Math 113 HW \#1 Solutions

§ 1.1

6: Determine whether the curve is the graph of a function of x. If it is, state the domain and range of the function.
Answer: The pictured curve is the graph of a function. The domain and range of the function are:

$$
\begin{array}{r}
\text { Domain: }-2 \leq x \leq 2 \\
\text { Range: }-1 \leq y \leq 2
\end{array}
$$

23: Given $f(x)=4+3 x-x^{2}$, evaluate the difference quotient

$$
\frac{f(3+h)-f(3)}{h} .
$$

Answer: Plugging in $x=3+h$ to $f(x)$ yields

$$
f(3+h)=4+3(3+h)-(3+h)^{2}=4+9+3 h-\left(9+6 h+h^{2}\right)=4-3 h-h^{2} .
$$

Likewise,

$$
f(3)=4+3(3)-3^{2}=4
$$

Therefore, the difference quotient

$$
\begin{aligned}
\frac{f(3+h)-f(3)}{h} & =\frac{\left(4-3 h-h^{2}\right)-4}{h} \\
& =\frac{-3 h-h^{2}}{h} \\
& =-3-h .
\end{aligned}
$$

44: Find the domain and sketch the graph of the function

$$
f(x)= \begin{cases}x+9 & \text { if } x<-3 \\ -2 x & \text { if }|x| \leq 3 \\ -6 & \text { if } x>3\end{cases}
$$

Answer: Since the three pieces in the definition of f account for all real numbers, the domain of f consists of all real numbers. The graph of f is shown in Figure 1.

Figure 1: The graph of $y=f(x)$

56: A Norman window has the shape of a rectangle surmounted by a semicircle. If the perimeter of the window is 30 ft , express the area A of the window as a function of the width x of the window.

Answer: Let h denote the height of the rectangle. Then we know that the perimeter of the window is equal to

$$
x+2 h+\text { outer perimeter of semi-circle. }
$$

Since the semi-circle in our Norman window has radius $x / 2$, its contribution to the perimeter of the window is half the circumference of a circle of radius $x / 2$:

$$
\frac{1}{2}\left(2 \pi \frac{x}{2}\right)=\pi \frac{x}{2}
$$

Therefore, the perimeter of the window is

$$
x+2 h+\pi \frac{x}{2}=\left(1+\frac{\pi}{2}\right) x+2 h .
$$

Since we know the perimeter of the window is equal to 30 ft , the above expression is equal to 30 and we can solve for h :

$$
2 h=30-\left(1+\frac{\pi}{2}\right) x,
$$

so

$$
h=15-\left(\frac{1}{2}+\frac{\pi}{4}\right) x .
$$

Therefore, the area A of the window is equal to

$$
\begin{aligned}
A(x) & =\text { area of rectangle }+ \text { area of semi-circle } \\
& =x h+\frac{1}{2} \pi\left(\frac{x}{2}\right)^{2} \\
& =x\left[15-\left(\frac{1}{2}+\frac{\pi}{4}\right) x\right]+\frac{\pi x^{2}}{8} \\
& =15 x-\frac{x^{2}}{2}-\frac{\pi x^{2}}{4}+\frac{\pi x^{2}}{8} \\
& =15 x-\left(\frac{1}{2}+\frac{\pi}{8}\right) x^{2} .
\end{aligned}
$$

§ 1.2

2: Classify each of the following functions:
(a) $y=\frac{x-6}{x+6}$ is a rational function.
(b) $y=x+\frac{x^{2}}{\sqrt{x-1}}$ is an algebraic function.
(c) $y=10^{x}$ is an exponential function.
(d) $y=x^{10}$ is a polynomial of degree 10 .
(e) $y=2 t^{6}+t^{4}-\pi$ is a polynomial of degree 6 .
(f) $y=\cos \theta+\sin \theta$ is a trigonometric function.

4: Match each equation with its graph
(a) $y=3 x$ corresponds to the graph G.
(b) $y=3^{x}$ corresponds to the graph f.
(c) $y=x^{3}$ corresponds to the graph F.
(d) $y=\sqrt[3]{x}$ corresponds to the graph g.

6: What do all the members of the family of linear functions $f(x)=1+m(x+3)$ have in common? Sketch several members of the family.
Answer: Each of the functions in this family is a line passing through the point $(-3,1)$. By varying the different values of m we can get all such lines except the vertical line (which would correspond to $m=\infty$, if that was a valid choice for m). Several members of this family of lines are shown in Figure 2.

Figure 2: Various lines of the form $y=1+m(x+3)$

16: The manager of a furniture factory finds that it costs $\$ 2200$ to manufacture 100 chairs in one day and $\$ 4800$ to produce 300 chairs in one day.
(a) Express the cost as a function of the number of chairs produced, assuming that it is linear. Then sketch the graph.
Answer: First, it makes sense to think of the number of chairs as the input and the cost to produce them as the output. Therefore, let $C(x)$ denote the cost of producing x chairs. Assuming $C(x)$ is linear, we want to find the equation of the line passing through the points $(100,2200)$ and $(300,4800)$. Such a line has slope

$$
m=\frac{4800-2200}{300-100}=\frac{2600}{200}=13 .
$$

Therefore, using the point-slope formula, the equation of the line is

$$
y-2200=13(x-100)
$$

so

$$
y=13(x-100)+2200=13 x-1300+2200=13 x+900 .
$$

Thus, we see that

$$
C(x)=13 x+900
$$

(b) What is the slope of the graph and what does it represent?

Answer: The slope of the graph $y=C(x)$ is equal to 13 ; this represents the cost of producing an additional chair. In economic terms, the marginal cost of production is \$13/chair.
(c) What is the y-intercept of the graph and what does it represent?

Answer: The y-intercept of $y=C(x)$ is equal to $\$ 900$; this represents the fixed costs of production.

