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Abstract

A new line of work [6, 9, 15, 2] demonstrates how differential privacy [8] can be used as
a mathematical tool for guaranteeing generalization in adaptive data analysis. Specifically,
if a differentially private analysis is applied on a sample S of i.i.d. examples to select a low-
sensitivity function f , then w.h.p. f (S) is close to its expectation, although f is being chosen
based on the data.

Very recently, Steinke and Ullman [16] observed that these generalization guarantees can be
used for proving concentration bounds in the non-adaptive setting, where the low-sensitivity
function is fixed beforehand. In particular, they obtain alternative proofs for classical concen-
tration bounds for low-sensitivity functions, such as the Chernoff bound and McDiarmid’s
Inequality.

In this work, we set out to examine the situation for functions with high-sensitivity, for
which differential privacy does not imply generalization guarantees under adaptive analysis.
We show that differential privacy can be used to prove concentration bounds for such functions
in the non-adaptive setting.
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1 Introduction

A new line of work [6, 9, 15, 2] demonstrates how differential privacy [8] can be used as a math-
ematical tool for guaranteeing statistical validity in data analysis. Specifically, if a differentially
private analysis is applied on a sample S of i.i.d. examples to select a low-sensitivity function f ,
then w.h.p. f (S) is close to its expectation, even when f is being chosen based on the data. Dwork
et al. [6] showed how to utilize this connection for the task of answering adaptively chosen queries
w.r.t. an unknown distribution using i.i.d. samples from it.

To make the setting concrete, consider a data analyst interested in learning properties of an
unknown distribution D. The analyst interacts with the distribution D via a data curator A holding
a database S containing n i.i.d. samples from D. The interaction is adaptive, where at every round
the analyst specifies a query q : Xn→R and receives an answer aq(S) that (hopefully) approximates
q(Dn) , ES ′∼Dn[q(S ′)]. As the analyst chooses its queries based on previous interactions with the
data, we run the risk of overfitting if A simply answers every query with its empirical value on the
sample S. However, if A is a differentially private algorithm then the interaction would not lead to
overfitting:

Theorem 1.1 ([6, 2], informal). A function f : Xn → R has sensitivity λ if |f (S) − f (S ′)| ≤ λ for
every pair S,S ′ ∈ Xn differing in only one entry. Define f (Dn) , E

S ′∼Dn
[f (S ′)]. Let A : Xn → Fλ be

(ε,δ)-differentially private where Fλ is the class of λ-sensitive functions, and n ≥ 1
ε2 log(4ε

δ ). Then for
every distribution D on X,

Pr
S∼Dn
f←A(S)

[|f (S)− f (Dn)| ≥ 18ελn] <
δ
ε
.

In words, if A is a differentially private algorithm operating on a database containing n i.i.d.
samples from the distribution D, then A cannot (with significant probability) identify a low-
sensitivity function that behaves differently on the sample S and on Dn.

Very recently, Steinke and Ullman [16] observed that Theorem 1.1 gives alternative proofs
for classical concentration bounds for low-sensitivity functions, such as the Chernoff bound and
McDiarmid’s Inequality: Fix a function f : Xn → R with sensitivity λ and consider the trivial
mechanismAf that ignores its input and always outputs f . Such a mechanism is (ε,δ)-differentially
private for any choice of ε,δ ≥ 0 and hence Theorem 1.1 yields (up to constants) McDiarmid’s
Inequality:

Pr
S∼Dn

[|f (S)− f (Dn)| ≥ 18ελn] <
δ
ε

= 2−Ω(ε2·n), (1)

where the last equality follows by setting n = 1
ε2 log(4ε

δ ).
In light of this result it is natural to ask if similar techniques yield concentration bounds for

more general families of queries, and in particular queries that are not low-sensitivity functions.
In this work we derive conditions under which this is the case.

1.1 Differential Privacy, Max-Information, and Typical Stability

Let D be a fixed distribution over a domain X, and consider a family of functions mapping
databases in Xn to the reals, such that for every function f in the family we have that |f (S)− f (Dn)|
is small w.h.p. over S ∼ Dn. Specifically,

Fα,β(D) =
{
f : Xn→R : Pr

S∼Dn
[|f (S)− f (Dn)| > α] ≤ β

}
.
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That is, for every function f ∈ Fα,β(D) we have that its empirical value over a sample S ∼ Dn is
α-close to its expected value w.p. 1− β. Now consider a differentially private algorithm A : Xn→
Fα,β(D) that takes a database and returns a function from Fα,β(D). What can we say about the
difference |f (S)− f (Dn)| when f is chosen by A(S) based on the sample S itself?

Using the notion of max-information, Dwork et al. [5] showed that if β is small enough, then
w.h.p. the difference remains small. Informally, they showed that if A is differentially private, then

Pr
S∼Dn
f←A(S)

[|f (S)− f (Dn)| > α] ≤ β · eε
2·n.

So, if A is a differentially private algorithm that ranges over functions which are very concentrated
around their expected value (i.e., β < e−ε

2n), then |f (S)− f (Dn)| remains small (w.h.p.) even when f
is chosen by A(S) based on the sample S. When β > e−ε

2n it is easy to construct examples where a
differentially private algorithm identifies a function f ∈ Fα,β(D) such that |f (S)−f (Dn)| is arbitrarily
large with high probability. So, in general, differential privacy does not guarantee generalization
for adaptively chosen functions of this sort. However, a stronger notion than differential privacy –
typical stability – presented by Bassily and Freund [1] does guarantee generalization in this setting.
Informally, they showed that if a typically stable algorithm B outputs a function f ∈ Fα,β(D), then
|f (S)− f (Dn)| remains small.1

The results of this article provide another piece of this puzzle, as we show that (a variant of)
differential privacy can in some cases be used to prove that a function f is in Fα,β(D).

1.2 Our Results

Notation. Throughout this article we use the convention that f (Dn) is the expected value of the
function f over a sample containing n i.i.d. elements drawn according to the distribution D. That
is, f (Dn) , E

S∼Dn
[f (S)].

Fix a function f : Xn→R, let D be a distribution over X, and let S ∼ Dn. Our goal is to bound
the probability that |f (S)− f (Dn)| is large by some (hopefully) easy-to-analyze quantity. To intuit
our result, consider for example what we get by a simple application of Markov’s Inequality:

Pr
S∼Dn

[|f (S)− f (Dn)| > λ] ≤ 1
λ
· E

S∼Dn

[
1|f (S)−f (Dn)|>λ · |f (S)− f (Dn)|

]
. (2)

We show that using differential privacy we can replace the term |f (S)−f (Dn)| in the expectation
with |f (S ∪ {x})− f (S ∪ {y})|, which can sometimes be easier to analyze. Specifically, we show the
following.

Theorem 1.2 (part 1). Let D be a distribution over a domain X, let f : Xn→R , and let ∆,λ ∈R≥0 be
s.t. for every 1 ≤ i ≤ n it holds that

E

S∼Dn
z∼D

[
1|f (S)−f (S(i←z))|>λ ·

∣∣∣∣f (S)− f
(
S(i←z)

)∣∣∣∣] ≤ ∆, (3)

where S(i←z) is the same as S except that the ith element is replaced with z. Then for every ε > 0 we have
that

Pr
S∼Dn

[|f (S)− f (Dn)| ≥ 18ελn] <
14∆
ελ

,

provided that n ≥O
(

1
ε·min{1,ε} log(λ·min{1,ε}

∆
)
)
.

1A similar notion – perfect generalization – was presented in [4].
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Observe that for a λ-sensitive function f , we have that the expectation in Equation (3) is zero,
so the statement holds for every choice of β > 0 and n ≥ O

(
1
ε2 log( 1

β )
)
, resulting in McDiarmid’s

Inequality (Equation (1)). Intuitively, Theorem 1.2 states that in order to obtain a high probability

bound on |f (S)− f (Dn)| is suffices to analyze the “expectation of the tail” of
∣∣∣∣f (S)− f

(
S(i←z)

)∣∣∣∣, as a
function of the starting point λ.

We also show that the above bound can be improved whenever the “expectation of the head” of∣∣∣∣f (S)− f
(
S(i←z)

)∣∣∣∣ is smaller than λ. Specifically,

Theorem 1.2 (part 2). If, in addition to (3), ∃τ ≤ λ s.t. for every S ∈ Xn and every 1 ≤ i ≤ n we have

E

y,z∼D

[
1|f (S(i←y))−f (S(i←z))|≤λ ·

∣∣∣∣f (S(i←y))− f
(
S(i←z)

)∣∣∣∣] ≤ τ, (4)

Then for every ε > 0 we have that

Pr
S∼Dn

[|f (S)− f (Dn)| ≥ 18ετn] <
14∆
ετ

,

provided that n ≥O
(

λ
ε·min{1,ε}τ log(τ ·min{1,ε}

∆
)
)

Observe that while the expectation in (3) is over the entire sample S (as well as the replacement
point), in requirement (4) the sample S is fixed. We do not know if this “worst-case” restriction is
necessary.

In Section 4 we demonstrate how Theorem 1.2 can be used in proving a variety of concentration
bounds, such as a high probability bound on |f (S)− f (Dn)| for Lipschitz functions. In addition
we show that Theorem 1.2 can be used to bound the probability that the number of triangles in a
random graph significantly exceeds the expectation.

2 Preliminaries

2.1 Differential Privacy

Our results rely on a number of basic facts about differential privacy. An algorithm operating on
databases is said to preserve differential privacy if a change of a single record of the database does
not significantly change the output distribution of the algorithm. Formally:

Definition 2.1. Databases S ∈ Xn and S ′ ∈ Xn over a domain X are called neighboring if they differ
in exactly one entry.

Definition 2.2 (Differential Privacy [8, 7]). A randomized algorithmA : Xn→ Y is (ε,δ)-differentially
private if for all neighboring databases S,S ′ ∈ Xn, and for every set of outputs T ⊆ Y , we have

Pr[A(S) ∈ T ] ≤ eε ·Pr[A(S ′) ∈ T ] + δ.

The probability is taken over the random coins of A.

3



2.2 The Exponential Mechanism

We next describe the exponential mechanism of McSherry and Talwar [14].

Definition 2.3 (Sensitivity). The sensitivity (or global sensitivity) of a function f : Xn→ R is the
smallest λ such that for every neighboring S,S ′ ∈ Xn, we have |f (S)− f (S ′)| ≤ λ. We use the term
“λ-sensitive function” to mean a function of sensitivity ≤ λ.

LetX be a domain andH a set of solutions. Given a database S ∈ X∗, the exponential mechanism
privately chooses a “good” solution h out of the possible set of solutions H . This “goodness” is
quantified using a quality function that matches solutions to scores.

Definition 2.4 (Quality function). A quality function is a function q : X∗ ×H → R that maps a
database S ∈ X∗ and a solution h ∈H to a real number, identified as the score of the solution h w.r.t.
the database S.

Given a quality function q and a database S, the goal is to chooses a solution h approximately
maximizing q(S,h). The exponential mechanism chooses a solution probabilistically, where the
probability mass that is assigned to each solution h increases exponentially with its quality q(S,h):

The Exponential Mechanism
Input: privacy parameter ε > 0, finite solution set H , database S ∈ Xn, and a λ-sensitive quality
function q.

1. Randomly choose h ∈H with probability
exp( ε

2λ ·q(S,h))∑
h′∈H exp( ε

2λ ·q(S,h′)) .

2. Output h.

Theorem 2.5 (Properties of the exponential mechanism). (i) The exponential mechanism is (ε,0)-
differentially private. (ii) Let Opt(S) ,maxf ∈H {q(S,f )} and ∆ > 0. The exponential mechanism outputs
a solution h such that q(S,h) ≤ (Opt(S)−∆) with probability at most |H | · exp

(
− ε∆2λ

)
.

2.3 Concentration Bounds

Let X1, . . . ,Xn be independent random variables where Pr[Xi = 1] = p and Pr[Xi = 0] = 1 − p for
some 0 < p < 1. Clearly, E[

∑n
i=1Xi] = pn. Chernoff and Hoeffding bounds show that the sum is

concentrated around this expected value:

Pr

 n∑
i=1

Xi > (1 + δ)pn

 ≤ exp
(
−pnδ2/3

)
for 0 < δ ≤ 1,

Pr

 n∑
i=1

Xi < (1− δ)pn

 ≤ exp
(
−pnδ2/2

)
for 0 < δ < 1,

Pr


∣∣∣∣∣∣∣
n∑
i=1

Xi − pn

∣∣∣∣∣∣∣ > δ
 ≤ 2exp

(
−2δ2/n

)
for δ ≥ 0.

The first two inequalities are known as the multiplicative Chernoff bounds [3], and the last
inequality is known as the Hoeffding bound [10]. The next theorem states that the Chernoff bound
above is tight up to constant factors in the exponent.
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Theorem 2.6 (Tightness of Chernoff bound [12]). Let 0 < p,δ ≤ 1
2 , and let n ≥ 3

δ2p . Let X1, . . . ,Xn be
independent random variables where Pr[Xi = 1] = p and Pr[Xi = 0] = 1− p. Then,

Pr

 n∑
i=1

Xi ≤ (1− δ)pn

 ≥ exp(−9δ2pn),

Pr

 n∑
i=1

Xi ≥ (1 + δ)pn

 ≥ exp(−9δ2pn).

3 Concentration Bounds via Differential Privacy

In this section we show how the concept of differential privacy can be used to derive conditions
under which a function f and a distributionD satisfy that |f (S)−f (Dn)| is small w.h.p. when S ∼ Dn.
Our proof technique builds on the proof of Bassily et al. [2] for the generalization properties of a
differentially private algorithm that outputs a low-sensitivity function. The proof consists of two
steps:

1. Let S1, . . . ,ST be T independent samples from Dn (each containing n i.i.d. samples from D).
Let A be selection procedure that, given S1, . . . ,ST , chooses an index t ∈ [T ] with the goal
of maximizing |f (St)− f (Dn)|. We show that if A satisfies (a variant of) differential privacy
then, under some conditions on the function f and the distribution D, the expectation of
|f (St)− f (Dn)| is bounded. That is, if A is differentially private, then its ability to identify a
“bad” index t with large |f (St)− f (Dn)| is limited.

2. We show that if |f (S)− f (Dn)| is large w.h.p. over S ∼ Dn, then it is possible to construct an
algorithm A satisfying (a variant of) differential privacy that contradicts our expectation
bound.

We begin with a few definitions.

3.1 Definitions

Notations. We use ~S ∈ (Xn)T to denote a multi-database consisting of T databases of size n over
X. Given a distribution D over a domain X we write ~S ∼ DnT to denote a multi-database sampled
i.i.d. from D.

Definition 3.1. Fix a function f : Xn → R mapping databases of size n over a domain X to the
reals. We say that two multi-databases ~S = (S1, . . . ,ST ) ∈ (Xn)T and ~S ′ = (S ′1, . . . ,S

′
T ) ∈ (Xn)T are

(f ,λ)-neighboring if for all 1 ≤ i ≤ T we have that

|f (Si)− f (S ′i )| ≤ λ.

Definition 3.2 ((ε, (f ,λ))-differential privacy). Let M : (Xn)T → Y be a randomized algorithm that
operates on T databases of size n from X. For a function f : Xn → R and parameters ε,λ ≥ 0,
we say that M is (ε, (f ,λ))-differentially private if for every set of outputs F ∈ Y and for every
(f ,λ)-neighboring ~S, ~S ′ ∈ (Xn)T it holds that

Pr[M(~S) ∈ F] ≤ eε ·Pr[M(~S ′) ∈ F].
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Claim 3.3. Fix a function f : Xn→R and parameters ε ≤ 1 and λ ≥ 0. If M : (Xn)T → Y is (ε, (f ,λ))-
differentially private then for every (f ,λ)-neighboring databases ~S, ~S ′ ∈ (Xn)T and every function
h : Y →R we have that

E

y←M(~S)
[h(y)] ≤ E

y←M(~S ′)
[h(y)] + 4ε · E

y←M(~S ′)
[|h(y)|] .

Claim 3.3 follows from basic arguments in differential privacy. The proof appears in the
appendix for completeness.

3.2 Multi Sample Expectation Bound

The proof of Theorem 1.2 contains somewhat unwieldy notation. For readability, we present here a
restricted version of the theorem, tailored to the case where the function f computes the sample
sum, which highlights most of the ideas in the proof. The full proof of Theorem 1.2 is included in
the appendix.

Notation. Given a sample S ∈ Xn, we use f̄ (S) to denote the sample sum, i.e., f̄ (S) =
∑
x∈S x.

Lemma 3.4 (Simplified Expectation Bound). Let D be a distribution over a domain X such that
E

x∼D
[x] = 0 and E

x∼D

[
1{|x|>1} · |x|

]
≤ ∆. Fix 0 < ε ≤ 1, and letA : (Xn)T → [T ] be an (ε, (f̄ ,1))-differentially

private algorithm that operates on T databases of size n from X, and outputs an index 1 ≤ t ≤ T . Then∣∣∣∣∣∣∣∣∣∣ E

~S∼DnT
t←A(~S)

[
f̄ (St)

]∣∣∣∣∣∣∣∣∣∣ ≤ 4εn+ 2nT∆.

Proof. We denote ~S = (S1, . . . ,ST ), where every St is itself a vector St = (xt,1, . . . ,xt,n). We have:

E

~S∼DnT
t←A(~S)

[
f̄ (St)

]
=

∑
i∈[n]

E

~S∼DnT
E

t←A(~S)

[
xt,i

]

=
∑
i∈[n]

E

~S∼DnT

1{
max
m∈[t]
|xm,i | ≤ 1

}
· E

t←A(~S)

[
xt,i

]
+1

{
max
m∈[t]
|xm,i | > 1

}
· E

t←A(~S)

[
xt,i

] . (5)

In the case where maxm∈[t] |xm,i | > 1 we replace the expectation over t←A(~S) with the deter-
ministic choice for the maximal t (this makes the expression larger). When maxm∈[t] |xm,i | ≤ 1 we

can use the privacy guarantees of algorithm A. Given a multi-sample ~S ∈ (Xn)T we use ~S−i to
denote a multi-sample identical to ~S, except that the ith element of every sub-sample is replaced
with 0. Using Claim 3.3 we get

(5) ≤
∑
i∈[n]

E

~S∼DnT

1{
max
m∈[t]
|xm,i | ≤ 1

}
·
 E

t←A(~S−i )

[
xt,i

]
+ 4ε E

t←A(~S−i )

[
|xt,i |

]+1
{

max
m∈[t]
|xm,i | > 1

}
· max
m∈[T ]

|xm,i |


≤ 4εn +
∑
i∈[n]

E

~S∼DnT

1{
max
m∈[t]
|xm,i | ≤ 1

}
· E

t←A(~S−i )

[
xt,i

]
+1

{
max
m∈[t]
|xm,i | > 1

}
· max
m∈[T ]

|xm,i |
 (6)
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We next want to remove the first indicator function. This is useful as without it, the ex-
pectation of a fresh example from D is zero. To that end we add and subtract the expression
1

{
maxm∈[t] |xm,i | > 1

}
· E

t←A(~S−i )

[
xt,i

]
to get (after replacing again Et with maxt)

(6) ≤ 4εn +
∑
i∈[n]

E

~S∼DnT

 E

t←A(~S−i )

[
xt,i

]
+ 2 ·1

{
max
m∈[t]
|xm,i | > 1

}
· max
m∈[T ]

|xm,i |


≤ 4εn + 2
∑
i∈[n]

∑
m∈[T ]

E

~S∼DnT

[
1
{
|xm,i | > 1

}
· |xm,i |

]
≤ 4εn + 2nT∆.

3.3 Multi Sample Amplification

Theorem 3.5 (Simplified High Probability Bound). Let D be a distribution over a domain X such that

E

x∼D
[x] = 0. Let ∆ ≥ 0 be such that E

x∼D

[
1{|x|>1} · |x|

]
≤ ∆. Fix 1 ≥ ε ≥

√
1
n ln(2/∆). We have that

Pr
S∼Dn

[
|f̄ (S)| ≥ 30εn

]
<
∆

ε
.

We present the proof idea of the theorem. Any informalities made hereafter are removed in
Section A.

Proof sketch. We only analyze the probability that f̄ (S) is large. The analysis is symmetric for
when f̄ (S) is small. Assume towards contradiction that with probability at least ∆

2ε we have that
f̄ (S) ≥ 30εn. We now construct the following algorithm B that contradicts our expectation bound.

Algorithm 1 B

Input: T databases of size n each: ~S = (S1, . . . ,ST ), where T , b2ε/∆c.

1. For i ∈ [T ], define q(~S, i) = f̄ (Si).

2. Sample t∗ ∈ [T ] with probability proportional to exp
(
ε
2q(~S, t)

)
.

Output: t.

The fact that algorithm B is (ε, (f̄ ,1))-differentially private follows from the standard analysis
of the Exponential Mechanism of McSherry and Talwar [14]. The analysis appears in the full
version of this proof (Section A) for completeness.

Now consider applying B on databases ~S = (S1, . . . ,ST ) containing i.i.d. samples from D. By our
assumption on D, for every t we have that f̄ (St) ≥ 30εn with probability at least ∆

2ε . By our choice
of T = b2ε/∆c, we therefore get

Pr
~S∼DnT

[
max
t∈[T ]

{
f̄ (St)

}
≥ 30εn

]
≥ 1−

(
1− ∆

2ε

)T
≥ 1

2
.

The probability is taken over the random choice of the examples in ~S according to D. Had it been
the case that the random variable maxt∈[T ]

{
f̄ (St)

}
is non-negative, we could have used Markov’s
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inequality to get

E

~S∼DnT

[
max
t∈[T ]

{
q(~S, t)

}]
= E

~S∼DnT

[
max
t∈[T ]

{
f̄ (St)

}]
≥ 15εn. (7)

Even though it is not the case that maxt∈[T ]

{
f̄ (St)

}
is non-negative, we now proceed as if

Equation (7) holds. As described in the full version of this proof (Section A), this technical issue
has an easy fix. So, in expectation, maxt∈[T ]

(
q(~S, t)

)
is large. In order to contradict the expectation

bound of Theorem A.2, we need to show that this is also the case for the index t∗ that is sampled
on Step 2. To that end, we now use the following technical claim, stating that the expected quality
of a solution sampled as in Step 2 is high.

Claim 3.6 (e.g., [2]). Let H be a finite set, h :H →R a function, and η > 0. Define a random variable
Y on H by Pr[Y = y] = exp(ηh(y))/C, where C =

∑
y∈H exp(ηh(y)). Then E [h(Y )] ≥ maxy∈H h(y) −

1
η ln |H |.

For every fixture of ~S, we can apply Claim 3.6 with h(t) = q(~S, t) and η = ε
2 to get

E

t∗∈R[T ]
[q(~S, t∗)] = E

t∗∈R[T ]

[
f̄ (St∗)

]
≥max
t∈[T ]

{
f̄ (St)

}
− 2
ε

ln(T ).

Taking the expectation also over ~S ∼ DnT we get that

E

~S∼DnT
t∗←B

(
~S
)
[
f̄ (St∗)

]
≥ E

~S∼DnT

[
max
t∈[T ]

{
f̄ (St)

}]
− 2
ε

ln(T )

≥ 15εn− 2
ε

ln(T ).

This contradicts Theorem A.2 whenever ε >
√

1
n ln(T ) =

√
1
n ln(2ε/∆).

4 Applications

In this section we demonstrate how Theorem 1.2 can be used in proving a variety of concentration
bounds.

4.1 Example: Subgaussian Diameter and Beyond

Recall that for a low-sensitivity function f , one could use McDiarmid’s Inequality to obtain a high
probability bound on the difference |f (S)− f (Dn)|, and this bound is distribution-independent. That
is, the bound does not depend onD. Over the last few years, there has been some work on providing
distribution-dependent refinements to McDiarmid’s Inequality, that hold even for functions with
high worst-case sensitivity, but with low “average-case” sensitivity, where “average” is with respect
to the underlying distribution D. The following is one such refinement, by Kontorovich [13].

Definition 4.1 ([13]). Let D be a distribution over a domain X, and let ρ : X2 → R
≥0. The sym-

metrized distance of (X,ρ,D) is the random variable Ξ = ξ ·ρ(x,x′) where x,x′ ∼ D are independent
and ξ is uniform on {±1} independent of x,x′. The subgaussian diameter of (X,ρ,D), denoted
∆SG(X,ρ,D), is the smallest σ ∈R≥0 such that

E

[
eλΞ

]
≤ eσ

2λ2/2, ∀λ ∈R.

8



In [13], Kontorovich showed the following theorem:

Theorem 4.2 ([13], informal). Let f : Xn→R be a function mapping databases of size n over a domain
X to the reals. Assume that there exists a function ρ : X2→R

≥0 s.t. for every i ∈ [n], every S ∈ Xn, and
every y,z ∈ X we have that ∣∣∣∣f (

S(i←y)
)
− f

(
S(i←z)

)∣∣∣∣ ≤ ρ(y,z),

where S(i←x) is the same as S except that the ith element is replaced with x. Then,

Pr
S∼Dn

[|f (S)− f (Dn)| ≥ t] ≤ 2exp

− t2

2n ·∆2
SG(X,ρ,D)

 .
Informally, using the above theorem it is possible to obtain concentration bounds for functions

with unbounded sensitivity (in worst case), provided that the sensitivity (as a random variable)
is subgaussian. In this section we show that our result implies a similar version of this theorem.
While the bound we obtain is weaker then Theorem 4.2, our techniques can be extended to obtain
concentration bounds even in cases where the sensitivity is not subgaussian (that is, in cases where
the subgaussian diameter is unbounded, and hence, Theorem 4.2 could not be applied).

Let us denote σ = ∆SG(X,ρ,D). Now for t ≥ 0,

Pr
x,y∼D

[ρ(x,y) ≥ t] ≤ 2 Pr
x,y∈D
ξ∈{±1}

[ξ · ρ(x,y) ≥ t] = 2Pr[Ξ ≥ t] = 2Pr[e
t
σ2 ·Ξ ≥ e

t
σ2 ·t]

≤ 2e−
t2

σ2 ·E
[
e

t
σ2 ·Ξ

]
≤ 2e−

t2

σ2 · e
σ2
2 ·

t2

σ4 = 2exp
(
− t2

2σ2

)
. (8)

So,

E

S∼Dn
x′∼D

[
1

{∣∣∣∣f (S)− f
(
S(i←x′)

)∣∣∣∣ > λ} · ∣∣∣∣f (S)− f
(
S(i←x′)

)∣∣∣∣]
≤ E

x,y∼D
[1

{
ρ(x,y) > λ

}
· ρ(x,y)]

=
∫ λ

0
Pr

x,y∼D
[1

{
ρ(x,y) > λ

}
· ρ(x,y) ≥ t]dt +

∫ ∞
λ

Pr
x,y∼D

[1
{
ρ(x,y) > λ

}
· ρ(x,y) ≥ t]dt

=
∫ λ

0
Pr

x,y∼D
[ρ(x,y) ≥ λ]dt +

∫ ∞
λ

Pr
x,y∼D

[ρ(x,y) ≥ t]dt

= λ · Pr
x,y∼D

[ρ(x,y) ≥ λ] +
∫ ∞
λ

Pr
x,y∼D

[ρ(x,y) ≥ t]dt

≤ λ · 2exp
(
− λ

2

2σ2

)
+

∫ ∞
λ

2exp
(
− t2

2σ2

)
dt

= λ · 2exp
(
− λ

2

2σ2

)
+
√

2πσ · erfc
(
λ
√

2σ

)
≤ λ · 2exp

(
− λ

2

2σ2

)
+
√

2πσ · exp
(
− λ

2

2σ2

)
≤ 3(λ+ σ ) · exp

(
− λ

2

2σ2

)
, ∆.
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In order to apply Theorem 1.2 we need to ensure that n ≥ O
(

1
ε·min{1,ε} ln

(
λ·min{1,ε}

∆

))
. For our

choice of ∆, it suffices to set ε0 = Θ

(
λ√
nσ

)
, assuming that λ√

nσ
≤ 1. Otherwise, if λ√

nσ
> 1, we will

choose ε1 = Θ
(
λ2

nσ2

)
. Plugging (ε0,∆) or (ε1,∆) into Theorem 1.2, and simplifying, we get

Pr
S∼D

[|f (S)− f (Dn)| ≥ t] ≤


e
−Ω

(
t√
nσ

)
, t ≤ σ ·n1.5

e
−Ω

(
t2/3

σ2/3

)
, t > σ ·n1.5

(9)

Clearly, the bound of Theorem 4.2 is stronger. Note, however, that the only assumption we
used here is that

∫∞
λ

Prx,y∼D[ρ(x,y) ≥ t]dt is small. Hence, as the following section shows, this
argument could be extended to obtain concentration bounds even when ∆SG(X,ρ,D) is unbounded.
We remark that Inequality 9 can be slightly improved by using part 2 of Theorem 1.2. This will be
illustrated in the following section.

4.2 Example: Concentration Under Infinite Variance

Let f : Xn→R be a function mapping databases of size n over a domain X to the reals. Assume
that there exists a function ρ : X2→ R

≥0 s.t. for every i ∈ [n], every S ∈ Xn, and every y,z ∈ X we
have that ∣∣∣∣f (

S(i←y)
)
− f

(
S(i←z)

)∣∣∣∣ ≤ ρ(y,z),

where S(i←x) is the same as S except that the ith element is replaced with x.

As stated in the previous section, the results of [13] can be used to obtain a high probability
bound on |f (S)− f (Dn) | whenever Prx,y∼D[ρ(x,y) ≥ t] ≤ exp

(
−t2/σ2

)
for some σ > 0. In contrast,

our bound can be used whenever
∫∞
λ

Prx,y∼D[ρ(x,y) ≥ t]dt is finite. In particular, we now use it
to obtain a concentration bound for a case where the probability distribution of ρ(x,y) is heavy
tailed, and in fact, has infinite variance. Specifically, assume that all we know on ρ(x,y) is that
Pr[ρ(x,y) ≥ t] ≤ 1/t2 for every t ≥ 1 (this is a special case of the Pareto distribution, with infinite
variance). Let λ ≥ 1. We calculate:

E

S∼Dn
x′∼D

[
1

{∣∣∣∣f (S)− f
(
S(i←x′)

)∣∣∣∣ > λ} · ∣∣∣∣f (S)− f
(
S(i←x′)

)∣∣∣∣]
≤ E

x,y∼D
[1

{
ρ(x,y) > λ

}
· ρ(x,y)]

=
∫ λ

0
Pr

x,y∼D
[1

{
ρ(x,y) > λ

}
· ρ(x,y) ≥ t]dt +

∫ ∞
λ

Pr
x,y∼D

[1
{
ρ(x,y) > λ

}
· ρ(x,y) ≥ t]dt

=
∫ λ

0
Pr

x,y∼D
[ρ(x,y) ≥ λ]dt +

∫ ∞
λ

Pr
x,y∼D

[ρ(x,y) ≥ t]dt

= λ · Pr
x,y∼D

[ρ(x,y) ≥ λ] +
∫ ∞
λ

Pr
x,y∼D

[ρ(x,y) ≥ t]dt

≤ λ 1
λ2 +

∫ ∞
λ

1
t2

dt =
2
λ
, ∆.
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In order to apply Theorem 1.2 we need to ensure that n ≥O
(

1
ε·min{1,ε} ln

(
λ·min{1,ε}

∆
+ 1

))
. Assum-

ing that n ≥ ln(λ), with our choice of ∆ it suffices to set ε = Θ

(√
1
n ln(λ)

)
. Plugging ε and ∆ into

Theorem 1.2, and simplifying, we get

Pr
S∼D

[|f (S)− f (Dn)| ≥ t] ≤ Õ
(
n3/2

t2

)
. (10)

Observe that the above bound decays as 1/t2. This should be contrasted with Markov’s Inequal-
ity, which would decay as 1/t. Recall the assumption that the variance of ρ(x,y) is unbounded.
Hence, the variance of f (S) can also be unbounded, and Chebyshev’s inequality could not be
applied.

As we now explain, Inequality 10 can be improved using part 2 of Theorem 1.2. To that end,
for a fixed database S ∈ Xn, we calculate:

E

y,z∼D

[
1

{∣∣∣∣f (S(i←y))− f
(
S(i←z)

)∣∣∣∣ ≤ λ} · ∣∣∣∣f (S(i←y))− f
(
S(i←z)

)∣∣∣∣]
≤ E

y,z∼D
[ρ(y,z)] ≤

∫ 1

0
1dt +

∫ ∞
1

1
t2

dt = 2 , τ.

In order to apply part 2 of Theorem 1.2 we need to ensure that n ≥O
(

λ
ε·min{1,ε}τ ln

(
ετ
∆

))
. For our

choice of ∆ and τ , if n ≥ λ ln(λ) then it suffices to set ε0 = Θ

(√
λ
n ln(λ)

)
. Otherwise, if n < λ ln(λ)

then it suffices to set ε1 = Θ
(
λ
n ln(λ)

)
. Plugging (ε0,∆) or (ε1,∆) into Theorem 1.2, and simplifying,

we get

Pr
S∼D

[|f (S)− f (Dn)| ≥ t] ≤

 Õ
(
n2

t3

)
, t ≤ n

Õ
(
n
t2

)
, t > n

4.3 Example: Triangles in Random Graphs

A random graph G(N,p) on N vertices 1,2, . . . ,N is defined by drawing an edge between each pair
1 ≤ i < j ≤ N independently with probability p. There are n =

(N
2
)

i.i.d. random variables x{i,j}
representing the choices: x{i,j} = x{j,i} = 1 if the edge {i, j} is drawn, and 0 otherwise. We will useD to

denote the probability Prx∼D[x = 1] = p and Prx∼D[x = 0] = 1−p, and let S =
(
x{1,2}, . . . ,x{n−1,n}

)
∼ Dn.

We say that three vertices i, j, ` form a triangle if there is an edge between any pair of them.
Denote fK3

(S) the number of triangles in the graph defined by S. For a small constant α, we would
like to have an exponential bound on the following probability

Pr
[
fK3

(S) ≥ (1 +α) · fK3
(Dn)

]
.

Specifically, we are interested in small values of p = o(1) such that fK3
(Dn) =

(N
3
)
p3 = Θ

(
N3p3

)
=

o(N ). The difficulty with this choice of p is that (in worst-case) adding a single edge to the graph
can increase the number of triangles by (N − 2), which is much larger then the expected number of
triangles. Indeed, until the breakthrough work of Vu [17] in 2002, no general exponential bounds
were known. Following the work of [17], in 2004 Kim and Vu [11] presented the following sharp
bound:

11



Theorem 4.3 ([11], informal). Let α be a small constant. It holds that

exp
(
−Θ

(
p2N2 log(1/p)

))
≤ Pr
S∼Dn

[
fK3

(S) ≥ (1 +α) · fK3
(Dn)

]
≤ exp

(
−Θ

(
p2N2

))
.

In this section we show that our result can be used to analyze this problem. While the bound
we obtain is much weaker than Theorem 4.3, we find it interesting that the same technique from
the last sections can also be applied here. To make things more concrete, we fix

p =N−3/4.

In order to use our concentration bound, we start by analyzing the expected difference incurred
to fK3

by resampling a single edge. We will denote Ni,j(S) as the number of triangles that are
created (or deleted) by adding (or removing) the edge {i, j}. That is,

Ni,j(S) =
∣∣∣∣{` , i, j : x{i,`} = 1 and x{`,j} = 1

}∣∣∣∣ .
Observe that Ni,j(S) does not depend on x{i,j}. Moreover, observe that for every fixture of i < j we
have that Ni,j(S) is the sum of (N − 2) i.i.d. indicators, each equals to 1 with probability p2.

Fix S =
(
x{1,2}, . . . ,x{n−1,n}

)
∈ {0,1}n and x′ ∈ {0,1}. We have that∣∣∣∣fK3

(S)− fK3

(
S({i,j}←x′)

)∣∣∣∣ =
{

0 , x{i,j} = x′

Ni,j(S) , x{i,j} , x
′

where S({i,j}←x′) is the same as S except with x{i,j} replaced with x′. Fix i < j. We can now calculate

E

S∼Dn
x′∼D

[
1

{∣∣∣∣fK3
(S)− fK3

(
S({i,j}←x′)

)∣∣∣∣ > λ} · ∣∣∣∣fK3
(S)− fK3

(
S({i,j}←x′)

)∣∣∣∣]
= E

S∼Dn
x′∼D

[
1

{
x{i,j},x′

}
·1

{
Ni,j(S) > λ

}
·Ni,j(S)

]
= Pr
x{i,j},x′∼D

[
x{i,j} , x

′
]
· E

S∼Dn

[
1

{
Ni,j(S) > λ

}
·Ni,j(S)

]
= 2p(1− p) ·

(
λ · Pr

S∼Dn
[Ni,j(S) ≥ λ] +

∫ N

λ
Pr
S∼Dn

[Ni,j(S) ≥ t]dt
)

≤ 2pN · Pr
S∼Dn

[Ni,j(S) ≥ λ]. (11)

Recall that Ni,j(S) is the sum of (N − 2) i.i.d. indicators, each equals to 1 with probability p2.
We can upper bound the probability that Ni,j(S) ≥ λ with the probability that a sum of N such
random variables is at least λ. We will use the following variant of the Chernoff bound, known as
the Chernoff-Hoeffding theorem:

Theorem 4.4 ([10]). Let X1, . . . ,Xn be independent random variables where Pr[Xi = 1] = p and Pr[Xi =
0] = 1− p for some 0 < p < 1. Let k be s.t. p < k

n < 1. Then,

P r

 n∑
i=1

Xi ≥ k

 ≥ exp
(
−n ·D

(
k
n

∥∥∥∥∥p)) ,
where D(a‖b) is the relative entropy between an a-coin and a p-coin (i.e. between the Bernoulli(a) and
Bernoulli(p) distribution):

D(a‖p) = a · log
(
a
p

)
+ (1− a) · log

(
1− a
1− p

)
.
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Using the Chernoff-Hoeffding theorem, for p2N < λ < N , we have

(11) ≤ 2pN · exp
(
−N ·D

( λ
N

∥∥∥∥∥p2
))
. (12)

Recall that we fixed p =N−3/4. Choosing λ =N1/13, we get:

(12) = 2pN · exp
(
−N ·D

(
N−12/13

∥∥∥N−6/4
))
. (13)

We will use the following claim to bound D
(
N−12/13

∥∥∥N−6/4
)
:

Claim 4.5. Fix constants c > b > 0. For N ≥max{21/b,28/(c−b)} we have that D
(
N−b

∥∥∥N−c) ≥ c−b
2 ·N

−b ·
log(N ).

Using Claim 4.5, for large enough N , we have that

(13) ≤ 2pN · exp
(
−N1/13

)
. (14)

So, denoting ∆ = 2pN · exp
(
−N1/13

)
, we get that

E

S∼Dn
x′∼D

[
1

{∣∣∣∣fK3
(S)− fK3

(
S({i,j}←x′)

)∣∣∣∣ > λ} · ∣∣∣∣fK3
(S)− fK3

(
S({i,j}←x′)

)∣∣∣∣] ≤ ∆.

In order to obtain a meaningful bound, we will need to use part 2 of Theorem 1.2. To that end,
for every fixture of S ∈ Xn and i < j we can compute

E

y,z∼D

[
1

{∣∣∣∣fK3
(S({i,j}←y))− fK3

(
S({i,j}←z)

)∣∣∣∣ ≤ λ} · ∣∣∣∣fK3
(S({i,j}←y))− fK3

(
S({i,j}←z)

)∣∣∣∣] ≤ E

y,z∼D
[1 {y , z} ·λ]

= 2p(1− p)λ ≤ 2pλ , τ.

Finally, in order to apply Theorem 1.2, we need to ensure that n ≥ O
(

λ
εmin{1,ε}τ ln

(
min{1,ε}τ

∆

))
.

With our choices for ∆ and τ , it suffices to set ε = Θ

(√
λ
np

)
. Plugging ε, ∆ and τ into Theorem 1.2,

and simplifying, we get that

Pr
S∼Dn

[
|fK3

(S)− fK3
(Dn)| ≥ o

(
fK3

(Dn)
)]
< exp

(
−N1/13

)
.

It remains to prove Claim 4.5:

Claim 4.5. Fix constants c > b > 0. For N ≥max{21/b,28/(c−b)} we have that D
(
N−b

∥∥∥N−c) ≥ c−b
2 ·N

−b ·
log(N ).

Proof of Claim 4.5.

D
(
N−b

∥∥∥N−c) =N−b · log
(
N c−b

)
+
(
1−N−b

)
· log

(
1−N−b

1−N−c

)
=N−b · log

(
N c−b

)
+
(
1−N−b

)
· log

(
N c −N c−b

N c − 1

)
=N−b · log

(
N c−b

)
+
(
1−N−b

)
· log

(
1− N

c−b − 1
N c − 1

)
(15)
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Using the fact that log(1− x) ≥ −2x for every 0 ≤ x ≤ 1
2 , and assuming that N ≥ 21/b, we have

that

(15) ≥N−b · log
(
N c−b

)
− 2

(
1−N−b

)
· N

c−b − 1
N c − 1

=N−b · log
(
N c−b

)
− 2 · N

c−b − 1
N c − 1

+ 2N−b · N
c−b − 1
N c − 1

≥N−b · log
(
N c−b

)
− 2 · N

c−b − 1
N c − 1

≥N−b · log
(
N c−b

)
− 2 · N

c−b

1
2N

c

≥N−b · log
(
N c−b

)
− 4N−b (16)

Assuming that N ≥ 28/(c−b) we get

(16) ≥ 1
2
·N−b · log

(
N c−b

)
≥ c − b

2
·N−b · log(N ) .

5 Privately Identifying a High-Sensitivity Function

Let S be a sample of n i.i.d. elements from some distribution D. Recall that if a low-sensitivity
function f is identified by a differentially private algorithm operating on S, then w.h.p. f (S) ≈
f (Dn) , E

S ′∼Dn
[f (S ′)]. In this section we present a simple example showing that, in general, this

is not the case for high-sensitivity functions. Specifically, we show that a differentially private
algorithm operating on S can identify a high-sensitivity function f s.t. |f (S)− f (Dn)| is arbitrarily
large, even though |f (S ′)− f (Dn)| is small for a fresh sample S ′ ∼ Dn.

Theorem 5.1. Fix β,ε,B > 0, let U be the uniform distribution over X = {±1}d where d = poly(1/β),
and let n ≥ O( 1

ε2 ln(1/β)). There exists an (ε,0)-differentially private algorithm A that operates on a
database S ∈ ({±1}d)n and returns a function mapping ({±1}d)n to R, s.t. the following hold.

1. For every f in the range of A it holds that PrS ′∼Un[f (S ′) , f (Un)] ≤ β.

2. Pr S∼Un
f←A(S)

[|f (S)− f (Un)| ≥ B] ≥ 1/2.

Proof. For t ∈ [d], define ft : ({±1}d)n→R as

ft(x1, . . . ,xn) =


0 ,

∣∣∣∑i∈[n] xi,t
∣∣∣ ≤√

2n ln(2/β)
B ,

∑
i∈[n] xi,t >

√
2n ln(2/β)

−B ,
∑
i∈[n] xi,t < −

√
2n ln(2/β)

That is, given a database S of n rows from {±1}d , we define ft(S) as 0 if the sum of column t (in
absolute value) is less than some threshold, and otherwise set ft(S) to be ±B (depending on the
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sign of the sum). Observe that the global sensitivity of ft is B, and that ft(Un) , E

S ′∼Un
[ft(S ′)] = 0.

Also, by the Hoeffding bound, we have that

Pr
S∼Un

[ft(S) , 0] ≤ β.

So, for every fixed t, with high probability over sampling S ∼ Un we have that ft(S) = 0 = ft(Un).
Nevertheless, as we now explain, if d is large enough, then an (ε,0)-differentially private algorithm
can easily identify a “bad” index t∗ such that |ft∗(S)| = B.

Consider the algorithm that on input S = (x1,x2, . . . ,xn) samples an index t ∈ [d] with probability
proportional to exp

(
ε
4

∣∣∣∑i∈[n] xi,t
∣∣∣). We will call it algorithm BadIndex.

By the properties of the exponential mechanism, algorithm BadIndex is (ε,0)-differentially
private. Moreover, with probability at least 3/4, the output t∗ satisfies∣∣∣∣∣∣∣∣

∑
i∈[n]

xi,t∗

∣∣∣∣∣∣∣∣ ≥ max
t∈[d]


∣∣∣∣∣∣∣∣
∑
i∈[n]

xi,t

∣∣∣∣∣∣∣∣
 − 4

ε
ln(4d) . (17)

In addition, by Theorem 2.6 (tightness of Chernoff bound), for every fixed t it holds that

Pr

∑
i∈[n]

xi,t ≥ 1.11 ·
√

2n ln(2/β)

 ≥ (β
2

)45
.

As the columns are independent, taking d = 2
(

2
β

)45
, we get that

Pr

max
t∈[d]


∑
i∈[n]

xi,t

 ≥ 1.11 ·
√

2n ln(2/β)

 ≥ 3/4. (18)

Combining (17) and (18) we get that with probability at least 1/2 algorithm BadIndex identifies
an index t∗ such that ∣∣∣∣∣∣∣∣

∑
i∈[n]

xi,t∗

∣∣∣∣∣∣∣∣ ≥ 1.11 ·
√

2n ln(2/β) − 4
ε

ln(4d) .

Assuming that n ≥ O( 1
ε2 ln(1/β)) we get that with probability at least 1/2 algorithm BadIndex

outputs an index t∗ s.t. ft∗(S) = B.

5.1 Max-Information

In this section we show that algorithm BadIndex has relatively high max-information: Given two
(correlated) random variables Y , Z, we use Y ⊗Z denote the random variable obtained by drawing
independent copies of Y and Z from their respective marginal distributions.

Definition 5.2 (Max-Information [5]). Let Y and Z be jointly distributed random variables over
the domain (Y ,Z). The β-approximate max-information between Y and Z is defined as

I
β
∞(Y ;Z) = log sup

O⊆(Y×Z),
Pr[(Y ,Z)∈O]>β

Pr[(Y ,Z) ∈ O]− β
Pr[Y ⊗Z ∈ O]

.

An algorithm A : Xn → F has β-approximate max-information of k over product distributions,
written Iβ∞,P (A,n) ≤ k, if for every distribution D over X, we have Iβ∞(S;A(S)) ≤ k when S ∼ Dn.
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It follows immediately from the definition that approximate max-information controls the
probability of “bad events” that can happen as a result of the dependence of A(S) on S: for every
event O, we have Pr[(S,A(S)) ∈ O] ≤ 2k Pr[S ⊗A(S) ∈ O] + β.

Consider again algorithm BadIndex : ({±1})n → F that operates on database S of size n =
O( 1

ε2 ln(1/β)) and identifies, with probability 1/2, a function f s.t. f (S) , 0, even though f (S ′) = 0
w.p. 1− β for a fresh sample S ′. Let us define O as the set of all pairs (S,f ), where S is a database
and f is a function in the range of algorithm BadIndex such that f (S) , 0. That is,

O = {(S,f ) ∈ ({±1})n ×F : f (S) , 0} .

If we assume that I1/4
∞,P (BadIndex,n) ≤ k, then by Definition 5.2 we have:

1
2
≤ Pr

S∼Un
f←BadIndex(S)

[(S,f ) ∈ O] ≤ ek · Pr
S∼Un
T∼Un

f←BadIndex(T )

[(S,f ) ∈ O] +
1
4
≤ ek · β +

1
4
.

So k ≥ ln( 1
4β ) = Ω(ε2n).
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A Concentration Bounds Through Differential Privacy – Missing De-
tails

Claim 3.3. Fix a function f : Xn → R and parameters ε,λ ≥ 0. If M : (Xn)T → Y is (ε, (f ,λ))-
differentially private then for every (f ,λ)-neighboring databases ~S, ~S ′ ∈ (Xn)T and every function
h : Y →R we have that

E

y←M(~S)
[h(y)] ≤ e−ε · E

y←M(~S ′)
[h(y)] + (eε − e−ε) · E

y←M(~S ′)
[|h(y)|] .

17



Proof.

E

y←M(~S)
[h(y)] =

∫ ∞
0

Pr
y←M(~S)

[h(y) ≥ z]dz −
∫ 0

−∞
Pr

y←M(~S)
[h(y) ≤ z]dz

≤ eε ·
∫ ∞

0
Pr

y←M(~S ′)
[h(y) ≥ z]dz − e−ε ·

∫ 0

−∞
Pr

y←M(~S ′)
[h(y) ≤ z]dz

= e−ε
∫ ∞

0
Pr

y←M(~S ′)
[h(y) ≥ z]dz −

∫ 0

−∞
Pr

y←M(~S ′)
[h(y) ≤ z]dz


+ (eε − e−ε) ·

∫ ∞
0

Pr
y←M(~S ′)

[h(y) ≥ z]dz

= e−ε · E

y←M(~S ′)
[h(y)] + (eε − e−ε) ·

∫ ∞
0

Pr
y←M(~S ′)

[h(y) ≥ z]dz

≤ e−ε · E

y←M(~S ′)
[h(y)] + (eε − e−ε) ·

∫ ∞
0

Pr
y←M(~S ′)

[|h(y)| ≥ z]dz

= e−ε · E

y←M(~S ′)
[h(y)] + (eε − e−ε) · E

y←M(~S ′)
[|h(y)|]

A.1 Multi Sample Expectation Bound

Lemma A.1 (Expectation Bound). Let D be a distribution over a domain X, let f : Xn→R , and let
∆,λ be s.t. for every 1 ≤ i ≤ n it holds that

E

S∼Dn
z∼D

[
1

{∣∣∣∣f (S)− f
(
S(i←z)

)∣∣∣∣ > λ} · ∣∣∣∣f (S)− f
(
S(i←z)

)∣∣∣∣] ≤ ∆, (19)

where S(i←z) is the same as S except that the ith element is replaced with z. Let A : (Xn)T → ([T ]∪⊥) be
an (ε, (f ,λ))-differentially private algorithm that operates on T databases of size n from X, and outputs
an index 1 ≤ t ≤ T or ⊥. Then∣∣∣∣∣∣∣∣∣∣ E

~S∼DnT
t←A(~S)

[1{t ,⊥} · (f (Dn)− f (St))]

∣∣∣∣∣∣∣∣∣∣ ≤ (eε − e−ε) ·λn+ 6∆nT .

If, in addition to (19), there exists a number 0 ≤ τ ≤ λ s.t. for every 1 ≤ i ≤ n and every fixture of S ∈ Xn
we have that

E

y,z∼D

[
1

{∣∣∣∣f (S(i←y))− f
(
S(i←z)

)∣∣∣∣ ≤ λ} · ∣∣∣∣f (S(i←y))− f
(
S(i←z)

)∣∣∣∣] ≤ τ, (20)

Then, ∣∣∣∣∣∣∣∣∣∣ E

~S∼DnT
t←A(~S)

[1{t ,⊥} · (f (Dn)− f (St))]

∣∣∣∣∣∣∣∣∣∣ ≤ (eε − e−ε) · τn+ 6∆nT .

We now present the proof assuming that (20) holds for some 0 ≤ τ ≤ λ. This is without loss of
generality, as trivially it holds for τ = λ.
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Proof of Lemma A.1. Let ~S ′ = (S ′1, . . . ,S
′
T ) ∼ DnT be independent of ~S. Recall that each element St of

~S is itself a vector (xt,1, . . . ,xt,n), and the same is true for each element S ′t of ~S ′ . We will sometimes
refer to the vectors S1, . . . ,ST as the subsamples of ~S.

We define a sequence of intermediate samples that allow us to interpolate between ~S and ~S ′.
Formally, for ` ∈ {0,1, . . . ,n} define ~S` = (S`1, . . . ,S

`
T ) ∈ (Xn)T where S`t = (x`t,1, . . . ,x

`
t,n) and

x`t,i =
{
xt,i , i > `
x′t,i , i ≤ `

That is, every subsample S`t of ~S` is identical to S ′t on the first ` elements, and identical to St
thereafter. By construction we have ~S0 = ~S and ~Sn = ~S ′. Moreover, for every t we have that S`t and
S`−1
t differ in exactly one element. In terms of these intermediate samples we can write:

∣∣∣∣∣∣ E

~S∼DnT
E

t←A(~S)
[1{t ,⊥} · (f (Dn)− f (St))]

∣∣∣∣∣∣
=

∣∣∣∣∣∣ E

~S∼DnT
E

t←A(~S)

[
1{t ,⊥} ·

(
E

~S ′∼DnT

[
f (S ′t)

]
− f (St)

)]∣∣∣∣∣∣
=

∣∣∣∣∣∣ E

~S∼DnT
E

t←A(~S)
E

~S ′∼DnT

[
1{t ,⊥} · (f (S ′t)− f (St))

]∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
∑
`∈[n]

E

~S,~S ′∼DnT
E

t←A(~S)

[
1{t ,⊥} ·

(
f (S`t )− f (S`−1

t )
)]∣∣∣∣∣∣∣∣

≤
∑
`∈[n]

∣∣∣∣∣∣ E

~S,~S ′∼DnT
E

t←A(~S)

[
1{t ,⊥} ·

(
f (S`t )− f (S`−1

t )
)]∣∣∣∣∣∣

=
∑
`∈[n]

∣∣∣∣∣∣ E

~S,~S ′∼DnT
E

Z∼DT
E

t←A(~S)

[
1{t ,⊥} ·

(
f (S`t )− f (S`−1

t )
)]∣∣∣∣∣∣ (21)

Given a multisample ~S = (S1, . . . ,ST ) ∈ (Xn)T , a vector Z = (z1 . . . , zT ) ∈ XT , and an index
1 ≤ k ≤ n, we define ~S(k←Z) to be the same as ~S except that the kth element of every subsample Si is
replaced with zi . Observe that by construction, for every `,Z we have ~S`,(`←Z) = ~S`−1,(`←Z). Thus,

(21) =
∑
`∈[n]

∣∣∣∣∣∣ E

~S,~S ′∼DnT
E

Z∼DT
E

t←A(~S)

1{t ,⊥} · f (S`t )− f
(
S
`,(`←Z)
t

)−1{t ,⊥} · f (S`−1
t )− f

(
S
`−1,(`←Z)
t

)∣∣∣∣∣∣ .
(22)

Observer that the pairs (~S, ~S`) and
(
~S, ~S`,(`←Z)

)
are identically distributed. Namely, both ~S` and

~S`,(`←Z) agree with ~S on the last (n − `) entries of every subsample, and otherwise contain i.i.d.

samples from D. Hence, the expectation of
(
f (S`t )− f

(
S
`,(`←Z)
t

))
is zero, and we get

(22) =
∑
`∈[n]

∣∣∣∣∣∣ E

~S,~S ′∼DnT
E

Z∼DT
E

t←A(~S)

1{t ,⊥} · f (
S
`−1,(`←Z)
t

)
− f (S`−1

t )

∣∣∣∣∣∣ . (23)
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Observer that the pair (~S`−1, ~S) has the same distribution as (~S, ~S`−1). Specifically, the first
component is nT independent samples from D and the second component is equal to the first
component with a subset of the entries replaced by fresh independent samples from D. Thus,

(23) =
∑
`∈[n]

∣∣∣∣∣∣ E

~S,~S ′∼DnT
E

Z∼DT
E

t←A(~S`−1)

1{t ,⊥} · f (
S

(`←Z)
t

)
− f (St)

∣∣∣∣∣∣

≤
∑
`∈[n]

∣∣∣∣∣∣∣∣∣∣∣∣
E

~S,~S ′∼DnT
E

Z∼DT

1


maxm∈[T ] |f (S`−1
m )− f (S`m)| ≤ λ

and

maxm∈[T ] |f
(
S

(`←Z)
m

)
− f (Sm)| ≤ λ

 · E

t←A(~S`−1)

1{t ,⊥} · f (
S

(`←Z)
t

)
− f (St)



∣∣∣∣∣∣∣∣∣∣∣∣

+
∑
`∈[n]

∣∣∣∣∣∣∣∣∣∣∣∣
E

~S,~S ′∼DnT
E

Z∼DT

1


maxm∈[T ] |f (S`−1
m )− f (S`m)| > λ

or

maxm∈[T ] |f
(
S

(`←Z)
m

)
− f (Sm)| > λ

 · max
m∈[T ]

∣∣∣∣∣f (
S

(`←Z)
m

)
− f (Sm)

∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

(24)

When maxm∈[T ] |f (S`−1
m )− f (S`m)| ≤ λ we now use the properties of algorithm A to argue that

A(~S`−1) ≈ A(~S`). Be Claim 3.3 we get that

(24)

≤
∑
`∈[n]

∣∣∣∣∣∣∣∣∣∣∣∣
E

~S,~S ′∼DnT
E

Z∼DT

1


maxm∈[T ] |f (S`−1
m )− f (S`m)| ≤ λ

and

maxm∈[T ] |f
(
S

(`←Z)
m

)
− f (Sm)| ≤ λ

 · E

t←A(~S`)

1{t ,⊥} · f (
S

(`←Z)
t

)
− f (St)



∣∣∣∣∣∣∣∣∣∣∣∣

+ (eε − e−ε) ·
∑
`∈[n]

∣∣∣∣∣∣∣∣∣∣∣∣
E

~S,~S ′∼DnT
E

Z∼DT

1


maxm∈[T ] |f (S`−1
m )− f (S`m)| ≤ λ

and

maxm∈[T ] |f
(
S

(`←Z)
m

)
− f (Sm)| ≤ λ

 · E

t←A(~S`)

[
1{t ,⊥} ·

∣∣∣∣∣f (
S

(`←Z)
t

)
− f (St)

∣∣∣∣∣]

∣∣∣∣∣∣∣∣∣∣∣∣

+
∑
`∈[n]

∣∣∣∣∣∣∣∣∣∣∣∣
E

~S,~S ′∼DnT
E

Z∼DT

1


maxm∈[T ] |f (S`−1
m )− f (S`m)| > λ

or

maxm∈[T ] |f
(
S

(`←Z)
m

)
− f (Sm)| > λ

 · max
m∈[T ]

∣∣∣∣∣f (
S

(`←Z)
m

)
− f (Sm)

∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

(25)

We can remove one of the two requirements in the indicator function in the middle row (this
makes the expression bigger), to get:

20



(25)

≤
∑
`∈[n]

∣∣∣∣∣∣∣∣∣∣∣∣
E

~S,~S ′∼DnT
E

Z∼DT

1


maxm∈[T ] |f (S`−1
m )− f (S`m)| ≤ λ

and

maxm∈[T ] |f
(
S

(`←Z)
m

)
− f (Sm)| ≤ λ

 · E

t←A(~S`)

1{t ,⊥} · f (
S

(`←Z)
t

)
− f (St)



∣∣∣∣∣∣∣∣∣∣∣∣

+ (eε − e−ε) ·
∑
`∈[n]

∣∣∣∣∣∣ E

~S,~S ′∼DnT
E

Z∼DT
E

t←A(~S`)

[
1

{
max
m∈[T ]

|f
(
S

(`←Z)
m

)
− f (Sm)| ≤ λ

}
·1{t ,⊥} ·

∣∣∣∣∣f (
S

(`←Z)
t

)
− f (St)

∣∣∣∣∣]
∣∣∣∣∣∣

+
∑
`∈[n]

∣∣∣∣∣∣∣∣∣∣∣∣
E

~S,~S ′∼DnT
E

Z∼DT

1


maxm∈[T ] |f (S`−1
m )− f (S`m)| > λ

or

maxm∈[T ] |f
(
S

(`←Z)
m

)
− f (Sm)| > λ

 · max
m∈[T ]

∣∣∣∣∣f (
S

(`←Z)
m

)
− f (Sm)

∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

(26)

Furthermore, we can replace 1
{
maxm∈[T ] |f

(
S

(`←Z)
m

)
− f (Sm)| ≤ λ

}
in the middle row with the

weaker requirement – just for the specific t that was selected by algorithm A. This yields:

(26)

≤
∑
`∈[n]

∣∣∣∣∣∣∣∣∣∣∣∣
E

~S,~S ′∼DnT
E

Z∼DT

1


maxm∈[T ] |f (S`−1
m )− f (S`m)| ≤ λ

and

maxm∈[T ] |f
(
S

(`←Z)
m

)
− f (Sm)| ≤ λ

 · E

t←A(~S`)

1{t ,⊥} · f (
S

(`←Z)
t

)
− f (St)



∣∣∣∣∣∣∣∣∣∣∣∣

+ (eε − e−ε) ·
∑
`∈[n]

∣∣∣∣∣∣ E

~S,~S ′∼DnT
E

Z∼DT
E

t←A(~S`)

[
1

{
|f

(
S

(`←Z)
t

)
− f (St)| ≤ λ

}
·1{t ,⊥} ·

∣∣∣∣∣f (
S

(`←Z)
t

)
− f (St)

∣∣∣∣∣]
∣∣∣∣∣∣

+
∑
`∈[n]

∣∣∣∣∣∣∣∣∣∣∣∣
E

~S,~S ′∼DnT
E

Z∼DT

1


maxm∈[T ] |f (S`−1
m )− f (S`m)| > λ

or

maxm∈[T ] |f
(
S

(`←Z)
m

)
− f (Sm)| > λ

 · max
m∈[T ]

∣∣∣∣∣f (
S

(`←Z)
m

)
− f (Sm)

∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

(27)

Using the fact that the pairs (~S, ~S`) and (~S`, ~S) are identically distributed, we can switch them
in the middle row, to get
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(27)

≤
∑
`∈[n]

∣∣∣∣∣∣∣∣∣∣∣∣
E

~S,~S ′∼DnT
E

Z∼DT

1


maxm∈[T ] |f (S`−1
m )− f (S`m)| ≤ λ

and

maxm∈[T ] |f
(
S

(`←Z)
m

)
− f (Sm)| ≤ λ

 · E

t←A(~S`)

1{t ,⊥} · f (
S

(`←Z)
t

)
− f (St)



∣∣∣∣∣∣∣∣∣∣∣∣

+ (eε − e−ε) ·
∑
`∈[n]

∣∣∣∣∣∣∣∣∣ E

~S∼DnT
E

t←A(~S)
E

~S ′∼DnT
Z∼DT

[
1

{
|f

(
S
`,(`←Z)
t

)
− f (S`t )| ≤ λ

}
·1{t ,⊥} ·

∣∣∣∣∣f (
S
`,(`←Z)
t

)
− f (S`t )

∣∣∣∣∣]
∣∣∣∣∣∣∣∣∣

+
∑
`∈[n]

∣∣∣∣∣∣∣∣∣∣∣∣
E

~S,~S ′∼DnT
E

Z∼DT

1


maxm∈[T ] |f (S`−1
m )− f (S`m)| > λ

or

maxm∈[T ] |f
(
S

(`←Z)
m

)
− f (Sm)| > λ

 · max
m∈[T ]

∣∣∣∣∣f (
S

(`←Z)
m

)
− f (Sm)

∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

(28)

Using our assumptions on the function f and the distribution D (for the middle row), brings
us to:

(28)

≤
∑
`∈[n]

∣∣∣∣∣∣∣∣∣∣∣∣
E

~S,~S ′∼DnT
E

Z∼DT

1


maxm∈[T ] |f (S`−1
m )− f (S`m)| ≤ λ

and

maxm∈[T ] |f
(
S

(`←Z)
m

)
− f (Sm)| ≤ λ

 · E

t←A(~S`)

1{t ,⊥} · f (
S

(`←Z)
t

)
− f (St)



∣∣∣∣∣∣∣∣∣∣∣∣

+ (eε − e−ε)nτ

+
∑
`∈[n]

∣∣∣∣∣∣∣∣∣∣∣∣
E

~S,~S ′∼DnT
E

Z∼DT

1


maxm∈[T ] |f (S`−1
m )− f (S`m)| > λ

or

maxm∈[T ] |f
(
S

(`←Z)
m

)
− f (Sm)| > λ

 · max
m∈[T ]

∣∣∣∣∣f (
S

(`←Z)
m

)
− f (Sm)

∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

(29)

Our next task is to remove the indicator function in the first row. This is useful as the pairs(
~S`, ~S(`←Z)

)
and (~S`, ~S) are identically distributed, and hence, if we were to remove the indicator

function, the first row would be equal to zero. To that end we add and subtract the first row with
the complementary indicator function (this amounts to multiplying the third row by 2). We get
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(29) ≤
∑
`∈[n]

∣∣∣∣∣∣ E

~S,~S ′∼DnT
E

Z∼DT

 E

t←A(~S`)

1{t ,⊥} · f (
S

(`←Z)
t

)
− f (St)

∣∣∣∣∣∣
+ (eε − e−ε)nτ

+ 2 ·
∑
`∈[n]

∣∣∣∣∣∣∣∣∣∣∣∣
E

~S,~S ′∼DnT
E

Z∼DT

1


maxm∈[T ] |f (S`−1
m )− f (S`m)| > λ

or

maxm∈[T ] |f
(
S

(`←Z)
m

)
− f (Sm)| > λ

 · max
m∈[T ]

∣∣∣∣∣f (
S

(`←Z)
m

)
− f (Sm)

∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

(30)

Now the first row is 0, so

(30) = (eε − e−ε)nτ

+ 2 ·
∑
`∈[n]

∣∣∣∣∣∣∣∣∣∣∣∣
E

~S,~S ′∼DnT
E

Z∼DT

1


maxm∈[T ] |f (S`−1
m )− f (S`m)| > λ

or

maxm∈[T ] |f
(
S

(`←Z)
m

)
− f (Sm)| > λ

 · max
m∈[T ]

∣∣∣∣∣f (
S

(`←Z)
m

)
− f (Sm)

∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

(31)

We can replace the or condition in the indicator function with the sum of the two conditions:

(31) ≤ (eε − e−ε)nτ

+ 2 ·
∑
`∈[n]

∣∣∣∣∣∣ E

~S,~S ′∼DnT
E

Z∼DT

[
1

{
max
m∈[T ]

|f (S`−1
m )− f (S`m)| > λ

}
· max
m∈[T ]

∣∣∣∣∣f (
S

(`←Z)
m

)
− f (Sm)

∣∣∣∣∣]
∣∣∣∣∣∣

+ 2 ·
∑
`∈[n]

∣∣∣∣∣∣ E

~S,~S ′∼DnT
E

Z∼DT

[
1

{
max
m∈[T ]

|f
(
S

(`←Z)
m

)
− f (Sm)| > λ

}
· max
m∈[T ]

∣∣∣∣∣f (
S

(`←Z)
m

)
− f (Sm)

∣∣∣∣∣]
∣∣∣∣∣∣ (32)

In the third row, we can replace maxm∈[T ] with
∑
m∈[T ], to get

(32) ≤ (eε − e−ε)nτ

+ 2 ·
∑
`∈[n]

∣∣∣∣∣∣ E

~S,~S ′∼DnT
E

Z∼DT

[
1

{
max
m∈[T ]

|f (S`−1
m )− f (S`m)| > λ

}
· max
m∈[T ]

∣∣∣∣∣f (
S

(`←Z)
m

)
− f (Sm)

∣∣∣∣∣]
∣∣∣∣∣∣

+ 2 ·
∑
`∈[n]

∑
m∈[T ]

∣∣∣∣∣∣ E

~S,~S ′∼DnT
E

Z∼DT

[
1

{
|f

(
S

(`←Z)
m

)
− f (Sm)| > λ

}
·
∣∣∣∣∣f (

S
(`←Z)
m

)
− f (Sm)

∣∣∣∣∣]
∣∣∣∣∣∣ (33)

Applying our assumptions on f and D to the third row brings us to

(33) ≤ (eε − e−ε)nτ + 2nT∆

+ 2 ·
∑
`∈[n]

∣∣∣∣∣∣ E

~S,~S ′∼DnT
E

Z∼DT

[
1

{
max
m∈[T ]

|f (S`−1
m )− f (S`m)| > λ

}
· max
m∈[T ]

∣∣∣∣∣f (
S

(`←Z)
m

)
− f (Sm)

∣∣∣∣∣]
∣∣∣∣∣∣

(34)
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The issue now is that the expression inside the indicator function is different from the expression
outside of it. To that end, we split the indicator function as follows:

(34) ≤ (eε − e−ε)nτ + 2nT∆

+ 2 ·
∑
`∈[n]

∣∣∣∣∣∣∣∣∣∣∣∣
E

~S,~S ′∼DnT
E

Z∼DT

1


maxm∈[T ] |f (S`−1
m )− f (S`m)| > λ

and

maxm∈[T ]

∣∣∣∣∣f (
S

(`←Z)
m

)
− f (Sm)

∣∣∣∣∣ > λ
 · max

m∈[T ]

∣∣∣∣∣f (
S

(`←Z)
m

)
− f (Sm)

∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

+ 2 ·
∑
`∈[n]

∣∣∣∣∣∣∣∣∣∣∣∣
E

~S,~S ′∼DnT
E

Z∼DT

1


maxm∈[T ] |f (S`−1
m )− f (S`m)| > λ

and

maxm∈[T ]

∣∣∣∣∣f (
S

(`←Z)
m

)
− f (Sm)

∣∣∣∣∣ ≤ λ
 · max

m∈[T ]

∣∣∣∣∣f (
S

(`←Z)
m

)
− f (Sm)

∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

≤ (eε − e−ε)nτ + 2nT∆

+ 2 ·
∑
`∈[n]

∣∣∣∣∣∣ E

~S,~S ′∼DnT
E

Z∼DT

[
1

{
max
m∈[T ]

∣∣∣∣∣f (
S

(`←Z)
m

)
− f (Sm)

∣∣∣∣∣ > λ} · max
m∈[T ]

∣∣∣∣∣f (
S

(`←Z)
m

)
− f (Sm)

∣∣∣∣∣]
∣∣∣∣∣∣

+ 2 ·
∑
`∈[n]

∣∣∣∣∣∣ E

~S,~S ′∼DnT
E

Z∼DT

[
1

{
max
m∈[T ]

|f (S`−1
m )− f (S`m)| > λ

}
· max
m∈[T ]

|f (S`−1
m )− f (S`m)|

]∣∣∣∣∣∣
≤ (eε − e−ε)nτ + 6nT∆.

A.2 Multi Sample Amplification

Theorem A.2 (High Probability Bound). Let D be a distribution over a domain X, let f : Xn→ R ,
and let ∆,λ,τ be s.t. for every 1 ≤ i ≤ n it holds that

E

S∼Dn
z∼D

[
1

{∣∣∣∣f (S)− f
(
S(i←z)

)∣∣∣∣ > λ} · ∣∣∣∣f (S)− f
(
S(i←z)

)∣∣∣∣] ≤ ∆,

and, furthermore, ∀S ∈ Xn and ∀1 ≤ i ≤ n we have

E

y,z∼D

[
1

{∣∣∣∣f (S(i←y))− f
(
S(i←z)

)∣∣∣∣ ≤ λ} · ∣∣∣∣f (S(i←y))− f
(
S(i←z)

)∣∣∣∣] ≤ τ,
where S(i←z) is the same as S except that the ith element is replaced with z. Then for every ε > 0 we have
that

Pr
S∼Dn

[|f (S)− f (Dn)| ≥ 6(eε − e−ε)τn] <
14∆

(eε − e−ε)τ
,

provided that n ≥O
(

λ
ε(eε−e−ε)τ log

( (eε−e−ε)τ
∆

))
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Proof. We only analyze the probability that (f (S)− f (Dn)) is large. The analysis for (f (Dn)− f (S))
is symmetric. Assume towards contradiction that with probability at least 7∆

(eε−e−ε)τ we have that
f (S) − f (Dn) ≥ 6(eε − e−ε)τn. We now construct the following algorithm B that contradicts our
expectation bound.

Algorithm 2 B

Input: T databases of size n each: ~S = (S1, . . . ,ST ), where T ,
⌊ (eε−e−ε)τ

7∆

⌋
.

1. Set H = {⊥,1,2, . . . ,T }.

2. For i = 1, ...,T , define q(~S, i) = f (Si)− f (Dn). Also set q(~S,⊥) = 0.

3. Sample t∗ ∈H with probability proportional to exp
(
ε

2λq(~S, t)
)
.

Output: t.

The fact that algorithm B is (ε, (f ,λ))-differentially private follows from the standard analysis
of the Exponential Mechanism of McSherry and Talwar [14]. The proof appears in Claim A.4 for
completeness.

Now consider applying B on databases ~S = (S1, . . . ,ST ) containing i.i.d. samples from D. By our
assumption on D and f , for every t we have that f (St)− f (Dn) ≥ 6(eε − e−ε)τn with probability at
least 7∆

(eε−e−ε)τ . By our choice of T =
⌊ (eε−e−ε)τ

7∆

⌋
, we therefore get

Pr
~S∼DnT

[
max
t∈[T ]
{f (St)− f (Dn)} ≥ 6(eε − e−ε)τn

]
≥ 1−

(
1− 7∆

(eε − e−ε)τ

)T
≥ 1

2
.

The probability is taken over the random choice of the examples in ~S according to D. Thus, by
Markov’s inequality,

E

~S∼DnT

[
max
t∈H

{
q(~S, t)

}]
= E

~S∼DnT

[
max

{
0 , max

t∈[T ]
(f (St)− f (D))

}]
≥ 3(eε − e−ε)τn. (35)

So, in expectation, maxt∈H
(
q(~S, t)

)
is large. In order to contradict the expectation bound of

Theorem A.2, we need to show that this is also the case for the index t∗ that is sampled on Step 3. To
that end, we now use the following technical claim, stating that the expected quality of a solution
sampled as in Step 3 is high.

Claim A.3 (e.g., [2]). Let H be a finite set, h :H →R a function, and η > 0. Define a random variable
Y on H by Pr[Y = y] = exp(ηh(y))/C, where C =

∑
y∈H exp(ηh(y)). Then E [h(Y )] ≥ maxy∈H h(y) −

1
η ln |H |.

For every fixture of ~S, we can apply Claim A.3 with h(t) = q(~S, t) and η = ε
2λ to get

E

t∗∈RH
[q(~S, t∗)] = E

t∗∈RH

[
1{t∗ ,⊥} · (f (St∗)− f (Dn))}

]
≥max{0 , max

t∈[T ]
(f (St)− f (Dn))} − 2λ

ε
ln(T + 1).

Taking the expectation also over ~S ∼ DnT we get that

E

~S∼DnT
t∗←B

(
~S
)
[
1{t∗ ,⊥} · (f (St∗)− f (Dn))}

]
≥ E

~S∼DnT

[
max

{
0 , max

t∈[T ]
(f (St)− f (Dn))

}]
− 2λ
ε

ln(T + 1)

≥ 3(eε − e−ε)τn− 2λ
ε

ln(T + 1).
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This contradicts Theorem A.2 whenever n > 2λ
ε(eε−e−ε)τ ln(T + 1) = 2λ

ε(eε−e−ε)τ ln( (eε−e−ε)τ
7∆ + 1).

Claim A.4. Algorithm B is (ε, (f ,λ))-differentially private.

Proof. Fix two (f ,λ)-neighboring databases ~S and ~S ′, and let b ∈ {⊥,1,2, . . . ,T } be a possible output.
We have that

Pr[B(~S) = b] =
exp( ε2λ · q(~S,b))∑
a∈H exp( ε2λ · q(~S,a))

(36)

Using the fact that ~S and ~S ′ are (f ,λ)-neighboring, for every a ∈ H we get that q(~S ′ , a) − λ ≤
q(~S,a) ≤ q(~S ′ , a) +λ. Hence,

(36) ≤
exp( ε2λ · [q(~S ′ ,b) +λ])∑
a∈H exp( ε2λ · [q(~S ′ , a)−λ])

=
eε/2 · exp( ε2λ · q(~S ′ ,b))

e−ε/2
∑
a∈H exp( ε2λ · q(~S ′ , a))

= eε ·Pr[B(~S ′) = b].

For any possible set of outputs B ⊆ {⊥,1,2, . . . ,T } we now have that

Pr[B(~S) ∈ B] =
∑
b∈B

Pr[B(~S) = b] ≤
∑
b∈B

eε ·Pr[B(~S ′) = b] = Pr[B(~S ′) ∈ B].
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