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ABSTRACT 

 

The financial industry is an industry that requires multi-

disciplinary expertise. To be a good financial engineer, 

one should possess skills in math, finance, economics, 

and coding.  Volatility is a measurement of the risk of 

financial products. A stock will hit new highs and lows 

over time and if these highs and lows fluctuate wildly, 

then it is considered a high volatile stock. Such a stock 

is considered riskier than a stock whose volatility is low. 

High tech stocks usually have high volatility. Although 

these stocks are riskier, the returns that they generate for 

investors can be quite high. Of course, with a riskier 

stock also comes the chance of losing money and 

yielding negative returns. In this project, we will use 

historic stock data to help us forecast volatility. The 

financial industry usually uses S&P 500 as the indictor 

of the market.  Therefore, S&P 500 would be a 

benchmark to compute the risk. We will use artificial 

neural networks as a tool to predict volatilities for a 

period of time frame that will be set when we configure 

this neural network. There have been reports that neural 

networks with different numbers of layers and different 

numbers of hidden nodes may generate varying results. 

As a matter of fact, we may be able to find the best 

configuration of a neural network to compute 

volatilities. We will implement this system using the 

parallel approach. The system can be used as a tool for 

investors to allocating and hedging assets. 

 

Keywords: Artificial Neural Network, Volatility, 

Parallel Processing 

 

 

1.  INTRODUCTION 
 

The financial industry is one that requires multi-

disciplinary expertise. To be a good financial engineers, 

it requires one to be good in math, finance, economic, 

and coding skills. The stock market is very volatile and 

sensitive to various factors, such as politics and war. For 

example, when there natural disasters, political turmoil, 

or economic and financial crises occur, financial assets 

tend to fluctuate very much.   

 

Volatility is a measurement of the risk of financial 

products. A stock will hit new highs and lows over time 

and if these highs and lows fluctuate wildly, then it is 

considered a high volatile stock. Such a stock is 

considered riskier than a stock whose volatility is low. 

High tech stocks usually have high volatility and have a 

so-called higher beta value, i.e., beta value > 1. 

Although these stocks are riskier, the returns that they 

generate for investors can be quite high. Of course, with 

a riskier stock also comes the chance of losing money 

and yielding negative returns. On the other hand, 

utilities are more stable in their stock prices so they are 

considered low volatile, with beta value < 1. A beta 

value of 0 signifies a security that has no volatility; for 

example, cash has beta value of 0.  It is known that 

standard deviation alone cannot be used to measure 

volatility because, as illustrated by the history of the 

stock market, the market is not normally distributed and 

in reality, is skewed. Thus, historic stock data may in 

fact help us to measure volatility. In this report, we will 

use historic data to help us to compute the volatility. We 

will use artificial neural network as a tool to predict 

volatilities for a period of time that will be set when we 

configure this neural network. There have been reports 

that neural networks with different layers and different 

nodes may generate varying results. As a matter of fact, 

we may be able to find the best configuration of neural 

network to compute volatilities. We will implement this 

system using parallel approach. The system can be used 

as a tool for investors to allocating and hedging assets. 

 

Neural networks are popular in financial and economic 

computations. For example, Li and Liu used LM BP 

algorithm to predict the Shanghai stock market [3]. 

Wang developed an HLP method that gets stock high 

low points with different frequency and amplitude. The 

extracted data are then fed into a neural network to 



forecast the stock direction and price [8]. Tirados and 

Jenq used neural networks to predict GDP with ten 

leading economic indicators as the input [7]. Lin and 

Feng combined neural networks and pattern matching 

techniques to analyze and to forecast oil stock price [4]. 

Zhou and Zhang used financial indicators such as 

moving averages, volumes, relative strength index, etc. 

on neural network to predict future stock price [9]. 

 

Amornwattana et. al[1] proposed a hybrid artificial 

neural network (ANN) model for forecasting volatility 

to do options trading. Hajizadeh et al. [2] proposed a 

hybrid model with ANN to forecast the volatility of the 

S&P 500 index. Monfared and Enke [5][6] also 

proposed a hybrid GJR-GARCH Neural Network 

model to enhance the performance of volatility 

forecasting using an adaptive neural network filter for 

cancelling noise in the data. Youngmin Kima and David 

Enke discussed using neural networks to forecast 

volatility for an asset allocation strategy based on the 

target volatility [10]. Kim et. al[11] proposed a system 

for early warning of economic crisis. 

 

In this project, we would like to find the local minimum 

number of hidden nodes in a single hidden layer that 

would be able to achieve the best prediction in terms of 

accuracy. We decided to use only a single hidden layer 

because adding more and more layers would become 

computationally expensive quickly while only a 

relatively small amount of performance improvements 

would be seen. 

 

This proposed problem can benefit greatly from 

parallelism because most people usually try to find the 

number of hidden nodes to use through either trial and 

error or simply by just using the same number of nodes 

in input layer, both of which can be very ineffective. 

With parallelism, we were able to speed up the process 

of finding a local optimal number of hidden nodes for 

fairly accurate stock price predictions. This paper is 

organized as the following. We define some terms that 

were used in our project. Section 3 will describe the 

development of the system. We discuss the 

implementation results in sections 4. Section 5 gives the 

conclusions. 

 

2.  TERMINOLGIES 

 

MSE (mean squared error): This value is one of the 

criteria to stop the training of the neural network. MSE 

is defined as the sum of the square of errors of outputs 

divided by the total number of cases involved in the 

training. The error used here is defined as the difference 

between the actual (target) value and the predicted value 

generated from the ANN. Note that there are other 

methods to compute the MSE, such as using validation 

data set to stop the training by checking if total number 

of accuracy is improved and if total accuracy hasn’t, 

then one can stop the training. We did not use this 

method to stop the training in this project. To stop 

training, we set a tolerable error and a maximum cycle, 

and the one that was reached first would stop the 

training. 

 

Accuracy: Because the predicted price and the actual 

price must change in the same direction to be 

considered a good prediction for the stock market (and 

can at least help us to make the decision to either buy, 

sell or hold), accuracy can be defined as the number of 

same directional changes of predictions divided by total 

number of testing cases. We called this the "hit ratio." 

Another way to define it is to say that a lower MSE 

means a higher accuracy because it shows how close the 

predicted value is from the target value for the values 

that change in the same direction. 

 

Speedup: This is defined as the ratio of sequential 

runtime divided by the parallel run time 

 

Efficiency: This is defined as the speed up factor 

divided by the number of threads used to execute the 

program. 

 

 

3.  SYSTEM DESIGN AND IMPLEMENTATION 

 

We implement the system using C/C++. There are 16 

threads in the system that we used. The program can run 

multiple threads simultaneously. OpenMP is used to 

parallelize the program code. Since we’d like to find the 

local optimal hidden layer nodes, we structure our 

program so that we can use all threads as much as 

possible. 

 

The pseudo code of our program is outlined below. 

1. Process command line arguments and set 

corresponding variables of the program 

2. Read in data file and put the data cases into data 

array for future reference. 

3. Process the data by normalization so the data 

values will be converted from arbitrary values 

to values between -1 and +1 

4. Initialize ANNs // the number of ANNs to be 

trained and tested 

5. Parallel do the following using ANN with 

different hidden layer configuration { 

6. While (MSE > tolerable error && cycle < 

maximum cycle) { 

7. For all training data do { 

8. Forward-propagation 

9. Backward propagation of errors 

10. Update weights 



11. } 

12. Compute MSE 

13. } 

14. // test this ANN 

15. Test run current ANN with test data 

16. Compute accuracy 

17. } 

 

The first approach was to parallelize the execution of 

training of all configured ANNs to run concurrently 

(line 6). This means that each n node ANN would be 

assigned to a specific thread run. This approach allowed 

one to learn the workload of each segment of the 

program code during different iterations of the program. 

It was obvious that assigning a different number of 

hidden nodes to an ANN required different efforts, i.e., 

for an ANN with small hidden layer nodes, one can 

accomplish the training and testing quicker than the 

ANN with higher number of hidden nodes. Since we 

assigned a dedicated thread to work on an ANN, this 

approach gave the situation of an unbalanced workload 

among various threads.  This is because a thread 

working on an ANN with 1 hidden node, for example, 

will obviously finish faster than a thread working on an 

ANN with 9 hidden nodes. So even though there was 

some speedup with static scheduling, we felt that this 

could be improved. 

 

In order to parallelize even further, consider line 7, 

which trains the network by going through one data 

item at a time. Each time, it goes through the forward 

phase, backward phase and then modifies the weights 

after finding the gradients using the gradient descent 

method. This is the so-called stochastic method (also 

known as online method or incremental method in 

various internet literatures). So instead of updating the 

weights one at a time, the weights can be modified as a 

collection, i.e., compute the weight changes (the 

gradients of weight change based on the error that was 

back propagated from the output layer) of all data items 

and keep these weight changes in a temporary data 

structure. After processing all data items, the weights 

can be updated in parallel by adding up all the weight 

changes for each item together. This method is usually 

known as batch method. 

 

To further improve the performance, we changed the 

OpenMP scheduling type from static to dynamic and 

experimented with an increasing counter in the for loop 

(i.e. iterating from 0 to total_ann) and a decreasing 

counter in the for loop (iterating from total_ann to 0). 

We found that using increasing or decreasing counters 

did not yield a significant difference in results.  

However, the results shown in the next section proves 

that reorganizing the program code from static to 

dynamic affected and improved the performance of the 

system. 

 

4.  EXPERIMENTAL RESULTS 

 

The following table shows the speedup of running the 

program using different number of threads. The time is 

the total number of seconds from beginning to the end 

of running the whole program, including the testing 

phase. It includes the sequential part and the parallel 

part of this program.  

 

number of threads time speedup 

1 271.744 1 

2 166.021 1.636805 

4 105.95 2.564832 

8 72.7911 3.733204 

16 59.3806 4.576309 
 

The above table shows the speedup results when using 

dynamic scheduling of the program code. Although the 

speed up is not linear, it does show some speed up.  

 

The corresponding efficiency of the results is drawn as 

the line chart. The results show that efficiency decreases 

when the number of threads are increased. 

 

 
 

We also found that by changing the order of execution 

of the ANN, the results were affected. The following 

shows the speedup from running the program with static 

scheduling.  

 

number of threads speedup 

1 1 

2 1.353529353 

4 2.746868554 

8 4.459963154 

16 4.086538969 
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The results were interesting because it showed that the 

speedup from 16 threads with static scheduling was 

worse than the speedup from 16 threads with dynamic 

scheduling. This is most likely is due to the workload 

imbalance that occurs with static scheduling.  This type 

of schedule will result in certain threads doing less work 

than other threads, as running the program with a lower 

number of hidden nodes will result in lesser work.  It is 

also interesting to note that when using static 

scheduling, running with 8 threads gave a better 

speedup than 16 threads.  It is possible that the overhead 

from thread creation far outweighed the benefits of 

using more threads.  

 

5.  CONCLUSIONS AND REMARKS 

 

The financial industry is an industry which requires 

multiple disciplines to work together. Skills including 

coding, math, psychology, politics may be necessary to 

ensure its success.  

 

In this project, we implemented a neural network which 

can predict volatility of stock using feedforward and 

backward propagation method to change weights of 

neural network. OpenMP was used to implement the 

parallel program. There was speedup observed, 

although not linear, and efficiencies were also 

computed. Static and dynamic scheduling methods of 

OpenMP were implemented and the results from these 

two schedules were compared.  

 

It was found that increasing the number of hidden layer 

nodes did not imply better results. It would be 

interesting to further examine what happens when one 

adapts more layers in the computation. How many 

hidden nodes would be required in this case? And how 

would we decide the number of nodes in each hidden 

layer? 

 

In addition, further work could be done to figure out 

what other factor(s) should be fed in into the system so 

that we would have a better hit ratio and accuracy, with 

regards to determining the volatility of stock. 
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