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Miller, Christensen, Amit, and Grenander 2AbstractMathematical techniques are presented for the transformation of digital anatom-ical textbooks from the ideal to the individual, allowing for the representation of thevariabilities manifest in normal human anatomies. The ideal textbook is constructedon a �xed coordinate system to contain all of the information currently availableabout the physical properties of neuroanatomies. This information is obtained viasensor probes such as magnetic resonance, computed axial and emission tomography,along with symbolic information such as white and gray matter tracts, nuclei, etc.Human variability associated with individuals is accommodated by de�ning prob-abilistic transformations on the textbook coordinate system, the transformationsforming mathematical translation groups of high dimension. The ideal is applied tothe individual patient by �nding the transformation which is consistent with physi-cal properties of deformable elastic solids and which brings the coordinate system ofthe textbook to that of the patient. Registration, segmentation and fusion all resultautomatically because the textook carries symbolic values as well as multi-sensorfeatures.



Miller, Christensen, Amit, and Grenander 31 Global Shape Models and Anatomical TemplatesImaging modalities such as magnetic resonance imaging (MRI), x-ray computed tomog-raphy (CT) and positron emission tomography (PET) provide exquisitely detailed in vivoinformation regarding the anatomy and physiological function of speci�c subjects. How-ever, the interpretation of the data has been hindered by the inability to expeditiouslyrelate such information to speci�c anatomical regions. The di�culty lies in two areas:images from atlases and other modalities must be registered; but more fundamentally,even when registered, normal variation in anatomy makes interpretation extremely di�-cult. This paper provides algorithms for representing normal neuroanatomies by preciselyspecifying the global anatomical relationships between structures and how they can varyfrom one individual to another. The goal is to provide representations which allow forthe generalization of a single ideal electronic anatomical textbook to the individual.Accommodating the types of variability manifest in human anatomies is clearly anambitious, if not somewhat daunting goal. There are no shortage of image processingalgorithms. The literature abounds with computational techniques designed to improvepictures by noise suppression, or to recognize particular patterns so as to segment picturesinto subpictures. Much of the greatest success to date has been with algorithms thatmodel sensor variability, such as for x-ray, magnetic resonance, or emission tomography.But the variability in the anatomical shapes and structures themselves is much lesswell understood. The main di�culty is that human anatomies form highly complex sys-tems. Browsing through an anatomical textbook, one is struck by the awesome amountof information. The enormous complexity of biological patterns makes the design ofrepresentations of even normal anatomies a di�cult, not to say overwhelming endeavor.Limitations of existing methods become visible for such ambitious tasks as representa-tion of the shape ensemble itself. Since the mid 1970s researchers have built models thatattempt to incorporate structured variability. The early paper of Besag [1] began theline of research on the use of probabilistic Markov random �elds models (MRF's) fortexture analysis. The MRF approach has demonstrated a good deal of success in imagerestoration and segmentation. But this is not enough for representing the global relationsillustrated by even the typical aforementioned anatomies. Natural textures can be mod-eled with MRFs since most of their variability is of a very local nature: the probabilisticdependencies extend over quite a limited range.To meet the greater challenge of representing the anatomical relations between struc-tures in human anatomies, global representations must be employed. Mathematical tech-niques for such representations began to appear in the early 1980's under the name ofglobal shape models. The global shape models represent image ensembles in terms of theirtypical structure via the construction of templates, and their variabilites by the de�nitionof probabilistic transformations that are applied to the templates. The transformationsform groups (translation, scale, and rotation) and are applied to the template, in thiscase an electronic atlas, so that a rich family of shapes may be generated with the globalproperties of the templates maintained.There has already been a vast body of work on multi-modality image fusion andregistration (see for example the proceedings of a recent workshop [2] for a substantiveintroduction). The simplest methods of registration used assume that the images or tis-sues being matched are highly similar for which only global, course features must bematched. Transformations of this type consist of rigid global rotation and translation,



Miller, Christensen, Amit, and Grenander 4and or simple scaling. We, however, are interested in accounting for very local variabilityacross disparate anatomies, thereby requiring high dimensional transformations on thecoordinate system, of dimension proportional to the size of the voxel lattice. Alterna-tively, many investigators have taken the approach of de�ning a small set of features -�ducial markers and/or landmarks - which drive the registration. In the method proposedhere, the multi-sensor tomographic data directly provides the driving force for the trans-formation and alignment of the coordinate systems. If �ducials and landmarks are alsode�ned, they become powerful boundary conditions for our method, but are not required.The work proposed herein is most akin to the physically based modelling work ofTerzoupolis (see [3], for example) in which transformations are constructed to obey certainphysical laws. Most relevant is the elegant work of Bajcsy and collaborators [4] whichbegan in the early 80's in which deformable volume models were developed. The approachpresented here, while identical in spirit to both, substantially di�ers and extends theprevious methods. First, the driving force acting throughout the continuum is the non-linear variation of the distortion between the deforming template and the multi-modalityimaging data. The full non-linear optimization is solved without linearization of thedriving force. Only under the condition that the template and data are su�ciently similarso that the deformations are small, do the linearized solutions give equivalent results(see [5]). Secondly, the deformation procedure is accomplished by solving a sequence ofoptimization problems from course to �ne scale via parametrically de�ned deformation�elds. This is analogous to multi-grid methods but here the notion of re�nement fromcourse to �ne is accomplished by increasing the number of basis components. The �nalstage is to use the translation �eld over the entire continuum.Our previous work on deformable templates for biological shape representation [6, 7, 8,9] has involved templates of low complexity which could be constructed with modest e�ort.For example, organelles in electron-micrographs such as membranes and mitochondria aregenerated as transformations of linear and elliptic shapes. Likewise, amoeba are modeledas transformations of a sphere. Constructing templates for human anatomies is a taskorders of magnitude larger. The proposed neurological templates consist of megabytes ofconstants associated with 3-dimensional images from sensor probes and symbolic textbooklabelling. Until recently the construction of the template itself seemed to be the majorobstacle for the successful application of these methods. It was therefore a welcomesurprise to learn of the The Visible Human [10] project undertaken by the NationalMedical Library (NML) in which digital anatomical templates are being constructed fortwo complete human beings. We quote from the NML: \This Visible Human projectwould include digital images derived from computerized tomography, magnetic resonanceimagery, and photographic images from cryosectioning of cadavers." Initiatives such asthis one makes the proposed work particularly timely.2 Anatomical Textbook and TransformationsThe anatomical textbook (template) is a vector function de�ned on the ideal coordinatesystem of the textbook. The range of the template is both real as well as symbolic invalue, with the vector of values including measures of the intrinsic composition of thetissue associated with the various noninvasive sensor modalities, as well as anatomicallabel and histological information. The multi-valued vector contains values associatedwith various imaging probes, MR spin-density, t1, and t2 images, CT attenuation density



Miller, Christensen, Amit, and Grenander 5images, and functional PET images. Symbolic information would include the variouslabeled areas: white matter tracts, gray matter nuclei, Broca's areas, etc.The textbook is a vector mapping of the coordinate system 
 � <3 according toT : 
 ! T , with the range space T , assumed to be an M -fold product of spacesT1 � T2 � : : : TM , where each component Tm 2 Tm corresponds to a di�erent feature ofthe tissue. The triple (
;T; T ) is termed the anatomical textbook (template).There are two kinds of variations which must be accommodated: normal variationbetween humans and diseased or abnormal states. Disease and abnormal variation is notaddressed in this paper. Focusing on normal human variation, a set of transformationsh 2 H on the ideal coordinate system are de�ned where H is the set of homeomorphicmaps h : 
 ! 
 . The homeomorphisms are generated from translation groups appliedto points ~x 2 
:h : ~x = (x1; x2; x3) ! (x1 � u1(~x); x2 � u2(~x); x3 � u3(~x)) : (1)The vector �eld ~u(~x) = (u1(~x); u2(~x); u3(~x)) is called the displacement �eld. The mapsconstructed from these transformations allow for the dilation, contraction, and warpingof the underlying ideal coordinates of the template into the coordinates of the individualanatomy at a very local level. The set of normal anatomies generated from the textbook(
;T; T ) becomes fT � h : h 2 Hg, with � the composition operator.2.1 Applying the TextbookThe anatomical textbook is applied to individual patients as follows. A patient is charac-terized via a study S, an N-valued vector function consisting of N -characterizing data setsfSngNn=1, or sub-studies. Each sub-study is an examination of the patients brain tissue viasome sensor. It is assumed that all of the study types already exist in the ideal textbookwhich implies Sn : 
! Tmn , for some mn 2 f1; 2; : : : ;Mg. For the work described here,the study modalities are assumed acquired in register; in general, a second processing stepwould be required to register modalities from a single patient. The information in theanatomical textbook (
;T; T ) is brought into the coordinates of the patient by �ndingthe transformation h 2 H on 
 which registers the studies fSngNn=1 with the textbook.Registration between the template and study is de�ned using a distance measurebetween the transformed textbook and the study with the distance equalling zero ifand only if the two are equal. For all of the MR data, the squared-error distance12�2 R
PNn=1 jTn(~x�~u(~x))�Sn(~x)j2d~x , is used which is consistent with Gaussian modelsof noise in MR imaging.2.2 Mechano-elastic Energy Density:To ensure that the vector �eld of (1) results in transformations which are physicallysmooth, so that structures are not broken apart, it is assumed that they arise from aprior distribution with potential determined by the kinematics of elastic solids [11]. This"Bayesian view" of the estimation problem gives rise to an associated potential of theposterior distribution, the sum of the distance and elasticity potentialsH(~u) = 12�2 Z
 NXn=1 jTn(~x� ~u(~x))� Sn(~x)j2d~x (2)



Miller, Christensen, Amit, and Grenander 6+ �2 3Xi=1 3Xj=1 Z
 ��@ui(~x)@xi ��@uj(~x)@xj �+ ��@ui(~x)@xj + @uj(~x)@xi �2 d~x ;where �, and � are the Lame elasticity constants and � is a Lagrange multiplier.3 Algorithm: stochastic gradient searchThe method of solution is to generate the tranformation �eld ~u which is the mean ofthe posterior distribution induced by the potential of (2). For this stochastic gradientalgorithms are proposed which follow gradients of the potential H(~u) with an additivenoise term. Under proper conditions 1 [7] averages of the parameter estimates generatedfrom the gradient algorithm converge to the mean which becomes the estimated transfor-mation �eld shown in all of the results below. We note that because of �nite averaging weare only assured that the mean of the posterior distribution is computed locally aroundthe large energy minima. For all of the results, the 3-dimensional prior is reduced tothe 2-dimensional prior in the following standard way. Assume that the stresses in the~x3-direction, and the shear stresses in the ~x1;3 and ~x2;3 directions are zero, which implies@u3@x1 = �@u1@x3 and @u3@x2 = �@u2@x3 and @u3@x3 = � ��+2� (@u1@x1+ @u2@x2 ). In 2-dimensions the constants�1 = 3��+2�2�+� , �2 = �2�+2� will be extremely helpful. The estimation is accomplished intwo steps: �rst through a low-dimensional parametric basis [7], and second through ahigh-dimensional parameterization which corresponds to estimating the translation �eldover the continuum.3.1 Low-dimensional course re�nement:The basis representation of the transformation �eld becomes~u(~x) = dXi;j=0 p2p(i2 + j2) �i;j;1~ei;j;1(~x) + �i;j;2~ei;j;2(~x)! (3)with the pair of basis functions~ei;j;1(~x) = � i sin�ix1 cos�jx2j cos�ix1 sin�jx2 � ; ~ei;j;2(~x) = � �j sin�ix1 cos�jx2i cos�ix1 sin�jx2 � ; (4)chosen to diagonalize the covariances associated with the elasticity operator. The stochas-tic algorithm searches through the expansion coe�cient set f�i;j;1; �i;j;2gdi;j=0 accordingto d�i;j;p(t) = �12 @H(~u(t))@�i;j;p dt+ dwi;j;p(t) (5)for p = 1; 2 where wi;j;p(t) is a Wiener process. The gradient of the potential with respectto the expansion coe�cients becomes@@�i;j;pH(~u) = � 1�2 Z
 NXn=1�Tn(~x� ~u(~x; t))� Sn(~x)�rTn(~x� ~u(~x; t)) � ~ei;j;p(~x)d~x+ ��p(i2 + j2)�i;j;p(t) ; (6)1Grenander, U. and Miller, M.I. Representations of Knowledge in Complex Systems. Journal of theRoyal Statistical Society, submitted February 1992



Miller, Christensen, Amit, and Grenander 7with ~a �~b denoting dot product, rT = [ @T@x1 ; @T@x2 ], and �1 = �1�22(1��22) , �2 = �1�24(1+�2) .3.2 High-dimensional �ne search:The full optimization is solved at the highest resolution supported by the textbook, in thiscase the MR data is on a 256� 256 pixel lattice L. The continuous displacement �eld ~uis approximated by the set f~u(~l)g~l2L at each of the 2562 lattice sites. The transformation�eld is estimated using stochastic gradient search according todup(~l; t) = �12 @H(~u(t))@up(~l) dt+ dw~l;p(t) ; (7)where the parametric solution from Eqn. (5) is used as the starting point from which forthe Eqn. (7). The partial derivatives, @H(~u(t))@up(~l) , are obtained from the variational calculusgradient �H(~u) = �12(1 + �2)r2~u(~x; t) + �12(1� �2)r 2Xp=1 @up(~x; t)@xp !� 1�2 NXn=1�Tn(~x� ~u(~x; t))� Sn(~x)�rTn(~x� ~u(~x; t)) : (8)Here r2 is the Laplacian operator. The lattice partial derivatives @H(~u(t))@up(~l) ; p = 1; 2 areobtained via discretization of the P.D.E. Eqn. (8), using standard symmetric di�erencelattice approximations.For all of the results shown, d was systematically increased from 1 to 5 with 20iterations of the stochastic gradient search run for each dimension. The standard deviation� and simulation time step were 0:01 and 10�8, respectively. The parametrically de�nedtransformation �eld was then used as initial conditions to the high 2� 2562 dimensionalsearch. Eqn. (7) was run to equilibrium over 250 iterations, and then 50 iterations wereused to generate the empirically averaged ~u �eld. The standard deviation was kept thesame, with the step size increased to 10�5. The constants ��1 = 0:01 and �2 = 0:0 wereused for all of the experiments.4 Results4.1 Constructing and generalizing the textbook:A 2-dimensional textbook was constructed from an MR study collected at Duke Uni-versity of a normal patient using standard magnetic resonance spin-echo sequences togenerate a spin-density, t1-weighted, and t2-weighted series. A hand segmentation wasalso performed of the 2-D scans into the various gray matter nuclei regions: thalamus,putamen, head of caudate nucleus, ventricle, other brain matter, and background. Thetextbook consists of a 4-tuple of 3 magnetic resonance images, and a hand labeled seg-mentation. These are shown in Figure (1). The hand segmented labeling of the textbookshown in the lower right panel was generated using all three MR images, along with thedetailed horizontal brain section on page 28 of the DeArmond et al. [12] anatomy atlas.



Miller, Christensen, Amit, and Grenander 8Two di�erent patient studies, A and B, were analyzed. Study A consisted of N = 3sub-studies (spin-density, t1-weighted, and t2-weightedMR images) and study B consistedof N = 2 sub-studies (spin-density and t2-weighted MR images). The studies wereselected because of their similar orientations and level in the brain and not for theircloseness in brain size or similarity to the textbook.The result of estimating the transformation ĥA from the �rst experiment is shownin Figure (2). The top row shows the spin-density (left), t1-weighted (middle) and t2-weighted images (right) from patient A. Shown in the middle row is the MR textbookof Figure (1), transformed to patient A: the spin-density T1 � ĥA (left), the t1 imageT2 � ĥA (middle), and the t2 image T3 � ĥA (right). Notice the remarkable correspondencebetween the transformed textbook and the destination patient A. Shown in the bottomrow is the magnitude of the di�erence images between the transformed textbook and thesub-studies (top row minus the middle row).Figure (3) shows the result of estimating ĥB for patient B. The left column shows theMR spin-density (top) and t2 (bottom) images of patient B. The middle column showsthe transformed textbook: T1 � ĥB and T3 � ĥB . The right column shows the di�erenceimages demonstrating the near perfect alignment.Figure (4) demonstrates the course to �ne procedure, showing both the global as wellas local 
ow of information as the t2 component of the textbook aligns with patientA. The left panel of Figure (4) shows the magnitude di�erence between the textbookt2 component and patient A before any transformation. Notice the large disparity inglobal as well as local structure. The middle panel shows the correspondence after theapplication of the global transformation alone. The right panel shows the di�erence afterboth the global and local transformations are applied. Notice, the local transformationsallow for small adjustments of the �ne substructures.Having found the transformations, ĥA and ĥB from the ideal coordinate system ofthe textbook to the studies of patients A and B, the symbolic label information can beautomatically mapped to the patients coordinate system. Shown in Figure (5) is theresult of applying the anatomically labeled gray matter nuclei and ventricle informationin the T4 component of the textbook to the brain slices of patients A and B. The toprow shows hand labeled structures of patients A and B with the bottom row showing theautomated segmentation and labeling of both patients A (T4 � ĥA left) and B (T4 � ĥBright).4.2 Fusing ModalitiesAll of the information in the textbook becomes available in the patient study, allowingfor the high resolution anatomical information of the textbook to be fused with thephysiologic studies of brain activity [13, 14]. Figure (6) demonstrates the fusion of theanatomical textbook information into the emission tomographic physiologic studies. Forthis fusion study a new simulated textbook and simulated patient study was generated. Thesimulated textbook consisted of a segmented image, a spin-density, and t2-weighted MRimage corresponding to the hand segmentation of the textbook of Figure (1). Standardtissue parameters were taken to represent cerebrospinal 
uid, gray matter, and whitematter, with the images generated using the spin-echo sequence used in the Duke study.Three images were generated from the segmentation of patient B, the �rst and secondbeing spin-density and t2-weighted images. The third component of the patient study



Miller, Christensen, Amit, and Grenander 9was a positron emission tomography (PET) scan simulated to correspond to the SuperPET time-of-
ight imager [15]. Figure (6) shows the result of incorporating the anatomicinformation of the deformed textbook{via the MR images{into the PET reconstruction.Shown in the left panel is the true PET tracer distribution used for the study. The middlepanel shows use of the anatomic information obtained via registration of the MR textbookwith the patient for the calculation of the maximum a posteriori estimate of the PETtracer distribution. For this, a Good's roughness Markov random �eld prior [16] was usedto locally smooth independently over the nuclei and ventricle areas. Notice the exquisitedetail and tracer accuracy in the PET reconstruction. The right panel shows the result ofthe same PET reconstruction algorithm with Good's smoothing globally applied acrossthe boundaries of the anatomically distinct nuclei, without the use of the anatomic MRinformation. Notice how much anatomical detail, or resolution is lost.5 ConclusionsProjects such as the NML's Visible Human project for the construction of digital anatom-ical libraries for two complete humans has to a large part motivated the work proposedherein. Thus far, only normal neuroanatomy has been discussed, although the meth-ods must be extended to include the abnormal variation associated with disease. Againquoting from the NML: \NML should expand upon initial image libraries comprised ofnormal structure to encompass specialized image collections which represent structuralinformations, such as embryological development, normal and abnormal variations anddisease-related images".The construction of digital anatomical textbooks is quickly becoming a reality. Beingable to transform the coordinate system of the textbook into that of any patient allows forsensor fusion as well as segmentation. All of the anatomic, histologic and pharmacologicinformation in the textbook then becomes available in the study of the individual.6 AcknowledgementsWe are indebted to Dr. Scott Nadel of Duke University for the MR data, to RichardRabbitt for help on the continuum mechanics, and Marcus Raichle and Michael Vannierfor helpful discussions during the development of the manuscript. Michael Miller and GaryChristensen were supported by the NIH-NCRR-RR01380, ONR N00014-92-J-1418 andARO P-29349-MA-SDI. Yali Amit and Ulf Grenander were supported by ARO DAAL-03-86-K-0110, ONR N00014-88-K-289.
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Miller, Christensen, Amit, and Grenander 117 Figure Captions

Figure 1: Textbook components: spin-density (top-left), t1-weighted (top-right), t2-weighted (bottom-left) MR images, and a hand segmentation (bottom-right).
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Figure 2: Top row shows the spin-density (left), t1-weighted (middle) and t2-weighted(right) images of patient A; middle row shows the transformed textbook; bottom rowshows the magnitude di�erence images between the transformed textbook and the patient.



Miller, Christensen, Amit, and Grenander 13

Figure 3: Left column shows the spin-density (top) and t2 (bottom) of patient B; middlecolumn shows the transformed textbook; right column shows the magnitude di�erenceimages between the textbook and the patient.

Figure 4: Magnitude di�erence images between the t2 component of patient A and thetextbook (left), the globally deformed textbook (middle), and the locally deformed text-book (right).
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Figure 5: Top row shows the hand labeled structures of patients A (left) and B (right);the bottom row shows the automatic labeled structures of patients A (left) and B (right).

Figure 6: The left panel shows the true PET tracer distribution. The middle panel showsthe smoothed maximum a posteriori PET reconstruction incorporating the anatomicalMR information. The right panel shows the smoothed estimate generated without usingthe anatomical information.


