Complex Analysis Exam 1

October 29, 2018

Name:

\qquad

1. Let $f(z)$ be a branch of $\log \frac{1+z}{1-z}$. Find the power series of this function centered at the point $z=0$ and find its radius of convergence.
Proof: $\quad f(z)=\log (1+z)-\log (1-z)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+1} z^{n+1}-\sum_{n=0}^{\infty} \frac{1}{n+1} z^{n+1}=$ $\sum_{n=0}^{\infty} \frac{(-1)^{n}+1}{n+1} z^{n+1}=2 \sum_{n=1}^{\infty} \frac{1}{2 n+1} z^{2 n+1}$. The radius of convergence is

$$
R=\frac{1}{\overline{\lim _{n \rightarrow \infty}} \sqrt[n]{\left|a_{n}\right|}}=\frac{1}{\lim _{n \rightarrow \infty} \sqrt[2 n+1]{\left|a_{2 n+1}\right|}}=\lim _{n \rightarrow \infty} \sqrt[2 n+1]{2 n+1}=\lim _{n \rightarrow \infty} \sqrt[n]{n}=1
$$

2. Find a linear transformation $f(z)$ that maps the points 1,2 and i to the points $i, 1,2$, respectively.
Solution Consider the cross ratio $(z, 1,2, i)=(w, i, 1,2)$ where $w=f(z)$, i.e.,

$$
\frac{z-1}{z-i} \cdot \frac{2-i}{2-1}=\frac{w-i}{w-2} \cdot \frac{1-2}{1-i}
$$

i.e., $(z-1)(2-i)(1-i)(w-2)=-(w-i)(z-i)$, i.e., $[(z-1)(2-i)(1-i)+(z-i)] w=$ $i(z=i)+2(2-i)(1-i)(z-1)$, i.e.,

$$
w=f(z)=\frac{(-5 i+2) z-1+6 i}{(2-3 i) z-1+2 i} .
$$

3. Evaluate the integral $\oint_{C} \frac{\bar{z}}{|z|} d z$ where $C=\partial \Delta(4)$ is the circle with counterclockwise orientation.

Solution: The curve C is defined by $\phi:[0,2 \pi] \rightarrow \mathbb{C}, t \mapsto 4 \cos t+4 i \sin t=4 e^{i t}$. Then

$$
\int_{C} \frac{\bar{z}}{|z|} d z=\int_{0}^{2 \pi} \frac{4 e^{-i t}}{4} 4 i e^{i t} d t=\int_{0}^{2 \pi} 4 i d t=8 \pi i .
$$

4. Compute

$$
\oint_{C} \frac{d z}{z^{2}+1}
$$

where $C=\partial \Delta(-i, 1)$ with counterclockwise.
Solution: By Cauchy integral formula, by setting $f(\zeta)=\frac{1}{\zeta-i}$,

$$
\oint_{C} \frac{d z}{z^{2}+1}=\oint_{C} \frac{f(\zeta)}{\zeta-(-i)}=2 \pi i f(-i)=-\pi .
$$

5. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a linear transformation such that $f(x+i x) \in \mathbb{R}$ for any $x \in \mathbb{R}$. If $f(2)=i$, find $f(2 i)=$?

Solution: Since $2 i$ and 2 are mutual reflection points with respect to the line $L=$ $\{x+i x \mid x \in \mathbb{R}\}$, and since $f(L)=\mathbb{R}$, we know that $f(2 i)$ and $f(2)$ are mutual reflection points with respect to the real axis. Since $f(2)=i$, it implies $f(2 i)=-i$.
6. If $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ has the radius of convergence $R, 0<R<\infty$. Show that there exists at least one point $z_{0} \in \partial \Delta(R)$ such that f cannot extend holomorphically on a neighborhood of $z_{0} .{ }^{1}$

Proof: Suppose there is no such point z_{0}. We seek a contradiction. In fact, for any point $z \in \partial \Delta(R)$, there exists a neighborhood $\Delta\left(z, \epsilon_{z}\right)$ on which f can extend holomorphically. Then we obtain an open covering $\mathcal{U}=\left\{\Delta\left(z, \epsilon_{z}\right)\right\}$ of $\partial \Delta(R)$. Since $\partial \Delta(R)$ is compact, there exists a finite subcover of $\mathcal{U}: \Delta\left(z_{1}, \epsilon_{z_{1}}\right), \Delta\left(z_{2}, \epsilon_{z_{2}}\right), \ldots \ldots, \Delta\left(z_{m}, \epsilon_{z_{m}}\right)$. This implies that f extend holomorphically on $\Delta\left(R^{\prime}\right)$ where $R^{\prime}>R$, which is a contradiction.

[^0]
[^0]: ${ }^{1}$ By f extends holomorphically at $z_{0} \in \partial \Delta(R)$, it means that there is another holomorphic function $g(z)$ defined on a disk $\Delta\left(z_{0}, r\right)$ such that $g(z)=f(z)$ for all $z \in \Delta(R) \cap \Delta\left(z_{0}, r\right)$.

