) =

iz

z − 2i
, S(z) =

2z + 1

z + 1

19. T (z) =
2z − 3

z − 3
, S(z) =

z − 2

z − 1
20. T (z) =

z − 1 + i

iz − 2
, S(z) =

(2 − i)z

z − 1 − i

In Problems 21–26, construct a linear fractional transformation that takes the given

points z1, z2, and z3 onto the given points w1, w2, and w3, respectively.

21. z1 = −1, z2 = 0, z3 = 2; w1 = 0, w2 = 1, w3 = ∞

22. z1 = i, z2 = 0, z3 = −i; w1 = 0, w2 = 1, w3 = ∞

23. z1 = 0, z2 = i, z3 = ∞; w1 = 0, w2 = 1, w3 = 2

24. z1 = −1, z2 = 0, z3 = 1; w1 = i, w2 = 0, w3 = ∞

25. z1 = 1, z2 = i, z3 = −i; w1 = −1, w2 = 0, w3 = 3

26. z1 = 1, z2 = i, z3 = −i; w1 = −i, w2 = i, w3 = ∞

Focus on Concepts

27. Let a, b, c, and d be complex numbers such that ad− bc �= 0.

(a) Solve the equation w =
az + b

cz + d
for z.

(b) Explain why (a) implies that the linear fractional transformation
T (z) = (az + b)/ (cz + d) is a one-to-one function.

28. Consider the equation

|z − a| = λ|z − b| (15)

where λ is a positive real constant.

(a) Show that the set of points satisfying (15) is a line if λ = 1.

(b) Show that the set of points satisfying (15) is a circle if λ �= 1.

29. Let T (z) = (az + b)/ (cz + d) be a linear fractional transformation.

(a) If T (0) = 0, then what, if anything, can be said about the coefficients a, b,
c, and d?
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(b) If T (1) = 1, then what, if anything, can be said about the coefficients a, b,
c, and d?

(c) If T (∞) = ∞, then what, if anything, can be said about the coefficients a,
b, c, and d?

30. Use Problem 29 to show that if T is a linear fractional transformation and
T (0) = 0, T (1) = 1, and T (∞) = ∞, then T must be the identity function.
That is, T (z) = z.

31. Use Theorem 7.4 to derive the mapping in entry H-1 in Appendix III.

32. Use Theorem 7.4 to derive the mapping in entry H-3 in Appendix III.

7.3 Schwarz-Christoffel Transformations
7.3One problem that arises frequently in the study of fluid flow is that of constructing the

flow of an ideal fluid that remains inside a polygonal domain D′. We will see in Section 7.5
that this problem can be solved by finding a one-to-one complex mapping of the half-plane
y ≥ 0 onto the polygonal region that is a conformal mapping in the domain y > 0. The
existence of such a mapping is guaranteed by the Riemann mapping theorem discussed in the
Remarks at the end of Section 7.1. However, even though the Riemann mapping theorem
does assert the existence of a mapping, it gives no practical means of finding a formula for
the mapping. In this section we present the Schwarz-Christoffel formula, which provides an
explicit formula for the derivative of a conformal mapping from the upper half-plane onto
a polygonal region.

Polygonal Regions A polygonal region in the complex plane is
a region that is bounded by a simple, connected, piecewise smooth curve
consisting of a finite number of line segments. The boundary curve of a
polygonal region is called a polygon and the endpoints of the line segments in
the polygon are called vertices of the polygon. If a polygon is a closed curve,
then the region enclosed by the polygon is called a bounded polygonal
region, and a polygonal region that is not bounded is called an unbounded
polygonal region. See Figure 7.19. In the case of an unbounded polygonal
region, the ideal point ∞ is also called a vertex of the polygon.

y

x

y

x

(a) A bounded polygonal region

(b) An unbounded polygonal region

Figure 7.19 Polygonal regions

Simple examples of polygonal regions include the region bounded by the
triangle with vertices 0, 1, and i, which is an example of a bounded polygonal
region, and the region defined by 0 ≤ x ≤ 1, 0 ≤ y <∞, which is an example
of an unbounded polygonal region whose vertices are 0, 1, and ∞.

Special Cases In order to motivate a general formula for a conformal
mapping of the upper half-plane y ≥ 0 onto a polygonal region, we first
examine the complex mapping

w = f(z) = (z − x1)
α/π

, (1)

where x1 and α are a real numbers and 0 < α < 2π. The mapping in (1)
is the composition of a translation T (z) = z − x1 followed by the real power
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function F (z) = zα/π. Because x1 is real, T translates in a direction parallel
to the real axis. Under this translation the x-axis is mapped onto the u-axis
with the point z = x1 mapping onto the point w = 0. In order to understand
the power function F as a complex mapping we replace the symbol z with the
exponential notation reiθ to obtain:

F (z) =
(
reiθ

)α/π
= rα/πei(αθ/π). (2)

From (2) we see that the complex mapping w = zα/π can be visualized as the
process of magnifying or contracting the modulus r of z to the modulus rα/π of
w, and rotating z through α/π radians about the origin to increase or decrease
an argument θ of z to an argument αθ/π of w. Thus, under the composition
w = F (T (z)) = (z − x1)

α/π, a ray emanating from x1 and making an angle of
φ radians with the real axis is mapped onto a ray emanating from the origin
and making an angle of αφ/π radians with the real axis. See Figure 7.20.

y

x
x1

(a) A ray emanating from x1

(b) Image of the ray in (a)

φ

v

u
φ

w = (z – x1) πα/

πα   /

0

Figure 7.20 The mapping

w = (z − x1)α/π

Now consider the mapping (1) on the half-plane y ≥ 0. Since this set
consists of the point z = x1 together with the set of rays arg(z − x1) = φ,
0 ≤ φ ≤ π, the image under w = (z − x1)

α/π consists of the point w = 0
together with the set of rays arg(w) = αφ/π, 0 ≤ αφ/π ≤ α. Put another
way, the image of the half-plane y ≥ 0 is the point w = 0 together with the
wedge 0 ≤ arg(w) ≤ α. See Figure 7.21.

y

xx1

(a) The half-plane y ≥ 0

(b) The image of the half-plane

v

u

w = (z – x1) πα/

α

0

Figure 7.21 The mapping

w = (z − x1)α/π

The function f given by (1), which maps the half-plane y ≥ 0 onto an
unbounded polygonal region with a single vertex, has derivative:

f ′(z) =
α

π
(z − x1)

(α/π)−1
. (3)

Since f ′(z) �= 0 if z = x+ iy and y > 0, it follows that w = f(z) is a conformal
mapping at any point z with y > 0. In general, we will use the derivative
f ′, not f , to describe a conformal mapping of the upper half-plane y ≥ 0
onto an arbitrary polygonal region. With this in mind, we will now present a
generalization of the mapping in (1) based on its derivative in (3).

Consider a new function f , which is analytic in the domain y > 0 and
whose derivative is:

f ′(z) = A (z − x1)
(α1/π)−1 (z − x2)

(α2/π)−1
, (4)

where x1, x2, α1, and α2 are real, x1 < x2, and A is a complex constant.
A useful fact that will help us determine the image of the half-plane y ≥ 0
under f is that a parametrization w(t), a < t < b, gives a line segment if
and only if there is a constant value of arg (w′(t)) for all t in the interval
a < t < b. We now use this fact to determine the images of the intervals
(−∞, x1), (x1, x2), and (x2, ∞) on the real axis under the complex mapping
w = f(z). If we parametrize the interval (−∞, x1) by z(t) = t, −∞ < t < x1,
then by (11) of Section 2.2 the image under w = f(z) is parametrized by
w(t) = f(z(t)) = f(t), −∞ < t < x1. From (4) with the identification z = t,
we obtain:

w′(t) = f ′(t) = A (t− x1)
(α1/π)−1 (t− x2)

(α2/π)−1
.
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An argument of w′(t) is then given by:

Arg (A) +
(α1

π
− 1

)
Arg (t− x1) +

(α2

π
− 1

)
Arg (t− x2) . (5)

Because −∞ < t < x1, we have that t − x1 is a negative real number, and
so Arg(t− x1) = π. In addition, since x1 < x2, we also have that t − x2 is a
negative real number, and thus Arg(t− x2) = π. By substituting these values
into (5) we find that Arg(A) + α1 + α2 − 2π is a constant value of arg (w′(t))
for all t in the interval (−∞, x1). Therefore, we conclude that the interval
(−∞, x1) is mapped onto a line segment by w = f(z).

By similar reasoning we determine that the intervals (x1, x2) and (x2, ∞)
also map onto line segments. A value of the argument of w′ for each interval
is summarized in the following table. The change in the value of the argument
is also listed.

Interval An Argument of w′ Change in Argument

(−∞, x1) Arg(A) + α1 + α2 − 2π 0

(x1, x2) Arg(A) + α2 − π π − α1

(x2,∞) Arg(A) π − α2

Table 7.1 Arguments of w′

Since f is an analytic (and, hence, continuous) mapping, we conclude that
the image of the half-plane y ≥ 0 is an unbounded polygonal region. By Table
7.1 we see that the exterior angles between successive sides of the polygonal
boundary are given by the change in argument of w′ from one interval to the
next. Therefore, the interior angles of the polygon are α1 and α2. See Figure
7.22.

y

xx2x1

(a) The upper half-plane y ≥ 0

(b) The image of the region in (a)

v

u

w = f(z)

α2

α1

απ 2–απ 1–

Figure 7.22 The mapping associated

with (4) Schwarz-Christoffel Formula The foregoing discussion can be gen-
eralized to produce a formula for the derivative f ′ of a function f that maps
the half-plane y ≥ 0 onto a polygonal region with any number of sides. This
formula, given in the following theorem, is called the Schwarz-Christoffel
formula.

Theorem 7.5 Schwarz-Christoffel Formula

Let f be a function that is analytic in the domain y > 0 and has the
derivative

f ′(z) = A (z − x1)
(α1/π)−1 (z − x2)

(α2/π)−1 · · · (z − xn)(αn/π)−1
, (6)

where x1 < x2 < · · · < xn, 0 < αi < 2π for 1 ≤ i ≤ n, and A is a complex
constant. Then the upper half-plane y ≥ 0 is mapped by w = f(z) onto
an unbounded polygonal region with interior angles α1, α2, . . . , αn.
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It follows from Theorem 7.1 of Section 7.1 that the function given by the
Schwarz-Christoffel formula (6) is a conformal mapping in the domain y > 0.
For the sake of brevity, we will, henceforth, refer to a mapping obtained from
(6) as a conformal mapping from the upper half-plane onto a polygonal region.
It should be kept in mind that although such a mapping is defined on the upper
half-plane y ≥ 0, it is only conformal in the domain y > 0.

�Note

Before investigating some examples of the Schwarz-Christoffel formula,
we need to point out three things. First, in practice we usually have some
freedom in the selection of the points xk on the x-axis. A judicious choice can
simplify the computation of f(z). Second, Theorem 7.4 provides a formula
only for the derivative of f . A general formula for f is given by an integral

f(z) = A

∫
(z − x1)

(α1/π)−1 (z − x2)
(α2/π)−1 · · · (z − xn)(αn/π)−1

dz +B,

where A and B are complex constants. Thus, f is the composition of the
function

g(z) =
∫

(z − x1)
(α1/π)−1 (z − x2)

(α2/π)−1 · · · (z − xn)(αn/π)−1
dz

and the linear mapping h(z) = Az+B. As described in Section 2.3, the linear
mapping h allows us to rotate, magnify (or contract), and translate the polyg-
onal region produced by g. Third, although it is not stated in Theorem 7.4,
the Schwarz-Christoffel formula (6) can also be used to construct a mapping
of the upper half-plane y ≥ 0 onto a bounded polygonal region. To do so, we
apply (6) using only n − 1 of the n interior angles of the bounded polygonal
region.† We illustrate these ideas in the following examples.

EXAMPLE 1 Using the Schwarz-Christoffel Formula

Use the Schwarz-Christoffel formula (6) to construct a conformal mapping
from the upper half-plane onto the polygonal region defined by u ≥ 0,
−1 ≤ v ≤ 1.

Solution Observe that the polygonal region defined by u ≥ 0, −1 ≤ v ≤ 1,
is the semi-infinite strip shown in gray in Figure 7.23(b). The interior angles
of this unbounded polygonal region are α1 = α2 = π/2, and the vertices are
w1 = −i and w2 = i. To find the desired mapping, we apply Theorem 7.4
with x1 = −1 and x2 = 1. With these identifications, (6) gives

f ′(z) = A (z + 1)−1/2 (z − 1)−1/2
. (7)

y

x
BA

(a) Half-plane y ≥ 0

(b) Semi-infinite strip

v

i B ′

A′
–i

u
π

–1 1

/2

π/2

Figure 7.23 Figure for Example 1
From Theorem 7.4, w = f(z) is a conformal mapping from the half-plane
y ≥ 0 onto the polygonal region u ≥ 0, −1 ≤ v ≤ 1. A formula for f(z) is
found by integrating (7). Since z is in the upper half-plane y ≥ 0, we first use

†For a bounded polygon in the plane, any n− 1 of its interior angles uniquely determine
the remaining one.



414 Chapter 7 Conformal Mappings

the principal square root to rewrite (7) as

f ′(z) =
A

(z2 − 1)1/2
.

Furthermore, since the principal value of (−1)1/2 = i, we have

f ′(z) =
A

(z2 − 1)1/2
=

A

[−1 (1− z2)] 1/2
=

A

i

1

(1− z2)1/2
= −Ai 1

(1− z2)1/2
. (8)

From (7) of Section 4.4 we recognize that an antiderivative of (8) is given by

f(z) = −Ai sin−1 z +B, (9)

where sin−1 z is the single-valued function obtained by using the principal
square root and principal value of the logarithm and where A and B are
complex constants. If we choose f(−1) = −i and f(1) = i, then the constants
A and B must satisfy the system of equations

−Ai sin−1(−1) +B = Ai
π

2
+B = −i

−Ai sin−1(1) +B = −Aiπ
2

+B = i.

By adding these two equations we see that 2B = 0, or, B = 0. Now by
substituting B = 0 into either the first or second equation we obtain A =
−2/π. Therefore, the desired mapping is given by

f(z) = i
2
π

sin−1 z.

This mapping is shown in Figure 7.23. The line segments labeled A and B

shown in color in Figure 7.23(a) are mapped by w = i
2
π

sin−1 z onto the line

segments labeled A′ and B′ shown in black in Figure 7.23(b).

EXAMPLE 2 Using the Schwarz-Christoffel Formula

Use the Schwarz-Christoffel formula (6) to construct a conformal mapping
from the upper half-plane onto the polygonal region shown in gray in Figure
7.24(b).

y

x
BA

(a) Half-plane y ≥ 0

(b) Polygonal region for Example 2

v

i

B ′

A′

u

–1 1

π/2

π/2

3

0

Figure 7.24 Figure for Example 2

Solution We proceed as in Example 1. The region shown in gray in Figure
7.24(b) is an unbounded polygonal region with interior angles α1 = 3π/2 and
α1 = π/2 at the vertices w1 = i and w2 = 0, respectively. If we select x1 = −1
and x2 = 1 to map onto w1 and w2, respectively, then (6) gives

f ′(z) = A (z + 1)1/2 (z − 1)−1/2
. (10)
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Since

(z + 1)1/2 (z − 1)−1/2 =
(
z + 1
z − 1

)1/2 (
z + 1
z + 1

)1/2

=
z + 1

(z2 − 1)1/2
,

we can rewrite (10) as

f ′(z) = A

[
z

(z2 − 1)1/2
+

1

(z2 − 1)1/2

]
. (11)

An antiderivative of (11) is given by

f(z) = A
[(
z2 − 1

)1/2
+ cosh−1 z

]
+B,

where A and B are complex constants, and where
(
z2 − 1

)1/2 and cosh−1 z
represent branches of the square root and inverse hyperbolic cosine functions
defined on the domain y > 0. Because f(−1) = i and f(1) = 0, the constants
A and B must satisfy the system of equations

A
(
0 + cosh−1 (−1)

)
+B = Aπi+B = i

A
(
0 + cosh−1 1

)
+B = B = 0.

Therefore, A = 1/π, B = 0, and the desired mapping is given by

f(z) =
1
π

[(
z2 − 1

)1/2
+ cosh−1 z

]
.

The mapping is illustrated in Figure 7.24. The line segments labeled A and
B shown in color in Figure 7.24(a) are mapped by w = f(z) onto the line
segments labeled A′ and B′ shown in black in Figure 7.24(b).

When using the Schwarz-Christoffel formula, it is not always possible
to express f(z) in terms of elementary functions. In such cases, however,
numerical techniques can be used to approximate f with great accuracy. The
following example illustrates that even relatively simple polygonal regions can
lead to integrals that cannot be expressed in terms of elementary functions.

EXAMPLE 3 Using the Schwarz-Christoffel Formula

Use the Schwarz-Christoffel formula (6) to construct a conformal mapping
from the upper half-plane onto the polygonal region bounded by the equilat-
eral triangle with vertices w1 = 0, w2 = 1, and w3 = 1

2 + 1
2

√
3i. See Figure

7.25.

y

x
BA

(a) Half-plane y ≥ 0

(b) Equilateral triangle

v

B ′A′

u

10

π/3

10

�� + �� √3i
—

Figure 7.25 Figure for Example 3

Solution The region bounded by the equilateral triangle is a bounded
polygonal region with interior angles α1 = α2 = α3 = π/3. As mentioned
on page 413, we can find a desired mapping by using the Schwarz-Christoffel
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formula (6) with n− 1 = 2 of the interior angles. After selecting x1 = 0 and
x2 = 1, (6) gives

f ′(z) = Az−2/3 (z − 1)−2/3
. (12)

There is no antiderivative of the function in (12) that can be expressed in
terms of elementary functions. However, f ′ is analytic in the simply connected
domain y > 0, and so, from Theorem 5.8 of Section 5.4, an antiderivative f
does exist in this domain. The antiderivative is given by the integral formula

f(z) = A

∫ z

0

1

s2/3 (s− 1)2/3
ds+B, (13)

where A and B are complex constants. Requiring that f(0) = 0 allows us to
solve for the constant B. Since

∫ 0

0
= 0, we have

f(0) = A

∫ 0

0

1

s2/3 (s− 1)2/3
ds+B = 0 +B = B,

and so f(0) = 0 implies that B = 0. If we also require that f(1) = 1, then

f(1) = A

∫ 1

0

1

s2/3 (s− 1)2/3
ds = 1.

Let Γ denote value of the integral

Γ =
∫ 1

0

1

s2/3 (s− 1)2/3
ds.

Then A = 1/Γ and f can be written as

f(z) =
1
Γ

∫ z

0

1

s2/3 (s− 1)2/3
ds.

Values of f can be approximated using a CAS. For example, using the
NIntegrate command in Mathematica we find that

f(i) ≈ 0.4244 + 0.3323i and f(1 + i) ≈ 0.5756 + 0.3323i.

The Schwarz-Christoffel formula can also sometimes be used to find map-
pings onto nonpolygonal regions. Such mappings are often needed in the
study of ideal fluid flows. The Schwarz-Christoffel formula can be used when
the desired nonpolygonal region can be obtained as a “limit” of a sequence of
polygonal regions. The following example illustrates this technique.
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EXAMPLE 4 Using the Schwarz-Christoffel Formula

Use the Schwarz-Christoffel formula (6) to construct a conformal mapping
from the upper half-plane onto the nonpolygonal region defined by v ≥ 0,
with the horizontal half-line v = π, −∞ < u ≤ 0, deleted. See Figure 7.26(c).

y

x
BA

(a) Half-plane y ≥ 0

–1 0

(b) Polygonal region 

v

v = i

B ′

A′

uu0

ππ
α2

α1

(c) Limit of polygonal regions

v

v = i

B ′

A′

u

ππ

Figure 7.26 Figure for Example 4

Solution Let u0 be a point on the nonpositive u-axis in the w-plane. We
can approximate the non-polygonal region defined by v ≥ 0, with the half-line
v = π, −∞ < u ≤ 0, deleted by the polygonal region whose boundary consists
of the horizontal half-line v = π, −∞ < u ≤ 0, the line segment from πi to
u0, and the horizontal half-line v = 0, u0 ≤ u ≤ ∞. The vertices of this
polygonal region are w1 = πi and w2 = u0, with corresponding interior angles
α1 and α2. See Figure 7.26(b). If we choose the points z1 = −1 and z2 = 0 to
map onto the vertices w1 = πi and w2 = u0, respectively, then (6) gives the
derivative

A (z + 1)(α1/π)−1
z(α2/π)−1. (14)

Observe in Figure 7.26(b) that as u0 approaches −∞ along the u-axis, the
interior angle α1 approaches 2π and the interior angle α2 approaches 0. With
these limiting values, (14) suggests that our desired mapping f has derivative

f ′(z) = A (z + 1)1 z−1 = A

(
1 +

1
z

)
. (15)

An antiderivative of the function in (15) is given by

f(z) = A (z + Ln z) +B, (16)

where A and B are complex constants.
In order to determine the appropriate values of the constants A and B,

we first consider the mapping g(z) = z + Ln z on the upper half-plane y ≥ 0.
The function g has a point of discontinuity at z = 0; thus, we will consider
separately the boundary half-lines y = 0, −∞ < x < 0, and y = 0, 0 < x <∞,
of the half-plane y ≥ 0. If z = x + 0i is on the half-line y = 0, −∞ < x < 0,
then Arg(z) = π, and so g(z) = x+ loge |x|+ iπ.

When x < 0, x + loge |x| takes on all values from −∞ to −1. Thus,
the image of the negative x-axis under g is the horizontal half-line v = π,
−∞ < u < −1. On the other hand, if z = x + 0i is on the half-line y = 0,
0 < x < ∞, then Arg(z) = 0, and so g(z) = x + loge |x|. When x > 0,
x + loge |x| takes on all values from −∞ to ∞. Therefore, the image of the
positive x-axis under g is the u-axis. It follows that the image of the half-plane
y ≥ 0 under g(z) = z+ Ln z is the region defined by v ≥ 0, with the horizontal
half-line v = π, −∞ < u < −1 deleted. In order to obtain the region shown
in Figure 7.26(c), we should compose g with a translation by 1. Therefore,
the desired mapping is given by

f(z) = z + Ln (z) + 1.
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EXERCISES 7.3 Answers to selected odd-numbered problems begin on page ANS-22.

In Problems 1–6, use Theorem 7.5 to describe the image of the upper half-plane

y ≥ 0 under the conformal mapping w = f(z) that satisfies the given conditions.

Do not try to solve for f(z).

1. f ′(z) = (z − 1)−1/2, f(1) = 0

2. f ′(z) = (z + 1)−1/3, f(−1) = 0

3. f ′(z) = (z + 1)−1/2(z − 1)1/2, f(−1) = 0, f(1) = 1

4. f ′(z) = (z + 1)−1/2(z − 1)−3/4, f(−1) = 0, f(0) = 1

5. f ′(z) = (z + 1)1/2z−1/2(z − 1)−1/4, f(−1) = i, f(0) = 0, f(1) = 1

6. f ′(z) = (z − 1)−1/4z−1/2(z − 1)−1/4, f(−1) = −1 + i, f(0) = 0, f(1) = 1 + i

In Problems 7–10, use the Schwarz-Christoffel formula (6) to find f ′(z) for a confor-

mal mapping w = f(z) from the upper half-plane onto the given polygonal region

shown in gray. Use the values x1 = −1, x2 = 0, x3 = 1, and so on in (6). Do not

try to solve for f(z).

7. f(−1) = 0, f(0) = 1 8. f(−1) = −1, f(0) = 0

10

v

i

u

Figure 7.27 Figure for Problem 7

10

/3

v

u
π

Figure 7.28 Figure for Problem 8

9. f(−1) = −1, f(0) = 1 10. f(−1) = i, f(0) = 0

1–1

/32

v

u

π /32π

Figure 7.29 Figure for Problem 9

v

i

u
/4π

Figure 7.30 Figure for Problem 10
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Focus on Concepts
11. Use the Schwarz-Christoffel formula (6) to construct a conformal mapping from

the upper half-plane onto the polygonal region shown in gray in Figure 7.31.
Require that f(−1) = πi and f(1) = 0.

12. Use Schwarz-Christoffel formula (6) to construct a conformal mapping from
the upper half-plane onto the polygonal region shown in gray in Figure 7.32.
Require that f(−1) = −ai and f(1) = ai.

v

i

u

π

Figure 7.31 Figure for Problem 11

v

ai

–ai

u

Figure 7.32 Figure for Problem 12

13. Use the Schwarz-Christoffel formula (6) to verify the conformal mapping in
entry M-3 of Appendix III by first constructing the derivative of a mapping of
the upper half-plane onto the polygonal region shown in gray in Figure 7.33.
Require that f(−1) = −a f(0) = v1i, and f(1) = a, and then let v1 → −∞
along the v-axis.

14. Use the Schwarz-Christoffel formula (6) to verify the conformal mapping in
entry M-4 of Appendix III by first constructing the derivative of a mapping of
the upper half-plane onto the polygonal region shown in gray in Figure 7.34.
Require that f(−1) = −u1, f(0) = ai, and f(1) = u1, and then let u1 → 0
along the u-axis.

v

v1i

u
–a a

Figure 7.33 Figure for Problem 13

v

ai

u
u1–u1

Figure 7.34 Figure for Problem 14

Computer Lab Assignments

In Problems 15–18, use a CAS to approximate the images of the points z1 = i and

z2 = 1 + i under the given function.

15. w = f(z) is the mapping from Problem 3.

16. w = f(z) is the mapping from Problem 6.

17. w = f(z) is the mapping from Problem 8.

18. w = f(z) is the mapping from Problem 9.
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7.4 Poisson Integral Formulas

7.4The success of using a conformal mapping to solve a boundary-value problem associated
with Laplace’s equation often depends on the ability to solve a related boundary-value
problem in a simple domain such as the upper half-plane y > 0 or the open unit disk
|z| < 1. In this section we present two important integral formulas for solving a Dirichlet
problem in these domains.

y

z 

x

= 0

x1

θ

= 0φ

θ

= k1φ
= θ π
= k0φ

∇2

Figure 7.35 Dirichlet problem (1)

Formula for the Upper Half-Plane We begin by investigating
the following Dirichlet problem:

Solve:
∂2φ

∂x2
+
∂2φ

∂y2
= 0, −∞ < x <∞, y > 0

(1)

Subject to: φ(x, 0) =


 k0, −∞ < x < x1

k1, x1 < x <∞,

where k0 and k1 are real constants and x1 is a point on the xfunction φ(x, y)
that depends on the angle θ between the ray emanating from x1 and containing
the point x1 + 1 on the x-axis and the ray emanating from x1 and containing
the point z = x + iy in the upper half-plane y > 0. After applying the
translation z − x1, we observe that the angle θ is also the angle between the
positive x-axis and the vector representation of z−x1. Since z is in the upper
half-plane, this angle is given by θ = Arg(z − x1). In order to satisfy the
boundary conditions in (1), φ(x, y) must range from k1 to k0 as θ varies from
0 to π. The parametrization of a line segment given by (7) in Section 2.2
suggests that φ(x, y) be defined as a function of θ by:

φ(θ) = k1

(
1− θ

π

)
+ k0

θ

π

or φ(x, y) = k1 +
1
π

(k0 − k1) Arg (z − x1), (2)

where 0 ≤ θ ≤ π.
We will now show that the function φ(x, y) defined in (2) is, in fact, a

solution of the Dirichlet problem (1). In the upper half-plane y > 0, we have
that φ(x, y) is the imaginary part of the function

f(z) = ik1 + Ln
[
k0 − k1

π
(z − x1)

]
.

Because f is analytic when y > 0, it follows from Theorem 3.7 that its imag-
inary part is harmonic. Therefore, φ(x, y) satisfies Laplace’s equation

∂2φ

∂x2
+
∂2φ

∂y2
= 0 (3)

when −∞ < x <∞ and y > 0.



7.4 Poisson Integral Formulas 421

We next verify that the boundary conditions of (1) are satisfied by φ(x, y).
Assume that z is in the interval (x1, ∞) in the real axis. That is, z = x+ 0i
with x1 < x <∞. In this case, Arg(z − x1) = 0, and so (2) gives

φ(x, 0) = k1 +
1
π

(k0 − k1) Arg (z − x1) = k1 +
1
π

(k0 − k1) 0 = k1. (4)

On the other hand, if z = x + 0i with −∞ < x < x1, then Arg(z − x1) = π,
and so

φ(x, 0) = k1 +
1
π

(k0 − k1) Arg (z − x1) = k1 +
1
π

(k0 − k1)π = k0. (5)

Therefore, from (3), (4), and (5), we conclude that the function φ(x, y) defined
by (2) is a solution of the Dirichlet problem (1).

The foregoing discussion can be generalized. In particular, consider the
Dirichlet problem

Solve:
∂2φ

∂x2
+
∂2φ

∂y2
= 0, −∞ < x <∞, y > 0

(6)

Subject to: φ(x, 0) =




k0, −∞ < x < x1

k1, x1 < x < x2

...
...

kn, xn < x <∞,

where x1 < x2 < ... < xn are n distinct points on the x-axis and k0, k1,
. . . , kn are n+ 1 real constants. See Figure 7.36. Observe that (1) is simply
a special case of (6) corresponding to n = 1. With reasoning similar to that
used to obtain (2) we construct the function

φ(x, y) = kn +
1
π

n∑
j=1

(kj−1 − kj) Arg (z − xj). (7)
x1 x2 xn

y

x

= 0φ

= k0φ = k1φ = k2φ = knφ

∇2

Figure 7.36 Dirichlet problem (6) As with (2), we can verify that this function is harmonic in the domain y > 0
by observing that φ(x, y) is the imaginary part of the analytic function

f(z) = ikn +
n∑

j=1

Ln
[
kj−1 − kj

π
(z − xj)

]
.

Now we show that φ(x, y) satisfies the boundary conditions in (6). Let N
be a fixed value of j. If z = x + 0i is a point with xN < x < xN+1, then
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Arg(z − xj) = 0 for 1 ≤ j ≤ N , while Arg(z − xj) = π for N + 1 ≤ j ≤ n.
Therefore, for z = x+ 0i with xN < x < xN+1, (7) gives

φ(x, 0) = kn +
1
π

n∑
j=1

(kj−1 − kj) Arg(z−xj)

= kn +
1
π

N∑
j=1

(kj−1 − kj) Arg(z−xj) +
1
π

n∑
j=N+1

(kj−1 − kj) Arg(z−xj)

= kn +
1
π

N∑
j=1

(kj−1 − kj) · 0 +
1
π

n∑
j=N+1

(kj−1 − kj) · π

= kn + (kN − kN+1) + (kN+1 − kN+2) + · · ·+ (kn−1 − kn)
= kN .

Therefore, the function φ(x, y) satisfies the boundary conditions of (6). In
summary, we have shown that the function φ(x, y) defined in (7) is a solution
of the Dirichlet problem given by (6). This solution will be used to find an
integral formula for a solution of a more general type of Dirichlet problem in
the upper half-plane y > 0.

EXAMPLE 1 Using the Poisson Integral Formula

Use (7) to solve the Dirichlet problem

Solve:
∂2φ

∂x2
+
∂2φ

∂y2
= 0, −∞ < x <∞, y > 0

Subject to: φ(x, 0) =




2, −∞ < x < 0

−1, 0 < x < 3

5, 3 < x <∞,

illustrated in Figure 7.37.

3

y

x

= 0

0

φ

= 5φ= 2φ = –1φ

∇2

Figure 7.37 Figure for Example 1

Solution Identifying k0 = 2, k1 = −1, k2 = 5, x1 = 0, and x2 = 3 in (7), we
obtain the solution

φ(x, y) = 5 +
1
π

(2 + 1) Arg (z − 0) +
1
π

(−1− 5) Arg (z − 3)

= 5 +
3
π

Arg (z)− 6
π

Arg (z − 3) .

Poisson Integral Formula A special case of the Dirichlet problem
(6) occurs when k0 = kn = 0.
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Solve:
∂2φ

∂x2
+
∂2φ

∂y2
= 0, −∞ < x <∞, y > 0

(8)

Subject to: φ(x, 0) =




0, −∞ < x < x1

k1, x1 < x < x2

...
...

kn−1, xn−1 < x < xn

0, xn < x <∞.

After setting zi = z − xi for i = 1, 2, . . . n and identifying k0 = kn = 0, the
solution given by (7) can be written as

φ(x, y) = 0 +
1
π

[(0− k1) Arg z1 + (k1 − k2) Arg z2 + · · ·+ (kn−1 − 0) Arg zn]

=
1
π

[k1(Arg z2 −Arg z1) + k2(Arg z3 −Arg z2) + · · ·+ kn−1(Arg zn −Arg zn−1)]

=
n−1∑
j=1

kj

π
(Arg zj+1 −Arg zj)

That is, the function

φ(x, y) =
n−1∑
j=1

kj

π
[Arg (z − xj+1)−Arg (z − xj)] (9)

is a solution of the Dirichlet problem in (8).
We can write (9) in terms of a real improper integral. In order to do so,

let t be a real variable and observe that if y > 0, then

Arg (z − t) = cot−1

(
x− t

y

)
and

d

dt
Arg (z − t) =

y

(x− t)2 + y2
.

Put another way,

Arg(zj+1)−Arg(zj) =
∫ xj+1

xj

d

dt

[
y

(x− t)2 + y2

]
dt.

With these substitutions, (9) becomes

φ(x, y) =
1
π

n−1∑
j=1

∫ xj+1

xj

kjy

(x− t)2 + y2
dt.

Since φ(x, 0) = 0 when x < x1 or x > xn, φ(x, y) can also be written as

φ(x, y) =
y

π

∫ ∞

−∞

φ(t, 0)
(x− t)2 + y2

dt. (10)
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The integral formula in (10) is called the Poisson integral formula for the
upper half-plane y > 0, and it gives a solution φ(x, y) of the Dirichlet problem
in (8). The Poisson integral formula can also be used to solve a more general
type of Dirichlet problem in which the boundary conditions are specified by
any piecewise continuous and bounded function. This is the content of the
following theorem.

Theorem 7.6 Poisson Integral Formula for the Half-Plane

Let f(x) be a piecewise continuous and bounded function on
−∞ < x <∞. Then the function defined by

φ(x, y) =
y

π

∫ ∞

−∞

f(t)
(x− t)2 + y2

dt (11)

is a solution of the Dirichlet problem in the upper half-plane y > 0 with
boundary condition φ(x, 0) = f(x) at all points of continuity of f .

Unfortunately, there are few functions f for which the Poisson integral
formula (11) can be evaluated. The following example represents an exception
to the previous remark.

EXAMPLE 2 Using the Poisson Integral Formula

Use the Poisson integral formula (11) to find a solution of the Dirichlet
problem

Solve:
∂2φ

∂x2
+
∂2φ

∂y2
= 0, −∞ < x <∞, y > 0

Subject to: φ(x, 0) =




0, −∞ < x < −1

x, −1 < x < 1

0, 1 < x <∞,

illustrated in Figure 7.38.

y

x

= 0

–1 1

φ

= 0φ= 0φ = xφ

∇2

Figure 7.38 Figure for Example 2

Solution We first define a real function f by f(x) = φ(x, 0). Then
f(x) = x on −1 < x < 1 and 0 elsewhere. Thus, f is piecewise continu-
ous and bounded on the real line −∞ < x < ∞. After replacing the symbol
x with the integration variable t, we identify f(t) = φ(t, 0) = t for −1 < t < 1
and 0 elsewhere. Then (11) gives

φ(x, y) =
y

π

∫ ∞

−∞

φ(t, 0)
(x− t)2 + y2

dt =
y

π

∫ 1

−1

t

(x− t)2 + y2
dt.
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With the substitutions s = x− t and ds = −dt this integral becomes

φ(x, y) = − y
π

∫ x−1

x+1

x− s

s2 + y2
ds = − y

π

∫ x−1

x+1

x

s2 + y2
ds+

y

π

∫ x−1

x+1

s

s2 + y2
ds.

From elementary calculus we have that

∫
x

s2 + y2
ds =

x

y
tan−1

(
s

y

)
+ C1∫

s

s2 + y2
ds =

1
2

loge

(
s2 + y2

)
+ C2.and

Therefore,

φ(x, y) = −x
π

tan−1

(
s

y

)∣∣∣∣
s=x−1

s=x+1

+
y

2π
loge

(
s2 + y2

)∣∣∣s=x−1

s=x+1

=
x

π

[
tan−1

(
x+ 1
y

)
− tan−1

(
x− 1
y

)]
+

y

2π
loge

[
(x− 1)2 + y2

(x+ 1)2 + y2

]

is a solution of the Dirichlet problem.

Formula for the Unit Disk A Poisson integral formula for the unit
disk can be derived in a similar manner. This gives an integral formula for
a solution of a Dirichlet problem in the open unit disk |z| < 1 subject to
certain types of boundary conditions. The following theorem gives the precise
statement of this result.

Theorem 7.7 Poisson Integral Formula for the Unit Disk

Let f(z) be a complex function for which the values f
(
eiθ

)
on the unit

circle z = eiθ give a piecewise continuous and bounded function for
−π ≤ θ ≤ π. Then the function defined by

φ(x, y) =
1
2π

∫ π

−π

f
(
eit

) 1− |z|2

|eit − z|2
dt (12)

is a solution of the Dirichlet problem in the open unit disk |z| < 1 with
boundary condition φ(cos θ, sin θ) = f

(
eiθ

)
at all points of continuity of f .

As with Theorem 7.5, the integral given in (12) can seldom be expressed
in terms of elementary functions. When we cannot evaluate the integral, we
appeal to numerical methods to approximate values of a solution given by
(12).
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EXAMPLE 3 Using the Poisson Integral Formula

Use the Poisson integral formula (12) to find a solution of the Dirichlet
problem

Solve:
∂2φ

∂x2
+
∂2φ

∂y2
= 0, x2 + y2 < 1

Subject to: φ(cos θ, sin θ) = |θ|, −π < θ ≤ π,

illustrated in Figure 7.39.

y

x
= 0φ θ

θ= |  |φ

∇2

Figure 7.39 Figure for Example 3

Solution The function f
(
eiθ

)
= φ(cos θ, sin θ) = |θ| is piecewise continuous

and bounded for −π ≤ θ ≤ π. Thus, after identifying f
(
eit

)
= φ(cos t, sin t) =

|t| in (12) we obtain the integral formula

φ(x, y) =
1
2π

∫ π

−π

|t| 1− |z|2

|eit − z|2
dt.

This integral cannot be evaluated in terms of elementary functions. However,
with the use of the NIntegrate command in Mathematica we can approxi-
mate values of the function φ(x, y). For example, Mathematica indicates that
φ

(
1
2 , 0

)
≈ 0.9147 and φ

(
0, 1

2

)
≈ 1.5708.

EXERCISES 7.4 Answers to selected odd-numbered problems begin on page ANS-22.

In Problems 1–4, use (7) to solve the given Dirichlet problem in the upper half-plane

y > 0.

1. 2.y

x

= 0

–1 1

φ

= 0
0

φ= 0φ = 1φ= –1φ

∇2

Figure 7.40 Figure for Problem 1

y

x

= 0

–2 1

φ

= 0
0

φ= –1φ = 1φ= 5φ

∇2

Figure 7.41 Figure for Problem 2
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3. 4.y

x

= 0

–2 –1 1

φ

= 5
0

φ= 0φ = 1φ = 0φ= –1φ

∇2

Figure 7.42 Figure for Problem 3

y

x

= 0

–2 –1 1

φ

= 4
0

φ= 1φ = 1φ = 2φ= –1φ

∇2

Figure 7.43 Figure for Problem 4

In Problems 5–8, use the Poisson integral formula (11) to solve the Dirichlet problem

in the upper half-plane y > 0 subject to the given boundary conditions.

5. φ(x, 0) =




0, −∞ < x < 0

2x− 1, 0 < x < 2

0, 2 < x < ∞

6. φ(x, 0) =




−1, −∞ < x < −1

x, −1 < x < 1

1, 1 < x < ∞

7. φ(x, 0) =




0, −∞ < x < 0

x2, 0 < x < 1

0, 1 < x < ∞

8. φ(x, 0) =




0, −∞ < x < 0

x2, 0 < x < 1

1, 1 < x < ∞

9. (a) Use the techniques presented in Section 6.6 to establish the integral
formulas∫ ∞

−∞

cos s

s2 + a2
ds =

πe−a

a
and

∫ ∞

−∞

sin s

s2 + a2
ds = 0 for a > 0.

(b) Solve the Dirichlet in the upper half-plane y > 0 subject to the boundary
condition φ(x, 0) = cosx,−∞ < x < ∞. [Hint : Make the substitution
s = t− x and use the formulas in part (a).]

10. Solve the Dirichlet in the upper half-plane y > 0 subject to the boundary
condition φ(x, 0) = sinx,−∞ < x < ∞. [Hint : Make the substitution s = t−x
and use the formulas in part (a) of Problem 9.]

Focus on Concepts

11. Let f(z) be a complex function and suppose that on the unit disk z = eiθ,
−π ≤ θ ≤ π, we have that f

(
eiθ

)
is piecewise continuous and bounded. Let

z = reiθ, 0 ≤ r < 1, be a point inside the unit disk. Show that the Poisson
integral formula (12) can be written as

φ(x, y) =
1

2π

∫ π

−π

f
(
eit

) 1 − |z|2

|eit − z|2
dt =

1

2π

∫ π

−π

f
(
eit

) 1 − r2

1 + r2 − 2r cos (t− θ)
dt. (13)

12. In this problem we determine a solution of the Dirichlet problem on the unit
disk subject to a piecewise constant boundary condition. That is, we derive a
formula for a solution of a Dirichlet problem in the unit disk that is analogous
to the Dirichlet problem (6) in the half-plane.
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(a) Verify that

1

2π

∫
1 − r2

1 + r2 − 2r cos(t− θ)
dt =

1

π
tan−1

[
1 + r

1 − r
tan

(
t− θ

2

)]
+ C. (14)

(b) Assume that θ1 < θ2 < ... < θn are n distinct points in the interval (−π, π).
Explain how (13) and (14) can be used to solve the Dirichlet problem

Solve:
∂2φ

∂x2
+

∂2φ

∂y2
= 0, x2 + y2 < 1

Subject to: φ(cos θ, sin θ) =




k0, −π < θ < θ1

k1, θ1 < θ < θ2

...
...

kn, θn < θ < π .

13. Use Problems 11 and 12 to solve the Dirichlet problem in the unit disk shown
in Figure 7.44.

14. Use Problems 11 and 12 to solve the Dirichlet problem in the unit disk shown
in Figure 7.45.

y

x

i

= 0φ
= –1φ

= 1

1

φ

∇2

Figure 7.44 Figure for Problem 13

–i

y

x
= 0φ

= –1φ= 1

1–1

φ

= 0φ

∇2

Figure 7.45 Figure for Problem 14

Computer Lab Assignments

In Problems 15 and 16, (a) use the Poisson integral formula (12) to find an integral

representation of a solution of the given Dirichlet problem in the unit disk, and (b)

use a CAS to approximate the values of the solution at the points (0, 0),
(

1
2
, 1

2

)
, and(

0, 1
3

)
.

15. 16.y

x
= 0φ

(cos  , sin  ) =φ θ θ θ

1

∇2

2

π 2—

Figure 7.46 Figure for Problem 15

y

x
= 0φ

= 0φ

(cos  , sin  )=e–| |φ θ θ θ

1–1

∇2

Figure 7.47 Figure for Problem 16
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7.5 Applications

7.5In this section we revisit the method introduced in Section 4.5 for solving Dirichlet prob-
lems; here we incorporate the new mappings defined in this chapter or in Appendix III. We
also describe a similar process for solving a new type of boundary-value problem that relies
on finding a conformal mapping between two domains. This allows us to investigate more
complicated boundary-value problems arising in the two-dimensional modeling of electro-
statics and heat flow. We conclude this section with an application of conformal mapping
to the problem of finding an irrotational flow of an incompressible fluid, that is, the flow of
an ideal fluid, in a region of the plane.

7.5.1 Boundary-Value Problems

Dirichlet Problems Revisited Suppose that D is a domain in the
z-plane and that g is a function defined on the boundary C of D. The problem
of finding a function φ(x, y) that satisfies Laplace’s equation ∇2φ = 0, or

∂2φ

∂x2
+
∂2φ

∂y2
= 0, (1)

in D and that equals g on the boundary of D, is called a Dirichlet problem.
In Section 4.5, we saw that analytic functions can be used to solve certain

Dirichlet problems. We obtained a solution of a Dirichlet problem in a domain
D by finding an analytic mapping of D onto a domain D′ in which the
associated, or transformed, Dirichlet problem can be solved. That is, we
found a mapping w = f(z) of D onto D′ such that f(z) = u(x, y) + iv(x, y)
is analytic in D. By Theorem 4.5, if Φ(u, v) is a solution of the transformed
Dirichlet problem in D′, then φ(x, y) = Φ(u(x, y), v(x, y)) is a solution of
the Dirichlet problem in D. Thus, our method presented in Section 4.5 for
solving Dirichlet problems consisted of the following four steps:

• Find an analytic mapping w = f(z) = u(x, y) + iv(x, y) of the domain
D onto a domain D′,

• transform the boundary conditions from D to D′,

• solve the transformed Dirichlet problem in D′, and

• set φ(x, y) = Φ(u(x, y), v(x, y)).

For a more detailed discussion of these steps refer to Section 4.5 and Figure
4.19.

In this chapter we investigate a number of topics that can help complete
these four steps. The table of conformal mappings discussed in Section 7.1,
the linear fractional transformations studied in Section 7.2, and the Schwarz-
Christoffel transformation of Section 7.3 provide a valuable source of mappings
to use in Step 1. In addition, if D′ is taken to be either the upper half-plane
y > 0 or the open unit disk |z| < 1, then the Poisson integral formulas of
Section 7.4 provide a means to determine a solution of the associated Dirichlet
problem in D′.
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In the following examples, we will apply some ideas from the preceding
sections in this chapter to help solve Dirichlet problems arising in the areas
of electrostatics, fluid flow, and heat flow. Recall from Section 3.3 that if
a function φ(x, y) satisfies Laplace’s equation (1) in some domain D, then
φ(x, y) is harmonic in D. Moreover, if ψ(x, y) is a harmonic conjugate of
φ(x, y) in D, then the function

Ω(z) = φ(x, y) + iψ(x, y)

is analytic in D and is called a complex potential function. The level
curves of φ and ψ have important physical interpretations in applied mathe-
matics. Their interpretations are summarized in Table 3.1 of Section 3.4.

EXAMPLE 1 A Heat Flow Application

Determine the steady-state temperature φ in the domain D consisting of all
points outside of the two circles |z| = 1 and

∣∣z − 5
2

∣∣ = 1
2 , shown in color in

Figure 7.48(a), that satisfies the indicated boundary conditions.

y

v

= 0φ

= 30φ = 0φ

1

1

2 3
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(a) Dirichlet problem

(b) Transformed Dirichlet problem

Φ

Φ
Φ

Figure 7.48 Figure for Example 1

Solution The steady-state temperature φ is a solution of Laplace’s equation
(1) in D that satisfies the boundary conditions

φ(x, y) = 30 if x2 + y2 = 1,

φ(x, y) = 0 if
(
x− 5

2

)2 + y2 = 1
4 .

We solve this problem using the four steps given on page 429.

Step 1 Entry C-1 in Appendix III indicates that we can map D onto an
annulus. Identifying b = 2 and c = 3 in Entry C-1, we find that

a =
bc+ 1 +

√
(b2 − 1) (c2 − 1)
b+ c

=
7 + 2

√
6

5
,

r0 =
bc− 1−

√
(b2 − 1) (c2 − 1)
c− b

= 5− 2
√

6.and

Thus, the domain D is mapped onto the annulus 5− 2
√

6 < w < 1 shown in
gray in Figure 7.48(b) by the analytic mapping w = f(z), where

f(z) =
5z − 7− 2

√
6(

7 + 2
√

6
)
z − 5

. (2)

Step 2 Inspection of entry C-1 in Appendix III shows that the boundary circle∣∣z − 5
2

∣∣ = 1
2 is mapped onto the boundary circle |w| = r0 = 5 − 2

√
6. Thus,

the boundary condition φ = 0 is transformed to the boundary condition Φ = 0
on the circle |w| = 5 − 2

√
6. Similarly, we see that the boundary condition

φ = 30 on the circle |z| = 1 is transformed to the boundary condition Φ = 30
on the circle |w| = 1. See Figure 7.48(b).
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Step 3 The shape of the annulus along with the fact that the two bound-
ary conditions are constant in Figure 7.48(b) suggests that a solution of the
transformed Dirichlet problem is given by a function Φ(u, v) that is defined in
terms of the modulus r =

√
u2 + v2 of w = u+ iv. In Problem 14 in Exercises

3.4 you were asked to show that a solution is given by

Φ(u, v) = A loge

√
u2 + v2 +B, (3)

where

A =
k0 − k1

loge(a/b)
and B =

−k0 loge b+ k1 loge a

loge(a/b)
.

Following the definitions of k0, k1, a, and b given in Problem 14, we have
a = 5− 2

√
6, b = 1, k0 = 0, and k1 = 30. Thus, we obtain the solution

Φ(u, v) =
−30 loge

√
u2 + v2

loge

(
5− 2

√
6
) + 30 (4)

of the transformed Dirichlet problem.

Step 4 The final step is to substitute the real and imaginary parts of the
function f given by (2) for the variables u and v in (4). Since

u(x, y) + iv(x, y) =
5z − 7− 2

√
6(

7 + 2
√

6
)
z − 5

,

we have

√
u(x, y)2 + v(x, y)2 =

∣∣∣∣∣ 5z − 7− 2
√

6(
7 + 2

√
6
)
z − 5

∣∣∣∣∣.
Therefore, the steady-state temperature is given by the function

φ(x, y) =
−30

loge

(
5− 2

√
6
) loge

∣∣∣∣∣ 5z − 7− 2
√

6(
7 + 2

√
6
)
z − 5

∣∣∣∣∣ + 30.

A complex potential function Ω(z) = φ(x, y)+ iψ(x, y) for the harmonic
function φ(x, y) found in Example 1 is

Ω(z) =
−30

loge

(
5− 2

√
6
)Ln

∣∣∣∣∣ 5z − 7− 2
√

6(
7 + 2

√
6
)
z − 5

∣∣∣∣∣ + 30.

If we define this function as Ω[z] in Mathematica, then the real and imagi-
nary parts φ(x, y) and ψ(x, y) of Ω(z) are given by Re[Ω[z]] and Im[Ω[z]],
respectively. We can then use the ContourPlot command in Mathematica
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to plot the level curves of the real and imaginary parts of Ω. For example,
the command

ContourPlot[ Re[Ω[x + I y]] , {x, a, b}, {y, c, d} ]

produces a plot of the level curves φ = c1 in the rectangular region a ≤ x ≤ b,
c ≤ y ≤ d of the plane. According to Table 3.1 in Section 3.4, the level curves
of φ and ψ represent the isotherms and lines of heat flux, respectively. Both
sets of level curves are shown in Figure 7.49. The isotherms are the curves
shown in color and the lines of heat flux are the curves shown in black.
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Figure 7.49 Isotherms and lines of heat

flux for Example 1

EXAMPLE 2 An Electrostatics Application

Determine the electrostatic potential φ in the domain D between the circles
|z| = 1 and

∣∣z − 1
2

∣∣ = 1
2 , shown in color in Figure 7.50(a), that satisfies the

indicated boundary conditions.

Solution The electrostatic potential φ is a solution of Laplace’s equation (1)
in D that satisfies the boundary conditions

φ(x, y) = −10 on x2 + y2 = 1,

φ(x, y) = 20 on
(
x− 1

2

)2 + y2 = 1
4 .

We proceed as in Example 1.

Step 1 The given domain D can be mapped onto the infinite horizontal
strip 0 < v < 1, shown in gray in Figure 7.50(b), by a linear fractional
transformation. One way to do this is to require that the points 1, i, and
−1 on the circle |z| = 1 map onto the points ∞, 0, and 1, respectively.
By Theorem 7.4 in Section 7.2 the desired linear fractional transformation
w = T (z) must satisfy

z − 1
z + 1

i+ 1
i− 1

= lim
w1→∞

w − w1

w − 1
0− 1
0− w1

, or
z − 1
z + 1

(−i) =
−1

w − 1
.

y
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(a) Dirichlet problem

(b) Transformed Dirichlet problem

Φ

Φ

Φ

Figure 7.50 Figure for Example 2

After solving for w = T (z), we obtain

T (z) = (1− i)
z − i

z − 1
. (5)

By construction, the circle |z| = 1 is mapped onto the line v = 0 by w = T (z).
Furthermore, because the pole z = 1 of (5) is on the circle

∣∣z − 1
2

∣∣ = 1
2 , it

follows that this circle is also mapped onto a line. The image line can be
determined by finding the image of two points on the circle

∣∣z − 1
2

∣∣ = 1
2 . For

the points z = 0 and z = 1
2 + 1

2 i on the circle
∣∣z − 1

2

∣∣ = 1
2 , we have T (0) = 1+i

and T
(

1
2 + 1

2 i
)

= −1 + i. Therefore, the image of the circle
∣∣z − 1

2

∣∣ = 1
2 must

be the horizontal line v = 1. Using the test point z = − 1
2 , we find that

T
(
− 1

2

)
= 1+ 1

3 i, and so we conclude that the domain shown in color between
the circles in Figure 7.50(a) is mapped by w = T (z) onto the domain shown
in gray between the horizontal lines in Figure 7.50(b).
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Step 2 From Step 1 we have w = T (z) maps the circle |z| = 1 onto the
horizontal line v = 0, and it maps the circle

∣∣z − 1
2

∣∣ = 1
2 onto the horizontal

line v = 1. Thus, the transformed boundary conditions are Φ = −10 on the
line v = 0 and Φ = 20 on the line v = 1. See Figure 7.50(b).

Step 3 Modeled after Example 2 in Section 3.4 and Problem 12 in Exercises
3.4, a solution of the transformed Dirichlet problem is given by

Φ(u, v) = 30v − 10.

Step 4 A solution of the original Dirichlet problem is now obtained by sub-
stituting the real and imaginary parts of T (z) defined in (5) for the variables
u and v in Φ(u, v). By replacing the symbol z with x + iy in T (z) and
simplifying we obtain:

T (x+ iy) = (1− i)
x+ iy − i

x+ iy − 1
= (1− i)

x+ i(y − 1)
x− 1 + yi

x− 1− iy

x− 1− iy

=
x2 + y2 − 2x− 2y + 1

(x− 1)2 + y2
+

1− x2 − y2

(x− 1)2 + y2
i.

Therefore,

φ(x, y) = 30
1− x2 − y2

(x− 1)2 + y2
− 10 (6)

is the desired electrostatic potential function.

A complex potential function for the harmonic function φ(x, y) given by
(6) in Example 2 can be found as follows. If Ω(z) is a complex potential for
φ, then Ω(z) = φ(x, y) + iψ(x, y) and Ω(z) is analytic in D. From Step
4 of Example 2 we have that the complex function T (z) given by (5) has

real and imaginary parts u =
x2 + y2 − 2x− 2y + 1

(x− 1)2 + y2
and v =

1− x2 − y2

(x− 1)2 + y2
,

respectively. That is, T (z) = u+ iv. We also have from Step 4 that φ(x, y) =
30v − 10. In order to obtain a function with 30v − 10 as its real part, we
multiply T (z) by −30i then subtract 10:

−30iT (z)− 10 = −30i(u+ iv)− 10 = 30v − 10− 30ui.

Since T (z) = (1 − i)
z − i

z − 1
is analytic in D, it follows that the function

−30iT (z)− 10 is also analytic in D. Therefore,

Ω(z) = −30i (1− i)
z − i

z − 1
− 10 (7)

is a complex potential function for φ(x, y). Since φ represents the electrostatic
potential, the level curves of the real and imaginary parts of Ω represent
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the equipotential curves and lines of force, respectively. The Mathematica-
generated plot in Figure 7.51 shows the equipotential curves in color and the
lines of force in black.
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Figure 7.51 Equipotential curves and

lines of force for Example 2

Neumann Problems Theorem 7.1 states that an analytic mapping is
conformal at a point where the derivative is nonzero. This fact did not appear
to be of immediate importance in previous examples when we solved Dirichlet
problems, but it is extremely important in another class of boundary-value
problems associated with Laplace’s equation called Neumann problems.

Neumann Problem

Suppose that D is a domain in the plane and that h is a function defined on
the boundary C of D. The problem of finding a function φ(x, y) that sat-
isfies Laplace’s equation in D and whose normal derivative dφ/dn equals
h on the boundary C of D is called a Neumann problem.

Certain types of Neumann problems occur naturally in the study of elec-
trostatics, fluid flow, and heat flow. For example, consider the problem of
determining the steady-state temperature φ in a domain D with boundary
C. If the temperatures on the boundary C of D are specified, then we have
a Dirichlet problem. However, it may also be the case that all or part of
the boundary is insulated. This means that there is no heat flow across the
boundary, and, it can be shown that this implies that the directional derivative
of φ in the direction of the normal vector n to C is 0. We call this derivative
the normal derivative and denote it by dφ/dn. In summary, an insulated
boundary curve in a heat flow problem corresponds to a boundary condition of
the form dφ/dn = 0, and, thus, is an example of a Neumann problem. As the
following theorem asserts, conformal mappings preserve boundary conditions
of the form dφ/dn = 0.

Theorem 7.8 Preservation of Boundary Conditions

Suppose that the function f(z) = u(x, y)+ iv(x, y) is conformal at every
point of a smooth curve C. Let C ′ be the image of C under w = f(z). If
the normal derivative dΦ/dN of the function Φ(u, v) satisfies

dΦ
dN

= 0

at every point on C ′ in the w-plane, then the normal derivative dφ/dn of
the function φ(x, y) = Φ(u(x, y), v(x, y)) satisfies

dφ

dn
= 0

at every point of C in the z-plane.
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Proof Assume that f and h satisfy the hypothesis of the theorem. Let
z0 = x0 + iy0 be a point on C and let w0 = u0 + iv0 = f(z0) be its image on
C ′. Recall from calculus that if N is a normal vector to C ′ at w0, then the
normal derivative at w0 is given by the dot product

dΦ
dN

= ∇Φ ·N,

where ∇Φ is the gradient vector Φu(u0, v0)i + Φv(u0, v0)j. The condition
dΦ/dN = 0 implies that ∇Φ and N are orthogonal, or, equivalently, that
∇Φ is a tangent vector to C ′ at w0. Let B′ be the level curve Φ(u, v) = c0
containing (u0, v0). In multivariable calculus, you learned that the gradient
vector ∇Φ is orthogonal to the level curve B′. Thus, since the gradient is
tangent to C ′ and orthogonal to B′, we conclude that C ′ is orthogonal to B′

at w0. See Figure 7.52.

v

u

NC ′

w0

= c0

∇Φ

Φ

B′

Figure 7.52 Figure for the proof of

Theorem 7.8

Now consider the level curve B in the z-plane given by

φ(x, y) = Φ(u(x, y), v(x, y)) = c0.

The point (x0, y0) is on B and the gradient vector ∇φ is orthogonal to B at
this point. Moreover, given any point (x, y) on B in the z-plane, we have
that the point (u(x, y), v(x, y)) is on B′ in the w-plane. That is, the image
of B under w = f(z) is B′. The curve C intersects B at z0, and because f
is conformal at z0, it follows that the angle between C and B at z0 is the
same as the angle between C ′ and B′ at w0. In the preceding paragraph we
found that this angle is π/2, and so C and B are orthogonal at z0. Since
∇φ is orthogonal to B, we must have that ∇φ is tangent to C. If n is a
normal vector to C at z0, then we have shown that ∇φ and n are orthogonal.
Therefore,

dφ

dn
= ∇φ · n = 0.

✎

Theorem 7.8 gives us a procedure for solving Nuemann problems associ-
ated with boundary conditions of the form dφ/dn = 0. Namely, we follow
the same four steps given on page 429 to solve a Dirichlet problem. In Step
1, however, we find a conformal mapping from D onto D′. Since conformal
mappings preserve boundary conditions of the form dφ/dn = 0, solving the
associated Nuemann problem in D′ will give us a solution of the original
Nuemann problem. Because analytic mappings are conformal at noncritical
points, this approach also works with mixed boundary conditions. Roughly,
these are boundary conditions where values of φ are specified on some bound-
ary curves, whereas the normal derivative is required to satisfy dφ/dn = 0 on
other boundary curves.

EXAMPLE 3 A Heat Flow Application

Find the steady-state temperature φ in the first quadrant, shown in color in
Figure 7.53(a), which satisfies the indicated mixed boundary conditions.
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Solution The steady-state temperature φ is a solution of Laplace’s equation
in the domain D defined by 0 < x < ∞, 0 < y < ∞, which satisfies the
boundary conditions

φ(0, y) = 0, y > 1
φ(x, 0) = 1, x > 1

dφ

dn
= 0, for 0 < y < 1, x = 0, and 0 < x < 1, y = 0.

We will find φ using the four steps given on page 429.
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= 1
= 0
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(a) Boundary-value problem

(b) Transformed boundary-value problem
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Figure 7.53 Figure for Example 3

Step 1 As we will see in Step 3, this particular type of boundary-value
problem is easy to solve in the half-infinite vertical strip −a < u < a, v > 0,
when the boundary curve −a < u < a, v = 0, is insulated. Thus, in this
step we find a conformal mapping of the first quadrant onto a half-infinite
vertical strip. By identifying α = 2 in entry E-4 of Appendix III, we see that
the first quadrant is mapped onto the upper half-plane v > 0 by the mapping
w = z2. Next we apply the mapping w = sin−1 z of entry E-6. Under this
mapping, the upper half-plane y > 0 is mapped onto the half-infinite vertical
strip − 1

2π < u < 1
2π, v > 0. Therefore, the composition

w = sin−1
(
z2

)
(8)

maps the first quadrant x > 0, y > 0, onto the domain D′ defined by
− 1

2π < u < 1
2π, v > 0.

Step 2 From entries E-4 and E-6 of Appendix III we see that the boundary
curves 1 < x < ∞, y = 0, and 1 < y < ∞, x = 0, are mapped by w =
sin−1

(
z2

)
onto the half-lines u = 1

2π, v > 0, and u = − 1
2π, v > 0, respectively.

We also see that the segments 0 < x < 1, y = 0, and 0 < y < 1, x = 0, are
mapped onto the segments 0 < u < 1

2π, v = 0, and − 1
2π < u < 0, v = 0,

respectively. Thus, the transformed boundary conditions are

Φ
(
−π

2
, v

)
= 0, Φ

(π
2
, v

)
= 1, v > 0

dΦ
dN

= 0, −π
2
< u <

π

2
, v = 0.

Step 3 Inspection of the domain D′ and the transformed boundary conditions
suggests that a solution Φ is a linear function in the variable u. That is,

Φ(u, v) = Au+B

for some real constants A and B. Since the vector N = 0i + 1j is normal to
the boundary curve −1

2π < u < 1
2π, v = 0, we have

dΦ
dN

= ∇Φ ·N = A(0) + 0(1) = 0,

and so, for any values of A and B, Φ satisfies the boundary condition for the
normal derivative. By requiring that

Φ
(
−π

2
, v

)
= −Aπ

2
+B = 0 and Φ

(π
2
, v

)
= A

π

2
+B = 1,
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we can solve for the constants A and B to obtain the solution

Φ(u, v) =
1
π
u+

1
2
. (9)

Step 4 In order to find a solution of the original boundary-value problem, we
substitute the real and imaginary parts of the mapping in (8) for the variables
u and v in (9). Since the formula for the real part of the expression sin−1

(
z2

)
is complicated, the simplest way of writing the solution φ is

φ(x, y) =
1
π

Re
[
sin−1

(
z2

)]
+

1
2
.

Since both 1/π and 1
2 are real, a complex potential function Ω(z) =

φ(x, y) + iψ(x, y) for the steady-state temperature function φ found in
Example 3 is

Ω(z) =
1
π

sin−1
(
z2

)
+

1
2
.

The level curves of the real and imaginary parts of Ω represent isotherms and
lines of heat flux, respectively. In Figure 7.54, we have used Mathematica to
plot these curves. The isotherms are shown in color and the lines of heat flux
are shown in black.
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Figure 7.54 Isotherms and lines of heat

flux for Example 3

7.5.2 Fluid Flow

Streamlining We now discuss a method of using conformal mappings
to model the planar flow of an ideal fluid. Recall from Section 5.6 that an
ideal fluid is an incompressible nonviscous fluid whose flow is irrotational. If
Ω(z) = φ(x, y) + iψ(x, y) is the complex velocity potential of the flow of an
ideal fluid in a domain D, then Ω(z) is analytic in D and f(z) = Ω′(z) is a
complex representation of the velocity field. Furthermore, the streamlines
of the flow of an ideal fluid are the level curves ψ(x, y) = c2, and, for this
reason, ψ is called the stream function of the flow.

As a simple example consider the complex analytic function Ω(z) = Az,
where A > 0 is a real constant. As presented in part (b) of Example 3 in
Section 5.6, this function is the complex velocity potential of the velocity field
of the flow of an ideal fluid whose complex representation is f(z) = Ω′(z) = A.
Since Ω(z) = Az = Ax+iAy, the streamlines of this flow are the curves y = c2.
All streamlines are therefore horizontal. See Figure 7.55. Recall from Section
5.6 that this particular flow is called the uniform flow.

y

x

Figure 7.55 Uniform flow The process of constructing a flow of an ideal fluid that remains inside
a given domain D is called streamlining. If C is a boundary curve of D,
then the requirement that the flow remain inside of D means that there is
no flow across C, or, equivalently, that the directional derivative of ψ in the
direction of the normal vector n to C is 0. Since the gradient vector ∇ψ is
always normal to the level curve ψ(x, y) = c2, this condition is equivalent to
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ψ being constant on C. Put yet another way, the boundary of D must be a
streamline of the flow. The following summarizes this discussion.

Streamlining

Suppose that the complex velocity potential Ω(z) = φ(x, y) + iψ(x, y)
is analytic in a domain D and that ψ is constant on the boundary of D.
Then f(z) = Ω′(z) is a complex representation of the velocity field of a
flow of an ideal fluid in D. Moreover, if a particle is placed in D and
allowed to flow with the fluid, then its path z(t) remains in D.

Many streamlining problems can be solved using conformal mappings in
a manner similar to that presented for solving Dirichlet and Neumann prob-
lems. In order to do so, we consider the complex velocity potential as an
conformal mapping of the z-plane to the w-plane. If z(t) = x(t) + iy(t) is a
parametrization of a streamline ψ(x, y) = c2 in the z-plane, then

w(t) = Ω(z(t)) = φ(x(t), y(t)) + iψ(x(t), y(t)) = φ(x(t), y(t)) + ic2.

Thus, the image of a streamline under the conformal mapping w = Ω(z) is
a horizontal line in the w-plane. Since the boundary C is required to be a
streamline, the image of C under w = Ω(z) must be a horizontal line. That
is, we can determine the complex velocity potential by finding a conformal
mapping from D onto a domain in the w-plane that maps the boundary C of
D onto a horizontal line. It is often the case, however, that it is easier to find a
conformal mapping z = Ω−1(w) from, say, the upper half-plane v > 0 onto D
that takes the boundary v = 0 onto the boundary C of D. If z = Ω−1(z) is a
one-to-one function, then its inverse w = Ω(z) is the desired complex velocity
potential. In summary, we have the following method for solving streamlining
problems.

Solving a Streamlining Problem

If w = Ω(z) = φ(x, y) + iψ(x, y) is a one-to-one conformal mapping of
the domain D in the z-plane onto a domain D′ in the w-plane such that
the image of the boundary C of D is a horizontal line in the w-plane, then
f(z) = Ω′(z) is a complex representation of a flow of an ideal fluid in D.

EXAMPLE 4 Flow around a Corner

Construct a flow of an ideal fluid in the first quadrant.

Solution Let D denote the first quadrant x > 0, y > 0. From Entry E-4
of Appendix III with the identification α = 2, we see that w = Ω(z) = z2 is
a one-to-one conformal mapping of the domain D onto the upper half-plane
v > 0 and that the image of the boundary of D under this mapping is the real
axis v = 0. Therefore, f(z) = Ω′(z) = 2z̄ is a complex representation of the
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flow of an ideal fluid in the first quadrant. Since Ω(z) = z2 = x2 − y2 + 2xyi,
the streamlines of this flow are the curves 2xy = c2. Some streamlines have
been plotted in Figure 7.56. It should be clear from this figure why this flow
is referred to as “flow around a corner.”

y

x

Figure 7.56 Flow around a corner

EXAMPLE 5 Flow around a Cylinder

Construct a flow of an ideal fluid in the domain consisting of all points outside
the unit circle |z| = 1 and in the upper half-plane y > 0 shown in Figure 7.57.

y

x

i

Figure 7.57 Flow around a cylinder

Solution Let D be the domain shown in Figure 7.57. Identifying a = 2 in
entry H-3 of Appendix III, we obtain the one-to-one conformal mapping

w = Ω(z) = z +
1
z

of D onto the upper half-plane v > 0. In addition, entry H-3 indicates that
the boundary of D is mapped onto the real axis v = 0. Therefore,

f(z) = Ω′(z) = 1− 1
z2

= 1− 1
z̄2

is a complex representation of a flow of an ideal fluid in D. Since

Ω(z) = z +
1
z

= x+
x

x2 + y2
+ i

(
y − y

x2 + y2

)
,

the streamlines of this flow are the curves

ψ(x, y) = c2, or y − y

x2 + y2
= c2.

Some streamlines for this flow have been plotted in Figure 7.57.

It is not always possible to describe the streamlines with a Cartesian
equation in the variables x and y. This situation occurs when an appropriate
mapping z = Ω−1(w) of a domain D′ in the w -plane onto the domain D in
the z-plane can be found, but you cannot solve for the mapping w = Ω(z).
In such cases, it is possible to describe the streamlines parametrically.

EXAMPLE 6 Streamlines Defined Parametrically

Construct a flow of an ideal fluid in the domain D consisting of all points in the
upper half-plane y > 0 excluding the points on the ray y = π, −∞ < x ≤ 0,
shown in Figure 7.58.

Solution In Example 4 of Section 7.3 we used the Schwarz-Christoffel formula
to find a conformal mapping of the upper half-plane y > 0 onto the domain D.
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By replacing the symbol z with the symbol w in the solution from Example
4, we obtain the mapping

z = Ω−1(w) = w + Ln(w) + 1 (10)

y

x

y = π

Figure 7.58 Flow for Example 6

of the upper half-plane v > 0 onto D. The inverse Ω of the mapping in (10) is a
complex velocity potential of a flow of an ideal fluid in D, but we cannot solve
for w to obtain an explicit formula for Ω. In order to describe the streamlines,
we recall that the streamlines in D are the images of horizontal lines v = c2
in the upper half-plane v > 0 under the mapping z = w + Ln(w) + 1. Since
a horizontal line can be described by w(t) = t + ic2, −∞ < t <∞, it follows
that the streamlines in D are given parametrically by

z(t) = Ω−1(w(t)) = w(t) + Ln[w(t)] + 1 = t+ ic2 + Ln[t+ ic2] + 1,

or x(t) = t+ 1
2 loge

(
t2 + c22

)
+1, y(t) = c2+ Arg(t+ ic2), −∞ < t <∞. Some

streamlines for this flow have been plotted using Mathematica in Figure 7.58.

A stream function ψ(x, y) is harmonic, but unlike a solution of a Dirichlet
problem, ψ(x, y) need not be bounded in D nor satisfy a fixed boundary
condition. Therefore, there can be many different stream functions for a
given domain D. We illustrate this in the following example.

EXAMPLE 7 Streamlines Defined Parametrically

The one-to-one conformal mapping

z = Ω−1(w) = w + ew + 1

also maps the upper half-plane v > 0 onto the domain D shown in Figure
7.58. The streamlines for this flow are parametrized by

z(t) = t+ ic2 + et+ic2 + 1,

or x(t) = t + et cos c2 + 1, y(t) = c2 + et sin c2, −∞ < t < ∞. From the
Mathematica-generated plot of the streamlines in Figure 7.59, we observe
that this flow is different from the one constructed in Example 6.

y

y = π

x

Figure 7.59 Flow for Example 7

Sources and Sinks Recall from Section 5.6 that if F is the velocity
field of a planar fluid flow, then a source is a point z0 at which fluid is
produced and a sink is a point z0 at which fluid disappears. If C is a simple
closed contour, then a nonzero value of the net flux across C, that is, a nonzero
value of the integral

∮
C

F ·N ds, indicates the presence of either a source or
a sink inside of C. We saw in Section 5.6 that if F is the velocity field of the
flow of an incompressible fluid in a domain D, then there are no sources or
sinks in D. Incompressibility does not, however, rule out the existence of a
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source or sink on the boundary of D. Sources and sinks on the boundary of D
are used to model planar flows in which fluid is entering or leaving D through
a small slit in the boundary.

In Problem 23 in Exercises 5.6 we found that a source at a point z = x1

on the boundary y = 0 of the upper half-plane y > 0 can be described by the
complex velocity potential

Ω(z) = kLn (z − x1) , (11)

where k is a positive constant. Similarly, z = x1 is a sink when k is a neg-
ative constant. The strength of the source or sink is proportional to |k|. A
flow containing both sources and sinks can be described by adding together
functions of the form (11). For example,

Ω(z) = Ln(z + 1)− Ln(z − 1) = Ln
z + 1
z − 1

(12)
y

4

3

2

1–1–2 2
x

1

Figure 7.60 Source and sink

is a complex velocity potential for the flow of an ideal fluid in the upper half-
plane y > 0 that has a source at x1 = −1 and a sink at x2 = 1 of equal
strength. See Figure 7.60. You should also compare (12) with Problem 24 in
Exercises 5.6.

Our method of determining the stream function in a domain with sources
or sinks on the boundary is similar to that used in the absence of sources
and sinks. Let ψ(u, v) be the stream function of a flow of an ideal fluid
in a domain D′ in the w-plane with sources or sinks on the boundary. If
f(z) = u(x, y)+iv(x, y) is a conformal mapping of a domain D in the z-plane
onto the domain D′, then ψ(x, y) = ψ(u(x, y), v(x, y)) is a stream function
for a flow of an ideal fluid in D with sources and sinks on the boundary. We
illustrate this method in our final example.

EXAMPLE 8 Flow with a Source and Sink of Equal Strength

Construct a flow of an ideal fluid in the domain D given by 0 < arg(z) < π/4
with a source at the boundary point x1 = 1 and sink of equal strength at the
boundary point x2 = 3.

Solution From entry E-4 in Appendix III with α = 4, we have that f(z) = z4

is a one-to-one conformal mapping of D onto the upper half-plane v > 0.
Under this mapping, the image of x1 = 1 is u1 = 14 = 1 and the image of
x2 = 3 is u2 = 34 = 81. With the obvious modifications to (12), we obtain
the complex velocity potential

Ln(w − 1)− Ln(w − 81), (13)

which describes the flow of an ideal fluid in the upper half-plane v > 0 that
has a source at u1 = 1 and a sink of equal strength at u2 = 81. Since the
domain D is mapped on the domain v > 0 by the conformal mapping w = z4,
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we obtain a complex potential function for a flow in D by replacing the symbol
w with z4 in (13). This yields

Ω(z) = Ln
(
z4 − 1

)
− Ln

(
z4 − 81

)
. (14)

Streamlines of this flow are given by ψ(x, y) = c2, or

Arg
(
z4 − 1

)
−Arg

(
z4 − 81

)
= c2.

See Figure 7.61.

y
4

3

2

1 2 3 4
x

1

Figure 7.61 Figure for Example 8

Remarks

The complex mapping w = J(z) = z + k2/z is called the Joukowski
transformation. Under this mapping, a circle in the z-plane that con-
tains the point z1 = −1 and passes through the point z2 = 1 is mapped
onto a curve in the w-plane that resembles the cross-section of an airplane
wing. See Figure 7.62(c). The image curve is called a Joukowski airfoil,
and the air flow around this curve can be determined using techniques
from this section. We begin with the flow shown in Figure 7.62(a) given
by Ω(z) = z + 1/z around the unit circle |z| = 1. Using an appropriate
linear mapping, we can adjust this flow to be one around a circle contain-
ing the point z1 = −1 and passing through the point z2 = 1. See Figure
7.62(b). The Joukowski transformation is then used to “transform” this
flow to one around the airfoil as shown in Figure 7.62(c).

(a) Flow around the unit circle

(b) Flow around a circle containing 
z1 = –1 and passing through z2 = 1

(c) Flow around an airfoil

y

y

y

x

x

x

Figure 7.62 Flow around a Joukowski

airfoil

EXERCISES 7.5 Answers to selected odd-numbered problems begin on page ANS-23.

7.5.1 Boundary-Value Problems

In Problems 1–6, (a) find a conformal mapping of the domain shown in color onto

the upper half-plane, and (b) use the mapping from (a) and the solution (7) in

Section 7.4 to find the steady-state temperature φ(x, y) in the domain subject to

the given boundary conditions.

1. 2.y

x

i

= 0φ

= 1

1

φ

= 2φ = 0φ

= 0φ ∇2

Figure 7.63 Figure for Problem 1

y

x
–1 1= 1φ = –1φ

= 2φ= 0φ

= 0φ∇2

i

Figure 7.64 Figure for Problem 2
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3. 4.y

x

i

–1 1= 1φ= –1φ

= 2φ= 0φ

= 0φ∇2

Figure 7.65 Figure for Problem 3

x

i

= 1φ = –10φ

= 0φ= 10φ

= 0

0

φ∇2

y

Figure 7.66 Figure for Problem 4

5. 6.

= 1φ= 0φ

= 3φ = 0φ

= 0φ∇2

y

x
2–2

Figure 7.67 Figure for Problem 5

= 20φ

= 10φ = 0φ

= 0φ∇2

x

y

i

Figure 7.68 Figure for Problem 6 [Hint : Use

the inverse of the mapping in entry M-4 of

Appendix III.]

In Problems 7 and 8, (a) find a linear fractional transformation of the domain shown

in color onto an infinite strip, and (b) use the mapping from (a) and the solution

from Example 2 of Section 3.4 to find the electrostatic potential φ(x, y) in the

domain subject to the given boundary conditions.

7. 8.

1

= 0φ

= 2φ

= 0φ∇2

x

y

Figure 7.69 Figure for Problem 7

2–1

= 10φ

= –15φ
= 0φ∇2

x

y

Figure 7.70 Figure for Problem 8
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In Problems 9 and 10, (a) find a linear fractional transformation of the domain

shown in color onto an annulus, and (b) use the mapping from (a) and a solution

similar to that in Example 1 to find the electrostatic potential φ(x, y) in the domain

subject to the given boundary conditions.

9. 10.

= 0φ = 10

21–1

φ

= 0φ∇2

x

y

Figure 7.71 Figure for Problem 9

–1

= 1φ
= 0φ

2

= 0φ∇2

x

y

Figure 7.72 Figure for Problem 10

In Problems 11 and 12, (a) find a conformal mapping of the domain shown in color

onto the domain used in Example 3, and (b) use the mapping from (a) and a solution

similar to that in Example 3 to find the steady-state temperature φ(x, y) in the

domain subject to the given boundary conditions.

11. 12.

–1 1 = 10φφ= 0 = 0φ

= 0φ∇2

x

y

d
dn
— φ = 0d

dn
—

Figure 7.73 Figure for Problem 11

= –10φ

= 5φ

= 0φ∇2

x

i

y

0

φ = 0d
dn
—

φ = 0d
dn
—

Figure 7.74 Figure for Problem 12

7.5.2 Fluid Flow

In Problems 13–16, find the complex velocity potential Ω(z) for the flow of an ideal

fluid in the domain shown in color.

13. 14.

/4π
x

y

Figure 7.75 Figure for Problem 13

x

y

Figure 7.76 Figure for Problem 14
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15. 16.

π

y

i

x
0

Figure 7.77 Figure for Problem 15

y

i

x
1

Figure 7.78 Figure for Problem 16

In Problems 17–20, the flow of an ideal fluid is shown in a domain in the z-plane.

(a) Find a conformal mapping of the upper half-plane w > 0 onto the domain in

the z-plane, and (b) find a parametric representation of the streamlines of the flow.

17. 18.yy =

x

π

y = π/2

Figure 7.79 Figure for Problem 17

x

y

i

Figure 7.80 Figure for Problem 18

19. 20.

x

y

i

Figure 7.81 Figure for Problem 19

x

y

i

Figure 7.82 Figure for Problem 20

In Problems 21 and 22, construct the flow of an ideal fluid in the given domain with

sinks or sources on the boundary of the domain.

21. The domain from Problem 13 with a source at z1 = 1 + i and a sink at z2 = 2

22. The domain from Problem 16 with a source at z1 = 1
2

√
2 + 1

2

√
2i and sinks at

z2 = 2 and z3 = 3i

= k0φ

= 0φ∇2

φ = 0d
dn
—

φ

= k1φ

= 0φ∇2

x

y

a bd
dn
— φ = 0d

dn
——

Figure 7.83 Figure for Problem 23

Focus on Concepts

23. Show that the function given by (3) with the symbols u and v replaced by the
symbols x and y is a solution of the boundary-value problem in the domain
shown in color in Figure 7.83.
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24. Use a conformal mapping and Problem 23 to solve the boundary-value problem
in the domain shown in color in Figure 7.84.

25. Use a conformal mapping and Problem 23 to solve the boundary-value problem
in the domain shown in color in Figure 7.85.

φ = 0d
dn
—

π
= 0φ

= –1φ

/4 x

y

d
dn
—

φ = 0d
dn
—d
dn
—

Figure 7.84 Figure for Problem 24

= 0φ∇2

= 10φ
= 30φ

∇2

x

y

φ = 0

1 2 3

d
dn
——

Figure 7.85 Figure for Problem 25

26. In Problem 22 in Exercises 5.6 we defined a stagnation point of a flow to be
a point at which F(x, y) = 0. Find the stagnation points for:

(a) the flow in Example 5

(b) the flow in Problem 16.

27. In this problem you will construct the flow of an ideal fluid through a slit shown
in Figure 7.87.

(a) Determine a velocity potential for the flow of an ideal fluid in the domain
−π/2 < x < π/2, −∞ < y < ∞, shown in Figure 7.86.

(b) Use the potential from part (a) and a conformal mapping to find the
velocity potential for the flow of an ideal fluid in the region shown in
Figure 7.87.

π
x

y

– —
    2

π
—
 2

Figure 7.86 Figure for Problem 27

y

x
–1 1

Figure 7.87 Figure for Problem 27
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28. In this problem you will construct the flow of an ideal fluid around a plate
shown Figure 7.89.

(a) Use a linear mapping and the velocity potential from Example 5 to show
that the velocity potential of an ideal fluid in the domain shown in Figure
7.88 is given by

Ω(z) =
z

eiα
+

eiα

z
.

(b) The domain outside of the unit circle shown in Figure 7.88 is mapped onto
the complex plane excluding the line segment y = 0,−2 ≤ x ≤ 2, shown in
Figure 7.89 by the conformal mapping

w =
z +

(
z2 − 4

)1/2

2
.

Use the velocity potential from part (a) and this conformal mapping to
find the velocity potential for the flow of an ideal fluid in the region shown
in Figure 7.89.

y

x1α

Figure 7.88 Figure for Problem 28

x

y

–2
2

Figure 7.89 Figure for Problem 28

Computer Lab Assignments

In Problems 29–36, use a CAS to plot the isotherms for the given steady-state

temperature φ(x, y).

29. φ(x, y) is the steady-state temperature from Problem 1.

30. φ(x, y) is the steady-state temperature from Problem 2.

31. φ(x, y) is the steady-state temperature from Problem 3.

32. φ(x, y) is the steady-state temperature from Problem 4.

33. φ(x, y) is the steady-state temperature from Problem 5.

34. φ(x, y) is the steady-state temperature from Problem 6.

35. φ(x, y) is the steady-state temperature from Problem 11.

36. φ(x, y) is the steady-state temperature from Problem 12.
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In Problems 37–40, use a CAS to plot the equipotential curves for the given elec-

trostatic potential φ(x, y).

37. φ(x, y) is the electrostatic potential from Problem 7.

38. φ(x, y) is the electrostatic potential from Problem 8.

39. φ(x, y) is the electrostatic potential from Problem 9.

40. φ(x, y) is the electrostatic potential from Problem 10.

In Problems 41–44, use a CAS to plot the streamlines of the given flow.

41. The flow from Problem 13.

42. The flow from Problem 14.

43. The flow from Problem 15.

44. The flow from Problem 16.

CHAPTER 7 REVIEW QUIZ
Answers to selected odd-numbered problems begin
on page ANS-23.

In Problems 1–15, answer true or false. If the statement is false, justify your answer

by either explaining why it is false or giving a counterexample; if the statement is

true, justify your answer by either proving the statement or citing an appropriate

result in this chapter.

1. If f(z) is analytic at a point z0, then the mapping w = f(z) is conformal at z0.

2. The mapping w = z2 + iz + 1 is not conformal at z = − 1
2
i.

3. The mapping w = z2 + 1 is not conformal at z = ±i.

4. The mapping w = z̄ fails to be conformal at every point in the complex plane.

5. A linear fractional transformation is conformal at every point in its domain.

6. The image of a circle under a linear fractional transformation is a circle.

7. The linear fractional transformation T (z) =
z − i

z + 1
maps the points 0, −1, and

i onto the points −i, ∞, and 0, respectively.

8. Given any three distinct points z1, z2, and z3, there is a linear fractional trans-
formation that maps z1, z2, and z3 onto 0, 1, and ∞.

9. The inverse of the linear fractional transformation T (z) = (az + b)/ (cz + d) is
T−1(z) = (cz + d)/ (az + b).

10. If f ′(z) = A(z + 1)−1/2(z − 1)−3/4, then w = f(z) maps the upper half-plane
onto an unbounded polygonal region.

11. If f ′(z) = A(z + 1)−1/2z−1/2(z − 1)−1/2, then w = f(z) maps the upper half-
plane onto a rectangle.

12. Every Dirichlet problem in the upper half-plane can be solved using the Poisson
integral formula.
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13. If w = f(z) = u(x, y) + iv(x, y) is a conformal mapping of a domain D onto
the upper half-plane v > 0 and if Φ(u, v) is a harmonic function for v > 0,
then φ(x, y) = Φ(u(x, y), v(x, y)) is harmonic on D.

14. If ψ(x, y) is a function defined on a domain D and if the boundary of D is
a level curve of ψ(x, y), then ψ(x, y) is the stream function of an ideal fluid
in D.

15. Given a domain D, there can be more than one flow of an ideal fluid that
remains inside of D.

In Problems 16–30, try to fill in the blanks without referring back to the text.

16. The analytic function f(z) = cosh z is conformal except at z = .

17. Conformal mappings preserve both the magnitude and the of an
angle.

18. The mapping is an example of a mapping that is conformal at every
point in the complex plane.

19. If f ′(z0) = f ′′(z0) = 0 and f ′′′(z0) �= 0, then the mapping w = f(z)
the magnitude of angles at the point z0.

20. T (z) = is a linear fractional transformation that maps the points 0,
1 + i, and i onto the points 1, i, and ∞.

21. The image of the circle |z − 1| = 2 under the linear fractional transformation
T (z) = (2z − i)/ (iz + 1) is a .

22. The image of a line L under the linear fractional transformation
T (z) = (iz − 2)/ (3z + 1 − i) is a circle if and only if the point z =
is on L.

23. The cross-ratio of the points z, z1, z2, and z3 is and .

24. The derivative of a Schwarz-Christoffel mapping from the upper half-plane onto
the triangle with vertices at 0, 1, and 1 + i is f ′(z) = .

25. If f ′(z) = A(z + 1)−1/2z−1/4, then w = f(z) maps the upper half-plane onto a
polygonal region with interior angles .

26. The Poisson integral formula gives an integral solution φ(x, y) to a Dirichlet
problem in the upper half-plane y > 0 provided the function f(x) = φ(x, 0) is

and on −∞ < x < ∞.

27. The complex velocity potential Ω(z) = z5 describes the flow of an ideal fluid
in the domain 0 < arg z < .

28. If Ω(z) = ez + e−z is the complex velocity potential for the flow of an ideal
fluid in a domain D, then a complex representation of the velocity field is given
by f(z) = .

29. If z =

(
1 + w

1 − w

)2

is a one-to-one conformal mapping of the upper half-plane onto

a domain D, then a streamline of the flow of an ideal fluid in D is parametrized
by z(t) = .

30. The complex velocity potential Ω(z) = Ln(z−2)+ Ln(z−3)− Ln(z−4) describes
the flow of an ideal fluid in the upper half-plane y > 0 with a at z = 2
and z = 3 and a at z = 4.
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APP-8 Appendix II Proof of the Cauchy-Goursat Theorem

The proof of the final part of the Cauchy-Goursat theorem demonstrates
that any closed contour C can be approximated to any desired degree of
accuracy by a closed polygonal path.

Theorem A.4 Any Simple Closed Contour

If C is a simple closed contour lying entirely within D, then∮
C
f(z) dz = 0.

In Figure AII.5 we have shown a simple closed contour C and n points
z1, z2, . . . , zn on C through which a polygonal curve P has been con-
structed. Then it can be shown that the difference between the integral along
C,

∮
C
f(z) dz, and the integral along the polygonal contour P ,

∮
P
f(z) dz,

can be made arbitrarily small as n→∞. As a consequence of Theorem A.3,∮
P
f(z) dz = 0 for any n, and thus the integral along C must also be zero.

C

P

z4

z5

z3

z2

z1zn
zn–1

zn–2

Figure AII.5 Simple closed contour C approximated by a closed polygonal curve P
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Putting (5) together with (10) gives us a bound for the modulus of the integral
on ∆: ∣∣∣∣

∮
∆

f(z) dz
∣∣∣∣ ≤ 4n ε

4n
L2 = εL2. (11)

The result in (11) completes the proof. Since ε > 0 can be made arbitrarily

small, we must have
∣∣∣∣
∮

∆

f(z) dz
∣∣∣∣ = 0 and so

∮
∆

f(z) dz = 0.
✎

Theorem A.3 Closed Polygonal Contour

If C is a closed polygonal contour lying entirely within D, then∫
C
f(z) dz = 0.

The proof of this theorem depends on Theorem A.2 and on the fact that
any closed polygonal contour C, such as the one in Figure AII.3, can be “trian-
gulated.” Roughly, this means that the closed polygon C can be decomposed
into a finite number of triangles by adding lines as shown in Figure AII.4. We

C

Figure AII.3 Closed polygonal

contour C within D

C

C3
C5

C4

C1

C2

Figure AII.4 Triangulation of the

polygonal contour C

can then proceed as in the proof of Theorem A.2 and integrate twice along
these added line segments but in opposite directions. If the closed polygon C
has n sides, then it can be decomposed into n triangles C1, C2, . . . , Cn and
we would eventually arrive at the following analogue of (1):∮

C

f(z) dz =
∮

C1

f(z) dz +
∮

C2

f(z) dz + · · · +
∮

Cn

f(z) dz. (12)

By Theorem A.2, each of the integrals of right side of (12) is zero and we are
left with the desired conclusion that

∮
C
f(z) dz = 0.

In passing it should be noted that the closed polygonal contour C in
Theorem A.3 need not be simple as shown in Figure AII.3; in other words, C
can intersect itself.
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∆2, . . . . Let z0 denote that point. Since the function f is analytic at z = z0,
f ′(z0) exists. If we define

η(z) =
f(z)− f(z0)

z − z0
− f ′(z0), (6)

then |η(z)| can be made arbitrarily small whenever z is sufficiently close to
z0. This fact—which will be used shortly—follows from the hypothesis that

f is analytic in D and so the limit of the difference quotient
f(z)− f(z0)

z − z0
as

z → z0 exists and equals f ′(z0). In the ε-δ symbolism of Definition 2.8, for
every ε > 0, there exists a δ > 0 such that

|η(z)| < ε whenever |z − z0| < δ. (7)

At this juncture we wish to solve (6) for f(z) and use it to replace the
integrand in the contour integral

∮
∆n

f(z) dz that appears in (5). The two
results are:

f(z) = f(z0) + (z − z0)f ′(z0) + (z − z0)η(z)

and∮
∆n

f(z)dz = f(z0)
∮

∆n

dz + f ′(z0)
∮

∆n

(z − z0)dz +
∮

∆n

(z − z0)η(z)dz. (8)

In (8) we were able write f(z0) and f ′(z0) outside of the integrals since these
quantities are constants. Moreover in (8),

∮
∆n

dz = 0 and
∮
∆n

(z − z0)dz = 0.
The last two results are true for any simple closed contour (such as ∆n)

and can be proved either directly from Definition 5.3 (see Problem 29 in
Exercises 5.2), or from Cauchy’s theorem. (That last statement may surprise
the reader; no, we are not using what we are trying to prove—remember, the
constant function 1 and the polynomial function z− z0 are analytic in D and
do have continuous derivatives.) Hence the right side of (8) reduces to single
term: ∮

∆n

f(z) dz =
∮

∆n

(z − z0)η(z) dz. (9)

Now let L and L1 denote the lengths of the triangular contours ∆ and
∆1, respectively. Then, keeping in mind how the triangle ∆1 was constructed,
it is a straightforward problem in similar triangles to show that L1 is related

to L by L1 = 1
2L. Likewise, if L2 is the length of ∆2, then L2 = 1

2L1 =
1
22
L.

In general, if Ln is the length of ∆n, then Ln =
1
2n
L.

We are almost finished. Now for any point z on ∆n, |z − z0| < Ln, where

Ln =
1
2n
L. If we choose n large enough so that |z − z0| <

1
2n
L < δ, it then

follows from (9), (7), and the ML-inequality∣∣∣∣
∮

∆n

f(z) dz
∣∣∣∣ =

∣∣∣∣
∮

∆n

(z − z0)η(z) dz
∣∣∣∣ ≤ L

2n
· ε · L

2n
=

ε

4n
L2. (10)
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segments as shown in Figure AII.2. By Theorem 5.2(ii) we can write∮
∆

f(z) dz =
∫

EBF

+
∫

FCG

+
∫

GAE

=
(∫

EBF

+
∫

FE

)
+

(∫
FCG

+
∫

GF

)

+
(∫

GAE

+
∫

EG

)
+

(∫
EF

+
∫

FG

+
∫

GE

)

=
∫

EBFE

+
∫

FCGF

+
∫

GAEG

+
∫

EFGE

or
∮

∆

f(z) dz =
∮

C1

f(z) dz +
∮

C2

f(z) dz +
∮

C3

f(z) dz +
∮

C4

f(z) dz. (1)

�Integrals
∫

FE ,
∫

GF ,
∫

EG are
canceled by

∫
EF ,

∫
FG,

∫
GE .

Then by (6) of Section 1.2, the triangle inequality,∣∣∣∣
∮

∆

f(z) dz
∣∣∣∣ ≤

∣∣∣∣
∮

C1

f(z) dz
∣∣∣∣ +

∣∣∣∣
∮

C2

f(z) dz
∣∣∣∣ +

∣∣∣∣
∮

C3

f(z) dz
∣∣∣∣ +

∣∣∣∣
∮

C4

f(z) dz
∣∣∣∣. (2)

The four quantities on the right side of (2) are nonnegative real numbers and,
as a consequence, one of them must be greater than or equal to the other
three. Let us denote the triangular contour of the integral with the largest
modulus by the symbol ∆1. Hence (2) gives∣∣∣∣

∮
∆

f(z) dz
∣∣∣∣ ≤ 4

∣∣∣∣
∮

∆1

f(z) dz
∣∣∣∣. (3)

We repeat the foregoing process for the triangle ∆1; that is, we form four
triangles within ∆1 by joining the midpoints of its sides by line segments in
the fashion shown in Figure AII.2 and proceed to the equivalent of (1) and
the inequality (2), where the left side of the inequality is now

∣∣∣∮∆1
f(z) dz

∣∣∣.
The integral of f along one of these new triangular contours, let us call it ∆2,
then satisfies ∣∣∣∣

∮
∆1

f(z) dz
∣∣∣∣ ≤ 4

∣∣∣∣
∮

∆2

f(z) dz
∣∣∣∣. (4)

We combine this last inequality with (3) to obtain∣∣∣∣
∮

∆

f(z) dz
∣∣∣∣ ≤ 4

∣∣∣∣
∮

∆1

f(z) dz
∣∣∣∣ ≤ 42

∣∣∣∣
∮

∆2

f(z) dz
∣∣∣∣.

Continuing in this manner, we obtain a sequence of “nested” triangular
contours ∆, ∆1, ∆2, . . . , that is, each triangle in the sequence is contained
in the one immediately preceding it. After n steps we arrive at∣∣∣∣

∮
∆

f(z) dz
∣∣∣∣ ≤ 4n

∣∣∣∣
∮

∆n

f(z) dz
∣∣∣∣. (5)

Consistent with intuition, it can be proved that there exists a point in
the domain D that is common to every triangle in the sequence ∆, ∆1,
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7.2
Appendix II Proof of the Cauchy-Goursat Theorem

In Section 5.3 we proved Cauchy’s theorem using Green’s theorem. This sim-
ple proof was possible because of the hypothesis of continuity of f ′ throughout
a simply connected domain D. The French mathematician Edouard Goursat
(1858–1936) published a proof of Cauchy’s theorem in 1900 without this con-
tinuity assumption. As a result his name was thereafter linked with Cauchy’s
in the title of one of the most fundamental of all theorems in complex analysis.

�Note

In this appendix we discuss how the full proof of the Cauchy-Goursat
theorem is accomplished. To avoid needless repetition throughout the fol-
lowing discussion we will take for granted that we are working in a simply
connected domain D and that f represents a complex function analytic in D.

The proof of the Cauchy-Goursat theorem is accomplished in three steps.
The first two steps are helping theorems—sometimes called lemmas—which
are actually special cases of the Cauchy-Goursat theorem. The first of these
helping theorems deals with integrals along a triangular contour and the sec-
ond deals with integrals along a closed polygonal contour. The first theorem is
used in the proof of the second, and the second theorem is utilized to establish
the Cauchy-Goursat theorem in its full generality.

We will prove the first theorem, but because of its length, we will simply
sketch the proofs of the remaining two.

Theorem A.2 Triangular Contour

If ∆ is a triangular contour lying entirely within D, then
∫
∆
f(z) dz = 0.

Proof Let ∆ be the triangular contour shown in Figure AII.1; the vertices
of ∆ are labeled A, B, and C. We form four smaller triangles C1, C2, C3,
and C4 by joining the midpoints E, F , and G of the sides of ∆ by straight line

A

B C

∆

Figure AII.1 Triangular contour

∆ within D

A

B C

C3

C4

C1
C2

F

E G

∆

Figure AII.2 Triangular contours

C1, C2, C3, and C4
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In particular, if |f(z)− L| < ε, then |u(x, y)− u0| < ε. Now by making the
identifications z = x+ iy and z0 = x0 + iy0 we also find that

|z − z0| =
√

(x− x0)
2 + (y − y0)2. (5)

Therefore, it follows from (3), (4), and (5) that for every ε > 0 there exists a
δ > 0 such that |u(x, y)− u0| < ε whenever 0 <

√
(x− x0)2 + (y − y0)2 < δ.

Thus, by (7) in Section 2.6 we have shown that lim
(x,y)→(x0,y0)

u(x, y) = u0.

Because 0 ≤ (u(x, y)− u0)
2, we can use a similar argument to establish

the second limit in (2): lim
(x,y)→(x0,y0)

v(x, y) = v0. This completes the proof

that (1) implies (2).

(ii) In this part we begin by assuming the limits

lim
(x,y)→(x0,y0)

u(x, y) = u0 and lim
(x,y)→(x0,y0)

v(x, y) = v0

and then proceed to show that lim
z→z0

f(z) = L. Given any ε > 0, then ε/2 > 0.

Therefore, from our assumption that lim
(x,y)→(x0,y0)

u(x, y) = u0 and (7) of

Section 2.6, we have that there is a δ1 > 0 such that

|u(x, y)− u0| < ε/2 whenever 0 <
√

(x− x0)2 + (y − y0)2 < δ1.

In a similar manner, since lim
(x,y)→(x0,y0)

v(x, y) = v0, there also exists a δ2 > 0

such that

|v(x, y)− v0| < ε/2 whenever 0 <
√

(x− x0)2 + (y − y0)2 < δ2.

If we set δ to be the minimum of δ1 and δ2, that is δ ≤ δ1 and δ ≤ δ2, then we
are guaranteed that |u(x, y)− u0| < ε/2 and |v(x, y)− v0| < ε/2 whenever
0 <

√
(x− x0)2 + (y − y0)2 < δ. Thus, from (5) we obtain

|u(x, y)− u0|+ |v(x, y)− v0| < ε/2 + ε/2 = ε whenever 0 < |z − z0| < δ. (6)

On the other hand, with the identifications f(z) = u(x, y) + iv(x, y) and
L = u0 + iv0, the triangle inequality gives

|f(z)− L| ≤ |u(x, y)− u0|+ |v(x, y)− v0|.

Therefore, it follows from (6) that |f(z)− L| < ε whenever 0 < |z − z0| < δ.
Since ε was allowed to be any positive number, we have shown that for every
ε > 0 there exists a δ > 0 such that |f(z)− L| < ε whenever 0 < |z − z0| < δ,
and so lim

z→z0
f(z) = L by Definition 2.8. ✎
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7.1 Appendix I Proof of Theorem 2.1Appendix I Proof of Theorem 2.1

The following theorem was presented in Section 2.6 as a practical method
for computing complex limits. In this appendix we give the full epsilon-delta
proof of this theorem.

Theorem A.1 Real and Imaginary Parts of a Limit

Suppose that f(z) = u(x, y) + iv(x, y), z0 = x0 + iy0, and L = u0 + iv0.
Then lim

z→z0
f(z) = L if and only if

lim
(x,y)→(x0,y0)

u(x, y) = u0 and lim
(x,y)→(x0,y0)

v(x, y) = v0.

Proof Theorem A.1 states that

lim
z→z0

f(z) = L (1)

if and only if

lim
(x,y)→(x0,y0)

u(x, y) = u0 and lim
(x,y)→(x0,y0)

v(x, y) = v0. (2)

Because Theorem A.1 involves an “if and only if” statement, we must prove
two things:

(i) that (1) implies (2), and
(ii) that (2) implies (1).

We begin with the former.

(i) If we assume that lim
z→z0

f(z) = L, then by Definition 2.8 of Section 2.6 we

have:

For every ε > 0 there exists a δ > 0 such that |f(z)− L| < ε when-
ever 0 < |z − z0| < δ. (3)

Using the identifications f(z) = u(x, y)+iv(x, y) and L = u0+iv0 we obtain:

|f(z)− L| =
√

(u(x, y)− u0)
2 + (v(x, y)− v0)2.

Furthermore, since 0 ≤ (v(x, y)− v0)2, it follows that:

|u(x, y)− u0| =
√

(u(x, y)− u0)
2 ≤

√
(u(x, y)− u0)

2 + (v(x, y)− v0)2.

Thus, for all z = x+ iy we have:

|u(x, y)− u0| ≤ |f(z)− L|. (4)
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7.1
Appendix III Table of Conformal Mappings

Elementary Mappings

E-1
y

x

v

u

w = z +  z0
z0

E-2

y

x u

v

θ
θw = ei  z

E-3
y

x

v

uw =    z,     > 0αα

E-4
y

x
AB

C C ′

B′ A′

v

u
θ

α
α

αw = z ,     > 0
0

θ0

E-5
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AB

C D C ′ D′B′A′

y

i

x

v

u

π

w = ez

z = Ln w

E-6

C ′
D′ E′

F′

B′ A′
x

y v

B E

C F

A D
– —
  2

π    —
  2

π
w = sin z
  z = sin–1 w 1–1

u

E-7

C ′

A′

B′

x

B

C

y

A
w = u

v

1—z

E-8

C ′F′

D′E′

C

D E

F
x

y

a b

i

v

u
1oge a 1oge b

π

w = loge|z| + i Arg z
a > 1
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M-5

i
B′

D′ E′

C′

A′

x u

v

A B C D E

y

–1

w = + Ln

= (z + 1)1/2

2ζ

ζ

π

ζ–1
ζ+1

——( (

M-6

B′

C′ D′

E′ F′

A′

u

v

x
A B C D E F

y

–1 1

–

+ Ln

iπ

π

z – 1——( (
w = i Ln

=              1/2ζ

1 + iζ——( ( 1 + ζ——( (1 – iζ 1 – ζ

z + 1

M-7

x
A B C D E F

y

–1 1

w = z + Ln z + 1 

B′

C′

D′ E′ F′

A′

u

v

iπ

M-8

x

AB

HG

C

D

E

F

y

y =

1
w = ez + 1

ez – 1

π

y = –π

B′C′

D′

E′

G′ H′F′
A′

u

v

——–
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Miscellaneous Mappings

M-1

A′ B ′

C′

F ′

D ′ E′

x

i
BA C

D FE

v

u

w = z + ez + 1

y

π

i– π

y = π

y = –π

M-2

D ′C′

B′A′

x
A B C D

u

w =

y v

π

–1 1

a– [ [(z2 – 1)1/2 + cosh–1 z

ai

M-3

D ′C′B′A′

x
A B C D

u

w =

y v

π

–1 1

2a— [ [(z2 – 1)1/2 + sin–1 (1/z)

–a a

M-4

ai

B′ D′ E′

C ′

A′
x u

A B C D E

y v

–1 1

w = a(z2 – 1)1/2
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C-2

—————————————

w =

a =

x

y

B

b

B′A

A′

u

v

z – a
az – 1
——

1 + bc +
c + b
√(1 – b2) (1 – c2)

————————————— 1 – bc +
c – b
√(1 – b2) (1 – c2)r0 =

r01 1C

C-3

B′ A′ C′ D′

E′

C

BA

D

E

x

y v

w = ez

iπ

u1

C-4

A′

B ′

C′

D ′

x
A B C D

y
v

u

–1 1

w = i – z
i + z
——

1

C-5

A′

B ′

C′

D ′

x

A

B C D

v

u

1

w = i z2 + 2iz + 1
z2 – 2iz + 1
————–

1

y
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H-4

w = cos 

x

y

B

A D

a
C

B′C ′

D′ A′–1 1
u

v

width = a

— za
π( )

H-5

((w =

x

y

D

B

AC
B′ C ′ D′A′

–1

1

1
u

v

1 + z
1 – z
——

2

H-6

w =

x

y

i DB

EA

C

B′ C ′ D′A′ E′

–1 1
u

v

e  /z + e–  /zπ π

e  /z – e–  /zπ π—————

Mappings to Circular Regions

C-1

w =

a =

B

b c

A

x u

vy

B′

A′

z – a
az – 1
——

bc + 1 +
b + c
√(b2 – 1) (c2 – 1)

————————————— r0 = bc – 1 –
c – b
√(b2 – 1) (c2 – 1)

—————————————

r0 11
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E-9

C ′ B′ A′

C

B A

D

x

y v

u
w = cosh z –1 1

iπ

D′

Mappings of Half-Planes

H-1

B′A′D′

B

AC

D

w = i

–1

1
1

x

y

u

v

1 – z
1 + z
——

H-2

B′ E′A′ D′ F ′C ′

B AC

D E F

w = e  z/a

x

y

–1 1
u

v

ai

πwidth = a

H-3

w = a
2
– –

x

y

B

A C B′A′ C ′–a a–1 1
u

v

( (z + 1
z
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M-9

x
A B GC D E F

y

w =

– 1 1

/2

B′

C′D′
E′

G′ F′

A′
u

v

iπ

iπ

iπ

– 1
2
– [Ln(z + 1) + Ln(z – 1)]

M-10

x

A

B

C

D

E a

F

w = (1 – i)

v = a/(1 – a)

0 < a < 1

1

B′ C′

D′ E′ F′

A′
u

vy

z – i
z – 1
——
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ANS-8 Answers to Selected Odd-Numbered Problems

17. (a) (b) w(t) = 2 − i+ 2eity

x

3

2

1

–1

–1 1 2 3 4–2

–2

–3

Circle centered at 1 with radius 2

(c) v

u

3

2

1

–1

–1 1 2 3 4–2

–2

–3

Circle centered at 2 − i with radius 2

19. (a) (b) w(t) = eiπty

x

2

1.5

1

0.5

–0.5

–1.5

1–1 –0.5–1.5–2 1.50.5 2

–1

–2

Line segment from 0 to 2

(c) v

u

2

1.5

1

0.5

–0.5

–1.5

1–1 –0.5–1.5–2 1.50.5 2

–1

–2

Unit circle

21. the negative imaginary axis 23. the circle |w| = 1
2

25. the line segment from –2 to 2 on the real axis



Answers to Selected Odd-Numbered Problems ANS-7

Chapter 2

Exercises 2.1, page 56

1. (a) 6i (b) 2 (c) 39 − 28i

3. (a) 0 (b) loge 4 + 1
2
πi (c) 1

2
loge 2 + 1

4
πi

5. (a) 3i (b) −12 + 13i (c) −24 + 4i

7. (a) 3 + i (b) 2 (c)
√

5 + 4
5
i

9. u = 6x− 5; v = 6y + 9

11. u = x3 − 2x− 3xy2 + 6; v = 3x2y − 2y − y3

13. u =
x2 + x− y2

(x+ 1)2 + y2
; v = − 2xy + y

(x+ 1)2 + y2

15. u = e2x cos(2y + 1); v = e2x sin(2y + 1)

17. u = r cos θ; v = −r sin θ

19. u = r4 cos 4θ; v = r4 sin 4θ

21. u = er cos θ cos (r sin θ); v = er cos θ sin (r sin θ)

23. C 25. all z such that z �= 1

Exercises 2.2, page 65

1. the horizontal line v = −3 3. the half-plane Im(w) > 6

5. the line v = 4 − u 7. the half-plane Re(w) ≥ 3

9. the parabola u = 1
4
v2 − 1 11. the ray −∞ < u ≤ 0, v = 0

13. the ray u = 0, 0 ≤ v < ∞

15. (a) (b) w(t) = 6(1 − t) + 3ity

x

6
5
6
3
2
1

1 2 3 4 5 6

Line segment from 2 to i

(c)  v

u

6
5
6
3
2
1

1 2 3 4 5 6

Line segment from 6 to 3i



ANS-6 Answers to Selected Odd-Numbered Problems

Exercises 1.6, page 42

1.

√
7

2
− 1

2
i, −

√
7

2
− 1

2
i;

(
z −

√
7

2
+

1

2
i

)(
z +

√
7

2
+

1

2
i

)

3. −2 − 3i, 3 + 4i; (z + 2 + 3i)(z − 3 − 4i)

5. −1−
√

6

2
−
√

2

2
i, −1+

√
6

2
+

√
2

2
i;

(
z + 1 +

√
6

2
+

√
2

2
i

)(
z + 1 −

√
6

2
−

√
2

2
i

)

7. 10eπi 9. 4
√

2e
5
4 πi

11. 10etan
−1(− 3

4 ) 13. y1 = e2x cos 3x, y2 = e2x sin 3x

15. y1 = e−
1
2 x cos

√
3

2
x, y2 = e−

1
2 x sin

√
3

2
x

17. qp(t) = 2
3

sin 5t, ip(t) = 10
3

sin 5t, Z = 3, Zc = 3 + 0j

Chapter 1 Review Quiz, page 45

1. false 3. true

5. false 7. true

9. true 11. false

13. true 15. false

17. true 19. false

21. true 23. 9
13
, − 7

13

25. a nonnegative real number

27. −3π/4

29.
5π

4
, 8, −8, 16 31. fourth

33. z2 35. z = −3 − i

37. 1 39. first

41. the set of all points z above the line y = x

43. real axis 45. n = 24

47. cos 4θ = cos4 θ − 6 cos2 θ sin2 θ + sin4 θ,

sin 4θ = 4 cos3 θ sin θ − 4 cos θ sin3 θ

49. The equation cannot have three complex roots since complex roots must
appear in conjugate pairs.
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17. 19.y

x
42–2–4

4

2

–2

–4

(a) yes (b) no (c) yes

(d) no (e) yes

y

x
42–2–4

4

2

–2

–4

(a) yes (b) no (c) no

(d) no (e) no

21. 23.y

x
31 2–2 –1–3

3

2

1

–1

–2

–3

(a) yes (b) no (c) yes

(d) no (e) yes

y

x
31 2–2 –1–3

3

2

1

–1

–2

–3

(a) no (b) no (c) no

(d) yes (e) yes

25. For Problem 13: the line x = −1;

For Problem 15: the line y = 3;

For Problem 17: the lines x = 3 and x = 5;

For Problem 19: the lines y = x and y = −x;

For Problem 21: the circle |z − i| = 1;

For Problem 23: the circles |z − 1 − i| = 1 and |z − 1 − i| = 2

27. y

x

29. |arg(z)| ≤ 2π/3 31. z = 1 +
√

3i or z = 1 −
√

3i
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Exercises 1.5, page 33

1. 3.

x

y
2

2 4 6 8

–2

–4

–6

–8

Circle centered at 4 − 3i of radius 5

x
y

2 31–1–2–3

–2

–3

–4

–5

–6

–1

Circle centered at −3i of radius 2

5. 7.

x

y

–1 1 2

6

4

3 4 5 6

2

–2

–4

–6

Verticle line x = 5

y

–2 2 4–4

4

2

–2

–4

x

Horizontal line y = −3

9. 11.y

x
2

2

1

–1

–2

–3

–4

–2–4 4

Horizontal lines y = 2, y = −4

y

x
4

3

2

1

–1

–2

–3

2–2–4

Hyperbola x2 − y2 = 1

13. 15.y

x
42–2–4

4

2

–2

–4

(a) yes (b) no (c) yes

(d) no (e) yes

y

x
42–2–4

4

2

–2

–4

(a) yes (b) no (c) yes

(d) no (e) yes
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13. 2 + 2
√

3 i 15. −5
√

3

2
− 5

2
i

17. 5.5433 + 2.2961i 19. 8i;

√
2

4
−

√
2

4
i

21. 30
√

2
(
cos

π

12
+ i sin

π

12

)
≈ 40.9808 + 10.9808i

23.

√
2

2

(
cos

5π

4
+ i sin

5π

4

)
= −1

2
− 1

2
i

25. −512 27. 1
32
i

29. −64i 31. 32

(
cos

13π

6
+ i sin

13π

6

)
= 16

√
3 + 16i

33. cos 2θ = cos2 θ − sin2 θ, sin 2θ = 2 sin θ cos θ

35. n = 6

Exercises 1.4, page 26
In answers 1–13, the principal nth root is given first.

1. w0 = 2, w1 = −1 +
√

3i w2 = −1 −
√

3i

3. w0 = 3i, w1 = −3i

5. w0 =

√
2

2
+

√
2

2
i, w1 = −

√
2

2
−

√
2

2
i

7. w0 =
1
3
√

2
+

1
3
√

2
i, w1 ≈ −1.0842 + 0.2905i, w2 ≈ 0.2905 − 1.0842i

9. w0 =

√
2

2
+

√
6

2
i, w1 = −

√
2

2
−

√
6

2
i

11. w0 = 2 + i, w1 = −2 − i

13. w0 ≈ 1.3477 + 0.1327i, w1 ≈ 0.8591 + 1.0469i,

w2 ≈ −0.1327 + 1.3477i, w3 ≈ −1.0469 + 0.8591i,

w4 ≈ −1.3477 − 0.1327i, w5 ≈ −0.8591 − 1.0469i,

w6 ≈ 0.1327 − 1.3477i, w7 ≈ 1.0469 − 0.8591i

15. (b) 4 + 3i, −4 − 3i

17. ±
√

2

2
(1 + i) ; ±

√
2

2
(1 − i)

19. (b) n = 3 : 1, −1

2
+

√
3

2
i, −1

2
−

√
3

2
i;

n = 4 : 1, i,−1,−i;

n = 5 :
1, 0.3090+0.9511i,−0.8090+0.5878i,−0.8090−0.5878i, 0.3090−0.9511i,

25. (c) −
√

2

2
+

√
2

2
i,

√
2

2
−

√
2

2
i
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Chapter 1

Exercises 1.1, page 7

1. (a) 1 (b) −i (c) −1 (d) i

3. 7 − 13i 5. −7 + 5i

7. 11 − 10i 9. 2
5

+ 16
5
i

11. − 7
17

− 11
17
i 13. 8 − i

15. 23
37

− 64
37
i 17. 20i

19. 102
5

+ 116
5
i 21. −5 + 12i

23. 128 − 128i 25. Re(z) = 7
130

, Im(z) = 9
130

27.
x

x2 + y2
29. −2y − 4

31. −Im(z) 33. Re(z) + Im(z)

35. z2 =

√
2

2
−

√
2

2
i 37. z = − 9

2
+ i

39. z =

√
2

2
+

√
2

2
i or z = −

√
2

2
−

√
2

2
i

41. z = − 1
30

+ 7
10
i 43. z1 = 17 + 11i, z2 = 7 + 13i

Exercises 1.2, page 14

5. 16 − 12i 7. right triangle

9. 2 11. 2
5

13. (x− 1)2 + (y − 3)2

15. 11 − 6i; 10 + 8i 17. the line x− y = 1

19. the line y = x 21. the rectangular hyperbola xy = 1

23. the circle centered at (1, 0) of radius 1

25. the parabola y2 = 4(x− 1)

29. 6 31. z = − 3
4
− i

Exercises 1.3, page 21

1. z = 2 (cos 2π + i sin 2π); z = 2 (cos 0 + i sin 0)

3. z = 3

(
cos

3π

2
+ i sin

3π

2

)
; z = 3

[
cos

(
−π

2

)
+ i sin

(
−π

2

)]

5. z =
√

2

(
cos

9π

4
+ i sin

9π

4

)
; z =

√
2

(
cos

π

4
+ i sin

π

4

)

7. z = 2

[
cos

(
−7π

6

)
+ i sin

(
−7π

6

)]
; z = 2

(
cos

5π

6
+ i sin

5π

6

)

9. z =
3
√

2

2

(
cos

7π

4
+ i sin

7π

4

)
; z =

3
√

2

2

[
cos

(
−3π

4

)
+ i sin

(
−3π

4

)]

11. z = 3 (cos 8.34486 + i sin 8.34486); z = 3 (cos 2.06168 + i sin 2.06168)
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Exercises 2.3, page 76

1. |w − 3i| ≤ 1 3. |w| ≤ 3

5. |w + i| ≤ 2 7. triangle with vertices 2i, 1 + 2i, and 3i

9. triangle with vertices 0, 1
2

√
2 + 1

2

√
2i, and − 1

2

√
2 + 1

2

√
2i

11. triangle with vertices i, −3 + i, and −2i

13. f(z) = T ◦M ◦R(z) where R(z) = eπi/2z, M(z) = 3z, and T (z) = z+4

15. f(z) = T ◦ M ◦ R(z) where R(z) = eπiz, M(z) = 1
2
z, and

T (z) = z + 1 −
√

3i

17. f(z) = iz + 2i 19. f(z) = e−πi/4z + i

21. f(z) = z − 1, g(z) = iz

23. (a) w(t) = (z0 + b)(1 − t) + (z1 + b)t, 0 ≤ t ≤ 1, the line segment from
z0 + b to z1 + b

(b) w(t) = az0(1 − t) + az1t, 0 ≤ t ≤ 1, the line segment from az0 to az1

(c) w(t) = az0(1 − t) + az1t, 0 ≤ t ≤ 1, the line segment from az0 to az1

25. (a) f(z) = 2eπi/4z + 1 + i (b) f(z) = 2eπi/4z + 1 + i

(c) f(z) = 2eπi/4z + 1 + i

Exercises 2.4, page 97

1. arg(w) = 2
3
π 3. u = 9 − 1

36
v2,−∞ < v < ∞

5. u = 4v2 − 1
16
,−∞ < v < ∞ 7. v = 0,−∞ < u ≤ 0

9. |w| = 1
4

11. Image consists of the arcs: v = 0, 0 ≤ u ≤ 1; u = 0, 0 ≤ v ≤ 2;
u = 1 − 1

4
v2, 0 ≤ v ≤ 2.

13. Image consists of the arcs: v = 0, −1 ≤ u ≤ 1; u = 1− 1
4
v2, 0 ≤ v ≤ 2;

u = 1
4
v2 − 1, 0 ≤ v ≤ 2.

15. Image is a ray emanating from 1 − i and containing
(√

3 − 1
)
i; 1 − i is

not in the image.

17. v = 4 − 1
16

(u+ 3)2,−∞ < u < ∞ 19. |w| = 1, 1
4
π ≤ arg(w) ≤ 5

4
π

21. (a) arg(w) = 1
2
π (b) arg(w) = 2

3
π (c) arg(w) = 5

6
π

23. (a) 1 ≤ |w| ≤ 4, 1
2
π ≤ arg(w) ≤ 3

2
π (b) 1 ≤ |w| ≤ 8, 3

4
π ≤ arg(w) ≤ 9

4
π

(c) 1 ≤ |w| ≤ 16

25. 1
2

√
2 − 1

2

√
2i 27. 1

2
+ 1

2

√
3i

29. 1
2

4
√

18 + 1
2

4
√

2i 31. arg(w) = 1
8
π

33. arg(w) = 1
4
π 35. |w| = 3,− 1

4
π ≤ arg(w) ≤ 1

2
π

37. u = 3
2

39. the region bounded by the lines u = 2 and v = 2 containing the point
w = 3 + 4i
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Exercises 2.5, page 107

1. |w| = 1
5

3. |w| = 1
3
, −3π/4 ≤ arg(w) ≤ π/4

5. 1
2
≤ |w| ≤ 3 7. arg(w) = − 1

4
π

9.
∣∣w + 1

8
i
∣∣ = 1

8
11. v = 1

2

13. u = 1
4

15. Image is the region bounded by
∣∣w + 1

4

∣∣ = 1
4

and
∣∣w + 1

2

∣∣ = 1
2
.

17. Image is the region bounded by v = 0, v = −u, and |w| = 2 and
containing the point −3 + 2i

19. (a) Invert in the unit circle, reflect across the real axis, rotate through π/2
counterclockwise about the origin, magnify by 2, then translate by 1.

(b)
∣∣w − 1 − 1

4
i
∣∣ = 1

4
(c) v = − 1

2

21. (a) if f(z) = 1/z and g(z) = z2, then h(z) = g(f(z))

(b) u = 1
4
v2 − 1 (c) u = 1

4
− v2

Exercises 2.6, page 128

1. −4 + 2i 3. 3 − i

5. −1

7. 2 + e2 cos 1 + i
(
1 + e2 sin 1

)
≈ 5.9923 + 7.2177i

9. 1 − 3i 11.
√

2

13. 4i 15. a

17. (a) 1 (b) 0 (c) does not exist

19. (a) 1 (b) 1 (c) no

(d) −1 (e) does not exist

21. 1
5
− 2

5
i 23. ∞

25. ∞ 27. lim
z→2−i

f(z) = f(2 − i) = 5 − 8i

29. lim
z→i

f(z) = f(i) = 1
3
i 31. lim

z→1
f(z) = f(1) = 3

33. lim
z→3−2i

f(z) = f(3 − 2i) = −6 + 3i 35. f(−i) is not defined

37. lim
z→−1

f(z) does not exist 39. lim
z→i

f(z) does not exist

41. the entire complex plane C

43. all points in the complex plane except those on the circle |z| = 2
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7. φ(x, y) =
y

π
+
x2 − y2

π

[
tan−1

(
x− 1

y

)
− tan−1

(
x

y

)]

+
xy

π
loge

[
(x− 1)2 + y2

x2 + y2

]

9. (b) φ(x, y) = e−y cosx

Exercises 7.5, page 442

1. (a) w = z2 (b) φ(x, y) =
1

π

[
−Arg

(
z2 + 1

)
− Arg

(
z2

)
+ 2Arg

(
z2 − 1

)]
3. (a) w =

(
1 + z

1 − z

)2

(b) φ(x, y) = 1 +
1

π

{
2Arg

[(
1 + z

1 − z

)2

+ 1

]
+Arg

[(
1 + z

1 − z

)2
]

−2Arg

[(
1 + z

1 − z

)2

− 1

]}

5. (a) w = sin
(π

4
z
)

(b) φ(x, y) = 1 +
1

π

{
−3Arg

[
sin

(π
4
z
)

+ 1
]
+3Arg

[
sin

(π
4
z
)]

−Arg
[
sin

(π
4
z
)
− 1

] }
7. (a) w =

1

z
(b) φ(x, y) =

−2x

x2 + y2
+ 2

9. (a) w =
2z − 1 −

√
3(

4 + 2
√

3
)
z + 1 +

√
3

(b) φ(x, y) =
10

loge

(
7 − 4

√
3
) loge

∣∣∣∣∣ 2z − 1 −
√

3(
4 + 2

√
3
)
z + 1 +

√
3

∣∣∣∣∣
11. (a) w = sin−1 z (b) φ(x, y) = 5 +

10

π
Re

[
sin−1 z

]
13. Ω(z) = z4 15. Ω(z) = cosh z

17. (a) z = πi− 1
2
[Ln(w + 1)+ Ln(w − 1)]

(b) z(t) = πi− 1
2
[Ln(t+ 1 + ic2)+ Ln(t− 1 + ic2)]

19. (a) z =
1

π

[(
w2 − 1

)1/2
+ cosh−1 w

]
(b) z(t) =

1

π

{[
(t+ ic2)

2 − 1
] 1/2 + cosh−1(t+ ic2)

}
21. Ω(z) = Ln

(
z4 + 4

)
− Ln

(
z4 − 16

)

Chapter 7 Review Quiz, page 448

1. false 3. false

5. true 7. true

9. false 11. true

13. true 15. true
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11. w = cos
πz

2
by entry H-4 of Appendix III.

13. w =

(
1 + z

1 − z

)1/2

by entries H-5 and E-4 of Appendix III.

15. w =

(
eπ/z + e−π/z

eπ/z − e−π/z

)1/2

by entries H-6 and E-4 of Appendix III.

Exercises 7.2, page 408

1. T (0) = ∞, T (1) = i, T (i) = 1, T (∞) = 0

3. T (0) = −1, T (1) = i, T (i) = ∞, T (∞) = 1

5. |w| ≥ 1 and u ≥ 1
2

7. u ≤ 0 and |w − 1| ≥ 2

9. v ≥ 0 and
∣∣w − 1

2

∣∣ ≥ 1
2

11. v ≥ 0 and u ≤ 1

13. The image consists of a set of all points w = u+ iv such that
∣∣w + 1

3

∣∣ ≥ 2
3

and
v ≤ 0.

15. The image consists of a set of all points w = u + iv such that
∣∣w + 1

20

∣∣ ≥ 9
20

and u ≥ − 1
2
.

17. (a) S−1(z) =
z + 1

z − i
(b) S−1(T (z)) =

(1 + i)z − 1

2z + i

19. (a) S−1(z) =
z − 2

z − 1
(b) S−1(T (z)) =

3

z

21. T (z) =
2z + 2

−z + 2
23. T (z) =

2z

z + i

25. T (z) =
3z − 3i

(1 + 4i)z − (4 + i)

Exercises 7.3, page 418

1. the first quadrant u ≥ 0, v ≥ 0

3. the region bounded by the ray u = 0, 0 ≤ v < ∞, the line segment v = 0,
0 ≤ u ≤ 1, and the ray u = 1,−∞ < v ≤ 0, and containing the point 1 + i

5. the region bounded by the ray v = 1, −∞ < u ≤ 0, the line segment u = 0,
0 ≤ v ≤ 1, the line segment v = 0, 0 ≤ u ≤ 1, and the ray arg(z − 1) = π/4,
and containing the point 1 + i

7. f ′(z) = A(z + 1)−1/2z−1/2(z − 1)−1/2 9. f ′(z) = A(z + 1)−1/3z−1/3

Exercises 7.4, page 426

1. φ(x, y) =
1

π
[Arg(z + 1) − 2Arg(z) + Arg(z − 1)]

3. φ(x, y) = 5 +
1

π
[Arg(z + 2) − 2Arg(z + 1) + Arg(z) − 5Arg(z − 1)]

5. φ(x, y) =
2x− 1

π

[
tan−1

(
x

y

)
− tan−1

(
x− 2

y

)]
+
y

π
loge

[
(x− 2)2 + y2

x2 + y2

]
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35. −π

8

(
e−3

3
− e−1

)
37. πe−1

57. loge 2 59. 12πi

61. 4πi 63. 10πi

69.
π2

8
71.

√
2π2

16

Exercises 6.7, page 384

1.
1

s− 5
, s > 5 3.

3

s2 + 9
, s > 0

5. s > k 7.
k

s2 − k2
,

s

s2 − k2

9. 1
120

t5 11. 1
2

sin 2t

13.
1√
3

sinh
√

3t 15. e3(t−a)�(t− a) – e2(t−a)�(t− a)

17. 1
2

sinh t− 1
2

sin t 19.
1

1 − iα

Chapter 6 Review Quiz, page 386

1. true 3. true

5. true 7. true

9. false 11. false

13. true 15. true

17. true 19. false

21. −3 + 6i 23. 125
26

− 25
26
i

25. |z − 2 − i| = 1
13

27. 1/R

29. 1
5
(z + 1) − 1

52 (z + 1)2 + 1
53 (z + 1)3 − · · · ; R = 5

31.
7

(z + 1)2
+

4

z + 1
− 2 + (z + 1)

33. 1 35. 1
6

37. 1,
1

z − π
, π

39. (a) π + πi

(b) 0 for n = 0; 0 for n = 1; 2πi(1/1!) for n = 2; 0 for n = 3; 2πi(−1/3!) for
n = 4; 0 for n = 5; 2πi(1/5!) for n = 6; and so on.

Chapter 7

Exercises 7.1, page 396

1. f is not conformal at z = ±1.

3. f is not conformal at z = (2n+ 1)πi, n = 0, ±1, ±2, . . . .

5. f is not conformal at z = 1
2
(2n+ 1)π, n = 0, ±1, ±2, . . . .
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19. (2n+ 1)π/2, n = 0, ±1, . . . , are simple poles.

21. 0 is a pole of order 2.

23. (2n+ 1)πi, n = 0, ±1, . . . , are simple poles.

25. 1 is a simple pole.

27. essential singularity

Exercises 6.5, page 349

1. 2
5

3. −3

5. 0 7. Res(f(z), −4i) = 1
2
, Res(f(z), 4i) = 1

2

9. Res(f(z), 1) = 1
3
, Res(f(z), −2) = − 1

12
, Res(f(z), 0) = − 1

4

11. Res(f(z), −1) = 6, Res(f(z), −2) = −31, Res(f(z), −3) = 30

13. Res(f(z), 0) = −3
/
π4, Res(f(z), π) =

(
π2 − 6

)/
2π4

15. Res(f(z), (2n+ 1)π/2) = (−1)n+1, n = 0, ±1, ±2, . . .

17. 0; 2πi/9; 0 19. πi; πi; 0

21. π/3 23. 0

25. 2πi cosh 1 27. −4i

29. 6i 31.

(
1

3π2
+

1

π

)
i

33. 2π/3

Exercises 6.6, page 370

1.
4π√

3
3. 0

5.
π√
3

7.
π

4

9.
π

6
11. π

(
90 − 52

√
3

12 − 7
√

3

)

15. π 17.
π

16

19.
3π

8
21.

π

2

23.
π√
2

25.
π

6

27. πe−1 29. πe−1

31. πe−3 33.
πe−

√
2

2
√

2

(
cos

√
2 + sin

√
2
)
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31.
∞∑

k=0

(−1)k(z + 1)k, R =
√

2;

∞∑
k=0

(−1)k

(2 + i)k+1
(z − i)k, R =

√
5

y

x

33.
1

1 − 3z
37. 1.1 + 0.12i

Exercises 6.3, page 334

1.
1

z
− z

2 !
+
z3

4 !
− z5

6 !
+ · · · 3. 1 − 1

1! · z2
+

1

2 ! · z4
− 1

3 ! · z6
+ · · ·

5.
e

z − 1
+e+

e(z − 1)

2 !
+
e(z − 1)2

3 !
+· · · 7. − 1

3z
− 1

32
− z

33
− z2

34
− · · ·

9.
1

3(z − 3)
− 1

32
+
z − 3

33
− (z − 3)2

34
+ · · ·

11. · · · − 1

3(z − 4)2
+

1

3(z − 4)
− 1

12
+
z − 4

3 · 42
− (z − 4)2

3 · 43
+ · · ·

13. · · · − 1

z2
− 1

z
− 1

2
− z

22
− z2

23
− · · · 15.

−1

z − 1
− 1 − (z − 1) − (z − 1)2 − · · ·

17.
1

3(z + 1)
− 2

32
− 2(z + 1)

33
− 2(z + 1)2

34
− · · ·

19. · · · − 1

3z2
+

1

3z
− 1

3
− z

3 · 2 − z2

3 · 22
− · · ·

21.
1

z
+ 2 + 3z + 4z2 + · · · 23.

1

z − 2
− 3 + 6(z − 2) − 10(z − 2)2 + · · ·

25.
3

z
− 4 − 4z − 4z2 − · · · 27. · · ·+ 2

(z − 1)3
+

2

(z − 1)2
+

2

z − 1
+1+(z−1)

29.
1

z
+
z

6
+

7z3

360
+ · · ·

Exercises 6.4, page 340

1. Define f(0) = 2. 3. Define f(0) = 0.

5. −2 + i is a zero of order 2.

7. 0 is a zero of order 2; i and −i are simple zeros.

9. 2nπi, n = 0, ±1, . . . , are simple zeros.

11. order 5 13. order 1

15. −1 + 2i and −1 − 2i are simple poles.

17. −2 is a simple pole; −i is a pole of order 4.
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21. unit circle centered at the origin

23. z1(t) and z2(t) both describe a unit circle centered at the origin but have
opposite orientations.

25. 0 27. 8
3

29. 2 cos(2 + i) − 2 cos 3i 31. 2πi

33. 6π2 − πi 35. 2πi/ (n− 1)!

37. 0 for n �= −1 and 2πi for n = −1. 39. i− 1

Chapter 6

Exercises 6.1, page 310

1. 5i, −5, −5i, 5, 5i 3. 0, 2, 0, 2, 0

5. converges 7. converges

9. diverges

11. lim
n→∞

Re(zn) = 2 and lim
n→∞

Im(zn) = 3
2

and so L = 2 + 3
2
i.

13. The series converges to 1
5
− 2

5
i.

15. divergent 17. convergent, − 1
5

+ 2
5
i

19. convergent, 9
5
− 12

5
i 21. |z − 2i| =

√
5, R =

√
5

23. |z − 1 − i| = 2, R = 2 25. |z − i| = 1
/√

10, R = 1
/√

10

27. |z − 4 − 3i | = 25, R = 25 29. |z − i| = 1
2
, R = 1

2

31. z = −2 + i 33.
∑∞

k=1 zk diverges.

Exercises 6.2, page 321

1.
∞∑

k=1

(−1)k+1zk, R = 1 3.
∞∑

k=1

(−1)k−1k(2z)k−1, R = 1
2

5.
∞∑

k=0

(−1)k

k !
(2z)k, R = ∞ 7.

∞∑
k=0

1

(2k + 1)!
z2k+1, R = ∞

9.
∞∑

k=0

(−1)k

(2k) !

(z
2

)2k

, R = ∞ 11.
∞∑

k=0

(−1)k

(2k + 1)!
z4k+2, R = ∞

13. e3i
∞∑

k=0

1

k!
(z − 3i)k, R = ∞ 15.

∞∑
k=0

(−1)k(z − 1)k, R = 1

17.
∞∑

k=0

1

(3 − 2i)k+1
(z − 2i)k, R =

√
13 19.

∞∑
k=1

1

2k
(z − 1)k, R = 2

21.

√
2

2
−

√
2

2 · 1!

(
z − π

4

)
−

√
2

2 · 2!

(
z − π

4

)2

+

√
2

2 · 3!

(
z − π

4

)3

+ · · · , R = ∞

23. z + 1
3
z3 + 2

15
z5 + · · ·

25.
1

2i
+

3

(2i)2
z +

7

(2i)3
z2 +

15

(2i)4
z3 + · · · , R = 1

27. R = 2
√

5 29. R =
π

2
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Exercises 5.5, page 281

1. 8πi 3. −2πi

5. −π(20 + 8i) 7. (a) −2π (b) 2π

9. −8π 11. −2πe−1i

13. 4
3
πi

15. (a) −5πi (b) −5πi (c) 9πi (d) 0

17. (a) −π(3 + i) (b) π(3 + i) 19. π
(

8
3

+ 12i
)

21. 0 23. −πi

25. 6

27. (a) 16; 4 (b) 25; 9 (c) 7; 3

Exercises 5.6, page 294

5. f(z) = cos θ0+i sin θ0 = eiθ0 , g(z) = f(z) = cos θ0−i sin θ0 = e−iθ0 is constant
and so is analytic everywhere.

7. f(z) = 2z̄ + 3i, g(z) = f(z) = 2z − 3i is a polynomial function and so is
analytic for all z.

9. F(x, y) = (x2 − y2 − 2xy)i + (y2 − x2 − 2xy)j

11. F(x, y) = (ex cos y)i − (ex sin y)j

13. Ω(z) = e−iθ0z; equipotential lines are the family of straight lines
x cos θ0 + y sin θ0 = c1; the streamlines are the family of straight lines
−x sin θ0 + y cos θ0 = c2.

15. Ω(z) = z2−3iz; equipotential lines are the family of hyperbolas x2−y2+3y =
c1; the streamlines are the family of hyperbolas 2xy − 3x = c2.

17. F(x, y) = −2xyi + (y2 − x2)j

21. (a) For a point (x, y) far from the origin, the velocity field is given by
F(x, y) ≈ Ai, that is, the flow is a nearly uniform.

23. (a) The streamlines are Arg(z − x1) = c1, which are rays with vertex at
z = x1.

25. Circulation is 0; net flux is 0.

27. Circulation is 0; net flux is 2π.

29. Circulation is −4π; net flux is 12π.

Chapter 5 Review Quiz, page 297

1. false 3. true

5. true 7. true

9. true 11. true

13. false 15. true

17. true 19. true



ANS-16 Answers to Selected Odd-Numbered Problems

9. − 1
2

ln 3 11. −125
/
3
√

2; −250(
√

2 − 4)
/
12; 125

2

13. 3; 6; 3
√

5 15. 21

17. 30 19. 1

21. 1 23. 460

25. 26
9

27. − 64
3

29. − 8
3

31. 0

33. On each curve the line integral has the value 208
3

.

35. With ρ = kx, m = kπ.

Exercises 5.2, page 254

1. −28 + 84i 3. −48 + 736
3
i

5. (2 + π)i 7. πi

9. − 7
12

+ 1
12
i 11. −e− 1

13.
3

2
− π

4
15. 0

17. 1
2
i 19. 0

21. 4
3
− 5

3
i 23. 4

3
− 5

3
i

25. 5
12
πe2 27. 6

√
2

31. (a) −11 + 38i (b) 0

Exercises 5.3, page 262

9. 2πi 11. 2πi

13. 0 15. (a) 2πi (b) 4πi (c) 0

17. (a) −8πi (b) −6πi 19. −π(1 + i)

21. 0 23. −4πi

25. −6πi

Exercises 5.4, page 271

1. −2i 3. 48 + 24i

5. 6 + 26
3
i 7. 0

9. − 7
6
− 22

3
i 11. − 1

π
− 1

π
i

13. 2.3504i 15. 0

17. πi 19. 1
2
i

21. 11.4928 + 0.9667i 23. −0.9056 + 1.7699i

25.
√

2 i



Answers to Selected Odd-Numbered Problems ANS-15

25. z = loge

(
1 +

√
2
)

+ 1
2
(2n + 1)πi or z = loge

(
−1 +

√
2
)

+ 1
2
(2n − 1)πi,

n = 0, ±1, ±2, . . .

27. There are no solutions.

33. cos z sinh z + sin z cosh z 35. i sech2 (iz − 2)

Exercises 4.4, page 221

1. 1
2
(4n + 1)π − i loge

(√
2 + 1

)
and 1

2
(4n − 1)π − i loge

(√
2 − 1

)
, n = 0,

±1, ±2, . . .

3. 1
2
(4n+ 1)π − i loge

(√
2 ± 1

)
, n = 0, ±1, ±2, . . .

5. − 1
4
(4n− 1)π, n = 0, ±1, ±2, . . . 7. 1

2
(4n+ 1)πi, n = 0, ±1, ±2, . . .

9. 1
4

loge 2 + 1
8
(8n+ 3)πi, n = 0, ±1, ±2, . . .

11. (a) −i loge

(
1
2

(√
5 − 1

))
(b) 2

5

√
5

13. (a) 1
2

(π − arctan 2) + i 1
4

loge 5 (b) 1
5
− 2

5
i

15. (a) loge

(√
2 + 1

)
− 1

2
πi (b) 1

2

√
2i

Exercises 4.5, page 230

1. φ(x, y) = −x+ 5 3. φ(x, y) = 5
4

√
3x− 5

4
y + 10

5. φ(x, y) = 12 +
33

π
Arg(sin (z − π) + 1) − 25

π
Arg(sin (z − π) − 1)

7. φ(x, y) = 15 − 9

π
Arg(sin (iz) + 1) +

17

π
Arg(sin (iz) − 1)

Chapter 4 Review Quiz, page 232

1. true 3. false

5. false 7. true

9. false 11. false

13. false 15. true

17. true 19. true

21. ex cos y, ex sin y 23. loge 2 + 1
6
πi

25. 2nπ − i loge 2, n = 0, ±1, ±2, . . . 27. nonpositive real axis

29. 1
2

loge 2 + 1
4
(8n+ 1)πi, n = 0, ±1, ±2, . . .

31. z2 = e2π 35. cosh 4

37. sinx cosh y, cosx sinh y 39. ±1

Chapter 5

Exercises 5.1, page 243

1. 64
3

3. − 1

π

5. 1
2

ln 9 7. 8e−1 − 12e−2
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Chapter 4

Exercises 4.1, page 191

1. z2ez+i + 2zez+i 3. ieiz + ie−iz

5. ex2−x−y2
7. 2x+ 2nπ, n = 0, ±1, ±2, . . .

9. ey cosx− iey sinx 11. ex2−y2
cos (2xy) + iex2−y2

sin (2xy)

13. f is nowhere differentiable 15. arg(w) = −2

17. e < |w| ≤ e2 19. 1 ≤ |w| ≤ 2, −π/4 ≤ arg(w) ≤ π/2

21. loge 5 + (2n+ 1)πi 23. 3
2

loge 2 + 1
4
(8n+ 3)πi

25. 3
2

loge 2 + 1
3
(6n+ 1)πi 27. 1

2
loge 72 − 1

4
πi

29. 2.5650 + 2.7468i 31. 5 loge 2 − 1
3
πi

33. 2 loge 2 + 1
2
(4n+ 1)πi 35. 4 + 1

2
(4n− 1)πi

37. differentiable on the domain |z| > 0, −π < arg(z) < π,

f ′(z) = 6z − 2ie2iz +
i

z

39. differentiable when z is not on the ray emanating from 1
2
i containing

−1 + 1
2
i; z �= −i, and z �= i, f ′(z) =

2
z2 + 1

2z − i
− 2zLn(2z − i)

(z2 + 1)2

41. v = 1
6
π 43. u = 2 loge 2, −π < v ≤ π

45. loge 3 ≤ u ≤ loge 5, −π < v ≤ π

Exercises 4.2, page 199

1. e−3(2n+1)π, n = 0, ±1, ±2, . . .

3.
√

2e(8n+1)π/4+i[(8n+1)π/4−(loge 2)/2], n = 0, ±1, ±2, . . .

5. e(−4n+1)π/2, n = 0, ±1, ±2, . . . 7. e−3π

9. ei4 loge 2 11. e−π+i3 loge 2

15. 3
2

4
√

2eπi/8 17.
√

2e−π/3+i[(π/4)+loge 2]

Exercises 4.3, page 212

1. i sinh 4 ≈ 27.2899i

3. cos 2 cosh 4 + i sin 2 sinh 4 ≈ −11.3642 + 24.8147i

5.
sinh 4

1 + cosh 4
i ≈ 0.9640i 7.

2 sinh 1

1 − cosh 2
i ≈ −0.8509i

9. z = 2nπ− i loge

(√
2 − 1

)
or z = (2n+1)π− i loge

(√
2 + 1

)
, n = 0, ±1,

±2, . . .

11. z = 1
4
(4n+ 1)π, n = 0, ±1, ±2, . . .

17. 2z cos
(
z2

)
19. tan

(
1

z

)
− 1

z
sec2

(
1

z

)
21. −1 23. 1

2

√
3 cosh 1 + i 1

2
sinh 1 ≈ 1.3364 + 0.5876i
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23. 1
2 i

25. 8i

27. f is not analytic at z = − 1
3

+ 1
3
i

29. f is analytic for all z

Exercises 3.2, page 157

17. a = 1, b = 3 23. f ′(z) = −e−x cos y + ie−x sin y

Exercises 3.3, page 162

9. f(z) = x+ i(y + C); f(z) = x2 − y2 + i(2xy + C);

f(z) = loge(x
2 + y2) + i

(
tan−1 y

x
+ C

)
;

f(z) = ex(x cos y − y sin y) + iex(x sin y + y cos y + C)

11. f(z) = xy + x+ 2y − 5 + i
(

1
2
y2 − 1

2
x2 + y − 2x+ 1

)
13. (b) f(z) =

y

x2 + y2
+ i

x

x2 + y2
(c) f(z) =

i

z

Exercises 3.4, page 170

1. x = c1, y = c2

3. c1x = x2 + y2, −c2y = x2 + y2; the level curves u(x, y) = 0 and
v(x, y) = 0 correspond to x = 0 and y = 0, respectively.

9. (a) φ(x) = −50x+ 50 (b) Ω(z) = −50x+ 50 − 50yi

11. (a) φ(θ) =
120

π
θ (b) Ω(z) =

120

π
θ − 120

π
loge r

Chapter 3 Review Quiz, page 172

1. false 3. true

5. true 7. true

9. true 11. true

13. − 2z + 5i

(z2 + 5iz − 4)2
15. 2 + i

17. f ′(z) =
(y − 1)2 − (x− 1)2

[(x− 1)2 + (y − 1)2]2
+ i

2(x− 1)(y − 1)

[(x− 1)2 + (y − 1)2]2

19. constant

21. v(x, y) = e−x(x cos y + y sin y)



ANS-12 Answers to Selected Odd-Numbered Problems

9. (a) y = −2x+ c 11. (a) x2 + y2 = c

(b) (b)y

x

4

2

–2

–4

2 4–4 –2

y

x

4

2

–2

–4

2 4–4 –2

Chapter 2 Review Quiz, page 138

1. false 3. false

5. true 7. false

9. false 11. true

13. false 15. true

17. true 19. true

21. x2 − y2 + y, x+ 2xy 23. imaginary

25. (1 + i)(1 − t) + 2ti, 0 ≤ t ≤ 1 27. rotation, magnification, translation

29. doubles 31. parabolas

33. 1
2

√
3 + 1

2
i 35. z2 + 4, −4 − i

37. f(z0) 39. 0 < x < ∞, y �= 0

Chapter 3

Exercises 3.1, page 149

1. f ′(z) = 9i 3. f ′(z) = 3iz2 − 14z

5. f ′(z) = 1 +
1

z2
7. f ′(z) = 10z − 10

9. f ′(z) = 4z3 − 2z 11. f ′(z) = (10 − 5i)z4 + 4iz3 − 6z

13. f ′(z) = 8z7 − 7z6 + (6 − 30i)z5 − 2z + 1

15. f ′(z) =
3iz2 + (2 + 2i)z − 2 + 2i

(3z + 1 − i)2

17. f ′(z) = 10
(
z4 − 2iz2 + z

)9(
4z3 − 4iz + 1

)
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Exercises 2.7, page 137

1. (a) (b)y

x
4321–1

–1

–2

–3

–4

–2–3–4

3

4

2

1

y

x
4321–1

–1

–2

–3

–4

–2–3–4

3

4

2

1

3. (a) (b)y

x
42 31–1

–1

–2

–3

–4

–2–3–4

3

4

2

1

y

x
42 31–1

–1

–2

–3

–4

–2–3–4

3

4

2

1

5. (a) (b)y

x
42 31–1

–1

–2

–3

–4

–2–3–4

3

4

2

1

y

x
42 31–1

–1

–2

–3

–4

–2–3–4

3

4

2

1

7. (a) (b)y

x
21 1.50.5–0.5

–0.5

–1

–1.5

–2

–1–1.5–2

1.5

2

1

0.5

y

x
21 1.50.5–0.5

–0.5

–1

–1.5

–2

–1–1.5–2

1.5

2

1

0.5
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17. sense 19. triples

21. circle 23.
z − z1
z − z3

z2 − z3
z2 − z1

25. π/2, 3π/4 27. π/5

29.

(
1 + t+ ic2
1 − t− ic2

)2
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IND-8 Word Index

Entire function, 145
Epsilon-delta proofs, 113-114
ε−neighborhood, 112, 302
Equality of complex numbers, 2-3
Equipotential curves, 167-168
Error function, 322
Essential singularity, 336
Euclidean isometry, 79
Euler’s formula, 39
Evaluation of real integrals by

residues, 352, 354, 357, 359
Even function, 355
Exact first-order differential

equation, 288
Exponential form of a complex

number, 39-40
Exponential function:

algebraic properties of, 56, 178
analyticity of, 177
definition of, 39, 55, 176
derivative of, 177
fundamental region for, 180
inverse of, 186-187
Maclaurin series for, 318
mapping properties of, 180-181
modulus of, 178
periodicity of, 54, 179

Exponential order, 376
Extended:

complex number system, 33
complex plane, 103
real number system, 32

Exterior point of a set, 31

Factorization of a quadratic
polynomial, 38

Fixed point, 78
Flow around a unit circle, 138
Fluid flow:

circulation of, 290-292
ideal, 285, 287
incompressible, 167, 285
irrotational, 167, 284
net flux of, 290-292
planar, 135, 284
sink of, 291, 294
source of, 291, 294
stagnation point of, 295
streamlines for, 135, 286, 287

velocity field for, 135, 284
Flux, net, 290, 292
Flux lines, 167
Fourier integrals, 357
Fourier transform, 381
Function(s):

analytic, 145
bounded, 124
branch of, 187, 197, 217
branch point of, 127, 188
complex, 50
complex conjugation, 101
composition of, 71-72, 78
constant, 117, 156
continuous, 120, 122
definition of, 50
derivative of, 142
differentiable, 142
discontinuous, 120
domain of, 50
entire, 145
exponential, 39, 53, 55, 176
of exponential order, 276
harmonic, 160
harmonic conjugate, 160
holomorphic, 145
hyperbolic, 209
identity, 117
image under, 50
imaginary part of, 51-52
input of, 50
integrable, 237, 248
inverse of, 88
inverse hyperbolic, 219
inverse trigonometric, 215-216
limit of, 120
linear, 68, 71
logarithmic, 182, 185
meromorphic, 340
multiple-valued, 94-95
multiple-to-one, 95
one-to-one, 88
output of, 50
periodic, 179
polar coordinate description of, 54
polynomial, 80, 146
power, 194-196
principal branch of, 187, 197
principal nth root, 93



Word Index IND-7

Convergence of an improper integral,
356

Convergence of an infinite series:
absolute, 306
conditional, 306
definition of, 303
necessary condition for, 305
tests for, 306-307

Convergence of a power series, 307
circle of, 307
radius of, 307-308, 318
tests for, 306-307

Convergence of a sequence, 302-303
in terms of real and imaginary

parts, 303
Convex set, 35
Cosine:

hyperbolic, 209
inverse of, 216
Maclaurin series for, 318
as a mapping, 208
trigonometric, 200, 204
zeros of, 205

Critical point, 393
Crosscut, 259, 261
Cross ratio, 406

invariance of, 406-407
Commutative laws, 3
Cubic formula, 44
Curl of a vector field, 167, 285
Curve:

closed, 237, 246
initial point of, 237
opposite, 246
oriented, 246
piecewise smooth, 237, 246
simple closed, 237, 246
smooth, 237, 246
terminal point of, 237

Definite integral, 236-237
Deformation of contours, 259
Deleted neighborhood, 29
de Moivre’s formula, 20
Depressed cubic equation, 44
Derivative:

of complex exponential function,
177

of complex hyperbolic functions,

209-210
of complex inverse hyperbolic

functions, 220
of complex inverse trigonometric

functions, 218
of the complex logarithm, 188
of complex trigonometric

functions, 206
definition of, 142, 146
evaluation of, 142
formula for, 155
of power series, 314
rules for, 143
symbols for, 142

Differentiability implies continuity,
146

Differentiable at a point, 142
Differential equation, 38
Differentiation of a power series, 314
Differentiation, rules of, 143
Dirichlet problem, 168, 420, 429

in a half-plane, 228, 420-421
steps for solving, 225, 429
for unit disk, 425-426

Discontinuous at a point, 120
Disk, 29

closed, 31
open, 31
punctured, 32

Distance between two points, 11
Distributive law, 3
Divergence:

of improper integrals, 354
of sequences, 302
of an infinite series, 304, 305, 306,

307
of a vector field, 167, 285

Division of complex numbers, 3, 5
in polar coordinates, 18

Domain:
connected, 31
definitions of, 31, 50
doubly connected, 257
of a function, 50
multiply connected, 257
simply connected, 256
triply connected, 257

Electrostatic potential, 166, 432



IND-6 Word Index

at infinity, 32
integer powers of, 19
modulus of, 10
multiplication of, 3-4
nth power of, 19-20
polar form of, 16
principle argument of, 17
principle nth root of, 25
pure imaginary, 2
rational powers of, 26-27
real part of, 2
reciprocal of, 6
roots of, 24
system C, 3
subtraction of, 3-4
triangle inequality for, 12
vector interpretation, 10-11

Complex parametric curve, 62, 246
Complex plane, 10

distance in, 11
imaginary axis of, 10
real axis of, 10

Complex potential function, 167,
227

Complex power function, 80
analyticity, 197
definition of, 195
derivative of, 197

Complex powers, 194
principal value of, 196

Complex representation of a vector
field, 133

Complex sequence, 302
convergence of, 302-303
divergence of, 302

Complex series, 303
Complex squaring function, 81
Complex trigonometric functions,

200-201
Complex-valued function of a

complex variable, 50
Complex-valued function of a real

variable, 56, 248
Complex velocity, 289
Complex velocity potential, 167
Composition of functions, 71-72, 78

transformations, 404
Conformal mapping(s):

definition of, 391

and the Dirichlet problem, 429
and the Neumann problem,

434-435
streamlining, 437-438
table of, APP-9

Conjugate of a complex number, 4-5
Connected set, 31
Conservation of energy, 166
Conservative vector fields, 166
Constant map, 71
Continuity:

of a complex function, 120
at a point, 120
of polynomial functions, 123
of rational functions, 124
of a real function, 119, 122
on a set, 122

Continuous functions:
bounding property of, 124
imaginary part of, 122
properties of, 123
real part of, 122

Continuous parametric curve, 128
Contour:

closed, 237, 246
definition of, 246
deformation of, 259
indented, 359
initial point of, 237, 246
length of, 252
negative direction of, 246
opposite, 246
orientation of, 246
parametrization of, 246
piecewise smooth, 237, 246
positive direction on, 246
simple, 237, 246
simple closed, 237, 246
smooth, 237, 246
terminal point of, 237, 246

Contour integral:
behavior of, 357, 359
bounding theorem for, 252
definition of, 247-248
evaluation of, 249-250
fundamental theorem for, 266
properties of, 251-252

Contraction, 71
Contrapositive of a proposition, 154



Word Index IND-5

Cauchy-Riemann equations:
derivation of, 152-153
necessity of, 152
in polar form, 156
sufficiency of, 154-155

Cauchy’s inequality, 278
Cauchy’s integral formulas:

for derivatives, 275
for a function, 273

Center of mass of a wire, 245
Center of a power series, 307
Chain rule of differentiation, 143
Circle:

equation of, 29
parametrization of, 63

Circle of convergence, 307
Circle-preserving property, 402
Circulation of velocity field, 290-292
Closed:

curve (contour), 237, 248
disk, 31
region, 31

Complex conjugate, 4
Complex conjugation function, 101
Complex constant function, 117
Complex exponential function:

algebraic properties of, 54, 178
analyticity of, 177
definition of, 39, 53, 176
derivative of, 177
mapping properties of, 181
periodicity of, 54, 179

Complex function:
analytic, 145
bounded, 124
branches of, 125
conjugation, 101
constant, 117, 156
continuous, 120
definition of, 50
derivative of, 142, 146, 155
differentiable, 142
domain of, 50
entire, 145
exponential, 39, 53, 176
hyperbolic, 209
identity, 117
imaginary part of, 52
inverse hyperbolic, 219

inverse trigonometric, 215-216
limit of, 112
linear, 68, 71
logarithmic, 182
as a mapping, 58
polar coordinate form of, 54
polynomial, 80, 146
power, 194
principal square root, 86
real part of, 52
range of, 50
rational, 100, 146
reciprocal, 100
squaring, 81
square root, 86
trigonometric, 200-201
as a two-dimensional fluid flow,

133
velocity, 289

Complex impedance, 41
Complex integral:

definition of, 247
evaluation of, 249-250

Complex logarithm:
algebraic properties of, 184
analyticity of, 187-188
definition of, 182
derivative of, 188
branch cut for, 187
principal branch of, 187
principal value of, 184-185

Complex mapping, 58
Complex matrices, 44
Complex number(s):

absolute value of, 10
addition of, 3-4
argument of, 17
associative laws for, 3
commutative laws for, 3
complex powers of, 194
conjugate of, 4-5
definition of, 2
distance between, 11
distributive law for, 3
division of, 3, 5
equality of, 2-3
exponential form of, 39-40, 53
geometric interpretations of, 10
imaginary part of, 2
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7.2 Word Index
Word Index

Absolute convergence of a
series, 306

Absolute value, 10
Addition of complex numbers, 3-4
Additive identity, 4
Additive inverse, 6
Adjoint matrix, 405
Amplitude spectrum, 385
Analytic function(s):

definition of, 145
derivative of, 155
on a domain, 145
at a point, 145
product of two, 146
quotient of two, 146
singular point of, 146
sum of two, 146
zeros of, 279, 337-338, 363, 365

Analytic mapping, 223, 429
Analytic part of a Laurent series, 325
Angle between curves, 391-392
Angle magnification, 393
Angle of rotation, 70
Angles equal:

in magnitude, 390
in sense, 390

Annular region, 32
Annulus, circular, 31
Antiderivative:

definition of, 266
existence of, 269

Arc length, 252
integration with respect to, 239

Arcsine, 215
Argument:

of a complex number, 17
of a conjugate, 22
as a multiple-valued function, 95
principal value of, 17
principle, 363
of a product, 18
of a quotient, 18

Arithmetic operations on complex
numbers, 3-5

Associative laws, 3
Auxiliary equation, 39

Bilinear transformations, 400
Binomial series, 331
Binomial theorem, 8
Boundary conditions, 223, 420,

429-430
mixed, 435

Boundary point of a set, 31
Boundary of a set, 31
Boundary value problem, 429
Bounded:

function, 124
polygonal region, 410
sequence, 312
set, 32

Bounds:
for analytic functions, 278, 280,

283-284
for a continuous function, 124
for a contour integral, 252

Branch:
of a complex power, 197
cut, 126
of an inverse hyperbolic function,

219
of an inverse trigonometric

function, 217
of the logarithmic function,

187-188, 190
of a multiple-valued function,

125
point, 127, 188
principal, 126, 187
of root functions, 126

Bromwich contour integral, 378

Capacitor, 40
Cauchy, Augustin Louis, 2
Cauchy-Goursat theorem:

for multiply connected domains,
259-261

proof of, 257, APP-4
for simply connected domains, 258

Cauchy principal value of an
integral, 355

Cauchy product of two infinite series,
322
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zα, 194

sin z, 200

cos z, 200

tan z, 201

sinh z, 209

cosh z, 209

tanh z, 209

sin−1 z, 215

cos−1 z, 216

tan−1 z, 216

sinh−1 z, 219

cosh−1 z, 219

tanh−1 z, 219∫ b

a

f(x) dx, 237

∫
C

P (x, y) dx+Q(x, y) dy, 241

C and −C, 246∫
C

f(z) dz, 247

∮
C

f(z) dz, 248

div F or ∇ · F, 285

curl F or ∇× F, 285

Ω′(z), 289

Re
(∮

C

f(z) dz
)

, 292

Im
(∮

C

f(z) dz
)

, 292

{zn}, 302

∞∑
k=1

zk, 303

Sn, 303
∞∑

k=0

ak(z − z0)k, 307

∞∑
k=0

f (k)(z0)
k!

(z − z0)k, 315

∞∑
k=0

f (k)(0)
k!

zk, 316

∞∑
k=−∞

ak(z − z0)k, 326

Res(f(z), z0), 342

PV, 355∫ 2π

0

F (cos θ, sin θ) dθ, 352

∫ ∞

−∞
f(x) dx, 354

∫ ∞

−∞
f(x) cosαxdx, 357

∫ ∞

−∞
f(x) sinαxdx, 357

� {f(t)}, 374

�−1{F (s)}, 377

�(t− a), 381

F{f(x)} and F
−1{F (α)}, 381

T (z) =
az + b

cz + d
, 400

z − z1
z − z3

z2 − z3
z2 − z1

, 406

dφ

dn
, 434
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7.1 Symbol IndexSymbol Index

i, 2

z, 2

Re(z), 2

Im(z), 2

C, 3

R, 3

z, 5

−z, 6

z−1, 6

|z|, 10

|z2 − z1|, 11

r, 16

z = r(cos θ + i sin θ), 16

arg(z), 17

Arg(z), 17

wk, 24

z1/n, 25

zm/n, 26

|z − z0| = ρ, 29

|z − z0| ≤ ρ and |z − z0| < ρ, 29

ρ1 < |z − z0| < ρ2, 31

∞, 33

eiθ, 39

ez, 39

z = reiθ, 40

Dom(f), 50

Range(f), 50

w = f(z), 50

y = f(x), 51

u(x, y) and v(x, y), 52

u(r, θ) and v(r, θ), 54

S′ and C ′, 59

f(C), 59

z(t) = x(t) + iy(t), 62

f ◦ g, 71

p(z) = anz
n + · · ·+ a1z + a0, 80

z1/2, 86

f−1, 88

f(z) = p(z)/q(z), 100

ε and δ, 111

lim
z→z0

f(z) = L, 112

f1(z) and f2(z), 125

lim
z→∞

f(z) = L, 127

lim
z→z0

f(z) =∞, 128

F(x, y) = P (x, y)i +Q(x, y)j, 133

∆z, ∆x, ∆y, and ∆w, 142

f ′, 142

dw

dz

∣∣∣∣
z=z0

, 142

f (n)(z), 149

∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x
, 152

f ′(z) =
∂u

∂x
+ i

∂v

∂x
, 152

∂u

∂r
=

1
r

∂v

∂θ
and

∂v

∂r
= −1

r

∂u

∂θ
, 156

∇2φ, 159

grad f or ∇f , 165

Ω(z), 167

φ(x, y) = c1 and ψ(x, y) = c2, 167

logex, 182

ln z, 182

Ln z, 185
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principal square root, 86
range of, 50
rational, 100, 146
real, 51
real part of, 51-52
reciprocal, 100
regular, 145
single-valued, 94
singular point of, 146
squaring, 81
stream, 167
trigonometric, 200-201
value of, 50
vector, 284
zeros of, 337-338

Fundamental region for exponential
function, 179-180

Fundamental theorem:
of algebra, 279, 283
of calculus, 236
of contour integrals, 266

Gauss, Carl Friedrich, 2
Gauss’ mean value theorem, 283
Generalized circle, 109
Geometric series, 303-304
Goursat, Edouard, 258
Gradient:

field, 166
of a scalar function, 165-166

Green’s theorem, 257
Group, 79

Half plane, 29-30
Harmonic conjugate function, 160
Harmonic function, 159

under an analytic mapping, 223
Harmonic series, 308
Heat flow, 132, 167, 435
Hermitian matrix, 44
Holomorphic, 145
Hyperbolic functions:

defined, 209
derivatives of, 209-210
inverses of, 219
properties of, 210
relationship to trigonometric

functions, 210
zeros of, 211, 214

Ideal fluid, 167, 285
Identity mapping, 72
Image:

of a parametric curve, 63
of a point under a mapping, 58
of a set, 59

Imaginary axis, 10
Imaginary circle, 109
Imaginary part:

of a complex function, 52
of a complex number, 2

Imaginary unit, 2
Impedance, 40

complex, 41
Improper integrals:

convergent, 354
divergent, 354
principal value of, 355, 373

Incompressible fluid, 167, 285
Indefinite integral, 266
Indented contour, 359
Independence of path, 265
Indeterminate form(s), 33, 147
Inequalities:

Cauchy’s, 278
Jordan’s, 372
ML, 253
triangle, 12

Infinite limit, 127
Infinite series:

absolute convergence of, 306
Cauchy product of two, 322
convergent, 303
geometric, 303-304
partial sum of, 303
sum of, 303
tests of convergence, 306-307

Infinity point at, 32
Initial point:

of a curve, 237, 246
of a vector, 10

Input, 50
Insulated boundary, 434
Integrable, 237, 248
Integrals:

Cauchy principal value of, 355
complex, 247, 249-250
contour, 248
definite, 236-237
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evaluation by residues, 347,
352-353, 354-355, 357, 359

improper, 355, 359, 361-362
independent of the path, 265
line, 238-239
real, 236-240

Integral transform, 375
Integration along a branch cut, 361
Integration by parts, 270
Integration of power series, 314-315
Interior point of a set, 29
Invariance of Laplace’s equation

under a mapping, 162, 223
Invariant set under a mapping, 78

Inverse Fourier transform:
definition of, 381
evaluated by residue theory,

382-383
Inverse function, 88
Inverse hyperbolic functions, 219

derivatives of, 220
Inverse Laplace transform, 374

definition of, 377
evaluated by residue theory, 378

Inverse trigonometric functions,
215-216

derivatives of, 218
Inversion in the unit circle, 100
Irrotational flow, 167
Isolated singularity, 324
Isotherms, 167-168

Jordan’s inequality, 372
Joukowski airfoil, 442
Joukowski transformation, 442

Kernel of an integral transform, 375
Kinetic energy, 166

Lagrange’s identity, 23
Laplace transform:

analyticity of, 377
definition of, 374
existence of, 376
inverse of, 374, 377-378

Laplace’s equation, 159, 222
invariance of, 162, 223
in polar coordinates, 163

Laplacian, 159

Laurent series, 326-327
analytic part of, 325
principal part of, 325

Laurent’s theorem, 327
Level curves, 164
L’Hôpital’s rule, 147, 149

proofs of, 151, 324
Limit(s):

of a complex function, 112
imaginary part of, 116
infinite, 127
at infinity, 127
nonexistence of, 113
properties of, 117
of a real function, 111, 115
real part of, 116
of a sequence, 302-303

Linear approximation, 76
Linear fractional transformation:

circle preserving property of, 402
composition of, 404
cross ratio for, 406
definition of, 400
on extended complex plane, 401
inverse of, 404-405
as a matrix, 404

Linear function, 68, 71
as a composition of a rotation,

magnification, and translation,
72

as a magnification, 70
as a rotation, 69
as a translation, 68

Linear mappings, 68, 71-73
image of a point under, 72

Linear transformation, 384
Line equation of, 62
Line integrals in the plane, 238-241
Line(s):

of flow, 167, 287
of force, 167-168
of heat flux, 167-168
parametrization of, 62
segment, 63

Liouville’s theorem, 279
Location of zeros, 366-367
Logarithmic function:

algebraic properties of, 184
analyticity of, 187-188
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partial sums of, 303
power, 307
ratio test for, 306
remainder of, 317
root test for, 307
sum of, 303, 304
summation of, 367-368
Taylor, 315-316

Sets:
annular region, 32
boundary of, 31
boundary points of, 31
bounded, 32
closed, 31
connected, 31
convex, 35
domain, 31
doubly connected, 257
exterior points of, 31
interior points of, 29
multiply-connected, 257
open, 29
polygonal, 410
region, 31
simply connected, 256
unbounded, 32

Simple:
closed curve (contour), 237, 246
pole, 336
zero, 338

Simply connected domain, 256
Sine:

hyperbolic, 209
inverse of, 214-215
Maclaurin series for, 318
as a mapping, 206-207
trigonometric, 200
zeros of, 205

Singularity, 146, 324
essential, 336
isolated, 318, 324
nonisolated, 325
removable, 336
pole, 336

Sink, 291, 294, 440-441
Skew-Hermitian matrix, 44
Smooth curve, 237, 246
Solenoidal vector field, 285
Source, 291, 294, 440-441

Speed, 135
Squre root function, 86
Stagnation point, 295
Steady-state:

charge, 40
current, 40
temperature, 229

Stereographic projection, 33
Stream function, 167, 437
Streamlines, 135, 167-168, 287-288,

437-438
Streamlining, 437-438
Subtraction of complex numbers, 3-4
Sum of a series, 303

of a geometric series, 304
Summing infinite series by residues,

367-368

Table of conformal mappings, APP-9
Tangent function:

hyperbolic, 209
trigonometric, 201

Taylor series, 315
Taylor’s formula with remainder, 317
Taylor’s theorem, 316
Temperatures, steady, 229, 231
Terminal point:

of a curve, 237
of a vector, 10

Tests for convergence of series:
ratio, 306
root, 307

Test point, 403
Transformations:

conformal, 390-392
linear, 68, 71-73
linear fractional, 399-400
Schwarz-Christoffel, 412-413

Transform pairs, 375
Translation, 68
Triangle inequality, 12
Triangulated closed polygonal

contour, APP-7
Trigonometric functions:

analyticity of, 205-206
definitions of, 200-201
derivatives of, 206
identities for, 201-202
inverses of, 215-216
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of a real improper integral, 355,
373

Principle of deformation of contours,
259

p-series, 306
Product:

of two complex numbers, 3-4
of two series, 322-323

Properties of continuous functions,
123

Properties of limits, 117
Punctured disk, 31-32
Pure imaginary number, 2
Pure imaginary period, 54

Quadratic:
equation, 37
formula, 37
polynomial, 38

Quotient of complex numbers,
3, 5

Radius of convergence, 307
Range of a function, 50
Ratio test, 306
Rational function, 100

continuity of, 124
Rational power of a complex

number, 26-27
Reactance, 40
Real axis, 10
Real function, 50, 51
Real integrals:

definition of, 236-239
evaluation of, 236, 239, 240

Real limits, 111, 115
Real multivariable limits, 115
Real number system R, 3
Real part:

of a complex function, 52
of a complex number, 2

Real-valued function of a complex
variable, 55

Real-valued function of a real
variable, 50

Rearrangement of series, 309
Reciprocal of a complex number,

6
Reciprocal function, 100

on the extended complex plane,
104

Reflection about real axis, 67
Region, 31
Regular, 145
Removable singularity, 336
Residue:

definition of, 342
at an essential singularity, 349
at a pole of order n, 344
at a simple pole, 343, 345
theorem, 347

Riemann, Bernhard, 95
Riemann mapping theorem, 396
Riemann sphere, 33
Riemann surface:

for arg(z), 96-97
for ez, 191
for sin z, 212
for sin –1z, 221
for z2, 95-96

Rigid motion, 69
Root:

of complex numbers, 23-24
test for infinite series, 307
of unity, 27

Roots of polynomial equations, 37,
383

Rotation, 69
angle of, 70

Rouché’s theorem, 365

Schwarz-Christoffel formula, 413
Sequences:

bounded, 312
convergent, 302
divergent, 302
real and imaginary parts of, 303

Series:
absolute convergence of, 306
conditional convergence of, 306
convergence of, 303
divergence of, 304, 305, 306
geometric, 303
harmonic, 308
Laurent, 324-327
Maclaurin, 316
necessary condition for

convergence, 305
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Partial fractions, 351
Partial sum of an infinite series, 303
Pascal’s triangle, 8
Path independence, 265
Path of integration, 239, 246
Period:

of cosine, 202
of exponential function, 54, 179
of sine, 202

Periodic function, 179
Picard’s theorem, 342
Piecewise continuity, 376
Piecewise smooth curve, 237, 246
Plane:

complex, 10
extended, 103

Planar flow of a fluid, 135, 167
streamlines of, 135, 167

Points:
boundary, 31
branch, 127, 188
fixed, 78
image of, 72
at infinity, 32
initial, 10-11
interior, 29
preimage of, 59
singular, 146
stagnation, 295
terminal, 10-11

Poisson integral formula, 420-425
for unit disk, 425
for upper half-plane, 424

Polar axis, 16
Polar coordinates, 16
Polar form:

of Cauchy-Riemann equations, 156
of a complex number, 16
of Laplace’s equation, 163

Pole:
of order n, 336, 339
in the polar coordinate system, 16
residue at, 342-345
simple, 336

Polygonal region in the complex
plane, 410

Polynomial, factorization of, 38, 283
Polynomial function, 80

continuity of, 123

Position vector, 10
Positively orientation of a curve, 242,

246
Potential:

complex, 167
electrostatic, 166
energy, 166
function, 166
of a gradient field, 166
velocity, 167

Power rule, 143
for functions, 143

Power series:
absolute convergence of, 307, 309
arithmetic of, 309
Cauchy product of, 322
center of, 307
circle of convergence, 307
coefficients, 315
convergence of, 307
definition of, 307
differentiation of, 314
divergence of, 307
integration of, 314-315
Maclaurin, 316, 318
radius of convergence, 307,

308
rearrangement of, 309
Taylor, 313, 315-316

Powers of a complex number:
complex, 194-196
integer, 19, 20
rational, 26, 27

Pre-image, 59
Principal argument of a complex

number, 17
Principal branch:

of the logarithm, 187-188
of zα, 197
of z1/2, 126

Principal nth root function, 93
Principal part of a Laurent series,

325
Principal square root function, 86
Principal value:

of an argument, 17
Cauchy, 355
of complex powers, 196
of logarithm, 185
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definition of, 185
derivative of, 188
mapping by, 189
mapping properties of, 189
principal branch of, 187
principal value of, 184-185

LRC -series circuit, 40

Maclaurin series, 316
for ez, sin z, and cos z, 318

Magnification, 70
factor, 71

Mapping(s):
analytic, 223, 429
that commute, 78
complex, 58
conformal, 390-392
by conjugation function, 101
constant, 71
by exponential function, 180
identity, 72
image of a set under, 59
linear, 68, 71
lines to circles, 105, 403
by logarithmic function, 189
multiple to one, 95
of a parametric curve, 63
reciprocal, 102
by squaring function, 61, 81-85
by trigonometric functions, 206

Mathematica, use of, 65, 134, 137,
416, 426, 440, 431-432

Maximum modulus theorem, 280,
283

Mean value theorem:
for real definite integrals, 271
Gauss’, 283

Meromorphic function, 340
Minimum modulus theorem, 284
Mixed boundary conditions, 435
ML-inequality, 253
Möbius transformations, 400
Modulus of a complex number:

definition of, 10
properties of, 11

Morera, G., 279
Morera’s theorem, 279-280, 283
Multiple-to-one mapping, 95
Multiple-valued functions, 94

notation for, 95
Multiplication of complex numbers,

3-4
in polar coordinates, 18

Multiplication of power series,
322-323

Multiplicative identity, 4
Multiplicative inverse, 6
Multiplicity of a zero, 338
Multiply connected domains, 257

Negative orientation of a curve, 242,
246

Neighborhood of a point, 29
deleted, 29

Net flux, 290-292
Neumann problem, 434
Nonexistance of a limit, 113
Nonisolated singularity, 325
Norm of a partition, 237, 247
Normal derivative, 434-435
Normalized vector field, 134
North pole, 33
nth roots:

of a complex number, 23-24
of unity, 27

nth term test, 305

One-to-one function, 88
Open set, 29
Opposite curve, 246
Order of a pole, 336, 339
Order of a zero of a function, 337,

338
Ordered system, 9
Orientation of a curve, 242, 246
Orthogonal families of curves, 164
Output, 50

Parametric curve, 61-62, 237, 246
continuous, 128
image of, 63-64

Parametric equations, 61, 237, 246
Parametrization:

of a circle, 63
of a curve, 61-62, 246
of a line, 62
of a line segment, 63
of a ray, 63
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mapping by, 206-207
modulus of, 204
periods of, 202-203
zeros of, 205

Trigonometric identities, 201-202
Triply connected domain, 257
Two dimensional vector field, 133,

166

Unbounded polygonal region, 410
Unbounded set, 32
Uniform flow, 138, 290
Uniqueness:

of Laurent series, 334
of power series, 319
of unity in complex number

system, 9
of zero in complex number

system, 9
Unitary matrix, 44
Unit circle:

flow around, 138
inversion in, 100

Unit step function, 381
Unity, roots of, 27

Value, absolute, 10
Value of a complex function, 50
Vector, 10
Vector field:

conservative, 166
complex representation of, 133

definition of, 133
gradient, 166
irrotational, 167, 284-285
normalized, 134
solenoidal, 285
two-dimensional, 133, 284
velocity, 135

Velocity:
complex, 289
field, 135
of a fluid, 135, 284
potential, 167

Vortex, 296

w -plane, 58-59

x -axis, 10

y-axis, 10

Zero(s):
of an analytic function, 337-338
of the complex number system,

4
of hyperbolic functions, 211, 214
isolated, 339
location of, 366
number of, 279, 365
of order n, 337
of polynomial functions, 279
simple, 338
of trigonometric functions, 205

z-plane, 10


