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Review
Recent research on fractions has broadened and deep-
ened theories of numerical development. Learning about
fractions requires children to recognize that many prop-
erties of whole numbers are not true of numbers in
general and also to recognize that the one property that
unites all real numbers is that they possess magnitudes
that can be ordered on number lines. The difficulty of
attaining this understanding makes the acquisition of
knowledge about fractions an important issue education-
ally, as well as theoretically. This article examines the
neural underpinnings of fraction understanding, develop-
mental and individual differences in that understanding,
and interventions that improve the understanding. Accu-
rate representation of fraction magnitudes emerges as
crucial both to conceptual understanding of fractions and
to fraction arithmetic.

Introduction
Fractions play a central role in mathematics learning.
They are theoretically important because they require a
deeper understanding of numbers than that typically
gained from experience with whole numbers [1]. Fractions
also are educationally important because of their inherent
role in more advanced mathematics*, the strong predictive
relation between earlier knowledge of them and later
mathematics achievement [2,3], and the difficulty many
children and adults have in learning about them [4–6].
Despite the centrality of fraction knowledge, however,
most current theories of numerical development are actu-
ally theories of whole number development and do not
integrate fractions and whole numbers within a single
framework.

Fortunately, the same types of behavioral and neural
methods that have proved useful for understanding whole
number representations and processes are also proving
useful for understanding representations and processes
involving fractions (e.g., [1,7–9]). Recent applications of
these methods have greatly expanded understanding of
developmental and individual differences in fraction
knowledge, as well as its neural basis (Box 1). The main
conclusion that has emerged from this research is that, just
as understanding of magnitudes is central to understanding
Corresponding author: Siegler, R.S. (rs7k@andrew.cmu.edu)
Keywords: fractions; fraction arithmetic; magnitude representations; numerical
development; conceptual knowledge; procedural knowledge.

* National Mathematics Advisory Panel (2008) Foundations for Success: The Final
Report of the National Mathematics Advisory Panel, US Department of Education.

1364-6613/$ – see front matter � 2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.101
whole numbers [10,11], it is equally central to understand-
ing fractions.

In the following sections, we first examine the role of
fractions in current theories of numerical development and
why fractions are difficult for many learners. We then
review current understanding of the neural bases of frac-
tions knowledge, developmental and individual differences
in the acquisition process, and interventions for improving
fractions knowledge.

The role of fractions in theories of numerical
development
Most current theories of numerical development are actu-
ally theories of whole number development. When frac-
tions are considered at all in these theories, the purpose is
to contrast children’s quick, effortless, and consistently
successful acquisition of whole number knowledge with
their slow, effortful, and incomplete acquisition of fractions
knowledge [12–14].

As these theories note, there are large and important
differences between acquisition of whole number and frac-
tion knowledge. However, the failure to integrate both
whole numbers and fractions within a single framework
unnecessarily deprives theories of numerical development
of some of their potentially most interesting content.
Learning fractions requires a reorganization of numerical
knowledge, one that allows a deeper understanding of
numbers than is ordinarily gained through experience with
whole numbers. Stated another way, fractions are an
inherently important part of numerical development and
theories of numerical development that exclude them are
unnecessarily truncated.

The recently proposed integrated theory of numerical
development [1] argues that the reason why learning
fractions requires a re-organization of numerical knowl-
edge is that children (and adults) who have not learned
fractions generally assume that properties of whole num-
bers are properties of all numbers [4–6]. Whole numbers
have unique successors, can be represented by a single
symbol, are countable, never decrease with multiplication,
never increase with division, and so on. None of these
properties is true of fractions, however, and therefore none
is true of all real numbers.

As also noted in the integrated theory of numerical
development, acquiring understanding of fractions
requires learning that fractions, like whole numbers, rep-
resent magnitudes that can be located on number lines [1].
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Box 1. The neural bases of fraction knowledge

Recent research has shown that brain regions around the intrapar-

ietal sulcus (IPS) play the same essential role in representing

fractions as in representing whole numbers. The role of the IPS is

evident regardless of whether the task involves automatic proces-

sing of magnitudes, magnitude comparison, or arithmetic. How-

ever, the most active areas within the IPS vary with the task.

At least in adults, processing of fraction magnitudes in the IPS is

automatic: it occurs even when there is no specific task. This has

been demonstrated by presenting a fraction until participants

habituate to it and then presenting a novel fraction that varies in

its distance from the original [54]. An adaptation effect for

repeatedly viewing the original fraction is observed bilaterally in

the anterior IPS. The amount of recovery of activation in this area

varies with numerical distance between the habituated and novel

fractions. The specific areas of activation are highly similar for

fractions and whole numbers.

IPS activation was also evident on a fraction magnitude compar-

ison task, though only on one side of the brain [7]. In particular, the

right IPS was sensitive to numerical distance between the fractions,

independent of the distances between numerators and between

denominators of the fractions being compared.

Brain activity while solving arithmetic problems also shows

strong commonalities between whole numbers and fractions [55].

An independent components analysis of brain activity during

addition and subtraction of fractions, as measured by fMRI, revealed

task-related components with activation in bilateral inferior parietal,

left perisylvian, and ventral occipitotemporal areas, a pattern closely

similar to that observed with whole number arithmetic [56]. These

results suggest an underlying commonality in the neural basis of

whole number and fraction knowledge.

y National Mathematics Advisory Panel (2008) Report of the Subcommittee on the
National Survey of Algebra I Teachers, US Department of Education.
z National Mathematics Advisory Panel (2008) Foundations for Success: The Final

Report of the National Mathematics Advisory Panel, US Department of Education, p.
18.

Review Trends in Cognitive Sciences January 2013, Vol. 17, No. 1
This is actually the only property that unites real numbers.
Learning to accurately represent and arithmetically com-
bine the magnitudes of all types of real numbers – whole
numbers and fractions; positives and negatives; common
fractions, decimals, and percentages – is thus inherently
central to numerical development [1,15].

The discussion above suggests that fraction knowledge
should play a central role in mathematics learning more
broadly. Recent evidence suggests that this is the case.
High school students’ knowledge of fractions correlates
strongly (rs > 0.80) with their overall mathematics
achievement in both the UK and the USA [2]. Perhaps
even more striking, in both the USA and the UK, fifth
graders’ fraction knowledge predicts their mastery of alge-
bra and overall mathematics achievement in high school,
even after controlling for IQ, reading achievement, work-
ing memory, family income and education, and whole
number knowledge [2].

Why are fractions difficult?
Failure to learn fractions is a serious educational problem,
one that affects a great many people. Although children in
the USA receive substantial fraction instruction beginning
in 3rd or 4th grade [16], a recent National Assessment of
Educational Progress found that 50% of 8th graders
could not correctly order the magnitudes of three fractions
(2 7,

1
12, and 5

9) [17]. The problem is not limited to
numbers written in common fractions notation; when
asked whether .274 or .83 is larger, most 5th and 6th

graders choose .274 [18]. The difficulty extends to adoles-
cents and adults; fewer than 30% of US 11th graders
translate .029 into the correct fraction [19] and community
college students show similar weaknesses [9,20]. Also
14
attesting to the problem, a representative sample of
1,000 US algebra teachers ranked lack of fraction under-
standing as one of the two largest problems hindering their
students’ algebra learning (trailing only ‘word problems’,
many of which involve fractions)y. Nor is the difficulty
limited to the USA; mathematics educators in other
nations, including high achieving ones such as Japan,
China, and Taiwan, have noted similar problems [21–23].

Students’ difficulty in learning fractions has many
sources. One problem was described earlier – erroneous
assumptions that properties of whole numbers are proper-
ties of all numbers. Another source of difficulty is confu-
sable relations among fraction arithmetic procedures.
When fraction addition and subtraction problems have
the same denominator, the denominator is maintained
in the answer, but that is not the case for fraction multi-
plication and division. Confusion about when (and why)
common denominators are maintained leads to errors such
as ‘2 5 � 3

5 =
6

5’ [1]. A further source of difficulty is that
children often view fractions exclusively in terms of part/
whole relations, which are often emphasized in instruction
[15]. The type of confusion that arises from emphasizing
this single interpretation is seen in one student’s explana-
tion of why he thought 4

3 had no meaning: ‘You cannot
have four parts of an object that is divided into three parts’
[24].

Such findings have led recent commissions charged with
improving mathematics education to emphasize the im-
portance of improving students’ fractions knowledge. For
example, the National Mathematics Advisory Panel con-
cluded that the most important foundational skill not
presently developed appears to be proficiency with frac-
tions. . .The teaching of fractions must be acknowledged as
critically important and improved before an increase in
student achievement in algebra can be expected’z.

Development of fraction knowledge
Two distinctions are crucial for understanding develop-
mental and individual differences in fraction knowledge.
One is between conceptual and procedural knowledge.
Conceptual knowledge includes understanding of the prop-
erties of fractions: their magnitudes, principles, and nota-
tions. By contrast, procedural knowledge involves fluency
with the four fraction arithmetic operations.

The other key distinction involves non-symbolic and
symbolic knowledge. Non-symbolic knowledge involves
competence with concrete stimuli (e.g., which set has a
higher proportion of blue dots?); symbolic knowledge
involves competence with conventional representations
(which is greater, 2 3 or

4
9?). We organize our discussion

of developmental and individual differences around these
two distinctions.

Conceptual development

Non-symbolic knowledge Even infants possess a basic,
non-symbolic understanding of fractions. Six-month-olds
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accurately discriminate between two ratios that differ by at
least a factor of 2 (e.g., they dishabituate when, after
repeated presentations of 2:1 ratios of yellow to blue dots,
the ratio switches to 4:1) [25]. This matches their discrimi-
nation abilities with whole numbers [26]. Six-month-olds’
expectations regarding continuous variables also reflect a
sense of ratios; they look longer when an object that is 70%
unsupported remains stationary than when one that is
15% unsupported does [27].

By age 3 years, children can draw analogies between
pairs of non-symbolic fractions (e.g., 1 2 of a square: 1 2 of a
circle:: 3

4 of a square: 3
4 of a circle) [28,29]. Somewhat

older children use 1
2 as a reference point when matching

non-verbal representations of fractions. When asked which
of two partially filled rectangles match a third, 6- and 7-year-
olds are more accurate when the two options are on opposite
sides of 1 2. For example, when matching 3

8, participants
are more accurate when the options are sets equivalent to
3

8 and
5

8 than ones equivalent to 3
8 and

1
8 [30,31].

Although young children can accurately match fractions
presented as continuous quantities, they often err when
counting yields an alternative answer [31–33]. For exam-
ple, kindergartners usually choose the correct (proportion-
al) match to the target in the continuous condition shown
on the left side of Figure 1. However, the same children
usually choose the incorrect (numerical) match on the
discrete task shown on the right side of Figure 1, because
they count and choose the option that has the same number
of shaded segments as the target, rather than the matching
proportion [34].

Symbolic knowledge Symbolic fraction knowledge devel-
ops later than non-symbolic knowledge, but the fraction
1

2 again is prominent in early understanding. Four-year-
olds respond accurately when asked to give a doll half of a
cookie or pizza, but do not do so for 1

4 and 3
4 until age

seven [35,36].
Kindergartners can also give the same fraction of a set of

objects to multiple people, but they do not yet understand
the general inverse relation between the number of sharers
and the number of objects received [37–39]. Not until age
Con�nuous condi�on Discrete condi�on
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Figure 1. Examples of continuous and discrete fraction matching tasks, similar to

those used in [32].
seven do children predict that sharing a set of objects with
more people reduces the number of objects that each
person will receive, regardless of the number of people
or the size of the set being apportioned [37,39].

Children are usually introduced to written fraction
notation as a general representational system in 3rd or
4th grade. Connecting written fractions with the magni-
tudes they represent poses large and enduring challenges
for many children. Understanding does improve with ex-
perience, but the improvements are slow and limited
[1,40–42]. When asked to order 1

7,
5

6, 1, and 4
3, only

33% of Greek 5th graders and 58% of 9th graders answered
correctly [43]. A study of US students found an increase in
fraction magnitude comparison accuracy from 68% to 79%
correct between 6th and 8th grade (chance was 50%) [1];
another study found that US community college students
correctly answered only 70% of similar fraction compar-
isons problems [9].

As noted earlier, understanding fractions requires
learning that many principles that apply to whole numbers
do not apply to fractions. For example, whole numbers
have unique successors, but fractions do not; instead, they
are infinitely divisible. Children tend to come to this
realization slowly, if at all. One study found that third
graders did not understand infinite divisibility, but sixth
graders did [42]; two other studies found that many high
school students do not understand it [5,6].

Procedural development

Non-symbolic arithmetic As with non-symbolic under-
standing of individual fractions, non-symbolic fraction
arithmetic competence begins relatively early. For exam-
ple, 4-year-olds accurately predict solutions to problems
involving addition and subtraction of simple non-verbal
fraction representations (e.g.,1 2 of a circle + 1

4 of a circle)
[44].

Symbolic arithmetic As with representations of individual
fractions, this early competence with non-symbolic fraction
arithmetic contrasts sharply with the enduring difficulty
that children have with symbolic arithmetic. For example,
US 4th and 6th graders correctly answered 25% and 51% of
fraction addition and multiplication problems [45], 6th and
8th graders correctly answered 32% and 60% of addition,
subtraction, multiplication, and division problems [1]; and
another sample of 6th and 8th graders correctly answered
41% and 57% of a similar set [41].

Children make two main types of errors on symbolic
fraction arithmetic problems. Independent whole number
errors [1,4] involve performing the arithmetic operation
independently on numerators and denominators (e.g., 1

2

+ 1
3 =

2
5). Wrong fraction operation errors involve using

components that are correct for another fraction arithmetic
operation on an operation where they are incorrect. A
common example involves maintaining common denomina-
tors in multiplication problems, as is appropriate in addition
and subtraction problems (e.g., 1 3 � 2

3 =
2

3). Both types
of errors are common among community college students, as
well as children [20].

These errors reflect a lack of understanding of the con-
ceptual basis of fraction arithmetic procedures. Claiming
15



Review Trends in Cognitive Sciences January 2013, Vol. 17, No. 1
that 1
2 +

1
3 =

2
5 indicates a lack of understanding that

adding positive numbers must produce answers greater
than either addend (or lack of understanding that 2

5

< 1
2). Claiming that 1

3 � 2
3 = 2

3 indicates a lack of
understanding that multiplying by a number below 1 must
result in an answer smaller than the number being multi-
plied. This lack of conceptual understanding is also appar-
ent in the variability of fraction arithmetic strategies.
Children often generate both correct answers and errors
on virtually identical fraction arithmetic problems within a
single session [1,41].

These findings suggest that many children’s fraction
arithmetic knowledge includes a mix of correct procedures,
components of procedures detached from the relevant
arithmetic operation, and whole number arithmetic pro-
cedures. These children’s strategy choices seem to be con-
strained little � if at all � by conceptual knowledge, which
leads to the observed mixture of correct strategies and
errors, even on highly similar problems.

Individual differences
Knowledge of fractions varies widely among children of the
same age. Consistent individual differences have been
found across different types of fraction knowledge, across
fractions and other types of mathematical knowledge,
across fraction knowledge and domain general processes,
and in the same children over time.

Relations among aspects of fraction knowledge

Different aspects of conceptual knowledge of fractions are
positively related. Knowing that numbers are infinitely
divisible correlates positively with accurately comparing
fraction magnitudes, knowing that fractions can be viewed
as cases of division (N � M), and knowing that there are
numbers between 0 and 1 [42]. Alternative measures of
fraction magnitude knowledge, in particular magnitude
comparison and number line estimation, also are closely
related [1,41]. Similarly, use of strategies that require
conceptual knowledge, such as transforming improper
fractions into mixed numbers (e.g., 17 4 = 4 1

4), predicts
number line estimation accuracy, another measure of con-
ceptual knowledge [1]. Different measures of procedural
fraction knowledge, in particular accuracy on the four
arithmetic operations, also correlate positively [40,46,47].

Conceptual and procedural knowledge of fractions also
are related [40,45–48]. For example, children’s accuracy in
identifying pictorial equivalents of symbolic fractions and
in comparing and estimating fraction magnitudes are re-
lated to their fraction arithmetic accuracy [1,47]. Note that
fraction arithmetic proficiency could, in principle, have
been unrelated to conceptual understanding; the algo-
rithms could have simply been memorized, without con-
ceptual understanding. This does not seem to be how
children learn fraction arithmetic, however.

Linguistic differences in fraction names also are related
to other types of fraction knowledge. In East Asian lan-
guages, fractions are named by stating the denominator
first and the numerator second. For example, the phrase
corresponding to ‘one third’ would translate as ‘of three
parts, one’. The East Asian phrase appears to convey the
part-whole relation, and the linkage between numerator
16
and denominator, more transparently than in English.
Consistent with this view, presenting an English version
of the East Asian phrasing to US second graders enables
them to perform as well as Korean peers in shading
squares within a matrix to match a written fraction, de-
spite the fact that the US children perform much worse
when presented the usual English phrasing [49,50].

Relations of fractions and other mathematics knowledge

Individual differences in fraction knowledge are related to
individual differences in both earlier and later acquired
aspects of mathematics. Both conceptual and procedural
knowledge of fractions are related to previously acquired
whole number arithmetic proficiency [40,46,47]. Fraction
knowledge is also related to subsequently acquired math-
ematics, in particular algebra and the range of topics
covered on high school achievement tests [1,2,51]. In two
large samples of high school students, one from the USA
and one from the UK, fraction competence was highly
associated with both algebra knowledge (both rs > 0.60)
and mathematical achievement scores (both rs > 0.80) [2].
In two studies of middle school children [1,41], fraction
magnitude knowledge also was highly related to overall
mathematics achievement test scores (Figure 2); the rela-
tion was present even after knowledge of fraction arithme-
tic was statistically controlled. Two other studies [3,51]
showed that both conceptual and procedural knowledge of
fractions accounted for unique variance in mathematics
achievement, even after the other was statistically con-
trolled, and that algebra proficiency is more closely related
to conceptual knowledge of fractions than to conceptual
knowledge of whole numbers.

Relations to domain general processes

Both conceptual and procedural fraction knowledge are
also related to domain-general cognitive abilities. Frac-
tions include two pieces of information (numerator and
denominator); therefore, representing them seems likely to
demand more working memory resources than represent-
ing whole numbers [52]. Fraction knowledge also requires
inhibitory control, so that the numerator and denominator
are not treated as independent whole numbers [4]. Not
surprisingly, fraction knowledge is associated with work-
ing memory, attention, and IQ [2,40,41,46,53].

Longitudinal stability

Individual differences in fraction knowledge are quite
stable over both short and long time periods; children
who start ahead stay ahead, and children who start behind
stay behind [3,40]. The stability is present from elementary
school to high school, even after controlling for domain-
general abilities (IQ, reading achievement, and working
memory) and whole number arithmetic knowledge [2].

Studies that have examined individual differences over
shorter periods have identified some of the factors that
contribute to this stability of individual differences. Con-
ceptual knowledge of fractions, attentive behavior, work-
ing memory, and whole number knowledge predict gains in
procedural fraction knowledge from one year to the next
[40]. However, when all of these variables are simulta-
neously controlled, only fraction conceptual knowledge and
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Figure 2. Relation between number line estimation accuracy and mathematics achievement test scores of (a) 6th and (b) 8th graders. Adapted from [1].
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attentive behavior predict gains in procedural knowledge
of fractions.

Acquisition of conceptual and procedural knowledge of
fractions is mutually reinforcing. When provided with
relevant instruction, children with higher initial conceptu-
al knowledge of fractions show greater acquisition of frac-
tion arithmetic procedures [45]; symmetrically, children
with higher initial knowledge of the procedures show
greater subsequent gains in conceptual knowledge [40].
This pattern helps explain consistent positive relations
between conceptual and procedural knowledge of fractions
[40,45–48]; each helps in acquiring the other. Box 2 pro-
vides examples of successful fractions instruction.
Box 2. How can children’s fraction knowledge be improved?

Children’s difficulties with fractions have motivated many interven-

tions to improve fraction knowledge. A common feature of the

successful interventions is that they help children understand how

symbolic fractions map onto the magnitudes they represent [57–61].

One especially impressive demonstration of how instruction can

improve knowledge of fraction magnitudes is Moss and Case’s rational

number curriculum [59]. This instructional approach began by teaching

4th graders broad qualitative distinctions among percentages: 100%

‘means everything’, 99% ‘means almost everything’, 50% ‘means half’,

1% ‘means almost nothing’, and 0% ‘means nothing’. The children were

then encouraged to estimate the percentage of a tube that was covered

by material placed at various heights around its circumference, and

then to compare their estimates to the results of computations

involving benchmarks. For example, if a tube held 60 ml of water, they

were taught that 50% full would be 30 ml, that 25% full would be 15 ml,

and that they could compare estimates of other percentages to those

and other benchmarks. Still later, children were taught to represent

quantities as decimals and common fractions, as well as percentages;

to estimate the position of fractions expressed in all three forms on

number lines; and to play board games intended to reinforce what they

had learned.

At the end of instruction, the fraction knowledge of 4th graders who

had been taught using this curriculum was as good as that of a

control group of 8th graders who had been taught with a standard

curriculum. It was also as good as the knowledge of a control group of

pre-service teachers.
Concluding remarks
The exclusive focus of most theories of numerical develop-
ment on whole numbers has unnecessarily excluded
fascinating aspects of the growth of numerical under-
standing, in particular, the processes through which chil-
dren come to understand that many properties of whole
numbers are not properties of numbers in general, and
that the one property that all real numbers share is
magnitudes that can be ordered on number lines. Consis-
tent with this analysis, recent research has shown that
accurate magnitude representations play the same cen-
tral role with fractions as with whole numbers, that the
two have similar neural bases, and that interventions that
Fuchs et al. [62] demonstrated that instruction focusing on fraction

magnitudes can have especially large, positive effects on at-risk

children (defined as those in the bottom 35% of math achievement

test scores). Children in the control group were presented instruction

from the widely adopted mathematics textbook that they used

throughout the year. The textbook emphasized part-whole repre-

sentations and a mix of conceptual and procedural instruction.

Children in the intervention group received instruction that more

heavily emphasized number lines and other representations de-

signed to help children understand fraction magnitudes. Relative to

the control group, the intervention group received less emphasis on

part-whole understanding and on how to execute fraction arithmetic

procedures, but more emphasis on other types of conceptual

understanding.

Comparisons of the effects of the two types of instruction showed

that the intervention led to greater improvement not only in

conceptual understanding of fractions, but also in proficiency with

fraction arithmetic. The intervention was most effective in raising the

proficiency of children very low in initial achievement. Especially

striking, improvements in understanding of fraction magnitudes

mediated all of the intervention effects; children whose number line

estimation improved most were the ones whose performance

improved most on fraction arithmetic and other tasks.

These and other intervention studies indicate that improving

understanding of fraction magnitudes should be an important goal

of efforts to improve fraction knowledge more generally.
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improve fraction magnitude representations also improve
other mathematical capabilities.

Fractions are also of central importance for education.
Many children and adults show poor quality representa-
tions of fraction magnitudes years after the subject was
covered in school. Poor fraction knowledge in elementary
school predicts low mathematics achievement and algebra
knowledge in high school, even after controlling for general
cognitive abilities, knowledge of whole number arithmetic,
and family education and income. High school algebra
teachers recognize this relation; they rank students’ frac-
tion knowledge as among the largest impediments to
success in their course.

Recent research on developmental and individual dif-
ferences demonstrates that even infants can accurately
represent non-symbolically expressed fractions. The diffi-
culty comes in mapping symbolically expressed fractions
onto their magnitudes and in learning symbolic fraction
arithmetic procedures. These procedures overlap in com-
plex ways, and many students confuse fraction and whole
number procedures and components of different fraction
operations. Fortunately, interventions that improve frac-
tion magnitude representations have proved effective in
helping children learn fraction arithmetic procedures, as
well as in helping them gain conceptual understanding
(Box 2).

This research on fraction understanding raises intrigu-
ing questions for further research, several of which are
listed in Box 3.
Box 3. Questions for future research

� What relations connect whole number and fractions knowledge?

Are individual differences in representations of whole number

and fraction magnitudes related, do earlier individual differences

in whole number representations predict later differences in

fraction representations, and do interventions that improve whole

number magnitude representations improve fraction representa-

tions as well?

� How does knowledge of whole number division influence under-

standing of fractions? Given the intrinsic relation between whole

number division and fractions, would improving whole number

division knowledge improve learning of fractions?

� What processes lead to the consistent positive relations that have

been found between conceptual and procedural knowledge of

fractions? Is the relation solely due to the common role of

fraction magnitudes or are other aspects of conceptual under-

standing, such as the infinite divisibility of fractions, also

important? Do interventions that improve conceptual under-

standing of fraction magnitudes produce a ‘learning to learn’

effect, such that experiences that improve magnitude under-

standing enhance subsequent benefits from fraction arithmetic

instruction?

� Fractions are typically taught before percentages, but Moss and

Case’s [59] rational number curriculum indicates that percentages

can be effectively used to teach fractions. Does teaching fractions

first or percentages first produce greater learning of fractions and

percentages?

� How specific are the relations of neural processing of whole

numbers and fractions? For example, are individual differences in

brain activations on the two types of numbers related? Do

interventions that improve whole number and fraction magnitude

representations produce similar changes in brain activity? The

integrated theory [1] predicts that such relations should emerge,

but the accuracy of this prediction is unknown.
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