Several Metrical Relations Regarding the Anti-Bisectrix, the Anti-Symmedian, the Anti-Height and their Isogonal

Professor Ion Pătraşcu - Frații Buzeşti National College, Craiova

Professor Florentin Smarandache -University of New Mexico, U.S.A.
We suppose known the definitions of the isogonal cevian and isometric cevian; we remind that the anti-bisectrix, the anti-symmedian, and the anti-height are the isometrics of the bisectrix, of the symmedian and of the height in a triangle.

It is also known the following Steiner (1828) relation for the isogonal cevians $A A_{1}$ and $A A_{1}^{\prime}$:

$$
\frac{B A_{1}}{C A_{1}} \cdot \frac{B A_{1}^{\prime}}{C A_{1}^{\prime}}=\left(\frac{A B}{A C}\right)^{2}
$$

We'll prove now that there is a similar relation for the isometric cevians

Proposition

In the triangle $A B C$ let consider $A A_{1}$ and $A A_{1}$ two isometric cevians, then there exists the following relation:

$$
\begin{equation*}
\frac{\sin \left(\widehat{B A A}_{1}\right)}{\sin \left(\widehat{C A A}_{1}\right)} \cdot \frac{\sin \left(\widehat{B A A_{1}^{\prime}}\right)}{\sin \left(\widehat{C A A_{1}^{\prime}}\right)}=\left(\frac{\sin B}{\sin C}\right)^{2} \tag{*}
\end{equation*}
$$

Proof

The sinus theorem applied in the triangles $A B A_{1}, A C A_{1}$ implies (see above figure)

$$
\begin{align*}
& \frac{\sin \left(\widehat{B A A_{1}}\right)}{B A_{1}}=\frac{\sin B}{A A_{1}} \tag{1}\\
& \frac{\sin \left(\widehat{C A A_{1}}\right)}{C A_{1}}=\frac{\sin C}{A A_{1}} \tag{2}
\end{align*}
$$

From the relations (1) and (2) we retain

$$
\begin{equation*}
\frac{\sin \left(\widehat{B A A_{1}}\right)}{\sin \left(\widehat{C A A_{1}}\right)}=\frac{\sin B}{\sin C} \cdot \frac{B A_{1}}{C A_{1}} \tag{3}
\end{equation*}
$$

The sinus theorem applied in the triangles $A C A_{1}^{\prime}, A B A_{1}^{\prime}$ leads to

$$
\begin{align*}
& \frac{\sin \left(\widehat{C A A_{1}^{\prime}}\right)}{A_{1}^{\prime} C}=\frac{\sin C}{A A_{1}^{\prime}} \tag{4}\\
& \frac{\sin \left(\widehat{B A A_{1}^{\prime}}\right)}{B A_{1}^{\prime}}=\frac{\sin B}{A A_{1}^{\prime}} \tag{5}
\end{align*}
$$

From the relations (4) and (5) we obtain:

$$
\begin{equation*}
\frac{\sin \left(\widehat{B A A_{1}^{\prime}}\right)}{\sin \left(\widehat{C A A_{1}^{\prime}}\right)}=\frac{\sin B}{\sin C} \cdot \frac{B A_{1}^{\prime}}{C A_{1}^{\prime}} \tag{6}
\end{equation*}
$$

Because $B A_{1}=C A_{1}^{\prime}$ and $A_{1} C=B A_{1}^{\prime}$) the cevians being isometric), from the relations (3) and (6) we obtain relation (*) from the proposition's enouncement.

Applications

1. If $A A_{1}$ is the bisectrix in the triangle $A B C$ and $A A_{1}^{\prime}$ is its isometric, that is an anti-bisectrix, then from $\left({ }^{*}\right)$ we obtain

$$
\begin{equation*}
\frac{\sin \left(\widehat{B A A_{1}^{\prime}}\right)}{\sin \left(\widehat{C A A_{1}^{\prime}}\right)}=\left(\frac{\sin B}{\sin C}\right)^{2} \tag{7}
\end{equation*}
$$

Taking into account of the sinus theorem in the triangle $A B C$ we obtain

$$
\begin{equation*}
\frac{\sin \left(\widehat{B A A_{1}^{\prime}}\right)}{\sin \left(\widehat{C A A_{1}^{\prime}}\right)}=\left(\frac{A C}{A B}\right)^{2} \tag{8}
\end{equation*}
$$

2. If $A A_{1}$ is symmedian and $A A_{1}^{\prime}$ is an anti-symmedian, from (*) we obtain

$$
\frac{\sin \left(\widehat{B A A_{1}^{\prime}}\right)}{\sin \left(\widehat{C A A_{1}^{\prime}}\right)}=\left(\frac{A C}{A B}\right)^{3}
$$

Indeed, $A A_{1}$ being symmedian it is the isogonal of the median $A M$ and

$$
\begin{aligned}
& \frac{\sin (\widehat{M A B})}{\sin (\widehat{M A C})}=\frac{\sin B}{\sin C} \text { and } \\
& \frac{\sin \left(\widehat{B A A_{1}^{\prime}}\right)}{\sin \left(\widehat{C A A_{1}^{\prime}}\right)}=\frac{\sin (\widehat{M A C})}{\sin (\widehat{M A B})}=\frac{\sin C}{\sin B}=\frac{A B}{A C}
\end{aligned}
$$

3. If $A A_{1}$ is a height in the triangle $A B C, A_{1} \in(B C)$ and $A A_{1}^{\prime}$ is its isometric (antiheight), the relation $\left(^{*}\right)$ becomes.

$$
\frac{\sin \left(\widehat{B A A_{1}^{\prime}}\right)}{\sin \left(\widehat{C A A}_{1}^{\prime}\right)}=\left(\frac{A C}{A B}\right)^{2} \cdot \frac{\cos C}{\cos B}
$$

Indeed

$$
\sin \left(\widehat{B A A_{1}^{\prime}}\right)=\frac{B A_{1}}{A B} ; \sin \left(\widehat{C A A_{1}^{\prime}}\right)=\frac{C A_{1}}{A C}
$$

therefore

$$
\frac{\sin \left(\widehat{B A A_{1}^{\prime}}\right)}{\sin \left(\widehat{C A A_{1}^{\prime}}\right)}=\frac{A C}{A B} \cdot \frac{B A_{1}}{C A_{1}}
$$

From (*) it results

$$
\frac{\sin \left(\widehat{B A A_{1}^{\prime}}\right)}{\sin \left(\widehat{C A A_{1}^{\prime}}\right)}=\frac{A C}{A B} \cdot \frac{C A_{1}}{B A_{1}}
$$

or

$$
C A_{1}=A C \cdot \cos C \text { and } B A_{1}=A B \cdot \cos B
$$

therefore

$$
\frac{\sin \left(\widehat{B A A_{1}^{\prime}}\right)}{\sin \left(\widehat{C A A_{1}^{\prime}}\right)}=\left(\frac{A C}{A B}\right)^{2} \cdot \frac{\cos C}{\cos B}
$$

4. If $A A_{1}^{\prime \prime}$ is the isogonal of the anti-bisectrix $A A_{1}^{\prime}$ then

$$
\frac{B A_{1}^{\prime \prime}}{A_{1}^{\prime \prime} C}=\left(\frac{A B}{A C}\right)^{3} \quad(\text { Maurice D'Ocagne, 1883) }
$$

Proof

The Steiner's relation for $A A_{1}^{\prime \prime}$ and $A A_{1}^{\prime}$ is

$$
\frac{B A_{1}^{\prime \prime}}{A_{1}^{\prime \prime} C} \cdot \frac{B A_{1}^{\prime}}{A_{1}^{\prime} C}=\left(\frac{A B}{A C}\right)^{2}
$$

But $A A_{1}$ is the bisectrix and according to the bisectrix theorem $\frac{B A_{1}}{C A_{1}}=\frac{A B}{A C}$ but $B A_{1}^{\prime}=C A_{1}$ and $A_{1}^{\prime} C=B A_{1}$ therefore

$$
\frac{C A_{1}^{\prime}}{B A_{1}^{\prime}}=\frac{A B}{A C}
$$

and we obtain the D'Ocagne relation
5. If in the triangle $A B C$ the cevian $A A_{1}^{\prime \prime}$ is isogonal to the symmedian $A A_{1}^{\prime}$ then

$$
\frac{B A_{1}^{\prime \prime}}{A_{1}^{\prime \prime} C}=\left(\frac{A B}{A C}\right)^{4}
$$

Proof
Because $A A_{1}$ is a symmedian, from the Steiner's relation we deduct that

$$
\frac{B A_{1}}{C A_{1}}=\left(\frac{A B}{A C}\right)^{2}
$$

The Steiner's relation for $A A_{1}^{\prime \prime}, A A_{1}^{\prime}$ gives us

$$
\frac{B A_{1}^{\prime \prime}}{A_{1}^{\prime \prime} C} \cdot \frac{B A_{1}^{\prime}}{C A_{1}^{\prime}}=\left(\frac{A B}{A C}\right)^{2}
$$

Taking into account the precedent relation, we obtain

$$
\frac{B A_{1}^{\prime \prime}}{A_{1}^{\prime \prime} C}=\left(\frac{A B}{A C}\right)^{4}
$$

6.

If $A A_{1}^{\prime \prime}$ is the isogonal of the anti-height $A A_{1}^{\prime}$ in the triangle $A B C$ in which the height $A A_{1}$ has $A_{1} \in(B C)$ then

$$
\frac{B A_{1}^{\prime \prime}}{A_{1}^{\prime \prime} C}=\left(\frac{A B}{A C}\right)^{3} \cdot \frac{\cos B}{\cos C}
$$

Proof
If $A A_{1}$ is height in triangle $A B C \quad A_{1} \in(B C)$ then

$$
\frac{B A_{1}}{A_{1} C}=\frac{A B}{A C} \cdot \frac{\cos B}{\cos C}
$$

Because $A A_{1}^{\prime}$ is anti-median, we have $B A_{1}=C A_{1}^{\prime}$ and $A_{1} C=B A_{1}^{\prime}$ then

$$
\frac{B A_{1}{ }^{\prime \prime}}{A_{1}{ }^{\prime \prime} C}=\frac{A C}{A B} \cdot \frac{\cos C}{\cos B}
$$

Observation

The precedent results can be generalized for the anti-cevians of rang k and for their isogonal.

