
Parallel prediction of stock volatility

Priscilla JENQ

 School of Computer Science

Carnegie Mellon University, PA 15213, USA

and

John JENQ

Computer Science Department

Montclair State University

Montclair, NJ 07043, USA

ABSTRACT

The financial industry is an industry that requires multi-

disciplinary expertise. To be a good financial engineer,

one should possess skills in math, finance, economics,

and coding. Volatility is a measurement of the risk of

financial products. A stock will hit new highs and lows

over time and if these highs and lows fluctuate wildly,

then it is considered a high volatile stock. Such a stock

is considered riskier than a stock whose volatility is low.

High tech stocks usually have high volatility. Although

these stocks are riskier, the returns that they generate for

investors can be quite high. Of course, with a riskier

stock also comes the chance of losing money and

yielding negative returns. In this project, we will use

historic stock data to help us forecast volatility. The

financial industry usually uses S&P 500 as the indictor

of the market. Therefore, S&P 500 would be a

benchmark to compute the risk. We will use artificial

neural networks as a tool to predict volatilities for a

period of time frame that will be set when we configure

this neural network. There have been reports that neural

networks with different numbers of layers and different

numbers of hidden nodes may generate varying results.

As a matter of fact, we may be able to find the best

configuration of a neural network to compute

volatilities. We will implement this system using the

parallel approach. The system can be used as a tool for

investors to allocating and hedging assets.

Keywords: Artificial Neural Network, Volatility,

Parallel Processing

1. INTRODUCTION

The financial industry is one that requires multi-

disciplinary expertise. To be a good financial engineers,

it requires one to be good in math, finance, economic,

and coding skills. The stock market is very volatile and

sensitive to various factors, such as politics and war. For

example, when there natural disasters, political turmoil,

or economic and financial crises occur, financial assets

tend to fluctuate very much.

Volatility is a measurement of the risk of financial

products. A stock will hit new highs and lows over time

and if these highs and lows fluctuate wildly, then it is

considered a high volatile stock. Such a stock is

considered riskier than a stock whose volatility is low.

High tech stocks usually have high volatility and have a

so-called higher beta value, i.e., beta value > 1.

Although these stocks are riskier, the returns that they

generate for investors can be quite high. Of course, with

a riskier stock also comes the chance of losing money

and yielding negative returns. On the other hand,

utilities are more stable in their stock prices so they are

considered low volatile, with beta value < 1. A beta

value of 0 signifies a security that has no volatility; for

example, cash has beta value of 0. It is known that

standard deviation alone cannot be used to measure

volatility because, as illustrated by the history of the

stock market, the market is not normally distributed and

in reality, is skewed. Thus, historic stock data may in

fact help us to measure volatility. In this report, we will

use historic data to help us to compute the volatility. We

will use artificial neural network as a tool to predict

volatilities for a period of time that will be set when we

configure this neural network. There have been reports

that neural networks with different layers and different

nodes may generate varying results. As a matter of fact,

we may be able to find the best configuration of neural

network to compute volatilities. We will implement this

system using parallel approach. The system can be used

as a tool for investors to allocating and hedging assets.

Neural networks are popular in financial and economic

computations. For example, Li and Liu used LM BP

algorithm to predict the Shanghai stock market [3].

Wang developed an HLP method that gets stock high

low points with different frequency and amplitude. The

extracted data are then fed into a neural network to

forecast the stock direction and price [8]. Tirados and

Jenq used neural networks to predict GDP with ten

leading economic indicators as the input [7]. Lin and

Feng combined neural networks and pattern matching

techniques to analyze and to forecast oil stock price [4].

Zhou and Zhang used financial indicators such as

moving averages, volumes, relative strength index, etc.

on neural network to predict future stock price [9].

Amornwattana et. al[1] proposed a hybrid artificial

neural network (ANN) model for forecasting volatility

to do options trading. Hajizadeh et al. [2] proposed a

hybrid model with ANN to forecast the volatility of the

S&P 500 index. Monfared and Enke [5][6] also

proposed a hybrid GJR-GARCH Neural Network

model to enhance the performance of volatility

forecasting using an adaptive neural network filter for

cancelling noise in the data. Youngmin Kima and David

Enke discussed using neural networks to forecast

volatility for an asset allocation strategy based on the

target volatility [10]. Kim et. al[11] proposed a system

for early warning of economic crisis.

In this project, we would like to find the local minimum

number of hidden nodes in a single hidden layer that

would be able to achieve the best prediction in terms of

accuracy. We decided to use only a single hidden layer

because adding more and more layers would become

computationally expensive quickly while only a

relatively small amount of performance improvements

would be seen.

This proposed problem can benefit greatly from

parallelism because most people usually try to find the

number of hidden nodes to use through either trial and

error or simply by just using the same number of nodes

in input layer, both of which can be very ineffective.

With parallelism, we were able to speed up the process

of finding a local optimal number of hidden nodes for

fairly accurate stock price predictions. This paper is

organized as the following. We define some terms that

were used in our project. Section 3 will describe the

development of the system. We discuss the

implementation results in sections 4. Section 5 gives the

conclusions.

2. TERMINOLGIES

MSE (mean squared error): This value is one of the

criteria to stop the training of the neural network. MSE

is defined as the sum of the square of errors of outputs

divided by the total number of cases involved in the

training. The error used here is defined as the difference

between the actual (target) value and the predicted value

generated from the ANN. Note that there are other

methods to compute the MSE, such as using validation

data set to stop the training by checking if total number

of accuracy is improved and if total accuracy hasn’t,

then one can stop the training. We did not use this

method to stop the training in this project. To stop

training, we set a tolerable error and a maximum cycle,

and the one that was reached first would stop the

training.

Accuracy: Because the predicted price and the actual

price must change in the same direction to be

considered a good prediction for the stock market (and

can at least help us to make the decision to either buy,

sell or hold), accuracy can be defined as the number of

same directional changes of predictions divided by total

number of testing cases. We called this the "hit ratio."

Another way to define it is to say that a lower MSE

means a higher accuracy because it shows how close the

predicted value is from the target value for the values

that change in the same direction.

Speedup: This is defined as the ratio of sequential

runtime divided by the parallel run time

Efficiency: This is defined as the speed up factor

divided by the number of threads used to execute the

program.

3. SYSTEM DESIGN AND IMPLEMENTATION

We implement the system using C/C++. There are 16

threads in the system that we used. The program can run

multiple threads simultaneously. OpenMP is used to

parallelize the program code. Since we’d like to find the

local optimal hidden layer nodes, we structure our

program so that we can use all threads as much as

possible.

The pseudo code of our program is outlined below.

1. Process command line arguments and set

corresponding variables of the program

2. Read in data file and put the data cases into data

array for future reference.

3. Process the data by normalization so the data

values will be converted from arbitrary values

to values between -1 and +1

4. Initialize ANNs // the number of ANNs to be

trained and tested

5. Parallel do the following using ANN with

different hidden layer configuration {

6. While (MSE > tolerable error && cycle <

maximum cycle) {

7. For all training data do {

8. Forward-propagation

9. Backward propagation of errors

10. Update weights

11. }

12. Compute MSE

13. }

14. // test this ANN

15. Test run current ANN with test data

16. Compute accuracy

17. }

The first approach was to parallelize the execution of

training of all configured ANNs to run concurrently

(line 6). This means that each n node ANN would be

assigned to a specific thread run. This approach allowed

one to learn the workload of each segment of the

program code during different iterations of the program.

It was obvious that assigning a different number of

hidden nodes to an ANN required different efforts, i.e.,

for an ANN with small hidden layer nodes, one can

accomplish the training and testing quicker than the

ANN with higher number of hidden nodes. Since we

assigned a dedicated thread to work on an ANN, this

approach gave the situation of an unbalanced workload

among various threads. This is because a thread

working on an ANN with 1 hidden node, for example,

will obviously finish faster than a thread working on an

ANN with 9 hidden nodes. So even though there was

some speedup with static scheduling, we felt that this

could be improved.

In order to parallelize even further, consider line 7,

which trains the network by going through one data

item at a time. Each time, it goes through the forward

phase, backward phase and then modifies the weights

after finding the gradients using the gradient descent

method. This is the so-called stochastic method (also

known as online method or incremental method in

various internet literatures). So instead of updating the

weights one at a time, the weights can be modified as a

collection, i.e., compute the weight changes (the

gradients of weight change based on the error that was

back propagated from the output layer) of all data items

and keep these weight changes in a temporary data

structure. After processing all data items, the weights

can be updated in parallel by adding up all the weight

changes for each item together. This method is usually

known as batch method.

To further improve the performance, we changed the

OpenMP scheduling type from static to dynamic and

experimented with an increasing counter in the for loop

(i.e. iterating from 0 to total_ann) and a decreasing

counter in the for loop (iterating from total_ann to 0).

We found that using increasing or decreasing counters

did not yield a significant difference in results.

However, the results shown in the next section proves

that reorganizing the program code from static to

dynamic affected and improved the performance of the

system.

4. EXPERIMENTAL RESULTS

The following table shows the speedup of running the

program using different number of threads. The time is

the total number of seconds from beginning to the end

of running the whole program, including the testing

phase. It includes the sequential part and the parallel

part of this program.

number of threads time speedup

1 271.744 1

2 166.021 1.636805

4 105.95 2.564832

8 72.7911 3.733204

16 59.3806 4.576309

The above table shows the speedup results when using

dynamic scheduling of the program code. Although the

speed up is not linear, it does show some speed up.

The corresponding efficiency of the results is drawn as

the line chart. The results show that efficiency decreases

when the number of threads are increased.

We also found that by changing the order of execution

of the ANN, the results were affected. The following

shows the speedup from running the program with static

scheduling.

number of threads speedup

1 1

2 1.353529353

4 2.746868554

8 4.459963154

16 4.086538969

0

5

10

15

20

1 2 3 4 5

Thread Efficiency

Threads efficiency

The results were interesting because it showed that the

speedup from 16 threads with static scheduling was

worse than the speedup from 16 threads with dynamic

scheduling. This is most likely is due to the workload

imbalance that occurs with static scheduling. This type

of schedule will result in certain threads doing less work

than other threads, as running the program with a lower

number of hidden nodes will result in lesser work. It is

also interesting to note that when using static

scheduling, running with 8 threads gave a better

speedup than 16 threads. It is possible that the overhead

from thread creation far outweighed the benefits of

using more threads.

5. CONCLUSIONS AND REMARKS

The financial industry is an industry which requires

multiple disciplines to work together. Skills including

coding, math, psychology, politics may be necessary to

ensure its success.

In this project, we implemented a neural network which

can predict volatility of stock using feedforward and

backward propagation method to change weights of

neural network. OpenMP was used to implement the

parallel program. There was speedup observed,

although not linear, and efficiencies were also

computed. Static and dynamic scheduling methods of

OpenMP were implemented and the results from these

two schedules were compared.

It was found that increasing the number of hidden layer

nodes did not imply better results. It would be

interesting to further examine what happens when one

adapts more layers in the computation. How many

hidden nodes would be required in this case? And how

would we decide the number of nodes in each hidden

layer?

In addition, further work could be done to figure out

what other factor(s) should be fed in into the system so

that we would have a better hit ratio and accuracy, with

regards to determining the volatility of stock.

6. REFERENCES

1. Sunisa Amornwattana, David Enke, C.H. Dahli, A

hybrid option pricing model using a neural network

for estimating volatility. International Journal of

General Systems, 2007, pp 558-573.

2. E. Hajizadeh, A. Seifi, Fazel M.H. Azrandi, I.B.

Turksen. A hybrid modelling approach for

forecasting the volatility of S&P 500 index return,

Expert Systems with Applications, 2012, 39: 431-

436.

3. Feng Li, and Cheng Liu, Application Study of BP

Neural Network on Stock Market Prediction, Ninth

International Conference on Hybrid Intelligent

Systems, pp 174 – 178

4. QianYu Lin, and ShaoRong Feng, Stock market

forecasting research based on Neural Network and

Pattern Matching, 2010 International Conference on

E-Business and E-Government, pp 1940 – 1943

5. Soheil Almasi Monfared, and David Enke, Volatility

forecasting using a Hybrid GJR-GARCH neural

network model. Procedia Computer Science, 2014,

pp 246-253.

6. Soheil Almasi Monfared, and Enke D. Noise

cancelling in volatility forecasting using an adaptive

neural network model. Procedia Computer Science,

2015, pp 80-84.

7. Edward Tirados and John Jenq, (2009), "Analysis of

Leading Economic Indicator Data and Gross

Domestic Product Data Using Neural Network

Methods", Journal of Systemic, Cybernetics and

Informatics, vol 7, no 4, 2009, pp 51-56

8. Lei Wang, and Qiang Wang, (2011) Stock market

prediction using artificial neural networks based on

HLP, 2011 Third International Conference on

Intelligent Human-Machine Systems and

Cybernetics, pp 116 -119

9. Yixin Zhou, and Jie Zhang,mStock data analysis

based on BP neural network, 2010 Second

International Conference on Communication

Software and Networks, pp 396 – 399

10. Youngmin Kima and David Enke, Using Neural

Networks to Forecast Volatility for an Asset

Allocation Strategy Based on the Target Volatility,

by Procedia Computer Science 95 (2016) pp 281 –

286

11. Kim TY, Oh KJ, Sohn I, Hwang C. Usefulness of

artificial neural networks for early warning system

of economic crisis, Expert Systems with

Applications, 2004, 26(4), pp 583-590

