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Introduction 

To complete the student project for NEAS Time Series course, I decided to pick the data on the 
age of death of successive kings of England, starting with William the Conqueror (original source: 
Hipel and Mcleod, 1994). For statistics software, I used R to get plots and model selection. 

 

Data 

The source of the data of age of death of successive kings of England is from the website below: 

http://robjhyndman.com/tsdldata/misc/kings.dat 

The graph of the data by using R is below: 

http://robjhyndman.com/tsdldata/misc/kings.dat


 

Model Determination 

There is no seasonality on the data. In addition, the time series seems to be stationary in both 
its mean and variance. As a conclusion, we do not need to difference this data time series in 
order to fit an ARIMA model, which means, in this case, d = 0. 

The first model we tried is autocorrelation function. The plot for the age of death time series is 
shown below:  

As it shows in the plot, the autocorrelations for lags 1, 2 and 5 exceeds the significance bound. 



The rest of legs remain within the significance bound, and we see both positive and negative 
fluctuation after lag 5. 

The partial autocorrelation function plot for the age of death is shown below:

As it shows in the partial autocorrelation plot that the autocorrelation for lag 1 exceeds the 
significance bound. The rest of legs remain within the significance bound, and we see both 
positive and negative fluctuation after lag 1. 

 

Model Fitting 

Based on the plot and analysis, the following ARMA models seem suitable for age of death for 
England Kings time series: 

1) An AR(1) model, since the partial autocorrelation decreases to 0 after lag 2. 
2) A MA(2) model, since: 

a) MA(2) has fewer parameters than MA(5) 
b) Autocorrelation decreases to 0 after lag 2, except at lag 5. 

Model 1: AR(1) model on age of death data 

Below is the summary output for an AR(1) model : 

AR(1) 

Call: 

arima(x = kings, order = c(1, 0, 0)) 



Coefficients: 

         ar1  intercept 

      0.3921    55.3666 

s.e.  0.1392     3.7503 

sigma^2 estimated as 224.9:  log likelihood = -173.41,  aic = 352.82 

Model 2: MA(2) model on age of death data 

MA(2) 

Call: 

arima(x = kings, order = c(0, 0, 2)) 

Coefficients: 

         ma1     ma2  intercept 

      0.3732  0.1274    55.3116 

s.e.  0.1566  0.1336     3.4602 

sigma^2 estimated as 227.8:  log likelihood = -173.66,  aic = 355.33 

 

Model Analysis 

The AR(1) model has 1 parameters, and the MA(2) model has 2 parameters. By the principle of 

parsimony, the AR (1) should be selected; nevertheless, an AR model, or autoregressive model, 

is usually to model a time series that shows long term dependencies between successive 

observations. The age of death of one king is less likely to have any prediction on the age of 

death of his successor. Therefore it is more practical to pick MA(2) in this case. 

 

Forecasting 

Since the original data includes 42 data points, now I will use MA(2) model to forecast the age of 

death for the next 10 kinds of England. 

The plot is as below: 

 

 



The forecast shows that for the next kings of England, most of them will die after age of 55 
except for the 43rd and 44th whose age of death will be below age of 55. 

  



Appendix: R Code 

> kings <- scan("http://robjhyndman.com/tsdldata/misc/kings.dat",skip=3) 

Read 42 items 

> kings 

 [1] 60 43 67 50 56 42 50 65 68 43 65 34 47 34 49 41 13 35 53 56 16 43 69 59 48 

[26] 59 86 55 68 51 33 49 67 77 81 67 71 81 68 70 77 56 

> plot.ts(kings,main="Age of Death of Successive Kinds of England",xlab="Kings",ylab="Age") 

> acf(kings,lag.max=42,main="Correlogram for Lags 1 to 42",xlab="Lag",ylab="Autocorrelation 

Function") 

> pacf(kings,lag.max=42,main="Partial Autocorrelogram for Lags 1 to 

42",xlab="Lag",ylab="Partial Autocorrelation Function") 

> kings.ma <- arima(kings,order=c(0,0,2)) 

> kings.ma 

 

Call: 

arima(x = kings, order = c(0, 0, 2)) 

 

Coefficients: 

         ma1     ma2  intercept 

      0.3732  0.1274    55.3116 

s.e.  0.1566  0.1336     3.4602 

 

sigma^2 estimated as 227.8:  log likelihood = -173.66,  aic = 355.33 

> kings.ar <- arima(kings,order=c(1,0,0)) 

> kings.ar 

 



Call: 

arima(x = kings, order = c(1, 0, 0)) 

 

Coefficients: 

         ar1  intercept 

      0.3921    55.3666 

s.e.  0.1392     3.7503 

 

sigma^2 estimated as 224.9:  log likelihood = -173.41,  aic = 352.82 

> forecast <- predict(kings.ma,n.ahead=10) 

> forecast$pred 

Time Series: 

Start = 43  

End = 52  

Frequency = 1  

 [1] 54.85178 54.40498 55.31160 55.31160 55.31160 55.31160 55.31160 55.31160 55.31160 

55.31160 

> xvalue <- seq(43,52,1) 

> plot(xvalue,forecast$pred,xlab="Kings",ylab="Age",main="Forcasting the Age of Death of Next 

10 Kings",type="l") 

> > 

 


