
Encyclopedia of Systems and Control
DOI 10.1007/978-1-4471-5102-9_214-1
© Springer-Verlag London 2014

Averaging Algorithms and Consensus

Wei Ren�

Department of Electrical Engineering, University of California, Riverside, CA, USA

Abstract

In this article, we overview averaging algorithms and consensus in the context of distributed
coordination and control of networked systems. The two subjects are closely related but not
identical. Distributed consensus means that a team of agents reaches an agreement on certain
variables of interest by interacting with their neighbors. Distributed averaging aims at computing
the average of certain variables of interest among multiple agents by local communication. Hence
averaging can be treated as a special case of consensus – average consensus. For distributed
consensus, we introduce distributed algorithms for agents with single-integrator, general linear,
and nonlinear dynamics. For distributed averaging, we introduce static and dynamic averaging
algorithms. The former is useful for computing the average of initial conditions (or constant
signals), while the latter is useful for computing the average of time-varying signals. Future
research directions are also discussed.

Keywords Multi-agent systems • Distributed control • Networked systems • Coordination •
Cooperative control

Introduction

In the area of control of networked systems, low cost, high adaptivity and scalability, great
robustness, and easy maintenance are critical factors. To achieve these factors, distributed
coordination and control algorithms that rely on only local interaction between neighboring agents
to achieve collective group behavior are more favorable than centralized ones. In this article, we
overview averaging algorithms and consensus in the context of distributed coordination and control
of networked systems.

Distributed consensus means that a team of agents reaches an agreement on certain variables
of interest by interacting with their neighbors. A consensus algorithm is an update law that drives
the variables of interest of all agents in the network to converge to a common value (Jadbabaie
et al. 2003; Olfati-Saber et al. 2007; Ren and Beard 2008). Examples of the variables of interest
include a local representation of the center and shape of a formation, the rendezvous time,
the length of a perimeter being monitored, the direction of motion for a multi-vehicle swarm,
and the probability that a target has been identified. Consensus algorithms have applications in
rendezvous, formation control, flocking, attitude alignment, and sensor networks (Bullo et al.
2009; Qu 2009; Mesbahi and Egerstedt 2010; Ren and Cao 2011; Bai et al. 2011a). Distributed
averaging algorithms aim at computing the average of certain variables of interest among multiple
agents by local communication. Distributed averaging finds applications in distributed computing,
distributed signal processing, and distributed optimization (Tsitsiklis et al. 1986). Hence the
variables of interest are dependent on the applications (e.g., a sensor measurement or a network

�E-mail: ren@ee.ucr.edu

Page 1 of 10

Encyclopedia of Systems and Control
DOI 10.1007/978-1-4471-5102-9_214-1
© Springer-Verlag London 2014

A1 A2

A3 A4 A5

Fig. 1 A directed graph that characterizes the interaction among five agents, where Ai , i D 1; : : : ; 5, denotes agent i .
An arrow from agent j to agent i indicates that agent i receives information from agent j . The directed graph has a
directed spanning tree but is not strongly connected. Here both agents 1 and 2 have directed paths to all other agents

quantity). Consensus and averaging algorithms are closely connected and yet nonidentical. When
all agents are able to compute the average, they essentially reach a consensus, the so-called average
consensus. On the other hand, when the agents reach a consensus, the consensus value might or
might not be the average value.

Graph Theory Notations. Suppose that there are n agents in a network. A network topology
(equivalently, graph) G consisting of a node set V D f1; : : : ; ng and an edge set E � V � V will
be used to model interaction (communication or sensing) between the n agents. An edge .i; j / in
a directed graph denotes that agent j can obtain information from agent i , but not necessarily vice
versa. In contrast, an edge .i; j / in an undirected graph denotes that agents i and j can obtain
information from each other. Agent j is a (in-) neighbor of agent i if .j; i/ 2 E . Let Ni denote the
neighbor set of agent i . We assume that i 2 Ni . A directed path is a sequence of edges in a directed
graph of the form .i1; i2/; .i2; i3/; : : :, where ij 2 V . An undirected path in an undirected graph is
defined analogously. A directed graph is strongly connected if there is a directed path from every
agent to every other agent. An undirected graph is connected if there is an undirected path between
every pair of distinct agents. A directed graph has a directed spanning tree if there exists at least
one agent that has directed paths to all other agents. For example, Fig. 1 shows a directed graph
that has a directed spanning but is not strongly connected. The adjacency matrix A D Œaij � 2 R

n�n
associated with G is defined such that aij (the weight of edge .j; i/) is positive if agent j is a
neighbor of agent i while aij D 0 otherwise. The (nonsymmetric) Laplacian matrix (Agaev and
Chebotarev 2005) L D Œ`ij � 2 R

n�n associated with A and hence G is defined as `ii D P
j¤i aij

and `ij D �aij for all i ¤ j . For an undirected graph, we assume that aij D aj i . A graph is
balanced if for every agent the total edge weights of its incoming links is equal to the total edge
weights of its outgoing links (

Pn

jD1 aij D Pn

jD1 aj i for all i).

Consensus

Consensus has a long history in management science, statistical physics, and distributed computing
and finds recent interests in distributed control. While in the area of distributed control of
networked systems the term consensus was initially more or less dominantly referred to the case
of a continuous-time version of a distributed linear averaging algorithm, such a term has been
broadened to a great extent later on. Related problems to consensus include synchronization,
agreement, and rendezvous. The study of consensus can be categorized in various manners. For
example, in terms of the final consensus value, the agents could reach a consensus on the average,
a weighted average, the maximum value, the minimum value, or a general function of their
initial conditions, or even a (changing) state that serves as a reference. A consensus algorithm

Page 2 of 10

Encyclopedia of Systems and Control
DOI 10.1007/978-1-4471-5102-9_214-1
© Springer-Verlag London 2014

could be linear or nonlinear. Consensus algorithms can be designed for agents with linear or
nonlinear dynamics. As the agent dynamics become more complicated, so do the algorithm design
and analysis. Numerous issues are also involved in consensus such as network topologies (fixed
vs. switching, deterministic vs. random, directed vs. undirected, asynchronous vs. synchronous),
time delay, quantization, optimality, sampling effects, and convergence speed. For example, in
real applications, due to nonuniform communication/sensing ranges or limited field of view of
sensors, the network topology could be directed rather than undirected. Also due to unreliable
communication/sensing and limited communication/sensing ranges, the network topology could
be switching rather than fixed.

Consensus for Agents with Single-Integrator Dynamics
We start with a fundamental consensus algorithm for agents with single-integrator dynamics. The
results in this section follow from Jadbabaie et al. (2003), Olfati-Saber et al. (2007), Ren and Beard
(2008), Moreau (2005), and Agaev and Chebotarev (2000). Consider agents with single-integrator
dynamics

Pxi .t/ D ui .t /; i D 1; : : : ; n; (1)

where xi is the state and ui is the control input. A common consensus algorithm for (1) is

ui .t / D
X

j2Ni .t /

aij .t/Œxj .t/ � xi.t/�; (2)

where Ni .t / is the neighbor set of agent i at time t and aij .t/ is the .i; j / entry of the adjacency
matrix A of the graph G at time t . A consequence of (2) is that the state xi .t/ of agent i is driven
toward the states of its neighbors or equivalently toward the weighted average of its neighbors’
states. The closed-loop system of (1) using (2) can be written in matrix form as

Px.t/ D �L.t/x.t/; (3)

where x is a column stack vector of all xi and L is the Laplacian matrix. Consensus is reached
if for all initial states, the agents’ states eventually become identical. That is, for all xi .0/,�
�xi.t/ � xj .t/

�
� approaches zero eventually.

The properties of the Laplacian matrix L play an important role in the analysis of the closed-
loop system (3). When the graph G (and hence the associated Laplacian matrix L) is fixed, (3) can
be analyzed by studying the eigenvalues and eigenvectors of L. Due to its special structure, for
any graph G, the associated Laplacian matrix L has at least one zero eigenvalue with an associated
right eigenvector 1 (column vector of all ones) and all other eigenvalues have positive real parts. To
ensure consensus, it is equivalent to ensure that L has a simple zero eigenvalue. It can be shown that
the following three statements are equivalent: (i) the agents reach a consensus exponentially for
arbitrary initial states; (ii) the graph G has a directed spanning tree; and (iii) the Laplacian matrix L
has a simple zero eigenvalue with an associated right eigenvector 1 and all other eigenvalues have
positive real parts. When consensus is reached, the final consensus value is a weighted average
of the initial states of those agents that have directed paths to all other agents (see Fig. 2 for an
illustration).

Page 3 of 10

Encyclopedia of Systems and Control
DOI 10.1007/978-1-4471-5102-9_214-1
© Springer-Verlag London 2014

0 1 2 3 4 5 6 7 8
2

3

4

5

6

7

8

9

10

time(s)

x i

i=1
i=2
i=3
i=4
i=5

Fig. 2 Consensus for five agents using the algorithm (2) for (1). Here the graph G is given by Fig. 1. The initial states are chosen as
xi .0/ D 2i , where i D 1; : : : ; 5. Consensus is reached as G has a directed spanning tree. The final consensus value is a weighted average
of the initial states of agents 1 and 2

When the graph G.t/ is switching at time instants t0; t1; : : :, the solution to the closed-loop
system (3) is given by x.t/ D ˚.t; 0/x.0/, where ˚.t; 0/ is the transition matrix corresponding to
�L.t/. Consensus is reached if ˚.t; 0/ eventually converges to a matrix with identical rows. Here
˚.t; 0/ D ˚.t; tk/˚.tk; tk�1/ � � �˚.t1; 0/, where ˚.tk; tk�1/ is the transition matrix corresponding
to L.t/ at time interval Œtk�1; tk�. It turns out that each transition matrix is a row-stochastic matrix
with positive diagonal entries. A square matrix is row stochastic if all its entries are nonnegative
and all of its row sums are one. The consensus convergence can be analyzed by studying the
product of row-stochastic matrices. Another analysis technique is a Lyapunov approach (e.g.,
max xi �minxi). It can be shown that the agents’ states reach a consensus if there exists an infinite
sequence of contiguous, uniformly bounded time intervals, with the property that across each such
interval, the union of the graphs G.t/ has a directed spanning tree. That is, across each such interval,
there exists at least one agent that can directly or indirectly influence all other agents. It is also
possible to achieve certain nice features by designing nonlinear consensus algorithms of the form
ui .t / D P

j2Ni .t /
aij .t/ Œxj .t/ � xi .t/�, where .�/ is a nonlinear function satisfying certain

properties. One example is a continuous nondecreasing odd function. For example, a saturation
type function could be introduced to account for actuator saturation and a signum type function
could be introduced to achieve finite-time convergence.

As shown above, for single-integrator dynamics, the consensus convergence is determined
entirely by the network topologies. The primary reason is that the single-integrator dynamics are
internally stable. However, when more complicated agent dynamics are involved, the consensus
algorithm design and analysis become more complicated. On one hand, whether the graph is
undirected (respectively, switching) or not has significant influence on the complexity of the
consensus analysis. On the other hand, not only the network topology but also the agent dynamics
themselves and the parameters in the consensus algorithm play important roles. Next we introduce
consensus for agents with general linear and nonlinear dynamics.

Page 4 of 10

Encyclopedia of Systems and Control
DOI 10.1007/978-1-4471-5102-9_214-1
© Springer-Verlag London 2014

Consensus for Agents with General Linear Dynamics
In some circumstances, it is relevant to deal with agents with general linear dynamics, which can
also be regarded as linearized models of certain nonlinear dynamics. The results in this section
follow from Li et al. (2010). Consider agents with general linear dynamics

Pxi D Axi C Bui ; yi D Cxi ; (4)

where xi 2 R
m, ui 2 R

p, and yi 2 R
q are, respectively, the state, the control input, and the output

of agent i and A, B , C are constant matrices with compatible dimensions.
When each agent has access to the relative states between itself and its neighbors, a distributed

static consensus algorithm is designed for (4) as

ui D cK
X

j2Ni

aij .xi � xj /; (5)

where c > 0 is a coupling gain,K 2 R
p�m is the feedback gain matrix, and Ni and aij are defined

as in (2). It can be shown that if the graph G has a directed spanning tree, consensus is reached
using (5) for (4) if and only if all the matrices ACc�i.L/BK, where �i.L/ ¤ 0 are Hurwitz. Here
�i.L/ denotes the i th eigenvalue of the Laplacian matrix L. A necessary condition for reaching a
consensus is that the pair .A; B/ is stabilizable. The consensus algorithm (5) can be designed via
two steps:

(a) Solve the linear matrix inequality ATP C PA � 2BBT < 0 to get a positive-definite solution
P . Then let the feedback gain matrix K D �BTP �1.

(b) Select the coupling strength c larger than the threshold value 1= min
�i .L/¤0

ReŒ�i .L/�, where Re.�/
denotes the real part.

Note that here the threshold value depends on the eigenvalues of the Laplacian matrix, which is in
some sense global information. To overcome such a limitation, it is possible to introduce adaptive
gains in the algorithm design. The gains could be updated dynamically using local information.

When the relative states between each agent and its neighbors are not available, one is motivated
to make use of the output information and employ observer-based design to estimate the relative
states. An observer-type consensus algorithm is designed for (4) as

Pvi D .AC BF /vi C cL
X

j2Ni

aij ŒC.vi � vj / � .yi � yj /�;

ui D Fvi ; i D 1; � � � ; n;
(6)

where vi 2 R
m are the observer states, F 2 R

p�n and L 2 R
m�q are the feedback gain matrices,

and c > 0 is a coupling gain. Here the algorithm (6) uses not only the relative outputs between
each agent and its neighbors but also its own and neighbors’ observer states. While relative outputs
could be obtained through local measurements, the neighbors’ observer states can only be obtained
via communication. It can be shown that if the graph G has a directed spanning tree, consensus is
reached using (6) for (4) if the matrices A C BF and A C c�i.L/LC , where �i.L/ ¤ 0, are
Hurwitz. The observer-type consensus algorithm (6) can be seen as an extension of the single-

Page 5 of 10

Encyclopedia of Systems and Control
DOI 10.1007/978-1-4471-5102-9_214-1
© Springer-Verlag London 2014

system observer design to multi-agent systems. Here the separation principle of the traditional
observer design still holds in the multi-agent setting in the sense that the feedback gain matrices F
and L can be designed separately.

Consensus for Agents with Nonlinear Dynamics
In multi-agent applications, agents usually represent physical vehicles with special dynamics,
especially nonlinear dynamics for the most part. Examples include Lagrangian systems for robotic
manipulators and autonomous robots, nonholonomic systems for unicycles, attitude dynamics for
rigid bodies, and general nonlinear systems. Similar to the consensus algorithms for linear multi-
agent systems, the consensus algorithms used for these nonlinear agents are often designed based
on state differences between each agent and its neighbors. But due to the inherent nonlinearity,
the problem is more complicated and additional terms might be required in the algorithm design.
The main techniques used in the consensus analysis for nonlinear multi-agent systems are often
Lyapunov-based techniques (Lyapunov functions, passivity theory, nonlinear contraction analysis,
and potential functions).

Early results on consensus for agents with nonlinear dynamics primarily focus on undirected
graphs to exploit the symmetry to facilitate the construction of Lyapunov function candidates.
Unfortunately, the extension from an undirected graph to a directed one is nontrivial. For example,
the directed graph does not preserve the passivity properties in general. Moreover, the directed
graph could cause difficulties in the design of (positive-definite) Lyapunov functions. One approach
is to integrate the nonnegative left eigenvector of the Laplacian matrix associated with the zero
eigenvalue into the Lyapunov function, which is valid for strongly connected graphs and has been
applied in some problems. Another approach is based on sliding mode control. The idea is to design
a sliding surface for reaching a consensus. Taking multiple Lagrangian systems as an example, the
agent dynamics are represented by

Mi.qi / Rqi C Ci.qi ; Pqi/ Pqi C gi.qi / D �i ; i D 1; � � � ; n; (7)

where qi 2 R
p is the vector of generalized coordinates, Mi.qi / 2 R

p�p is the symmetric positive-
definite inertia matrix, Ci.qi ; Pqi/ Pqi 2 R

p is the vector of Coriolis and centrifugal torques, gi.qi / 2
R
p is the vector of gravitational torque, and �i 2 R

p is the vector of control torque on the i th agent.
The sliding surface can be designed as

si D Pqi � Pqri D Pqi C ˛
X

j2Ni

aij .qi � qj / (8)

where ˛ is a positive scalar. Note that when si D 0, (8) is actually the closed-loop system of a
consensus algorithm for single integrators. Then if the control torque �i can be designed using
only local information from neighbors to drive si to zero, consensus will be reached as si can be
treated as a vanishing disturbance to a system that reaches consensus exponentially.

It is generally very challenging to deal with general directed or switching graphs for agents with
more complicated dynamics other than single-integrator dynamics. In some cases, the challenge
could be overcome by introducing and updating additional auxiliary variables (often observer-
based algorithms) and exchanging these variables between neighbors (see, e.g., (6)). In the
algorithm design, the agents might use not only relative physical states between neighbors but also

Page 6 of 10

Encyclopedia of Systems and Control
DOI 10.1007/978-1-4471-5102-9_214-1
© Springer-Verlag London 2014

local auxiliary variables from neighbors. While relative physical states could be obtained through
sensing, the exchange of auxiliary variables can only be achieved by communication. Hence such
generalization is obtained at the price of increased communication between the neighboring agents.
Unlike some other algorithms, it is generally impossible to implement the algorithm relying on
purely relative sensing between neighbors without the need for communication.

Averaging Algorithms

Existing distributed averaging algorithms are primarily static averaging algorithms based on linear
local average iterations or gossip iterations. These algorithms are capable of computing the average
of the initial conditions of all agents (or constant signals) in a network. In particular, the linear
local-average-iteration algorithms are usually synchronous, where at each iteration each agent
repeatedly updates its state to be the average of those of its neighbors. The gossip algorithms are
asynchronous, where at each iteration a random pair of agents are selected to exchange their states
and update them to be the average of the two. Dynamic averaging algorithms are of significance
when there exist time-varying signals. The objective is to compute the average of these time-
varying signals in a distributed manner.

Static Averaging
Take a linear local-average-iteration algorithm as an example. The results in this section follow
from Tsitsiklis et al. (1986), Jadbabaie et al. (2003), and Olfati-Saber et al. (2007). Let xi be the
information state of agent i . A linear local-average-iteration-type algorithm has the form

xi Œk C 1� D
X

j2Ni Œk�

aij Œk�xj Œk�; i D 1; : : : ; n; (9)

where k denotes a communication event, Ni Œk� denotes the neighbor set of agent i , and aij Œk�
is the .i; j / entry of the adjacency matrix A of the graph G that represents the communication
topology at time k, with the additional assumption that A is row stochastic and aii Œk� > 0 for all
i D 1; : : : ; n. Intuitively, the information state of each agent is updated as the weighted average of
its current state and the current states of its neighbors at each iteration. Note that an agent maintains
its current state if it does not exchange information with other agents at that event instant. In fact,
a discretized version of the closed-loop system of (1) using (2) (with a sufficiently small sampling
period) takes in the form of (9). The objective here is for all agents to compute the average of
their initial states by communicating with only their neighbors. That is, each xi Œk� approaches
1
n

Pn
jD1 xj Œ0� eventually. To compute the average of multiple constant signals ci , we could simply

set xi Œ0� D ci . The algorithm (9) can be written in matrix form as xŒk C 1� D AŒk�xŒk�, where x
is a column stack vector of all xi and AŒk� D Œaij Œk�� is a row-stochastic matrix.

When the graph G (and hence the matrix A) is fixed, the convergence of the algorithm (9) can
be analyzed by studying the eigenvalues and eigenvectors of the row-stochastic matrix A. Because
all diagonal entries of A are positive, Gershgorin’s disc theorem implies that all eigenvalues of
A are either within the open unit disk or at one. When the graph G is strongly connected, the
Perron-Frobenius theorem implies that A has a simple eigenvalue at one with an associated right

Page 7 of 10

Encyclopedia of Systems and Control
DOI 10.1007/978-1-4471-5102-9_214-1
© Springer-Verlag London 2014

eigenvector 1 and an associated positive left eigenvector. Hence when G is strongly connected, it
turns out that limk!1 Ak D 1�T , where �T is a positive left eigenvector of A associated with
the eigenvalue one and satisfies �T 1 D 1. Note that xŒk� D AkxŒ0�. Hence, each agent’s state
xi Œk� approaches �T xŒ0� eventually. If it can be further ensured that � D 1

n
1, then averaging is

achieved. It can be shown that the agents’ states converge to the average of their initial values if
and only if the directed graph G is both strongly connected and balanced or the undirected graph G
is connected. When the graph is switching, the convergence of the algorithm (9) can be analyzed by
studying the product of row-stochastic matrices. Such analysis is closely related to Markov chains.
It can be shown that the agents’ states converge to the average of their initial values if the directed
graph G is balanced at each communication event and strongly connected in a joint manner or the
undirected graph G is jointly connected.

Dynamic Averaging
In a more general setting, there exist n time-varying signals, ri .t/, i D 1; : : : ; n, which could
be an external signal or an output from a dynamical system. Here ri .t/ is available to only
agent i and each agent can exchange information with only its neighbors. Each agent maintains

a local estimate, denoted by xi.t/, of the average of all the signals Nr.t/ 4D 1
n

Pn

kD1 rk.t/. The
objective is to design a distributed algorithm for agent i based on ri .t/ and xj .t/, j 2 Ni .t /,
such that all agents will finally track the average that changes over time. That is, kxi.t/ � Nr.t/k,
i D 1; : : : ; n, approaches zero eventually. Such a dynamic averaging idea finds applications in
distributed sensor fusion with time-varying measurements (Spanos and Murray 2005; Bai et al.
2011b) and distributed estimation and tracking (Yang et al. 2008).

Figure 3 illustrates the dynamic averaging idea. If there exists a central station that can
always access the signals of all agents, then it is trivial to compute the average. Unfortunately,
in a distributed context, where there does not exist a central station and each agent can only
communicate with its local neighbors, it is challenging for each agent to compute the average that
changes over time. While each agent could compute the average of its own and local neighbors’
signals, this will not be the average of all signals.

When the signal ri .t/ can be arbitrary but its derivative exists and is bounded almost everywhere,
a distributed nonlinear nonsmooth algorithm is designed in Chen et al. (2012) as

P�i .t/ D ˛
X

j2Ni

sgnŒxj .t/ � xi .t/�

xi .t/ D �i .t/C ri .t/; i D 1; : : : ; n; (10)

where ˛ is a positive scalar, Ni denotes the neighbor set of agent i , sgn.�/ is the signum function
defined componentwise, �i is the internal state of the estimator with �i .0/ D 0, and xi is the
estimate of the average Nr.t/. Due to the existence of the discontinuous signum function, the
solution of (10) is understood in the Filippov sense (Cortes 2008).

The idea behind the algorithm (10) is as follows. First, (10) is designed to ensure thatPn
iD1 xi .t/ D Pn

iD1 ri .t/ holds for all time. Note that
Pn

iD1 xi .t/ D Pn
iD1 �i .t/ C Pn

iD1 ri .t/.
When the graph G is undirected and �i .0/ D 0, it follows that

Pn
iD1 �i .t/ D Pn

iD1 �i .0/ C
˛

Pn
iD1

P
j2Ni

R t
0

sgnŒxj .�/ � xi.�/�d� D 0. As a result,
Pn

iD1 xi .t/ D Pn
iD1 ri .t/ holds for all

time. Second, when G is connected, if the algorithm (10) guarantees that all estimates xi approach

Page 8 of 10

Encyclopedia of Systems and Control
DOI 10.1007/978-1-4471-5102-9_214-1
© Springer-Verlag London 2014

A1 A2 A3

A4

A5A6A7

A8 Average: 1
8

∑8
i=1ri(t)

Signal r1(t) Signal r2(t) Signal r3(t)

Signal r4(t)

Signal r5(t)Signal r6(t)Signal r7(t)

Signal r8(t)

Fig. 3 Illustration of distributed averaging of multiple (time-varying) signals. Here Ai denotes agent i and ri .t / denotes a (time-varying)
signal associated with agent i . Each agent needs to compute the average of all agents’ signals but can communicate with only its neighbors

the same value in finite time, then it can be guaranteed that each estimate approaches the average
of all signals in finite time.

Summary and Future Research Directions

Averaging algorithms and consensus play an important role in distributed control of networked
systems. While there is significant progress in this direction, there are still numerous open
problems. For example, it is challenging to achieve averaging when the graph is not balanced.
It is generally not clear how to deal with a general directed or switching graph for nonlinear agents
or nonlinear algorithms when the algorithms are based on only interagent physical state coupling
without the need for communicating additional auxiliary variables between neighbors. The study
of consensus for multiple underactuated agents remains a challenge. Furthermore, when the agents’
dynamics are heterogeneous, it is challenging to design consensus algorithms. In addition, in the
existing study, it is often assumed that the agents are cooperative. When there exist faulty or
malicious agents, the problem becomes more involved.

Cross-References

� Dynamic Graphs, Connectivity
� Distributed Optimization
� Flocking in Networked Systems

Page 9 of 10

http://dx.doi.org/SpringerLink::ChapterTarget
http://dx.doi.org/SpringerLink::ChapterTarget
http://dx.doi.org/SpringerLink::ChapterTarget

Encyclopedia of Systems and Control
DOI 10.1007/978-1-4471-5102-9_214-1
© Springer-Verlag London 2014

� Graphs for Modeling Networked Interactions
� Control of Networked Systems, Overview
� Oscillator Synchronization
� Vehicular chains

Bibliography

Agaev R, Chebotarev P (2000) The matrix of maximum out forests of a digraph and its
applications. Autom Remote Control 61(9):1424–1450

Agaev R, Chebotarev P (2005) On the spectra of nonsymmetric Laplacian matrices. Linear Algebra
Appl 399:157–178

Bai H, Arcak M, Wen J (2011a) Cooperative control design: a systematic, passivity-based
approach. Springer, New York

Bai H, Freeman RA, Lynch KM (2011b) Distributed Kalman filtering using the internal model
average consensus estimator. In: Proceedings of the American control conference, San Francisco,
pp 1500–1505

Bullo F, Cortes J, Martinez S (2009) Distributed control of robotic networks. Princeton University
Press, Princeton

Chen F, Cao Y, Ren W (2012) Distributed average tracking of multiple time-varying reference
signals with bounded derivatives. IEEE Trans Autom Control 57(12):3169–3174

Cortes J (2008) Discontinuous dynamical systems. IEEE Control Syst Mag 28(3):36–73
Jadbabaie A, Lin J, Morse AS (2003) Coordination of groups of mobile autonomous agents using

nearest neighbor rules. IEEE Trans Autom Control 48(6):988–1001
Li Z, Duan Z, Chen G, Huang L (2010) Consensus of multiagent systems and synchronization of

complex networks: a unified viewpoint. IEEE Trans Circuits Syst I Regul Pap 57(1):213–224
Mesbahi M, Egerstedt M (2010) Graph theoretic methods for multiagent networks. Princeton

University Press, Princeton
Moreau L (2005) Stability of multi-agent systems with time-dependent communication links. IEEE

Trans Autom Control 50(2):169–182
Olfati-Saber R, Fax JA, Murray RM (2007) Consensus and cooperation in networked multi-agent

systems. Proc IEEE 95(1):215–233
Qu Z (2009) Cooperative control of dynamical systems: applications to autonomous vehicles.

Springer, London
Ren W, Beard RW (2008) Distributed consensus in multi-vehicle cooperative control. Springer,

London
Ren W, Cao Y (2011) Distributed coordination of multi-agent networks. Springer, London
Spanos DP, Murray RM (2005) Distributed sensor fusion using dynamic consensus. In: Proceed-

ings of the IFAC world congress, Prague
Tsitsiklis JN, Bertsekas DP, Athans M (1986) Distributed asynchronous deterministic and stochas-

tic gradient optimization algorithms. IEEE Trans Autom Control 31(9):803–812
Yang P, Freeman RA, Lynch KM (2008) Multi-agent coordination by decentralized estimation and

control. IEEE Trans Autom Control 53(11):2480–2496

Page 10 of 10

http://dx.doi.org/SpringerLink::ChapterTarget
http://dx.doi.org/SpringerLink::ChapterTarget
http://dx.doi.org/SpringerLink::ChapterTarget
http://dx.doi.org/SpringerLink::ChapterTarget

	Averaging Algorithms and Consensus
	Abstract
	Introduction
	Consensus
	Consensus for Agents with Single-Integrator Dynamics
	Consensus for Agents with General Linear Dynamics
	Consensus for Agents with Nonlinear Dynamics

	Averaging Algorithms
	Static Averaging
	Dynamic Averaging

	Summary and Future Research Directions
	Cross-References
	Bibliography

