
FDK 7.2 Platform
Guide, Windows

ii FDK 7.2 Platform Guide, Windows

© 2005 Adobe Systems Incorporated. All rights reserved.

Adobe FrameMaker 7.2 FDK Platform Guide for Windows

This manual, as well as the software described in it, is furnished under license and may be used or copied only in accordance with the terms of such
license. The content of this manual is furnished for informational use only, is subject to change without notice, and should not be construed as a
commitment by Adobe Systems Incorporated. Adobe Systems Incorporated assumes no responsibility or liability for any errors or inaccuracies that
may appear in this book.

Except as permitted by such license, no part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by
any means, electronic, mechanical, recording, or otherwise, without the prior written permission of Adobe Systems Incorporated.

Please remember that existing artwork or images that you may want to include in your project may be protected under copyright law. The
unauthorized incorporation of such material into your new work could be a violation of the rights of the copyright owner. Please be sure to obtain
any permission required from the copyright owner.

Any references to company names in sample templates are for demonstration purposes only and are not intended to refer to any actual organization.

Adobe, the Adobe logo, Acrobat, Acrobat Reader, Adobe Type Manager, ATM, Display PostScript, Distiller, Exchange, Frame, FrameMaker,
InstantView, and PostScript are trademarks of Adobe Systems Incorporated.

Apple, PowerBook, QuickTime, Macintosh and Power Macintosh are trademarks of Apple Computer, Inc., registered in the United States and other
countries. Focoltone is a registered trademark of Gordon Phillips Limited. ImageStream Graphics Filters and ImageStream are registered trademarks
of Inso Corporation. Microsoft, MS-DOS, Windows, and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in
the United States and/or other countries. Quadralay and WebWorks are registered trademarks of Quadralay Corporation. PANTONE®, PANTONE
MATCHING SYSTEM®, PANTONE Process Color System®, and POCE™ are trademarks of Pantone, Inc. Proximity and Linguibase are
registered trademarks of Proximity Technology Inc. A Merriam-Webster is a registered trademark of Merriam-Webster Inc. Sun is a trademark or
registered trademark of Sun Microsystems, Inc. in the United States and other countries. TRUMATCH is a registered trademark of Trumatch Inc.
Unix is a registered trademark and X Window System is a trademark of The Open Group. Verity and TOPIC are registered trademarks of Verity,
Inc. All other trademarks are property of their respective owners.

The following are copyrights of their respective companies or organizations: Portions reproduced with the permission of Apple Computer, Inc.
© 1996 Apple Computer, Inc. Milo © 1988 Ron Avitzur PANTONE® Computer Video simulations displayed may not match PANTONE-identified
solid color standards. Use current PANTONE Color Reference Manuals for accurate color. “PANTONE Open Color Environment™ (POCE™)”
© Pantone, Inc., 1994, 1996. Pantone, Inc. is the copyright owner of “PANTONE Open Color Environment™ (POCE™)” and Software which are
licensed to Adobe to distribute for use only in combination with the Adobe Software. “PANTONE Open Color Environment™ (POCE™)” and
Software shall not be copied onto another diskette or into memory unless as part of the execution of the Adobe Software. The Spelling and Thesaurus
portions of this product are based on Proximity Linguistic Technology. The Proximity/Merriam-Webster Linguibase © 1983, 1990 Merriam-
Webster, Inc. C.A. Stromberg AB; Espasa-Calpe; Hachette; IDE/AS; Kruger; Lluis de Yzaguirre i Maura; Merriam-Webster Inc.; Munksgaard Int.
Publishers Ltd.; Nathan; Text & Satz Datentechnik; Van Dale Lexicographie bv; William Collins Sons & Co. Ltd.; Zanichelli. All rights reserved.
Color Database © Dainippon Ink & Chemicals, Inc., licensed to Adobe. Outside In® Viewer Technology, 1992-1996 Inso Corporation; Image
Stream® Graphics and Presentation Filters, 1992-1996 Inso Corporation. All rights reserved. TRUMATCH 4-Color Selector © 1992 Trumatch, Inc.
All rights reserved. Portions copyrighted for the FrameViewer Retrieval Tools © 1988-1995 Verity, Inc. All rights reserved.

APPLE COMPUTER, INC. (“APPLE”) MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, REGARDING THE APPLE
SOFTWARE. APPLE DOES NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTA-TIONS REGARDING THE USE OR THE
RESULTS OF THE USE OF THE APPLE SOFTWARE IN TERMS OF ITS CORRECTNESS, ACCURACY, RELIABILITY, CURRENTNESS,
OR OTHERWISE. THE ENTIRE RISK AS TO THE RESULTS AND PERFORMANCE OF THE APPLE SOFTWARE IS ASSUMED BY YOU.
THE EXCLUSION OF IMPLIED WARRANTIES IS NOT PERMITTED BY SOME STATES. THE ABOVE EXCLUSION MAY NOT APPLY
TO YOU.

IN NO EVENT WILL APPLE, ITS DIRECTORS, OFFICERS, EMPLOYEES, OR AGENTS BE LIABLE TO YOU FOR ANY
CONSEQUENTIAL, INCIDENTAL, OR INDIRECT DAMAGES (INCLUDING DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS
INTERRUPTION, LOSS OF BUSINESS INFORMATION, AND THE LIKE) ARISING OUT OF THE USE OR INABILITY TO USE THE
APPLE SOFTWARE EVEN IF APPLE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. BECAUSE SOME STATES DO
NOT ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES, THE ABOVE
LIMITATIONS MAY NOT APPLY TO YOU.

Adobe Systems Incorporated, 345 Park Avenue, San Jose, California 95110, USA

Notice to U.S. government end users. The software and documentation are “commercial items,” as that term is defined at 48 C.F.R. §2.101,
consisting of “commercial computer software” and “commercial computer software documentation,” as such terms are used in 48 C.F.R. §12.212
or 48 C.F.R. §227.7202, as applicable. Consistent with 48 C.F.R. §12.212 or 48 C.F.R. §§227.7202-1 through 227.7202-4, as applicable, the
commercial computer software and commercial computer software documentation are being licensed to U.S. government end users (A) only as
commercial items and (B) with only those rights as are granted to all other end users pursuant to the terms and conditions set forth in the Adobe
standard commercial agreement for this software. Unpublished rights reserved under the copyright laws of the United States.

FDK 7.2 Platform Guide, Windows iii

Contents

Using This Manual . v

FDK documentation . v

Conventions . vi

Chapter 1 Introduction to the Windows Version of the FDK 1

What you need . 1

How the FDK works on Windows . 1

Creating and running an FDK client on Windows . 2

Working with Microsoft Visual C++ 6.0. . 3

Chapter 2 Installing the FDK on Windows 5

Installing the FDK . 5

The FDK installation . 5

Chapter 3 Writing FDK Clients for Windows 11

How to write an FDK client for Windows . 11

Writing filter clients . 13

Using Windows pathnames . 18

Using menus and commands . 20

Using FDK functions that write to the FrameMaker console 21

Using platform-dependent session properties . 21

Unsupported FDK functions . 22

Chapter 4 Compiling, Registering, and Running FDK Clients 23

Compiling FDK clients . 23

Registering FDK clients . 28

Running FDK clients . 37

Debugging FDK clients. 38

Chapter 5 Writing an Asynchronous FDK Client 41

iv FDK 7.2 Platform Guide, Windows

End user installations . 41

Registering asychronous clients . 42

Types of asynchronous clients . 43

Registering multiple FrameMaker processes as servers. 44

Running asynchronous clients on remote hosts . 45

Connecting with a FrameMaker process . 47

How to write an asynchronous FDK client . 49

Writing a Main routine in Windows. . 50

Compiling and running a sample client . 51

Summary of supporting functionality . 54

Index . 57

FDK 7.2 Platform Guide, Windows v

Using This Manual

The Frame® Developer’s Kit (FDK) provides developer tools for FrameMaker®. The FDK
includes:

● Application Program Interface (API)

● Frame Development Environment (FDE)

● Structure Import/Export Application Program Interface (Structure Import/Export API)

For a detailed description of FDK tools, see the FDK Programmer’s Guide and the FDK
Programmer’s Reference.

This manual describes how to install and use the FDK on Windows®. It describes features and
functions that are specific to the Windows implementation of the FDK, and how to compile,
link, and register FDK clients.

FDK documentation

FDK documentation assumes that you have a thorough knowledge of FrameMaker for which
you are developing clients. For background information on FrameMaker, see your user
documentation. In addition, this manual assumes you have Windows application development
experience.

FDK documentation includes the following manuals.

FDK Programmer’s Guide

The FDK Programmer’s Guide describes how to use the FDK to create clients for
FrameMaker on all platforms. All FDK users should read the FDK Programmer’s Guide.

FDK Programmer’s Reference

The FDK Programmer’s Reference provides detailed descriptions of all FDK functions and
data structures. Use the FDK Programmer’s Reference as your complete source of reference
information for creating FDK clients.

FDK Platform Guide

The FDK Platform Guide, which you are reading now, is printed in several different versions.
The following versions are currently available:

● Windows

vi FDK 7.2 Platform Guide, Windows

● UNIX®

Read the version for each platform on which you intend to run your FDK clients.

FDK Sample Clients

FDK Sample Clients is a list of the sample clients that ship with the FDK, including brief
descriptions of each client.

Structure Import/Export API Programmer’s Guide

The Structure Import/export API Programmer’s Guide provides instructions and reference
information for using the Structure Import/Export API.

FDK Release Notes

The online manual FDK Release Notes contains last-minute information and tips on the FDK.
In addition, it contains information on new features in FDK and changes from the previous
release.

Conventions

FDK manuals distinguish between you, the programmer, and the user, the person for whom
you write clients.

This manual uses different fonts to represent different types of information.

● What you type is shown in

text like this.

● Filter names, program names, pathnames, and filenames are also shown in

text like this.

● Placeholders (such as those representing names of files and directories) are shown in

text like this.

This manual identifies commands on submenus by referring to both the submenu and the
command name. For example, this manual refers to the Document Reports command on the
Utilities submenu as Utilities>Document Reports.

This manual uses the term FDK client to refer to a program that you create with the FDK.
Some other FrameMaker manuals refer to FDK clients as API clients or plugins.

This manual also uses the term FrameMaker, (as in FrameMaker product, FrameMaker file or
FrameMaker session) to refer equally to FrameMaker running in structured or unstructured
mode.

FDK 7.2 Platform Guide, Windows 1

1 Introduction to the Windows
Version of the FDK

This chapter provides an overview of how the FDK works on Windows and how to create and
run an FDK client on Windows.

What you need

To compile and run FDK clients on Windows, you must have the following minimum system
configuration:

● FDK for Windows

● Windows® 98, Windows NT® 4.0, Windows ME, Windows 2000, or Windows XP

● FrameMaker 7.2

● Microsoft® Development Environment 2003 (Version 7.1)

IMPORTANT: This manual assumes you are familiar with Microsoft Development
Environment 2003 (Version 7.1).

How the FDK works on Windows

FDK clients on Windows are not implemented as true Windows clients. They are dynamic link
libraries (DLLs) that provide entry points or callback functions, which FrameMaker can
invoke.

There are several types of FDK clients:

● A standard FDK client is an FDK client that initializes when FrameMaker starts and then
waits to respond to specific user actions, such as menu choices.

● A take-control client is an FDK client that responds to a special initialization and takes
complete control of a FrameMaker session. Many of the effects you can get with this type
of client can also be realized by an asynchronous client.

● A filter is an FDK client that converts FrameMaker files to or from other file formats.
FrameMaker calls a filter when the user attempts to open, import, or save a file with a
particular format.

● A document report is an FDK client that provides information about a document. The user
can start a document report by choosing Utilities>Document Reports from the File menu
and selecting the report from the Document Reports dialog box.

Introduction to the Windows Version of the FDK1

2 FDK 7.2 Platform Guide, Windows

When FrameMaker starts, it reads the maker.ini file in the FrameMaker installation
directory, and if applicable, the maker.ini file stored in the user’s Documents and
Settings directory. The [APIClients] section of the maker.ini file contains entries
describing the FDK clients to be loaded.

FrameMaker then scans the fminit/Plugins directory and subdirectories and loads the
FDK clients that have a .dll file extension and valid VERSIONINFO resource information.
FrameMaker ignores all other files in the fminit/Plugins directory that do not have a
.dll file extension and valid VERSIONINFO resource information. For more information on
registering clients, see “Registering FDK clients” on page 29.

For information on how FrameMaker starts a client, see Chapter 2, “API Client Initialization,”
in the FDK Programmer’s Guide.

Creating and running an FDK client on Windows

To create and run an FDK client on Windows, follow these general steps:

1. Install the FDK.

For detailed instructions on installing the FDK and on the files shipped with the FDK, see
Chapter 2, “Installing the FDK on Windows.”

2. Write your client code and create any custom dialog boxes.

Follow the instructions in the FDK Programmer’s Guide to write your client code and to
create your custom dialog boxes.

To use some FDK features on Windows, you may need to modify your code. For example,
to use FDK functions that return or accept platform-specific pathnames as arguments, you
must use the FDK Windows pathname conventions. To specify common Windows
keyboard shortcuts such as Control-h, you must use special characters when you call
F_ApiDefineAndAddCommand().

For more information on writing FDK code for Windows, see Chapter 3, “Writing FDK
Clients for Windows.”

3. Configure your Development Environment 2003 for the FDK.

To build FDK clients you must add the FDK include and lib directories to the paths
that Development Environment 2003 searches for headers and library files.

For a more complete set of steps to configure your Development Environment 2003 for the
FDK, see “Compiling and registering your own FDK clients” on page 24.

4. Create a workspace for your client.

Use Development Environment 2003 to create a project for a dynamic-link library (DLL).
Make sure the linker links these FDK libraries: fdk.lib, api.lib, and
fmdbms32.lib.

FDK 7.2 Platform Guide, Windows 3

Introduction to the Windows Version of the FDK 1

IMPORTANT: Make sure the Use of MFC option in the General page of the Property
Pages dialog box is set to Use Standard Windows Libraries.If it is set to
another value, your client will not link correctly. Also make sure the Struct
Member Alignment is set to 8 Bytes, and you use the single-threaded run-
time libaray. Otherwise, your client may cause unexpected runtime errors.

5. Compile and link your client.

Choose Build from the Build menu. Development Environment 2003 compiles and links
your client.

6. Register your client.

To register your client, you can use either of the following methods:
– Create and include in your client’s project a VERSIONINFO resource that contains

information about the client, and copy or move the compiled client into the
fminit/Plugins directory.

– Add an entry for your client in the [APIClients] section of the maker.ini file.

For information on registering clients, see “Registering FDK clients” on page 29.

7. Start FrameMaker.

After you register your client, the next time you start FrameMaker, it automatically loads
your client into memory.

Working with Microsoft Visual C++ 6.0

Since the new FDK 7.2 uses Microsoft Development Environment 2003 (Version 7.1), it is
recommended that FDK clients should be compiled in same environment too. If users wants to
use Microsoft Visual C++ 6.0, then following lines can be added to source code of the FDK
clients to make it compile and work in that case:

long _ftol(double);

long _ftol2(double dblSource) { return _ftol(dblSource); }

Introduction to the Windows Version of the FDK1

4 FDK 7.2 Platform Guide, Windows

FDK 7.2 Platform Guide, Windows 5

2 Installing the FDK on Windows

This chapter describes how to install the FDK on Windows. It also lists the files shipped with
the Windows version of the FDK.

Installing the FDK

The FDK is delivered via the Adobe Systems web site. Navigate to the Adobe Solutions
Network page at http://partners.adobe.com then navigate to the FDK 7.2 Download page. After
downloading the compressed file, double-click the installer and follow the instructions.

The FDK installation

The FDK installation contains the FDK folder, which contains FDK header files, libraries, and
sample code.

The FDK folder contains the following folders:

The following sections describe these folders and their contents.

include

The include folder contains FDK header files. The files are listed in the following table.

Folder What it contains

include Public header files that you include in FDK clients

lib FDK libraries that you link with your client

doc FDK Release Notes, a list of sample clients, and online documentation for the
FDK in Adobe® Acrobat® PDF

samples Source code and project files for sample FDK clients and a dialog resource
template

File Purpose

f_local.h Provides a location for declarations for your platform-specific functions.

f_stdio.h Provides declarations for platform-independent C library functions.

http://partners.adobe.com

Installing the FDK on Windows2

6 FDK 7.2 Platform Guide, Windows

f_types.h Defines Frame Development Environment (FDE) fundamental data types. It is
included in fapi.h and fdetypes.h.

fapi.h Provides definitions and function declarations for the FDK. You must include it
in all FDK clients.

fapidefs.h Defines constants you can use to specify objects, properties, and some function
arguments. It is included by fapi.h.

fassert.h Provides declarations for FDE assert functions.

fchannel.h Provides declarations for FDE channel functions.

fcharmap.h Provides declarations for FDE character functions.

fcodes.h Provides declarations for function codes (f-codes).

fdetypes.h Provides declarations for FDE data types. You must include it in all FDK clients
that use the FDE.

fdk_env.h Provides top-level header file for individual platforms.

fencode.h Provides declarations for API and FDE font encoding functions.

fhash.h Provides declarations for FDE hash functions.

fioutils.h Provides declarations for FDE I/O utility functions.

fltstub.h Provides declarations for filter functions.

fm_base.h Defines types and data structures for the Structure Import/Export API. It is
included by fm_struct.h.

fm_comma.h Only present for backward compatibility. Use fcodes.h.

fm_psr.h Defines types and data structures for the Structure Import/Export API. It is
included by fm_struct.h.

fm_rdr.h Defines types and data structures for the Structure Import/Export API. It is
included by fm_struct.h.

fm_sgml.h Retained for backward compatibility—use fm_struct.h instead.

fm_struct.h Provides declarations for Structure Import/Export API functions. You must
include it in all Structure Import/Export API clients.

fm_wtr.h Defines types and data structures for the Structure Import/Export API. It is
included by fm_struct.h.

fmemory.h Provides declarations for FDE memory functions.

fmetrics.h Provides declarations for FDE metric functions.

fmifdata.h Provides declarations for FDE Maker Interchange Format (MIF) functions.

fmifmacr.h Provides macros for writing MIF statements.

File Purpose

FDK 7.2 Platform Guide, Windows 7

Installing the FDK on Windows 2

lib

The lib folder contains the library files listed in the following table.

doc

The doc folder contains the FDK documentation for all platforms in Adobe Acrobat PDF.

fmifname.h Provides definitions for MIF statements.

fmifstmt.h Provides declarations for FDE MIF statement functions.

fmifstrt.h Provides MIF data structures.

fmiftype.h Provides basic data structures used by MIF data structures.

fpath.h Provides definitions used by filepath functions.

fprogs.h Provides declarations for FDE progress functions.

fstdio.h Provides declarations for FDE I/O functions.

fstrings.h Provides declarations for FDE string functions.

fstrlist.h Provides declarations for FDE string list functions.

fstrres.h Provides internally used string resource functions. Do not include with your
FDK clients.

futils.h Provides declarations for FDE utility functions.

File What it contains

api.lib The API library. To use any API functions, you must link this library with your
client.

fdk.lib The FDE library. To use any FDE functions, you must link this library with
your client.

fmdbms32.lib FDK heap management library. Link all FDK clients with this library.

fmstruct.res Provides SGML/XML resources. You must link all Structure Import/Export
API clients with it.

struct.lib Provides Structure Import/Export API functions. You must link all Structure
Import/Export API clients with it.

PDF file Description

fdkguide.pdf The FDK Programmer’s Guide

File Purpose

Installing the FDK on Windows2

8 FDK 7.2 Platform Guide, Windows

samples

The samples folder contains the code for sample clients and a sample dialog resource file.
The samples\winsamp folder contains the code for a sample client that is specific to the
Windows platform.

For a list of the samples that are included with the FDK, and a brief description of each one,
see the online document samplelist.pdf. This file is included with the FDK in the doc
folder.

The other folders in the samples folder (with the exception of dre) include one or more
source (.c) files , appropriate header (.h) files and appropriate workspace, solution, and
project file. All the sample code in those folders is platform independent. With an appropriate
makefile, you can compile it on any of the platforms the FDK supports. For information
about a client, see the comments at the beginning of the client’s source (.c) file.

IMPORTANT: Permission to use, reproduce, modify, and distribute the Sample Clients is for
the sole purpose of integrating your software applications with Adobe Systems
Incorporated (“Adobe”) software (“Sample Clients” are defined as those files
located in the fdk\samples folder). Such permission is hereby granted
without fee, provided that
(i) you distribute the Sample Clients only as part of your software application;
(ii) the following copyright notice appears in and on all copies of your
software application:

ADOBE CONFIDENTIAL

Copyright 1999 - 2005 Adobe Systems Incorporated All
Rights Reserved.

NOTICE: All information contained herein is, and remains
the property of Adobe Systems Incorporated and its
suppliers, if any. The intellectual and technical
concepts contained herein are proprietary to Adobe

fdkref.pdf The FDK Programmer’s Reference

relnotes.pdf The release notes for the FDK and information on new features and changes to
the FDK since the last release

samplelist.pdf A list of the code samples shipped with the FDK, including brief descriptions
of each one.

structapi.pdf The Structure Import/Export API Programmer’s Guide

unxguide.pdf The FDK Platform Guide for UNIX

winguide.pdf The FDK Platform Guide for Windows

PDF file Description

FDK 7.2 Platform Guide, Windows 9

Installing the FDK on Windows 2

Systems Incorporated and its suppliers and may be covered
by U.S. and Foreign Patents, patents in process, and are
protected by trade secret or copyright law. Dissemination
of this information or reproduction of this material is
strictly forbidden unless prior written permission is
obtained from Adobe Systems Incorporated.

Installing the FDK on Windows2

10 FDK 7.2 Platform Guide, Windows

FDK 7.2 Platform Guide, Windows 11

3 Writing FDK Clients for Windows

This chapter describes how to write FDK clients so they will run on Windows. It also
discusses important differences between the Windows implementation and other
implementations of the FDK.

IMPORTANT: You cannot compile clients on Windows versions earlier than Windows 95 or
Windows NT 4.0.

How to write an FDK client for Windows

When you write an FDK client, you should do the following for it to compile and run correctly
on Windows:

● Include the correct FDK header files in the correct order

● Replace platform-specific functions and data types with FDE equivalents

● Include calls to initialize the FDE if your client calls FDE functions

The following sections discuss these tasks in greater detail.

Including FDK header files

The following table lists the header files you must include in your client in the order in which
you must include them.

IMPORTANT: You must include the fapi.h header file before any other FDK header files.

For example, if your client uses API functions and FDE metric utility functions, it must
include header files as follows:

If you are using Include

Any FDK function or constant fapi.h.

Any FDE type fdetypes.h

A specific FDE function Header file for the function’s group (for example, fhash.h
for a hash function). For more information, see the function’s
description in the FDK Programmer’s Reference.

Any Structure Import/Export API
functions

fm_struct.h.

Constants for Frame f-codes fcodes.h.

Writing FDK Clients for Windows3

12 FDK 7.2 Platform Guide, Windows

#include "fapi.h"
#include "fdetypes.h"
#include "fmetrics.h"

If you need to include any C library header files or your own platform-specific header files,
include them before the FDK header files.

Replacing platform-specific functions and data types

To help you make your clients portable, the FDK provides platform-independent substitutes
for C data types and string and memory functions. For example, it provides a data type named
IntT, which you can use instead of int, and a function named F_Alloc(), which you can
use instead of malloc().

To ensure that your client does not use platform-specific data types or functions, the FDK
redefines them when you include the file fdetypes.h. If your client uses a platform-specific
data type or function, Development Environment 2003 (Version 7.1) issues an error message
when you attempt to compile it. For example, if your client declares the following variable:

char ch;

Development Environment 2003 (Version 7.1) issues one or more compilation error messages
similar to the following:

error C2065: 'error' : undeclared identifier
error C2143: syntax error : missing ';' before '!'
error C2065: 'Non_FDE_token' : undeclared identifier
error C2143: syntax error : missing ';' before 'string'
error C2143: syntax error : missing ';' before '!'
error C2065: 'ch' : undeclared identifier

To avoid these error messages, you can do one of the following:

● Use the FDK substitute for the platform-dependent data type or function.

For example, use CharT instead of char. This is the recommended solution for portable
FDK clients.

● Add the following code above the #include "fdetypes.h" statement:

#define DONT_REDEFINE

This prevents the FDK from redefining any data types or functions.

● Use #undef to undefine the specific types or functions that you want to use.

For example, add the following line after the #include "fdetypes.h" statement:
#undef char

The result of this prevents Development Environment 2003 (Version 7.1) from generating
an error message for the char type, but allows it to generate errors if your client uses any
other platform-specific types.

FDK 7.2 Platform Guide, Windows 13

Writing FDK Clients for Windows 3

Adding calls to initialize the FDE

If your client calls FDE functions, it must call F_FdeInit() once before it calls the
functions. The syntax for F_FdeInit() is:

ErrorT F_FdeInit(VoidT);

To call F_FdeInit(), your client must include the fdetypes.h header file.

Writing filter clients

You can use filter clients to translate documents from one format to another. FrameMaker
invokes an import filter client when it recognizes a file of a particular format or when the file
has a registered suffix. It invokes an export filter when you choose a particular format from the
Format pop-up menu of the Save As dialog box or save a file using a registered suffix. For
example, if you register a suffix for a text import filter and then open a file with that suffix, the
Unknown File Type dialog box appears with the appropriate filter preselected.

You must register your filter client before use. For information on registering clients, see
Chapter 4, “Compiling, Registering, and Running FDK Clients.”

You can also use your filter to import text or graphic files into a document. If you import a file
by reference, FrameMaker stores in the document the registered format and vendor ID of the
filter used in the import operation. If you import the file by copy, FrameMaker stores the facet
name in the document. The information in both these cases ensures that FrameMaker invokes
the correct filter for updating the next time you open the document.

IMPORTANT: If you are writing a filter client, FrameMaker will not fully recognize it unless
you include function calls that actually cause the API library to link with your
client. To make sure the client links properly, you can include the following as
minimal code in your F_ApiNotification() function:

. . .
F_ObjHandleT docId;
docId = F_ApiGetId(0, FV_SessionId, FP_ActiveDoc);
. . .

Identifying your filter

To identify your filter to FrameMaker, you need to supply information in the line that registers
the filter. This information identifies the filter on all platforms and identifies the original
import filter when reimporting the file. FrameMaker uses several pieces of information that
you specify for this purpose:

● The vendor ID is a four-character string describing the provider of the filter.

● The format ID is a four-character string describing the file format of files on which the
filter operates.

● The facet name is an arbitrary-length string describing the filter.

Writing FDK Clients for Windows3

14 FDK 7.2 Platform Guide, Windows

For example, assume you create a filter for Windows machines that translates Himyaritic
documents to English. You give it the format ID "HIMF" and the vendor ID "FAPI". If you
create a document under Windows and create a text inset using that filter, FrameMaker stores
this information with the inset. The next time you open that document, FrameMaker knows to
update the inset with your Himyaritic filter.

In addition, if you open the document on another platform, such as UNIX, that version of
FrameMaker looks for a filter with the same vendor and format ID to create the text inset. If
you have written a Himyaritic filter on the UNIX platform and registered it with the same
information, FrameMaker can open your file successfully. If you register different information
for the Himyaritic filter on UNIX, FrameMaker cannot find it. In this case, FrameMaker tries
to automatically identify the file format and invoke the appropriate filter.

FrameMaker reserves the following vendor IDs:

● "FRAM"

● "FFLT"

● "IMAG"

● "XTND"

● "AW4W"

● "ADBE"

● "ADBI"

Your client cannot use these vendor IDs. FrameMaker recognizes FAPI as a valid ID for any
FDK filter client. However, you do not have to use this ID. You can use any other four-
character string as your vendor ID.

FrameMaker reserves the following format IDs for the indicated file formats. FrameMaker
does not supply filters for all of these formats on all platforms. However, to aid in portability
of your clients, you should not use one of these format IDs unless it is for the specified file
format:

Format ID Description

"CDR " CorelDRAW

"CGM " Computer Graphics Metafile

"CVBN" Corel Ventura compound document (Windows)

"DCA " DCA to MIF (UNIX)

"DIB " Device-independent bitmap (Windows)

"DRW " Micrografx CAD

"DXF " Autodesk Drawing eXchange file (CAD files)

"EMF " Enhanced Metafile (Windows)

"EPS " Encapsulated PostScript®

FDK 7.2 Platform Guide, Windows 15

Writing FDK Clients for Windows 3

"EPSB" Encapsulated PostScript Binary (Windows)

"EPSD" Encapsulated PostScript with Desktop Control Separations (DCS)

"EPSF" Encapsulated PostScript

"EPSI" Encapsulated PostScript Interchange

"FRMI" FrameImage

"FRMV" FrameVector

"G4IM" CCITT Group 4 to Image

"GEM " GEM file

"GIF " Graphics Interchange Format (CompuServe)

"HPGL" Hewlett-Packard Graphics Language

"IAF " Interleaf compound document

"IGES" Initial Graphics Exchange Specification (CAD files)

"JPEG" Joint Photographic Experts Group

"MIAF" MIF to IAF export

"MIF " Maker Interchange Format

"MML " Maker Markup Language

"MooV" QuickTime Movie

"MRTF" MIF to RTF export

"MWPB" MIF to WordPerfect export

"OLE " Object Linking and Embedding Client (Microsoft)

"OLE2" Object Linking and Embedding Client (Microsoft)

"PCX " PC Paintbrush

"PICT" QuickDraw PICT

"PNG " Portable Network Graphics

"PNTG" MacPaint

"RTF " Microsoft’s RTF compound document

"SNRF" Sun™ Raster File

"SRGB" SGI RGB

"TANS" Text ANSI (Windows)

Format ID Description

Writing FDK Clients for Windows3

16 FDK 7.2 Platform Guide, Windows

"TASC" Text ASCII

"TBG5" Traditional Chinese (BIG-5)

"TEUH" Traditional Chinese (EUC-CNS)

"TEUJ" Japanese (EUC)

"TEXT" Plain text

"TIFF" Tag Image File Format

"TJIS" Japanese (JIS)

"TKOR" Korean

"TMAC" Text (Macintosh)

"TRFA" troff -man to MIF (UNIX only)

"TRFE" troff -me to MIF (UNIX only)

"TRFF" troff to MIF (UNIX only)

"TRFS" troff -ms to MIF (UNIX only)

"TSJS" Japanese (Shift-JIS)

"TXGB" Simplified Chinese (GB)

"TXHZ" Simplified Chinese (HZ)

"TXIS" Text ISO Latin 1

"TXRM" Text Roman 8

"WDBN" Microsoft Word compound document

"WMF " Windows Metafile

"WPBN" WordPerfect compound document

"WPG " WordPerfect Graphics

"XBM " X BitMap

"XWD " X Windows System™ Window Dump file

"0050" Microsoft Word DOS 3.0, 3.1

"0051" Microsoft Word DOS 4.0

"0052" Microsoft Word DOS 5.0/6.0

"0070" WordPerfect DOS/Windows 5.0

"0071" WordPerfect DOS/Windows 5.1

Format ID Description

FDK 7.2 Platform Guide, Windows 17

Writing FDK Clients for Windows 3

Automatic recognition of a file format

Some graphic file formats have signature bytes. Signature bytes are a set of bytes that have a
unique value and location in a particular file format. FrameMaker can use signature bytes to
identify a graphic file’s format.

"0150" DCA0

"0151" DCA1

"0190" Microsoft Rich Text Format (RTF) (import)

"0192" Microsoft Rich Text Format (RTF) (export)

"0203" Lotus 123 4.0

"0204" Lotus 123 5.0

"0214" Microsoft Excel 5.0

"0330" Ami Professional 1.0

"0331" Ami Professional 2.0-3.1

"0440" Microsoft Word 1.0

"0441" Microsoft Word 2.0

"0460" Interleaf compound document (IAF)

"0480" WordPerfect DOS/Windows 6.0

"0481" WordPerfect DOS/Windows 6.1

"0482" WordPerfect DOS/Windows 7.0

"0490" Microsoft Word 6.0/7.0

"049m" Microsoft Word Mac 6.0

"0540" Microsoft Word Mac 3.x

"0541" Microsoft Word Mac 4.x

"0542" Microsoft Word Mac 5.x

"0590" WordPerfect Mac 1.0

"0600" WordPerfect Mac 2.0-2.1

"0601" WordPerfect Mac 3.0 to 3.5 (import)

"0602" WordPerfect Mac 3.5 (export)

Format ID Description

Writing FDK Clients for Windows3

18 FDK 7.2 Platform Guide, Windows

The documentation for the file format that your graphics filter converts may contain
information on the signature bytes for that format. If it does, you can register the signature
bytes in the [FormatList] section of the maker.ini file. Each graphic file format description
must be on a separate line and must have the following format:

n=facet_name start_offset signature_size signature

where n is any number, facet_name is the file format’s description (also used in the client
registration), start_offset is how many bytes from the start of the file the signature begins,
signature_size is the size in bytes of the signature, and signature is the hexadecimal value
of the signature. You can enclose any of the arguments in double quotation marks. For
example, you can register the file format for MIF with the following:

[FormatList]
100="MIF" 0 8 0x3c4d494646696c65

where 0x3c4d494646696c65 is the hexadecimal encoding of the characters <MIFFile.

Using Windows pathnames

The FDK for Windows delimits pathnames with backslashes (\). When you specify a
pathname in an FDK function call, follow these rules:

● Follow the drive letter with a colon.

● Don’t terminate a pathname that specifies a file with a backslash.

The following table lists examples of files and directories and the pathname strings that
specify them.

Because the backslash is a special character, you must precede it with another backslash when
you specify it in a string. For example, to open a file named c:\myfile.doc with
F_ApiSimpleOpen(), use the following code:

F_ApiSimpleOpen("c:\\myfile.doc", False);

Using pathnames returned by FDK functions

Pathnames returned by FDK functions don’t end with a backslash, unless they specify root
directories, such as c:\.

File or directory Absolute pathname Relative pathname

File named myfile.doc on the
c: drive

c:\myfile.doc myfile.doc

Directory named mydir on the
c: drive

c:\mydir mydir

FDK 7.2 Platform Guide, Windows 19

Writing FDK Clients for Windows 3

Using F_PathNameToFilePath()

To specify an absolute pathname when you call F_PathNameToFilePath(), you must
specify a pathname that includes the drive and begins with the root directory of the drive. If the
pathname does not include the drive and begin with the root directory of the drive,
F_PathNameToFilePath() assumes the pathname is relative.

If you call F_PathNameToFilePath() with anchor set to NULL and you do not specify an
absolute pathname, F_PathNameToFilePath() adds the currently open directory or the
currently open directory of the specified drive to the pathname. For example, if you specify
c:myfile.c for pathname, F_PathNameToFilePath() generates: c:\cwd\myfile.c,
where cwd is the currently open directory on drive c:. If you specify \\myfile.c for
pathname, F_PathNameToFilePath() generates: current_drive:\myfile.c, where
current_drive is the current drive.

If you do not set anchor to NULL, F_PathNameToFilePath() constructs the filepath relative
to the path specified by anchor. If the pathname you specify for pathname and the filepath you
specify for anchor are inconsistent, F_PathNameToFilePath() ignores anchor and
constructs the filepath with the currently open directory.

Using F_FilePathGetNext()

The function F_FilePathGetNext() returns the next file in a specified directory. To do so,
this function uses DOS system calls. As a result, since DOS is case-insensitive, the returned
FilePathT structure uses only uppercase letters. This may not match a FilePathT structure
you have created.

For example, assume you want to create a filepath and then at some later time process all files
in the same directory other than the one you created. You might be tempted to use this code:

/* Bad code! */
. . .
/* Create the new filepath */
newpath = F_PathNameToFilePath ("vpg.doc", NULL, FDosPath);
. . .
DirHandleT handle;
FilePathT *path, *file;
IntT statusp;
pathname = StringT;
handle = F_FilePathOpenDir(newpath, &statusp);
if (handle) {
 pathname = F_FilePathToPathName (newpath);
 while ((file = F_FilePathGetNext (handle, &Statusp)) != NULL) {
/* WRONG! This attempts to compare current file to the one you created. */
 if ! (F_StrEqual (pathname, F_FilePathToPathName (file)))
 ProcessFile (file);
 F_FilePathFree (file);
 }
}
/* Bad code! */
. . .

Writing FDK Clients for Windows3

20 FDK 7.2 Platform Guide, Windows

The string returned by F_FilePathToPathName(newpath) contains the lowercase letters
as specified in the earlier call to the function F_PathNameToFilePath(). On the other
hand, the string returned by each call to F_FilePathToPathName() always contains only
uppercase letters. Therefore, the call to F_StrEqual() never succeeds.

Instead of calling F_StrEqual(), you should call F_StrIEqual().

Using menus and commands

The following sections describe how to use menus and commands in your FDK client.

Finding FrameMaker menu and command names

The [Files] section of the maker.ini file specifies the location of the menu and command
configuration files that list FrameMaker’s menus and commands. The following are the
default entries in the maker.ini file:

MathCharacterFile = fminit\mathchar.cfg
ConfigCommandsFile = fminit\cmds.cfg
MSWinConfigCommandsFile = fminit\wincmds.cfg
ConfigMathFile = fminit\mathcmds.cfg
ConfigMenuFile = fminit\maker\menus.cfg
ConfigCustomUIFile = fminit\customui.cfg

The following table lists the menus and commands each file contains.

Defining keyboard shortcuts

Keyboard shortcuts beginning with Esc (Escape) do not appear on menus in Windows
versions of FrameMaker. However, the user can still use these shortcuts to execute commands.
For example, if you use the following code to define and add a command to the Edit menu:

F_ApiDefineAndAddCommand (TRANSLATE, EditMenuId, "I1",
"Translate", "\\!tt");

Menu or command file Contents

MathCharacterFile Special math characters

ConfigCommandsFile Basic commands

MSWinConfigCommandsFile Windows-specific commands

ConfigMathFile Math commands

ConfigMenuFile Standard menus

ConfigCustomUIFile Custom menus

FDK 7.2 Platform Guide, Windows 21

Writing FDK Clients for Windows 3

the command label Translate appears on the menu, but the shortcut (! t t) does not. The user
can execute the command by pressing Esc t t.

The Windows version of the FDK allows you to specify keyboard shortcuts that include the
modifier key symbols on a menu. The following table lists the modifier keys and strings that
specify them.

For example, the following code defines and adds a command with a Control-t shortcut:

F_ApiDefineAndAddCommand (TRANSLATE, EditMenuId, "I1",
"Translate", "^t");

Using FDK functions that write to the FrameMaker console

The following functions write output to the FrameMaker console on Windows:

● F_ApiPrintFAErrno()

● F_ApiPrintOpenStatus()

● F_ApiPrintPropVals()

● F_ApiPrintSaveStatus()

● F_Printf() with Channel set to NULL

● F_Warning()

For descriptions of these functions, see the FDK Programmer’s Reference.

As with printf(), the F_Printf() function does not automatically print a line feed ("\n")
after the output. If you don’t end the output with "\n", the next call to one of the functions
listed above begins printing on the last line printed by the F_Printf() call.

Using platform-dependent session properties

Session (FO_Session) objects have the following platform-dependent properties:

To display Specify

Alt ~

Ctrl ^

Shift +

Property Value

FP_FM_BinDir Pathname of the bin directory in the FrameMaker installation directory

FP_FM_CurrentDir Pathname of the FrameMaker installation directory

Writing FDK Clients for Windows3

22 FDK 7.2 Platform Guide, Windows

Although the values of some of these properties specify directory pathnames, they are not
terminated with a backslash.

Unsupported FDK functions

The Windows version of the FDK does not support the following functions, which are
documented in the FDK Programmer’s Reference:

● F_ApiDoneCommand()

● F_ApiTakeControl()

FP_FM_HomeDir Pathname of the FrameMaker installation directory

FP_FM_InitDir Pathname of the fminit directory in the FrameMaker installation
directory

FP_HostName Host name specified for PCName in the maker.ini file

FP_OpenDir Pathname of the FrameMaker installation directory

FP_Path Path specified by the $PATH environment variable

FP_TmpDir Directory specified by the $TEMP environment variable

FP_UserHomeDir Pathname of the FrameMaker installation directory

FP_UserLogin The user name under which FrameMaker is registered

FP_UserName The user name under which FrameMaker is registered

Property Value

FDK 7.2 Platform Guide, Windows 23

4 Compiling, Registering, and
Running FDK Clients

This chapter describes how to compile, register, and run FDK clients on Windows. It also
briefly explains how to debug your FDK clients.

Compiling FDK clients

The following sections describe how to compile FDK sample clients and your own clients.

Supported compilers

To compile FDK clients for Windows, you must use Microsoft Development Environment
2003 (Version 7.1)

Compiling, registering, and running the sample clients

The following sections describe how to compile, register, and run the sample clients provided
with the FDK.

Compiling and registering sample clients in Development Environment 2003
(Version 7.1)

To compile a sample FDK client in Development Environment 2003 (Version 7.1), follow
these steps:

1. Start Development Environment 2003 (Version 7.1).

2. Choose Open->Project from the File menu and then choose the solution file for one of the
sample clients.

For example, to compile the aframes sample client, choose
fdk_install_dir\samples\aframes\aframes.sln, where fdk_install_dir is the
pathname of the directory in which the FDK is installed.

NOTE: The project settings for the sample clients have relative paths to the FDK lib and
include files already specified. If you open a sample project from its location in the
FDK installation, these paths will be valid. If you move the sample client to a
different location, you may need to specify new paths for the include and lib files.
For more information, see steps 7. and 8. of “Compiling and registering your own
FDK clients” on page 24.

Compiling, Registering, and Running FDK Clients4

24 FDK 7.2 Platform Guide, Windows

3. Use the Development Environment 2003 (Version 7.1) build utility to build the client.

Choose Rebuild Solution from the Build menu. Development Environment 2003 (Version
7.1) compiles your code into a DLL file named project.dll in the debug subdirectory of
your client directory, where project is the name of the sample project. For example, the
aframes sample client compiles into debug\aframes.dll.

4. Register the sample client.

Each of the following sample clients includes a VERSIONINFO resource, and you register
each by placing the DLL file in the Plugins folder:
– pickfmts
– elemutils
– dialog

Because the remaining sample clients do not include a VERSIONINFO resource, you must
register them in the maker.ini file. For more information see “Registering clients in the
FrameMaker maker.ini file” on page 36.

Running the sample FDK clients

It is best to store client DLL files in the FrameMaker Plugins folder
(install_dir\FrameMaker7.2\fminit\Plugins), or in a folder below it. If you register your
clients via the VersionInfo resource, you must store them in this way. When you register a
client in the .ini file, you can specify any location for the DLL file.

After you have compiled and registered a sample FDK client, start FrameMaker to test the
client. Some of the sample clients add menus and commands to the FrameMaker menus. For
example, if you have compiled and registered the sample client described in Chapter 1,
“Introduction to the Frame API,” of the FDK Programmer’s Guide, a menu named API
appears on the FrameMaker menu after you start FrameMaker. To test the commands on this
menu, open or create a document, and choose each of the commands.

Compiling and registering your own FDK clients

To compile and register one of your own FDK clients, follow the instructions in this section.

Compiling and registering the client

To compile and register the FDK client, follow these general steps:

1. Create a project directory for your FDK client project.

2. Start Development Environment 2003 (Version 7.1) and create a new Win32 Dynamic-
Link Library project.

Choose New and then project from the File menu. The New dialog box appears. Select
Visual C++ Projects and then Win32 from Project Types. Select Win32 Project, type your
client's name in the Name field and then click OK. Win32 application wizard appears.

FDK 7.2 Platform Guide, Windows 25

Compiling, Registering, and Running FDK Clients 4

Click on Application Settings, select DLL from Application Type and Empty project from
Additional Options.

3. Create or place your souce files in the project directory, then add those files to your project.

4. (Optional) Create a resource for any custom dialog boxes.

If your client contains custom dialog boxes, you need to create a resource for them. For
instructions, see “Using custom dialog boxes” on page 26.

5. (Optional) Create a VERSIONINFO resource.

Including a VERSIONINFO resource is one method for registering a client. For more
information on registering clients, see “Registering FDK clients” on page 29.

6. Choose Properties from the Project menu to display the Properties Pages dialog box.

In the Properties Pages dialog box, choose General . Set Use of MFC field to Use Standard
Windows Libraries.

IMPORTANT: If you don’t set the Use of MFC field to"Use Standard Windows Libraries, ,
your client will not link correctly.

7. Set your project’s C/C++ Language options.

In the Property Pages dialog box, choose C/C++.
– Choose Code Generation and choose 8 Byte or default from the Struct Member

Alignment pull down menu. 8 bytes is also the default value for this field.

IMPORTANT: If you don’t set the Struct Member Alignment to 8 Bytes, your client may
cause unexpected runtime errors.

– With Code Generation still selected, choose Single-Threaded from the Runtime Library
popup list.

The FDK ships in a single-threaded version. By default, the project sets this option to
Multi-threaded. Compiling the FDK with a multi-threaded runtime library produces the
following warning:
defaultlib "LIBC" conflicts with use of other libs;

IMPORTANT: For Version 7.0 and later of the FDK, it is important that you make this
setting. Earlier versions of the FDK did not use symbols that conflicted
with the multi-threaded runtime library. However, for version 7.0 and
later the FDK and the Structure Import/Export API use conflicting
symbols.

– In the General page under C/C++ language options, add path to the FDK include files in
Additional Include Directories field.

You can specify an absolute path or a relative path. For example, the Property Pages for
the sample clients all use the following relative path:
..\..\include

Compiling, Registering, and Running FDK Clients4

26 FDK 7.2 Platform Guide, Windows

8. Set your project’s Linker options

In the Property Pages dialog box, choose the Linker page.
– Choose General and then Input.

Add the FDK libraries fdk.lib, api.lib, and fmdbms32.lib to the additional
dependencies field.

If you are compiling a structure import/export client, be sure to also link the Structure
Import/Export API library. For more information, see “Linking the Structure
Import/Export API library” on page 28.

IMPORTANT: If your client includes custom dialog boxes, you must add
/section:.rsrc,w to the Project Options. For more information, see
“Compiling clients with custom dialog boxes” on page 28.

– In the Category field, choose Input, then add the path to the FDK lib files in the
Additional library path field.

You can specify an absolute path or a relative path. For example, the project settings for
the sample clients all use the following relative path:
..\..\lib

NOTE: As an alternative, you can specify access to the FDK include and lib directories
for the Development Environment 2003. To do this, choose Tools > Options to
display the Options dialog box. Select Project and then VC++ Directories, and
enter the paths to the FDK include and lib directories for Include files and
Library files.

9. Use the Development Environment 2003 (Version 7.1) build utility to build your client.

Choose Rebuild All from the Build menu. Development Environment 2003 (Version 7.1)
compiles your code into a dynamic link library file with the name you typed in the New
dialog box. It puts this library file into the debug subdirectory of your client directory.

10.Register the client.

You can register the client by using either of these two methods:
– As mentioned in step 5, create and include in your client’s project a VERSIONINFO

resource that contains information about the client, and copy or move the compiled client
into the fminit/Plugins directory.

– Add an entry for your client in the [APIClients] section of the maker.ini file in
the FrameMaker directory.

For more information on registering clients, see “Registering FDK clients” on page 29.

Using custom dialog boxes

The FDK samples include a template document for designing custom dialog boxes. You open
this document in FrameMaker and edit it with the FrameMaker graphic tools and commands.

FDK 7.2 Platform Guide, Windows 27

Compiling, Registering, and Running FDK Clients 4

When you save a custom dialog box in a Windows version of FrameMaker, it generates two
Windows resource definition files, a .dlg file and a .xdi file.

● The .dlg file is a text file containing resource statements. These statements are standard
Windows descriptions of the dialog box and its controls.

● The .xdi file is a text file containing a user-defined resource statement. This statement
contains data used by FrameMaker to manipulate the dialog boxes.

When creating the .dlg and .xdi files, FrameMaker uses the name of the .dre file
(without the extension) to name the files and the actual dialog resource. For example, when
saving the file named mydlg.dre, FrameMaker creates the resource description files
mydlg.dlg and mydlg.xdi. Both files describe the dialog resource named mydlg.

To compile the .dlg and .xdi files in your dll you must create a resource for the project, and
provide directives to include these files in the resource. In the process of compiling the client,
these resource definition files are compiled into a single resource file (.rc). This resource file
is linked to your client.

To set up the resource definition files to be compiled, follow these general steps:

1. Start Development Environment 2003 (Version 7.1).

2. If one doesn’t already exist for the project, create a resource script.

Choose Add New Item from the File menu. The Add New Item dialog box appears. Choose
Resource File.

3. Include the resource description files generated by FrameMaker.

Choose Resource Includes from the Edit menu. The Resource Includes dialog box appears.
In the Compile-Time Directives field, type #include statements to include the resource
description files.

For example, suppose you create two custom dialog boxes named pgftag.dre and
chartag.dre. When FrameMaker saves these files it also creates the files pgftag.dlg,
pgftag.xdi, chartag.dlg, and chartag.xdi.

To include these files in the resource script, type the following in the Compile-Time
Directives field:
#include "pgftag.dlg"
#include "pgftag.xdi"
#include "chartag.dlg"
#include "chartag.xdi"

Make sure you use the correct syntax; Development Environment 2003 (Version 7.1) does
not check the syntax or warn you of this before you dismiss the dialog box.

4. Save the resource script.

For information on adding your resource script to your client, see “Compiling and
registering the client” on page 24.

Compiling, Registering, and Running FDK Clients4

28 FDK 7.2 Platform Guide, Windows

Compiling clients with custom dialog boxes

If your FDK client uses custom dialog boxes, you need to specify a special link option before
compiling it:

1. In Development Environment 2003 (Version 7.1), choose Project->Properties.

This displays the Project Properties dialog box.

2. Choose Linker and then Command Line.

3. Add the following option to the Additional Options field:

/section:.rsrc,w

This link option makes the dialog resources writable. If you do not specify it before
compiling, your FDK client may exit unexpectedly when it attempts to display a custom
dialog box.

4. Repeat steps 3 for each target in your project.

Making adjustments to custom dialog boxes

Since the .dlg files produced by FrameMaker are text files containing resource statements,
you can open these files in Development Environment 2003 (Version 7.1) as resources. You
can use the built-in tools for dialog editing to view, adjust, and test the dialog box.

Because you are modifying the .dlg file but not the .xdi file, you should not make major
changes to the dialog box (for example, do not add new items to the dialog box). If you do, the
description in the .dlg file will not match the description in the .xdi file.

Linking the Structure Import/Export API library

To link the Structure Import/Export API library on Windows follow these steps:

1. In Development Environment 2003 (Version 7.1), open your client’s project.

2. Choose Properties from the Project menu to display the Properties Pages dialog box.

3. In the Property Pages dialog box, click on Linker and then Input.

4. Add the Structure Import/Export API library struct.lib and the resource
fmstruct.res to the Additional Dependencies field.

Add struct.lib before fdk.lib, and add fmstruct.res to the end of the
Object/Library Modules field.

5. Add the following link option to the 'Additional Options' field in 'Command Line' property
page:

/section:.rsrc,w

FDK 7.2 Platform Guide, Windows 29

Compiling, Registering, and Running FDK Clients 4

IMPORTANT: This link option is required for some of the dialog boxes that are internal to
the structure import/export functionality in FrameMaker. Without this link
option, your client may crash when it interacts with these dialog boxes.

Registering FDK clients

For FrameMaker to recognize your client, you must register it on the system on which you
intend to run it. When registering your client, you can name it anything you like, although the
name cannot contain spaces. Also, you should not use a name that is already used by one of the
clients that ships with FrameMaker.

To register your client, you can use either of the following methods:

● Create and include in your client’s project a VERSIONINFO resource that contains
information about the client, and copy or move the compiled client into the
fminit\Plugins directory.

When FrameMaker starts, it recursively scans the fminit\Plugins directory and
automatically registers any clients found. For more information on registering your client
using the VERSIONINFO resource, see Registering a client by using the VERSIONINFO
resource.

● Add an entry for your client in the [APIClients] section of the maker.ini file in the
FrameMaker directory.

The [APIClients] section of the maker.ini file lists the FDK clients to load when
FrameMaker starts.

For more information on registering your client using the maker.ini file, see
“Registering clients in the FrameMaker maker.ini file” on page 36.

IMPORTANT: You can use either method of registering a client, but do not use both methods
for the same client.

Registering a client by using the VERSIONINFO resource

To register a client using the VERSIONINFO resource, you create a VERSIONINFO
resourcescript, or add a VERSIONINFO resource to an existing resource script for the client.
Then you insert the .rc file into the client’s project, compile the client, and then copy or move
the compiled client into the fminit/Plugins directory. You can also place the client in a
subdirectory of the fminit/Plugins directory.

When FrameMaker starts, it recursively scans the fminit/Plugins directory and
subdirectories, and automatically registers any clients found. The client must be named
client_name.dll and it must contain valid VERSIONINFO resource information. (The .dll
extension is the default value set in the “PluginExtensions” entry in the [Preferences] section
of the maker.ini file.) FrameMaker ignores any filenames in the fminit/Plugins
directory and subdirectories that do not contain the .dll extension (or other extensions
defined in the maker.ini file). FrameMaker determines a client’s type and other properties

Compiling, Registering, and Running FDK Clients4

30 FDK 7.2 Platform Guide, Windows

by examining the client’s VERSIONINFO resource. FrameMaker ignores any files that do not
have the required version information resource information.

The VERSIONINFO resource information required for all clients

The types of information at the beginning and end of the VERSIONINFO resource is the same
and required for all clients. The resource must also contain client statements which are
unique to each type of client. This section describes the resource information that is required
for all clients. The following sections describe the client statements for each type of client.
For detailed information on creating and using the VERSIONINFO resource, see the
documentation for Microsoft Development Environment 2003 (Version 7.1).

The following code illustrates the syntax of a VERSIONINFO resource for n FDK client. The
statements in bold are used by FrameMaker and must be specified exactly as shown. The
statements not shown in bold are required by Microsoft Development Environment 2003
(Version 7.1), but they are not used by FrameMaker. The nesting of the statements must also
be set exactly as shown.

The table that follows the code describes the statements shown in bold.

FDK 7.2 Platform Guide, Windows 31

Compiling, Registering, and Running FDK Clients 4

For this statement Specify

1 VERSIONINFO A version ID of 1 at the beginning of the VERSIONINFO
resource file.

BLOCK "StringFileInfo" Specify "StringFileInfo".

BLOCK "040904B0" Specify "040904B0".

VALUE "FileDescription" Specify a description for the client. FrameMaker displays the
description of a client when the user clicks About. The
description can contain spaces.

1 VERSIONINFO
FILEVERSION 1,0,1,0
PRODUCTVERSION 1,0,1,0
FILEFLAGSMASK 0x3fL
#ifdef _DEBUG
FILEFLAGS 0x1L
#else
FILEFLAGS 0x0L
#endif
FILEOS 0x10004L
FILETYPE 0x1L
FILESUBTYPE 0x0L
BEGIN

BLOCK "StringFileInfo"
BEGIN
BLOCK "040904B0"

BEGIN
// Standard Windows VERSIONINFO strings
VALUE "CompanyName", "name of company\0"
VALUE "FileDescription", "description of client\0"
VALUE "FileVersion", "version of client\0"
VALUE "LegalCopyright", "copyright info.\0"
VALUE "ProductName", "name of product\0"
VALUE "ProductVersion", "version of product\0"

// FDK Client VERSIONINFO strings
VALUE "ClientName", "name of client\0"
VALUE "ClientType", "type of client\0"
VALUE "ClientProducts","FrameMaker interface names\0"

END
END

BLOCK "VarFileInfo"
BEGIN

VALUE "Translation", 0x409, 1200
END

END

VERSIONINFO
statements
required for all
clients

client
statements
unique to each
client type

VERSIONINF
O statements
required for all
clients

Compiling, Registering, and Running FDK Clients4

32 FDK 7.2 Platform Guide, Windows

IMPORTANT: The version ID in the VERSIONINFO resource file must be 1 or else the
VERSIONINFO resource file will be invisible to FrameMaker. Although
identifying the version ID in the VERSIONINFO resource file is the easiest
method, you could also choose to use a symbolic constant such as
Development Environment 2003 (Version 7.1)’s “VS_VERSION_INFO:”
string. However, if you choose to use “VS_VERSION_INFO:”, it is critical
that you define this string to be a number, and that you define it to be 1.

The FILEVERSION statement is often used by installation programs to avoid overwriting new
versions of clients with older versions.

The following sections describe the client statements for each type of client.

The VERSIONINFO resource information for standard FDK clients

To register an FDK client that is not a filter, take control client, or document report, add the
following client statements to the VERSIONINFO resource in this syntax:

1 VERSIONINFO
...

// FDK Client VERSIONINFO strings
VALUE "ClientName", "name of client\0"
VALUE "ClientType", "type of client\0"
VALUE "ClientProducts", "names of FrameMaker interfaces\0"
...

Example

For example, you can use the following client statements in a VERSIONINFO resource for
a standard client:

For this statement Specify

ClientName The registered name for your client. It does not need to be the same as your
client’s executable filename. Be sure your client name does not conflict
with the names of other clients, including those such as ClickPrint that are
supplied with FrameMaker. The ClientName string is required for all
clients.

ClientType Standard for a standard client. The ClientType string is required for
all clients.

ClientProducts The name of FrameMaker product interfaces that you want your client to
run with. These names are expressed in terms of the old FrameMaker
products. Separate interface names with a space. You can specify Maker,
MakerSGML, or both values.

This string is optional for all clients; if you exclude ityour client runs with
Maker and MakerSGML.

FDK 7.2 Platform Guide, Windows 33

Compiling, Registering, and Running FDK Clients 4

1 VERSIONINFO
...

// FDK Client VERSIONINFO strings
VALUE "ClientName", "api1\0"
VALUE "ClientType", "Standard\0"

...

In the preceding example, FrameMaker can initialize the client under the structured and
unstructured program interfaces. If you want only structured FrameMaker to initialize your
client, add the ClientProducts statement as follows:

1 VERSIONINFO
...

// FDK Client VERSIONINFO strings
VALUE "ClientName", "api1\0"
VALUE "ClientType", "Standard\0"
VALUE "ClientProducts", "MakerSGML\0"

...

The VERSIONINFO resource information for filters

A filter is an FDK client that converts FrameMaker files to or from other file formats. To
register a filter, add the following client statements to the VERSIONINFO resource in this
syntax:

1 VERSIONINFO
...

// FDK Client VERSIONINFO strings
VALUE "ClientName", "name of client\0"
VALUE "ClientType", "type of filter\0"
VALUE "ClientProducts", "names of FrameMaker product interfaces\0"
VALUE "ClientFacet", "name of file format\0"
VALUE "ClientFormatID", "format id of filter\0"
VALUE "ClientVendor", "vendor of filter\0"
VALUE "ClientSuffix", "filename suffix of filterable files\0"
...

For this statement Specify

ClientName For import filters, this name appears in the Unknown File Type dialog box.
For export filters, this name appears in the Format menu of the Save As
dialog box. The ClientName string is required for all filter clients.

ClientType The ClientType string is required for all filter clients.
● TextImport
● GFXImport
● ExportFilter
● FileToFileTextImport
● FileToFileTextExport
● FileToFileGFXImport
● FileToFileGFXExport

Compiling, Registering, and Running FDK Clients4

34 FDK 7.2 Platform Guide, Windows

Example

For example, you can use the following client statements in a VERSIONINFO resource for
a filter client:

1 VERSIONINFO
...

// FDK Client VERSIONINFO strings
VALUE "ClientName", "KurtWrite Files\0"
VALUE "ClientType", "TextImport\0"
VALUE "ClientProducts", "Maker MakerSGML\0"
VALUE "ClientFacet", "kurt\0"
VALUE "ClientFormatID", "KRT\0"
VALUE "ClientVendor", "FAPI\0"
VALUE "ClientSuffix", "krt\0"

...

If you start FrameMaker and open a file with a .krt extension, FrameMaker uses the
KurtWrite Files filter.

The VERSIONINFO resource information for take-control clients

To register a take control client, add the following client statements to the VERSIONINFO
resource in this syntax:

ClientProducts The name of FrameMaker product interfaces that you want your client to
run with. These names are expressed in terms of the old FrameMaker
products. Separate interface names with a space. You can specify Maker,
MakerSGML, or both values.

This string is optional for all clients; if you exclude it, your client runs with
Maker and MakerSGML.

ClientFacet The name of the file format. This name is used in the [FormatList]
section of the maker.ini file if you want FrameMaker to automatically
recognize the file format. For more information on automatic recognition
of file formats, see “Automatic recognition of a file format” on page 17.
The ClientFacet string is required for all filter clients.

ClientFormatID A four-character string that identifies the file format. For more information
on format IDs, see “Identifying your filter” on page 13. The
ClientFormatID string is required for all filter clients.

ClientVendor A four-character string that identifies the vendor of the filter. For more
information on vendor IDs, see “Identifying your filter” on page 13. The
ClientVendor string is required for all filter clients.

ClientSuffix The filename extension of filterable files. The ClientSuffix string is
required for all filter clients.

For this statement Specify

FDK 7.2 Platform Guide, Windows 35

Compiling, Registering, and Running FDK Clients 4

1 VERSIONINFO
...

// FDK Client VERSIONINFO strings
VALUE "ClientName", "name of client\0"
VALUE "ClientType", "type of client\0"
VALUE "ClientProducts", "names of FrameMaker interfaces\0"
...

Example

For example, you can use the following client statements in a VERSIONINFO resource for
a take control client:

1 VERSIONINFO
...

// FDK Client VERSIONINFO strings
VALUE "ClientName", "api1\0"
VALUE "ClientType", "TakeControl\0"
...

The VERSIONINFO resource information for document reports

A document report is an FDK client that provides information about a document. To register a
document report, add the following client statements to the VERSIONINFO resource in this
syntax:

For this statement Specify

ClientName The registered name for your client. It does not need to be the same as your
client’s executable filename. Be sure your client name does not conflict with
the names of other clients, including those such as ClickPrint that are
supplied with FrameMaker. The ClientName string is required for all
clients.

ClientType Use TakeControl for a take control client. The ClientType string is
required for all clients.

ClientProducts The name of FrameMaker product interfaces that you want your client to run
with. These names are expressed in terms of the old FrameMaker products.
Separate interface names with a space. You can specify Maker,
MakerSGML, or both values.

This string is optional for all clients; if you exclude ityour client runs with
Maker and MakerSGML.

Compiling, Registering, and Running FDK Clients4

36 FDK 7.2 Platform Guide, Windows

1 VERSIONINFO
...

// FDK Client VERSIONINFO strings
VALUE "ClientName", "name of document report\0"
VALUE "ClientType", "type of client\0"
VALUE "ClientProducts", "names of FrameMaker interfaces\0"
...

Example

For example, you can use the following client statements in a VERSIONINFO resource for
a document report client:

1 VERSIONINFO
...

// FDK Client VERSIONINFO strings
VALUE "ClientName", "Aframes Document Report\0"
VALUE "ClientType", "DocReport\0"
VALUE "ClientProducts", "All\0"
...

Inspecting a client’s version resource information

After compiling a client, you can check its version resource information to make sure all of the
values are correct. To display the version resource information, right-click the client’s icon on
the desktop or in Explorer and choose Properties from the pop-up menu that appears. In the
Properties dialog box, choose the Version tab to display the resource information for the
client.

Registering clients in the FrameMaker maker.ini file

The other method of registering a client is by adding an entry for the client in the FrameMaker
maker.ini file. The [APIClients] section of the maker.ini file lists the FDK clients
to load when FrameMaker starts. Each client description must be on a separate line and cannot
contain line breaks. Clients that are not filters use the following format:

client = type, description, DLL_file, mode

For this statement Specify

ClientName The name that appears in the Document Reports dialog box. The
ClientName string is required for all clients.

ClientType Use DocReport for a document report client, The ClientType
string is required for all clients.

ClientProducts The name of FrameMaker product interfaces that you want your client to
run with. These names are expressed in terms of the old FrameMaker
products. Separate interface names with a space. You can specify Maker,
MakerSGML, or both values.

This string is optional for all clients; if you exclude ityour client runs with
Maker and MakerSGML.

FDK 7.2 Platform Guide, Windows 37

Compiling, Registering, and Running FDK Clients 4

where

The fields in this line are separated by a comma and zero or more spaces.

For example, if you have compiled the aframes sample client into
c:\fdk\samples\aframes\debug\aframes.dll, and you want to register it with
FrameMaker, add the following to the maker.ini file in the FrameMaker installation
directory (without any line breaks):

AFrames=DocReport,Anchored Frames Report,c:\fdk\samples\aframes\
debug\aframes.dll, all

If the client is a filter, register it with the following line:

client = type, facet_name, format_id, vendor_id, display_name, description, DLL_file, mode, suffix

where the variables are:

For this statement Specify

client the client’s name

type the type of client—valid types for clients other than filters are Standard,
TakeControl, and DocReport

DLL_file the pathname of the client’s DLL file—can specify a full pathname or a
relative pathname based on the FrameMaker installation directory.

mode whether the client can run with FrameMaker in unstructured or structured
mode. This fields can be one of maker, structured, or all. The mode
field is required.

For this statement Specify

type One of:
● TextImport
● GFXImport
● Export
● FileToFileTextImport
● FileToFileTextExport
● FileToFileGFXImport
● FileToFileGFXExport

facet_name the name of the file format supported by the client.

format_id a four-character string that identifies the file format

vendor_id a four-character string that identifies the client’s provider.

display_name the filter name to display in in dialog boxes when opening or saving a file
of the given format. This name must match the client name.

description a description of the client that appears when you choose About

DLL_file the pathname of the client’s DLL file

Compiling, Registering, and Running FDK Clients4

38 FDK 7.2 Platform Guide, Windows

For information on format and vendor IDs, see “Writing filter clients” on page 13.

For example, assume you have a graphics import filter for the CGM format that uses ACGM as
its facet name, has its executable stored in acgmflt.dll, and should be invoked on files
with the suffix cgm. You can register this filter with this line:

ACGMFILTER=GFXImport,ACGM,CGM,FAPI,ACGMFILTER,acgmflt.dll,all, cgm

Specifying no description for a client

When you register your client by using the FrameMaker maker.ini file, and you don’t want
to specify a description, enter a space in the description field. For example:

client= Standard, ,c:\clients\myclient\debug\myclient.dll, all

The description field must contain at least one character. If no characters appear between the
commas delimiting the description field, your client will not be registered.

Running FDK clients

When FrameMaker starst, it reads the maker.ini The [APIClients] section of the
maker.ini file contains entries describing the FDK clients to be loaded.

FrameMaker then scans the fminit/Plugins directory and subdirectories and loads the
FDK clients that have a .dll file extension and valid VERSIONINFO resource information.
FrameMaker ignores any files in the fminit/Plugins directory and subdirectories that do
not have a name with the .dll extension, or do not contain valid VERSIONINFO resource
information.

For information on how FrameMaker starts a client, see Chapter 2, “API Client Initialization,”
in the FDK Programmer’s Guide.

Compatibility between FDK and FrameMaker product releases

To ensure your existing Windows clients are compatible with release 7.2 of FrameMaker, you
should recompile them. It is possible to run a a client compiled in an earlier version of the
FDK with FrameMaker 7.2, as long as the client does not use any functions or properties that
have changed. However, it is recommended that you recompile your clients with the newer
version of the FDK as soon as possible.

mode whether the client can run with FrameMaker in unstructured or structured
mode. This fields can be one of maker, structured, or all. The mode
field is required.

suffix the filename extension of the file type that the client filters

For this statement Specify

FDK 7.2 Platform Guide, Windows 39

Compiling, Registering, and Running FDK Clients 4

Disabling FDK clients

To disable all FDK clients, edit the following line in the maker.ini file in the FrameMaker
installation directory, or in the version of the .ini file that is stored in the user’s Documents
and Settings directory:

API=On

Replace On with Off. The next time you start FrameMaker, no FDK clients will be started.

IMPORTANT: Some FrameMaker features, such as the Word Count document report, Save
As HTML, or import and export of SGML and XML are implemented as FDK
clients. If you disable all FDK clients, these features will not be available.

Debugging FDK clients

You debug your client as part of the FrameMaker executable. The FrameMaker executable is
not compiled with debugging information, so you don’t have access to any symbols within
FrameMaker.

To use Development Environment 2003 (Version 7.1) to debug your client as part of the
FrameMaker executable, follow these general steps:

1. Start Development Environment 2003 (Version 7.1).

2. Open your client’s project and add breakpoints.

3. Select Project->Properties and then Debugging page. Go to Command Field and add the
path to FrameMaker executable.pen the FrameMaker executable.

For example, if FrameMaker is installed in
c:\Program Files\Adobe\FrameMaker7.2, then to open its executable, open
c:\Program Files\Adobe\FrameMaker7.2\FrameMaker.exe.

4. From the Build menu select Configuration Manager. Highlight the Debug Project
Configuration.

5. From the Debug menu, choose Start.

Alternately, if you have already started the debugger for your program, from the Debug
menu choose Restart. If FrameMaker isn’t able to load your client, it displays the following
error message in an alert box:
File Error: Cannot find client_name.dll

FrameMaker may not be able to load your client for the following reasons:
– The client is not located in the fminit/Plugins directory or subdirectories, or does not

have a name with the .dll extension.
– The client’s VERSIONINFO resource information is missing or invalid.
– The maker.ini file doesn’t specify the correct full pathname for your client’s DLL.

Compiling, Registering, and Running FDK Clients4

40 FDK 7.2 Platform Guide, Windows

– The FrameMaker release is incompatible with the FDK release that you used to compile
the client.

To check that your FDK client has control, you can have it display a string in the status bar
of the document or book window. For more information, see the descriptions of FO_Book
and FO_Doc in the FDK Programmer’s Reference.

FDK 7.2 Platform Guide, Windows 41

5 Writing an Asynchronous FDK
Client

This chapter describes how to create asynchronous clients on Windows, and provides
instructions for compiling and running a sample asynchronous client. Before writing an
asynchronous API client you should be familiar with both the FrameMaker FDK and
Windows API programming. Also read the UNIX platform guide for more information on
Asynchronous clients.

The purpose of many FDK clients is to modify FrameMaker in some way, such as by changing
or adding functionality. In these applications the main goal of the resultant application is still
for the end user to use FrameMaker.

A different kind of application is one that uses FrameMaker to support some aspect of the
application’s functionality, but in which use of FrameMaker is not the goal. For example, you
might create a data base and want to use FrameMaker to print catalogs from it. In this case,
your application runs primarily independently of FrameMaker, but calls FrameMaker
(possibly as a child process) during some part of its operation.

The UNIX and Windows versions of the FDK allow you to create asynchronous applications
that control a FrameMaker process. Even though the main purpose of the application may not
be to run FrameMaker, this chapter refers to such an application as an FDK client, since it calls
FDK functions.

An asynchronous client does not run as part of the FrameMaker process nor as a child process.
Instead, it is its own application in a separate process, communicating with a FrameMaker
process via Microsoft RPC (Remote Procedure Calls). You should be aware of some
consequences of this difference:

● An asynchronous client can be started independently of any FrameMaker product. It can be
an EXE, or a DLL of some EXE other than FrameMaker.

● It must have its own main() function.

● You can use MFC or any other application framework to develop an asynchronous client.

● An asynchronous client can run on a machine other than that running the associated
FrameMaker process.

End user installations

To run asynchronous clients, the executable applications or the DLL files must be installed
correctly. An EXE can be installed wherever the user wants. A DLL that is a plugin for
another application must be installed correctly for that application. A DLL that is a plugin for
FrameMaker must be installed in the appropriate Plugins directory, or its path must be
specified in the maker.ini file.

Writing an Asynchronous FDK Client5

42 FDK 7.2 Platform Guide, Windows

The user also must have the following files installed in his or her FrameMaker installation
directory, at the same level as the FrameMaker application:

● afmfdk.dll

● fmrnclnt.exe

In addition, the user must have the following entries in the maker.ini file:

[Files]
MarshallingDLL = afmfdk.dll
RunWrappedPlugin = fmrnclnt.exe
. . .
[Preferences]
ExecutablePlugins = EXE
WrappedPlugins = DLX
PluginExtensions = DLL, DLX, EXE

The [Preferences] entries tell FrameMaker which filename extensions are valid for
different types of clients.

● PluginExtensions must list extensions for all the files you want to be loaded as clients
of any type.

● ExecutablePlugins lists extensions for clients that are built as executables which run
outside of the FrameMaker process.

● WrappedPlugins lists extensions for clients that are built as DLLs, but will run in an
address space that is external to the FrameMaker process. Such a client uses
fmrnclnt.exe to wrap its DLL and runs in the fmrnclnt.exe address space.

Note that you can substitute other extensions for the ones shown in the example above. For
more information, see “Types of asynchronous clients” on page 43.

Registering asychronous clients

You can register asynchronous clients just as you register other clients; you can store the
registration data in the client’s VersionInfo resource, or you can make an entry in the
maker.ini file for FrameMaker. Additionally, your client can pass an F_PropValsT
structure to F_ApiWinConnectSession() that is a list of registration data.

F_ApiWinConnectSession() is defined as:

F_ApiWinConnectSession(const F_PropValsT *connectProps,
ConStringT hostname, const struct _GUID *service);

You can include the following properties in connectProps:

This property
corresponds to this statement in a client’s VERSIONINFO
resource

FI_PLUGIN_NAME the name of the client.

FI_PLUGIN_TYPE the type of client.

FDK 7.2 Platform Guide, Windows 43

Writing an Asynchronous FDK Client 5

If connectProps is NULL, the FrameMaker process uses the client’s VersionInfo resource or
the entries in the maker.ini file. If the client has no registration information in any of these
sources, the FrameMaker process registers it as a standard client.

For more information about registering clients, see “Compiling, Registering, and Running
FDK Clients” on page 23.

Types of asynchronous clients

Asynchronous clients can be executable applications (EXE), dynamically linked libraries
(DLLs) that are a part of another application, or DLLs that are plugins for FrameMaker
(wrapped plugins).

Asynchronous EXE applications

An EXE can be either a console application or a Windows application. After connecting with
the FrameMaker process, the EXE application passes calls to FrameMaker through
afmfdk.dll.

IMPORTANT: Because they don’t have a Windows message processing loop, console
applications cannot handle notifications from the FDK. For example, this
means a console application cannot process commands from menus it adds to
FrameMaker. Nor can it process notifications such as
FA_Note_PreOpenDoc or FA_Note_PreSaveDoc.

FI_PLUGIN_PRODUCTS specifies structured or unstructured FrameMaker, using the names
of FrameMaker products this client supports—use a space-delimited
string with one or both of Maker and MakerSGML

FI_PLUGIN_FACET the name of the file format supported by the client (filters, only)

FI_PLUGIN_FORMATID a four-character string that identifies a file format (filters, only).

FI_PLUGIN_VENDOR a four-character string that identifies the client’s provider.

FI_PLUGIN_SUFFIX the filename extension of the file type that the client filters (filters,
only).

FI_PLUGIN_INFORMAT the file format for the file to filter (filters, only)

FI_PLUGIN_OUTFORMAT the file format for the resulting file (filters, only)

FI_PLUGIN_DESCRIPTION a description of the client that appears when you choose About.

FI_PLUGIN_PRODUCTNAME the name by which customers know your client.

This property
corresponds to this statement in a client’s VERSIONINFO
resource

Writing an Asynchronous FDK Client5

44 FDK 7.2 Platform Guide, Windows

Asynchronous DLLs

A DLL that is part of another application can call F_ApiStartUp() to make a connection
with a FrameMaker process. For example, you could write a plugin for Acrobat Exchange that
writes the data from Acrobat Forms to a FrameMaker document. In that case, the DLL
communicates with the FrameMaker process, as a part of its parent EXE, via afmfdk.dll.

A DLL that runs as a wrapped plugin for FrameMaker runs in its own memory space. After
connecting with the FrameMaker process, the DLL invokes fmrnclnt.exe to run as a
wrapper for the DLL. The wrapped DLL then communicates with FrameMaker via
afmfdk.dll, as though it is an EXE.

Registering multiple FrameMaker processes as servers

When you first run FrameMaker, it registers istelf in the system registry as the default instance
of the FrameMaker instance on that machine. By default, asynchronous clients connect to this
instance.

You can register multiple instances of the FrameMaker process, each with a unique entry in
the system registry. Then you can use these processes as a bank of servers, and your client can
choose among them when making a connection.

You identify a FrameMaker process as a server by its entry in the system registry. The entry
can specify:

● A name to identify the GUID for that specific process.

● Whether the process starts up when called by a client, or whether it must already be
running before the client can connect to it.

To register a process, you start FrameMaker with specific commandline options. This creates
an entry in the system registry for the machine on which you start FrameMaker.

To start FrameMaker with commandline options:

1. Choose Run from the Start menu.

The Run Application dialog box appears.

2. In the text box, type the full pathname of the FrameMaker.exe file, followed by the
commandline options.

Alternately, you can start FrameMaker from a DOS Command Prompt window. For
example, type FrameMaker_path\FrameMaker7.2 /option, where FrameMaker_path is the
install path for the version of FrameMaker you want to run, and /option is one or more
of:

● progid:process_name

where process_name is a name you provide. This option registers a name for the
FrameMaker process.

FDK 7.2 Platform Guide, Windows 45

Writing an Asynchronous FDK Client 5

● auto

This option allows the FrameMaker process to automatically start up if it isn’t running
when another process calls it.

● noauto

This option disallows automatic start-up.

This creates an entry in the system registry for the machine on which you started FrameMaker.

Registering a name for a FrameMaker process

To specify a name for the process, use the /progid option. For example, type
FrameMaker_path\FrameMaker7.2 /progid:MyProcess.Api1, where
FrameMaker_path is the install path for the version of FrameMaker you want to run. This
establishes a name, MyProcess.Api1, for the process.

When you start FrameMaker with no /progid option, you create system registry entry with
the default name of FrameMaker.API.1.

Asynchronous clients running locally on the host can refer to processes by their names. In this
way, your client can choose which process to run for a given task.

IMPORTANT: Clients connecting to a remote host cannot use the process name to connect to
a FrameMaker process. Instead, they must use the GUID for that process, as it
is specified in the system registry.

Registering automatic start-up for a process

If the FrameMaker process is not running, an asynchronous client can still call it. If the process
is so registered, it will start up when the client calls it. Alternatively, you can register the
process in a way that does not allow automatic start-up.

To register the process for automatic start-up, use the /auto option.

To disallow automatic start-up, use the /noauto option.

For example, type FrameMaker_path\FrameMaker7.2 /progid:MyProcess.Api1
/auto, where FrameMaker_path is the install path for the version of FrameMaker you
want to run. This establishes a process named MyProcess.Api1, which will start automatically
when an asynchronous client calls it.

Running asynchronous clients on remote hosts

With systems that support DCOM, you can run a client on one machine (the client machine),
connected to a FrameMaker process on another machine (the host machine). To accomplish
this, you make use of the DCOM services provided with your operating system. Also, both
machines must be in the same domain, and the same user must have the accounts on both
machines.

Writing an Asynchronous FDK Client5

46 FDK 7.2 Platform Guide, Windows

For an asynchronous client to connect to a FrameMaker process on a remote host:

1. Register the FrameMaker process as a server process on the host machine.

This establishes entries on the host machine’s system registry for the FrameMaker
processes you want to run as servers. For more information see “Registering multiple
FrameMaker processes as servers” on page 44.

2. Run dcomcnfg on the host machine to configure DCOM accessibility for each process you
want to run as a server.

This enables DCOM connections to the FrameMaker server processes that are registered on
the host machine.

3. Run dcomcnfg on the client machine to configure its DCOM accessibility.

This enables the client machine to connect to the host machine via DCOM.

Enabling DCOM for the server processes on the host

To enable DCOM for a FrameMaker process on the host machine:

1. Choose Run from the Start menu.

The Run dialog box appears.

2. In the Run dialog box, type dcomcnfg

The DCOM Configuration Properties service application appears.

3. Select the Default Properties tab and click Enable Distributed COM on this Computer.

4. In the Applications list box, double-click the FrameMaker process you want to enable, then
set the appropriate security options.

5. Click the Security tab and make sure Use default configuration permissions is turned on.

6. Apply any other settings to the FrameMaker process or your computer that are appropriate
for your network configuration.

You should check with the system administrator to ensure the options you set are
compatible with his administration procedures.

7. Click Ok.

Enabling DCOM for client machine

To enable DCOM on the client machine:

1. Choose Run from the Start menu.

The Run dialog box appears.

FDK 7.2 Platform Guide, Windows 47

Writing an Asynchronous FDK Client 5

2. In the Run dialog box, type dcomcnfg

The DCOM services application appears.

3. Select the Default Properties tab and click Enable Distributed COM on this Computer.

4. Apply any other settings to your computer that are appropriate for your network
configuration.

You should check with the system administrator to ensure the options you set are
compatible with his administration procedures.

5. Click Ok.

To find more information on DCOM see the Windows On-line Help.

Connecting with a FrameMaker process

Asynchronous clients connect with a FrameMaker process by calling F_ApiStartUp() or
F_ApiWinConnectSession(). When connecting to a process on a local host, FrameMaker
does not have to be registered as a server. For a process on remote host, your client must know
the GUID for that process.

A machine may have more than one FrameMaker process running at a time. In that case, the
processes must be registered as servers, and they should be registered with a name for each
process. For information about registering FrameMaker processes as servers, see “Registering
multiple FrameMaker processes as servers” on page 44.

IMPORTANT: Asynchronous clients use COM to communicate with FrameMaker processes.
If any FDK call returns FE_Busy, then you probably need to register a
message filter.

When using COM, an application should always register a message filter. If
your code calls F_ApiStartUp() or F_ApiWinConnectSession()
before initializing COM, these routines automatically initialize COM and
register a message filter.

However, if you initialized COM before calling these routines, they assume
your application already registered a message filter. If your application
initializes COM but does not register a message filter, be sure to call
F_ApiWinInstallDefaultMessageFilter().

Connecting to the default process on a local host

You use F_ApiStartUp() when the desired FrameMaker process is running on the local
machine. For example, a DLL that is a FrameMaker plugin calls F_ApiStartUp(). In that
case, the FrameMaker process that invokes the DLL identifies itself by passing a globally
unique identifier (GUID) via the FMGUID environment variable. Likewise, if you want an
EXE to connect locally to the currently active FrameMaker process, use F_ApiStartUp().

Writing an Asynchronous FDK Client5

48 FDK 7.2 Platform Guide, Windows

The following call makes this connection:

F_ApiStartUp(NULL);

For more information, see F_ApiStartUp() in the FDK Programmer’s Reference.

Connecting to a named process on a local host

To connect to a named process on a local machine, you need to convert the process name to a
GUID. Then you can pass that GUID to F_ApiWinConnectSession() to initiate
communication between your client and the FrameMaker process.

Note that F_ApiStartUp() makes a reliable connection only when the desired FrameMaker
process is the only FrameMaker process running on the local host. If no FrameMaker process
is running, F_ApiStartUp() will not work. Also, if more than one process is running,
F_ApiStartUp() cannot determine which process will finally connect with your client.

To choose one of many FrameMaker processes on a local host, you should have all of the
processes registered as servers on that host. For more information, see “Registering multiple
FrameMaker processes as servers” on page 44.

If you have registered the process as a named server, and your client is connecting to it on a
local host, you can use the Win32 API to get the GUID associated with that name. Then you
pass the GUID to F_ApiWinConnectSession().

The following example uses the Win32 API function CLSIDFromProgID() to get the GUID
for a process named MyProcess.Api1. It then calls F_ApiWinConnectSession() to
connect to the process. Note that you need a Unicode string for the process name. The example
uses the Win32 API call, MultiByteToWideChar() to convert a string to Unicode.

#define WBUFLEN 512
OLECHAR progStr;
CLSID serviceId;
StringT myProcess = F_StrCopyString("MyProcess.API.1");
. . .
progStr = (OLECHAR*)malloc(WBUFLEN*sizeof(wchar_t));
MultiByteToWideChar(CP_ACP, 0, (char *)opt_progid, -1, progStr, WBUFLEN);
if(CLSIDFromProgID(progStr, &serviceId))

F_ApiConnectWinSession(0, 0, &serviceId);
. . .

Note that F_ApiWinConnectSession() takes three parameters. In the first parameter you
can pass a list of properties that correspond to the entries you provide when registering a
FrameMaker client.

The second parameter is for the address of a remote host, when making a connection to a
remote host. If this parameter is NULL or 0, F_ApiWinConnectSession() connects to the
local host.

The third parameter specifies the desired FrameMaker process on the host machine. If this
parameter is NULL or 0, F_ApiWinConnectSession() uses the value of the FMGUID
environment variable on the specified host.

FDK 7.2 Platform Guide, Windows 49

Writing an Asynchronous FDK Client 5

For more information, see F_ApiWinConnectSession() in the FDK Programmer’s
Reference.

Connecting to a remote host

To connect to a remote machine, you need the address of that machine. Once you have the
address, you can call F_ApiWinConnectSession() to initiate communication between
your client process and the FrameMaker process on the host machine. The following call
makes this connection to the currently running FrameMaker process on the remote host:

F_ApiWinConnectSession(0, remote, 0);

where remote is the address of the remote host.

The above call only works when the desired FrameMaker process is the only FrameMaker
process running on the remote host. If no FrameMaker process is running, this will not work.
Also, if more than one process is running, you cannot predict which process will finally
connect with your client.

To choose one of many FrameMaker processes on a remote host, you should have all of the
processes registered as servers on that host. For more information, see “Registering multiple
FrameMaker processes as servers” on page 44.

To choose a registered process, you must know the GUID for that process ahead of time; you
pass that GUID to F_ApiWinConnectSession(). Assuming you have specified a GUID in
serviceId, the following call connects to a specific process on the remote host:

stringT remote;‘
CLSID serviceId;
. . .
F_ApiWinConnectSession(0, remote, &serviceId);

where remote is the address string of the machine that is running the FrameMaker process.

How to write an asynchronous FDK client

To write an asynchronous client that communicates with FrameMaker, you proceed as you
would for any C application, providing a main() function and adding whatever functionality
you need.

Unlike the UNIX FDK it is not necessary for a remote client to “take control” by calling
F_ApiTakeControl(). In fact this function will not work on the Windows platform. Lacking
this a Windows client can get control of a FrameMaker process by invoking F_ApiCallClient()
to call itself. For the duration of the notification, that is while the client is processing the
resulting callback, the client has exclusive control of FrameMaker.

At some point in its processing, your client needs to communicate with a FrameMaker
process. To do so, it follows these general steps:

Writing an Asynchronous FDK Client5

50 FDK 7.2 Platform Guide, Windows

1. Connect to the FrameMaker process.

To connect to a local host, use F_ApiStartUp() or F_ApiWinConnectSession(). To
connect to a remote host, use F_ApiWinConnectSession(). For information about
connecting to FrameMaker processes, see “Connecting with a FrameMaker process” on
page 47. For information about the functions to connect to FrameMaker processes, see
F_ApiWinConnectSession() and F_ApiStartUp() in the FDK Programmer’s
Reference.

2. Depending on your client, wait for requests from FrameMaker or perform some operations
using FrameMaker.

Once connected to a running FrameMaker process, your client can use the FDK to control
the FrameMaker process, or receive notifications from it. However, bear in mind that
console programs cannot handle notifications from the FDK. (This is because console
programs do not have a Windows message processing loop; applications running in
console programs must not request notifications.)

Note that a client can take exclusive control of the FrameMaker process by requesting
notification for FA_Note_ClientCall and then calling itself via F_ApiCallClient().
While handling the notification, no other clients can take control of the FrameMaker
process.

3. When done, disconnect from the FrameMaker process.

How your client disconnects depends on the situation.

With a client that is a plugin for FrameMaker, you can call F_ApiBailOut() to terminate
the client. After calling F_ApiBailOut(), the client’s notification points are still
registered with the FrameMaker process. If a notification event occurs, the FrameMaker
process restarts the client by calling F_ApiInitialize() with initialization set to
FA_Init_Subsequent. When it starts up subsequently, the client’s global variable
settings are lost.

If the FrameMaker process still exists when your client is completely done communicating
with it, your client should call the function F_ApiDisconnectFromSession() to
break the RPC connection.

Alternatively, the FrameMaker process may have shut down when your client wants to
break the connection (for example, due to a user request or due to a command from your
client). If so, your client should call the function F_ApiShutDown() to close its side of
the RPC connection.

Writing a Main routine in Windows.

Unlike UNIX, Windows does not provide a default main routine for remote plugins. You must
provide your own main routine. Simply include the following lines in your client:

#define DONT_REDEFINE /* We need to use native types. */

FDK 7.2 Platform Guide, Windows 51

Writing an Asynchronous FDK Client 5

#include ‘fapi.h’
#include <windows.h>
int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR
lpCmdLine, int nCmdShow)
{

return F_ApiRun();
}

The routine F_ApiRun() is documented in the FDK manuals and is implemented as follows:

IntT
F_ApiRun(VoidT)
{

ConStringT s = F_ApiStartUp(NULL);
if (s)

F_ApiErr(s);
else

while (!FA_bailout)
F_ApiService(NULL);
F_ApiShutDown();

return s !=NULL;
}

All of this is documented in the FDK Platform Guide for UNIX except that in Windows
F_ApiStartup() and F_ApiService() ignore their parameters and should be passed
NULL.

It is not necessary to call F_ApiRun(). You may choose to implement your main routine
using these primitives directly. If your program has a windows message loop you need only
call F_ApiStartup(NULL).

However if your remote plugin does not call F_ApiRun(), it must either periodically check the
FA_bailout flag or arrange to terminate based on the FA_NotePostQuitSession notification.
You must make these checks, otherwise FrameMaker can terminate leaving your client
running.

Compiling and running a sample client

The following code sample is a console application that connects to the default FrameMaker
session and gets the name of the active FrameMaker document. Following the code is a line-
by-line description of how it works.

1. #define DONT_REDEFINE // Console app needs native types
2. #define WBUFLEN 512
3.
4. #include "fdetypes.h"
5. #include "futils.h"
6. #include "fapi.h"
7. #include "fstrings.h"
8. #include <windows.h>

Writing an Asynchronous FDK Client5

52 FDK 7.2 Platform Guide, Windows

9. #include <ddeml.h> //not required
10. #include <stdarg.h> //not required
11.
12. int main(int argc, char **argv)
13. {
14. StringT opt_progid;
15. CLSID pclsid;
16. LPOLESTR progStr;
17. HRESULT res;
18. F_ObjHandleT docId;
19.
20. // Get the process name.
21. if(argc == 2)
22. opt_progid = F_StrCopyString((StringT)argv[1]);
23. else {
24. fprintf(stderr, "You must provide a process name.");
25. return(1);
26. }
27.
28. // Convert the process name into a GUID
29. progStr = (OLECHAR*)malloc(WBUFLEN*sizeof(wchar_t));
30. if(0 == MultiByteToWideChar(CP_ACP, 0, (char *)opt_progid, -1,
31. progStr, WBUFLEN)) {
32. fprintf(stderr, "failed to allocate\n");
33. return(1);
34. }
35. if (progStr[0] == '{') // hex-codes within brackets
36. res = CLSIDFromString(progStr, &pclsid);
37. else
38. res = CLSIDFromProgID(progStr, &pclsid);
39.
40. if(res == S_OK)
41. F_ApiWinConnectSession(NULL, NULL, &pclsid);
42. if (!F_ApiAlive()) {
43. fprintf(stderr, "No connection: %s\n", opt_progid);
44. return 1;
45. }
46. // Print the name of the current document.
47. docId = F_ApiGetId(0, FV_SessionId, FP_ActiveDoc);
48. if (docId) {
49. StringT docname = F_ApiGetString(FO_Session, docId, FP_Name);
50. fprintf(stderr, "Current document: %s\n", docname);
51. F_ApiDeallocateString(&docname);
52. } else
53. fprintf(stderr, "No active document\n");
54.
55. return 0;
56. }

FDK 7.2 Platform Guide, Windows 53

Writing an Asynchronous FDK Client 5

Line 1

To compile this client as a console application, you need to use types that are native to the C
language. This statement keeps the FDE from redefining those types.

Lines 20–26

These lines parse the commandline options you pass to the client when you invoke it. You
invoke the exe with the name of a FrameMaker process as an argument. To run the default
process, use the name FrameMaker.API.1. For example, assuming the exe is named
fmRemote.exe, type the following to invoke it with the default FrameMaker process:

fmRemote.exe FrameMaker.API.1

For more information, see “Registering a name for a FrameMaker process” on page 45.

Lines 28–38

These lines convert the process name into a valid GUID. Note that you need a Unicode string
for the process name. The code uses the Win32 API call, MultiByteToWideChar() to
convert the process name to Unicode. It then uses the Win32 API functions
CLSIDFromProgID() or CLSIDFromString() to get the GUID for the specified process.

Lines 40–45

If you successfully retrieve a GUID for the process, these lines make the connection to a
FrameMaker session.

Lines 46–56

Now that the client has connected with a session, it can use the FDK to interact with that
session. These lines are standard FDK code to get the name of the active document for the
current session. You can add code to perform other actions such as adding menus to the
application window, manipulating the active document, or anything else you can do via the
FDK.

IMPORTANT: Because they don’t have a Windows message processing loop, console
applications cannot handle notifications from the FDK, such as menu
commands or notifications such as FA_Note_PreSaveDoc.

Compiling and registering the sample client

To compile the sample client in Microsoft Development Environment 2003 (Version 7.1),
follow these steps:

Writing an Asynchronous FDK Client5

54 FDK 7.2 Platform Guide, Windows

1. Create a project for a console application.

Use the Project Wizard to create a new project for a console application.

2. Set up the project options and settings as described in Chapter , “Compiling, Registering,
and Running FDK Clients.”

IMPORTANT: Your link settings must include fdk.lib and api.lib. but neither
fmdbms32.lib nor fmdebug.lib. In previous versions of the FDK,
fmdbms32.lib and fmdebug.lib were required to compile. These
libraries are now obsolete, but we include them so you don’t have to change
the link settings to compile existing FDK projects. If a remote client fails to
start up and you see these libraries mentioned in the error text, then you must
remove them from your link settings and recompile.

3. Compile the client.

4. Register the client

There are three ways to register an asynchronous client. See “Registering asychronous
clients” on page 42.

You must also be sure the end user has a correct installation to run asynchronous clients.
See “End user installations” on page 41.

5. Connect the client with a named FrameMaker process

To connect with a named FrameMaker process:
– On your machine, register the FrameMaker process as a server

See “Registering multiple FrameMaker processes as servers” on page 44. Be sure to
register it with a name. See “Registering a name for a FrameMaker process” on page 45.

– In a command window, type the filename for the client, followed with the name of the
FrameMaker process the argument.

– To connect to the default FrameMaker process, use the process name,
FrameMaker.API.1.

For example, type remote.exe process_name, where process_name is the name
you assigned to a FrameMaker process. Note that unlss you registered the process to start
up automatically, that process must be running when you invoke the sample client. See
“Registering automatic start-up for a process” on page 45.

Summary of supporting functionality

Until such time as a common RPC protocol is supported on all platforms, Windows FDK
clients can only communicate with Windows FrameMaker and UNIX FDK clients can only
communicate with UNIX FrameMaker.

To support communication with a FrameMaker process, the Windows version of the FDK
provides the following functions:

FDK 7.2 Platform Guide, Windows 55

Writing an Asynchronous FDK Client 5

Using F_ApiStartup(F_FdFuncT) the F_FdFuncT argument is ignored because Windows
RPC is not based on sockets. F_ApiStartup queries the application’s version information
for client configuration data, if present, and connects to FrameMaker.

For information on these functions and properties, see the FDK Programmer’s Reference.

Function Purpose

F_ApiWinConnectSession() Initiates communication between the calling
process and an identified FrameMaker process

F_ApiDisconnectFromSession() Severs communication with a FrameMaker
process

F_ApiSetClientDir() Identifies a directory the FrameMaker process
associates with an unregistered client

F_ApiShutDown() Closes a client’s connection with the API

F_ApiWinInstallDefaultMessageFilter() Registers the default FDK message filter for a
COM session.

F_ApiService() useful if you are providing a replacement for
F_ApiRun().

Used the same way as on UNIX but parameters
are ignored.

F_ApiStartup() Works as in Unix, parameter is ignored. See
below.

F_ApiAlive()

F_ApiErr(message) Prints client name and message to console.

F_ApiRun provides the minimum functionality required in
an FDK client’s main() function

Writing an Asynchronous FDK Client5

56 FDK 7.2 Platform Guide, Windows

FDK 7.2 Platform Guide, Windows 57

Index

Numerics
0050-0602 file format identifiers 16 to 17

A
ADBE vendor identifier 14
Alt key, specifying as keyboard shortcut 21
Ami Professional to MIF file format 17
API (Application Program Interface) clients. See clients
api.lib library 2, 7
APIClients section of .ini file 2, 29, 36
asynchronous communication 41 to ??, 41 to 55
Autodesk Drawing eXchange file format 14
AW4W vendor identifier 14

C
C library files, including when compiling clients 12
.c source files 8
callback functions in clients 1
CCITT Group 4 to Image file format 15
CDR file format identifier 14
CGM file format identifier 14
char data type, errors for 12
CharT data type 12
clients

compiling 2, 23 to 24
debugging 39
disabling 39
FDK client vi
header files for 5 to 7
linking 26
overview of operations 1
registering 3, 29 to 38
running 38, 39
sample 8
source code for 5
steps for writing 11

commands, adding 20
communicating asynchronously 41 to ??, 41 to 55

compatibility between FDK and FrameMaker product
releases 38

compiler options, for FDK 25
compiling clients 23 to ??

including C library files 12
overview 2
supported compilers 23
with Microsoft Development Environment 2003

(Version 7.1) 23
Computer Graphics Metafile file format 14
ConfigCommandsFile file, default location for 20
ConfigCustomUIFile file, default location for 20
ConfigMathFile file, default location for 20
ConfigMenuFile file, default location for 20
configuration 1
connecting to a running FrameMaker process 50
Control key, specifying as keyboard shortcut 21
conventions used in this manual v, vi
copying, FDK files 5
Corel Ventura compound document file format 14
CorelDRAW file format 14
CVBN file format identifier 14

D
data types, replacing platform-specific 12
DCA file format identifier 14
DCA to MIF file format 14
DCA0 to MIF file format 17
debugging clients 39
developer tools, in the FDK v
Development Environment 2003. See Microsoft

Development Environment 2003 (Version 7.1)
device-independent bitmap file format 14
dialog boxes

compiling 24
modifying 28
name of the dialog resource 27

DIB file format identifier 14
disabling FDK clients 39
disconnecting from a running FrameMaker process 50
.dlg files 27

58 FDK 7.2 Platform Guide, Windows

.DLL (dynamic link libraries), compiling FDK clients
as 1

document reports
described 1
registering 35, 36

DONT_REDEFINE C constant 12
DRW file format identifier 14
DXF file format identifier 14

E
EMF file format identifier 14
Encapsulated PostScript file format 15
Enhanced Metafile file format 14
entry points

in clients 1
EPS file format identifier 14
EPSB file format identifier 15
EPSD file format identifier 15
EPSF file format identifier 15
EPSI file format identifier 15
export filters. See filters

F
F_Alloc() function 12
F_ApiConnectToSession() function 55
F_ApiDefineAndAddCommand() function, adding

shortcuts with 20 to 21
F_ApiDisconnectFromSession() function 55
F_ApiDoneCommand() function 22
F_ApiPrintFAErrno() function 21
F_ApiPrintOpenStatus() function 21
F_ApiPrintPropVals() function 21
F_ApiPrintSaveStatus() function 21
F_ApiSetClientDir() function 55
F_ApiShutDown() function 50
F_ApiTakeControl() function 22
F_FdeInit() function 13
F_FilePathGetNext() function 19
F_FilePathToPathName() function 20
F_PathNameToFilePath() function 19, 20
F_Printf() function 21
F_StrEqual() function 20
F_StrIEqual() function 20
F_Warning() function 21
facets 13

FAPI vendor identifier 14
fapi.h header file 11
f-codes

required header file for 11
FDE (Frame Development Environment),

initializing 13
FDK (Frame Developer’s Kit)

developer tools included in v
documentation v
folders 5 to ??
functions, unsupported 22
header files. See header files
initializing 2
installing 5
libraries 5
platforms supported v
release notes for 8
tools v

FDK clients. See clients
FDK clients

communicating asynchronously 41 to 55
FDK Platform Guide (Macintosh)

conventions used in ?? to vi
FDK Platform Guide (Windows)

conventions used in vi to ??
FDK Platform Guide, versions v
FDK Programmer’s Guide v
FDK Programmer’s Reference v
fdk.lib library 2, 7
FFLT vendor identifier 14
File Error errors 39
file formats

automatic recognition 17
reserved identifiers 14
signature bytes 17
with filters 13 to 18

filenames, style convention for vi
FilePathT structure 19
Files section of .ini file 20
filters 1

cross-platform considerations 13
defined 33
described 1
identifying 13
recognizing file formats 17
registering 33, 37
starting 13

FDK 7.2 Platform Guide, Windows 59

writing 13 to 18
fmdbms32.lib library 2, 7
FO_Session object, properties on Windows 21
format IDs 13 to 17
FormatList section of .ini file 18
FP_FM_BinDir property, value on Windows 21
FP_FM_CurrentDir property, value on Windows 21
FP_FM_HomeDir property, value on Windows 22
FP_HostName property, value on Windows 22
FP_InitDir property, value on Windows 22
FP_OpenDir property, value on Windows 22
FP_Path property, value on Windows 22
FP_TmpDir property, value on Windows 22
FP_UserHomeDir property, value on Windows 22
FP_UserLogin property, value on Windows 22
FP_UserName property, value on Windows 22
FRAM vendor identifier 14
Frame Developer’s Kit (FDK). See FDK (Frame

Developer’s Kit)
FrameImage file format 15
FrameMaker files, converting to or from other

formats 1, 33
FrameMaker product console, FDK functions that write

to 21
FrameVector file format 15
FRMI file format identifier 15
FRMV file format identifier 15
functions

replacing platform-specific 12
unsupported 22

G
G4IM file format identifier 15
GEM file format 15
GEM file format identifier 15
GIF file format identifier 15
graphic filters. See filters
graphics

imported by copy 13
imported by reference 13
importing with filters 13

Graphics Interchange Format file format 15

H
header files

required for FDK clients 11
table of 5 to 7

Hewlett-Packard Graphics Language file format 15
HPGL file format identifier 15

I
IAF file format identifier 15
IGES file format identifier 15
IMAG vendor identifier 14
import filters. See filters
importing files with filters 13
include folder 5
Initial Graphics Exchange Specification file format 15
initializing the FDK 2
installing FDK 5
int data type, errors for 12
Interleaf compound document (IAF) to MIF file

format 17
Interleaf compound document file format 15
IntT data type 12

J
Japanese (EUC) file format 16
Japanese (JIS) file format 16
Japanese (Shift-JIS) file format 16
JPEG (Joint Photographic Experts Group) file

format 15
JPEG file format identifier 15

K
keyboard shortcuts, adding 20
Korean file format 16

L
lib folder 5
libraries 7
linker options, for FDK 26
linking clients 26
Lotus 123 to MIF file format 17

M
MacPaint file format 15

60 FDK 7.2 Platform Guide, Windows

Maker Interchange Format file format 15
Maker Markup Language file format 15
maker.ini file. See .ini files
malloc() function, errors for 12
MathCharacterFile file, default location for 20
menus, adding 20
MIAF file format identifier 15
Micrografx CAD file format 14
Microsoft Development Environment 2003 (Version

7.1) 1
compiling sample clients with 23 to 24
compiling your clients with 24 to 26
configuring for FDK 24
required compiler 23

Microsoft Excel to MIF file format 17
Microsoft Foundation Classes 3, 25
Microsoft Rich Text Format (RTF) to MIF file

format 17
Microsoft Word compound document file format 16
Microsoft Word to MIF file formats 16 to 17
Microsoft’s RTF compound document file format 15
MIF file format 15
MIF file format identifier 15
MIF signature bytes 18
MIF to IAF export file format 15
MIF to Microsoft Rich Text Format (RTF) file

format 17
MIF to RTF export file format 15
MIF to WordPerfect export file format 15
MIF to WordPerfect file format 17
MML file format 15
MML file format identifier 15
MooV file format identifier 15
MRTF file format identifier 15
MSWinConfigCommandsFile file, default location

for 20
MWPB file format identifier 15

O
Object Linking and Embedding Client file format 15
OLE file format identifier 15

P
$PATH environment variable 22
pathnames vi

returned by FDK functions 18
specifying in FDK functions 18

PC Paintbrush file format 15
PCName in .ini files 22
PCX file format identifier 15
PICT file format identifier 15
placeholders vi
platforms, supported v
PNG file format identifier 15
PNTG file format identifier 15
Portable Network Graphics file format 15
program names vi
public header files. See header files

Q
QuickDraw PICT file format 15
QuickTime Movie file format 15

R
.rc files 27
registering clients 29 to 38

by using the maker.ini file 36
by using the VERSIONINFO resource 29
document reports 35, 36
filters 33, 37
sample clients 24
standard clients 32, 36
take-control clients 34, 36

resource definition files 27
RTF file format identifier 15
running clients 38

S
sample client, for asynchronous communication 51
sample clients 8

permission to use 8
registering 24

samples folder 5, 8
session properties 21
SGI RGB file format 15
Shift key, specifying as keyboard shortcut 21
signature bytes 17
Simplified Chinese (GB) file format 16
Simplified Chinese (HZ) file format 16

FDK 7.2 Platform Guide, Windows 61

SNRF file format identifier 15
source code, for sample clients 8, 5
SRGB file format identifier 15
standard clients

described 1
registering 32, 36

starting the FDK 2
Struct Member Alignment 3, 25
struct.lib library 7
suffixes

for filters 13
Sun Raster File file format 15
system configuration 1

T
Tag Image File Format 16
take-control clients

described 1
registering 34, 36

TANS file format identifier 15
TASC file format identifier 16
TBG5 file format identifier 16
$TEMP environment variable 22
TEUH file format identifier 16
TEUJ file format identifier 16
Text (Macintosh) File Format 16
Text (plain) file format 16
Text ANSI file format 15
Text ASCII file format 16
TEXT file format identifier 16
text filters. See filters
Text ISO Latin 1 file format 16
Text Roman 8 file format 16
text, importing with filters 13
TIFF file format identifier 16
TJIS file format identifier 16
TKOR file format identifier 16
TMAC file format identifier 16
Traditional Chinese (BIG-5) file format 16
Traditional Chinese (EUC-CNS) file format 16
TRFA file format identifier 16
TRFE file format identifier 16
TRFF file format identifier 16
TRFS file format identifier 16
troff -man to MIF file format 16
troff -me to MIF file format 16

troff -ms to MIF file format 16
troff to MIF file format 16
TSJS file format identifier 16
TXGB file format identifier 16
TXHZ file format identifier 16
TXIS file format identifier 16
TXRM file format identifier 16

U
undeclared identifier error 12
undef C constant 12

V
vendor IDs 13
VERSIONINFO resource 29
Visual C++. See Microsoft Visual C++

W
WDBN file format identifier 16
Windows Metafile file format 16
Windows NT 1
WMF file format identifier 16
WordPerfect compound document file format 16
WordPerfect Graphics file format 16
WordPerfect to MIF file formats 16 to 17
WPBN file format identifier 16
WPG file format identifier 16

X
X BitMap file format 16
X Windows System Window Dump file format 16
XBM file format identifier 16
.xdi files 27
XTND vendor identifier 14
XWD file format identifier 16

62 FDK 7.2 Platform Guide, Windows

	Contents
	Using This Manual
	FDK documentation
	FDK Programmer’s Guide
	FDK Programmer’s Reference
	FDK Platform Guide
	FDK Sample Clients
	Structure Import/Export API Programmer’s Guide
	FDK Release Notes

	Conventions

	Introduction to the Windows Version of the FDK
	What you need
	How the FDK works on Windows
	Creating and running an FDK client on Windows
	Working with Microsoft Visual C++ 6.0

	Installing the FDK on Windows
	Installing the FDK
	The FDK installation
	include
	lib
	doc
	samples

	Writing FDK Clients for Windows
	How to write an FDK client for Windows
	Including FDK header files
	Replacing platform-specific functions and data types
	Adding calls to initialize the FDE

	Writing filter clients
	Identifying your filter
	Automatic recognition of a file format

	Using Windows pathnames
	Using pathnames returned by FDK functions
	Using F_PathNameToFilePath()
	Using F_FilePathGetNext()

	Using menus and commands
	Finding FrameMaker menu and command names
	Defining keyboard shortcuts

	Using FDK functions that write to the FrameMaker console
	Using platform-dependent session properties
	Unsupported FDK functions

	Compiling, Registering, and Running FDK Clients
	Compiling FDK clients
	Supported compilers
	Compiling, registering, and running the sample clients
	Compiling and registering your own FDK clients
	Using custom dialog boxes
	Linking the Structure Import/Export API library

	Registering FDK clients
	Registering a client by using the VERSIONINFO resource
	Registering clients in the FrameMaker maker.ini file

	Running FDK clients
	Compatibility between FDK and FrameMaker product releases
	Disabling FDK clients

	Debugging FDK clients

	Writing an Asynchronous FDK Client
	End user installations
	Registering asychronous clients
	Types of asynchronous clients
	Asynchronous EXE applications
	Asynchronous DLLs

	Registering multiple FrameMaker processes as servers
	Registering a name for a FrameMaker process
	Registering automatic start-up for a process

	Running asynchronous clients on remote hosts
	Enabling DCOM for the server processes on the host
	Enabling DCOM for client machine

	Connecting with a FrameMaker process
	Connecting to the default process on a local host
	Connecting to a named process on a local host
	Connecting to a remote host

	How to write an asynchronous FDK client
	Writing a Main routine in Windows.
	Compiling and running a sample client
	Line 1
	Lines 20-26
	Lines 28-38
	Lines 40-45
	Lines 46-56
	Compiling and registering the sample client

	Summary of supporting functionality

	Index

